Sample records for extended fine structure

  1. Cation distribution in NiZn-ferrite films via extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.; Kirkland, J. P.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films. A least-squares fitting of experimental EXAFS data with theoretical, multiple-scattering, EXAFS data allowed the quantitative determination of site distributions for all transition metal cations.

  2. Structural and electrical properties of In-implanted Ge

    DOE PAGES

    Feng, R.; Kremer, F.; Sprouster, D. J.; ...

    2015-10-22

    Here, we report on the effects of dopant concentration on the structural and electrical properties of In-implanted Ge. For In concentrations of ≤ 0.2 at. %, extended x-ray absorption fine structure and x-ray absorption near-edge structure measurements demonstrate that all In atoms occupy a substitutional lattice site while metallic In precipitates are apparent in transmission electron micrographs for In concentrations ≥0.6 at. %. Evidence of the formation of In-vacancy complexes deduced from extended x-ray absorption fine structure measurements is complimented by density functional theory simulations. Hall effect measurements of the conductivity, carrier density, and carrier mobility are then correlated withmore » the substitutional In fraction.« less

  3. Simple Model with Time-Varying Fine-Structure ``Constant''

    NASA Astrophysics Data System (ADS)

    Berman, M. S.

    2009-10-01

    Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.

  4. Structural analysis of strontium in human teeth treated with surface pre-reacted glass-ionomer filler eluate by using extended X-ray absorption fine structure analysis.

    PubMed

    Uo, Motohiro; Wada, Takahiro; Asakura, Kiyotaka

    2017-03-31

    The bioactive effects of strontium released from surface pre-reacted glass-ionomer (S-PRG) fillers may aid in caries prevention. In this study, the local structure of strontium taken up by teeth was estimated by extended X-ray absorption fine structure analysis. Immersing teeth into S-PRG filler eluate increased the strontium content in enamel and dentin by more than 100 times. The local structure of strontium in enamel and dentin stored in distilled water was the same as that in synthetic strontium-containing hydroxyapatite (SrHAP). Moreover, the local structure of strontium in enamel and dentin after immersion in the S-PRG filler eluate was also similar to that of SrHAP. After immersion in the S-PRG filler eluate, strontium was suggested to be incorporated into the hydroxyapatite (HAP) of enamel and dentin at the calcium site in HAP.

  5. Full-potential theoretical investigations of electron inelastic mean free paths and extended x-ray absorption fine structure in molybdenum.

    PubMed

    Chantler, C T; Bourke, J D

    2014-04-09

    X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model.

  6. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  7. Many-particle-effects in the theory of the extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Tran Thoai, D. B.; Ekardt, W.

    1981-10-01

    The Lee-Beni-procedure for the calculation of the extended X-ray absorption fine structure (EXAFS) is extended so as to include the effects of the electronic charge density outside the localized muffin-tin potentials. In our scheme EXAFS is caused by back-scattering of an elementary excitation of a homogeneous electron gas by localized energy dependent many-particle muffin-tin potentials. The difference between the two schemes is negligible at large k's, as expected from physical grounds. However, at small and intermediate k-values the difference is quite large. The effect of the outer electrons as compared to the Lee-Beni-model is twofold. First, they renormalize the scattered electron in the usual way. Second, they are missing within the scattering muffin-tins. Hence, we avoid to count some of the electrons twice. Results are presented for Cu as an example.

  8. Low-temperature adsorption of H2S on Ni(001) studied by near-edge- and surface-extended-x-ray-absorption fine structure

    NASA Astrophysics Data System (ADS)

    McGrath, R.; MacDowell, A. A.; Hashizume, T.; Sette, F.; Citrin, P. H.

    1989-11-01

    The adsorption of H2S on Ni(001) has been studied with surface-extended x-ray-absorption fine structure and near-edge x-ray-absorption fine structure (NEXAFS) using the AT&T Bell Laboratories X15B beamline at the National Synchrotron Light Source. At 95 K and full saturation coverage, ~0.45 monolayer (ML) of S atoms in fourfold-hollow sites are produced, characteristic of room-temperature adsorption, accompanied by ~0.05 ML of oriented molecular H2S. Both these atomic and molecular chemisorbed species are buried under ~0.9 ML of disordered physisorbed H2S. No evidence for HS is found. Above 190 K the two molecular H2S phases desorb, leaving only dissociated S. These findings differ from previously reported interpretations of data obtained with high-resolution electron-energy-loss spectroscopy. They also exemplify the utility of NEXAFS for identifying and quantifying atomic and molecular surface species even when their difference involves only H and the two species coexist.

  9. Effect of oxygen impurities on properties of the ternary superconductor SnMo/sub 6/S/sub 8/: Extended x-ray-absorption fine-structure determination of bond distances and local-density cluster calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenzburger, D.; Ellis, D.E.; Montano, P.A.

    1985-10-01

    Electronic structure calculations were performed for clusters representing the Chevrel-phase SnMo/sub 6/S/sub 8/, with and without oxygen doping. In order to obtain the local structure around the Sn atom, extended x-ray-absorption fine-structure (EXAFS) measurements were made with synchro- tron radiation. The interatomic distances obtained experimentally were used in the calculations. The effect of oxygen doping on the Moessbauer isomer shift and quadrupole splitting values of /sup 119/Sn was investigated theoretically and compared with reported experimental values. The effect of oxygen substitution on the density of states at the Fermi energy of the (Mo/sub 6/S/sub 8/)/sup 2 -/ cluster was alsomore » studied. The results suggest that oxygen doping does not alter significantly the electronic structure of SnMo/sub 6/S/sub 8/.« less

  10. A Comprehensive Study of Pristine, Fine-grained, Spinel-rich Inclusions from the Leoville and Efremovka CV3 Chondrites. 1; Petrology

    NASA Technical Reports Server (NTRS)

    MacPherson, G. J.; Krot, A. N.; Ulyanov, A. A.; Hicks, T.

    2002-01-01

    Fine-grained spinel-rich CAI from Efremovka and Leoville lack the overprint of Na and Fe metasomatism seen in Allende. They contain spinel, pyroxene, anorthite, and melilite; most have a zoned structure with spinel-rich cores, melilite-rich mantles. Additional information is contained in the original extended abstract.

  11. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less

  12. Fine reservoir structure modeling based upon 3D visualized stratigraphic correlation between horizontal wells: methodology and its application

    NASA Astrophysics Data System (ADS)

    Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu

    2017-12-01

    As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.

  13. Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.

    PubMed

    Dresp, Birgitta; Langley, Keith

    2006-03-01

    The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.

  14. The NaK 1 1,3delta states: theoretical and experimental studies of fine and hyperfine structure of rovibrational levels near the dissociation limit.

    PubMed

    Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P

    2005-09-22

    Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.

  15. [Ultraviolet spectroscopic study on the fine structures in the solar polar hole].

    PubMed

    Zhang, Min; Wang, Dong; Liu, Guo-Hong

    2014-07-01

    Fine structures in the south solar polar coronal hole were observed by N IV line of SOHO/SUMER spectrograph. The scales of the fine structures range spatially range from 1 arcsec to several arcsecs, temporally from 1 min to several minutes, and parts of them are in strip shape along the slit direction. The line-of-sight velocity of them is up to tens of km x s(-1) with red and blue shift intercrossed occasionally, which appear periodically as long as 100 minutes in some regions. Part of the fine structures can be clearly observed at the Ne V III line with higher formation temperature in the same spectral window. The time and location of some fine structures with high velocity in the Ne V III spectrum are almost the same as that in N IV spectrum, but they are extended and diffused in the Ne V III spectrum. Some fine structures have non-Gaussian profiles with the line-of-sight Doppler velocities up to 150 km x s(-1) in the N IV blue/red wings, which is similar with the explosive events in the transition region. In the past, explosive events are small-scale dynamic phenomena often observed in the quiet-sun (QS) region, while their properties in coronal holes (CHs) remain unclear. Here, we find the EE-like events with strong dynamics in the south solar polar coronal hole by N IV line of SOHO/SUMER spectrograph.

  16. Distribution of fine-scale mantle heterogeneity from observations of Pdiff coda

    USGS Publications Warehouse

    Earle, P.S.; Shearer, P.M.

    2001-01-01

    We present stacked record sections of Global Seismic Network data that image the average amplitude and polarization of the high-frequency Pdiff coda and investigate their implications on the depth extent of fine-scale (~10 km) mantle heterogeneity. The extended 1-Hz coda lasts for at least 150 sec and is observed to a distance of 130??. The coda's polarization angle is about the same as the main Pdiff arrival (4.4 sec/deg) and is nearly constant with time. Previous studies show that multiple scattering from heterogeneity restricted to the lowermost mantle generates an extended Pdiff coda with a constant polarization. Here we present an alternative model that satisfies our Pdiff observations. The model consists of single scattering from weak (~1%) fine-scale (~2 km) structures distributed throughout the mantle. Although this model is nonunique, it demonstrates that Pdiff coda observations do not preclude the existence of scattering contributions from the entire mantle.

  17. The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.

    PubMed

    Fornasini, P; Grisenti, R

    2014-10-28

    The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.

  18. Reduced-temperature crystallization of thin amorphous Fe80B20 films studied via empirical modeling of extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Oliver, S. A.; Ayers, J. D.; Das, B. N.; Koon, N. C.

    1996-04-01

    The evolution of the local atomic environment around Fe atoms in very thin (15 nm), amorphous, partially crystallized and fully crystallized films of Fe80B20 was studied using extended x-ray absorption fine structure (EXAFS) measurements. The relative atomic fraction of each crystalline phase present in the annealed samples was extracted from the Fe EXAFS data by a least-squares fitting procedure, using data collected from t-Fe3B, t-Fe2B, and α-Fe standards. The type and relative fraction of the crystallization products follows the trends previously measured in Fe80B20 melt-spun ribbons, except for the fact that crystallization temperatures are ≊200 K lower than those measured in bulk equivalents. This greatly reduced crystallization temperature may arise from the dominant role of surface nucleation sites in the crystallization of very thin amorphous films.

  19. CS and IOS approximations for fine structure transitions in Na(/sup 2/P)--He(/sup 1/S) collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitz, D.E.; Kouri, D.J.

    1980-11-15

    The l-average CS and IOS approximations are extended to treat fine structure transitions in /sup 2/P atom--/sup 1/S atom scattering. Calculations of degeneracy averaged probabilities and differential cross sections for Na(/sup 2/P)+He(/sup 1/S) collisions in the CS and IOS methods agree well with the CC results. The present nonunitarized form of the CS approximation fails to properly predict all of the jm..-->..j'm' sections and in particular leads to a selection rule forbidding jm..-->..j--m transitions for j=half-odd integer values.

  20. The fine structure of the sperm of the round goby (Neogobius melanostomus)

    USGS Publications Warehouse

    Allen, Jeffrey D.; Walker, Glenn K.; Nichols, Susan J.; Sorenson, Dorothy

    2004-01-01

    The fine structural details of the spermatozoon of the round goby are presented for the first time in this study. Scanning and transmission electron microscopic examination of testis reveals an anacrosomal spermatozoon with a slightly elongate head and uniformly compacted chromatin. The midpiece contains a single, spherical mitochondrion. Two perpendicularly oriented centrioles lie in a deep, eccentric nuclear fossa with no regularly observed connection to the nucleus. The flagellum develops bilateral fins soon after emerging from the fossa; each extends approximately 1 A?m from the axoneme and persists nearly the length of the flagellum.

  1. Reply to Comment on Axial oxygen-centered lattice instabilities in YBa[sub 2]Cu[sub 3]O[sub 7]: An application of the analysis of extended x-ray-absorption fine structure in anharmonic systems' ''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustre de Leon, J.; Batistic, I.; Bishop, A.R.

    1993-05-01

    We assert that the one-site Cu(1)-O(4) model, suggested in the Comment by Thomsen and Cardona [Phys. Rev. B 47, 12 320 (1993)] is inconsistent with polarized x-ray-absorption fine-structure and diffraction results. We also show that the two-site Cu(1)-O(4) distribution is not inconsistent with optical measurements, although a rigid double-well modeling of this distribution is [Phys. Rev. Lett. 68, 3236 (1992)].

  2. Non-patchy strategy for inter-atomic distances from Extended X-ray Absorption Fine Structure

    PubMed Central

    Xu, Gu; Li, Guifang; LI, Xianya; Liang, Yi; Feng, Zhechuan

    2017-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) has been one of the few structural probes available for crystalline, non-crystalline and even highly disordered specimens. However, the data analysis involves a patchy and tinkering process, including back-and-forth fitting and filtering, leading to ambiguous answers sometimes. Here we try to resolve this long standing problem, to extract the inter-atomic distances from the experimental data by a single step minimization, in order to replace the tedious and tinkering process. The new strategy is built firmly by the mathematical logic, and made straightforward and undeniable. The finding demonstrates that it is possible to break off from the traditional patchy model fitting, and to remove the logical confusion of a priori prediction of the structure to be matched with experimental data, making it a much more powerful technique than the existing methods. The new method is expected to benefit EXAFS users covering all disciplines. Also, it is anticipated that the current work to be the motivation and inspiration to the further efforts. PMID:28181529

  3. Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis.

    PubMed

    Cousineau, Marion; Oxenham, Andrew J; Peretz, Isabelle

    2015-01-01

    Pitch plays a fundamental role in audition, from speech and music perception to auditory scene analysis. Congenital amusia is a neurogenetic disorder that appears to affect primarily pitch and melody perception. Pitch is normally conveyed by the spectro-temporal fine structure of low harmonics, but some pitch information is available in the temporal envelope produced by the interactions of higher harmonics. Using 10 amusic subjects and 10 matched controls, we tested the hypothesis that amusics suffer exclusively from impaired processing of spectro-temporal fine structure. We also tested whether the inability of amusics to process acoustic temporal fine structure extends beyond pitch by measuring sensitivity to interaural time differences, which also rely on temporal fine structure. Further tests were carried out on basic intensity and spectral resolution. As expected, pitch perception based on spectro-temporal fine structure was impaired in amusics; however, no significant deficits were observed in amusics' ability to perceive the pitch conveyed via temporal-envelope cues. Sensitivity to interaural time differences was also not significantly different between the amusic and control groups, ruling out deficits in the peripheral coding of temporal fine structure. Finally, no significant differences in intensity or spectral resolution were found between the amusic and control groups. The results demonstrate a pitch-specific deficit in fine spectro-temporal information processing in amusia that seems unrelated to temporal or spectral coding in the auditory periphery. These results are consistent with the view that there are distinct mechanisms dedicated to processing resolved and unresolved harmonics in the general population, the former being altered in congenital amusia while the latter is spared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. X-ray absorption spectroscopy study on SiC-side interface structure of SiO2–SiC formed by thermal oxidation in dry oxygen

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Kosaka, Satoru; Kataoka, Keita; Watanabe, Yukihiko; Kimoto, Yasuji

    2018-06-01

    Extended X-ray absorption fine structure (EXAFS) spectroscopy is demonstrated to measure the fine atomic structure of SiO2–SiC interfaces. The SiC-side of the interface can be measured by fabricating thin SiO2 films and using SiC-selective EXAFS measurements. Fourier transforms of the oscillations of the EXAFS spectra correspond to radial-structure functions and reveal a new peak of the first nearest neighbor of Si for m-face SiC, which does not appear in measurements of the Si-face. This finding suggests that the m-face interface could include a structure with shorter Si–C distances. Numerical calculations provide additional support for this finding.

  5. The Astro-E/XRS Blocking Filter Calibration

    NASA Technical Reports Server (NTRS)

    Audley, Michael D.; Arnaud, Keith A.; Gendreau, Keith C.; Boyce, Kevin R.; Fleetwood, Charles M.; Kelley, Richard L.; Keski-Kuha, Ritva A.; Porter, F. Scott; Stahle, Caroline K.; Szymkowiak, Andrew E.

    1999-01-01

    We describe the transmission calibration of the Astro-E XRS blocking filters. The XRS instrument has five aluminized polyimide blocking filters. These filters are located at thermal stages ranging from 200 K to 60 mK. They are each about 1000 A thick. XRS will have high energy resolution which will enable it to see some of the extended fine structure around the oxygen and aluminum K edges of these filters. Thus, we are conducting a high spectral resolution calibration of the filters near these energies to resolve out extended flue structure and absorption lines.

  6. E nergetic, Dynamics And Fine-Scale Structure Of The Sun's Magnetized Atmosphere, Observational Strategies For The Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Kjeldseth-Moe, O.

    2007-01-01

    We look at so me known fine stru cture features, or processes on the Sun th at goes on at a small scale, notably explosive even ts and blinkers. From th eir proper ties we dr aw up a list of ob- servational strateg ies for the So lar Orbiter, based on how we could extend our knowledge of these f eatures. W e then show examples from other f eatures and processes on a small scale in cluding specu lations on th e possibility that th e upper solar atmosph ere consist of hy- per fine reso lution elemen ts much smaller than the pr esen t limit of r esolu tion at ultrav iolet or X-ray wavelengths, i.e. 725 km on the Sun. The applicab ility of the So lar Orbiter instru- ments and observation strateg ies for deter min- ing th e properties of the v arious structures will be discussed. Finally we shall co mmen t on the importance of the out of eclip tic observ ation in the extended mission phase for studying the fast solar w ind in the polar coronal holes.

  7. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.

    PubMed

    Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai

    2016-07-20

    Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.

  8. Probing solid catalysts under operating conditions: electrons or X-rays?

    PubMed

    Thomas, John Meurig; Hernandez-Garrido, Juan-Carlos

    2009-01-01

    Seeing is believing: In light of recent advances, the pros and cons of using electrons and X-rays for in situ studies of catalysts are analyzed: by using X-rays the structure of bound reactants at steady state are obtained from extended X-ray adsorption fine structure spectroscopy (EXAFS) data (see graph), thereby affording mechanistic insights.

  9. Development of XAFS Into a Structure Determination Technique

    NASA Astrophysics Data System (ADS)

    Stern, E. A.

    After the detection of diffraction of x-rays by M. Laue in 1912, the technique was soon applied to structure determination by Bragg within a year. On the other hand, although the edge steps in X-Ray absorption were discovered even earlier by Barkla and both the near edge (XANES) and extended X-Ray fine structure (EXAFS) past the edge were detected by 1929, it still took over 40 years to realize the structure information contained in this X-Ray absorption fine structure (XAFS). To understand this delay a brief historical review of the development of the scientific ideas that transformed XAFS into the premiere technique for local structure determination is given. The development includes both advances in theoretical understanding and calculational capabilities, and in experimental facilities, especially synchrotron radiation sources. The present state of the XAFS technique and its capabilities are summarized.

  10. On-chip surface modified nanostructured ZnO as functional pH sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Liu, Wenpeng; Sun, Chongling; Zhang, Hao; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2015-09-01

    Zinc oxide (ZnO) nanostructures are promising candidates as electronic components for biological and chemical applications. In this study, ZnO ultra-fine nanowire (NW) and nanoflake (NF) hybrid structures have been prepared by Au-assisted chemical vapor deposition (CVD) under ambient pressure. Their surface morphology, lattice structures, and crystal orientation were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Two types of ZnO nanostructures were successfully integrated as gate electrodes in extended-gate field-effect transistors (EGFETs). Due to the amphoteric properties of ZnO, such devices function as pH sensors. We found that the ultra-fine NWs, which were more than 50 μm in length and less than 100 nm in diameter, performed better in the pH sensing process than NW-NF hybrid structures because of their higher surface-to-volume ratio, considering the Nernst equation and the Gouy-Chapman-Stern model. Furthermore, the surface coating of (3-Aminopropyl)triethoxysilane (APTES) protects ZnO nanostructures in both acidic and alkaline environments, thus enhancing the device stability and extending its pH sensing dynamic range.

  11. Electronic and atomic structures of Ti{sub 1-x}Al{sub x}N thin films related to their damage behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.

    2008-04-15

    Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti{sub 1-x}Al{sub x}N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti{sub 1-x}Al{sub x}N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grainmore » boundaries. The results are discussed by considering the damage behavior of the films depending on the composition.« less

  12. Bond-length relaxation in crystalline Si1-xGex alloys: An extended x-ray-absorption fine-structure study

    NASA Astrophysics Data System (ADS)

    Kajiyama, Hiroshi; Muramatsu, Shin-Ichi; Shimada, Toshikazu; Nishino, Yoichi

    1992-06-01

    Extended x-ray-absorption fine-structure spectra for crystalline Si1-xGex alloys, measured at the K edge of Ge at room temperature, are analyzed with a curve-fitting method based on the spherical-wave approximation. The Ge-Ge and Ge-Si bond lengths, coordination numbers of Ge and Si atoms around a Ge atom, and Debye-Waller factors of Ge and Si atoms are obtained. It is shown that Ge-Ge and Ge-Si bonds relax completely, for all Ge concentrations of their study, while the lattice constant varies monotonically, following Vegard's law. As noted by Bragg and later by Pauling and Huggins, the Ge-Ge and Ge-Si bond lengths are close to the sum of their constituent-element atomic radii: nearly 2.45 Å for Ge-Ge bonds and 2.40 Å for Ge-Si bonds. A study on the coordination around a Ge atom in the alloys revealed that Ge and Si atoms mix randomly throughout the compositional range studied.

  13. Exploring the fine structure at the limb in coronal holes

    NASA Technical Reports Server (NTRS)

    Karovska, Magarita; Blundell, Solon F.; Habbal, Shadia Rifai

    1994-01-01

    The fine structure of the solar limb in coronal holes is explored at temperatures ranging from 10(exp 4) to 10(exp 6) K. An image enhancement algorithm orignally developed for solar eclipse observations is applied to a number of simultaneous multiwavelength observations made with the Harvard Extreme Ultraviolet Spectrometer experiment on Skylab. The enhanced images reveal the presence of filamentary structures above the limb with a characteristic separation of approximately 10 to 15 sec . Some of the structures extend from the solar limb into the corona to at least 4 min above the solar limb. The brightness of these structures changes as a function of height above the limb. The brightest emission is associated with spiculelike structures in the proximity of the limb. The emission characteristic of high-temperature plasma is not cospatial with the emission at lower temperatures, indicating the presence of different temperature plasmas in the field of view.

  14. A Geometric and Electrostatic Study of the [4Fe-4S] Cluster of Adenosine-5´-Phosphosulfate Reductase from Broken Symmetry Density Functional Calculations and Extended X-ray Absorption Fine Structure Spectroscopy

    PubMed Central

    Bhave, Devayani P.; Han, Wen-Ge; Pazicni, Samuel; Penner-Hahn, James E.; Carroll, Kate S.; Noodleman, Louis

    2011-01-01

    Adenosine-5’-phosphosulfate reductase (APSR) is an iron-sulfur protein that catalyses the reduction of adenosine-5’-phosphosulfate (APS) to sulfite. APSR coordinates to a [4Fe-4S] cluster via a conserved CC-X~80-CXXC motif and the cluster is essential for catalysis. Despite extensive functional, structural and spectroscopic studies, the exact role of the iron-sulfur cluster in APS reduction remains unknown. To gain an understanding into the role of the cluster, density functional theory (DFT) analysis and extended X-ray fine structure spectroscopy (EXAFS) have been performed to reveal insights into the coordination, geometry and electrostatics of the [4Fe-4S] cluster. XANES data confirms that the cluster is in the [4Fe-4S]2+ state in both native and substrate-bound APSR while EXAFS data recorded at ~0.1 Å resolution indicates that there is no significant change in the structure of the [4Fe-4S] cluster between the native and substrate-bound forms of the protein. On the other hand, DFT calculations provide an insight into the subtle differences between the geometry of the cluster in the native and APS-bound forms of APSR. A comparison between models with and without the tandem cysteine pair coordination of the cluster suggests a role for the unique coordination in facilitating a compact geometric structure and ‘fine-tuning’ the electronic structure to prevent reduction of the cluster. Further, calculations using models in which residue Lys144 is mutated to Ala confirm the finding that Lys144 serves as a crucial link in the interactions involving the [4Fe-4S] cluster and APS. PMID:21678934

  15. Local Structure of the Amorphous Precursor to Ba-Hexaferrite Thin Films: An Anisotropic Octahedral Fe-O Glass Network

    NASA Astrophysics Data System (ADS)

    Snyder, J. E.; Harris, V. G.; Koon, N. C.; Sui, X.; Kryder, M. H.

    1996-10-01

    Anisotropic local structure has been observed around both the Fe and Ba ions in the amorphous precursor to Ba-hexaferrite thin films, using polarization-dependent extended x-ray-absorption fine structure. This anisotropic local structure, consisting mainly of a network of Fe-O octahedra, determines the orientation of the fast-growing basal planes during crystallization, and thus the directions of the c axes and the resulting magnetic anisotropy.

  16. Fine-scale genetic structure in populations of the Chagas' disease vector Triatoma infestans (Hemiptera, Reduvidae).

    PubMed

    Pérez de Rosas, Alicia R; Segura, Elsa L; Fusco, Octavio; Guiñazú, Adolfo L Bareiro; García, Beatriz A

    2013-03-01

    Fine scale patterns of genetic structure and dispersal in Triatoma infestans populations from Argentina was analysed. A total of 314 insects from 22 domestic and peridomestic sites from the locality of San Martín (Capayán department, Catamarca province) were typed for 10 polymorphic microsatellite loci. The results confirm subdivision of T. infestans populations with restricted dispersal among sampling sites and suggest inbreeding and/or stratification within the different domestic and peridomestic structures. Spatial correlation analysis showed that the scale of structuring is approximately of 400 m, indicating that active dispersal would occur within this distance range. It was detected difference in scale of structuring among sexes, with females dispersing over greater distances than males. This study suggests that insecticide treatment and surveillance should be extended within a radius of 400 m around the infested area, which would help to reduce the probability of reinfestation by covering an area of active dispersal. The inferences made from fine-scale spatial genetic structure analyses of T. infestans populations has demonstrated to be important for community-wide control programs, providing a complementary approach to help improve vector control strategies.

  17. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, J.M.; Krest, C.M.; Jiang, W.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of themore » protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.« less

  18. Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling

    DOE PAGES

    Riddle, Catherine; Czerwinski, Kenneth; Kim, Eunja; ...

    2016-01-18

    We studied the speciation of pentavalent and hexavalent americium (Am) complexes in nitric acidicby X-ray absorption fine structure spectroscopy (XAFS), UV-visible spectroscopy, and density functional theory (DFT). Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) results were consistent with the presence of a mixture of AmO 2 + and AmO 2 2+ with only a small amount AmO 2 present. The resulting average bond distances we found were 1.71 Å for Am=O and 2.44 Å for Am-O. All-electron scalar relativistic calculations were also carried out using DFT to predict the equilibrium geometries and properties ofmore » the AmO 2 + and AmO 2 2+ aquo complexes. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and the computed energy gaps between frontier molecular orbitals suggest a slightly higher kinetic stability and chemical hardness of Am(VI) compared to Am(V).« less

  19. Retention of Nickel in Soils: Sorption-Desorption and Extended X-ray Absorption Fine Structure Experiments

    EPA Science Inventory

    Adsorption and desorption of heavy metals in soils are primary factors that influence their bioavailability and mobility in the soil profile. To examine the characteristics of nickel (Ni) adsorption-desorption in soils, kinetic batch experiments were carried out followed by Ni re...

  20. Extended X-ray Absorption Fine Structure Study of Bond Constraints in Ge-Sb-Te Alloys

    DTIC Science & Technology

    2011-02-07

    Ray Absorption Spectroscopy, or EXAFS. Using the spectroscopic capabilities provided by the MCAT line at the Advanced Photon Source at Argonne...Absorption Spectroscopy, or EXAFS. Using the spectroscopic capabilities provided by the MCAT line at the Advanced Photon Source at Argonne National

  1. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  2. Characterization of the Cu(Π) and Zn(Π) binding to the Amyloid-β short peptides by both the Extended X-ray Absorption Fine Structure and the Synchrotron Radiation Circular Dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyin; Sun, Shuaishuai; Xu, Jianhua; Zhang, Jing; Huang, Yan; Zhang, Bingbing; Tao, Ye

    2013-04-01

    Alzheimer's disease (AD) is a progressive and devastating neurodegenerative pathology, clinically characterized by dementia, cognitive impairment, personality disorders and memory loss. It is generally accepted that, misfolding of Aβ peptides is the key element in pathogenesis and the secondary structure of Aβ can be changed to major β-strand with reasons unknown yet. Many studies have shown that the misfolding may be linked with some biometals, mainly copper and zinc ions. To characterize interactions of Aβ and metal ions, we utilized both the extended X-ray fine structure spectroscopy (EXAFS) and the synchrotron radiation circular dichroism spectroscopy (SRCD). Aβ (13-22), Aβ (13-21), Aβ (E22G) and Aβ(HH-AA) were selected to study the mechanism of copper and zinc binding to Aβ. We found that Cu interaction with H13 and H14 residues led to the disappearance of the PPΠ, while the Cu binding E22 residue caused a remarkable conformation change to β-sheet enrichment. The Zn ion, in contrast, made little effect on the conformation and it coordinated to only one histidine (H residue) or not.

  3. Extended x-ray absorption fine structure study of phase transitions in the piezoelectric perovskite K0.5Na0.5NbO3

    NASA Astrophysics Data System (ADS)

    Kodre, A.; Tellier, J.; Arčon, I.; Malič, B.; Kosec, M.

    2009-06-01

    Following an x-ray diffraction study of phase transitions of the piezoelectric perovskite K0.5Na0.5NbO3 the structural changes of the material are studied using extended x-ray absorption fine structure analysis, whereby the neighborhood of Nb atom is determined in the temperature range of monoclinic, tetragonal, and cubic phases. Within the entire range Nb atom is displaced from the center of the octahedron of its immediate oxygen neighbors, as witnessed by the splitting of Nb-O distance. The model shows high prevalence of the displacement in the (111) crystallographic direction of the simple perovskite cell. The corresponding splitting of the Nb-Nb distance is negligible. There is no observable disalignment of the linear Nb-O-Nb bonds from the ideal cubic arrangement, judging from the intensity of the focusing of the photoelectron wave on the Nb-Nb scattering path by the interposed oxygen atom. As a general result, the phase transitions are found as an effect of the long-range order, while the placement of the atoms in the immediate vicinity remains largely unaffected.

  4. Large local disorder in superconducting K(0.8)Fe(1.6)Se2 studied by extended x-ray absorption fine structure.

    PubMed

    Iadecola, A; Joseph, B; Simonelli, L; Puri, A; Mizuguchi, Y; Takeya, H; Takano, Y; Saini, N L

    2012-03-21

    We have measured the local structure of superconducting K(0.8)Fe(1.6)Se(2) chalcogenide (T(c) = 31.8 K) by temperature dependent polarized extended x-ray absorption fine structure (EXAFS) at the Fe and Se K-edges. We find that the system is characterized by a large local disorder. The Fe-Se and Fe-Fe distances are found to be shorter than the distances measured by diffraction, while the corresponding mean square relative displacements reveal large Fe-site disorder and relatively large c-axis disorder. The local force constant for the Fe-Se bondlength (k ~ 5.8 eV Å(-2)) is similar to the one found in the binary FeSe superconductor, however, the Fe-Fe bondlength appears to be flexible (k ~ 2.1 eV Å(-2)) in comparison to the binary FeSe (k ~ 3.5 eV Å(-2)), an indication of partly relaxed Fe-Fe networks in K(0.8)Fe(1.6)Se(2). The results suggest a glassy nature for the title system, with the superconductivity being similar to that in the granular materials. © 2012 IOP Publishing Ltd

  5. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patanen, M.; Benkoula, S.; Nicolas, C.

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  6. Three-dimensional hierarchical structures for fog harvesting.

    PubMed

    Andrews, H G; Eccles, E A; Schofield, W C E; Badyal, J P S

    2011-04-05

    Conventional fog-harvesting mechanisms are effectively pseudo-2D surface phenomena in terms of water droplet-plant interactions. In the case of the Cotula fallax plant, a unique hierarchical 3D arrangement formed by its leaves and the fine hairs covering them has been found to underpin the collection and retention of water droplets on the foliage for extended periods of time. The mechanisms of water capture and release as a function of the surface 3D structure and chemistry have been identified. Of particular note is that water is retained throughout the entirety of the plant and held within the foliage itself (rather than in localized regions). Individual plant hairs form matlike structures capable of supporting water droplets; these hairs wrap around water droplets in a 3D fashion to secure them via a fine nanoscale groove structure that prevents them from easily falling to the ground.

  7. Arsenic complexes optical signatures in As-doped HgCdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemain, F.; Robin, I. C.; Brochen, S.

    2013-04-08

    In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.

  8. Electron-beam induced amorphization of stishovite: Silicon-coordination change observed using Si K-edge extended electron energy-loss fine structure

    NASA Astrophysics Data System (ADS)

    van Aken, P. A.; Sharp, T. G.; Seifert, F.

    The analysis of the extended energy-loss fine structure (EXELFS) of the Si K-edge for sixfold-coordinated Si in synthetic stishovite and fourfold-coordinated Si in natural α-quartz is reported by using electron energy-loss spectroscopy (EELS) in combination with transmission electron microscopy (TEM). The stishovite Si K-edge EXELFS spectra were measured as a time-dependent series to document irradiation-induced amorphization. The amorphization was also investigated through the change in Si K- and O K-edge energy-loss near edge structure (ELNES). For α-quartz, in contrast to stishovite, electron irradiation-induced vitrification, verified by selected area electron diffraction (SAED), produced no detectable changes of the EXELFS. The Si K-edge EXELFS were analysed with the classical extended X-ray absorption fine structure (EXAFS) treatment and compared to ab initio curve-waved multiple-scattering (MS) calculations of EXAFS spectra for stishovite and α-quartz. Highly accurate information on the local atomic environment of the silicon atoms during the irradiation-induced amorphization of stishovite is obtained from the EXELFS structure parameters (Si-O bond distances, coordination numbers and Debye-Waller factors). The mean Si-O bond distance R and mean Si coordination number N changes from R=0.1775 nm and N=6 for stishovite through a disordered intermediate state (R 0.172 nm and N 5) to R 0.167 nm and N 4.5 for a nearly amorphous state similar to α-quartz (R=0.1609 nm and N=4). During the amorphization process, the Debye-Waller factor (DWF) passes through a maximum value of as it changes from for sixfold to for fourfold coordination of Si. This increase in Debye-Waller factor indicates an increase in mean-square relative displacement (MSRD) between the central silicon atom and its oxygen neighbours that is consistent with the presence of an intermediate structural state with fivefold coordination of Si. The distribution of coordination states can be estimated by modelling the amorphization as a decay process. Using the EXELFS data for amorphization, a new method is developed to derive the relative amounts of Si coordinations in high-pressure minerals with mixed coordination. For the radiation-induced amorphization process of stishovite the formation of a transitory structure with Si largely in fivefold coordination is deduced.

  9. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  10. Flexible nanogenerators

    DOEpatents

    Wang, Zhong L [Marietta, GA; Wang, Xudong [Atlanta, GA; Qin, Yong [Atlanta, GA; Yang, Rusen [Atlanta, GA

    2011-07-19

    A small scale electrical generator includes an elongated substrate and a first piezoelectric fine wire. The first piezoelectric fine wire is disposed along a surface of the substrate. The first piezoelectric fine wire has a first end and a spaced-apart second end. A first conductive contact secures the first end of the fine wire to a first portion of the substrate and a second conductive contact secures the second end of the fine wire to a second portion of the substrate. A fabric made of interwoven strands that includes fibers from which piezoelectric nanowires extend radially therefrom and conductive nanostructures extend therefrom is configured to generate electricity.

  11. High-resolution observations of active region moss and its dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R. J.; McLaughlin, J. A., E-mail: richard.morton@northumbria.ac.uk

    2014-07-10

    The High Resolution Coronal Imager has provided the sharpest view of the EUV corona to date. In this paper, we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads that have widths with a mean and standard deviation of 440 ± 190 km (FWHM). The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere. The emission decreases alongmore » the features, implying that the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation of physical displacements of the moss fine structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic behavior, which we interpret as a signature of kink (Alfvénic) waves. Measurements of the properties of the transverse motions are made and the wave motions have means and standard deviations of 55 ± 37 km for the transverse displacement amplitude, 77 ± 33 s for the period, and 4.7 ± 2.5 km s{sup –1} for the velocity amplitude. The presence of waves in the transition region of hot loops could have important implications for the heating of active regions.« less

  12. Sulfur K-edge extended X-ray absorption fine structure spectroscopy of homoleptic thiolato complexes with Zn(II) and Cd(II).

    PubMed

    Matsunaga, Yuki; Fujisawa, Kiyoshi; Ibi, Naoko; Fujita, Mitsuharu; Ohashi, Tetuya; Amir, Nagina; Miyashita, Yoshitaro; Aika, Ken-Ichi; Izumi, Yasuo; Okamoto, Ken-Ichi

    2006-02-01

    The sulfur K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy is applied to homoleptic thiolato complexes with Zn(II) and Cd(II), (Et(4)N)[Zn(SAd)(3)] (1), (Et(4)N)(2)[{Zn(ScHex)(2)}(2)(mu-ScHex)(2)] (2), (Et(4)N)(2)[{Cd(ScHex)(2)}(2)(mu-ScHex)(2)] (3), (Et(4)N)(2)[{Cd(ScHex)}(4)(mu-ScHex)(6)] (4), [Zn(mu-SAd)(2)](n) (5), and [Cd(mu-SAd)(2)](n) (6) (HSAd=1-adamantanethiol, HScHex=cyclohexanethiol). The EXAFS results are consistent with the X-ray crystal data of 1-4. The structures of 5 and 6, which have not been determined by X-ray crystallography, are proposed to be polynuclear structures on the basis of the sulfur K-edge EXAFS, far-IR spectra, and elemental analysis. Clear evidences of the S...S interactions (between bridging atoms or neighboring sulfur atoms) and the S...C(far) interactions (in which C(far) atom is next to carbon atom directly bonded to sulfur atom) were observed in the EXAFS data for all complexes and thus lead to the reliable determination of the structures of 5 and 6 in combination with conventional zinc K-edge EXAFS analysis for 5. This new methodology, sulfur K-edge EXAFS, could be applied for the structural determination of in vivo metalloproteins as well as inorganic compounds.

  13. 4D Sommerfeld quantization of the complex extended charge

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, Igor E.

    2017-12-01

    Gravitational fields and accelerations cannot change quantized magnetic flux in closed line contours due to flat 3D section of curved 4D space-time-matter. The relativistic Bohr-Sommerfeld quantization of the imaginary charge reveals an electric analog of the Compton length, which can introduce quantitatively the fine structure constant and the Plank length.

  14. The meaning of "design".

    PubMed

    Leslie, J

    2001-12-01

    Our universe obeys elegant laws that permit living beings to evolve. This can suggest divine design. So can fine tuning of physical and cosmological parameters in ways that seem essential to life. Understanding the idea of design is, however, difficult for many reasons. For instance, could a designer be said to "fine tune" through choosing all-dictating laws very carefully? Again, would taking advantage of early quantum indeterminacies be a case of design, or would it be design-destroying interference? Can we speak of "design" if God is not a mind but an abstract Platonic principle? And what if, as Spinoza believed, the structure of our universe is just the structure of divine thinking? If such thinking extended to other universes which were lifeless, could those "exhibit design" simply through being orderly?

  15. Extended X-ray Absorption Fine Structure (EXAFS) Analysis of Vitreous Rare Earth Sodium Phosphates

    NASA Astrophysics Data System (ADS)

    Yoo, Changhyeon; Marasinghe, Kanishka; Segre, Carlo; Shibata, Tomohiro

    2015-03-01

    The local structure around rare-earth ions (RE3+) in rare-earth ultraphosphate (REUP) glasses has been studied using RE LIII edge (RE = Nd, Er, Dy, and Eu) and K edge (RE = Nd, Pr, Dy, and Eu) extended X-ray absorption fine structure (EXAFS) spectroscopy. (RE2O3)x (Na2O)y(P2O5) 1 - x - y glasses in the compositional range 0 <= x <= 0.14 and x + y = 0.3 and 0.4 were studied. RE-oxygen (RE-O) coordination number decreases from ~ 10 to ~ 7.5 with increasing RE-content for Nd, Pr, Eu, and Dy. For Er, RE-O coordination number increases from ~ 8.7 to ~ 10 with increasing RE-content. For the first oxygen shell, the RE-O distance ranges between 2.41-2.43 Å, 2.44-2.46 Å, 2.24-2.26 Å, 2.28-2.32 Å, and 2.32-2.36 Å for Nd, Pr, Er, Dy, and EU glasses, respectively. Second shell around RE ions consists of phosphorus atoms, with RE-P distance about 3.0-3.5 Å and coordination number ranging from 1 to 3. The third shell primarily contains oxygen and is at a distance about 4.0-4.1 Å from RE ions.

  16. CO-DARK Star Formation and Black Hole Activity in 3C 368 at Z = 1.131: Coeval Growth of Stellar and Supermassive Black Hole Masses

    NASA Astrophysics Data System (ADS)

    Lamarche, C.; Stacey, G.; Brisbin, D.; Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Riechers, D.; Sharon, C. E.; Spoon, H.; Vishwas, A.

    2017-02-01

    We present the detection of four far-infrared fine-structure oxygen lines, as well as strong upper limits for the CO(2-1) and [N II] 205 μm lines, in 3C 368, a well-studied radio-loud galaxy at z = 1.131. These new oxygen lines, taken in conjunction with previously observed neon and carbon fine-structure lines, suggest a powerful active galactic nucleus (AGN), accompanied by vigorous and extended star formation. A starburst dominated by O8 stars, with an age of ˜6.5 Myr, provides a good fit to the fine-structure line data. This estimated age of the starburst makes it nearly concurrent with the latest episode of AGN activity, suggesting a link between the growth of the supermassive black hole and stellar population in this source. We do not detect the CO(2-1) line, down to a level twelve times lower than the expected value for star-forming galaxies. This lack of CO line emission is consistent with recent star formation activity if the star-forming molecular gas has low metallicity, is highly fractionated (such that CO is photodissociated throughout much of the clouds), or is chemically very young (such that CO has not yet had time to form). It is also possible, although we argue it is unlikely, that the ensemble of fine-structure lines is emitted from the region heated by the AGN.

  17. In-Plane Structure of Underpotentially Deposited Copper on Gold (111) Determined by Surface EXAFS (Extended X-Ray Absorption Fine Structure).

    DTIC Science & Technology

    1988-01-28

    EXAFS is the inverse transform of the two peaks in the RSF using a filtering a12 function to isolate the range between I and 4A. Both the frequency...backscattering of different neighbors. This inverse transform contains only one frequency and its envelope of intensity is the backscattering amplitude function...and the inverse transform of the RSF using a fourier filter between 1 and 4A (Solid line). Insert: Radial Structure Function (RSF) analyzed between

  18. Influence of musical training on sensitivity to temporal fine structure.

    PubMed

    Mishra, Srikanta K; Panda, Manasa R; Raj, Swapna

    2015-04-01

    The objective of this study was to extend the findings that temporal fine structure encoding is altered in musicians by examining sensitivity to temporal fine structure (TFS) in an alternative (non-Western) musician model that is rarely adopted--Indian classical music. The sensitivity to TFS was measured by the ability to discriminate two complex tones that differed in TFS but not in envelope repetition rate. Sixteen South Indian classical (Carnatic) musicians and 28 non-musicians with normal hearing participated in this study. Musicians have significantly lower relative frequency shift at threshold in the TFS task compared to non-musicians. A significant negative correlation was observed between years of musical experience and relative frequency shift at threshold in the TFS task. Test-retest repeatability of thresholds in the TFS tasks was similar for both musicians and non-musicians. The enhanced performance of the Carnatic-trained musicians suggests that the musician advantage for frequency and harmonicity discrimination is not restricted to training in Western classical music, on which much of the previous research on musical training has narrowly focused. The perceptual judgments obtained from non-musicians were as reliable as those of musicians.

  19. Raman structural studies of the nickel electrode

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.

    1994-01-01

    The objectives of this investigation have been to define the structures of charged active mass, discharged active mass, and related precursor materials (alpha-phases), with the purpose of better understanding the chemical and electrochemical reactions, including failure mechanisms and cobalt incorporation, so that the nickel electrode may be improved. Although our primary tool has been Raman spectroscopy, the structural conclusions drawn from the Raman data have been supported and augmented by three other analysis methods: infrared spectroscopy, powder X-ray Diffraction (XRD), and x-ray absorption spectroscopy (in particular EXAFS, Extended X-ray Absorption Fine Structure spectroscopy).

  20. Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Linehan, J.C.; Matson, D.W.

    1993-06-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ([alpha]-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.

  1. Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Linehan, J.C.; Matson, D.W.

    1993-06-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ({alpha}-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.

  2. Herschel Galactic Plane Survey of [NII] Fine Structure Emission

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L.

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10-8-10-7 Wm-2 sr-1 level over the range -60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10-50 cm-3 with an average value of 29 cm-3 and N+ column densities 1016-1017 cm-2. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.

  3. Determination of Structural Parameters from EXAFS (Extended X-Ray Absorption Fine Structure): Application to Solutions and Catalysts.

    DTIC Science & Technology

    1984-05-23

    the disorder was accurately known. Inverse Transform To isolate the EAFS contribution due to a single feature in the Fourier transform, the inverse ...is associated with setting the "fold" components to 27 zero in r-space. An inverse transform (real part) of the major feature of the Fig. 4 Fourier...phase of the resulting inverse transform represents only any differences between the material being studied and the reference. This residual is

  4. CO-Dark Star Formation and Black Hole Activity in 3C 368 at z = 1.131: Coeval Growth of Stellar and Supermassive Black Hole Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamarche, C.; Stacey, G.; Riechers, D.

    We present the detection of four far-infrared fine-structure oxygen lines, as well as strong upper limits for the CO(2–1) and [N ii] 205 μ m lines, in 3C 368, a well-studied radio-loud galaxy at z = 1.131. These new oxygen lines, taken in conjunction with previously observed neon and carbon fine-structure lines, suggest a powerful active galactic nucleus (AGN), accompanied by vigorous and extended star formation. A starburst dominated by O8 stars, with an age of ∼6.5 Myr, provides a good fit to the fine-structure line data. This estimated age of the starburst makes it nearly concurrent with the latestmore » episode of AGN activity, suggesting a link between the growth of the supermassive black hole and stellar population in this source. We do not detect the CO(2–1) line, down to a level twelve times lower than the expected value for star-forming galaxies. This lack of CO line emission is consistent with recent star formation activity if the star-forming molecular gas has low metallicity, is highly fractionated (such that CO is photodissociated throughout much of the clouds), or is chemically very young (such that CO has not yet had time to form). It is also possible, although we argue it is unlikely, that the ensemble of fine-structure lines is emitted from the region heated by the AGN.« less

  5. Homogeneity of Pb(Zr ,Ti)O3 thin films by chemical solution deposition: Extended x-ray absorption fine structure spectroscopy study of zirconium local environment

    NASA Astrophysics Data System (ADS)

    Malic, Barbara; Arcon, Iztok; Kodre, Alojz; Kosec, Marija

    2006-09-01

    Sols for Pb(Zr0.53Ti0.47)O3 (PZT) thin films were prepared by 2-methoxyethanol route from lead acetate, titanium n-propoxide, and zirconium n-propoxide, the latter either unmodified or modified with acetylacetone or acetic acid in a 2/1 molar ratio and deposited on sapphire (0001). By Zr K-edge extended x-ray absorption fine structure (EXAFS) spectroscopy, the structural changes in the Zr local environment, induced by the addition of the two modifiers, were followed from the synthesis of the PZT sol to the transition to the amorphous film. In the unmodified PZT sol segregation of Zr species occurs from the original dimers present in the Zr propoxide solution in 2-methoxyethanol. The immediate neighborhood of Zr atoms changes markedly at the transition from the sol to the amorphous film: the local structure around Zr atoms is similar to the one found in tetragonal zirconia particles. The modification of Zr propoxide with acetylacetone in 2-methoxyethanol results in Zr monomers. In PZT sol, clustering of Zr species is observed continuing into the amorphous film. By modification with acetic acid the original dimeric structure of the Zr precursor is retained in the PZT sol and further in the amorphous film. Selective modification of Zr propoxide with acetic acid therefore results in a more homogeneous distribution of Zr atoms in the PZT sol and amorphous film than in both as-received and acetylacetone-modified Zr propoxide.

  6. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  7. Extension of the Vane Pump-Grinder Technology to Manufacture Finely Dispersed Meat Batters.

    PubMed

    Irmscher, Stefan B; Gibis, Monika; Herrmann, Kurt; Oechsle, Anja Maria; Kohlus, Reinhard; Weiss, Jochen

    2016-03-01

    A vane pump-grinder system was extended to enable the manufacture of finely dispersed emulsion-type sausages by constructing and attaching a high-shear homogenizer at the outlet. We hypothesized that the dispersing capabilities of the extended system may be improved to the point of facilitating meat-fat emulsification due to an overall increased volumetric energy input EV . Coarsely ground raw material mixtures were processed to yield meat batters at varying volume flow rates (10 to 60 L/min) and rotational rotor speeds of the homogenizer nrotor (1000 to 3400 rpm). The normalized torques acting on pump, grinder, and homogenizer motors were recorded and unit power consumptions were calculated. The structure of the manufactured meat batters and sausages were analyzed via image analysis. Key physicochemical properties of unheated and heated batters, that is, texture, water-binding, color, and solubilized protein were determined. The mean diameter d10 of the visible lean meat particles varied between 352 and 406 μm whereas the mean volume-surface diameter d32 varied between 603 and 796 μm. The lightness L* ranged from 66.2 to 70.7 and correlated with the volumetric energy input and product structure. By contrast, varying process parameters did not impact color values a* (approximately 11) and b* (approximately 8). Interestingly, water-binding and protein solubilization were not affected. An exponential process-structure relationship was identified allowing manufacturers to predict product properties as a function of applied process parameters. Raw material mixtures can be continuously comminuted, emulsified, and subsequently filled into casings using an extended vane pump-grinder. © 2016 Institute of Food Technologists®

  8. First principles simulation of amorphous InSb

    NASA Astrophysics Data System (ADS)

    Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco

    2013-05-01

    Ab initio molecular dynamics simulations based on density functional theory have been performed to generate a model of amorphous InSb by quenching from the melt. The resulting network is mostly tetrahedral with a minor fraction (10%) of atoms in a fivefold coordination. The structural properties are in good agreement with available x-ray diffraction and extended x-ray-absorption fine structure data and confirm the proposed presence of a sizable fraction of homopolar In-In and Sb-Sb bonds whose concentration in our model amounts to about 20% of the total number of bonds.

  9. Preparation of γ-LiV2O5 from polyoxovanadate cluster Li7[V15O36(CO3)] as a high-performance cathode material and its reaction mechanism revealed by operando XAFS

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Isobe, Jin; Shimizu, Takeshi; Matsumura, Daiju; Ina, Toshiaki; Yoshikawa, Hirofumi

    2017-08-01

    γ-phase LiV2O5, which shows superior electrochemical performance as cathode material in Li-ion batteries, was prepared by annealing the polyoxovanadate cluster Li7 [V15O36(CO3)]. The reaction mechanism was studied using operando X-ray absorption fine structure (XAFS), powder X-ray diffraction (PXRD), and X-ray photoelectron spectroscopy (XPS) analyses. The X-ray absorption near edge structure (XANES) and XPS results reveal that γ-LiV2O5 undergoes two-electron redox reaction per V2O5 pyramid unit, resulting in a large reversible capacity of 260 Ah/kg. The extended X-ray absorption fine structure (EXAFS) and PXRD analyses also suggest that the V-V distance slightly increases, due to the reduction of V5+ to V4+ during Li ion intercalation as the material structure is maintained. As a result, γ-LixV2O5 shows highly reversible electrochemical reaction with x = 0.1-1.9.

  10. Fine-structure constant constraints on dark energy. II. Extending the parameter space

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Pinho, A. M. M.; Carreira, P.; Gusart, A.; López, J.; Rocha, C. I. S. A.

    2016-01-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α , are a powerful probe of new physics. Recently these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, were used to constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ , to the electromagnetic sector) the α variation. One caveat of these analyses was that it was based on fiducial models where the dark energy equation of state was described by a single parameter (effectively its present day value, w0). Here we relax this assumption and study broader dark energy model classes, including the Chevallier-Polarski-Linder and early dark energy parametrizations. Even in these extended cases we find that the current data constrains the coupling ζ at the 1 0-6 level and w0 to a few percent (marginalizing over other parameters), thus confirming the robustness of earlier analyses. On the other hand, the additional parameters are typically not well constrained. We also highlight the implications of our results for constraints on violations of the weak equivalence principle and improvements to be expected from forthcoming measurements with high-resolution ultrastable spectrographs.

  11. Where Water Is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster

    PubMed Central

    Yano, Junko; Kern, Jan; Sauer, Kenneth; Latimer, Matthew J.; Pushkar, Yulia; Biesiadka, Jacek; Loll, Bernhard; Saenger, Wolfram; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2014-01-01

    The oxidation of water to dioxygen is catalyzed within photosystem II (PSII) by a Mn4Ca cluster, the structure of which remains elusive. Polarized extended x-ray absorption fine structure (EXAFS) measurements on PSII single crystals constrain the Mn4Ca cluster geometry to a set of three similar high-resolution structures. Combining polarized EXAFS and x-ray diffraction data, the cluster was placed within PSII, taking into account the overall trend of the electron density of the metal site and the putative ligands. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 angstrom–resolution x-ray structures or other previously proposed models. PMID:17082458

  12. High temperature extended x-ray absorption fine structure study of multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Raghavendra Reddy, V.; Meneghini, Carlo; Kothari, Deepti; Gupta, Ajay; Aquilanti, Giuliana

    2012-08-01

    Local atomic structure modifications around Fe atoms in polycrystalline multiferroic BiFeO3 are studied by Fe K edge x-ray absorption spectroscopy as a function of temperature across the Néel temperature (TN = 643 K) in order to reveal local structure modifications related to the magnetic transition. This work demonstrates that on crossing TN the local structure around Fe shows peculiar changes: the Fe-O bond lengths get shorter, the ligand symmetry increases and the Fe-O bond length disorder (σ2) deviates from Debye behaviour. These results suggest that the structural transition at the ferroelectric Curie temperature (TC = 1103 K) is anticipated by early local rearrangement of the structure starting already at TN.

  13. Local structure and polarization resistance of Ce doped SrMnO{sub 3} using extended x-ray fine structure analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jiseung; Lee, Heesoo, E-mail: heesoo@pusan.ac.kr

    2014-09-15

    Changes to the local structure of Sr and Mn atoms in Sr{sub 1−x}Ce{sub x}MnO{sub 3} (SCM) according to increasing Ce content and the effect of the structural change on the polarization resistance of SCM were investigated. The reduction of manganese was confirmed by the absorption edge shift of the Mn K-edge toward lower energies. The noise of oscillation in extended X-ray absorption fine structure k{sup 3}χ data at Mn K-edge reveals the distortion of the local structure of Mn atoms, and the peak that indicates the bonding length of Mn-O, Sr/Ce, and -Mn decreased with the addition of Ce contentmore » in Fourier transformations of the Mn K-edge. The distortion of the local structure at Mn atoms was affected by the reduced manganese ions having larger ionic radii than Mn{sup 4+}. Meanwhile, few distortions of local atomic structures of Sr atoms occurred, and the average nearest neighboring distances of Sr-O and Sr-Mn are ∼2.13 Å and ∼2.95 Å, respectively. The average bonding lengths of the Ce-O and Ce-Mn increased because the ionic radius of substituted Ce ion with 12 coordination number is smaller than that of Sr ion, which leads the reduction of Mn ions and the distortion of local structure at the substituted A-site. Therefore, we reasoned that the distortion of the local atomic structure at Mn atoms in MnO{sub 6} and Ce atoms in A-site is one of the causes for interrupting oxygen ion transfers as a geometric factor, which results in an increase in the polarization resistance of SCM within the Ce composition range from 10 mol. % to 30 mol. %.« less

  14. Internal Fine Structure of Ellerman Bombs

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuki; Kitai, Reizaburo; Ichimoto, Kiyoshi; Ueno, Satoru; Nagata, Shin'ichi; Ishii, Takako T.; Hagino, Masaoki; Komori, Hiroyuki; Nishida, Keisuke; Matsumoto, Takuma; Otsuji, Kenichi; Nakamura, Tahei; Kawate, Tomoko; Watanabe, Hiroko; Shibata, Kazunari

    2010-08-01

    We conducted coordinated observations of Ellerman bombs (EBs) between Hinode Satellite and Hida Observatory (HOP12). CaII H broad-band filter images of NOAA 10966 on 2007 August 9 and 10 were obtained with the Solar Optical Telescope (SOT) aboard the Hinode Satellite, and many bright points were observed. We identified a total of 4 bright points as EBs, and studied the temporal variation of their morphological fine structures and spectroscopic characteristics. With high-resolution CaII H images of SOT, we found that the EBs, thus far thought of as single bright features, are composed of a few of fine subcomponents. Also, by using Stokes I/V filtergrams with Hinode/SOT, and CaII H spectroheliograms with Hida/Domeless Solar Telescope (DST), our observation showed: (1) The mean duration, the mean width, the mean length, and the mean aspect ratio of the subcomponents were 390 s, 170 km, 450 km, and 2.7, respectively. (2) Subcomponents started to appear on the magnetic neutral lines, and extended their lengths from the original locations. (3) When the CaII H line of EBs showed the characteristic blue asymmetry, they are associated with the appearance or re-brightening of subcomponents. Summarizing our results, we obtained an observational view that elementary magnetic reconnections take place one by one successively and intermittently in EBs, and that their manifestation is the fine subcomponents of the EB phenomena.

  15. Deposition-temperature dependence of structural anisotropy in amorphous Tb-Fe films

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Elam, W. T.; Koon, N. C.; Hellman, F.

    1994-02-01

    The anisotropic local structure in a series of amorphous Tb26Fe74 films deposited at different deposition temperatures and having different magnetic anisotropy energies have been investigated using polarization-dependent extended x-ray-absorption fine-structure measurements. Samples deposited at temperatures >=300 K exhibit anisotropic pair correlations where like atomic pairs are favored in plane and unlike pairs are favored out of plane. Both the anisotropic pair correlations and the perpendicular magnetic anisotropy increase with increasing deposition temperature. In contrast, a sample deposited at 77 K was found to have isotropic pair correlations, low perpendicular magnetic anisotropy, and a large (~=1%) in-plane compression.

  16. Enhanced Adsorption of p-Arsanilic Acid from Water by Amine-Modified UiO-67 as Examined Using Extended X-ray Absorption Fine Structure, X-ray Photoelectron Spectroscopy, and Density Functional Theory Calculations.

    PubMed

    Tian, Chen; Zhao, Jian; Ou, Xinwen; Wan, Jieting; Cai, Yuepeng; Lin, Zhang; Dang, Zhi; Xing, Baoshan

    2018-03-20

    p-Arsanilic acid ( p-ASA) is an emerging organoarsenic pollutant comprising both inorganic and organic moieties. For the efficient removal of p-ASA, adsorbents with high adsorption affinity are urgently needed. Herein, amine-modified UiO-67 (UiO-67-NH 2 ) metal-organic frameworks (MOFs) were synthesized, and their adsorption affinities toward p-ASA were 2 times higher than that of the pristine UiO-67. Extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculation results revealed adsorption through a combination of As-O-Zr coordination, hydrogen bonding, and π-π stacking, among which As-O-Zr coordination was the dominant force. Amine groups played a significant role in enhancing the adsorption affinity through strengthening the As-O-Zr coordination and π-π stacking, as well as forming new adsorption sites via hydrogen bonding. UiO-67-NH 2 s could remove p-ASA at low concentrations (<5 mg L -1 ) in simulated natural and wastewaters to an arsenic level lower than that of the drinking water standard of World Health Organization (WHO) and the surface water standard of China, respectively. This work provided an emerging and promising method to increase the adsorption affinity of MOFs toward pollutants containing both organic and inorganic moieties, via modifying functional groups based on the pollutant structure to achieve synergistic adsorption effect.

  17. Enhanced interface perpendicular magnetic anisotropy in electrodeposited Co/Au(111) layers

    NASA Astrophysics Data System (ADS)

    Cagnon, L.; Devolder, T.; Cortes, R.; Morrone, A.; Schmidt, J. E.; Chappert, C.; Allongue, P.

    2001-03-01

    This work investigates the structure and interface perpendicular magnetic anisotropy (PMA) of electrodeposited Cu/Co/Au(111) sandwiches with variable Co thickness [2-20 monolayers (ML's)]. In optimum deposition conditions, polar magneto-optical Kerr effect measurements show that the axis of easy magnetization is perpendicular to the layers for thicknesses below ca. 7.2 ML's. This value is among the best ever reported for the Cu/Co/Au(111) structure. While extended x-ray-absorption fine structure indicates that layers are hcp, in situ STM imaging suggests that magnetoelastic effects contribute significantly to PMA. The correlation observed between the strength of PMA and film structure is discussed in details.

  18. Unveiling the complex network of interactions in Ionic Liquids: a combined EXAFS and Molecular Dynamics approach

    NASA Astrophysics Data System (ADS)

    Serva, A.; Migliorati, V.; Lapi, A.; D'Angelo, P.

    2016-05-01

    The structural properties of geminal dicationic ionic liquids ([Cn (mim)2]Br2)/water mixtures have been investigated by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and Molecular Dynamics (MD) simulations. This synergic approach allowed us to assess the reliability of the MD results and to provide accurate structural information about the first coordination shell of the Br- ion. We found that the local environment around the anion changes as a function of the water concentration, while it is the same independently from the length of the bridge-alkyl chain. Moreover, as regards the long-range structural organization, no tail-tail aggregation occurs with increasing alkyl chain length.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuning; Roy, Amitava; Lichtenberg, Henning

    The micro-segmented flow technique was applied for continuous synthesis of ZnO micro- and nanoparticles with short residence times of 9.4 s and 21.4 s, respectively. The obtained particles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Small angle X-ray scattering (SAXS) and photoluminescence spectroscopy were used to determine the size and optical properties of ZnO nanoparticles. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to investigate local structural properties. The EXAFS measurements reveal a larger degree of structural disorder in the nanoparticles than the microparticles. These structural changes should be taken into considerationmore » while evaluating the size-dependent visible emission of ZnO nanoparticles.« less

  20. Identifying barriers to charge-carriers in the bulk and surface regions of Cu2ZnSnS4 nanocrystal films by x-ray absorption fine structures (XAFSs)

    NASA Astrophysics Data System (ADS)

    Turnbull, Matthew J.; Vaccarello, Daniel; Yiu, Yun Mui; Sham, Tsun-Kong; Ding, Zhifeng

    2016-11-01

    Solar cell performance is most affected by the quality of the light absorber layer. For thin-film devices, this becomes a two-fold problem of maintaining a low-cost design with well-ordered nanocrystal (NC) structure. The use of Cu2ZnSnS4 (CZTS) NCs as the light absorber films forms an ideal low-cost design, but the quaternary structure makes it difficult to maintain a well-ordered layer without the use of high-temperature treatments. There is little understanding of how CZTS NC structures affect the photoconversion efficiency, the charge-carriers, and therefore the performance of the device manufactured from it. To examine these relationships, the measured photoresponse from the photo-generation of charge-carrier electron-hole pairs was compared against the crystal structure, as short-range and long-range crystal orders for the films. The photoresponse simplifies the electronic properties into three basic steps that can be associated with changes in energy levels within the band structure. These changes result in the formation of barriers to charge-carrier flow. The extent of these barriers was determined using synchrotron-based X-ray absorbance fine structure to probe the individual metal centers in the film, and comparing these to molecular simulations of the ideal extended x-ray absorbance fine structure scattering. This allowed for the quantification of bond lengths, and thus an interpretation of the distortions in the crystal lattice. The various characteristics of the photoresponse were then correlated to the crystallographic order and used to gain physical insight into barriers to charge-carriers in the bulk and surface regions of CZTS films.

  1. HERSCHEL GALACTIC PLANE SURVEY OF [N ii] FINE STRUCTURE EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10{sup −8}–10{sup −7} Wm{sup −2} sr{sup −1} level over the range –60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointingmore » is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10–50 cm{sup −3} with an average value of 29 cm{sup −3} and N{sup +} column densities 10{sup 16}–10{sup 17} cm{sup −2}. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.« less

  2. Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework

    NASA Astrophysics Data System (ADS)

    Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac

    2016-10-01

    Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.

  3. Fine and distributed subcellular retinotopy of excitatory inputs to the dendritic tree of a collision-detecting neuron

    PubMed Central

    Zhu, Ying

    2016-01-01

    Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation. PMID:27009157

  4. X-ray absorption spectroscopy and neutron diffraction study of the perovskite-type rare-earth cobaltites

    NASA Astrophysics Data System (ADS)

    Sikolenko, V.; Efimova, E.; Franz, A.; Ritter, C.; Troyanchuk, I. O.; Karpinsky, D.; Zubavichus, Y.; Veligzhanin, A.; Tiutiunnikov, S. I.; Sazonov, A.; Efimov, V.

    2018-05-01

    Correlations between local and long-range structure distortions in the perovskite-type RE1-xSrxCoO3-δ (RE = La, Pr, Nd; x = 0.0 and 0.5) compounds have been studied at room temperature by extended X-ray absorption fine structure (EXAFS) at the Co K-edge and high-resolution neutron powder diffraction (NPD). The use of two complementary experimental techniques allowed us to explore the influence of the type of rare-earth element and strontium substitution on unusual behavior of static and dynamic features of both the Co-O bond lengths.

  5. Effective collision strengths for fine-structure forbidden transitions among the 3s^23p^3 levels of K V

    NASA Astrophysics Data System (ADS)

    Bell, Kenneth; Wilson, Nigel

    2001-05-01

    Electron temperatures and densities are difficult to determine in many astrophysical plasmas. However, it is well known that diagnostics on forbidden line intensity ratios for ions in the phosphorous isoelectronic sequence are of great importance in astrophysics, particularly for nebulae. A key element in the analysis is highly accurate atomic data. In this work we extend the earlier calculations of Butler, Zeippen and Le Bourlot (Astron. Astrophys. 203 189 (1988)) on electron scattering by K v. We have obtained effective collision strengths for a wide range of electron temperatures using the R-matrix method. Twenty-two LS target eigenstates are included in the expansion of the total wavefunction, consisting of the seven n=3 states with configuration 3s^23p^3 and 3s3p^4, twelve n=3 states with configuration 3s^23p^23d, and three n=4 states with configuration 3s^23p^24s. The fine-structure collision strengths have been obtained by transforming to a jj-coupling scheme using the JAJOM program of Saraph (Comp. Phys. Commun. 15 247 (1978)) and have been determined at a sufficiently fine energy mesh to delineate properly the resonance structure. Results for both collision strengths and for effective collision strengths will be presented at the conference and comparison will be made with the earlier work.

  6. Fine structure of the eggs of Anopheles (Anopheles) apicimacula (Diptera:Culicidae).

    PubMed

    Rodriguez, M H; Chávez, B; Orozco, A; Martínez-Palomo, A

    1996-09-01

    The eggs of Anopheles (Anopheles) apicimacula Dyar and Knab are described from scanning electron micrographs. The eggs are boat-shaped, with frills that extend ventrally along the length of the egg and surround the deck region. The ornamentation on the dorsal and lateral surfaces is formed by groups of smooth, round tubercles. The ventral surface is covered by irregularly jagged tubercles. Prominent lobed tubercles are present at the anterior and posterior ends of the deck.

  7. The Relationship of Emerita talpoida to Beach Characteristics.

    DTIC Science & Technology

    1981-05-01

    shore toward the step. High density cells frequently lie within areas of reduced wave energy such as cusp troughs. Structures extending across the...relatively con- stant across the beach. The cell of fine sand (0.35 mm) in the upper and middle foreshore immediately north of the pier is a consequence...across the foreshore for approximately 200 meters south and 100 meters north of the pier. Cells of coarse sand are found in the lower foreshore. The 200

  8. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  9. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques.

    PubMed

    Sun, Yubing; Wang, Qi; Chen, Changlun; Tan, Xiaoli; Wang, Xiangke

    2012-06-05

    The interaction mechanism between Eu(III) and graphene oxide nanosheets (GONS) was investigated by batch and extended X-ray absorption fine structure (EXAFS) spectroscopy and by modeling techniques. The effects of pH, ionic strength, and temperature on Eu(III) adsorption on GONS were evaluated. The results indicated that ionic strength had no effect on Eu(III) adsorption on GONS. The maximum adsorption capacity of Eu(III) on GONS at pH 6.0 and T = 298 K was calculated to be 175.44 mg·g(-1), much higher than any currently reported. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Eu(III) adsorption on GONS was an endothermic and spontaneous process. Results of EXAFS spectral analysis indicated that Eu(III) was bound to ∼6-7 O atoms at a bond distance of ∼2.44 Å in the first coordination shell. The value of Eu-C bond distance confirmed the formation of inner-sphere surface complexes on GONS. Surface complexation modeling gave an excellent fit with the predominant mononuclear monodentate >SOEu(2+) and binuclear bidentate (>SO)(2)Eu(2)(OH)(2)(2+) complexes. This paper highlights the application of GONS as a suitable material for the preconcentration and removal of trivalent lanthanides and actinides from aqueous solutions in environmental pollution management.

  10. Find structural aspects of anthozoan desmocyte development (phylum Cnidaria).

    PubMed

    Tidball, J G

    1982-01-01

    The fine structural changes associated with the differentiation of skeletogenic cells into cells specialized in binding soft tissues onto skeletal structures are described in the gorgonian coral, Leptogorgia virgulata (Lam.). These binding cells are called desmocytes. The sequence of events in desmocyte development includes: growth of the plasma membrane, invagination of the mesoglea-end of the cell, expansion of the axis-end of the cell, loss of organelles involved in skeletogenesis, proliferation of double vesicles and transformation of double vesicles into cytoskeletal rods. Double vesicles appear either cup-shaped or as a vesicle within a vesicle in sectioned material. These observations of desmocyte development are compared to previous light microscopical observations desmocyte development in diverse forms of anthozoans. Similarities in desmocyte development throughout the class include invagination of the differentiating cell, formation of a pectinate mesogleal margin and formation of an array of cytoskeletal rods at the axis-end of the cell. Comparison with available information on the development and fine structure of desmocytes in the cnidarian classes Scyphozoa and Hydrozoa shows these similarities do not extend across class boundaries and, therefore, common ancestry between the three classes of cnidarian desmocytes seems remote if, indeed, such an ancestral cell existed at all.

  11. Fine structure of low-energy H(+) in the nightside auroral region

    NASA Technical Reports Server (NTRS)

    Liu, Chao; Perez, J. D.; Moore, T. E.; Chappell, C. R.; Slavin, J. A.

    1994-01-01

    Low-energy H(+) data with 6-s resolution from the retarding ion mass spectrometer instrument on Dynamics Explorer (DE) 1 have been analyzed to reveal the fine structure at middle altitudes of the nightside auroral region. A new method for deconvolving the energy-integrated count rate in the spin plane of the satellite has been used to derive the two-dimensional phase space density. A detailed analysis reveals an alternating conic-beam-conic pattern with the observed conics correlated with large earthward currents in the auroral region. The strong downward current (larger than 1 microamperes per sq m (equivalent value at ionosphere)) provides a free energy source for the perpendicular ion heating, that generates the ion conics with energies from several eV to tens of eV. The bowl shape distribution of the low-energy H(+) is caused by the extended perpendicular heating. The strong correlation between conics and large downward currents suggests that the current-driven electrostatic ion cyclotron wave is an appropriate candidate for the transverse heating mechanism.

  12. Current and future constraints on extended Bekenstein-type models for a varying fine-structure constant

    NASA Astrophysics Data System (ADS)

    Alves, C. S.; Leite, A. C. O.; Martins, C. J. A. P.; Silva, T. A.; Berge, S. A.; Silva, B. S. A.

    2018-01-01

    There is a growing interest in astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant α , as an optimal probe of new physics. The imminent arrival of the ESPRESSO spectrograph will soon enable significant gains in the precision and accuracy of these tests and widen the range of theoretical models that can be tightly constrained. Here we illustrate this by studying proposed extensions of the Bekenstein-type models for the evolution of α that allow different couplings of the scalar field to both dark matter and dark energy. We use a combination of current astrophysical and local laboratory data (from tests with atomic clocks) to show that these couplings are constrained to parts per million level, with the constraints being dominated by the atomic clocks. We also quantify the expected improvements from ESPRESSO and other future spectrographs, and briefly discuss possible observational strategies, showing that these facilities can improve current constraints by more than an order of magnitude.

  13. Hydatid cyst of parotid: Report of unusual cytological findings extending the cytomorphological spectrum.

    PubMed

    Arora, Vinod Kumar; Chopra, Neha; Singh, Poorva; Venugopal, Vasantha Kumar; Narang, Salil

    2016-09-01

    Hydatid disease is a zoonotic infestation caused by larval cestode of genus Echinococcus. Cystic form of this infection mostly involves liver and lung. Hydatid disease of the parotid gland is very rare even in endemic areas and is often clinically mistaken for parotid tumors or cysts. The presence of protoscolices, laminated membranes, and isolated hooklets are characteristic cytological features observed on fine-needle aspirate from hydatid cysts. We report unusual cytological features from a hydatid cyst of parotid in a 13-year-old girl. She presented with a slowly enlarging hard mass in left parotid. Fine-needle aspiration yielded slightly turbid fluid. Smears from the sediment revealed naked parasitic micronuclei, fragments of germinative layer (endocyst), and abortive brood capsules (buds from endocyst) seen as spherical structures with multiple parasitic nuclei. Some of these spherical structures were degenerated with recognizable nuclei and others were completely necrotic. Diagn. Cytopathol. 2016;44:770-773. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. The life of a dead ant: the expression of an adaptive extended phenotype.

    PubMed

    Andersen, Sandra B; Gerritsma, Sylvia; Yusah, Kalsum M; Mayntz, David; Hywel-Jones, Nigel L; Billen, Johan; Boomsma, Jacobus J; Hughes, David P

    2009-09-01

    Specialized parasites are expected to express complex adaptations to their hosts. Manipulation of host behavior is such an adaptation. We studied the fungus Ophiocordyceps unilateralis, a locally specialized parasite of arboreal Camponotus leonardi ants. Ant-infecting Ophiocordyceps are known to make hosts bite onto vegetation before killing them. We show that this represents a fine-tuned fungal adaptation: an extended phenotype. Dead ants were found under leaves, attached by their mandibles, on the northern side of saplings approximately 25 cm above the soil, where temperature and humidity conditions were optimal for fungal growth. Experimental relocation confirmed that parasite fitness was lower outside this manipulative zone. Host resources were rapidly colonized and further secured by extensive internal structuring. Nutritional composition analysis indicated that such structuring allows the parasite to produce a large fruiting body for spore production. Our findings suggest that the osmotrophic lifestyle of fungi may have facilitated novel exploitation strategies.

  15. Swift heavy ion irradiation of Pt nanocrystals: II. Structural changes and H desorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giulian, R.; Araujo, L.L.; Kluth, P.

    2014-09-24

    The structural properties and H desorption from embedded Pt nanocrystals (NCs) following irradiation with swift heavy ions were investigated as a function of energy and fluence. From x-ray absorption near-edge spectroscopy analysis, Pt-H bonding was identified in NCs annealed in a forming gas (95% N{sub 2} + 5% H{sub 2}) ambient. The H content decreased upon irradiation and the desorption process was NC-size dependent such that larger NCs required a higher fluence to achieve a H-free state. Pt-H bonding and NC dissolution both perturbed the NC structural parameters (coordination number, bond-length and mean-square relative displacement) as determined with extended x-raymore » absorption fine structure measurements.« less

  16. Interdisciplinary research and development on the effects of the nature and properties of ceramic materials in the design of advanced structural components

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An educational development and supportive research program on ceramic materials established to advance design methodology, improve materials, and develop engineers knowledgable in design with and use of high performance ceramic materials is described. Emphasis is on the structures and related materials problems in a ceramic turbine engine, but applications in coal gasification, solar conversion, and magnetohydrodynamic technologies are considered. Progress of various research projects in the areas of new materials, processing, characterization, and nondestructive testing is reported. Fracture toughness determination, extended X-ray absorption fine structure measurements, and grain boundary effects in beta-alumina are among the topics covered.

  17. Application of x-ray absorption fine structure (XAFS) to local-order analysis in Fe-Cr maghemite-like materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Fuentes-Cobas, L. E.; Macías-Ríos, E.

    2015-07-23

    The maghemite-like oxide system γ-Fe{sub 2-x}Cr{sub x}O{sub 3} (x=0.75, 1 and 1.25) was studied by X-ray absorption fine structure (XAFS) and by synchrotron radiation X-ray diffraction (XRD). Measurements were performed at the Stanford Synchrotron Radiation Lightsource at room temperature, at beamlines 2-1, 2-3 and 4-3. High-resolution XRD patterns were processed by means of the Rietveld method. In cases of atoms being neighbors in the Periodic Table, the order/disorder degree of the considered solutions is indiscernible by “normal” (absence of “anomalous scattering”) diffraction experiments. Thus, maghemite-like materials were investigated by XAFS in both Fe and Cr K-edges to clarify, via short-rangemore » structure characterization, the local ordering of the investigated system. Athena and Artemis graphic user interfaces for IFEFFIT and FEFF8.4 codes were employed for XAFS spectra interpretation. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure (XANES) transitions were performed. By analysis of the Cr K-edge XANES, it has been confirmed that Cr is located in an octahedral environment. Fitting of the extended X-ray absorption fine structure (EXAFS) spectra was performed under the consideration that the central atom of Fe is allowed to occupy octa- and tetrahedral positions, while Cr occupies only octahedral ones. Coordination number of neighboring atoms, interatomic distances and their quadratic deviation average were determined for x=1, by fitting simultaneously the EXAFS spectra of both Fe and Cr K-edges. The results of fitting the experimental spectra with theoretical standards showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO{sub 3})« less

  18. Influence of 300°C thermal conversion of Fe-Ce hydrous oxides prepared by hydrothermal precipitation on the adsorptive performance of five anions: Insights from EXAFS/XANES, XRD and FTIR (companion paper).

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan

    2017-04-01

    In this work, we report atomic-scale reconstruction processes in Fe-Ce oxide-based composites (hydrothermally precipitated at Fe-to-Ce dosage ratios of 1:0, 2:1, 1:1, 1:2, and 0:1), upon treatment at 300°C. The structural changes are correlated with the adsorptive removal of arsenate, phosphate, fluoride, bromide, and bromate. The presence of the carbonate-based Ce-component and surface sulfate in precursor samples creates favorable conditions for phase transformation, resulting in the formation of novel (unknown) layered compounds of Fe and Ce. These compounds are of the layered double hydroxide type, with sulfate in the interlayer space. In spite of general awareness of the importance of surface area in adsorptive removal, the increase in surface area upon thermal treatment did not increase adsorption of the studied anions. However, EXAFS simulations and the adsorption tests provided evidence of regularities between local structures of Fe in composites obtained at 80 and 300°C and adsorption performance of most studied anions. The best adsorption of tetrahedral anions was demonstrated by samples whose simulated outer Fe shells resulted from oscillations from both O and Fe atoms. In contrast, the loss of extended x-ray absorption fine structure was correlated with the decrease of adsorptive removal. Both Fe K-edge and Ce L 3 -edge EXAFS suggested the formation of solid solutions. For the first time, the utilization of extended x-ray absorption fine structure is suggested as a methodological approach (first expressed in the companion paper) to estimate the surface reactivity of inorganic materials intended for use as anion exchange adsorbents. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effect of different thickness crystalline SiC buffer layers on the ordering of MgB{sub 2} films probed by extended x-ray absorption fine structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putri, W. B. K.; Tran, D. H.; Kang, B., E-mail: bwkang@chungbuk.ac.kr

    2014-03-07

    Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful method to investigate the local structure of thin films. Here, we have studied EXAFS of MgB{sub 2} films grown on SiC buffer layers. Crystalline SiC buffer layers with different thickness of 70, 100, and 130 nm were deposited on the Al{sub 2}O{sub 3} (0001) substrates by using a pulsed laser deposition method, and then MgB{sub 2} films were grown on the SiC buffer layer by using a hybrid physical-chemical vapor deposition technique. Transition temperature of MgB{sub 2} film decreased with increasing thickness of SiC buffer layer. However, the T{sub c} droppingmore » went no farther than 100 nm-thick-SiC. This uncommon behavior of transition temperature is likely to be created from electron-phonon interaction in MgB{sub 2} films, which is believed to be related to the ordering of MgB{sub 2} atomic bonds, especially in the ordering of Mg–Mg bonds. Analysis from Mg K-edge EXAFS measurements showed interesting ordering behavior of MgB{sub 2} films. It is noticeable that the ordering of Mg–B bonds is found to decrease monotonically with the increase in SiC thickness of the MgB{sub 2} films, while the opposite happens with the ordering in Mg–Mg bonds. Based on these results, crystalline SiC buffer layers in MgB{sub 2} films seemingly have evident effects on the alteration of the local structure of the MgB{sub 2} film.« less

  20. X-Ray Absorption Near Edge Structure And Extended X-Ray Absorption Fine Structure Analysis of Standards And Biological Samples Containing Mixed Oxidation States of Chromium(III) And Chromium(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.

    For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10%more » of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.« less

  1. Near-edge X-ray absorption spectra for metallic Cu and Mn

    NASA Astrophysics Data System (ADS)

    Greaves, G. N.; Durham, P. J.; Diakun, G.; Quinn, P.

    1981-11-01

    The measurement of X-ray absorption fine structure of metals- both in the extended region (EXAFS) as well as in the near edge region (XANES)-has been widely discussed (see refs 1-6 for Cu and refs 7-9 for Mn). The recent availability of intense X-ray fluxes from storage rings has usually been exploited for EXAFS leaving the XANES often with poorer resolution than earlier work performed on conventional sources (for example, compare the near edge structure for copper in ref. 1 with refs 3 or 6). In addition, whilst the theory and analysis of EXAFS is relatively well-established2,10, a theory for the strong scattering regime near to the absorption edge has only recently been developed11. We report here the first high resolution XANES spectra for Cu and Mn which were performed at the SRS storage ring at Daresbury. Although both metals have close-packed structures consisting of atoms of similar size their local atomic structure is different in detail. Significant differences are found in their respective XANES reflecting the senstivity of this region of the X-ray absorption fine structure to the local atomic structure. Spectra for the two metals have been analysed using the new multiple scattering formalism. This is a real space calculation and unlike a conventional band structure approach it does not require structural periodicity but works from the local arrangement of atoms.

  2. Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Yaakobi, B.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; Remington, B. A.; Allen, P. G.; Pollaine, S. M.; Lorenzana, H. E.; Lorenz, K. T.; Hawreliak, J. A.

    2008-06-01

    The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to ˜0.75Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.

  3. Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats.

    PubMed

    Hasegawa, Tomoka; Li, Minqi; Hara, Kuniko; Sasaki, Muneteru; Tabata, Chihiro; de Freitas, Paulo Henrique Luiz; Hongo, Hiromi; Suzuki, Reiko; Kobayashi, Masatoshi; Inoue, Kiichiro; Yamamoto, Tsuneyuki; Oohata, Noboru; Oda, Kimimitsu; Akiyama, Yasuhiro; Amizuka, Norio

    2011-08-01

    Osteogenic disorder shionogi (ODS) rats carry a hereditary defect in ascorbic acid synthesis, mimicking human scurvy when fed with an ascorbic acid-deficient (aa-def) diet. As aa-def ODS rats were shown to feature disordered bone formation, we have examined the bone mineralization in this rat model. A fibrous tissue layer surrounding the trabeculae of tibial metaphyses was found in aa-def ODS rats, and this layer showed intense alkaline phosphatase activity and proliferating cell nuclear antigen-immunopositivity. Many osteoblasts detached from the bone surfaces and were characterized by round-shaped rough endoplasmic reticulum (rER), suggesting accumulation of malformed collagen inside the rER. Accordingly, fine, fragile fibrillar collagenous structures without evident striation were found in aa-def bones, which may result from misassembling of the triple helices of collagenous α-chains. Despite a marked reduction in bone formation, ascorbic acid deprivation seemed to have no effect on mineralization: while reduced in number, normal matrix vesicles and mineralized nodules could be seen in aa-def bones. Fine needle-like mineral crystals extended from these mineralized nodules, and were apparently bound to collagenous fibrillar structures. In summary, collagen mineralization seems unaffected by ascorbic acid deficiency in spite of the fine, fragile collagenous fibrils identified in the bones of our animal model.

  4. Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field

    NASA Astrophysics Data System (ADS)

    Hummel, Frederic; Fey, Christian; Schmelcher, Peter

    2018-04-01

    We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.

  5. A high pressure La K-edge X-ray absorption fine structure spectroscopy investigation of La1/3NbO3

    NASA Astrophysics Data System (ADS)

    Marini, C.; Joseph, B.; Noked, O.; Shuker, R.; Kennedy, B. J.; Mathon, O.; Pascarelli, S.; Sterer, E.

    2018-01-01

    La K-edge X-ray absorption spectroscopy has been used to elucidate the changes in the local electronic and lattice structure that occur in the A-site deficient double perovskite La?NbO? up to 6 GPa. The pressure evolution of the oxygen dodecahedrum around the A-site has been examined. XANES (X-ray absorption near edge structure) data show modifications ascribed to the increase of bands overlapping as a consequence of the bond distance contraction, which has been directly probed by EXAFS (extended x-ray absorption fine structure) spectra. The La-O Debye Waller factors (DWFs) tend to increase whereas the La-Nb bond DWFs show only a tendency to decrease indicating the robustness of the crystal lattice structure, even in presence of the oxygen disordering. This permits the system to reverse back to its original conditions in this pressure range as evident from the measurements upon pressure release. The present results have been interpreted in the light of charge transfer related to the two-step reduction mechanism acting at the Nb site (with niobium ions passing from Nb? to Nb?) which also results in the elongation of the Nb-O bond distances in the octahedra, in agreement with the Nb K-edge results reported earlier.

  6. Multiple Scattering Effects in EXAFS (Extended X-Ray Absorption Fine Structure): Comparison between Theory and Experiment for Pt Metal.

    DTIC Science & Technology

    1984-05-29

    radial distribution and inverse transform of this range. The region commonly used for the inverse transform usually corresponds to the first or second...r-space and comparing it with the corresponding model function. Figure 5 shows the filtered spectra (k weighting), where the pe. 48 allowed inverse ... transform range was successively increased from the radial distance corresponding to the first shell to all the first four shells. There are no multiple

  7. Restricting the high-temperature growth of nanocrystalline tin oxide

    NASA Astrophysics Data System (ADS)

    Savin, S.; Chadwick, A. V.

    2003-01-01

    The sensitivity of tin oxide is dependent on various factors, one of which is the grain size. Three methods have been investigated with the aim of stabilising the grain size in the nanometer range, namely; (i) encapsulation within a silica matrix, (ii) coating the crystallites with hexamethyldisilazane and (iii) pinning the grain boundaries with a second metal oxide nanocrystal. The resulting materials have been characterised by X-ray powder diffraction (XRPD), Extended X-ray absorption fine structure (EXAFS) and conductivity measurements.

  8. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has beenmore » observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.« less

  9. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Kenney, Janice P. L.; Fein, Jeremy B.; Bunker, Bruce A.

    2012-06-01

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  10. Dale Sayers Festschrift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, Edward A.

    2007-02-02

    This Festschrift is in honor of Dale Sayers who passed away in November 2004. Dale played a pivotal role in initiating the modern era of X-ray Absorption Fine Structure (XAFS) 35 years ago. The prehistory of XAFS before the modern era consisted of 40 years of confusion caused by Kronig's two different theories of the extended XAFS (EXAFS), the Short-Range Order (SRO) and Long-Range Order (LRO) theories. Dale's PhD thesis on EXAFS led to the idea of a Fourier transform to definitely prove that SRO is the correct theory and then to the development of XAFS as a structure determinationmore » technique.« less

  11. Atomistic Model of Physical Ageing in Se-rich As-Se Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovchak,R.; Shpotyuk, O.; Kozdras, A.

    2007-01-01

    Thermal, optical, X-ray excited and magnetic methods were used to develop a microstructural model of physical ageing in Se-rich glasses. The glass composition As10Se90, possessing a typical cross-linked chain structure, was chosen as a model object for the investigations. The effect of physical ageing in this glass was revealed by differential scanning calorimetry, whereas the corresponding changes in its atomic arrangement were studied by extended X-ray absorption fine structure, Raman and solid-state 77Se nuclear magnetic resonance spectroscopy. Straightening-shrinkage processes are shown to be responsible for the physical ageing in this Se-rich As-Se glass.

  12. Investigating the Defect Structures in Transparent Conducting Oxides Using X-ray and Neutron Scattering Techniques

    PubMed Central

    González, Gabriela B.

    2012-01-01

    Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010

  13. Disentangling neighbors and extended range density oscillations in monatomic amorphous semiconductors.

    PubMed

    Roorda, S; Martin, C; Droui, M; Chicoine, M; Kazimirov, A; Kycia, S

    2012-06-22

    High energy x-ray diffraction measurements of pure amorphous Ge were made and its radial distribution function (RDF) was determined at high resolution, revealing new information on the atomic structure of amorphous semiconductors. Fine structure in the second peak in the RDF provides evidence that a fraction of third neighbors are closer than some second neighbors; taking this into account leads to a narrow distribution of tetrahedral bond angles, (8.5 ± 0.1)°. A small peak which appears near 5 Å upon thermal annealing shows that some ordering in the dihedral bond-angle distribution takes place during structural relaxation. Extended range order is detected (in both a-Ge and a-Si) which persists to beyond 20 Å, and both the periodicity and its decay length increase upon thermal annealing. Previously, the effect of structural relaxation was only detected at intermediate range, involving reduced tetrahedral bond-angle distortions. These results enhance our understanding of the atomic order in continuous random networks and place significantly more stringent requirements on computer models intending to describe these networks, or their alternatives which attempt to describe the structure in terms of an arrangement of paracrystals.

  14. Fine motor skills predict performance in the Jebsen Taylor Hand Function Test after stroke.

    PubMed

    Allgöwer, Kathrin; Hermsdörfer, Joachim

    2017-10-01

    To determine factors characterizing the differences in fine motor performance between stroke patients and controls. To confirm the relevance of the factors by analyzing their predictive power with regard to the Jebsen Taylor Hand Function Test (JTHFT), a common clinical test of fine motor control. Twenty-two people with slight paresis in an early chronic phase following stroke and twenty-two healthy controls were examined. Performance on the JTHFT, Nine-Hole Peg Test and 2-point discrimination was evaluated. To analyze object manipulation skills, grip forces and temporal measures were examined during (1) lifting actions with variations of weight and surface (2) cyclic movements (3) predictive/reactive catching tasks. Three other aspects of force control included (4) visuomotor tracking (5) fast force changes and (6) grip strength. Based on 9 parameters which significantly distinguished fine motor performance in the two groups, we identified three principal components (factors): grip force scaling, motor coordination and speed of movement. The three factors are shown to predict JTHFT scores via linear regression (R 2 =0.687, p<0.001). We revealed a factor structure behind fine motor impairments following stroke and showed that it explains JTHFT results to a large extend. This result can serve as a basis for improving diagnostics and enabling more targeted therapy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy.

    PubMed

    Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S

    2016-05-04

    The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.

  16. Long- and Short-Range Structure of Ferrimagnetic Iron-Chromium Maghemites.

    PubMed

    García-Guaderrama, Marco; Montero-Cabrera, María E; Morán, Emilio; Alario-Franco, Miguel A; Fuentes-Cobas, Luis E; Macías-Ríos, Edgar; Esparza-Ponce, Hilda E; Fuentes-Montero, María E

    2015-12-07

    Maghemite-like materials containing Fe(3+) and Cr(3+) in comparable amounts have been prepared by solution-combustion synthesis. The conditions of synthesis and the magnetic properties are described. These materials are ferrimagnetic and are much more stable than pure iron maghemite since their maghemite-hematite transformation takes place at about ∼ 700 °C instead of ∼ 300 °C, as usually reported. These materials were studied by synchrotron radiation X-ray diffraction (XRD) and by X-ray absorption fine structure (XAFS) of the K-absorption edge of two elements. High-resolution XRD patterns were processed by means of the Rietveld method. Thus, maghemites were studied by XAFS in both Fe and Cr K-edges to clarify the short-range structure of the investigated systems. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure transitions were performed. The extended X-ray absorption fine structure (EXAFS) spectra were fitted considering the facts that the central atom of Fe is able to occupy octahedral and tetrahedral sites, each with a weight adjustment, while Cr occupies only octahedral sites. Interatomic distances were determined for x = 1, by fitting simultaneously both Fe and Cr K-edges average EXAFS spectra. The results showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).

  17. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air,more » the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.« less

  18. Fine scale mapping of the structure and composition of the Elkhorn Slough (California, USA) tidal plume

    NASA Astrophysics Data System (ADS)

    Fischer, Andrew M.; Ryan, John P.; Rienecker, Erich V.

    2017-01-01

    Fine scale mapping of the structure and composition of a tidal ebb plume from a highly modified coastal lagoon (Elkhorn Slough, California, USA) was conducted by combining in situ, observational data sets from surface underway mapping, autonomous underwater vehicle (AUV) profiles, drifter tracking and the analysis of plume structure indices. The results reveal a 6-m-deep, jet-like, sediment laden plume extending one km offshore at low tide, which becomes entrained in the prevailing nearshore circulation. The plume that exits the slough is significantly different from the water that enters the slough. The rapidly evolving discharge plume is associated with elevated and highly correlated (r = 0.93) concentrations of dissolved organic matter and nitrate. While dissolved constituents remain in the shallow plume and are transported northward with the prevailing current, sediment may settle quickly through the water column and can be transported southwestward with the littoral currents. This study illustrates the applications of AUVs, when coupled with additional datasets, for generating higher resolution observational snapshots of dynamic and ephemeral tidal plumes. The results provide unique perspective on small-scale dynamics of an estuarine plume and its influence on coastal ecology.

  19. Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms.

    PubMed

    Nonaka, T; Dohmae, K; Araki, T; Hayashi, Y; Hirose, Y; Uruga, T; Yamazaki, H; Mochizuki, T; Tanida, H; Goto, S

    2012-08-01

    We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

  20. Acoustic fine structure may encode biologically relevant information for zebra finches.

    PubMed

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  1. Electronic structure of the Cu + impurity center in sodium chloride

    NASA Astrophysics Data System (ADS)

    Chermette, H.; Pedrini, C.

    1981-08-01

    The multiple-scattering Xα method is used to describe the electronic structure of Cu+ in sodium chloride. Several improvements are brought to the conventional Xα calculation. In particular, the cluster approximation is used by taking into account external lattice potential. The ''transition state'' procedure is applied in order to get the various multiplet levels. The fine electronic structure of the impurity centers is obtained after a calculation of the spin-orbit interactions. These results are compared with those given by a modified charge-consistent extended Hückel method (Fenske-type calculation) and the merit of each method is discussed. The present calculation produces good quantitative agreement with experiment concerning mainly the optical excitations and the emission mechanism of the Cu+ luminescent centers in NaCl.

  2. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  3. A Late Pleistocene linear dune dam record of aeolian-fluvial dynamics at the fringes of the northwestern Negev dunefield

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Bookman, Revital; Friesem, David; Vardi, Jacob

    2017-04-01

    The paper presents a late Pleistocene aeolian-fluvial record within a linear dune-like structure that partway served as a dune dam. Situated along the southern fringe of the northwestern Negev desert dunefield (Israel) the structure's morphology, orientation, and some of its stratigraphic units partly resemble adjacent west-east extending vegetated linear dunes. Uneven levels of light-colored, fine-grained fluvial deposits (LFFDs) extend to the north and south from the flanks of the studied structure. Abundant Epipalaeolithic sites line the fringes of the LFFDs. The LFFD microstructures of fine graded bedding and clay blocky peds indicate sorting and shrinking of saturated clays in transitional environments between low energy flows to shallow standing water formed by dunes damming a mid-sized drainage system. The structure's architecture of interchanging units of sand with LFFDs indicates interchanging dominances between aeolian sand incursion and winter floods. Sand mobilization associated with powerful winds during the Heinrich 1 event led to dune damming downstream of the structure and within the structure to in-situ sand deposition, partial fluvial erosion, reworking of the sand, and LFFD deposition. Increased sand deposition led to structure growth and blockage of its drainage system that in turn accumulated LFFD units up stream of the structure. Extrapolation of current local fluvial sediment yields indicate that LFFD accretion up to the structure's brim occurred over a short period of several decades. Thin layers of Geometric Kebaran (c. 17.5-14.5 ka cal BP) to Harifian (12-11 ka BP) artifacts within the structure's surface indicates intermittent, repetitive, and short term camping utilizing adjacent water along a timespan of 4-6 kyr. The finds directly imply that the NW Negev LFFDs formed in dune-dammed water bodies which themselves were formed following events of vegetated linear dune elongation. LFFD accumulation persisted as a result of dune dam maintenance by smaller sand mobilization events. Wetter climates increased flood events boosting LFFD buildup rates but shortened dune dam longevity. The abundance and recurrence of water bodies in middle and large basins deteriorated after Harifian times when reduced wind power during the post-Younger Dryas constrained dune dam maintenance. Eventually, dune dam incision began as a result of overland flow after accommodation space dissipated due to LFFD accretion. Altogether, fluctuating high wind power and precipitation during a glacial-interglacial time window and high availability of fine-grained fluvial sediment yield from eroded middle to late Pleistocene upstream highlands loess mantles, combined to create a trio of aeolian-fluvial forcing factors supporting short-term but amplified dune-dammed fluvial depositional conditions.

  4. Lead is not off center in PbTe: the importance of r-space phase information in extended x-ray absorption fine structure spectroscopy.

    PubMed

    Keiber, T; Bridges, F; Sales, B C

    2013-08-30

    PbTe is a well-known thermoelectric material. Recent x-ray total scattering studies suggest that Pb moves off center along 100 in PbTe, by ∼0.2  Å at 300 K, producing a split Pb-Te pair distribution. We present an extended x-ray absorption fine structure spectroscopy (EXAFS) study of PbTe (and Tl doped PbTe) to determine if Pb or Te is off center. EXAFS provides sensitive r- or k-space phase information which can differentiate between a split peak for the Pb-Te distribution (indicative of off-center Pb) and a thermally broadened peak. We find no evidence for a split peak for Pb-Te or Te-Pb. At 300 K, the vibration amplitude for Pb-Te (or Te-Pb) is large; this thermally induced disorder is indicative of weak bonds, and the large disorder is consistent with the low thermal conductivity at 300 K. We also find evidence of an anharmonic potential for the nearest Pb-Te bonds, consistent with the overall anharmonicity found for the phonon modes. This effect is modeled by a "skew" factor (C3) which significantly improves the fit of the Pb-Te and Te-Pb peaks for the high temperature EXAFS data; C3 becomes significant above approximately 150-200 K. The consequences of these results will be discussed.

  5. Atomic and electronic structure of Mo6S9-xIx nanowires

    NASA Astrophysics Data System (ADS)

    Meden, A.; Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Vilfan, I.; Vrbanic, D.; Mrzel, A.; Mihailovic, D.

    2005-09-01

    Moybdenum-based subnanometre diameter nanowires are easy to synthesize and disperse, and they exhibit a variety of functional properties in which they are superior to other one-dimensional materials. However, further progress in the understanding of physical properties and the development of new and specific applications have so far been impeded by the fact that their structure was not accurately known. Here we report on a combination of systematic x-ray diffraction and extended x-ray absorption fine structure experiments, and first-principles theoretical structure calculations, which are used to determine the atomic skeletal structure of individual Mo6S9-xIx (MoSIx) nanowires, their packing arrangement within bundles and their electronic band structure. From this work we conclude that the variations in functional properties appear to arise from different stoichiometry, not skeletal structure. A supplementary data file is available from http://stacks.iop.org/0957-4484/16/1578

  6. Electronic structure and optical properties of CdSxSe1-x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.

    2014-11-01

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  7. Controlling the intermediate structure of an ionic liquid for f-block element separations

    DOE PAGES

    Abney, Carter W.; Do, Changwoo; Luo, Huimin; ...

    2017-04-19

    Recent research has revealed molecular structure beyond the inner coordination sphere is essential in defining the performance of separations processes, but nevertheless remains largely unexplored. Here we apply small angle neutron scattering (SANS) and x-ray absorption fine structure (XAFS) spectroscopy to investigate the structure of an ionic liquid system studied for f-block element separations. SANS data reveal dramatic changes in the ionic liquid microstructure (~150 Å) which we demonstrate can be controlled by judicious selection of counter ion. Mesoscale structural features (> 500 Å) are also observed as a function of metal concentration. XAFS analysis supports formation of extended aggregatemore » structures, similar to those observed in traditional solvent extraction processes, and suggest additional parallels may be drawn from further study. As a result, achieving precise tunability over the intermediate features is an important development in controlling mesoscale structure and realizing advanced new forms of soft matter.« less

  8. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions.

    PubMed

    Graham, Carly F; Eberts, Rebecca L; Morgan, Thomas D; Boreham, Douglas R; Lance, Stacey L; Manzon, Richard G; Martino, Jessica A; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment.

  9. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions

    PubMed Central

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722

  10. Structural Characterization of CO-Inhibited Mo-Nitrogenase by Combined Application of Nuclear Resonance Vibrational Spectroscopy, Extended X-ray Absorption Fine Structure, and Density Functional Theory: New Insights into the Effects of CO Binding and the Role of the Interstitial Atom

    DOE PAGES

    Scott, Aubrey D.; Pelmenschikov, Vladimir; Guo, Yisong; ...

    2014-10-02

    The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N 2ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm –1 mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the α-H195Q N 2ase variant. In the frequency region above 450 cm –1, additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by 13CO isotope shifts). The EXAFSmore » for wild-type N 2ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 Å in the resting enzyme. A DFT model with both a terminal ₋CO and a partially reduced ₋CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the α-H195Q variant NRVS. The calculations also shed light on the vibrational “shake” modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. We discuss implications for the CO and N 2 reactivity of N 2ase.« less

  11. Differential effects of fine root morphology on water dynamics in the root-soil interface

    NASA Astrophysics Data System (ADS)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  12. Probing the Li Insertion Mechanism of ZnFe 2O 4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe 2O 4 in Li ion batteries: A combined XRD, EXAFS, and DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.

    Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less

  13. Probing the Li Insertion Mechanism of ZnFe 2O 4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe 2O 4 in Li ion batteries: A combined XRD, EXAFS, and DFT study

    DOE PAGES

    Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2017-04-24

    Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less

  14. Structural characterization of CO-inhibited Mo-nitrogenase by combined application of nuclear resonance vibrational spectroscopy, extended X-ray absorption fine structure, and density functional theory: new insights into the effects of CO binding and the role of the interstitial atom.

    PubMed

    Scott, Aubrey D; Pelmenschikov, Vladimir; Guo, Yisong; Yan, Lifen; Wang, Hongxin; George, Simon J; Dapper, Christie H; Newton, William E; Yoda, Yoshitaka; Tanaka, Yoshihito; Cramer, Stephen P

    2014-11-12

    The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N2ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm(-1) mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the α-H195Q N2ase variant. In the frequency region above 450 cm(-1), additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by (13)CO isotope shifts). The EXAFS for wild-type N2ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 Å in the resting enzyme. A DFT model with both a terminal -CO and a partially reduced -CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the α-H195Q variant NRVS. The calculations also shed light on the vibrational "shake" modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. Implications for the CO and N2 reactivity of N2ase are discussed.

  15. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance.

    PubMed

    Fortier, T M; Ashby, N; Bergquist, J C; Delaney, M J; Diddams, S A; Heavner, T P; Hollberg, L; Itano, W M; Jefferts, S R; Kim, K; Levi, F; Lorini, L; Oskay, W H; Parker, T E; Shirley, J; Stalnaker, J E

    2007-02-16

    We report tests of local position invariance and the variation of fundamental constants from measurements of the frequency ratio of the 282-nm 199Hg+ optical clock transition to the ground state hyperfine splitting in 133Cs. Analysis of the frequency ratio of the two clocks, extending over 6 yr at NIST, is used to place a limit on its fractional variation of <5.8x10(-6) per change in normalized solar gravitational potential. The same frequency ratio is also used to obtain 20-fold improvement over previous limits on the fractional variation of the fine structure constant of |alpha/alpha|<1.3x10(-16) yr-1, assuming invariance of other fundamental constants. Comparisons of our results with those previously reported for the absolute optical frequency measurements in H and 171Yb+ vs other 133Cs standards yield a coupled constraint of -1.5x10(-15)

  16. A wavelet analysis for the X-ray absorption spectra of molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, T. J.; Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne; SwissFEL, Paul Scherrer Inst, CH-5232 Villigen

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rheniummore » diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.« less

  17. Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy

    DOE PAGES

    Zhang, F. X.; Zhao, Shijun; Jin, Ke; ...

    2017-05-19

    Multi-element solid solution alloys are intrinsically disordered on the atomic scale, and many of their advanced properties originate from the unique local structural characteristics. We measured the local structure of a NiCoCr solid solution alloy with X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) techniques. The atomic pair distribution function analysis (PDF) did not exhibit distinct structural distortion. But, EXAFS analysis suggested that the Cr atoms are favorably bonded with Ni and Co in the solid solution alloys. This short-range order (SRO) plays a role in the distinct low values of electrical and thermal conductivities in Ni-based solidmore » solution alloys when Cr is incorporated. Both the long-range and local structures of the NiCoCr alloy upon Ni ion irradiation were studied and an irradiation-induced enhancement of SRO was found.« less

  18. An extended X-Ray absorption fine structure (exafs) study of copper (II) sulphate pentahydrate

    NASA Astrophysics Data System (ADS)

    Joyner, Richard W.

    1980-05-01

    The EXAFS spectrum of copper (II) sulphate pentahydrate has been measured using synchrotron radiation. Comparison with the results of ab initio calculation gives a mean copper-oxygen distance of 1.95 Å, in reasonable agreement with the known value of 1.97 Å. The relation between the EXAFS Debye-Waller factor and thermal parameters measured by neutron diffraction is discussed. Absence in the EXAFS spectrum of evidence for the second-nearest neighbour oxygen atoms, at Cu-O ≈ 2.4 Å, is discussed.

  19. Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta₂O₅)

    DOE PAGES

    Bassiri, Riccardo; Liou, Franklin; Abernathy, Matthew R.; ...

    2015-03-01

    Amorphous tantala (a-Ta₂O₅) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta₂O₅ coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta₂O₅ and other a-T₂O₅ studies.

  20. Strontianite in coral skeletal aragonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greegor, R.B.; Pingitore, N.E. Jr.; Lytle, F.W.

    1997-03-07

    An x-ray spectroscopic study of scleractinian coral skeletons indicated that, although some strontium substitutes for calcium in the aragonite structure, at concentrations of about 7500 parts per million, as much as 40 percent of the strontium resides in strontianite (SrCO{sub 3}). A doublet peak in the Fourier transform of the extended x-ray absorption fine structure of the coral correspond to six metal and 13 oxygen neighbors surrounding strontium at about 4.05 angstroms in strontium-substituted aragonite and at about 4.21 angstroms in strontianite. Thus, the mechanism of the temperature-sensitive partitioning of strontium between seawater and coral skeleton used for paleothermometry ismore » unexpectedly complex. 11 refs., 5 figs., 1 tab.« less

  1. Planar Lattice Instability in LA2CUO4.1 across the Superconducting Transition

    NASA Astrophysics Data System (ADS)

    Acosta-Alejandro, Manuel; Mustre-de Leon, Jose; Conradson, Steven

    2001-03-01

    The local atomic structure of La2CuO4.1 around Cu K-edge is analyzed for 10

  2. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K -edge XANES data

    NASA Astrophysics Data System (ADS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D. D.

    2005-11-01

    Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K -edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K -edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.

  3. Extended Maptree: a Representation of Fine-Grained Topology and Spatial Hierarchy of Bim

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Shang, J.; Hu, X.; Zhou, Z.

    2017-09-01

    Spatial queries play significant roles in exchanging Building Information Modeling (BIM) data and integrating BIM with indoor spatial information. However, topological operators implemented for BIM spatial queries are limited to qualitative relations (e.g. touching, intersecting). To overcome this limitation, we propose an extended maptree model to represent the fine-grained topology and spatial hierarchy of indoor spaces. The model is based on a maptree which consists of combinatorial maps and an adjacency tree. Topological relations (e.g., adjacency, incidence, and covering) derived from BIM are represented explicitly and formally by extended maptrees, which can facilitate the spatial queries of BIM. To construct an extended maptree, we first use a solid model represented by vertical extrusion and boundary representation to generate the isolated 3-cells of combinatorial maps. Then, the spatial relationships defined in IFC are used to sew them together. Furthermore, the incremental edges of extended maptrees are labeled as removed 2-cells. Based on this, we can merge adjacent 3-cells according to the spatial hierarchy of IFC.

  4. Local atomic and electronic structures of epitaxial strained LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Sterbinsky, G. E.; Ryan, P. J.; Kim, J.-W.; Karapetrova, E.; Ma, J. X.; Shi, J.; Woicik, J. C.

    2012-01-01

    We have examined the atomic and electronic structures of perovskite lanthanum cobaltite (LaCoO3) thin films using Co K-edge x-ray absorption fine structure (XAFS) spectroscopy. Extended XAFS (EXAFS) demonstrates that a large difference between in-plane and out-of-plane Co-O bond lengths results from tetragonal distortion in highly strained films. The structural distortions are strongly coupled to the hybridization between atomic orbitals of the Co and O atoms, as shown by x-ray absorption near edge spectroscopy (XANES). Our results indicate that increased hybridization is not the cause of ferromagnetism in strained LaCoO3 films. Instead, we suggest that the strain-induced distortions of the oxygen octahedra increase the population of eg electrons and concurrently depopulate t2g electrons beyond a stabilization threshold for ferromagnetic order.

  5. Modelling the atomic structure of Al92U8 metallic glass.

    PubMed

    Michalik, S; Bednarcik, J; Jóvári, P; Honkimäki, V; Webb, A; Franz, H; Fazakas, E; Varga, L K

    2010-10-13

    The local atomic structure of the glassy Al(92)U(8) alloy was modelled by the reverse Monte Carlo (RMC) method, fitting x-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) signals. The final structural model was analysed by means of partial pair correlation functions, coordination number distributions and Voronoi tessellation. In our study we found that the most probable atomic separations between Al-Al and U-Al pairs in the glassy Al(92)U(8) alloy are 2.7 Å and 3.1 Å with coordination numbers 11.7 and 17.1, respectively. The Voronoi analysis did not support evidence of the existence of well-defined building blocks directly embedded in the amorphous matrix. The dense-random-packing model seems to be adequate for describing the connection between solvent and solute atoms.

  6. Luminous Herbig-Haro objects from a massive protostar: The unique case of HH 80/81

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo

    2017-08-01

    Herbig-Haro (HH) objects are the optical manifestations of shock waves excited by outflows from young stars. They represent one of the few classes of spatially extended astronomical objects where both structural changes and proper motions can be measured on time scales of years to decades. HH 80/81 is a pair of HH objects in Sagittarius which are the intrinsically most luminous HH objects known. The driving source of HH 80/81 is the embedded star IRAS 18162-2048, which has a luminosity of 20,000 Lsun and excites a compact HII region, suggesting that it is a newborn massive star. HH objects associated with massive young stars are very rare, only a handful of cases are known, but what makes the HH 80/81 source unique among massive protostars is that it produces a finely collimated bipolar radio jet with extremely high velocity and pointing straight to HH 80/81. We propose to observe the HH 80/81 complex with WFC3 and the following four filters: Halpha 6563, Hbeta 4861, [SII] 6717/31, and [OIII] 5007. First epoch HST images were obtained 22 years ago, which now allows a very precise determination of proper motions. Groundbased optical and radio proper motions are not only uncertain, but actually contradict each other, a controversy that will be resolved by HST. The fine resolution of WFC3 allows a study of both fine structural details and structural changes of the shocks. Finally we will use a sophisticated adaptive grid code to interpret the (de-reddened) line ratios across the shocks.

  7. Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Morris; Li, Hong; Li, Liyu

    Gadolinium can be dissolved in sodium-alumino-borosilicate glasses up to 47 wt% in a baseline borosilicate glass (mol%) 20 B2O3, 5 Al2O3, 60 SiO2,and 20 Na2O. Understanding of Gd dissolution in borosilicate melts is important in glass formulation optimization. Electron energy loss fine structure (ELFS) spectroscopy is chosen, which provides well resolved local atomic structure information for both amorphous and crystalline materials with high sensitivity to low Z elements such as Al, B, Na, O, and Si where the x-ray absorption fine structure (XAFS) technique faces experimental difficulty. In this study, we report our results of boron K-edge ELFS study. Twomore » borosilicate glass samples with 30 and 47 mass% Gd2O3, B20Gd30 and B20Gd47were chosen for B K-edge ELFS study. EEL spectra were acquired on a Philips 430 TEM equipped with Gatan PEELS system 666 and EL/P 2.1 software with Custom function AcqLong. The ELFS data analysis was performed using UWELFS, UWXAFS and FEFF software. From our Gd solubility study, the local structure of Gd in the borate environment possibly resembles double chain structure found in crystalline Gd(BO2)3 as proposed by Chakraborty et al. The B/Gd ratio's in both glasses are smaller then 3, which means the excess Gd atoms in the Si-sites would be 17 and 60 mol% of the total Gd atoms, respectively according to the model, yet the local environment of borate sites saturated with Gd should be remained. To verity above hypothesis, the double chain structure model was applied to fit boron K-edge. The model was shown to well fit experimental boron K-edge EELS spectra for both glasses with some degree of distance distortion which is understandable in amorphous structure. Therefore, it is very likely that Gd stabilized in borate sites has a local structure resembling the double chain Gd(BO2)3 structure as proposed by our solubility study and literature.« less

  8. Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser

    NASA Astrophysics Data System (ADS)

    Coulibaly, S.; Clerc, M. G.; Selmi, F.; Barbay, S.

    2017-02-01

    The occurrence of extreme events in a spatially extended microcavity laser has been recently reported [Selmi et al., Phys. Rev. Lett. 116, 013901 (2016), 10.1103/PhysRevLett.116.013901] to be correlated to emergence of spatiotemporal chaos. In this dissipative system, the role of spatial coupling through diffraction is essential to observe the onset of spatiotemporal complexity. We investigate further the formation mechanism of extreme events by comparing the statistical and dynamical analyses. Experimental measurements together with numerical simulations allow us to assign the quasiperiodicity mechanism as the route to spatiotemporal chaos in this system. Moreover, by investigating the fine structure of the maximum Lyapunov exponent, of the Lyapunov spectrum, and of the Kaplan-Yorke dimension of the chaotic attractor, we are able to deduce that intermittency plays a key role in the proportion of extreme events measured. We assign the observed mechanism of generation of extreme events to quasiperiodic extended spatiotemporal intermittency.

  9. Combined time-resolved laser fluorescence spectroscopy and extended X-ray absorption fine structure spectroscopy study on the complexation of trivalent actinides with chloride at T = 25-200 °C.

    PubMed

    Skerencak-Frech, Andrej; Fröhlich, Daniel R; Rothe, Jörg; Dardenne, Kathy; Panak, Petra J

    2014-01-21

    The complexation of trivalent actinides (An(III)) with chloride is studied in the temperature range from 25 to 200 °C by spectroscopic methods. Time-resolved laser fluorescence spectroscopy (TRLFS) is applied to determine the thermodynamic data of Cm(III)-Cl(-) complexes, while extended X-ray absorption fine structure spectroscopy (EXAFS) is used to determine the structural data of the respective Am(III) complexes. The experiments are performed in a custom-built high-temperature cell which is modified for the respective spectroscopic technique. The TRLFS results show that at 25 °C the speciation is dominated mainly by the Cm(3+) aquo ion. Only a minor fraction of the CmCl(2+) complex is present in solution. As the temperature increases, the fraction of this species decreases further. Simultaneously, the fraction of the CmCl2(+) complex increases strongly with the temperature. Also, the CmCl3 complex is formed to a minor extent at T > 160 °C. The conditional stability constant log β'2 is determined as a function of the temperature and extrapolated to zero ionic strength with the specific ion interaction theory approach. The log β°2(T) values increase by more than 3 orders of magnitude in the studied temperature range. The temperature dependency of log β°2 is fitted by the extended van't Hoff equation to determine ΔrH°m, ΔrS°m, and ΔrC°p,m. The EXAFS results support these findings. The results confirm the absence of americium(III) chloride complexes at T = 25 and 90 °C ([Am(III)] = 10(-3) m, [Cl(-)] = 3.0 m), and the spectra are described by 9-10 oxygen atoms at a distance of 2.44-2.48 Å. At T = 200 °C two chloride ligands are present in the inner coordination sphere of Am(III) at a distance of 2.78 Å.

  10. Extended X-ray absorption fine structure investigation of Sn local environment in strained and relaxed epitaxial Ge{sub 1−x}Sn{sub x} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be; Heyns, M.; Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Leuven

    2015-03-07

    We present an extended X-ray absorption fine structure investigation of the local environment of Sn atoms in strained and relaxed Ge{sub 1−x}Sn{sub x} layers with different compositions. We show that the preferred configuration for the incorporation of Sn atoms in these Ge{sub 1−x}Sn{sub x} layers is that of a α-Sn defect, with each Sn atom covalently bonded to four Ge atoms in a classic tetrahedral configuration. Sn interstitials, Sn-split vacancy complexes, or Sn dimers, if present at all, are not expected to involve more than 2.5% of the total Sn atoms. This finding, along with a relative increase of Snmore » atoms in the second atomic shell around a central Sn atom in Ge{sub 1−x}Sn{sub x} layers with increasing Sn concentrations, suggests that the investigated materials are homogeneous random substitutional alloys. Within the accuracy of the measurements, the degree of strain relaxation of the Ge{sub 1−x}Sn{sub x} layers does not have a significant impact on the local atomic surrounding of the Sn atoms. Finally, the calculated topological rigidity parameter a** = 0.69 ± 0.29 indicates that the strain due to alloying in Ge{sub 1−x}Sn{sub x} is accommodated via bond stretching and bond bending, with a slight predominance of the latter, in agreement with ab initio calculations reported in literature.« less

  11. [Distribution of fine root biomass of main planting tree species in Loess Plateau, China].

    PubMed

    Jian, Sheng-Qi; Zhao, Chuan-Yan; Fang, Shu-Min; Yu, Kai

    2014-07-01

    The distribution of fine roots of Pinus tabuliformis, Populus tomentosa, Prunus armeniaca, Robinia pseudoacacia, Hippophae rhamnoides, and Caragana korshinskii was investigated by using soil core method and the fine root was defined as root with diameter less than 2 mm. The soil moisture and soil properties were measured. The results showed that in the horizontal direction, the distribution of fine root biomass of P. tabuliformis presented a conic curve, and the fine root biomass of the other species expressed logarithm correlation. Radial roots developed, the fine root biomass were concentrated within the scope of the 2-3 times crown, indicating that trees extended their roots laterally to seek water farther from the tree. In the vertical direction, the fine root biomass decreased with the increasing soil depth. Fine root biomass had significant negative correlation with soil water content and bulk density, while significant positive correlation with organic matter and total N contents.

  12. Hyperfine structure parametrisation in Maple

    NASA Astrophysics Data System (ADS)

    Gaigalas, G.; Scharf, O.; Fritzsche, S.

    2006-02-01

    In hyperfine structure examinations, routine high resolution spectroscopy methods have to be combined with exact fine structure calculations. The so-called magnetic A and electric B factor of the fine structure levels allow to check for a correct fine structure analysis, to find errors in the level designation, to find new levels and to probe the electron wavefunctions and its mixing coefficients. This is done by parametrisation of these factors into different contributions of the subshell electrons, which are split further into their radial and spin-angular part. Due to the routine with which hyperfine structure measurements are done, a tool for keeping the necessary information together, performing checks online with the experiment and deriving standard quantities is of great help. MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] is a highly-developed symbolic programming language, often referred to as the pocket calculator of the future. Packages for theoretical atomic calculation exist ( RACAH and JUCYS) and the language meets all the requirements to keep and present information accessible for the user in a fast and practical way. We slightly extended the RACAH package [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] and set up an environment for experimental hyperfine structure calculations, the HFS package. Supplying the fine structure and nuclear data, one is in the position to obtain information about the hyperfine spectrum, the different contributions to the splitting and to perform a least square fit of the radial parameters based on the semiempirical method. Experimentalist as well as theoretical physicist can do a complete hyperfine structure analysis using MAPLE. Program summaryTitle of program: H FS Catalogue number: ADXD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers for which the program is designed: All computers with a license of the computer algebra package MAPLE Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 9.0 Program language used:MAPLE, Release 7, 8 and 9 Memory required to execute with typical data: 5 MB No. of lines in distributed program, including test data, etc.: 34 300 No. of bytes in distributed program, including test data, etc.: 954 196 Distribution format: tar.gz Nature of the physical problem: Atomic state functions of an many configuration many electron atom with several open shells are defined by a number of quantum numbers, by their coupling and selection rules such as the Pauli exclusion principal or parity conservation. The matrix elements of any one-particle operator acting on these wavefunctions can be analytically integrated up to the radial part [G. Gaigalas, O. Scharf, S. Fritzsche, Central European J. Phys. 2 (2004) 720]. The decoupling of the interacting electrons is general, the obtained submatrix element holds all the peculiarities of the operator in question. These so-called submatrix elements are the key to do hyperfine structure calculations. The interaction between the electrons and the atomic nucleus leads to an additional splitting of the fine structure lines, the hyperfine structure. The leading components are the magnetic dipole interaction defining the so-called A factor and the electric quadrupole interaction, defining the so-called B factor. They express the energetic splitting of the spectral lines. Moreover, they are obtained directly by experiments and can be calculated theoretically in an ab initio approach. A semiempirical approach allows the fitting of the radial parts of the wavefunction to the experimentally obtained A and B factors. Method of solution: Extending the existing csf_LS() and asf_LS() to several open shells and implementing a data structure level_LS() for the fine structure level, the atomic environment is defined in MAPLE. It is used in a general approach to decouple the interacting shells for any one-particle operator. Further submatrix elements for the magnetic dipole and electric quadrupole interaction are implemented, allowing to calculate the A and B factors up to the radial part. Several procedures for standard quantities of the hyperfine structure are defined, too. The calculations are accelerated by using a hyper-geometric approach for three, six and nine symbols. Restrictions onto the complexity of the problem: Only atomic state functions in nonrelativistic LS-coupling with states having l⩽3 are supported. Typical running time: The program replies promptly on most requests. The least square fit depends heavily on the number of levels and can take a few minutes.

  13. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study.

    PubMed

    Popescu, Mihai; Otsuka, Asuka; Ioannides, Andreas A

    2004-04-01

    There are formidable problems in studying how 'real' music engages the brain over wide ranges of temporal scales extending from milliseconds to a lifetime. In this work, we recorded the magnetoencephalographic signal while subjects listened to music as it unfolded over long periods of time (seconds), and we developed and applied methods to correlate the time course of the regional brain activations with the dynamic aspects of the musical sound. We showed that frontal areas generally respond with slow time constants to the music, reflecting their more integrative mode; motor-related areas showed transient-mode responses to fine temporal scale structures of the sound. The study combined novel analysis techniques designed to capture and quantify fine temporal sequencing from the authentic musical piece (characterized by a clearly defined rhythm and melodic structure) with the extraction of relevant features from the dynamics of the regional brain activations. The results demonstrated that activity in motor-related structures, specifically in lateral premotor areas, supplementary motor areas, and somatomotor areas, correlated with measures of rhythmicity derived from the music. These correlations showed distinct laterality depending on how the musical performance deviated from the strict tempo of the music score, that is, depending on the musical expression.

  14. Sub-Doppler infrared spectroscopy of propargyl radical (H{sub 2}CCCH) in a slit supersonic expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chih-Hsuan; Nesbitt, David J.

    The acetylenic CH stretch mode (ν{sub 1}) of propargyl (H{sub 2}CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (T{sub rot} = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (ε{sub aa} = − 518.1(1.8),more » ε{sub bb} = − 13.0(3), ε{sub cc} = − 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin–electron spin contributions at the methylenic (—CH{sub 2}) and acetylenic (—CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations.« less

  15. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  16. M553 sphere forming experiment: Pure nickel specimen evaluation

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Peters, E. T.

    1973-01-01

    A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.

  17. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites.

    PubMed

    Gandhiraman, Ram P; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E; Chen, Bin; Meyyappan, M

    2014-08-14

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide-metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp 2 -derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network.

  18. Fine-scale ecological and genetic population structure of two whitefish (Coregoninae) species in the vicinity of industrial thermal emissions

    DOE PAGES

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; ...

    2016-01-25

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less

  19. Fine-scale ecological and genetic population structure of two whitefish (Coregoninae) species in the vicinity of industrial thermal emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less

  20. Composition and hydrophilicity control of Mn-doped ferrite (MnxFe3-xO4) nanoparticles induced by polyol differentiation.

    PubMed

    Vamvakidis, Kosmas; Katsikini, Maria; Vourlias, George; Angelakeris, Mavroeidis; Paloura, Eleni C; Dendrinou-Samara, Catherine

    2015-03-28

    Manganese doped ferrite (MnxFe3-xO4) nanoparticles with x = 0.29-0.77 were prepared under solvothermal conditions in the presence solely of a polyol using the trivalent manganese and iron acetylacetonates as precursors. In this facile approach, a variety of polyols such as polyethylene glycol (PEG 8000), tetraethylene glycol (TEG), propylene glycol (PG) and a mixture of TEG and PG (1 : 1) were utilized in a triple role as a solvent, a reducing agent and a surface-functionalizing agent. The composition of the fine cubic-spinel structures was found to be related to the reductive ability of each polyol, while determination of structural characteristics plus the inversion parameter (i = 0.18-0.38) were provided by X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy at both the Fe and Mn K-edges. The saturation magnetization increased up to 80 emu g(-1) when x = 0.35 and i = 0.22. In addition, the as-prepared nanocrystals coated with PEG, PG and PG&TEG showed excellent colloidal stability in water, while the TEG-coated particles were not water dispersible and converted to hydrophilic when were extra PEGylated. Measurements of the (1)H NMR relaxation in water were carried out and the nanoprobes were evaluated as potential contrast agents.

  1. Scattering - a probe to Earth's small scale structure

    NASA Astrophysics Data System (ADS)

    Rost, S.; Earle, P.

    2009-05-01

    Much of the short-period teleseismic wavefield shows strong evidence for scattered waves in extended codas trailing the main arrivals predicted by ray theory. This energy mainly originates from high-frequency body waves interacting with fine-scale volumetric heterogeneities in the Earth. Studies of this energy revealed much of what we know about Earth's structure at scale lengths around 10 km throughout the Earth from crust to core. From these data we can gain important information about the mineral-physical and geochemical constitution of the Earth that is inaccessible to many other seismic imaging techniques. Previous studies used scattered energy related to PKP, PKiKP, and Pdiff to identify and map the small-scale structure of the mantle and core. We will present observations related to the core phases PKKP and P'P' to study fine-scale mantle heterogeneities. These phases are maximum travel-time phases with respect to perturbations at their reflection points. This allows observation of the scattered energy as precursors to the main phase avoiding common problems with traditional coda phases which arrive after the main pulse. The precursory arrival of the scattered energy allows the separation between deep Earth and crustal contributions to the scattered wavefield for certain source-receiver configurations. Using the information from these scattered phases we identify regions of the mantle that shows increased scattering potential likely linked to larger scale mantle structure identified in seismic tomography and geodynamical models.

  2. Fine Scale Structure of Low and Ultra-Low Velocity Patches in the Lowermost Mantle: Some Case Studies

    NASA Astrophysics Data System (ADS)

    Yuan, K.; Romanowicz, B. A.; French, S.

    2015-12-01

    The lowermost part of the mantle, which is roughly halfway to the center of the earth, plays a key role as a thermal and chemical boundary layer between the solid, silicate mantle and fluid, iron outer core. Constraining the seismic velocity structure in this region provides important insights on mantle dynamics, and core-mantle interactions. Recently, global shear wave velocity tomography has confirmed the presence of broad plume conduits extending vertically through the lower mantle in the vicinity of major hotspots (SEMUCB-WM1, French and Romanowicz, 2015). These conduits are rooted in D" in patches of strongly reduced shear velocity, at least some of which, such as Hawaii, appear to contain known ultra low velocity zones (e.g. Cottaar and Romanowicz, 2012). We seek to determine whether these patches generally contain ULVZs, and to contrast them with less extreme structures such as the PERM anomaly (Lekic et al., 2012). Because global tomography cannot resolve such fine scale structure, we apply forward modeling of higher frequency (10-20s) Sdiff waveforms in 3D complex structures using the Spectral Element Method. We focus on Iceland, Hawaii and the PERM anomaly, and Sdiff observations at USArray and/or dense broadband arrays in Europe. In all three cases, Sdiff waveforms are clearly distorted by these anomalies, with either a complex coda and/or evidence for amplitude focusing. As a start, we design simple cylindrical models of shear velocity reduction, and contrast the best fitting ones at each location considered in terms of diameter, height above the core-mantle boundary and strength of velocity reduction. We refine previously obtained models for Hawaii and the Perm Anomaly. For Iceland, the waveforms show a strong azimuthally dependent post-cursor, with maximum travel time delay of ~20s and focusing effects. The preliminary best fitting model shows a structure of 700km in diameter, ~15% reduction in shear wave velocity, extending ~40 km above the core-mantle boundary, in a location close to the Iceland hotspot which is in agreement with the low velocity patch in model SEMUCB_WM1.

  3. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    NASA Astrophysics Data System (ADS)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  4. MODELING AIR TOXICS AND PM 2.5 CONCENTRATION FIELDS AS A MEANS FOR FACILITATING HUMAN EXPOSURE ASSESSMENTS

    EPA Science Inventory

    The capability of the US EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system is extended to provide gridded ambient air quality concentration fields at fine scales. These fields will drive human exposure to air toxics and fine particulate matter (PM2.5) models...

  5. Final Report - High-Order Spectral Volume Method for the Navier-Stokes Equations On Unstructured Tetrahedral Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z J

    2012-12-06

    The overriding objective for this project is to develop an efficient and accurate method for capturing strong discontinuities and fine smooth flow structures of disparate length scales with unstructured grids, and demonstrate its potentials for problems relevant to DOE. More specifically, we plan to achieve the following objectives: 1. Extend the SV method to three dimensions, and develop a fourth-order accurate SV scheme for tetrahedral grids. Optimize the SV partition by minimizing a form of the Lebesgue constant. Verify the order of accuracy using the scalar conservation laws with an analytical solution; 2. Extend the SV method to Navier-Stokes equationsmore » for the simulation of viscous flow problems. Two promising approaches to compute the viscous fluxes will be tested and analyzed; 3. Parallelize the 3D viscous SV flow solver using domain decomposition and message passing. Optimize the cache performance of the flow solver by designing data structures minimizing data access times; 4. Demonstrate the SV method with a wide range of flow problems including both discontinuities and complex smooth structures. The objectives remain the same as those outlines in the original proposal. We anticipate no technical obstacles in meeting these objectives.« less

  6. Modeling the Lac repressor-operator assembly: The influence of DNA looping on Lac repressor conformation

    PubMed Central

    Swigon, David; Coleman, Bernard D.; Olson, Wilma K.

    2006-01-01

    Repression of transcription of the Escherichia coli Lac operon by the Lac repressor (LacR) is accompanied by the simultaneous binding of LacR to two operators and the formation of a DNA loop. A recently developed theory of sequence-dependent DNA elasticity enables one to relate the fine structure of the LacR–DNA complex to a wide range of heretofore-unconnected experimental observations. Here, that theory is used to calculate the configuration and free energy of the DNA loop as a function of its length and base-pair sequence, its linking number, and the end conditions imposed by the LacR tetramer. The tetramer can assume two types of conformations. Whereas a rigid V-shaped structure is observed in the crystal, EM images show extended forms in which two dimer subunits are flexibly joined. Upon comparing our computed loop configurations with published experimental observations of permanganate sensitivities, DNase I cutting patterns, and loop stabilities, we conclude that linear DNA segments of short-to-medium chain length (50–180 bp) give rise to loops with the extended form of LacR and that loops formed within negatively supercoiled plasmids induce the V-shaped structure. PMID:16785444

  7. Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang; Tong, Yang; Jin, Ke

    In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.

  8. Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy

    DOE PAGES

    Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...

    2018-06-16

    In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.

  9. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials

    PubMed Central

    Sharma, Nilesh C.; Nath, Sudip; Parsons, Jason G.; Gardea- Torresdey, Jorge L.; Pal, Tarasankar

    2008-01-01

    Growth of Sesbania seedlings in chloroaurate solution resulted in the accumulation of gold with the formation of stable gold nanoparticles in plant tissues. Transmission electron microscopy revealed the intracellular distribution of monodisperse nanospheres, possibly due to reduction of the metal ions by secondary metabolites present in cells. X-ray absorption near-edge structure and extended X-ray absorption fine structure demonstrated a high degree of efficiency for the biotransformation of Au(III) into Au(0) by plant tissues. The catalytic function of the nanoparticle-rich biomass was substantiated by the reduction of aqueous 4-nitrophenol (4-NP). This is the first report of gold nanoparticle-bearing biomatrix directly reducing a toxic pollutant, 4-NP. PMID:17711235

  10. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    PubMed

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  11. Role of the local structure in superconductivity of LaO0.5F0.5BiS2-x Se x system

    NASA Astrophysics Data System (ADS)

    Paris, E.; Mizuguchi, Y.; Hacisalihoglu, M. Y.; Hiroi, T.; Joseph, B.; Aquilanti, G.; Miura, O.; Mizokawa, T.; Saini, N. L.

    2017-04-01

    We have studied the local structure of LaO0.5F0.5BiS2-x Se x by Bi L1-edge extended x-ray absorption fine structure (EXAFS). We find a significant effect of Se substitution on the local atomic correlations with a gradual elongation of average in-plane Bi-S bondlength. The associated mean square relative displacement, measuring average local distortions in the BiS2 plane, hardly shows any change for small Se substitution, but decreases significantly for x≥slant 0.6 . The Se substitution appears to suppress the local distortions within the BiS2 plane that may optimize in-plane orbital hybridization and hence the superconductivity. The results suggest that the local structure of the BiS2-layer is one of the key ingredients to control the physical properties of the BiS2-based dichalcogenides.

  12. Wet-chemical synthesis of nanoscale iron boride, XAFS analysis and crystallisation to α-FeB.

    PubMed

    Rades, Steffi; Kornowski, Andreas; Weller, Horst; Albert, Barbara

    2011-06-20

    The reaction of lithium tetrahydridoborate and iron bromide in high boiling ether as reaction medium produces an ultrafine, pyrophoric and magnetic precipitate. X-ray and electron diffraction proved the product to be amorphous. According to X-ray absorption fine structure spectroscopy (XAFS) the precipitate has FeB structure up to nearly two coordination spheres around an iron absorber atom. Transmission electron microscopy (TEM) confirms the ultrafine powder to be nanoscale. Subsequent annealing at 450 °C causes the atoms to arrange in a more distinct FeB structure, and further thermal treatment to 1050 °C extends the local structure to the α-modification of FeB. Between 1050 °C and 1500 °C α-FeB is transformed into β-FeB. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    PubMed

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).

  14. Heterostructured nanohybrid of zinc oxide-montmorillonite clay.

    PubMed

    Hur, Su Gil; Kim, Tae Woo; Hwang, Seong-Ju; Hwang, Sung-Ho; Yang, Jae Hun; Choy, Jin-Ho

    2006-02-02

    We have synthesized heterostructured zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and the sol solution of zinc acetate. According to X-ray diffraction, N2 adsorption-desorption isotherm, and field emission-scanning electron microscopic analyses, it was found that the intercalation of zinc oxide nanoparticles expands the basal spacing of the host montmorillonite clay, and the crystallites of the nanohybrids are assembled to form a house-of-cards structure. From UV-vis spectroscopic investigation, it becomes certain that calcined nanohybrid contains two kinds of the zinc oxide species in the interlayer space of host lattice and in mesopores formed by the house-of-cards type stacking of the crystallites. Zn K-edge X-ray absorption near-edge structure/extended X-ray absorption fine structure analyses clearly demonstrate that guest species in the nanohybrids exist as nanocrystalline zinc oxides with wurzite-type structure.

  15. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata

    PubMed Central

    2017-01-01

    The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata, to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species. PMID:29181279

  16. No hair theorem in quasi-dilaton massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, De-Jun; Zhou, Shuang-Yong

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  17. No hair theorem in quasi-dilaton massive gravity

    DOE PAGES

    Wu, De-Jun; Zhou, Shuang-Yong

    2016-04-11

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  18. Slip-parallel seismic lineations on the Northern Hayward Fault, California

    USGS Publications Warehouse

    Waldhauser, F.; Ellsworth, W.L.; Cole, A.

    1999-01-01

    A high-resolution relative earthquake location procedure is used to image the fine-scale seismicity structure of the northern Hayward fault, California. The seismicity defines a narrow, near-vertical fault zone containing horizontal alignments of hypocenters extending along the fault zone. The lineations persist over the 15-year observation interval, implying the localization of conditions on the fault where brittle failure conditions are met. The horizontal orientation of the lineations parallels the slip direction of the fault, suggesting that they are the result of the smearing of frictionally weak material along the fault plane over thousands of years.

  19. Evidence for a novel chemisorption bond: Formate (HCO/sub 2/) on Cu(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoehr, J.; Outka, D.A.; Madix, R.J.

    1985-03-25

    Surface extended-x-ray-absorption fine-structure measurements reveal that formate (HCO/sub 2/) groups on Cu(100) chemisorb via the two oxygen atoms in adjacent fourfold hollow sites with an average O-Cu nearest-neighbor bond length of 2.38 +- 0.03 A. This distance is sig- nificantly (approx.0.4 A) longer than typical O-Cu bonds in bulk compounds and all known surface complexes. The unusually large O-Cu distance is attributed to a steric effect involving the C atom in HCO/sub 2/ and the nearest-neighbor Cu surface atoms.

  20. Combined EXAFS Spectroscopic and Quantum Chemical Study on the Complex Formation of Am(III) with Formate.

    PubMed

    Fröhlich, Daniel R; Kremleva, Alena; Rossberg, André; Skerencak-Frech, Andrej; Koke, Carsten; Krüger, Sven; Rösch, Notker; Panak, Petra J

    2017-06-19

    The complexation of Am(III) with formate in aqueous solution is studied as a function of the pH value using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy, iterative transformation factor analysis (ITFA), and quantum chemical calculations. The Am L III -edge EXAFS spectra are analyzed to determine the molecular structure (coordination numbers; Am-O and Am-C distances) of the formed Am(III)-formate species and to track the shift of the Am(III) speciation with increasing pH. The experimental data are compared to predictions from density functional calculations. The results indicate that formate binds to Am(III) in a monodentate fashion, in agreement with crystal structures of lanthanide formates. Furthermore, the investigations are complemented by thermodynamic speciation calculations to verify further the results obtained.

  1. Fine structure of the landers fault zone: Segmentation and the rupture process

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Marone, C.J.; Lee, W.H.K.

    1994-01-01

    Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.

  2. Double Charge Ordering States and Spin Ordering State Observed in a RFe2O4 System

    PubMed Central

    Sun, Fei; Wang, Rui; Aku-Leh, C.; Yang, H. X.; He, Rui; Zhao, Jimin

    2014-01-01

    Charge, spin, and lattice degrees of orderings are of great interest in the layered quantum material RFe2O4 (R = Y, Er, Yb, Tm, and Lu) system. Recently many unique properties have been found using various experimental methods. However so far the nature of the two-dimensional (2D) charge ordering (CO) state is not clear and no observation of its fine structure in energy has been reported. Here we report unambiguous observation of double 2D CO states at relatively high temperature in a polycrystalline Er0.1Yb0.9Fe2O4 using Raman scattering. The energy gaps between the 3D and the double 2D states are 170 meV (41.2 THz) and 193 meV (46.6 THz), respectively. We also observed a spin ordering (SO) state at below 210 K with characteristic energy of 45 meV (10.7 THz). Our investigation experimentally identified new fine structures of quantum orders in the system, which also extends the capability of optical methods in investigating other layered quantum materials. PMID:25234133

  3. Reanalysis and extension of the MnH A7Π- X7Σ + (0, 0) band: Fine structure and hyperfine-induced rotational branches

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Gray, Jeffrey A.; Field, Robert W.; Merer, Anthony J.

    1992-12-01

    The A7Π- X7Σ + (0, 0) band of MnH at 568 nm has been recorded by laser fluorescence excitation spectroscopy. The original rotational analysis of Nevin [ Proc. R. Irish Acad.48A, 1-45 (1942); 50A, 123-137 (1945)] has been extended with some corrections at low J. Systematic internal hyperfine perturbations in the X7Σ + state, caused by the Δ N = 0, Δ J = ±1 matrix elements of the 55Mn hyperfine term in the Hamiltonian, have been observed in all seven electron spin components over the entire range of N″ studied. These perturbations destroy the "goodness" of J″ as a quantum number, giving rise to hyperfine-induced Δ J = ±2 rotational branches and to observable energy shifts of the most severely affected levels. The A7Π state, with A = 40.5 cm -1 and B = 6.35 cm -1, evolves rapidly from Hund's case ( a) to case ( b) coupling, which produces anomalous branch patterns at low J. A total of 156 rotational branches have been identified and fitted by least squares to an effective Hamiltonian, providing precise values for the rotational and fine structure constants. Values of the principal constants determined in the fit are (1σ errors in units of the last digit are listed in parentheses): The fine structures of the A7Π and X7Σ + states confirm the assignment of the A ← X transition as Mn 4 pπ ← 4 sσ in the presence of a spectator, nonbonding Mn 3 d5 ( 6S) open core.

  4. Hairy black holes in scalar extended massive gravity

    NASA Astrophysics Data System (ADS)

    Tolley, Andrew J.; Wu, De-Jun; Zhou, Shuang-Yong

    2015-12-01

    We construct static, spherically symmetric black hole solutions in scalar extended ghost-free massive gravity and show the existence of hairy black holes in this class of extension. While the existence seems to be a generic feature, we focus on the simplest models of this extension and find that asymptotically flat hairy black holes can exist without fine-tuning the theory parameters, unlike the bi-gravity extension, where asymptotical flatness requires fine-tuning in the parameter space. Like the bi-gravity extension, we are unable to obtain asymptotically dS regular black holes in the simplest models considered, but it is possible to obtain asymptotically AdS black holes.

  5. Fine structure of heliumlike ions and determination of the fine structure constant.

    PubMed

    Pachucki, Krzysztof; Yerokhin, Vladimir A

    2010-02-19

    We report a calculation of the fine-structure splitting in light heliumlike atoms, which accounts for all quantum electrodynamical effects up to order alpha{5} Ry. For the helium atom, we resolve the previously reported disagreement between theory and experiment and determine the fine-structure constant with an accuracy of 31 ppb. The calculational results are extensively checked by comparison with the experimental data for different nuclear charges and by evaluation of the hydrogenic limit of individual corrections.

  6. Ge K-Edge Extended X-Ray Absorption Fine Structure Study of the Local Structure of Amorphous GeTe and the Crystallization

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshihito; Wakagi, Masatoshi

    1991-01-01

    The local structure and crystallization of amorphous GeTe (a-GeTe) were examined by means of Ge K-edge EXAFS. In a-GeTe, both Ge-Ge and Ge-Te bonds were observed to exist in nearest neighbors of Ge. The average coordination number around Ge is 3.7, which is close to the tetrahedral structure. A random covalent network (RCN) model seems to be suitable for the local Structure. After a-GeTe crystallizes at 129°C, the Ge-Ge bond disappears and the Ge-Te bond length increases considerably. As temperature rises, in a-GeTe the Debye-Waller factor of the Ge-Te bond increases greatly, while that of the Ge-Ge bond increases only slightly. At the crystallization, it is found that the fluctuation of the Ge-Te bond length plays a major role in the change of the local structure and bonding state around Ge.

  7. Do Nimble Hands Make for Nimble Lexicons? Fine Motor Skills Predict Knowledge of Embodied Vocabulary Items

    ERIC Educational Resources Information Center

    Suggate, Sebastian P.; Stoeger, Heidrun

    2014-01-01

    Theories and research in embodied cognition postulate that cognition grounded in action enjoys a processing advantage. Extending this theory to the study of how fine motor skills (FMS) link to vocabulary development in preschool children, the authors investigated FMS and vocabulary in 76 preschoolers. Building on previous research, they…

  8. Fine-scale structure in the far-infrared Milky-Way

    NASA Technical Reports Server (NTRS)

    Waller, William H.; Wall, William F.; Reach, William T.; Varosi, Frank; Ebert, Rick; Laughlin, Gaylin; Boulanger, Francois

    1995-01-01

    This final report summarizes the work performed and which falls into five broad categories: (1) generation of a new data product (mosaics of the far-infrared emission in the Milky Way); (2) acquisition of associated data products at other wavelengths; (3) spatial filtering of the far-infrared mosaics and resulting images of the FIR fine-scale structure; (4) evaluation of the spatially filtered data; (5) characterization of the FIR fine-scale structure in terms of its spatial statistics; and (6) identification of interstellar counterparts to the FIR fine-scale structure.

  9. Substrate temperature effect on the structural anisotropy in amorphous Tb-Fe films

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Hellman, F.; Elam, W. T.; Koon, N. C.

    1993-05-01

    Using extended x-ray absorption fine structures (EXAFS) measurements we have investigated the atomic environment around the Fe atom in a series of amorphous Tb0.26Fe0.74 films having different magnetic anisotropy energies owing to different deposition temperatures. The polarization properties of synchrotron radiation allowed the separate study of structure parallel and perpendicular to the sample plane. An anisotropy between these two structures was observed. Modeling results indicate this anisotropy is due to anisotropic pair correlations where the Fe-Fe pairs are statistically preferred in-plane and the Fe-Tb pairs out-of-plane. The amplitude of this anisotropy scales with both the substrate temperature and the magnetic anisotropy energy. A ≊1% in-plane compression of the Fe-Fe distance was measured between the in-plane and out-of-plane structure of the sample grown at 77 K. This sample had no detectable local chemical anisotropy suggesting that intrinsic stress plays an important role in determining its magnetic anisotropy.

  10. EXAFS: New tool for study of battery and fuel cell materials

    NASA Technical Reports Server (NTRS)

    Mcbreen, James; Ogrady, William E.; Pandya, Kaumudi I.

    1987-01-01

    Extended X ray absorption fine structure (EXAFS) is a powerful technique for probing the local atomic structure of battery and fuel cell materials. The major advantages of EXAFS are that both the probe and the signal are X rays and the technique is element selective and applicable to all states of matter. This permits in situ studies of electrodes and determination of the structure of single components in composite electrodes, or even complete cells. EXAFS specifically probes short range order and yields coordination numbers, bond distances, and chemical identity of nearest neighbors. Thus, it is ideal for structural studies of ions in solution and the poorly crystallized materials that are often the active materials or catalysts in batteries and fuel cells. Studies on typical battery and fuel cell components are used to describe the technique and the capability of EXAFS as a structural tool in these applications. Typical experimental and data analysis procedures are outlined. The advantages and limitations of the technique are also briefly discussed.

  11. Effect of Fe-substitution on the structure and magnetism of single crystals Mn2-xFexBO4

    NASA Astrophysics Data System (ADS)

    Platunov, M. S.; Kazak, N. V.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Moshkina, E. M.; Trigub, A. L.; Veligzhanin, A. A.; Zubavichus, Y. V.; Solovyov, L. A.; Velikanov, D. A.; Ovchinnikov, S. G.

    2017-10-01

    Single crystalline Mn2-xFexBO4 with x = 0.3, 0.5, 0.7 grown by the flux method have been studied by means of X-ray diffraction and X-ray absorption spectroscopy at both Mn and Fe K edges. The compounds were found to crystallize in an orthorhombic warwickite structure (sp. gr. Pnam). The lattice parameters change linearly with x thus obeying the Vegard's law. The Fe3+ substitution for Mn3+ has been deduced from the X-ray absorption near-edge structure (XANES) spectra. Two energy positions of the absorption edges have been observed in Mn K-edge XANES spectra indicating the presence of manganese in two different oxidation states. Extended X-ray absorption fine structure (EXAFS) analysis has shown the reduction of local structural distortions upon Fe substitution. The magnetization data have revealed a spin-glass transition at TSG = 11, 14 and 18 K for x = 0.3, 0.5 and 0.7, respectively.

  12. Electronic structure study of Ce1-xAxO2 (A = Zr & Hf) nanoparticles: NEXAFS and EXAFS investigations.

    PubMed

    Sharma, Aditya; Varshney, Mayora; Shin, Hyun-Joon; Park, Yong Jun; Kim, Min-Gyu; Ha, Tae-Kyun; Chae, Keun Hwa; Gautam, Sanjeev

    2014-10-07

    Single phase nanoparticles (NPs) of CeO2, Ce0.5Zr0.5O2, Ce0.5Hf0.5O2 and Ce0.5Hf0.25Zr0.25O2 were successfully synthesized by co-precipitation method at constant pH and temperature. The X-ray diffraction results revealed that the additive atoms did not segregate to form secondary phases but led to grain size variation in the NPs. The 10 Dq values in the near edge X-ray absorption fine structure (NEXAFS) spectra at the O K-edge did not vary in the same way as the average grain size was changed for the doped CeO2 NPs. The deconvolution of Ce M5-edge and detailed analysis of O K pre-edge peak have shown the higher Ce(+3)/(Ce(+3) + Ce(+4)) ratio in the Zr- and Hf-doped samples. The local atomic structure around the Ce, Zr and Hf atoms was investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy at Ce K-edge, Zr K-edge and Hf L3-edge, respectively, and the EXAFS data were fitted with the theoretical calculations. The 4f occupancy, Ce(+3)/(Ce(+3) + Ce(+4)) ratio of Ce ions, coordination number of Ce and Ce-Ce/Ce-O bond distances were sensitive to the additive atoms but not explicitly changed according to the grain size variation in the NPs.

  13. Anomalous Abundances in Gaseous Nebulae From Recombination and Collisional Lines: Improved Photoionization and Recombination Studies

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil Kumar; Nahar, S. N.; Eissner, W. B.; Montenegro, M.

    2011-01-01

    A perplexing anomaly arises in the determination of abundances of common elements in gaseous nebulae, as derived from collisionally excited lines (CEL) as opposed to those from Recombination Lines (RCL). The "abundance discrepancy factors" can range from a factor of 2 to an order of magnitude or more. That has led to quite different interpretation of the physical structure and processes in gaseous nebulae, such as temperature fluctuations across the object, or metal-rich concentrations leading to a dual-abundnace scenario. We show that the problem may lie in inaccuracies in photoionization and recombination models neglecting low-energy resonance phenomena due to fine structure. Whereas the atomic physics of electron impact excitation of forbidden lines is well understood, and accurate collision strengths have long been available, that is not generally the case for electron-ion recombination cross sections. A major problem is the inclusion of relativisitic effects as it pertains to the existence of very low-energy fine structure resonances in photoionization cross sections. We carry out new relativistic calculations for photoionization and recombination cross sections using a recently extended version of the Breit-Pauli R-matrix codes, and the unified electron-ion recombination method that subsumes both the radiative and the dielectronic recombination (RR and DR) processes in an ab initio and self-consistent manner. We find that near-thresold resonances manifest themselves within fine structure levels of the ground state of ions, enhancing low-temperature recombination rate coefficients at 1000-10,000 K. The resulting enahncement in level-specific and total recombination rate coefficients should therefore lead to reduced abundances derived from RCL, and in accordance with those from CEL. We present results for photoionization of O II into, and recombination from, O III. Theoretical cross sections are benchmarked against high-resolution measurements from synchrotron based light sources. Work on other atomic species is in progress.

  14. SCDC Spanish Curricula Units. Fine Arts Strand, Unit 8, Grade 3, Teacher's Guide--Multi-Ethnic Edition.

    ERIC Educational Resources Information Center

    Spanish Curricula Development Center, Miami Beach, FL.

    One of 10 basic instructional units developed for Spanish-speaking children at the primary level, this bilingual fine arts unit, consisting of kits 29-32, has as its theme "the extended community". Learning and assessment activities support the spiraling question of how change occurs. Focus, objective, and materials for each of the activities is…

  15. Incorporation of Cadmium and Nickel into Ferrite Spinel Solid Solution: X-ray Diffraction and X-ray Absorption Fine Structure Analyses.

    PubMed

    Su, Minhua; Liao, Changzhong; Chan, Tingshan; Shih, Kaimin; Xiao, Tangfu; Chen, Diyun; Kong, Lingjun; Song, Gang

    2018-01-16

    The feasibility of incorporating Cd and Ni in hematite was studied by investigating the interaction mechanism for the formation of Cd x Ni 1-x Fe 2 O 4 solid solutions (CNFs) from CdO, NiO, and α-Fe 2 O 3 . X-ray diffraction results showed that the CNFs crystallized into spinel structures with increasing lattice parameters as the Cd content in the precursors was increased. Cd 2+ ions were found to occupy the tetrahedral sites, as evidenced by Rietveld refinement and extended X-ray absorption fine structure analyses. The incorporation of Cd and Ni into ferrite spinel solid solution strongly relied on the processing parameters. The incorporation of Cd and Ni into the CNFs was greater at high x values (0.7 < x ≤ 1.0) than at low x values (0.0 ≤ x ≤ 0.7). A feasible treatment technique based on the investigated mechanism of CNF formation was developed, involving thermal treatment of waste sludge containing Cd and Ni. Both of these metals in the waste sludge were successfully incorporated into a ferrite spinel solid solution, and the concentrations of leached Cd and Ni from this solid solution were substantially reduced, stabilizing at low levels. This research offers a highly promising approach for treating the Cd and Ni content frequently encountered in electronic waste and its treatment residues.

  16. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  17. Synthesis and x-ray characterization of cobalt phosphide (Co₂P) nanorods for the oxygen reduction reaction

    DOE PAGES

    Doan-Nguyen, Vicky V.T.; Su, Dong; Zhang, Sen; ...

    2015-07-14

    Low temperature fuel cells are clean, effective alternative fuel conversion technology. Oxygen reduction reaction (ORR) at the fuel cell cathode has required Pt as the electrocatalyst for high activity and selectivity of the four-electron reaction pathway. Targeting a less expensive, earth abundant alternative, we have developed the synthesis of cobalt phosphide (Co₂P) nanorods for ORR. Characterization techniques that include total X-ray scattering and extended X-ray absorption fine structure revealed a deviation of the nanorods from bulk crystal structure with a contraction along the b orthorhombic lattice parameter. The carbon supported nanorods have comparable activity but are remarkably more stable thanmore » conventional Pt catalysts for the oxygen reduction reaction in alkaline environments.« less

  18. Near-neighbor mixing and bond dilation in mechanically alloyed Cu-Fe

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Kemner, K. M.; Das, B. N.; Koon, N. C.; Ehrlich, A. E.; Kirkland, J. P.; Woicik, J. C.; Crespo, P.; Hernando, A.; Garcia Escorial, A.

    1996-09-01

    Extended x-ray-absorption fine-structure (EXAFS) measurements were used to obtain element-specific, structural, and chemical information of the local environments around Cu and Fe atoms in high-energy ball-milled CuxFe1-x samples (x=0.50 and 0.70). Analysis of the EXAFS data shows both Fe and Cu atoms reside in face-centered-cubic sites where the first coordination sphere consists of a mixture of Fe and Cu atoms in a ratio which reflects the as-prepared stoichiometry. The measured bond distances indicate a dilation in the bonds between unlike neighbors which accounts for the lattice expansion measured by x-ray diffraction. These results indicate that metastable alloys having a positive heat of mixing can be prepared via the high-energy ball-milling process.

  19. Fluorescence XAS using Ge PAD: Application to High-Temperature Superconducting Thin Film Single Crystals

    NASA Astrophysics Data System (ADS)

    Oyanagi, H.; Tsukada, A.; Naito, M.; Saini, N. L.; Zhang, C.

    2007-02-01

    A Ge pixel array detector (PAD) with 100 segments was used in fluorescence x-ray absorption spectroscopy (XAS) study, probing local structure of high temperature superconducting thin film single crystals. Independent monitoring of individual pixel outputs allows real-time inspection of interference of substrates which has long been a major source of systematic error. By optimizing grazing-incidence angle and azimuthal orientation, smooth extended x-ray absorption fine structure (EXAFS) oscillations were obtained, demonstrating that strain effects can be studied using high-quality data for thin film single crystals grown by molecular beam epitaxy (MBE). The results of (La,Sr)2CuO4 thin film single crystals under strain are related to the strain dependence of the critical temperature of superconductivity.

  20. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westre, Tami E.

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been appliedmore » to the study of non-heme iron enzyme active sites.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friebel, Daniel

    In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at highmore » electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.« less

  2. Effects of interaural time differences in fine structure and envelope on lateral discrimination in electric hearing.

    PubMed

    Majdak, Piotr; Laback, Bernhard; Baumgartner, Wolf-Dieter

    2006-10-01

    Bilateral cochlear implant (CI) listeners currently use stimulation strategies which encode interaural time differences (ITD) in the temporal envelope but which do not transmit ITD in the fine structure, due to the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects listening to a simulation of electric stimulation. Lateralization discrimination was tested at different pulse rates for various combinations of independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong interindividual differences: the better performing CI listeners performed comparably to the NH listeners.

  3. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.

    PubMed

    Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F

    2015-11-14

    In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.

  4. Local structures around the substituted elements in mixed layered oxides

    PubMed Central

    Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka

    2017-01-01

    The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1−xM′x)O2 (M and M′ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M. PMID:28252008

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, S. A.; Harris, V. G.; Hamdeh, H. H.

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn{sub 0.55}{sup 2+}Fe{sub 0.18}{sup 3+}){sub tet}[Zr{sub 0.45}{sup 2+}Fe{sub 1.82}{sup 3+}]{sub oct}O{sub 4} through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zincmore » cations, but not the iron cations, with respect to the spinel structure. The presence of Fe{sup 3+} on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics.« less

  6. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arber, J.M.; de Boer, E.; Garner, C.D.

    Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure datamore » confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.« less

  7. The role of yttrium and titanium during the development of ODS ferritic steels obtained through the STARS route: TEM and XAS study

    NASA Astrophysics Data System (ADS)

    Ordás, Nerea; Gil, Emma; Cintins, Arturs; de Castro, Vanessa; Leguey, Teresa; Iturriza, Iñigo; Purans, Juris; Anspoks, Andris; Kuzmin, Alexei; Kalinko, Alexandr

    2018-06-01

    Oxide Dispersion Strengthened Ferritic Steels (ODS FS) are candidate materials for structural components in future fusion reactors. Their high strength and creep resistance at elevated temperatures and their good resistance to neutron radiation damage is obtained through extremely fine microstructures containing a high density of nanometric precipitates, generally yttrium and titanium oxides. This work shows transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) characterization of Fe-14Cr-2W-0.3Ti-0.24Y ODS FS obtained by the STARS route (Surface Treatment of gas Atomized powder followed by Reactive Synthesis), an alternative method to obtain ODS alloys that avoids the mechanical alloying to introduce Y2O3 powder particles. In this route, FS powders already containing Ti and Y, precursors of the nanometric oxides, are obtained by gas atomization. Then, a metastable Cr- and Fe-rich oxide layer is formed on the surface of the powder particles. During consolidation by HIP at elevated temperatures, and post-HIP heat treatments above the HIP temperature, this oxide layer at Prior Particle Boundaries (PPBs) dissociates, the oxygen diffuses, and Y-Ti-O nano-oxides precipitate in the ferritic matrix. TEM characterization combined with XAFS and XANES analyses have proven to be suitable tools to follow the evolution of the nature of the different oxides present in the material during the whole processing route and select appropriate HIP and post-HIP parameters to promote profuse and fine Y-Ti-O nanometric precipitates.

  8. Unresolved fine-scale structure in solar coronal loop-tops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certainmore » circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.« less

  9. KSC-2009-3087

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, space shuttle Atlantis rises past the fixed service structure as it races toward space on the STS-125 mission. Atlantis will rendezvous with NASA's Hubble Space Telescope on the STS-125 mission. Liftoff was on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Michael Gayle-Rusty Backer

  10. [The role of temporal fine structure in tone recognition and music perception].

    PubMed

    Zhou, Q; Gu, X; Liu, B

    2017-11-07

    The sound signal can be decomposed into temporal envelope and temporal fine structure information. The temporal envelope information is crucial for speech perception in quiet environment, and the temporal fine structure information plays an important role in speech perception in noise, Mandarin tone recognition and music perception, especially the pitch and melody perception.

  11. Willis Lamb, Jr., the Hydrogen Atom, and the Lamb Shift

    Science.gov Websites

    1955, Lamb won the Nobel Prize in Physics for his discoveries concerning "the fine structure of , May 7 - September 30, 1979 Fine Structure of the Hydrogen Atom, Part I; Part II; Part III; Part IV ; Part V; Part VI (from Physical Review 1950-1953) Microwave Technique for Determining the Fine Structure

  12. Extending WEPP technology to predict fine sediment and phosphorus delivery from forested hillslopes

    Treesearch

    William Elliot; Erin Brooks; Drea Em Traeumer; Mariana Dobre

    2015-01-01

    In many watersheds, including the Great Lakes and Lake Tahoe Basins, two basins where the land cover is dominated by forests, the pollutants of concern are fine sediments and phosphorus. Forest runoff is generally low in nitrogen, and coarse sediment does not adversely impact the quality of lake waters. Predictive tools are needed to estimate not simply sediment, but...

  13. Reduction of Cr(VI) to Cr(III) by wetland plants: Potential for in situ heavy metal detoxification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, C.M.; Qian, J.H.; Hansen, D.

    1998-10-15

    Reduction of heavy metals in situ by plants may be a useful detoxification mechanism for phytoremediation. Using X-ray spectroscopy, the authors show that Eichhornia crassipes (water hyacinth), supplied with Cr(VI) in nutrient culture, accumulated nontoxic Cr(III) in root and shoot tissues. The reduction of Cr(VI) to Cr(III) appeared to occur in the fine lateral roots. The Cr(III) was subsequently translocated to leaf tissues. Extended X-ray absorption fine structure of Cr in leaf and petiole differed when compared to Cr in roots. In roots, Cr(III) was hydrated by water, but in petiole and more so in leaf, a portion of themore » Cr(III) may be bound to oxalate ligands. This suggests that E. crassipes detoxified Cr(VI) upon root uptake and transported a portion of the detoxified Cr to leaf tissues. Cr-rich crystalline structures were observed on the leaf surface. The chemical species of Cr in other plants, collected from wetlands that contained Cr(VI)-contaminated wastewater, was also found to be Cr(III). The authors propose that this plant-based reduction of Cr(VI) by E. crassipes has the potential to be used for the in situ detoxification of Cr(VI)-contaminated wastestreams.« less

  14. High axial resolution imaging system for large volume tissues using combination of inclined selective plane illumination and mechanical sectioning

    PubMed Central

    Zhang, Qi; Yang, Xiong; Hu, Qinglei; Bai, Ke; Yin, Fangfang; Li, Ning; Gang, Yadong; Wang, Xiaojun; Zeng, Shaoqun

    2017-01-01

    To resolve fine structures of biological systems like neurons, it is required to realize microscopic imaging with sufficient spatial resolution in three dimensional systems. With regular optical imaging systems, high lateral resolution is accessible while high axial resolution is hard to achieve in a large volume. We introduce an imaging system for high 3D resolution fluorescence imaging of large volume tissues. Selective plane illumination was adopted to provide high axial resolution. A scientific CMOS working in sub-array mode kept the imaging area in the sample surface, which restrained the adverse effect of aberrations caused by inclined illumination. Plastic embedding and precise mechanical sectioning extended the axial range and eliminated distortion during the whole imaging process. The combination of these techniques enabled 3D high resolution imaging of large tissues. Fluorescent bead imaging showed resolutions of 0.59 μm, 0.47μm, and 0.59 μm in the x, y, and z directions, respectively. Data acquired from the volume sample of brain tissue demonstrated the applicability of this imaging system. Imaging of different depths showed uniform performance where details could be recognized in either the near-soma area or terminal area, and fine structures of neurons could be seen in both the xy and xz sections. PMID:29296503

  15. Statistical Fine Structure in the Inhomogeneously Broadened Electronic Origin of Pentacene in p-Terphenyl.

    DTIC Science & Technology

    1988-01-29

    Electronic Origin of Pentacene in p-Terphenyl by T. P. Carter, M. Manavi, and W. E. Moerner Prepared for Publication inDTIC Journal of Chemical Physics...Classification) Statistical Fine Structure in the Inhomogeneously Broadened Electronic Origin of Pentacene in p-Terphenyl 12. PERSONAL AUTHOR(S) T. P...of pentacene in p-terphenyl using laser FM spectroscopy. Statistical fine structure is time-independent structure on the inhomogeneous line caused by

  16. Statistical Fine Structure of Inhomogeneously Broadened Absorption Lines.

    DTIC Science & Technology

    1987-07-31

    inhomogeneously broadened optical absorption of pentacene n p-terphenyl at liquid helium temperatures... SFS is the actual frequency- ependent, time...statistical fine structure (SFS) in the inhomogeneously broadened optical absorption of pentacene in p-terphenyl at liquid helium temperatures. SFS is the...quite difficult . -2- We have observed for the first time statistical fine structure in the inhomogeneously broadened optical absorption of pentacene

  17. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park.

    PubMed

    Sim, Vivian X Y; Dafforn, Katherine A; Simpson, Stuart L; Kelaher, Brendan P; Johnston, Emma L

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management.

  18. Designed synthesis of double-stage two-dimensional covalent organic frameworks

    PubMed Central

    Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Xu, Hong; Hayashi, Taku; Xu, Fei; Huang, Ning; Irle, Stephan; Jiang, Donglin

    2015-01-01

    Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays. PMID:26456081

  19. Quantum mechanics/molecular mechanics structural models of the oxygen-evolving complex of photosystem II.

    PubMed

    Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S

    2007-04-01

    The annual production of 260 Gtonnes of oxygen, during the process of photosynthesis, sustains life on earth. Oxygen is produced in the thylakoid membranes of green-plant chloroplasts and the internal membranes of cyanobacteria by photocatalytic water oxidation at the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent breakthroughs in X-ray crystallography and advances in quantum mechanics/molecular mechanics (QM/MM) hybrid methods have enabled the construction of chemically sensible models of the OEC of PSII. The resulting computational structural models suggest the complete ligation of the catalytic center by amino acid residues, water, hydroxide and chloride, as determined from the intrinsic electronic properties of the oxomanganese core and the perturbational influence of the surrounding protein environment. These structures are found to be consistent with available mechanistic data, and are also compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements. It is therefore conjectured that these OEC models are particularly relevant for the elucidation of the catalytic mechanism of water oxidation.

  20. Measurement of local structural configurations associated with reversible photostructural changes in arsenic trisulfide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.Y.; Paesler, M.A.; Sayers, D.E.

    1987-12-15

    Extended x-ray-absorption fine-structure measurements have been made on three reversible and reproducible cycles of thermally annealed and light-soaked amorphous As/sub 2/S/sub 3/ films. Associated with the light-soaked material are (1) a very small increase in the population of wrong bonds in the first shell, (2) an enlarged As: S: As bond angle with an expansion of As: As distance in the second shell, (3) a larger spread in the distribution of As: S: As bond angles, and (4) an absence of any change in the third As: S shell. From these data, we present the first quantitative correlation between observedmore » local atomic structural changes and measured macroscopic properties that are associated with photodarkening. Our data demonstrate that the photoinduced structural changes mainly involve bonding alterations at S atoms as well as a change in the dihedral angle relationship between adjacent AsS/sub 3/ pyramids joined at S atoms.« less

  1. Fabrication and analysis of Cr-doped ZnO nanoparticles from the gas phase.

    PubMed

    Schneider, L; Zaitsev, S V; Jin, W; Kompch, A; Winterer, M; Acet, M; Bacher, G

    2009-04-01

    High quality Cr-doped ZnO nanoparticles from the gas phase were prepared and investigated with respect to their structural, optical and magnetic properties. The extended x-ray absorption fine structure and the x-ray absorption near edge structure of the particles verify that after nanoparticle preparation Cr is incorporated as Cr3+ ) at least partially on sites with a 4-fold oxygen configuration, most likely on a Zn site, into the wurtzite lattice. Despite the fact that Cr is known to act as an efficient non-radiative loss centre for near band gap emission (NBE), a pronounced NBE is obtained up to room temperature even for a nominal Cr concentration of 10 at.%. Annealing at 1000 degrees C results in a significant improvement of the photoluminescence efficiency and a reduced PL linewidth down to 2.9 meV at low temperatures while the structural and magnetic data indicate the formation of ZnCr2O4 clusters.

  2. X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M–O2 systems

    PubMed Central

    Sarangi, Ritimukta

    2012-01-01

    Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal–O2 intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal–O2 systems. PMID:23525635

  3. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park

    PubMed Central

    Sim, Vivian X. Y.; Dafforn, Katherine A.; Simpson, Stuart L.; Kelaher, Brendan P.; Johnston, Emma L.

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management. PMID:26086427

  4. Modulated nematic structures induced by chirality and steric polarization

    NASA Astrophysics Data System (ADS)

    Longa, Lech; PajÄ k, Grzegorz

    2016-04-01

    What kind of one-dimensional modulated nematic structures (ODMNS) can form nonchiral and chiral bent-core and dimeric materials? Here, using the Landau-de Gennes theory of nematics, extended to account for molecular steric polarization, we study a possibility of formation of ODMNS, both in nonchiral and intrinsically chiral liquid crystalline materials. Besides nematic and cholesteric phases, we find four bulk ODMNS for nonchiral materials, two of which, to the best of our knowledge, have not been reported so far. These two structures are longitudinal (NLP) and transverse (NTP) periodic waves where the polarization field being periodic in one dimension stays parallel and perpendicular, respectively, to the wave vector. The other two phases are the twist-bend nematic phase (NTB) and the splay-bend nematic phase (NSB), but their fine structure appears more complex than that considered so far. The presence of molecular chirality converts nonchiral NTP and NSB into new NTB phases. Surprisingly, the nonchiral NLP phase can stay stable even in the presence of intrinsic chirality.

  5. Designed synthesis of double-stage two-dimensional covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Xu, Hong; Hayashi, Taku; Xu, Fei; Huang, Ning; Irle, Stephan; Jiang, Donglin

    2015-10-01

    Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays.

  6. Unraveling halide hydration: A high dilution approach.

    PubMed

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola

    2014-07-28

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (ΔG [minus sign in circle symbol]hyd[H+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a ΔG [minus sign in circle symbol]hyd[H] value of -1100 kJ mol(-1) [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl(-), Br(-), and I(-) ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F(-) ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl(-), Br(-), and I(-) ions does not extend beyond the ion first hydration shell, and the structure of water in the F(-) second shell is also substantially unaffected by the ion.

  7. Local Structure and Anisotropy in the Amorphous Precursor= to Ba-Hexaferrite Thin Films

    NASA Astrophysics Data System (ADS)

    Snyder, J. E.; Harris, V. G.; Koon, N. C.; Sui, X.; Kryder, M. H.

    1996-03-01

    Ba-hexaferrite thin-films for recording media applications are commonly fabricated by a two-step process: sputter-deposition of an amorphous precursor, followed by annealing to crystallize the BaFe_12O_19 phase. The magnetic anisotropy of the crystalline films can be either in-plane or perpendicular, depending on the sputtering process used in the first step. However, conventional characterization techniques (x-ray diffraction and TEM) have been unable to observe any structure in the amorphous precursor films. In this study, such films are investigated by PD-EXAFS (polarization-dependent extended x-ray absorption fine structure). An anisotropic local ordered structure is observed around both Fe and Ba atoms in the "amorphous" films. This anisotropic local structure appears to determine the orientation of the fast-growing basal plane directions during crystallization, and thus the directions of the c-axes and the magnetic anisotropy. Results suggest that the structure of the amorphous films consists of networks made up of units of Fe atoms surrounded by their O nearest neighbors, that are connected together. Ba atoms appear to fit into in-between spaces as network-modifiers.

  8. An X-ray absorption spectroscopy study of the inversion degree in zinc ferrite nanocrystals dispersed on a highly porous silica aerogel matrix.

    PubMed

    Carta, D; Marras, C; Loche, D; Mountjoy, G; Ahmed, S I; Corrias, A

    2013-02-07

    The structural properties of zinc ferrite nanoparticles with spinel structure dispersed in a highly porous SiO(2) aerogel matrix were compared with a bulk zinc ferrite sample. In particular, the details of the cation distribution between the octahedral (B) and tetrahedral (A) sites of the spinel structure were determined using X-ray absorption spectroscopy. The analysis of both the X-ray absorption near edge structure and the extended X-ray absorption fine structure indicates that the degree of inversion of the zinc ferrite spinel structures varies with particle size. In particular, in the bulk microcrystalline sample, Zn(2+) ions are at the tetrahedral sites and trivalent Fe(3+) ions occupy octahedral sites (normal spinel). When particle size decreases, Zn(2+) ions are transferred to octahedral sites and the degree of inversion is found to increase as the nanoparticle size decreases. This is the first time that a variation of the degree of inversion with particle size is observed in ferrite nanoparticles grown within an aerogel matrix.

  9. Atomic Fine-Structure Diagnostic and Cooling Transitions for Far Infrared and Submillimeter Observations

    NASA Astrophysics Data System (ADS)

    Balance, Connor

    Some of the strongest emission lines observed from a variety of astronomical sources originate from transitions between fine-structure levels in the ground term of neutral atoms and lowly-charged ions. These fine-structure levels are populated due to collisions with -, H+, H, He, and/or H2 depending on the temperature and ionization fraction of e the environment. As fine-structure excitation measurements are rare, modeling applications depend on theoretically determined rate coefficients. However, for many ions electron collision studies have not been performed for a decade or more, while over that time period the theoretical/computational methodology has significantly advanced. For heavy-particle collisions, very few systems have been studied. As a result, most models rely on estimates or on low-quality collisional data for fine-structure excitation. To significantly advance the state of fine-structure data for astrophysical models, we propose a collaborative effort in electron collisions, heavy-particle collisions, and quantum chemistry. Using the R-matrix method, fine-structure excitation due to electron collisions will be investigated for C, O, Ne^+, Ne^2+, Ar^+, Ar^2+, Fe, Fe^+, and Fe^2+. Fine-structure excitation due to heavy-particle collisions will be studied with a fully quantum molecular-orbital approach using potential energy surfaces computed with a multireference configuration-interaction method. The systems to be studied include: C/H^+, C/H2, O/H^+, O/H2, Ne^+/H, Ne^+/H2, Ne^2+/H, Ne^2+/H2, Fe/H^+, Fe^+/H, and Fe^2+/H. 2D rigid-rotor surfaces will be constructed for H2 collisions, internuclear distance dependent spin-orbit coupling will be computed in some cases, and all rate coefficients will be obtained for the temperature range 10-2000 K. The availability the proposed fine-structure excitation data will lead to deeper examination and understanding of the properties of many astrophysical environments, including young stellar objects, protoplanetary disks, planetary nebulae, photodissociation regions, active galactic nuclei, and x-ray dominated regions, hence elevating the scientific return from current (SOFIA, Spitzer, Herschel, HST) and upcoming (JWST) NASA IR/Submm astrophysics missions, as well as from ground-based telescopes.

  10. Bond-strength inversion in (In,Ga)As semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Eckner, Stefanie; Ritter, Konrad; Schöppe, Philipp; Haubold, Erik; Eckner, Erich; Rensberg, Jura; Röder, Robert; Ridgway, Mark C.; Schnohr, Claudia S.

    2018-05-01

    The atomic-scale structure and vibrational properties of semiconductor alloys are determined by the energy required for stretching and bending the individual bonds. Using temperature-dependent extended x-ray absorption fine-structure spectroscopy, we have determined the element-specific In-As and Ga-As effective bond-stretching force constants in (In,Ga)As as a function of the alloy composition. The results reveal a striking inversion of the bond strength where the originally stiffer bond in the parent materials becomes the softer bond in the alloy and vice versa. Our findings clearly demonstrate that changes of both the individual bond length and the surrounding matrix affect the bond-stretching force constants. We thus show that the previously used common assumptions about the element-specific force constants in semiconductor alloys do not reproduce the composition dependence determined experimentally for (In,Ga)As.

  11. In situ X-ray probing reveals fingerprints of surface platinum oxide.

    PubMed

    Friebel, Daniel; Miller, Daniel J; O'Grady, Christopher P; Anniyev, Toyli; Bargar, John; Bergmann, Uwe; Ogasawara, Hirohito; Wikfeldt, Kjartan Thor; Pettersson, Lars G M; Nilsson, Anders

    2011-01-07

    In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  12. An analysis of the Hubble Space Telescope fine guidance sensor fine lock mode

    NASA Technical Reports Server (NTRS)

    Taff, L. G.

    1991-01-01

    There are two guiding modes of the Hubble Space Telescope (HST) used for the acquisition of astronomical data by one of its six scientific instruments. The more precise one is called Fine Lock. Command and control problems in the onboard electronics has limited Fine Lock to brighter stars, V less than 13.0 mag, instead of fulfilling its goal of V = 14.5 mag. Consequently, the less precise guiding mode of Coarse Track (approximately 40 milli-arc seconds) has to be used fairly frequently. Indeed, almost half of the scientific observations to have been made with the HST will be compromised. The only realistic or extensive simulations of the Fine Lock guidance mode are reported. The theoretical analysis underlying the Monte Carlo experiments and the numerical computations clearly show both that the control electronics are severely under-engineered and how to adjust the various control parameters to successfully extend Fine Lock guiding performance back to V = 14.0 mag and sometimes beyond.

  13. Determination of the fine structure constant using helium fine structure.

    PubMed

    Smiciklas, Marc; Shiner, David

    2010-09-17

    We measure 31,908,131.25(30) kHz for the 2(3)}P J=0 to 2 fine structure interval in helium. The difference between this and theory to order mα7 (20 Hz numerical uncertainty) implies 0.22(30) kHz for uncalculated terms. The measurement is performed by using atomic beam and electro-optic laser techniques. Various checks include a 3He 2{3}S hyperfine measurement. We can obtain an independent value for the fine structure constant α with a 5 ppb experimental uncertainty. However, dominant mα8 terms (potentially 1.2 kHz) limit the overall uncertainty to a less competitive 20 ppb in α.

  14. g-Factor of heavy ions: a new access to the fine structure constant.

    PubMed

    Shabaev, V M; Glazov, D A; Oreshkina, N S; Volotka, A V; Plunien, G; Kluge, H-J; Quint, W

    2006-06-30

    A possibility for a determination of the fine structure constant in experiments on the bound-electron g-factor is examined. It is found that studying a specific difference of the g-factors of B- and H-like ions of the same spinless isotope in the Pb region to the currently accessible experimental accuracy of 7 x 10(-10) would lead to a determination of the fine structure constant to an accuracy which is better than that of the currently accepted value. Further improvements of the experimental and theoretical accuracy could provide a value of the fine structure constant which is several times more precise than the currently accepted one.

  15. Stability Characteristics of Two Missiles of Fineness Ratios 12 and 18 with Six Rectangular Fins of Very Low Aspect Ratio Over a Mach Number Range of 1.4 to 3.2

    NASA Technical Reports Server (NTRS)

    Henning, Allen B.

    1959-01-01

    Two rocket-propelled missiles have been test flown by the Langley Pilotless Aircraft Research Division in order to study the stability characteristics of a body with six rectangular fins of very low aspect ratio. The fins, which had exposed aspect ratios of approximately o.o4 and 0.02 per fin, were mounted on bodies of fineness ratios of 12 and 18, respectively. Each body had a nose with a fineness ratio of 3.5 and a cylindrical afterbody. The body and the fin chord of the model having a fineness ratio of 12 were extended the length of 6 body diameters to produce the model with a fineness ratio of 18. The missiles were disturbed in flight by pulse rockets in order to obtain the stability data. The tests were performed over a Mach number range of 1.4 to 3.2 and a Reynolds number range of 2 x 10(exp 6) to 21 x l0(exp 6). The results of these tests indicate that these configurations with the long rectangular fins of very low aspect ratio showed little induced roll" with the missile of highest fineness ratio and longest fin chord exhibiting the least amount. Extending the body and fin chord of the shorter missile six body diameters and thereby increasing the fin area approximately 115 percent increased the lift-curve slope based on body cross-sectional area approximately 40 to 55 percent, increased the dynamic stability by a substantial amount, and increased the drag from 14 to 33 percent throughout the comparable Mach number range. The center-of-pressure location of both missiles remained constant over the Mach number range.

  16. XAFS SPECTROSCOPY ANALYSIS OF SELECTED HAP ELEMENTS IN FINE PM DERIVED FROM COAL COMBUSTION

    EPA Science Inventory

    X-ray absorption fine structure (XAFS) spectroscopy has been used to investigate the valence states and molecular structures of sulfur (S), chromium (Cr), arsenic (As), and zinc (Zn) in fine particulate matter (PM) separated from coal flyash produced in a realistic combustion sys...

  17. Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine structure study

    NASA Astrophysics Data System (ADS)

    Dähn, Rainer; Scheidegger, André M.; Manceau, Alain; Schlegel, Michel L.; Baeyens, Bart; Bradbury, Michael H.; Chateigner, Daniel

    The nature of surface complexes formed on Ni uptake onto montmorillonite (a dioctahedral smectite) has been investigated over an extended time period by polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Self-supporting films of Ni-sorbed montmorillonite were prepared by contacting Ni and montmorillonite at pH 7.2, high ionic strength (0.3 M NaClO 4), and low Ni concentration ([Ni] initial = 19.9 μM) for 14- and 360-d reaction time. The resulting Ni concentration on the clay varied from 4 to 7 μmol/g. Quantitative texture analysis indicates that the montmorillonite particles were well orientated with respect to the plane of the film. The full width at half maximum of the orientation distribution of the c* axes of individual clay platelets about the normal to the film plane was 44.3° (14-d reaction time) and 47.1° (360-d reaction time). These values were used to correct the coordination numbers determined by P-EXAFS for texture effects. Ni K-edge P-EXAFS spectra were recorded at angles between the incident beam and the film normal equal to 10, 35, 55, and 80°. Spectral analysis led to the identification of three nearest cationic subshells containing 2.0 ± 0.5 Al at 3.0 Å and 2.0 ± 0.5 Si at 3.12 Å and 4.0 ± 0.5 Si at 3.26 Å. These distances are characteristic of edge-sharing linkages between Al and Ni octahedra and of corner-sharing linkages between Ni octahedra and Si tetrahedra, as in clay structures. The angular dependence of the Ni-Al and Ni-Si contributions indicates that Ni-Al pairs are oriented parallel to the film plane, whereas Ni-Si pairs are not. The study reveals the formation of Ni inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and thus that heavy metals binding to edge sites is a possible sorption mechanism for dioctahedral smectites. Data analysis further suggests that either the number of neighboring Al atoms slightly increases from 1.6 to 2 or that the structural order of the observed surface complexes increases from 0.01 Å 2 to 0.005 Å 2 with increasing reaction time. On the basis of the low Ni-Al coordination numbers, it appears that over an extended reaction time period of 1 yr the diffusion of Ni atoms in the octahedral layer is not the major uptake mechanism of Ni onto montmorillonite.

  18. In situ XAFS and micro-XAFS studies on LiNi 0.8Co 0.15Al 0.05O 2 cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Nonaka, T.; Okuda, C.; Seno, Y.; Nakano, H.; Koumoto, K.; Ukyo, Y.

    We have applied in situ X-ray absorption fine structure (XAFS) and in situ micro-XAFS techniques to study LiNi 0.8Co 0.15Al 0.05O 2 cathode materials in Li-ion coin cells that show various levels of capacity fading: fresh cell, cycle tested cell and aging tested cell. The change in the oxidation state and local structure of Ni and Co during charge has been investigated. Ni and Co K-edge X-ray absorption near edge structure (XANES) show that the Ni oxidation state is converted from Ni 3+ to Ni 4+ upon charging, whereas the Co oxidation state hardly changes. Ni K-edge extended X-ray absorption fine structure (EXAFS) reveals that the Jahn-Teller distorted NiO 6 octahedron turns into the symmetric octahedron upon charging, which is consistent with the change in the Ni oxidation state. Ni K-edge micro-XANES show that the oxidation of Ni proceeds homogeneously in a grain of LiNi 0.8Co 0.15Al 0.05O 2 within the special resolution of ∼2 μm, and proceeds independently of the grain size. All the behaviors of Ni and Co observed in these experiments for the fresh cell remain unchanged after the capacity fade is induced by cycle tests or aging tests, which demonstrates the considerable stability of the LiNi 0.8Co 0.15Al 0.05O 2 cathode material.

  19. Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.

    PubMed

    Johnson, Justin C; Gerth, Kathrine A; Song, Qing; Murphy, James E; Nozik, Arthur J; Scholes, Gregory D

    2008-05-01

    The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes.

  20. Polygamy and an absence of fine-scale structure in Dendroctonus ponderosae (Hopk.) (Coleoptera: Curcilionidae) confirmed using molecular markers

    PubMed Central

    Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H

    2016-01-01

    An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666

  1. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    NASA Astrophysics Data System (ADS)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  2. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions

    PubMed Central

    Hsueh, Yi-Huang; Lin, Kuen-Song; Ke, Wan-Ju; Hsieh, Chien-Te; Chiang, Chao-Lung; Tzou, Dong-Ying; Liu, Shih-Tung

    2015-01-01

    The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation. PMID:26669836

  3. Nanoclusters of α-Fe naturally formed in twinned martensite after martensitic transformation

    NASA Astrophysics Data System (ADS)

    Liu, X.; Ping, D. H.; Xiang, H. P.; Lu, X.; Shen, J.

    2018-05-01

    Various Fe-C binary alloys with the carbon content from 0.05 to 2.0 (wt. %) have been prepared and water-quenched at austenitizing temperatures. The fine structure of the twinned martensite in the quenched samples has been investigated by means of transmission electron microscopy (TEM) in order to understand the initial products during the formation of the martensite structure. In the twinned structure (body-centered-cubic {112}⟨111⟩-type twin), TEM dark field observations have revealed that both matrix and twinned crystal regions are fully composed of ultra-fine particles (α-Fe nano-crystallites). The particles tend to have the same preferred direction (or texture) in the twinned martensite and the size is almost the same (1-2 nm). The ultra-fine particle structure has been commonly observed regardless of the carbon content; however, such a fine particle structure has been observed only in the martensite with the twinning structure. After in-situ TEM heating, recrystallization occurred and the fine particles merged into larger α-Fe grains; at the same time, the twinned relationship also disappeared.

  4. Hubble Space Telescope Reduced-Gyro Control Law Design, Implementation, and On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Ramsey, Patrick R.; Wirzburger, John H.; Smith, Daniel C.; VanArsadall, John C.

    2008-01-01

    Following gyro failures in April 2001 and April 2003, HST Pointing Control System engineers designed reduced-gyro control laws to extend the spacecraft science mission. The Two-Gyro Science (TGS) and One-Gyro Science (OGS) control laws were designed and implemented using magnetometers, star trackers, and Fine Guidance Sensors in succession to control vehicle rate about the missing gyro axes. Both TGS and OGS have demonstrated on-orbit pointing stability of 7 milli-arcseconds or less, which depends upon the guide star magnitude used by the Fine Guidance Sensor. This paper describes the design, implementation, and on-orbit performance of the TGS and OGS control law fine-pointing modes using Fixed Head Star Trackers and Fine Guidance Sensors, after successfully achieving coarse-pointing control using magnetometers.

  5. Construction of Discrete Pentanuclear Platinum(II) Stacks with Extended Metal-Metal Interactions by Using Phosphorescent Platinum(II) Tweezers.

    PubMed

    Kong, Fred Ka-Wai; Chan, Alan Kwun-Wa; Ng, Maggie; Low, Kam-Hung; Yam, Vivian Wing-Wah

    2017-11-20

    Discrete pentanuclear Pt II stacks were prepared by the host-guest adduct formation between multinuclear tweezer-type Pt II complexes. The formation of the Pt II stacks in solution was accompanied by color changes and the turning on of near-infrared emission resulting from Pt⋅⋅⋅Pt and π-π interactions. The X-ray crystal structure revealed the formation of a discrete 1:1 adduct, in which a linear stack of five Pt II centers with extended Pt⋅⋅⋅Pt interactions was observed. Additional binding affinity and stability have been achieved through a multinuclear host-guest system. The binding behaviors can be fine-tuned by varying the spacer between the two Pt II moieties in the guests. This work provides important insights for the construction of discrete higher-order supramolecular metal-ligand aggregates using a tweezer-directed approach. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. New consistency tests for high-accuracy measurements of X-ray mass attenuation coefficients by the X-ray extended-range technique.

    PubMed

    Chantler, C T; Islam, M T; Rae, N A; Tran, C Q; Glover, J L; Barnea, Z

    2012-03-01

    An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.

  7. Extended Finite Element Method with Simplified Spherical Harmonics Approximation for the Forward Model of Optical Molecular Imaging

    PubMed Central

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging. PMID:23227108

  8. Extended finite element method with simplified spherical harmonics approximation for the forward model of optical molecular imaging.

    PubMed

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SP(N)). In XFEM scheme of SP(N) equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging.

  9. Vertical distribution of Martian aerosols from SPICAM/Mars-Express limb observations

    NASA Astrophysics Data System (ADS)

    Fedorova, A.; Korablev, O.; Bertaux, J.-L.; Rodin, A.; Perrier, S.; Moroz, V. I.

    Limb spectroscopic observations provide invaluable information about vertical distribution of main atmospheric components in the Martian atmosphere, in particular vertical distribution and structure of aerosols, which play an important role in the heat balance of the planet. Only limited set of successful limb spectroscopic observations have been carried out on Mars so far, including those by MGS/TES spectrometer and Thermoscan and Auguste experiments of Phobos mission. Currently SPICAM instrument onboard Mars-Express spacecraft has accomplished several sequences of limb observations. First analysis of limb sounding data received by SPICAM IR and UV channels, which imply the presence of fine, deep, optically thin aerosol fraction extended over broad range of altitudes, is presented.

  10. Studies of the Si/SiO2 interface using synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Grunthaner, F. J.

    1985-01-01

    Synchrotron radiation photoemission spectroscopy (SRPS) in the 1-4 KeV photon energy range is a useful tool for interface characterization. Results are presented of a series of studies of the near-interface region of Si/SiO2 which confirm that a bond strain gradient exists in the oxide as a result of lattice mismatch. These experiments include measurement of photoemission lineshape changes as a function of photon energy, corresponding changes in the electron escape depth near the interface, and surface extended X-ray absorption fine structure (SEXAFS) measurements directly indicating the shortening of the Si-Si second nearest neighbor distance in the near-interface region of the oxide.

  11. An EXAFS study of zinc coordination in microbial cells.

    PubMed

    Webb, S M; Gaillard, J F; Jackson, B E; Stahl, D A

    2001-03-01

    Five microbes were isolated from metal amended enrichment cultures derived from the sediments of a lake contaminated by a zinc smelter. Each of these organisms was grown in pure culture in the presence of zinc. Quick Extended X-ray Absorption Fine Structure (QEXAFS) spectroscopy was used to investigate the average coordination environment of the zinc associated with the microbial biomass. Fitting of the first coordination shell of zinc shows that significant differences exist for each microbial species examined. The coordination environment of zinc varies between sulfurs to six-fold nitrogen/oxygen. with two microbial strains showing mixed coordination shells. Further study is required in order to characterize these sites and their locations within the cell.

  12. Atomic and electronic structure of Pd40Ni40P20 bulk metallic glass from ab initio simulations

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Fujita, T.; Konno, K.; Matsuura, M.; Chen, M. W.; Inoue, A.; Kawazoe, Y.

    2011-10-01

    The atomic structure of Pd40Ni40P20 bulk metallic glass has been simulated using an ab initio molecular dynamics method with projector-augmented wave pseudopotentials for electron-ion interaction and generalized gradient approximation for exchange-correlation energy. The calculated extended x-ray absorption fine structure (EXAFS) spectra of Pd-K and Ni-K edges, the mass density, and the electronic structure agree remarkably well with the available experimental data and the EXAFS spectra measured at the SPring-8 synchrotron radiation facility. Our results show that the atomic structure can be described in terms of P-centered polyhedra. There are no two P atoms that are nearest neighbors at this composition, and this could be a reason for the observed optimal P concentration of about 20 at.%. The neighboring polyhedra share metal (M) atoms and form a polar covalently bonded random network of P-M-P favoring certain angles. The remaining M atoms act as metallic glue with a tendency of nanoscale clustering of Pd-Pd and Ni-Ni atoms.

  13. Alternative difference analysis scheme combining R -space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less

  14. Metal Ion Dependence of the Matrix Metalloproteinase-1 Mechanism.

    PubMed

    Yang, Hao; Makaroff, Katherine; Paz, Nicholas; Aitha, Mahesh; Crowder, Michael W; Tierney, David L

    2015-06-16

    Matrix metalloproteinase-1 (MMP-1) plays crucial roles in disease-related physiologies and pathological processes in the human body. We report here solution studies of MMP-1, including characterization of a series of mutants designed to bind metal in either the catalytic site or the structural site (but not both). Circular dichroism and fluorescence spectroscopy of the mutants demonstrate the importance of the structural Zn(II) in maintaining both secondary and tertiary structure, while UV-visible, nuclear magnetic resonance, electron paramagnetic resonance, and extended X-ray absorption fine structure show its presence influences the catalytic metal ion's coordination number. The mutants allow us to demonstrate convincingly the preparation of a mixed-metal analogue, Co(C)Zn(S)-MMP-1, with Zn(II) in the structural site and Co(II) in the catalytic site. Stopped-flow fluorescence of the native form, Zn(C)Zn(S)-MMP-1, and the mixed-metal Co(C)Zn(S)-MMP-1 analogue shows that the internal fluorescence of a nearby Trp residue is modulated with catalysis and can be used to monitor reactivity under a number of conditions, opening the door to substrate profiling.

  15. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  16. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    PubMed

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  17. Demonstration of a Balloon Borne Arc-second Pointer Design

    NASA Astrophysics Data System (ADS)

    Deweese, K.; Ward, P.

    Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement The test results of a demonstration prototype of the design with similar ability are also presented Discussion of a high fidelity controller simulation for design analysis is presented The flexibility of the flight train is represented through generalized modal analysis A multiple controller scheme is utilized for coarse and fine pointing Coarse azimuth pointing is accomplished by an established pointing system with extensive flight history residing above the gondola structure A pitch-yaw gimbal mount is used for fine pointing providing orthogonal axes when nominally on target Fine pointing actuation is from direct drive dc motors eliminating backlash problems An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided A unique bearing hub design is introduced that eliminates static friction from the system dynamics A control scheme involving linear

  18. An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application

    PubMed Central

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical. PMID:25136651

  19. An action-based fine-grained access control mechanism for structured documents and its application.

    PubMed

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical.

  20. InAs Band-Edge Exciton Fine Structure

    DTIC Science & Technology

    2015-07-29

    Chapter 1 InAs Band-Edge Exciton Fine Structure 1.1 Contributions This work was carried out in collaboration with Oscar Sandoval, a summer student at...diffusion,1,2 charg- ing,2,3 and excitonic fine structure.1,3–9 While spectral diffusion and charging are most likely photoinduced effects and thus can be...unavoidable. A complete understanding of the excitonic 1 Distribution A: Public Release energy landscape enables us to determine dephasing rates

  1. Atomic sulfur: Frequency measurement of the J = 0 left arrow 1 fine-structure transition at 56.3 microns by laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Evenson, Kenneth M.; Zink, Lyndon R.

    1994-01-01

    The J = 0 left arrow 1 fine-structure transition in atomic sulfur (S I) in its ground (3)P state has been detected in the laboratory by far-infrared laser magnetic resonance. The fine-structure interval has been measured accurately as 5,322,492.9 +/- 2.8 MHz which corresponds to a wavelength of 56.325572 +/- 0.000030 micrometers.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annularmore » dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  4. Distinct local structure of superconducting Ca10M4As8(Fe2As2)5 (M =Pt ,Ir)

    NASA Astrophysics Data System (ADS)

    Paris, E.; Wakita, T.; Proux, O.; Yokoya, T.; Kudo, K.; Mitsuoka, D.; Kimura, T.; Fujimura, K.; Nishimoto, N.; Ioka, S.; Nohara, M.; Mizokawa, T.; Saini, N. L.

    2017-12-01

    We have studied the local structure of superconducting Ca10Pt4As8(Fe2As2)5 (Pt10418) and Ca10Ir4As8(Fe2As2)5 (Ir10418) iron arsenides, showing different transition temperatures (Tc=38 and 16 K, respectively), by polarized Fe K -edge extended x-ray absorption fine-structure measurements. Despite the similar average crystal structures, the local structures of the FeAs4 tetrahedra in the two compounds are found to be very different. The FeAs4 in Pt10418 is close to a regular tetrahedron, while it deviates largely in Ir10418. The Fe-Fe correlations in the two compounds are characterized by similar bond-length characteristics; however, the static disorder in Pt10418 is significantly lower than that in Ir10418. The results suggest that the optimized local structure and reduced disorder are the reasons for higher Tc and well-defined electronic states in Pt10418 unlike Ir10418 showing the coexistence of glassy and normal electrons at the Fermi surface, and hence provide direct evidence of the local-structure-driven optimization of the electronic structure and superconductivity in iron arsenides.

  5. 75 FR 13730 - Marine Mammals; File No. 14118

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ...) extended fine-scale behavioral ecology studies using multi-sensor data recording packages. Initial efforts..., photography and video both above water and underwater, and collection of sloughed skin. Other animals...

  6. Polaronic deformation at the Fe2+/3 + impurity site in Fe:LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Sanson, A.; Zaltron, A.; Argiolas, N.; Sada, C.; Bazzan, M.; Schmidt, W. G.; Sanna, S.

    2015-03-01

    Iron doped LiNbO3 crystals with different iron valence states are investigated. An extended x-ray absorption fine structure (EXAFS) spectroscopy study highlights evident changes in the local structure around iron that can be ascribed to the presence of small polarons. In particular, when a Fe3+ replaced a Li ion, the oxygen octahedron shrinked with respect to the pure material, with an average iron-oxygen bond value very similar to that of Fe2O3 hematite. When adding an electron, it localizes at the Fe site in a configuration very close to the atomic Fe d orbitals, inducing a relaxation of the oxygen cage. The same system was modelled by spin-polarized density functional theory (DFT). Several local as well as hybrid exchange-correlation functionals were probed on the bulk LiNbO3 structural properties. The computation is then extended to the case of hematite and finally to the Fe defect in LiNbO3. The calculations reproduced with good accuracy the large lattice relaxation of the oxygen ligands associated to the electronic capture at the Fe center that can be interpreted as due to the polaron formation. The calculations reproduce satisfactorily the available EXAFS data, and allow for the estimation of the polaron energies and the optical properties of the defect.

  7. Contributions and mechanisms of action of graphite nanomaterials in ultra high performance concrete

    NASA Astrophysics Data System (ADS)

    Sbia, Libya Ahmed

    Ultra-high performance concrete (UHPC) reaches high strength and impermeability levels by using a relatively large volume fraction of a dense binder with fine microstructure in combination with high-quality aggregates of relatively small particle size, and reinforcing fibers. The dense microstructure of the cementitions binder is achieved by raising the packing density of the particulate matter, which covers sizes ranging from few hundred nanometers to few millimeters. The fine microstructure of binder in UHPC is realized by effective use of pozzolans to largely eliminate the coarse crystalline particles which exist among cement hydrates. UHPC incorporates (steel) fibers to overcome the brittleness of its dense, finely structured cementitious binder. The main thrust of this research is to evaluate the benefits of nanmaterials in UHPC. The dense, finely structure cementitious binder as well as the large volume fraction of the binder in UHPC benefit the dispersion of nanomaterials, and their interfacial interactions. The relatively close spacing of nanomaterials within the cementitious binder of UHPC enables them to render local reinforcement effects in critically stressed regions such as those in the vicinity of steel reinforcement and prestressing strands as well as fibers. Nanomaterials can also raise the density of the binder in UHPC by extending the particle size distribution down to the few nanometers range. Comprehensive experimental studies supported by theoretical investigations were undertake in order to optimize the use of nanomaterials in UHPC, identity the UHPC (mechanical) properties which benefit from the introduction of nanomaterials, and define the mechanisms of action of nanomaterials in UHPC. Carbon nanofiber was the primary nanomaterial used in this investigation. Some work was also conducted with graphite nanoplates. The key hypotheses of the project were as follows: (i) nanomaterials can make important contributions to the packing density of the particulate matter in UHPC by extending the particle size distribution down to the few nanometers range; (ii) there are synergistic reinforcing actions of steel fibers and graphite nanomaterials in UHPC, which can be explained by their complementary spacing and also the benefit of nanomaterials to the interfacial bonding and pullout behavior of steel fibers; and (iii) nanomaterials make important contributions to the bonding and pullout behavior of prestressing strands and deformed bars in concrete, which can be attributed to the close spacing of nanomaterials within the highly stressed interfacial regions occurring in the vicinity of strands and reinforcing bars; steel fibers are loss effective in this regard due to the disturbance of their distribution and orientation in the vicinity of strands and bars. These hypotheses were successfully verified through the experimental and theoretical investigations conducted in this research.

  8. How Does CeIII Nitrate Dissolve in a Protic Ionic Liquid? A Combined Molecular Dynamics and EXAFS Study.

    PubMed

    Serva, Alessandra; Migliorati, Valentina; Spezia, Riccardo; D'Angelo, Paola

    2017-06-22

    A diluted solution of Ce(NO 3 ) 3 in the protic ionic liquid (IL) ethylammonium nitrate (EAN) was investigated using molecular dynamics (MD) simulations and extended X-ray absorption fine structure (EXAFS) spectroscopy. For the first time polarizable effects were included in the MD force field to describe a heavy metal ion in a protic IL, but, unlike water, they were found to be unessential. The Ce III ion first solvation shell is formed by nitrate ions arranged in an icosahedral structure, and an equilibrium between monodentate and bidentate ligands is present in the solution. By combining distance and angular distribution functions it was possible to unambiguously identify this peculiar coordination geometry around the ions dissolved in solution. The metal ions are solvated within the polar domains of the EAN nanostructure and the dissolved salt induces almost no reorganization of the pre-existing structure of EAN upon solubilization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Interfacial structure of two-dimensional epitaxial Er silicide on Si(111)

    NASA Astrophysics Data System (ADS)

    Tuilier, M. H.; Wetzel, P.; Pirri, C.; Bolmont, D.; Gewinner, G.

    1994-07-01

    Auger-electron diffraction (AED) and surface-extended x-ray-absorption fine structure (SEXAFS) have been used to obtain a complete description of the atomic structure of a two-dimensional epitaxial Er silicide layer on Si(111). AED reveals that a monolayer of Er is located underneath a buckled Si double layer. The relevant Er-Si interlayer spacings are determined by means of single scattering cluster simulations and a R-factor analysis to be 1.92+/-0.05 Å to the first and 2.70+/-0.05 Å to the second Si top layer. Er near-neighbor bond lengths and coordination numbers are obtained independently from polarization-dependent SEXAFS. The SEXAFS data, when combined with the Si top-layer geometry inferred from AED, permit the determination of the atomic positions at the silicide/Si(111) interface. The Er is found to reside in relaxed T4 sites of Si(111) with a single Er-Si distance of 3.09+/-0.04 Å to the first- and second-layer Si atoms of the substrate.

  10. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.C.

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal IImore » EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.« less

  11. Local structure and defects in ion irradiated KTaO3

    NASA Astrophysics Data System (ADS)

    Zhang, F. X.; Xi, J.; Zhang, Y.; Tong, Yang; Xue, H.; Huang, R.; Trautmann, C.; Weber, W. J.

    2018-04-01

    The modification of the local structure in cubic perovskite KTaO3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta-O bonds in the TaO6 octahedra splits, which is attributed to the formation of TaK antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFT calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled TaK-V O defects under subsequent irradiation with 1.1 GeV Au ions.

  12. Effect of molecular intercalation on the local structure of superconducting Nax(NH3)yMoSe2 system

    NASA Astrophysics Data System (ADS)

    Simonelli, L.; Paris, E.; Wakita, T.; Marini, C.; Terashima, K.; Miao, X.; Olszewski, W.; Ramanan, N.; Heinis, D.; Kubozono, Y.; Yokoya, T.; Saini, N. L.

    2017-12-01

    We have studied the local structure of layered Nax(NH3)yMoSe2 system by Mo K-edge extended X-ray absorption fine structure (EXAFS) measurements performed as a function of temperature. We find that molecular intercalation in MoSe2 largely affects the Mo-Se network while Mo-Mo seems to sustain small changes. The Einstein temperature (ΘE) of Mo-Mo distance hardly changes (∼264 K) indicating that bond strength of this distance remains unaffected by intercalation. On the other hand, Mo-Se distance suffers a softening, revealed by the decrease of ΘE from ∼364 K to ∼350 K. The results indicate that Na+ ion transported by NH3 molecules may enter between the two MoSe-layers resulting reduced Se-Se coupling. Therefore, increased hybridization between Se 4p and Mo 4d orbitals due to inter-layer disorder is the likely reason of metallicity in intercalated MoSe2 and superconductivity at low temperature.

  13. Fine-structure-resolution for Rovibrational Excitation of CN Due to H2

    NASA Astrophysics Data System (ADS)

    Byrd, Nat; Yang, Benhui H.; Stancil, Phillip C.

    2018-06-01

    Diatomic molecules can be readily excited in interstellar environments exposed to intense UV radiation, such as the inner rim of a protoplanetary disk. Non-thermal populations of excited rovibrational levels can result, for example, following decay from electronically excited states to the electronic ground state. Competition between radiative decay and collisional processes, mostly due to H2, determine the resulting rovibrational emission spectrum. For CN, and other open-shell molecules, the resulting spectrum will be complicated due to fine-structure splitting of the rotational levels. In some cases, fine-structure resolution has been previously computed for rotational transitions in atom- or diatom-diatom collisional processes. Here we present the first fine-structure resolution for vibrational deexcitation for CN colliding with H2. The collisional cross sections were computed using a 6D potential energy surface with a full close-coupling approach. Fine-structure resolution is obtained by adopting an angular momentum recoupling scheme to transform the scattering matrices to a recoupled basis. Here we present low-energy calculations for the v=1 to 0 transition.This work was supported by NASA Grant NNX16AF09G.

  14. The impact of cochlear fine structure on hearing thresholds and DPOAE levels

    NASA Astrophysics Data System (ADS)

    Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.

    2004-05-01

    Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.

  15. Rotational and Fine Structure of Pseudo-Jahn Molecules with C_1 Symmetry

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun

    2016-06-01

    It has been found in our previous works that rotational and fine-structure analysis of spectra involving nearly degenerate electronic states may aid in interpretation and analysis of the vibronic structure, specifically in the case of pseudo-Jahn-Teller (pJT) molecules with C_s symmetry. The spectral analysis of pJT derivatives (isopropoxy and cyclohexoxy of a prototypical JT molecule (the methoxy radical) allowed for quantitative determination of various contributions to the energy separation between the nearly degenerate electronic states, including the relativistic spin-orbit (SO) effect, the electrostatic interaction, and their zero-point energy difference. These states are coupled by SO and Coriolis interactions, which can also be determined accurately in rotational and fine structure analysis. Most recently, the spectroscopic model for rotational analysis of pJT molecules has been extended for analysis of molecules with C_1 symmetry, i.e., no symmetry. This model includes the six independently determinable components of the spin-rotation (SR) tensor and the three components of the SO and Coriolis interactions. It has been employed to simulate and fit high-resolution laser-induced fluorescence (LIF) spectra of jet-cooled alkoxy radicals with C_1 symmetry, including the 2-hexoxy and the 2-pentoxy radicals, as well as previously recorded LIF spectrum of the trans-conformer (defined by its OCCC dihedral angle) of the 2-butoxy radical. Although the LIF spectra can be reproduced by using either the SR constants or SO and Coriolis constants, the latter simulation offers results that are physically more meaningful whereas the SR constants have to be regarded as effective constants. Furthermore, we will review the SO and Coriolis constants of alkoxy radicals that have been investigated, starting from the well-studied methoxy radical (CH_3O). J. Liu, D. Melnik, and T. A. Miller, J. Chem. Phys. 139, 094308 (2013) J. Liu and T. A. Miller, J. Phys. Chem. A 118, 11871-11890 (2014) L. Stakhursky, L. Zu, J. Liu, and T. A. Miller, J. Chem. Phys. 125, 094316 (2006)

  16. On the anomalous adsorption of [Pd(edta)]2- at the water/Goethite interface: spectroscopic evidence for two types of surface complexes.

    PubMed

    Kaplun, Marina; Nordin, Agneta; Persson, Per

    2008-01-15

    The structure of palladium(II) ethylenediaminetetraacetate (edta) in aqueous solutions and its adsorption on the surface of goethite (alpha-FeOOH) were studied using extended X-ray absorption fine structure spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy. The obtained results show that in aqueous solutions, Pd-edta exists as a 1:1 complex, [Pd(edta)]2-, with edta acting as a quadridentate ligand. On the surface of goethite, [Pd(edta)]2- forms two different types of complexes over a pH range of 3.40-8.12. At pH < 5, [Pd(edta)]2- adsorbs as an outer-sphere species with possible hydrogen bonding. At higher pH values, the formation of inner-sphere complexes of the cation-type sets in after a cleavage of one glycinate ring and the formation of an (edta)Pd-O-Fe linkage.

  17. Application of Inter-Simple Sequence Repeat Markers in the Analysis of Populations of the Chagas Disease Vector Triatoma infestans (Hemiptera, Reduviidae)

    PubMed Central

    Pérez de Rosas, Alicia R.; Restelli, María F.; Fernández, Cintia J.; Blariza, María J.; García, Beatriz A.

    2017-01-01

    Here we apply inter-simple sequence repeat (ISSR) markers to explore the fine-scale genetic structure and dispersal in populations of Triatoma infestans. Five selected primers from 30 primers were used to amplify ISSRs by polymerase chain reaction. A total of 90 polymorphic bands were detected across 134 individuals captured from 11 peridomestic sites from the locality of San Martín (Capayán Department, Catamarca Province, Argentina). Significant levels of genetic differentiation suggest limited gene flow among sampling sites. Spatial autocorrelation analysis confirms that dispersal occurs on the scale of ∼469 m, suggesting that insecticide spraying should be extended at least within a radius of ∼500 m around the infested area. Moreover, Bayesian clustering algorithms indicated genetic exchange among different sites analyzed, supporting the hypothesis of an important role of peridomestic structures in the process of reinfestation. PMID:28115670

  18. Experimentally observed conformation-dependent geometry and hidden strain in proteins.

    PubMed Central

    Karplus, P. A.

    1996-01-01

    A database has been compiled documenting the peptide conformations and geometries from 70 diverse proteins refined at 1.75 A or better. Analysis of the well-ordered residues within the database shows phi, psi-distributions that have more fine structure than is generally observed. Also, clear evidence is presented that the peptide covalent geometry depends on conformation, with the interpeptide N-C alpha-C bond angle varying by nearly +/-5 degrees from its standard value. The observed deviations from standard peptide geometry are greatest near the edges of well-populated regions, consistent with strain occurring in these conformations. Minimization of such hidden strain could be an important factor in thermostability of proteins. These empirical data describing how equilibrium peptide geometry varies as a function of conformation confirm and extend quantum mechanics calculations, and have predictive value that will aid both theoretical and experimental analyses of protein structure. PMID:8819173

  19. Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes.

    PubMed

    Sun, Chia-Liang; Pao, Chih-Wen; Tsai, Huang-Ming; Chiou, Jau-Wern; Ray, Sekhar C; Wang, Houng-Wei; Hayashi, Michitoshi; Chen, Li-Chyong; Lin, Hong-Ji; Lee, Jyh-Fu; Chang, Li; Tsai, Min-Hsiung; Chen, Kuei-Hsien; Pong, Way-Faung

    2013-08-07

    The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Xu, Pinghong; Browning, Nigel D.

    The initial steps of rhodium cluster formation from zeolite-supported mononuclear Rh(C2H4)2 complexes in H2 at 373 K and 1 bar were investigated by infrared and extended X-ray absorption fine structure spectroscopies and scanning transmission electron microscopy (STEM). The data show that ethylene ligands on the rhodium react with H2 to give supported rhodium hydrides and trigger the formation of rhodium clusters. STEM provided the first images of the smallest rhodium clusters (Rh2) and their further conversion into larger clusters. The samples were investigated in a plug-flow reactor as catalysts for the conversion of ethylene + H2 in a molar ratiomore » of 4:1 at 1 bar and 298 K, with the results showing how the changes in catalyst structure affect the activity and selectivity; the rhodium clusters are more active for hydrogenation of ethylene than the single-site complexes, which are more selective for dimerization of ethylene to give butenes« less

  1. Magnetic interactions in NiO at ultrahigh pressure

    DOE PAGES

    Potapkin, Vasily; Dubrovinsky, Leonid; Sergueev, I.; ...

    2016-05-24

    Here, magnetic properties of NiO have been studied in the multimegabar pressure range by nuclear forward scattering of synchrotron radiation using the 67.4 keV M ssbauer transition of 61Ni. The observed magnetic hyperfine splitting confirms the antiferromagnetic state of NiO up to 280 GPa, the highest pressure where magnetism has been observed so far, in any material. Remarkably, the hyperfine field increases from 8.47 T at ambient pressure to ~24 T at the highest pressure, ruling out the possibility of a magnetic collapse. A joint x-ray diffraction and extended x-ray-absorption fine structure investigation reveals that NiO remains in a distortedmore » sodium chloride structure in the entire studied pressure range. Ab initio calculations support the experimental observations, and further indicate a complete absence of Mott transition in NiO up to at least 280 GPa.« less

  2. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite

    USGS Publications Warehouse

    Wasylenki, L.E.; Weeks, C.L.; Bargar, J.R.; Spiro, T.G.; Hein, J.R.; Anbar, A.D.

    2011-01-01

    Fractionation of Mo isotopes during adsorption to manganese oxides is a primary control on the global ocean Mo isotope budget. Previous attempts to explain what drives the surprisingly large isotope effect ??97/95Modissolved-??97/95Moadsorbed=1.8??? have not successfully resolved the fractionation mechanism. New evidence from extended X-ray absorption fine structure analysis and density functional theory suggests that Mo forms a polymolybdate complex on the surfaces of experimental and natural samples. Mo in this polynuclear structure is in distorted octahedral coordination, while Mo remaining in solution is predominantly in tetrahedral coordination as MoO42- Our results indicate that the difference in coordination environment between dissolved Mo and adsorbed Mo is the cause of isotope fractionation. The molecular mechanism of metal isotope fractionation in this system should enable us to explain and possibly predict metal isotope effects in other systems where transition metals adsorb to mineral surfaces. ?? 2011 Elsevier Ltd.

  3. A new incorporation mechanism for trivalent actinides into bioapatite: a TRLFS and EXAFS study.

    PubMed

    Holliday, Kiel; Handley-Sidhu, Stephanie; Dardenne, Kathy; Renshaw, Joanna; Macaskie, Lynne; Walther, Clemens; Stumpf, Thorsten

    2012-02-28

    One of the most toxic byproducts of nuclear power and weapons production is the transuranics, which have a high radiotoxicity and long biological half-life due to their tendency to accumulate in the skeletal system. This accumulation is inhomogeneous and has been associated with the chemical properties and structure of the bone material rather than its location or function. This suggests a chemical driving force to incorporation and requires an atomic scale mechanistic understanding of the incorporation process. Here we propose a new incorporation mechanism for trivalent actinides and lanthanides into synthetic and biologically produced hydroxyapatite. Time-resolved laser fluorescence spectroscopy and extended X-ray absorption fine structure have been used to demonstrate that trivalent actinides and lanthanides incorporate into the amorphous grain boundaries of apatite. This incorporation site can be used to explain patterns in uptake and distribution of radionuclides in the mammalian skeletal system. © 2012 American Chemical Society

  4. Pseudomonas stutzeri N2O reductase contains CuA-type sites.

    PubMed Central

    Scott, R A; Zumft, W G; Coyle, C L; Dooley, D M

    1989-01-01

    N2O reductase (N2O----N2) is the terminal enzyme in the energy-conserving denitrification pathway of soil and marine denitrifying bacteria. The protein is composed of two identical subunits and contains eight copper ions per enzyme molecule. The magnetic circular dichroism spectrum of resting (oxidized) N2O reductase is strikingly similar to the magnetic circular dichroism spectrum of the CuA site in mammalian cytochrome c oxidase [Greenwood, C., Hull, B. C., Barber, D., Eglinton, D. G. & Thomson, A. J. (1983) Biochem. J. 215, 303-316] and is unlike the magnetic circular dichroism spectra of all other biological copper chromophores obtained to date. Sulfur (or chlorine) scatterers are required to fit the copper extended x-ray absorption fine structure data of both the oxidized and reduced forms of N2O reductase. Satisfactory fits require a Cu-N or Cu-O [denoted Cu-(N, O)] interaction at 2.0 A, a Cu-(S, Cl) interaction at 2.3 A and an additional Cu(S, Cl) interaction at approximately 2.6 A (oxidized) or approximately 2.7 A (reduced). Approximately eight sulfur ions (per eight copper ions) at approximately 2.3 A are required to fit the extended x-ray absorption fine structure data for both the oxidized and reduced N2O reductase. The 2.3-A Cu-(S, Cl) distance is nearly identical to that previously determined for the CuA site in cytochrome c oxidase. A 2.6-2.7 A Cu-(S, Cl) interaction is also present in resting and fully reduced cytochrome c oxidase. Comparison of the N2O reductase sequence, determined by translating the structural NosZ gene, with cytochrome c oxidase subunit II sequences from several sources indicates that a Gly-Xaa-Xaa-Xaa-Xaa-Xaa-Cys-Ser-Xaa-Xaa-Cys-Xaa-Xaa-Xaa-His stretch is highly conserved. This sequence contains three of the probable ligands (two cysteines and one histidine) in a CuA-type site. Collectively these data establish that Pseudomonas stutzeri N2O reductase contains CuA-type sites. PMID:2542963

  5. CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco

    2015-01-01

    We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less

  6. Spectral structure and stability studies on microstructure-fiber continuum

    NASA Astrophysics Data System (ADS)

    Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.

    2003-07-01

    Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.

  7. Carbon recombination lines as a diagnostic of photodissociation regions

    NASA Technical Reports Server (NTRS)

    Natta, A.; Walmsley, C. M.; Tielens, A. G. G. M.

    1994-01-01

    We have observed the C91 alpha radio recombination line toward the Orion H II region. This narrow (approximately 3-5 km per sec full width at half maximum (FWHM)) line is spatially very extended (approximately 8 arcmin or 1 pc). These charateristics compare well with the observed characteristics of the C II fine structure line at 158 microns. Thus, the C91 alpha line originates in the predominantly neutral photodissociation regions separating the H II region from the molecular cloud. We have developed theoretical models for the C II radio recombination lines from photodissociation regions. The results show that the I(C91 alpha)/I(C158) intensity ratio is a sensitive function of the temperature and density of the emitting gas. We have also extended theoretical models for photodissociation regions to include the C II recombination lines. Comparison with these models show that, in the central portion of the Orion region, the C91 alpha line originates in dense (10(exp 6) per cu cm), warm (500-1000 K) gas. Even at large projected distances (approximately 1 pc), the inferred density is still high (10(exp 5) per cu cm) and implies extremely high thermal pressures. As in the case of the (C II) 158 microns line, the large extent of the C91 alpha line shows that (FUV) photons can penetrate to large distances from the illuminating source. The decline of the intensity of the incident radiation field with distance from Theta(sup 1) C seems to be dominated by geometrical dilution, rather than dust extinction. Finally, we have used our models to calculate the intensity of the 9850 A recombination line of C II. The physical conditions inferred from this line are in good agreement with those determined from the radio recombination and the far-infrared fine-structure lines. We show that the ratio of the 9850 A to the C91 alpha lines is a very good probe of very high density clumps.

  8. Cation distribution in NiZn-ferrite films determined using x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films, Ni0.15ZnyFe2.85-yO4 (y=0.16, 0.23, 0.40, 0.60). The Ni, Zn, and Fe EXAFS were collected from each sample and analyzed to Fourier transforms. Samples of Ni-ferrite, Zn-ferrite, and magnetite were similarly studied as empirical standards. These standards, together with EXAFS data generated from the theoretical EXAFS FEFF codes, allowed the correlation of features in the Fourier transforms with specific lattice sites in the spinel unit cell. We find that the Ni ions reside mostly on the octahedral (B) sites whereas the Zn ions are predominantly on the tetrahedral (A) sites. The Fe ions reside on both A and B sites in a ratio determined by the ratio of Zn/Fe. The addition of Zn displaces a larger fraction of Fe cations onto the B sites serving to increase the net magnetization. The fraction of A site Ni ions is measured to increase peaking at ≊25% for y=0.6. At higher Zn concentrations (y≥0.5) the lattice experiences local distortions around the Zn sites causing a decrease in the superexchange resulting in a decrease in the net magnetization.

  9. Spin fine structure of optically excited quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  10. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.

    PubMed

    Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A

    2006-07-01

    A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.

  11. A study on adsorption mechanism of organoarsenic compounds on ferrihydrite by XAFS

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Takahashi, Y.; Yamaguchi, N.

    2013-04-01

    Anthropogenic organoarsenic compounds which were used such as agrochemicals, pesticides, and herbicides can have a potential as a source of arsenic pollution in water. In the process, the adsorption of arsenic onto mineral surface in soil may play an important role to affect arsenic distribution in solid-water interface. However, adsorption structures of organoarsenic compounds on the iron-(oxyhydr)oxides are not well known. In this study, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to know the adsorption structure of methyl- and phenyl-substituted organoarsenic compounds (methylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), and diphenylarsinic acid (DPAA) onto ferrihydrite which can be a strong adsorbent of arsenic. EXAFS analysis suggests that the formation of inner-sphere surface complex for all organoarsenic compounds with ferrihydrite regardless of the organic functional groups and the number of substitution. The As-Fe distances are around 3.27 , which suggests both mono-and bi-dentate inner-sphere complexes by DFT calculations. The corresponding coordination numbers (CNs) are less than two, suggesting that coexistence of both structures of inner-sphere complexes.

  12. Determination of local order in the amorphous precursor to Ba-hexaferrite thin-film recording media

    NASA Astrophysics Data System (ADS)

    Snyder, J. E.; Harris, V. G.; Das, B. N.; Koon, N. C.; Sui, X.; Kryder, M. H.

    1996-04-01

    Ba-hexaferrite thin films for recording media applications are often fabricated by a two-step process: sputter deposition of an amorphous precursor, followed by annealing to crystallize the BaFe12O19 phase. The magnetic anisotropy of the crystalline films can be either in-plane or perpendicular, depending on the sputtering process used in the first step. However, conventional structural characterization techniques have not been able to distinguish between different as-sputtered films. Using polarization-dependent extended x-ray absorption fine structure (PD-EXAFS), we have observed anisotropic local structure around both Ba and Fe atoms in the amorphous precursor films. Comparison of the results suggests that the amorphous films consist of networks of Fe atoms surrounded by their O nearest neighbors, with Ba atoms fitting into in-between spaces as network modifiers (there might also be some minor Fe network modifying contribution). The local structural anisotropy of the amorphous films appears to determine the orientation of the fast-growing basal plane directions during annealing, and thus the directions of the c axes and the magnetic anisotropy.

  13. Sorption behavior of the Pt(II) complex anion on manganese dioxide (δ-MnO2): a model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust

    NASA Astrophysics Data System (ADS)

    Maeno, Mamiko Yamashita; Ohashi, Hironori; Yonezu, Kotaro; Miyazaki, Akane; Okaue, Yoshihiro; Watanabe, Koichiro; Ishida, Tamao; Tokunaga, Makoto; Yokoyama, Takushi

    2016-02-01

    It is difficult to directly investigate the chemical state of Pt in marine ferromanganese crusts (a mixture of hydrous iron(III) oxide and manganese dioxide (δ-MnO2)) because it is present at extremely low concentration levels. This paper attempts to elucidate the mechanism by which Pt is concentrated into marine ferromanganese crust from the Earth's continental crust through ocean water. In this investigation, the sorption behavior of the Pt(II) complex ions on the surface of the δ-MnO2 that is a host of Pt was examined as a model reaction. The δ-MnO2 sorbing Pt was characterized by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) to determine the chemical state of the Pt. Hydrolytic Pt(II) complex ions were specifically sorbed above pH 6 by the formation of a Mn-O-Pt bond. XPS spectra and XANES spectra for δ-MnO2 sorbing Pt showed that the sorbed Pt(II) was oxidized to Pt(IV) on δ-MnO2. The extended X-ray absorption fine structure (EXAFS) analysis showed that the coordination structure of Pt sorbed on δ-MnO2 is almost the same as that of the [Pt(OH)6]2- complex ion used as a standard. Therefore, the mechanism for the concentration of Pt in marine ferromanganese crust may be an oxidative substitution (penetration of Pt(IV) into structure of δ-MnO2) by a reduction-oxidation reaction between Pt(II) in [PtCl4-n(OH)n]2- and Mn(IV) in δ-MnO2 through a Mn-O-Pt bond.

  14. [Fine stereo structure for natural organic molecules, a preliminary study. II. Melting point influenced by structure factors].

    PubMed

    Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y

    1995-06-01

    Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkendir, Osman Murat, E-mail: ozkendir@gmail.com

    Highlights: • Crystal and electronic structure properties of Nd{sub x}Ti{sub 1−x}BO{sub 2+d} structure were investigated. • New crystal structures for Nd–Ti complexes are determined. • Distortions in the crystal structure were observed as a result of Boron shortage. • Prominent change in electronic properties of the samples with the increasing Nd amount. - Abstract: Neodymium substituted TiBO{sub 3} samples were investigated according to their crystal, electric and electronic properties. Studies were conducted by X-ray absorption fine structure spectroscopy (XAFS) technique for the samples with different substitutions in the preparation processes. To achieve better crystal structure results during the study, XRDmore » pattern results were supported by extended-XAFS (EXAFS) analysis. The electronic structure analysis were studied by X-ray absorption near-edge structure spectroscopy (XANES) measurements at the room temperatures. Due to the substituted Nd atoms, prominent changes in crystal structure, new crystal geometries for Nd-Ti complexes, phase transitions in the crystals structure were detected according to the increasing Nd substitutions in the samples. In the entire stages of the substitutions, Nd atoms were observed as governing the whole phenomena due to their dominant characteristics in Ti geometries. Besides, electrical resistivity decay was determined in the materials with the increasing amount of Nd substitution.« less

  16. Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Beck, L.; Calas, G.; Flank, A.-M.; Van Bennekom, A. J.; Van Beusekom, J. E. E.

    2002-05-01

    We used X-ray absorption spectroscopy at the Al K-edge to investigate the atomic structure of biogenic silica and to assess the effect of Al on its crystal chemistry. Our study provides the first direct evidence for a structural association of Al and Si in biogenic silica. In samples of cultured diatoms, Al is present exclusively in fourfold coordination. The location and relative intensity of X-ray absorption near-edge structure (XANES) features suggests the structural insertion of tetrahedral Al inside the silica framework synthesized by the organism. In diatom samples collected in the marine environment, Al is present in mixed six- and fourfold coordination. The relative intensity of XANES structures indicates the coexistence of structural Al with a clay component, which most likely reflects sample contamination by adhering mineral particles. Extended X-ray absorption fine structure spectroscopy has been used to get Al-O distances in biogenic silica of cultured diatoms, confirming a tetrahedral coordination. Because of its effect on solubility and reaction kinetics of biogenic silica, the structural association between Al and biogenic silica at the stage of biosynthesis has consequences for the use of sedimentary biogenic silica as an indicator of past environmental conditions.

  17. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference

    NASA Astrophysics Data System (ADS)

    Nakazumi, Tomoka; Sato, Tadatake; Narazaki, Aiko; Niino, Hiroyuki

    2016-09-01

    For crack-free marking of glass materials, a beam-scanning laser-induced backside wet etching (LIBWE) process by a beam spot with a fine periodic structure was examined. The fine periodic structure was produced within a beam spot by means of a Mach-Zehnder interferometer incorporated to the optical setup for the beam-scanning LIBWE. A fine structure with a period of 9 µm was observed within the microstructures with a diameter of ca. 40 µm fabricated by a laser shot under double-beam irradiation, and they could be homogeneously fabricated within an area of 800  ×  800 µm. The area filled with the microstructures, including fine periodic structures, could be observed in high contrast under a diffuse, on-axis illumination that was used in commercial QR code readers.

  18. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Mackay, Duncan H.

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique tomore » consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.« less

  19. Ferromagnetic Mn-Implanted GaP: Microstructures vs Magnetic Properties.

    PubMed

    Yuan, Ye; Hübner, René; Liu, Fang; Sawicki, Maciej; Gordan, Ovidiu; Salvan, G; Zahn, D R T; Banerjee, D; Baehtz, Carsten; Helm, Manfred; Zhou, Shengqiang

    2016-02-17

    Ferromagnetic GaMnP layers were prepared by ion implantation and pulsed laser annealing (PLA). We present a systematic investigation on the evolution of microstructure and magnetic properties depending on the pulsed laser annealing energy. The sample microstructure was analyzed by high-resolution X-ray diffraction (HR-XRD), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), ultraviolet Raman spectroscopy (UV-RS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. The presence of X-ray Pendellösung fringes around GaP (004) and RBS channeling prove the epitaxial structure of the GaMnP layer annealed at the optimized laser energy density (0.40 J/cm(2)). However, a forbidden TO vibrational mode of GaP appears and increases with annealing energy, suggesting the formation of defective domains inside the layer. These domains mainly appear in the sample surface region and extend to almost the whole layer with increasing annealing energy. The reduction of the Curie temperature (TC) and of the uniaxial magnetic anisotropy gradually happens when more defects and the domains appear as increasing the annealing energy density. This fact univocally points to the decisive role of the PLA parameters on the resulting magnetic characteristics in the processed layers, which eventually determine the magnetic (or spintronics) figure of merit.

  20. Variations in Grain-Scale Sediment Structure in a Gravel-Bed Channel as a Function of Fine Sediment Content and Morphological Location

    NASA Astrophysics Data System (ADS)

    Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.

    2016-12-01

    One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.

  1. Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range

    NASA Astrophysics Data System (ADS)

    Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.

    2017-06-01

    Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.

  2. Chimaeric sounds reveal dichotomies in auditory perception

    PubMed Central

    Smith, Zachary M.; Delgutte, Bertrand; Oxenham, Andrew J.

    2008-01-01

    By Fourier's theorem1, signals can be decomposed into a sum of sinusoids of different frequencies. This is especially relevant for hearing, because the inner ear performs a form of mechanical Fourier transform by mapping frequencies along the length of the cochlear partition. An alternative signal decomposition, originated by Hilbert2, is to factor a signal into the product of a slowly varying envelope and a rapidly varying fine time structure. Neurons in the auditory brainstem3–6 sensitive to these features have been found in mammalian physiological studies. To investigate the relative perceptual importance of envelope and fine structure, we synthesized stimuli that we call ‘auditory chimaeras’, which have the envelope of one sound and the fine structure of another. Here we show that the envelope is most important for speech reception, and the fine structure is most important for pitch perception and sound localization. When the two features are in conflict, the sound of speech is heard at a location determined by the fine structure, but the words are identified according to the envelope. This finding reveals a possible acoustic basis for the hypothesized ‘what’ and ‘where’ pathways in the auditory cortex7–10. PMID:11882898

  3. Tribomaterial factors in space mechanism brake performance

    NASA Technical Reports Server (NTRS)

    Hawthorne, H. M.

    1990-01-01

    The asbestos/phenolic pads of Shuttle Remote Manipulator System (SRMS) brakes are unsuitable for use in long life space mechanisms because their friction decreases on extended sliding in high vacuum. Dehydration of the material and accumulation of wear debris in the conforming interface of this tribosystem induces the permanent friction changes. Other polymer and some ceramic based materials exhibit similar frictional torque behavior due to the development of minimal contact patches by the interfacial debris. In contrast, high friction occurs when other ceramics form many small contacts throughout fine debris beds. Generating this latter interfacial structure during run-in ensures that the in-vacuo friction remains stable thereafter. Such materials with low wear rates are potential candidates for friction elements in SSRMS and similar mechanisms.

  4. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  5. Chemical short-range order and lattice deformations in MgyTi1-yHx thin films probed by hydrogenography

    NASA Astrophysics Data System (ADS)

    Gremaud, R.; Baldi, A.; Gonzalez-Silveira, M.; Dam, B.; Griessen, R.

    2008-04-01

    A multisite lattice gas approach is used to model pressure-optical-transmission isotherms (PTIs) recorded by hydrogenography on MgyTi1-yHx sputtered thin films. The model reproduces the measured PTIs well and allows us to determine the chemical short-range order parameter s . The s values are in good agreement with those determined from extended x-ray absorption fine structure measurements. Additionally, the PTI multisite modeling yields a parameter L that accounts for the local lattice deformations with respect to the average MgyTi1-y lattice given by Vegard’s law. It is thus possible to extract two essential characteristics of a metastable alloy from hydrogenographic data.

  6. A novel biomimetic approach to the design of high-performance ceramic–metal composites

    PubMed Central

    Launey, Maximilien E.; Munch, Etienne; Alsem, Daan Hein; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2010-01-01

    The prospect of extending natural biological design to develop new synthetic ceramic–metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic–metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al2O3/Al–Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 µm were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa√m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms are described together with further toughening strategies. PMID:19828498

  7. X-ray source development for EXAFS measurements on the National Ignition Facility.

    PubMed

    Coppari, F; Thorn, D B; Kemp, G E; Craxton, R S; Garcia, E M; Ping, Y; Eggert, J H; Schneider, M B

    2017-08-01

    Extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first time on the NIF laser, and the requirements for optimization have been established.

  8. The Effect of Quantum-Mechanical Interference on Precise Measurements of the n = 2 Triplet P Fine Structure of Helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsman, A.; Horbatsch, M.; Hessels, E. A., E-mail: hessels@yorku.ca

    2015-09-15

    For many decades, improvements in both theory and experiment of the fine structure of the n = 2 triplet P levels of helium have allowed for an increasingly precise determination of the fine-structure constant. Recently, it has been observed that quantum-mechanical interference between neighboring resonances can cause significant shifts, even if such neighboring resonances are separated by thousands of natural widths. The shifts depend in detail on the experimental method used for the measurement, as well as the specific experimental parameters employed. Here, we review how these shifts apply for the most precise measurements of the helium 2{sup 3}P fine-structuremore » intervals.« less

  9. Sample-based synthesis of two-scale structures with anisotropy

    DOE PAGES

    Liu, Xingchen; Shapiro, Vadim

    2017-05-19

    A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less

  10. Sample-based synthesis of two-scale structures with anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingchen; Shapiro, Vadim

    A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less

  11. Coupling fine-scale root and canopy structure using ground-based remote sensing

    Treesearch

    Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis

    2017-01-01

    Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...

  12. Formation of fine {gamma} grain structure through fine {alpha}{sub 2}/{gamma} lamellar structure in Ti-rich TiAl alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, T.; Abe, E.; Nakamura, M.

    1997-12-31

    Microstructural development of an extremely fine {alpha}{sub 2}-Ti{sub 32}Al/{gamma}-TiAl lamellar structure, which was formed by ice water quenching after solution-treatment in a high-temperature {alpha}-Ti phase field for a long period of time, was examined during isothermal treatment. In an as-quenched Ti-48at.%Al alloy, the massively transformed {gamma} ({gamma}{sub m}) and untransformed (meaning massively untransformed) fine {alpha}{sub 2}/{gamma} lamellar regions were observed. Fine {gamma} grains, which were similar to {gamma}{sub m}, were generated both within the fine {alpha}{sub 2}/{gamma} lamellae and at the boundary area between the {gamma}{sub m} and the fine {alpha}{sub 2}/{gamma} lamellar regions by aging at low-temperature (1,173 K)more » for a short time (180s). Further aging (1.8ks) caused the coarsening of these newly generated fine {gamma} grains. On the other hand, the coarsening of the {gamma} grains occurred by a high-temperature (1,323 K) aging treatment even for 180s. Fine {alpha}{sub 2} plates and particles, which were aligned to a particular direction, were observed in the {gamma} grain interiors, indicating that the newly generated {gamma} grains grew at the expense of the fine {alpha}{sub 2}/{gamma} lamellae. It can be considered that the {gamma} grain formation through the fine {alpha}{sub 2}/{gamma} lamellae is closely related to the {alpha}{sub 2}{yields}{gamma} reaction of the {alpha}{sub 2} plates sandwiched by the {gamma} plates, and needs the fast heating rate enough to overcome the {alpha}{sub 2}/{gamma}{yields}{gamma}/{gamma} lamellae reaction.« less

  13. Fine Structure of Trious and Excitons in Single GaAs Quantum Dots

    DTIC Science & Technology

    2002-08-30

    RAPID COMMUNICATIONS PHYSICAL REVIEW B 66, 081310~R! ~2002!Fine structure of trions and excitons in single GaAs quantum dots J. G. Tischler, A. S ...fine structure of single localized excitons and trions. DOI: 10.1103/PhysRevB.66.081310 PACS number~ s !: 78.67.Hc, 73.21.2b, 71.35.2yAlthough the...AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Research Laboratory

  14. Space telescope optical telescope assembly/scientific instruments. Phase B: Preliminary design and program definition study. Volume 2A(3): Astrometry

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Wide field measurements, namely, measurements of relative angular separations between stars over a relatively wide field for parallax and proper motion determinations, were made with the third fine guidance sensor. Narrow field measurements, i.e., double star measurements, are accomplished primarily with the area photometer or faint object camera at f/96. The wavelength range required can be met by the fine guidance sensor which has a spectral coverage from 3000 to 7500 A. The field of view of the fine guidance sensor also exceeds that required for the wide field astrometric instrument. Requirements require a filter wheel for the wide field astrometer, and so one was incorporated into the design of the fine guidance sensor. The filter wheel probably would contain two neutral density filters to extend the dynamic range of the sensor and three spectral filters for narrowing effective double star magnitude difference.

  15. Monte Carlo Simulations of Electron Energy-Loss Spectra with the Addition of Fine Structure from Density Functional Theory Calculations.

    PubMed

    Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald

    2016-02-01

    A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.

  16. Unconventional maar diatreme and associated intrusions in the soft sediment-hosted Mardoux structure (Gergovie, France)

    NASA Astrophysics Data System (ADS)

    Valentine, Greg A.; van Wyk de Vries, Benjamin

    2014-03-01

    A Miocene age volcanic-hypabyssal structure comprising volcaniclastic deposits and mafic intrusions is exposed with vertical relief of ˜110 m on the side of Gergovie Plateau (Auvergne, France). Three main volcaniclastic facies are: (1) Fluidal tuff breccia composed of juvenile basalt and sediment clasts with dominantly fluidal shapes, with several combinations of basalt and sediment within individual clasts. (2) Thickly bedded lapilli tuff composed of varying proportions of fine-grained sediment derived from Oligocene-Miocene lacustrine marls and mudstones and basaltic lapilli, blocks, and bombs. (3) Planar-bedded tuff forming thin beds of fine to coarse ash-size sedimentary material and basalt clasts. Intrusive bodies in the thickly bedded lapilli tuff range from irregularly shaped and anastomosing dikes and sills of meters to tens of meters in length, to a main feeder dike that is up to ˜20 m wide, and that flares into a spoon-shaped sill at ˜100 m in diameter and 10-20 m thick in the eastern part of the structure. Volcaniclastic deposits and structural features suggest that ascending magma entrained soft, saturated sediment host material into the feeder dike and erupted fluidal magma and wet sediment via weak, Strombolian-like explosions. Host sediment and erupted material subsided to replace the extracted sediments, producing the growth subsidence structure that is similar to upper diatreme facies in typical maar diatremes but lacks evidence for explosive disruption of diatreme fill. Irregularly shaped small intrusions extended from the main feeder dike into the diatreme, and many were disaggregated due to shifting and subsidence of diatreme fill and recycled via eruption. The Mardoux structure is an "unconventional" maar diatreme in that it was produced mainly by weak explosive activity rather than by violent phreatomagmatic explosions and is an example of complex coupling between soft sediment and ascending magma.

  17. Naturalness of unknown physics: Theoretical models and experimental signatures

    NASA Astrophysics Data System (ADS)

    Kilic, Can

    In the last few decades collider experiments have not only spectacularly confirmed the predictions of the Standard Model but also have not revealed any direct evidence for new physics beyond the SM, which has led theorists to devise numerous models where the new physics couples weakly to the SM or is simply beyond the reach of past experiments. While phenomenologically viable, many such models appear finely tuned, even contrived. This work illustrates three attempts at coming up with explanations to fine-tunings we observe in the world around us, such as the gauge hierarchy problem or the cosmological constant problem, emphasizing both the theoretical aspects of model building as well as possible experimental signatures. First we investigate the "Little Higgs" mechanism and work on a specifical model, the "Minimal Moose" to highlight its impact on precision observables in the SM, and illustrate that it does not require implausible fine-tuning. Next we build a supersymmetric model, the "Fat Higgs", with an extended gauge structure which becomes confining. This model, aside from naturally preserving the unification of the SM gauge couplings at high energies, also makes it possible to evade the bounds on the lightest Higgs boson mass which are quite restrictive in minimal SUSY scenarios. Lastly we take a look at a possible resolution of the cosmological constant problem through the mechanism of "Ghost Condensation" and dwell on astrophysical observables from the Lorentz Violating sector in this model. We use current experimental data to constrain the coupling of this sector to the SM.

  18. Demonstrating the Value of Fine-resolution Optical Data for Minimising Aliasing Impacts on Biogeochemical Models of Surface Waters

    NASA Astrophysics Data System (ADS)

    Chappell, N. A.; Jones, T.; Young, P.; Krishnaswamy, J.

    2015-12-01

    There is increasing awareness that under-sampling may have resulted in the omission of important physicochemical information present in water quality signatures of surface waters - thereby affecting interpretation of biogeochemical processes. For dissolved organic carbon (DOC) and nitrogen this under-sampling can now be avoided using UV-visible spectroscopy measured in-situ and continuously at a fine-resolution e.g. 15 minutes ("real time"). Few methods are available to extract biogeochemical process information directly from such high-frequency data. Jones, Chappell & Tych (2014 Environ Sci Technol: 13289-97) developed one such method using optically-derived DOC data based upon a sophisticated time-series modelling tool. Within this presentation we extend the methodology to quantify the minimum sampling interval required to avoid distortion of model structures and parameters that describe fundamental biogeochemical processes. This shifting of parameters which results from under-sampling is called "aliasing". We demonstrate that storm dynamics at a variety of sites dominate over diurnal and seasonal changes and that these must be characterised by sampling that may be sub-hourly to avoid aliasing. This is considerably shorter than that used by other water quality studies examining aliasing (e.g. Kirchner 2005 Phys Rev: 069902). The modelling approach presented is being developed into a generic tool to calculate the minimum sampling for water quality monitoring in systems driven primarily by hydrology. This is illustrated with fine-resolution, optical data from watersheds in temperate Europe through to the humid tropics.

  19. A simulation for gravity fine structure recovery from high-low GRAVSAT SST data

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Lancaster, E. R.

    1976-01-01

    Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.

  20. Revisiting place and temporal theories of pitch

    PubMed Central

    2014-01-01

    The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292

  1. Usage of Crushed Concrete Fines in Decorative Concrete

    NASA Astrophysics Data System (ADS)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of the crushed concrete fines were provided. It is shown that the admixture of the crushed concrete fines has little effect on the colour characteristics of the decorative concrete products. The preferred options to improve the surfaces of decorative concrete are also proposed.

  2. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    DOE PAGES

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; ...

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  3. Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis

    PubMed Central

    Granato, Michael

    2016-01-01

    During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator. PMID:27855159

  4. The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Michelle L.; Jackson, Ryan N.; Denny, Steven R.

    Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of thismore » complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Lastly, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity.« less

  5. The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers

    DOE PAGES

    Luo, Michelle L.; Jackson, Ryan N.; Denny, Steven R.; ...

    2016-05-12

    Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of thismore » complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Lastly, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity.« less

  6. P-polarized reflectance spectroscopy: A high sensitive real-time monitoring technique to study surface kinetics under steady state epitaxial deposition conditions

    NASA Technical Reports Server (NTRS)

    Dietz, Nikolaus; Bachmann, Klaus J.

    1995-01-01

    This paper describes the results of real-time optical monitoring of epitaxial growth processes by p-polarized reflectance spectroscopy (PRS) using a single wavelength application under pulsed chemical beam epitaxy (PCBE) condition. The high surface sensitivity of PRS allows the monitoring of submonolayer precursors coverage on the surface as shown for GaP homoepitaxy and GaP on Si heteroepitaxy as examples. In the case of heteroepitaxy, the growth rate and optical properties are revealed by PRS using interference oscillations as they occur during growth. Super-imposed on these interference oscillations, the PRS signal exhibits a fine structure caused by the periodic alteration of the surface chemistry by the pulsed supply of chemical precursors. This fine structure is modeled under conditions where the surface chemistry cycles between phosphorus supersaturated and phosphorus depleted surfaces. The mathematical model describes the fine structure using a surface layer that increases during the tertiarybutyl phosphine (TBP) supply and decreases during and after the triethylgallium (TEG) pulse, which increases the growing GaP film thickness. The imaginary part of the dielectric function of the surface layer is revealed from the turning points in the fine structure, where the optical response to the first precursor pulse in the cycle sequence changes sign. The amplitude of the fine structure is determined by the surface layer thickness and the complex dielectric functions for the surface layer with the underlying bulk film. Surface kinetic data can be obtained by analyzing the rise and decay transients of the fine structure.

  7. Fine mapping analysis confirms and strengthens linkage of four chromosomal regions in familial hypospadias

    PubMed Central

    Söderhäll, Cilla; Körberg, Izabella Baranowska; Thai, Hanh T T; Cao, Jia; Chen, Yougen; Zhang, Xufeng; Shulu, Zu; van der Zanden, Loes F M; van Rooij, Iris A L M; Frisén, Louise; Roeleveld, Nel; Markljung, Ellen; Kockum, Ingrid; Nordenskjöld, Agneta

    2015-01-01

    Hypospadias is a common male genital malformation and is regarded as a complex disease affected by multiple genetic as well as environmental factors. In a previous genome-wide scan for familial hypospadias, we reported suggestive linkage in nine chromosomal regions. We have extended this analysis by including new families and additional markers using non-parametric linkage. The fine mapping analysis displayed an increased LOD score on chromosome 8q24.1 and 10p15 in altogether 82 families. On chromosome 10p15, with the highest LOD score, we further studied AKR1C2, AKR1C3 and AKR1C4 involved in steroid metabolism, as well as KLF6 expressed in preputial tissue from hypospadias patients. Mutation analysis of the AKR1C3 gene showed a new mutation, c.643G>A (p.(Ala215Thr)), in a boy with penile hypospadias. This mutation is predicted to have an impact on protein function and structure and was not found in controls. Altogether, we homed in on four chromosomal regions likely to harbor genes for hypospadias. Future studies will aim for studying regulatory sequence variants in these regions. PMID:24986825

  8. Broad control of disulfide stability through microenvironmental effects and analysis in complex redox environments.

    PubMed

    Wu, Chuanliu; Wang, Shuo; Brülisauer, Lorine; Leroux, Jean-Christophe; Gauthier, Marc A

    2013-07-08

    Disulfide bonds stabilize the tertiary- and quaternary structure of proteins. In addition, they can be used to engineer redox-sensitive (bio)materials and drug-delivery systems. Many of these applications require control of the stability of the disulfide bond. It has recently been shown that the charged microenvironment of the disulfide can be used to alter their stability by ∼3 orders of magnitude in a predictable and finely tunable manner at acidic pH. The aim of this work is to extend these findings to physiological pH and to demonstrate the validity of this approach in complex redox milieu. Disulfide microenvironments were manipulated synergistically with steric hindrance herein to control disulfide bond stability over ∼3 orders of magnitude at neutral pH. Control of disulfide stability through microenvironmental effects could also be observed in complex redox buffers (including serum) and in the presence of cells. Such fine and predictable control of disulfide properties is not achievable using other existing approaches. These findings provide easily implementable and general tools for controlling the responsiveness of biomaterials and drug delivery systems toward various local endogenous redox environments.

  9. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Treesearch

    Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...

  10. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  11. Morphology, stability, and X-ray absorption spectroscopic study of iron oxide (Hematite) nanoparticles prepared by micelle nanolithography

    NASA Astrophysics Data System (ADS)

    Bera, Anupam; Bhattacharya, Atanu; Tiwari, N.; Jha, S. N.; Bhattacharyya, D.

    2018-03-01

    Currently, considerable effort is being made towards synthesis and characterization of iron oxide nanoparticles. In this article, we report on the preparation and characterization of iron oxide nanoparticle (NP) arrays supported on natively oxidized Si(100) surface. The NPs are synthesized by reverse micelle nanolithography technique and are then deposited onto natively oxidized Si(100) surface via spin-coating. Plasma oxidation followed by high temperature annealing results in a unimodal size distribution of pseudohexagonally-ordered array of iron oxide NPs (with ∼14 nm mean diameter and ∼5 nm mean height). High temperature annealing does not fragment the NPs. Particles are sinter-resistant: the unimodal arrays are robust with respect to thermal treatment. X-ray absorption spectroscopy (XAS), including X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS), reveals that structure of the iron oxide particle resembles closely the hematite α-Fe2O3 structure. Furthermore, with the help of EXAFS spectra, we eliminate the possibility of γ-Fe2O3, Fe3O4, FeO and FeO(OH) structures for the NPs.

  12. Precision measurement of the three 2(3)P(J) helium fine structure intervals.

    PubMed

    Zelevinsky, T; Farkas, D; Gabrielse, G

    2005-11-11

    The three 2(3)P fine structure intervals of 4H are measured at an improved accuracy that is sufficient to test two-electron QED theory and to determine the fine structure constant alpha to 14 parts in 10(9). The more accurate determination of alpha, to a precision higher than attained with the quantum Hall and Josephson effects, awaits the reconciliation of two inconsistent theoretical calculations now being compared term by term. A low pressure helium discharge presents experimental uncertainties quite different than for earlier measurements and allows direct measurements of light pressure shifts.

  13. Collisional excitation of CH2 rotational/fine-structure levels by helium

    NASA Astrophysics Data System (ADS)

    Dagdigian, P. J.; Lique, F.

    2018-02-01

    Accurate determination of the abundance of CH2 in interstellar media relies on both radiative and collisional rate coefficients. We investigate here the rotational/fine-structure excitation of CH2 induced by collisions with He. We employ a recoupling technique to generate fine-structure-resolved cross-sections and rate coefficients from close coupling spin-free scattering calculations. The calculations are based on a recent, high-accuracy CH2-He potential energy surface computed at the coupled clusters level of theory. The collisional cross-section calculations are performed for all fine-structure transitions among the first 22 and 24 energy levels of ortho- and para-CH2, respectively, and for temperatures up to 300 K. As a first application, we simulate the excitation of CH2 in typical molecular clouds. The excitation temperatures of the CH2 lines are found to be small at typical densities of molecular clouds, showing that the non-local thermodynamic equilibrium approach has to be used to analyse interstellar spectra. We also found that the fine-structure lines connected with the 404 - 313 and 505 - 414 rotational transitions show possible maser emissions so that they can be easily seen in emission. These calculations show that CH2 may have to be detected mainly through absorption spectra.

  14. Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1994-01-01

    Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are identified. Empirically, the observed fine structures appear very similar to those in split bnad and multiple-lane type II solar radio bursts; interpretation of both these type II fine structures in terms of f(sub ce)/2 splitting is suggested, thereby supporting and generalizing a suggestion by Wild (1950). A possible application to continuum radiation is mentioned. The ubiquity of these fine structures in the Earth's f(sub p) radiation and foreshock waves remains unknown. Only the ISEE 1 wideband receiver has sufficient frequency resolution (approximately less than or equal to 100 Hz) to perform a dedicated search. Further study of the ubiquity of these fine structures, of how reliably the splitting corresponds to f(sub ce)/2, and of the other interpretations above is necessary.

  15. Composition and Color of Martian Soil from Oxidation of Meteoritic Material

    NASA Technical Reports Server (NTRS)

    Yen, A. S.

    2001-01-01

    Aqueous weathering is not necessary for formation of the martian soils. The chemical composition and oxidation state of the surface fines can be attributed to meteoritic influx. Additional information is contained in the original extended abstract.

  16. AIR QUALITY MODELING OF PM AND AIR TOXICS AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    The current interest in fine particles and toxics pollutants provide an impetus for extending air quality modeling capability towards improving exposure modeling and assessments. Human exposure models require information on concentration derived from interpolation of observati...

  17. High Resolutions Studies of the Structure of the Solar Atmosphere

    DTIC Science & Technology

    1992-06-30

    Pairs in the Solar Wind", submitted to J. Geophys. Res., July 20, 1992. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of Active...Regions", manuscript in preparation. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of the Solar Limb in a Coronal Hole", manuscript in

  18. Fine-scale genetic structure of whitebark pine (Pinus albicaulis) associations with watershed and growth form

    Treesearch

    Deborah L. Rogers; Constance I. Millar; Robert D. Westfall

    1999-01-01

    The fine-scale genetic structure of a subalpine conifer, whitebark pine (Pinus albicaulis Engelm.), was studied at nested geographic levels from watershed to adjacent stems in the eastern Sierra Nevada Range of California. A combination of several characteristics contributed to unpredicted genetic structure in this species. This includes being one of...

  19. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  20. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  1. The contribution of visual information to the perception of speech in noise with and without informative temporal fine structure

    PubMed Central

    Stacey, Paula C.; Kitterick, Pádraig T.; Morris, Saffron D.; Sumner, Christian J.

    2017-01-01

    Understanding what is said in demanding listening situations is assisted greatly by looking at the face of a talker. Previous studies have observed that normal-hearing listeners can benefit from this visual information when a talker's voice is presented in background noise. These benefits have also been observed in quiet listening conditions in cochlear-implant users, whose device does not convey the informative temporal fine structure cues in speech, and when normal-hearing individuals listen to speech processed to remove these informative temporal fine structure cues. The current study (1) characterised the benefits of visual information when listening in background noise; and (2) used sine-wave vocoding to compare the size of the visual benefit when speech is presented with or without informative temporal fine structure. The accuracy with which normal-hearing individuals reported words in spoken sentences was assessed across three experiments. The availability of visual information and informative temporal fine structure cues was varied within and across the experiments. The results showed that visual benefit was observed using open- and closed-set tests of speech perception. The size of the benefit increased when informative temporal fine structure cues were removed. This finding suggests that visual information may play an important role in the ability of cochlear-implant users to understand speech in many everyday situations. Models of audio-visual integration were able to account for the additional benefit of visual information when speech was degraded and suggested that auditory and visual information was being integrated in a similar way in all conditions. The modelling results were consistent with the notion that audio-visual benefit is derived from the optimal combination of auditory and visual sensory cues. PMID:27085797

  2. Effect of temperature and radiation damage on the local atomic structure of elemental plutonium and related compounds

    DOE PAGES

    Booth, Corwin H.; Olive, Daniel Thomas

    2016-10-26

    This focused review provides an overview and a framework for understanding local structure in metallic plutonium (especially the metastable fcc δ-phase alloyed with Ga) as it relates to self-irradiation damage. Of particular concern is the challenge of understanding self-irradiation damage in plutonium-bearing materials where theoretical challenges of the unique involvement of the 5f electrons in bonding limit the efficacy of molecular dynamics simulations and experimental challenges of working with radioactive material have limited the ability to confirm the results of such simulations and to further push the field forward. The main concentration is on extended X-ray absorption fine-structure measurements ofmore » -phase Pu, but the scope is broadened to include certain studies on plutonium intermetallics and oxides insofar as they inform the physics of damage and healing processes in elemental Pu. Here, the studies reviewed here provide insight into lattice distortions and their production, damage annealing and defect migration, and the importance of understanding and controlling sample morphology when interpreting such experiments.« less

  3. A strategy to stabilise the local structure of Ti{sup 4+} and Zn{sup 2+} species against aging in TiO{sub 2}/aluminium-doped ZnO bi-layers for applications in hybrid solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrino, Giovanna; La Magna, Antonino; Bongiorno, Corrado

    We explore a strategy to counteract aging issues in TiO{sub 2}/aluminium-doped ZnO bi-layers used in hybrid solar cells photo-anodes, mainly related to Zn diffusion in the TiO{sub 2} matrix. Different Ti{sup 4+} and Zn{sup 2+} local structures within the anatase grains and along the film thickness were found as a function of post-deposition annealing treatments in the range between 200 °C and 500 °C by synchrotron radiation extended x-ray absorption fine structure analyses. In particular, in the 500 °C-treated sample, diffusion of zinc species along the TiO{sub 2} grain-boundaries has been observed with aging (3 years). In contrast, a mild thermal budget at 200 °Cmore » favours a proper atomic arrangement of the zinc-containing anatase lattice which reduces Zn diffusion, thus guaranteeing a good stability with aging.« less

  4. Local structural effects in Sr 3NiRhO 6 across magnetic transitions

    DOE PAGES

    Singh, Navneet; Khalid, S.; Bindu, R.

    2016-04-06

    Here, we investigate the temperature dependence of the structural parameters of quasi-one-dimensional Sr 3NiRhO 6 across the region of magnetic phase transitions using Ni K-edge and Sr K-edge x-ray absorption spectroscopy (XAS). The features in the x-ray absorption near-edge region are identified using multiple scattering calculations. The temperature-dependent extended x-ray absorption fine structure (EXAFS) studies show that the setting of the intra-chain super exchange interaction starts at ~200 K, which is well above the first transition temperature (45 K) revealed by magnetic susceptibility studies. The onset of the inter-chain super–super exchange interaction appears to be at ~125 K. Interestingly, themore » role played by direct exchange interaction between the Ni 3d and Rh 4d states in stabilising the magnetic interaction is less significant. The present results shed light on the generic features exhibited by isostructural compounds and may help in identifying the magnetic exchange pathways useful for understanding the unusual properties exhibited by such compounds.« less

  5. Synergic combination of the sol–gel method with dip coating for plasmonic devices

    PubMed Central

    Patrini, Maddalena; Floris, Francesco; Fornasari, Lucia; Pellacani, Paola; Marchesini, Gerardo; Valsesia, Andrea; Artizzu, Flavia; Marongiu, Daniela; Saba, Michele; Marabelli, Franco; Mura, Andrea; Bongiovanni, Giovanni

    2015-01-01

    Summary Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol–gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip. PMID:25821692

  6. Local structure and defects in ion irradiated KTaO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang; Xi, Jianqi; Zhang, Yanwen

    Here, the modification of the local structure in cubic perovskite KTaO 3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L 3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta–O bonds in the TaO 6 octahedra splits, which is attributed to the formation of Ta K antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFTmore » calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled Ta K-V O defects under subsequent irradiation with 1.1 GeV Au ions.« less

  7. Local structure and defects in ion irradiated KTaO 3

    DOE PAGES

    Zhang, Fuxiang; Xi, Jianqi; Zhang, Yanwen; ...

    2018-03-12

    Here, the modification of the local structure in cubic perovskite KTaO 3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L 3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta–O bonds in the TaO 6 octahedra splits, which is attributed to the formation of Ta K antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFTmore » calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled Ta K-V O defects under subsequent irradiation with 1.1 GeV Au ions.« less

  8. Methods in the study of discrete upper hybrid waves

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Ye, S.; Labelle, J.; Weatherwax, A. T.; Menietti, J. D.

    2007-11-01

    Naturally occurring plasma waves characterized by fine frequency structure or discrete spectrum, detected by satellite, rocket-borne instruments, or ground-based receivers, can be interpreted as eigenmodes excited and trapped in field-aligned density structures. This paper overviews various theoretical methods to study such phenomena for a one-dimensional (1-D) density structure. Among the various methods are parabolic approximation, eikonal matching, eigenfunction matching, and full numerical solution based upon shooting method. Various approaches are compared against the full numerical solution. Among the analytic methods it is found that the eigenfunction matching technique best approximates the actual numerical solution. The analysis is further extended to 2-D geometry. A detailed comparative analysis between the eigenfunction matching and fully numerical methods is carried out for the 2-D case. Although in general the two methods compare favorably, significant differences are also found such that for application to actual observations it is prudent to employ the fully numerical method. Application of the methods developed in the present paper to actual geophysical problems will be given in a companion paper.

  9. X-ray absorption spectroscopy study of Gd3+-loaded ultra-short carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Jebb, M.; Tweedle, M. F.; Wilson, L. J.

    2013-04-01

    We present an x-ray absorption spectroscopy study of the local structure around the Gd3+ion loaded in ultra short (20-100 nm) carbon nanotubes (GNTs). X-ray Gd L3 absorption near edge structure data shows that the 31.2-μM GNT suspension exhibits a clear characteristic of hydration at the [GdOn] cluster. Extended x-ray absorption fine structure data show that the Gd3+ ion is coordinated by about 9 oxygen ions and that this first coordination shell exhibits an asymmetry similar to that found in triclinic Gd-acetate or Gd[C2H3O2]3·4H2O or GdAc. After correction for the asymmetry using the cumulant of the third order, the Gd-O bond distance is found to be 2.345 Å, instead of 2.406 Å for a symmetrical (or Gaussian) distribution. It is shorter than that in the Gd-containing MRI contrast agents currently in clinical uses. This may account in part for high proton relaxivity observed for the GNT suspension.

  10. Structures observed on the spot radiance fields during the FIRE experiment

    NASA Technical Reports Server (NTRS)

    Seze, Genevieve; Smith, Leonard; Desbois, Michel

    1990-01-01

    Three Spot images taken during the FIRE experiment on stratocumulus are analyzed. From this high resolution data detailed observations of the true cloud radiance field may be made. The structure and inhomogeneity of these radiance fields hold important implications for the radiation budget, while the fine scale structure in radiance field provides information on cloud dynamics. Wieliki and Welsh, and Parker et al., have quantified the inhomogeneities of the cumulus clouds through a careful examination of the distribution of cloud (and hole) size as functions of an effective cloud diameter and radiance threshold. Cahalan (1988) has compared for different cloud types of (stratocumulus, fair weather cumulus, convective clouds in the ITCZ) the distributions of clouds (and holes) sizes, the relation between the size and the perimeter of these clouds (and holes), and examining the possibility of scale invariance. These results are extended from LANDSAT resolution (57 m and 30 m) to the Spot resolution (10 m) resolution in the case of boundary layer clouds. Particular emphasis is placed on the statistics of zones of high and low reflectivity as a function of a threshold reflectivity.

  11. Self-irradiation damage to the local structure of plutonium and plutonium intermetallics

    NASA Astrophysics Data System (ADS)

    Booth, C. H.; Jiang, Yu; Medling, S. A.; Wang, D. L.; Costello, A. L.; Schwartz, D. S.; Mitchell, J. N.; Tobash, P. H.; Bauer, E. D.; McCall, S. K.; Wall, M. A.; Allen, P. G.

    2013-03-01

    The effect of self-irradiation damage on the local structure of δ-Pu, PuAl2, PuGa3, and other Pu intermetallics has been determined for samples stored at room temperature using the extended x-ray absorption fine-structure (EXAFS) technique. These measurements indicate that the intermetallic samples damage at a similar rate as indicated in previous studies of PuCoGa5. In contrast, δ-Pu data indicate a much slower damage accumulation rate. To explore the effect of storage temperature and possible room temperature annealing effects, we also collected EXAFS data on a δ-Pu sample that was held at less than 32 K for a two month period. This sample damaged much more quickly. In addition, the measurable damage was annealed out at above only 135 K. Data from samples of δ-Pu with different Ga concentrations and results on all samples collected from different absorption edges are also reported. These results are discussed in terms of the vibrational properties of the materials and the role of Ga in δ-Pu as a network former.

  12. Simulation of Two Dimensional Ultraviolet (2DUV) Spectroscopy of Amyloid Fibrils

    PubMed Central

    Jiang, Jun; Abramavicius, Darius; Falvo, Cyril; Bulheller, Benjamin M.; Hirst, Jonathan D.; Mukamel, Shaul

    2010-01-01

    Revealing the structure and aggregation mechanism of amyloid fibrils is essential for the treatment of over 20 diseases related to protein misfolding. Coherent two dimensional (2D) infrared spectroscopy is a novel tool that provides a wealth of new insight into the structure and dynamics of biomolecular systems. Recently developed ultrafast laser sources are extending multidimensional spectroscopy into the ultraviolet (UV) region, and this opens up new opportunities for probing fibrils. In a simulation study, we show that 2DUV spectra of the backbone of a 32-residue β-amyloid (Aβ9–40) fibril associated with Alzheimer’s disease, and two intermediate prefibrillar structures carry characteristic signatures of fibril size and geometry that could be used to monitor its formation kinetics. The dependence of these signals on the fibril size and geometry is explored. We demonstrate that the dominant features of the β-amyloid fibril spectra are determined by intramolecular interactions within a single Aβ9–40, while intermolecular interactions at the “external interface” have clear signatures in the fine details of these signals. PMID:20795695

  13. Manufacturing an advanced process characterization reticle incorporating halftone biasing

    NASA Astrophysics Data System (ADS)

    Nakagawa, Kent H.; Van Den Broeke, Douglas J.; Chen, J. Fung; Laidig, Thomas L.; Wampler, Kurt E.; Caldwell, Roger F.

    1999-04-01

    As the semiconductor roadmap continues to require imaging of smaller feature son wafers, we continue to explore new approaches in OPC strategies to extend the lifespan of existing technology. In this paper, we study a new OPC technology, called halftone biasing, and its application on an OPC characterization reticle, designed by MicroUnity Systems Engineering, Inc. The RTP9 test reticle is the latest in a series of 'LineSweeper' characterization reticles. Each reticle contains a wide range of line width sand pitches, each with several alternative OPC treatments, including references cases, scattering bars, and fine biasing. One of RTP9's design requirements was to support very fine, incremental biases for densely-pitched lines. Ordinarily, this would dictate a reduced address unit and with it the costly penalty of a square-law increase in e- beam write time. RTP9 incorporates a new OPC strategy, called halftone biasing, which has been proposed to address this problem. Taking advantage of optical reduction printing, this technique applies a sub-resolution halftone screen to the edges of figures to accomplish fine biasing equivalent to using an address unit one-fourth of the size of the actual e-beam writing grid. The resulting edge structure has some of the characteristics of aggressive OPC structures, but can be used in areas where traditional scattering bars cannot be placed. The trade-off between the faster write times achieved and the inflation of pattern file size is examined. The manufacturability and inspectability of halftone-biased lines on the RTP9 test reticle are explored. Pattern fidelity is examined using both optical and SEM tools. Printed 0.18 micrometers DUV resist line edge profiles are compared for both halftone and non- halftone feature edges. The CD uniformity of the OPC features, and result of die-to-database inspection are reported. The application of halftone biasing to real circuits, including the impact of data volume and saved write time, is also discussed.

  14. Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Myers, E. G.; Thompson, J. K.; Silver, J. D.

    1998-05-01

    With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.

  15. Doppler-free spectroscopy of the atomic rubidium fine structure using ultrafast spatial coherent control method

    NASA Astrophysics Data System (ADS)

    Kim, Minhyuk; Kim, Kyungtae; Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2017-04-01

    Spectral programming solutions for the ultrafast spatial coherent control (USCC) method to resolve the fine-structure energy levels of atomic rubidium are reported. In USCC, a pair of counter-propagating ultrashort laser pulses are programmed to make a two-photon excitation pattern specific to particular transition pathways and atom species, thus allowing the involved transitions resolvable in space simultaneously. With a proper spectral phase and amplitude modulation, USCC has been also demonstrated for the systems with many intermediate energy levels. Pushing the limit of system complexity even further, we show here an experimental demonstration of the rubidium fine-structure excitation pattern resolvable by USCC. The spectral programming solution for the given USCC is achieved by combining a double-V-shape spectral phase function and a set of phase steps, where the former distinguishes the fine structure and the latter prevents resonant transitions. The experimental results will be presented along with its application in conjunction with the Doppler-free frequency-comb spectroscopy for rubidium hyperfine structure measurements. Samsung Science and Technology Foundation [SSTFBA1301-12].

  16. Extendable nickel complex tapes that reach NIR absorptions.

    PubMed

    Audi, Hassib; Chen, Zhongrui; Charaf-Eddin, Azzam; D'Aléo, Anthony; Canard, Gabriel; Jacquemin, Denis; Siri, Olivier

    2014-12-14

    Stepwise synthesis of linear nickel complex oligomer tapes with no need for solid-phase support has been achieved. The control of the length in flat arrays allows a fine-tuning of the absorption properties from the UV to the NIR region.

  17. 77 FR 21578 - Agency Information Collection Activities: Guam-CNMI Visa Waiver Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... fine, pursuant to section 273 of the Immigration and Nationality Act (INA) (8 U.S.C. 1323), for...: http://forms.cbp.gov/pdf/CBP_Form_i760.pdf . Current Actions: CBP proposes to extend the expiration...

  18. Using electronic patient records to discover disease correlations and stratify patient cohorts.

    PubMed

    Roque, Francisco S; Jensen, Peter B; Schmock, Henriette; Dalgaard, Marlene; Andreatta, Massimo; Hansen, Thomas; Søeby, Karen; Bredkjær, Søren; Juul, Anders; Werge, Thomas; Jensen, Lars J; Brunak, Søren

    2011-08-01

    Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks.

  19. NEXAFS and XPS characterization of molecular oxygen adsorbed on Ni(100) at 80 K

    NASA Astrophysics Data System (ADS)

    Kim, C. M.; Jeong, H. S.; Kim, E. H.

    2000-07-01

    X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS) and near edge extended X-ray absorption fine structure (NEXAFS) have been combined to investigate the adsorption of oxygen on Ni(100) at 80 K. Three O(1s) XPS features were observed at 530.0, 531.1 and 534.7 eV when the Ni(100) surface was exposed to 600 L of oxygen at 80 K. They are assigned as O 2-, O 1- and molecular oxygen species, respectively. The presence of molecular oxygen has been confirmed by TDS and NEXAFS. Molecular O 2 on Ni(100) is oriented perpendicular to the surface, and the OO bond length is estimated to be 1.24 Å, based on the NEXAFS σ ∗ resonance energy.

  20. A novel biomimetic approach to the design of high-performance ceramic/metal composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Launey, Maximilien E.; Munch, Etienne; Alsem, Daan Hein

    2009-08-01

    The prospect of extending natural biological design to develop new synthetic ceramic-metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic-metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al{sub 2}O{sub 3}/Al-Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 {micro}m were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa{radical}m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms aremore » described together with further toughening strategies.« less

  1. Chemiluminescence in cryogenic matrices

    NASA Astrophysics Data System (ADS)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  2. X-ray source development for EXAFS measurements on the National Ignition Facility

    DOE PAGES

    Coppari, F.; Thorn, D. B.; Kemp, G. E.; ...

    2017-08-28

    We present that extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. Finally, EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first timemore » on the NIF laser, and the requirements for optimization have been established.« less

  3. A XAS study of the local environments of cations in (U, Ce)O 2

    NASA Astrophysics Data System (ADS)

    Martin, Philippe; Ripert, Michel; Petit, Thierry; Reich, Tobias; Hennig, Christoph; D'Acapito, Francesco; Hazemann, Jean Louis; Proux, Olivier

    2003-01-01

    Mixed oxide (MOX) fuel is usually considered as a solid solution formed by uranium and plutonium dioxides. Nevertheless, some physico-chemical properties of (U 1- y, Pu y)O 2 samples manufactured under industrial conditions showed anomalies in the domain of plutonium contents ranging between 3 and 15 at.%. Cerium is commonly used as an inactive analogue of plutonium in preliminary studies on MOX fuels. Extended X-ray Absorption Fine Structure (EXAFS) measurements performed at the European Synchrotron Radiation Facility (ESRF) at the cerium and uranium edges on (U 1- y, Ce y)O 2 samples are presented and discussed. They confirmed on an atomic scale the formation of an ideal solid solution for cerium concentrations ranging between 0 and 50 at.%.

  4. Deletion Mapping of zwf, the Gene for a Constitutive Enzyme, Glucose 6-Phosphate Dehydrogenase in ESCHERICHIA COLI

    PubMed Central

    Fraenkel, D. G.; Banerjee, Santimoy

    1972-01-01

    Genes for three enzymes of intermediary sugar metabolism in E. coli, zwf (glucose 6-phosphate dehydrogenase, constitutive), edd (gluconate 6-phosphate dehydrase, inducible), and eda (2-keto-3-deoxygluconate 6-phosphate aldolase, differently inducible) are closely linked on the E. coli genetic map, the overall gene order being man... old... eda. edd. zwf... cheB... uvrC... his. One class of apparent revertants of an eda mutant strain contains a secondary mutation in edd, and some of these mutations are deletions extending into zwf. We have used a series of spontaneous edd-zwf deletions to map a series of point mutants in zwf and thus report the first fine structure map of a gene for a constitutive enzyme (zwf). PMID:4560065

  5. Designing, producing, and constructing fine-graded hot mix asphalt on Illinois roadways.

    DOT National Transportation Integrated Search

    2015-04-01

    Fine-graded (F-G) asphalt concrete mixtures are composed of an aggregate structure in which the fine fraction controls the : load-carrying capacity of the mix. Other states have reported benefits in using F-G mixtures, including improved compaction, ...

  6. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM

    NASA Astrophysics Data System (ADS)

    He, P.; Hoffmann, J.; Möslang, A.

    2018-04-01

    The characteristics of strengthening nanoparticles have a major influence on the mechanical property and irradiation resistance of oxide dispersion strengthened (ODS) steels. To determine how to control nanoparticles evolution, 0.3% Ti with 0.3% Y2O3 were added in 13.5%Cr pre-alloyed steel powders via different milling and consolidation conditions, then characterized by transmission electron microscopy (TEM) and X-ray absorption fine structure (XAFS) at synchrotron irradiation facility. The dissolution of Y2O3 is greatly dependent on the milling time at fixed milling speeds. After 24 h of milling, only minor amounts of the initially added Y2O3 dissolve into the steel matrix whereas TEM results reveal nearly complete dissolution of Y2O3 in 80-h-milled powder. The annealed powder FT-A800 (at 800 °C for 1 h) exhibits a structure near to the initially added Y2O3. The slightly deviation may be accounted for considerable lattice distortion related to the presence of atomic vacancies or formation of Y-Ti-O nucleus. The annealed powders FT-A1000 and FT-A1100 contain complex mixtures of Y-O/Y-Ti-O oxides, which cannot be fitted by any single thermally stable compounds. The coordination numbers of these first two shells in the annealed powders significantly raise as a function of the annealing temperature, indicating the formation of more ordered Y-O or Y-Ti-O particles. The extended X-ray absorption fine structure (EXAFS) spectrum could not necessarily distinguish the dominant oxide species.

  7. Functional Spectral Domain Optical Coherence Tomography imaging

    NASA Astrophysics Data System (ADS)

    Bower, Bradley A.

    Spectral Domain Optical Coherence Tomography (SDOCT) is a high-speed, high resolution imaging modality capable of structural and functional characterization of tissue microstructure. SDOCT fills a niche between histology and ultrasound imaging, providing non-contact, non-invasive backscattering amplitude and phase from a sample. Due to the translucent nature of the tissue, ophthalmic imaging is an ideal space for SDOCT imaging. Structural imaging of the retina has provided new insights into ophthalmic disease. The phase component of SDOCT images remains largely underexplored, though. While Doppler SDOCT has been explored in a research setting, it has yet to gain traction in the clinic. Other, functional exploitations of the phase are possible and necessary to expand the utility of SDOCT. Spectral Domain Phase Microscopy (SDPM) is an extension of SDOCT that is capable of resolving sub-wavelength displacements within a focal volume. Application of sub-wavelength displacement measurement imaging could provide a new method for non-invasive optophysiological measurement. This body of work encompasses both hardware and software design and development for implementation of SDOCT. Structural imaging was proven in both the lab and the clinic. Coarse phase changes associated with Doppler flow frequency shifts were recorded and a study was conducted to validate Doppler measurement. Fine phase changes were explored through SDPM applications. Preliminary optophysiology data was acquired to study the potential of sub-wavelength measurements in the retina. To remove the complexity associated with in-vivo human retinal imaging, a first principles approach using isolated nerve samples was applied using standard SDPM and a depthencoded technique for measuring conduction velocity. Results from amplitude as well as both coarse and fine phase processing are presented. In-vivo optophysiology using SDPM is a promising avenue for exploration, and projects furthering or extending this body of work are discussed.

  8. Variations in the fine-structure constant constraining gravity theories

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.

    2016-08-01

    In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.

  9. Intrahaplotypic Variants Differentiate Complex Linkage Disequilibrium within Human MHC Haplotypes

    PubMed Central

    Lam, Tze Hau; Tay, Matthew Zirui; Wang, Bei; Xiao, Ziwei; Ren, Ee Chee

    2015-01-01

    Distinct regions of long-range genetic fixation in the human MHC region, known as conserved extended haplotypes (CEHs), possess unique genomic characteristics and are strongly associated with numerous diseases. While CEHs appear to be homogeneous by SNP analysis, the nature of fine variations within their genomic structure is unknown. Using multiple, MHC-homozygous cell lines, we demonstrate extensive sequence conservation in two common Asian MHC haplotypes: A33-B58-DR3 and A2-B46-DR9. However, characterization of phase-resolved MHC haplotypes revealed unique intra-CEH patterns of variation and uncovered 127 single nucleotide variants (SNVs) which are missing from public databases. We further show that the strong linkage disequilibrium structure within the human MHC that typically confounds precise identification of genetic features can be resolved using intra-CEH variants, as evidenced by rs3129063 and rs448489, which affect expression of ZFP57, a gene important in methylation and epigenetic regulation. This study demonstrates an improved strategy that can be used towards genetic dissection of diseases. PMID:26593880

  10. Economy of Catalyst Synthesis-Convenient Access to Libraries of Di- and Tetranaphtho Azepinium Compounds.

    PubMed

    Tharamak, Sorachat; Knittl-Frank, Christian; Manaprasertsak, Auraya; Pengsook, Anchulee; Suchy, Lydia; Schuller, Philipp; Happl, Barbara; Roller, Alexander; Widhalm, Michael

    2018-03-24

    Efficient optimization procedures in chiral catalysis are usually linked to a straightforward strategy to access groups of structurally similar catalysts required for fine-tuning. The ease of building up such ligand libraries can be increased when the structure-modifying step (introduction of a substituent) is done at a later stage of the synthesis. This is demonstrated for the extended family of di- and tetranaphtho azepinium compounds, widely used as chiral phase transfer catalysts (PTC). Using 2,6-diiodo-4,5-dihydro-3 H -dinaphtho[2,1-c:1',2'-e]azepine and 4,8-diiodo-6,7-dihydro-5 H -dibenzo[c,e]azepine, respectively, as key intermediates, 18 spiro -azepinium compounds were synthesized in a total yield of 25-42% over 6-7 steps from 1,1'-binaphthyl-2,2'-dicarboxylic acid or diphenic acid, respectively. The replacement of iodo groups with aryl substituents was performed as the last or the penultimate step of the synthesis.

  11. Investigation on porous MnO microsphere anode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Kaifu; Zhang, Bin; Luo, Shihai; Wen, Wen; Li, Hong; Huang, Xuejie; Chen, Liquan

    MnO microspheres with and without carbon coating are prepared as anode materials for lithium ion batteries. The MnO microsphere material shows a reversible capacity of 800 mAh g -1 and an initial efficiency of 71%. It can deliver 600 mAh g -1 at a rate of 400 mA g -1. Results of Mn K-edge X-ray absorption near-edge structure (XANES) spectra and extended X-ray absorption fine structure (EXAFS) confirm further the conversion reaction mechanism, indicate that pristine MnO is reduced to Mn 0 after discharging to 0 V and part of reduced Mn 0 is not oxidized to Mn 2+ after charging to 3 V. This explains the origin of the initial irreversible capacity loss partially. The quasi open circuit voltage and the relationship between the current density and the overpotential are investigated. Both indicate that there is a significant voltage difference between the charging and discharging profiles even when the current density decreases to zero.

  12. Canine RD3 mutation establishes rod cone dysplasia type 2 (rcd2) as ortholog of human and murine rd3

    PubMed Central

    Kukekova, Anna V.; Goldstein, Orly; Johnson, Jennifer L.; Richardson, Malcolm A.; Pearce-Kelling, Susan E.; Swaroop, Anand; Friedman, James S.; Aguirre, Gustavo D.; Acland, Gregory M.

    2009-01-01

    Rod cone dysplasia type 2 (rcd2) is an autosomal recessive disorder that segregates in collie dogs. Linkage disequilibrium and meiotic linkage mapping were combined to take advantage of population structure within this breed, and to fine map rcd2 to a 230 kb candidate region that included the gene C1orf36 responsible for human and murine rd3, and within which all affected dogs were homozygous for one haplotype. In one of three identified canine retinal RD3 splice variants, an insertion was found that cosegregates with rcd2, and is predicted to alter the last 61 codons of the normal open reading frame and further extend the ORF. Thus combined meiotic linkage and LD mapping within a single canine breed can yield critical reduction of the disease interval when appropriate advantage is taken of within breed population structure. This should permit a similar approach to tackle other hereditary traits that segregate in single closed populations. PMID:19130129

  13. Stoichiometry of mercury-thiol complexes on bacterial cell envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Bhoopesh; Shoenfelt, Elizabeth; Yu, Qiang

    We have examined the speciation of Hg(II) complexed with intact cell suspensions (1013 cells L- 1) of Bacillus subtilis, a common gram-positive soil bacterium, Shewanella oneidensis MR-1, a facultative gram-negative aquatic organism, and Geobacter sulfurreducens, a gram-negative anaerobic bacterium capable of Hg-methylation at Hg(II) loadings spanning four orders of magnitude (120 nM to 350 μM) at pH 5.5 (± 0.2). The coordination environments of Hg on bacterial cells were analyzed using synchrotron based X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy at the Hg LIII edge. The abundance of thiols on intact cells wasmore » determined by a fluorescence-spectroscopy based method using a soluble bromobimane, monobromo(trimethylammonio)bimane (qBBr) to block thiol sites, and potentiometric titrations of biomass with and without qBBr treatment. The chemical forms of S on intact bacterial cells were determined using S k-edge XANES spectroscopy.« less

  14. Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction

    PubMed Central

    Cheon, Jae Yeong; Kim, Taeyoung; Choi, YongMan; Jeong, Hu Young; Kim, Min Gyu; Sa, Young Jin; Kim, Jaesik; Lee, Zonghoon; Yang, Tae-Hyun; Kwon, Kyungjung; Terasaki, Osamu; Park, Gu-Gon; Adzic, Radoslav R.; Joo, Sang Hoon

    2013-01-01

    The high cost of the platinum-based cathode catalysts for the oxygen reduction reaction (ORR) has impeded the widespread application of polymer electrolyte fuel cells. We report on a new family of non-precious metal catalysts based on ordered mesoporous porphyrinic carbons (M-OMPC; M = Fe, Co, or FeCo) with high surface areas and tunable pore structures, which were prepared by nanocasting mesoporous silica templates with metalloporphyrin precursors. The FeCo-OMPC catalyst exhibited an excellent ORR activity in an acidic medium, higher than other non-precious metal catalysts. It showed higher kinetic current at 0.9 V than Pt/C catalysts, as well as superior long-term durability and MeOH-tolerance. Density functional theory calculations in combination with extended X-ray absorption fine structure analysis revealed a weakening of the interaction between oxygen atom and FeCo-OMPC compared to Pt/C. This effect and high surface area of FeCo-OMPC appear responsible for its significantly high ORR activity. PMID:24056308

  15. Parotid Abscess with Involvement of Facial Nerve Branches.

    PubMed

    Ozkan, Adile; Ors, Ceyda Hayretdag; Kosar, Sule; Ozisik Karaman, Handan Isin

    2015-08-01

    Facial nerve paresis is only rarely seen with benign diseases of the parotid gland. A 22-year male had muscle loss in the preauricular region of the right side of his face that extended towards the mandibular angle for the last 6 months. The neurological examination did not reveal any pathology other than right preauricular region muscle atrophy that was limited by the mandibular angle. The Electroneuronography (EnoG) provided a ratio of 55.38%, compared the affected side to left side. Ultrasonography of the defined region showed two mass lesions 13.5 x 7 mm and 10 x 5 mm in size in the anteromedial section of the right parotid gland that were close to each other, without internal calcific foci, and heterogenous hyperechogenic structure without internal vascularization. Fine needle aspiration obtained many polymorphonuclear leukocytes, cell debris, a few mononuclear inflammatory cells and many crystalloid structures. The lesion was diagnosed as a parotid abscess. Antibiotic treatment was started for the parotid gland abscess.

  16. Synthesis, purification, and structural characterization of the dimethyldiselenoarsinate anion.

    PubMed

    Gailer, Jürgen; George, Graham N; Harris, Hugh H; Pickering, Ingrid J; Prince, Roger C; Somogyi, Arpad; Buttigieg, Gavin A; Glass, Richard S; Denton, M Bonner

    2002-10-21

    A novel arsenic-selenium solution species was synthesized by reacting equimolar sodium selenite and sodium dimethylarsinate with 10 mol equiv of glutathione (pH 7.5) in aqueous solution. The solution species showed a single (77)Se NMR resonance at 112.8 ppm. Size-exclusion chromatography (SEC) using an inductively coupled plasma atomic emission spectrometer (ICP-AES) as the simultaneous arsenic-, selenium-, sulfur-, and carbon-specific detector revealed an arsenic-selenium moiety with an As:Se molar ratio of 1:2. Electrospray ionization mass spectrometry (ESI-MS) of the chromatographically purified compound showed a molecular mass peak at m/z 263 in the negative ion mode. Fragmentation of the parent ion (ESI-MS-MS) produced (CH(3))(2)As(-) and Se(2)(-) fragments. Arsenic and selenium extended X-ray absorption fine structure spectroscopy (EXAFS) of the purified species revealed two As-C interactions at 1.943 A and two As-Se interactions at 2.279 A. On the basis of these results this novel solution species is identified as the dimethyldiselenoarsinate anion.

  17. Miniature thermal matches: from nanoheaters to reactive fractals

    NASA Astrophysics Data System (ADS)

    Rebholz, Claus; Emre Gunduz, Ibrahim; Ando, Teiichi; Doumanidis, Charalabos C.

    2015-04-01

    Fine thermal actuation by miniature heat sources enables applications from electronics fabrication to tumor cauterization. This paper introduces the concept of nanoheaters, i.e., reactive bimetallic material dots (0D), ignited electrically to exothermically release precise heat amounts where and when needed. This concept is extended to nanoheater wires (1D) and foils (2D), as well as bulk nanoheaters (3D) manufactured via ball milling and ultrasonic consolidation of nickel and aluminum powders. The fractal structure of such powders and consolidates, with self-similar, multiscale Apollonian or lamellar packaging, is discovered to hold the key for their ignition sensitivity: nanoscale structures ignite first, to produce enough heat and raise the temperature of submicron formations, which then ignite microscale regions and so on; while inert areas quench and arrest the self-propagating exothermic reaction. Therefore, such engineered fractal reactive heaters lend themselves to affordable, high-throughput manufacture and controllable, safe, efficient, supplyless in situ thermal release. This can be transformative for innovations from self-healing composites and self-heating packages to underwater construction and mining.

  18. Structural Characterization of Sm(III)(EDTMP).

    PubMed

    Yang, Y; Pushie, M J; Cooper, D M L; Doschak, M R

    2015-11-02

    Samarium-153 ethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid) ((153)Sm-EDTMP, or samarium lexidronam), also known by its registered trademark name Quadramet, is an approved therapeutic radiopharmaceutical used in the palliative treatment of painful bone metastases. Typically, patients with prostate, breast, or lung cancer are most likely to go on to require bone pain palliation treatment due to bone metastases. Sm(EDTMP) is a bone-seeking drug which accumulates on rapidly growing bone, thereby delivering a highly region-specific dose of radiation, chiefly through β particle emission. Even with its widespread clinical use, the structure of Sm(EDTMP) has not yet been characterized at atomic resolution, despite attempts to crystallize the complex. Herein, we prepared a 1:1 complex of the cold (stable isotope) of Sm(EDTMP) under alkaline conditions and then isolated and characterized the complex using conventional spectroscopic techniques, as well as with extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional structure calculations, using natural abundance Sm. We present the atomic resolution structure of [Sm(III)(EDTMP)-8H](5-) for the first time, supported by the EXAFS data and complementary spectroscopic techniques, which demonstrate that the samarium coordination environment in solution is in agreement with the structure that has long been conjectured.

  19. Temperature-Dependent Second Shell Interference in the First Shell Analysis of Crystalline InP X-ray Absorption Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Schnohr, Claudia S.; Araujo, Leandro L.; Ridgway, Mark C.

    2014-09-01

    Analysing only the first nearest neighbour (NN) scattering signal is a commonly used and often successful way to treat extended X-ray absorption fine structure data. However, using temperature-dependent measurements of InP as an example, we demonstrate how this approach can lead to erroneous first NN structural parameters in systems with a weak first but strong second NN scatterer. In such cases, particularly low temperature data may suffer from an overlap of first and second NN scattering signals caused by the Fourier transformation (FT) even if the dominant peaks appear to be well separated. The first NN structural parameters then vary as a function of the FT settings if only the first NN scattering contribution is considered in the analysis. Although this variation is small, it can also lead to significant differences in other calculated properties such as the Einstein temperature. We demonstrate that these variations can be avoided either by choosing an appropriate FT window or by including the scattering contributions of higher shells in the analysis. The latter is achieved by a path fitting approach and yields structural parameters independent of the FT settings used.

  20. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  1. X-ray Absorption Spectroscopy Reveals an Organometallic Ni–C Bond in the CO-Treated Form of Acetyl-CoA Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Can, Mehmet; Giles, Logan J.; Ragsdale, Stephen W.

    Acetyl-CoA synthase (ACS) is a key enzyme in the Wood–Ljungdahl pathway of anaerobic CO 2 fixation, which has long been proposed to operate by a novel mechanism involving a series of protein-bound organometallic (Ni–CO, methyl–Ni, and acetyl–Ni) intermediates. Here we report the first direct structural evidence of the proposed metal–carbon bond. We describe the preparation of the highly active metal-replete enzyme and near-quantitative generation of the kinetically competent carbonylated intermediate. This advance has allowed a combination of Ni and Fe K-edge X-ray absorption spectroscopy and extended X-ray absorption fine structure experiments along with density functional theory calculations. The data revealmore » that CO binds to the proximal Ni of the six-metal metallocenter at the active site and undergoes dramatic structural and electronic perturbation in forming this organometallic Ni–CO intermediate. This direct identification of a Ni–carbon bond in the catalytically competent CO-bound form of the In conclusion, a cluster of ACS provides definitive experimental structural evidence supporting the proposed organometallic mechanism of anaerobic acetyl-CoA synthesis.« less

  2. X-ray Absorption Spectroscopy Reveals an Organometallic Ni–C Bond in the CO-Treated Form of Acetyl-CoA Synthase

    DOE PAGES

    Can, Mehmet; Giles, Logan J.; Ragsdale, Stephen W.; ...

    2017-02-10

    Acetyl-CoA synthase (ACS) is a key enzyme in the Wood–Ljungdahl pathway of anaerobic CO 2 fixation, which has long been proposed to operate by a novel mechanism involving a series of protein-bound organometallic (Ni–CO, methyl–Ni, and acetyl–Ni) intermediates. Here we report the first direct structural evidence of the proposed metal–carbon bond. We describe the preparation of the highly active metal-replete enzyme and near-quantitative generation of the kinetically competent carbonylated intermediate. This advance has allowed a combination of Ni and Fe K-edge X-ray absorption spectroscopy and extended X-ray absorption fine structure experiments along with density functional theory calculations. The data revealmore » that CO binds to the proximal Ni of the six-metal metallocenter at the active site and undergoes dramatic structural and electronic perturbation in forming this organometallic Ni–CO intermediate. This direct identification of a Ni–carbon bond in the catalytically competent CO-bound form of the In conclusion, a cluster of ACS provides definitive experimental structural evidence supporting the proposed organometallic mechanism of anaerobic acetyl-CoA synthesis.« less

  3. Ti1-xSnxO2 nanofilms: Layer-by-layer deposition with extended Sn solubility and characterization

    NASA Astrophysics Data System (ADS)

    Yong, Zhihua; Linghu, Jiajun; Xi, Shibo; Tan, Hui Ru; Shen, Lei; Yang, Ping; Hui, Hui Kim; Cao, Jian Qing; Leek, Meng Lee; Yin, Xinmao; Feng, Yuan Ping; Pan, Jisheng

    2018-01-01

    High quality rutile Ti1-xSnxO2 nanofilms were successfully grown in a layer-by-layer mode at a moderately low temperature of 400 °C using pulsed laser deposition (PLD). High solid solubility of up to x = 0.216 has been achieved in the Ti1-xSnxO2 films despite theoretical prediction by Density functional theory (DFT) of large formation energy (∼5.64 eV) required for the substitutional alloy to exist at such high Sn concentration. The resultant films have smooth interfaces and step-terraced surfaces with well controlled stoichiometry and are optically transparent. Sn L3-edge Extended X-ray absorption fine structure (EXAFS) reveals the substitution of Sn4+ in the Ti4+ lattice sites of TiO2. The lattice spacing along [110] increases linearly with increment in x due to substitution of Sn4+ ions in the Ti lattice sites of the Ti1-xSnxO2 films. X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering (RBS) show that Sn is uniformly distributed on the surface and in the bulk of the films. These results are crucial when considering Ti1-xSnxO2 with suitable composition for making TiO2 based quantum structures in advanced optoelectronic devices and solar energy materials, where high-quality crystalline thin film-substrates are important.

  4. X-ray coherent scattering tomography of textured material (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  5. Fine Structure of Diffuse Scattering Rings in Al-Li-Cu Quasicrystal: A Comparative X-ray and Electron Diffraction Study

    NASA Astrophysics Data System (ADS)

    Donnadieu, P.; Dénoyer, F.

    1996-11-01

    A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.

  6. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less

  7. SFG analysis of surface bound proteins: a route towards structure determination.

    PubMed

    Weidner, Tobias; Castner, David G

    2013-08-14

    The surface of a material is rapidly covered with proteins once that material is placed in a biological environment. The structure and function of these bound proteins play a key role in the interactions and communications of the material with the biological environment. Thus, it is crucial to gain a molecular level understanding of surface bound protein structure. While X-ray diffraction and solution phase NMR methods are well established for determining the structure of proteins in the crystalline or solution phase, there is not a corresponding single technique that can provide the same level of structural detail about proteins at surfaces or interfaces. However, recent advances in sum frequency generation (SFG) vibrational spectroscopy have significantly increased our ability to obtain structural information about surface bound proteins and peptides. A multi-technique approach of combining SFG with (1) protein engineering methods to selectively introduce mutations and isotopic labels, (2) other experimental methods such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near edge X-ray absorption fine structure (NEXAFS) to provide complementary information, and (3) molecular dynamic (MD) simulations to extend the molecular level experimental results is a particularly promising route for structural characterization of surface bound proteins and peptides. By using model peptides and small proteins with well-defined structures, methods have been developed to determine the orientation of both backbone and side chains to the surface.

  8. SFG analysis of surface bound proteins: A route towards structure determination

    PubMed Central

    Weidner, Tobias; Castner, David G.

    2013-01-01

    The surface of a material is rapidly covered with proteins once that material is placed in a biological environment. The structure and function of these bound proteins play a key role in the interactions and communications of the material with the biological environment. Thus, it is crucial to gain a molecular level understanding of surface bound protein structure. While X-ray diffraction and solution phase NMR methods are well established for determining the structure of proteins in the crystalline or solution phase, there is not a corresponding single technique that can provide the same level of structural detail about proteins at surfaces or interfaces. However, recent advances in sum frequency generation (SFG) vibrational spectroscopy have significantly increased our ability to obtain structural information about surface bound proteins and peptides. A multi-technique approach of combining SFG with (1) protein engineering methods to selectively introduce mutations and isotopic labels, (2) other experimental methods such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near edge x-ray absorption fine structure (NEXAFS) to provide complementary information, and (3) molecular dynamic (MD) simulations to extend the molecular level experimental results is a particularly promising route for structural characterization of surface bound proteins and peptides. By using model peptides and small proteins with well-defined structures, methods have been developed to determine the orientation of both backbone and side chains to the surface. PMID:23727992

  9. Extended monitoring and analysis of moisture temperature data : research implementation plan.

    DOT National Transportation Integrated Search

    2006-12-07

    Variations in the mechanical properties of materials of a flexible pavement affect its response to applied : loads in the form of deflections, stresses and stains. The resilient modulus of asphalt concrete and of fine : grained subgrade soil vary sea...

  10. Network topology for the formation of solvated electrons in binary CaO–Al2O3 composition glasses

    PubMed Central

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J. K. Richard; Benmore, Chris J.

    2013-01-01

    Glass formation in the CaO–Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO–Al2O3 glasses using combined density functional theory–reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O–Ca and O–Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al–O is stronger than that of Ca–O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71–74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass. PMID:23723350

  11. Network topology for the formation of solvated electrons in binary CaO-Al2O3 composition glasses.

    PubMed

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J K Richard; Benmore, Chris J

    2013-06-18

    Glass formation in the CaO-Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO-Al2O3 glasses using combined density functional theory-reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O-Ca and O-Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al-O is stronger than that of Ca-O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71-74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass.

  12. a Measurement of the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Hensley, Joel M.; Wicht, Andreas; Sarajlic, Edina; Chu, Steven

    2002-06-01

    Using an atom interferometer method, we measure the recoil velocity of cesium due to the coherent scattering of a photon. This measurement is used to obtain a preliminary value of ħ/MCs and the fine structure constant, α, with an uncertainty Δα/α = 7.3 × 10-9.

  13. Uranyl coordination in ionic liquids: the competition between ionic liquid anions, uranyl counterions, and Cl- anions investigated by extended X-ray absorption fine structure and UV-visible spectroscopies and molecular dynamics simulations.

    PubMed

    Gaillard, C; Chaumont, A; Billard, I; Hennig, C; Ouadi, A; Wipff, G

    2007-06-11

    The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.

  14. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  15. Crustal P-Wave Speed Structure Under Mount St. Helens From Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Moran, S. C.

    2006-12-01

    We used local earthquake data to model the P-wave speed structure of Mount St. Helens with the aim of improving our understanding of the active magmatic system. Our study used new data recorded by a dense array of 19 broadband seismographs that were deployed during the current eruption together with permanent network data recorded since the May 18, 1980 eruption. Most earthquakes around Mount St. Helens during the last 25 years were clustered in a narrow vertical column beneath the volcano from the surface to a depth of about 10 km. Earthquakes also occurred in a well-defined zone extending to the NNW from the volcano known as the St. Helens Seismic Zone (SHZ). During the current eruption, earthquakes have been confined to within 3 km of the surface beneath the crater floor. These earthquakes apparently radiate little shear-wave energy and the shear arrivals are usually contaminated by surface waves. Thus, we focused on developing an improved P- wave speed model. We used two data sources: (1) the short-period, vertical-component Pacific Northwest Seismograph Network and (2) new data recorded on a temporary array between June 2005 and February 2006. We first solved for a minimum one-dimensional model, incorporating the Moho depth found during an earlier wide-aperture refraction study. The three-dimensional model was solved simultaneously with hypocenter locations using the computer code SIMULPS14, extended for full three-dimensional ray shooting. We modified the code to force raypaths to remain below the ground surface. We began with large grid spacing and progressed to smaller grid spacing where the earthquakes and stations were denser. In this way we achieve a 40 km by 40 km regional model as well as a 10 km by 10 km fine-scale model directly beneath Mount St. Helens. The large-scale model is consistent with mapped geology and other geophysical data in the vicinity of Mount St. Helens. For example, there is a zone of relatively low velocities (-2% to -5% lower than background model) from 3 to at least 10 km depth extending NNW from the volcano parallel to the SHZ. The low-wave- speed zone coincides with a linear magnetic low, the western edge of a magnetotelluric conductive anomaly, and a localized gravity low. The coincidence of the volcano and these anomalies indicates this preexisting zone of weakness may control the location of Mount St. Helens, as has been suggested by previous investigators. Prominent high-wave-speed anomalies (+3% to +6% relative to background) on either side of this zone are due to plutons, which are also imaged with other geophysical data. Fine-scale modeling of the upper crust directly beneath Mount St. Helens reveals subtle structures not seen in the larger-scale model. The key structure is a cylindrical volume with speeds almost 10% slower than the background model extending from 6 to at least 10 km depth. The vertical, cylindrical volume of earthquakes, which reaches from the surface to more than 10 km depth, splits around this low-wave-speed volume creating an aseismic zone coincident with the low P-wave speeds. We interpret this volume as a melt-rich reservoir surrounded by hot rock.

  16. Effect of elastic collisions and electronic excitation on lattice structure of NiTi bulk intermetallic compound irradiated with energetic ions

    NASA Astrophysics Data System (ADS)

    Ochi, M.; Kojima, H.; Hori, F.; Kaneno, Y.; Semboshi, S.; Saitoh, Y.; Okamoto, Y.; Ishikawa, N.; Iwase, A.

    2018-07-01

    NiTi bulk intermetallic compound with the B19‧ structure was irradiated with 1 MeV He, 5 MeV Al, 16 MeV Au and 200 MeV Xe ions, and the change in lattice structure near the surface by the ion bombardment was investigated by using the grazing incidence X-ray diffraction (GIXD) and the extended X-ray absorption fine structure (EXAFS). The lattice structure transformation by the irradiation strongly depends on ion species and/or energies. For the 1 MeV He irradiation, the lattice structure changed from B19‧ to the A2 structure, but did not show an amorphization even after the high fluence irradiation. For the 5 MeV Al irradiation, the samples are partially amorphized. For the 16 MeV Au irradiation, the lattice structure of the NiTi samples changed nearly completely from the B19‧ structure to the amorphous state via the A2 structure. The value of dpa (displacement per atom) which is needed for the amorphization is, however, much smaller than the case of the Al ion irradiation. For the 200 MeV Xe ion irradiation, the lattice structure completely changed to the A2 structure even by a small ion fluence. The dependence of the lattice structure transformation on elastic collisions (dpa), the spectrum of the primary knock-on (PKA) atoms and the density of energy deposited through electronic excitation was discussed.

  17. Rock Magnetic and Ferromagnetic Resonance Tests of Biogenic Magnetite in ALH84001

    NASA Technical Reports Server (NTRS)

    Kirschvink, J. L.; Kim, S.; Weiss, B. P.; Shannon, D. M.; Kobayashi, A. K.

    2002-01-01

    Three separate rock magnetic and ferromagnetic resonance tests support the hypothesis that between 25 and 50% of the fine-grained magnetite in the Martian meteorite ALH84001 was formed via biological processes. Additional information is contained in the original extended abstract.

  18. Enhanced nanoparticle size control by extending LaMer’s mechanism

    DOE PAGES

    Vreeland, Erika C.; Watt, John; Schober, Gretchen B.; ...

    2015-08-17

    The synthesis of well-defined nanoparticle materials has been an area of intense investigation, but size control in nanoparticle syntheses is largely empirical. Here, we introduce a general method for fine size control in the synthesis of nanoparticles by establishing steady state growth conditions through the continuous, controlled addition of precursor, leading to a uniform rate of particle growth. This approach, which we term the “extended LaMer mechanism” allows for reproducibility in particle size from batch to batch as well as the ability to predict nanoparticle size by monitoring the early stages of growth. We have demonstrated this method by applyingmore » it to a challenging synthetic system: magnetite nanoparticles. To facilitate this reaction, we have developed a reproducible method for synthesizing an iron oleate precursor that can be used without purification. As a result, we then show how such fine size control affects the performance of magnetite nanoparticles in magnetic hyperthermia.« less

  19. NASAL FILTERING OF FINE PARTICLES IN CHILDREN VS. ADULTS

    EPA Science Inventory

    Nasal efficiency for removing fine particles may be affected by developmental changes in nasal structure associated with age. In healthy Caucasian children (age 6-13, n=17) and adults (age 18-28, n=11) we measured the fractional deposition (DF) of fine particles (1 and 2um MMAD)...

  20. Fine Structure of Dark Energy and New Physics

    DOE PAGES

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje

    2007-01-01

    Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less

  1. Quantum-gravity predictions for the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron; Wetterich, Christof

    2018-07-01

    Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.

  2. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: Statistical distribution and height-dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias

    The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.

  3. Depositional and Structural Controls on the Evolution of the Gas Hydrate Petroleum System in Green Canyon 955, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Weimer, P.; Shedd, W. W.; Frye, M.; Boswell, R.

    2016-12-01

    The depositional, erosional, and deformational history at Green Canyon 955 (GC955), Gulf of Mexico, provides insight into the reservoir characteristics and the gas and gas hydrate petroleum system at this established research site. Using high-resolution 2D seismic data, industry 3D seismic data, and borehole logs, we have refined our knowledge of the area's geologic history. Following extended fine-grained deposition (while the primary sediment input was hundreds of km to the east), channel/levee activity shifted to the area of GC955 approximately 500 kya. The initial resulting deposits include sand-rich proximal levee packages, readily identifiable in high-resolution seismic images, and limited channel deposits. The levee deposits occur in discrete "pods", the result of intermingled deposition and erosion. Subsequently, salt diapirism initiated a period of uplift and caused channel activity to shift a few kilometers eastward. Pelagic deposition was followed by a mix of fine-grained sediments and limited sandy strata deposited in a distal levee and/or fan environment. Channel features from this time period are evident east of GC955, but the available data suggest that these were mainly erosional, with minimal sand deposition. Salt-driven structural deformation created a multi-kilometer-scale east-west graben and normal faults. These extensional faults facilitated upward migration of gas from deeper in the system, ultimately leading to creation of several gas chimneys. The presence of free gas at the location of well GC955-Q indicates that the fine-grained unit overlying the main reservoir provides a good seal, consistent with pelagic deposition. The absence of free gas at well GC955-H, coupled with the presence of ongoing chimney-related gas flow nearby, indicates that this seal can be broken where the pelagic unit is cut by the large-throw graben faults. Reservoir connectivity within the levee deposit "pods" is likely, based on established characteristics of levee reservoirs. Connectivity between pods is uncertain, but gas/hydrate distribution suggests at least some compartmentalization. The character of borehole logs and of seismic reflections from the top of the main reservoir may indicate a fining-upward sediment distribution that likely controls the presence of gas hydrate.

  4. Phenomenology of NMSSM in TeV scale mirage mediation

    NASA Astrophysics Data System (ADS)

    Hagimoto, Kei; Kobayashi, Tatsuo; Makino, Hiroki; Okumura, Ken-ichi; Shimomura, Takashi

    2016-02-01

    We study the next-to-minimal supersymmetric standard model (NMSSM) with the TeV scale mirage mediation, which is known as a solution for the little hierarchy problem in supersymmetry. Our previous study showed that 125 GeV Higgs boson is realized with {O} (10)% fine-tuning for 1.5 TeV gluino (1 TeV stop) mass. The μ term could be as large as 500 GeV without sacrificing the fine-tuning thanks to a cancellation mechanism. The singlet-doublet mixing is suppressed by tan β. In this paper, we further extend this analysis. We argue that approximate scale symmetries play a role behind the suppression of the singlet-doublet mixing. They reduce the mixing matrix to a simple form that is useful to understand the results of the numerical analysis. We perform a comprehensive analysis of the fine-tuning including the singlet sector by introducing a simple formula for the fine-tuning measure. This shows that the singlet mass of the least fine-tuning is favored by the LEP anomaly for moderate tan β. We also discuss prospects for the precision measurements of the Higgs couplings at LHC and ILC and direct/indirect dark matter searches in the model.

  5. Wetter for fine dry powder

    DOEpatents

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  6. A tale of two pectins: Diverse fine structures can result from identical processive PME treatments on similar high DM subtrates

    USDA-ARS?s Scientific Manuscript database

    The effects of a processive pectin-methylesterase treatment on two different pectins, both possessing a high degree of methylesterification, were investigated. While the starting samples were purportedly very similar in fine structure, and even though the sample-averaged degree of methylesterificati...

  7. Temporal Fine Structure and Applications to Cochlear Implants

    ERIC Educational Resources Information Center

    Li, Xing

    2013-01-01

    Complex broadband sounds are decomposed by the auditory filters into a series of relatively narrowband signals, each of which conveys information about the sound by time-varying features. The slow changes in the overall amplitude constitute envelope, while the more rapid events, such as zero crossings, constitute temporal fine structure (TFS).…

  8. Laser Spectroscopy of the Fine-Structure Splitting in the 2^{3}P_{J} Levels of ^{4}He.

    PubMed

    Zheng, X; Sun, Y R; Chen, J-J; Jiang, W; Pachucki, K; Hu, S-M

    2017-02-10

    The fine-structure splitting in the 2^{3}P_{J} (J=0, 1, 2) levels of ^{4}He is of great interest for tests of quantum electrodynamics and for the determination of the fine-structure constant α. The 2^{3}P_{0}-2^{3}P_{2} and 2^{3}P_{1}-2^{3}P_{2} intervals are measured by laser spectroscopy of the ^{3}P_{J}-2^{3}S_{1} transitions at 1083 nm in an atomic beam, and are determined to be 31 908 130.98±0.13  kHz and 2 291 177.56±0.19  kHz, respectively. Compared with calculations, which include terms up to α^{5}Ry, the deviation for the α-sensitive interval 2^{3}P_{0}-2^{3}P_{2} is only 0.22 kHz. It opens the window for further improvement of theoretical predictions and an independent determination of the fine-structure constant α with a precision of 2×10^{-9}.

  9. QUIESCENT PROMINENCES IN THE ERA OF ALMA: SIMULATED OBSERVATIONS USING THE 3D WHOLE-PROMINENCE FINE STRUCTURE MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Heinzel, Petr; Mackay, Duncan H.

    2016-12-20

    We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible inmore » the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence–corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.« less

  10. Anomalous structural disorder and distortion in metal-to-insulator-transition Ti{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, In-Hui; Jin, Zhenlan; Park, Chang-In

    2016-01-07

    Mott proposed that impurity bands in corundum-symmetry Ti{sub 2}O{sub 3} at high temperatures caused a collapse in the bandgap. However, the origin of the impurity bands has not yet been clarified. We examine the local structural properties of metal-to-insulator-transition Ti{sub 2}O{sub 3} using in-situ x-ray absorption fine structure (XAFS) measurements at the Ti K edge in the temperature range from 288 to 739 K. The Ti{sub 2}O{sub 3} powder is synthesized by using a chemical reaction method. X-ray diffraction (XRD) measurements from Ti{sub 2}O{sub 3} with a Rietveld refinement demonstrate a single-phased R-3c symmetry without additional distortion. Extended-XAFS combined with XRDmore » reveals a zigzag patterned Ti position and an anomalous structural disorder in Ti-Ti pairs, accompanied by a bond length expansion of the Ti-Ti pairs along the c-axis for T > 450 K. The local structural distortion and disorder of the Ti atoms would induce impurity levels in the band gap between the Ti 3d a{sub 1g} and e{sub g}{sup π} bands, resulting in a collapse of the band gap for T > 450 K.« less

  11. Triosmium Clusters on a Support: Determination of Structure by X-Ray Absorption Spectroscopy and High-Resolution Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shareghe, Mehraeen; Chi, Miaofang; Browning, Nigel D.

    2011-01-01

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os{sub 3}(CO){sub 12}] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03 {+-} 0.06 {angstrom}. The EXAFS OsOs coordination number ofmore » 2.1 {+-} 0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02 {+-} 0.04 {angstrom}. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80 {+-} 0.14 {angstrom}, matching the EXAFS value of 2.89 {+-} 0.06 {angstrom}. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters.« less

  12. Modeling the interactions of phthalocyanines in water: from the Cu(II)-tetrasulphonate to the metal-free phthalocyanine.

    PubMed

    Martín, Elisa I; Martínez, Jose M; Sánchez Marcos, Enrique

    2011-01-14

    A quantum and statistical study on the effects of the ions Cu(2+) and SO(3)(-) in the solvent structure around the metal-free phthalocyanine (H(2)Pc) is presented. We developed an ab initio interaction potential for the system CuPc-H(2)O based on quantum chemical calculations and studied its transferability to the H(2)Pc-H(2)O and [CuPc(SO(3))(4)](4-)-H(2)O interactions. The use of the molecular dynamics technique allows the determination of energetic and structural properties of CuPc, H(2)Pc, and [CuPc(SO(3))(4)](4-) in water and the understanding of the keys for the different behaviors of the three phthalocyanine (Pc) derivatives in water. The inclusion of the Cu(2+) cation in the Pc structure reinforces the appearance of two axial water molecules and second-shell water molecules in the solvent structure, whereas the presence of SO(3)(-) anions implies a well defined hydration shell of about eight water molecules around them making the macrocycle soluble in water. Debye-Waller factors for axial water molecules have been obtained in order to examine the potential sensitivity of the extended x-ray absorption fine structure technique to detect the axial water molecules.

  13. Structural investigations in helium implanted cubic zirconia using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuri, G.; Degueldre, C.; Bertsch, J.; Döbeli, M.

    2010-06-01

    The crystal structure and local atom arrangements surrounding Zr atoms were determined for a helium implanted cubic stabilized zirconia (CSZ) using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively, measured at glancing angles. The implanted specimen was prepared at a helium fluence of 2 × 10 16 cm -2 using He + beams at two energies (2.54 and 2.74 MeV) passing through a 8.0 μm Al absorber foil. XRD results identified the formation of a new rhombohedral phase in the helium embedded layer, attributed to internal stress as a result of expansion of the CSZ-lattice. Zr K-edge EXAFS data suggested loss of crystallinity in the implanted lattice and disorder of the Zr atoms environment. EXAFS Fourier transforms analysis showed that the average first-shell radius of the Zr sbnd O pair in the implanted sample was slightly larger than that of the CSZ standard. Common general disorder features were explained by rhombohedral type short-range ordered clusters. The average structural parameters estimated from the EXAFS data of unimplanted and implanted CSZ are compared and discussed. Potential of EXAFS as a local probe of atomic-scale structural modifications induced by helium implantation in CSZ is demonstrated.

  14. Impacts of aggregate dredging on sediment composition and associated benthic fauna at an offshore dredge site in the southern North Sea.

    PubMed

    Robinson, J E; Newell, R C; Seiderer, L J; Simpson, N M

    2005-07-01

    Dredging and associated screening at a dredge site in the southern North Sea (Area 408) is associated with areas of well-sorted fine sand that extend for up to 3 km to the south-east of the dredged area and overlay sediments with a more variable particle size composition. This well-sorted fine sand may reflect deposition and transport of material mobilised by the dredging and screening processes at the dredge site. Multivariate analysis of the benthic community structure suggests that marine aggregate dredging, at the level of intensity employed in the study area prior to sample collection, has had a limited impact on benthic community composition compared with that reported from studies elsewhere. This is ascribed to the likely rapid rates of recolonisation by the mobile opportunistic polychaetes and crustaceans that dominate the macrofauna of the sandy gravel deposits at this particular dredge site. Analysis of variance showed, however, that significant differences existed between the sample treatments in terms of species evenness (Pielou's J). Dredged samples were found to have the lowest mean species evenness (0.71) when compared to controls (0.77). The present study highlights the inherent difficulties in the application of general impact/recovery predictions to dredged sites with varying environmental characteristics.

  15. Regional Scale High Resolution δ18O Prediction in Precipitation Using MODIS EVI

    PubMed Central

    Huang, Cho-Ying; Wang, Chung-Ho; Lin, Shou-De; Lo, Yi-Chen; Huang, Bo-Wen; Hatch, Kent A.; Shiu, Hau-Jie; You, Cheng-Feng; Chang, Yuan-Mou; Shen, Sheng-Feng

    2012-01-01

    The natural variation in stable water isotope ratio data, also known as water isoscape, is a spatiotemporal fingerprint and a powerful natural tracer that has been widely applied in disciplines as diverse as hydrology, paleoclimatology, ecology and forensic investigation. Although much effort has been devoted to developing a predictive water isoscape model, it remains a central challenge for scientists to generate high accuracy, fine scale spatiotemporal water isoscape prediction. Here we develop a novel approach of using the MODIS-EVI (the Moderate Resolution Imagining Spectroradiometer-Enhanced Vegetation Index), to predict δ18O in precipitation at the regional scale. Using a structural equation model, we show that the EVI and precipitated δ18O are highly correlated and thus the EVI is a good predictor of precipitated δ18O. We then test the predictability of our EVI-δ18O model and demonstrate that our approach can provide high accuracy with fine spatial (250×250 m) and temporal (16 days) scale δ18O predictions (annual and monthly predictabilities [r] are 0.96 and 0.80, respectively). We conclude the merging of the EVI and δ18O in precipitation can greatly extend the spatial and temporal data availability and thus enhance the applicability for both the EVI and water isoscape. PMID:23029053

  16. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.

  17. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees.

    PubMed

    Artacho, Pamela; Bonomelli, Claudia

    2016-05-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha(-1)), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110-180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70-80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source-sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees

    PubMed Central

    Artacho, Pamela; Bonomelli, Claudia

    2016-01-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha−1), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110–180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70–80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source–sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. PMID:26888890

  19. Relaxation of the structure of simple metal ion complexes in aqueous solutions at up to supercritical conditions

    USGS Publications Warehouse

    Mayanovic, Robert A.; Jayanetti, Sumedha; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2003-01-01

    Recently x-ray absorption fine structure (XAFS) studies of various ions in aqueous solutions showed a variation of cation-ligand bond lengths, often coupled with other structure changes, with increasing temperatures. Thus, the variations of the structure of several metal ion complexes with temperature based on observations from the X-ray absorption fine structure (XAFS) studies in the hope that it will stimulate the development of either first- principles theory or molecular dynamics simulations that might adequately describes these results are discussed.

  20. Inelastic losses in X-ray absorption theory

    NASA Astrophysics Data System (ADS)

    Campbell, Luke Whalin

    There is a surprising lack of many body effects observed in XAS (X-ray Absorption Spectroscopy) experiments. While collective excitations and other satellite effects account for between 20% and 40% of the spectral weight of the core hole and photoelectron excitation spectrum, the only commonly observed many body effect is a relatively structureless amplitude reduction to the fine structure, typically no more than a 10% effect. As a result, many particle effects are typically neglected in the XAS codes used to predict and interpret modern experiments. To compensate, the amplitude reduction factor is simply fitted to experimental data. In this work, a quasi-boson model is developed to treat the case of XAS, when the system has both a photoelectron and a core hole. We find that there is a strong interference between the extrinsic and intrinsic losses. The interference reduces the excitation amplitudes at low energies where the core hole and photo electron induced excitations tend to cancel. At high energies, the interference vanishes, and the theory reduces to the sudden approximation. The x-ray absorption spectrum including many-body excitations is represented by a convolution of the one-electron absorption spectrum with an energy dependent spectral function. The latter has an asymmetric quasiparticle peak and broad satellite structure. The net result is a phasor sum, which yields the many body amplitude reduction and phase shift of the fine structure oscillations (EXAFS), and possibly additional satellite structure. Calculations for several cases of interest are found to be in reasonable agreement with experiment. Edge singularity effects and deviations from the final state rule arising from this theory are also discussed. The ab initio XAS code FEFF has been extended for calculations of the many body amplitude reduction and phase shift in x-ray spectroscopies. A new broadened plasmon pole self energy is added. The dipole matrix elements are modified to include a projection operator to calculate deviations from the final state rule and edge singularities.

  1. Extended Structures of Planetary Nebulae Detected in H2 Emission

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; Zhang, Yong; Kwok, Sun; Hsia, Chih-Hao; Chau, Wayne; Ramos-Larios, Gerardo; Guerrero, Martín A.

    2018-06-01

    We present narrowband near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the H2 2.122 μm and Brγ 2.166 μm emission lines and the K c 2.218 μm continuum. These images were collected with the Wide-field Infrared Camera on the 3.6 m Canada–France–Hawaii Telescope (CFHT); their unprecedented depth and wide field of view allow us to find extended nebular structures in H2 emission in several PNe, some of these being the first detection. The nebular morphologies in H2 emission are studied in analogy with the optical images, and indication of stellar wind interactions is discussed. In particular, the complete structure of the highly asymmetric halo in NGC 6772 is witnessed in H2, which strongly suggests interaction with the interstellar medium. Our sample confirms the general correlation between H2 emission and the bipolarity of PNe. The knotty or filamentary fine structures of the H2 gas are resolved in the inner regions of several ring-like PNe, also confirming the previous argument that H2 emission mostly comes from knots or clumps embedded within fully ionized material at the equatorial regions. Moreover, the H2 image of the butterfly-shaped Sh 1-89, after removal of field stars, clearly reveals a tilted ring structure at the waist. These high-quality CFHT images justify follow-up detailed morphokinematic studies that are desired in order to deduce the true physical structures of a few PNe in the sample. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, and France, at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  2. Evaluating the Fine Arts Program at the Center for Excellence in Disabilities

    ERIC Educational Resources Information Center

    Schlosnagle, Leo; McBean, Amanda L.; Cutlip, Milisa; Panzironi, Helen; Jarmolowicz, David P.

    2014-01-01

    Art programs for people with disabilities may encourage creativity, promote engagement, emphasize inclusion, and extend access and opportunities for community involvement. This mixed methods study utilized quantitative and qualitative data, repeated measures, action research, and stakeholder collaboration to develop and implement an evaluation…

  3. The effect of local atomic structure on the optical properties of GeSi self-assembled islands buried in silicon matrix

    NASA Astrophysics Data System (ADS)

    Demchenko, I. N.; Lawniczak-Jablonska, K.; Kret, S.; Novikov, A. V.; Laval, J.-Y.; Zak, M.; Szczepanska, A.; Yablonskiy, A. N.; Krasilnik, Z. F.

    2007-03-01

    The local atomic structure of GeSi self-assembled islands buried in a silicon matrix strongly influences the optical properties of such systems. In the present paper this structure was determined by x-ray absorption fine-structure (XAFS) spectroscopy and high resolution transmission electron microscopy (HRTEM) and used to build a schematic description of the band structure model. Quantitative analysis of the extended XAFS (EXAFS) spectrum was performed for three coordination shells around the Ge absorbing atom with multiple scattering taken into account. It was proved that the coordination number of elements in an alloy resulting from EXAFS analysis for all three coordination spheres (i.e. 'mixing degree' parameters) cannot be taken as the concentration of alloy but can be used together with a proper model of the alloy unit cell to calculate a realistic concentration. The fraction of Ge calculated in this way is consistent with HRTEM results. The found model of the unit cell was used to generate a x-ray absorption near edge structure spectrum by ab initio calculations. This approach yielded a spectrum in good agreement with the experimental one. The information gained from XAFS and HRTEM was then used for calculation of the band structure diagram. Results of the calculation are discussed and compared with the experimental photoluminescence spectrum.

  4. Extended vertical range roughness measurements in non-ideal environments

    NASA Astrophysics Data System (ADS)

    Creath, Katherine

    2011-09-01

    This paper describes recent research into developing an extended range dynamic interferometry technique where the range is extended vertically to enhance surface roughness measurements made in non-ideal environments. Utilizing short pulses from two sources on either side of a frame transfer in a CCD sensor, data can be taken fast enough in noisy shop environments to make measurements in the presence of vibration, and air turbulence. A key application of this technique is monitoring of surface roughness of large optics during the polishing process by making in situ measurements from fine grind through to the final polish. It is anticipated that this monitoring can help speed up what is now a very lengthy process. This same technique is applicable to many other types of measurements including MEMS devices, as it is not affected by dispersion in windows covering devices, and for measuring features on flat panel display glass or semiconductor wafers. This paper describes the technique, and presents results of a variety of sample measurements including: bare glass in various states of polish from fine grind to final polish, scratches and pits in a roughened semiconductor wafer, a DMD MEMS device, and various calibration standards. Performance in terms of repeatabilitity of step heights and roughness for this proof of concept is in the +/-2% range.

  5. Atomic data from the iron project. 3: Rate coefficients for electron impact excitation of boron-like ions: Ne VI, Mg VIII, Al IX, Si X, S XII, Ar XIV, Ca XVI and Fe XXII

    NASA Technical Reports Server (NTRS)

    Zhang, Hong Lin; Graziani, Mark; Pradhan, Anil K.

    1994-01-01

    Collison strengths and maxwellian averaged rate coefficients have been calculated for the 105 transitions among all 15 fine structure levels of the 8 LS terms 2s(sup 2) 2 P(P-2(sup 0 sub 1/, 3/2)), 2s2p(sup 2)(P-4(sub 1/2,3/2,5/2), D-2(sub 3/2, 5/2), S-2(sub 1/2), P-2(sub 1/2, 3/2)), 2p(sup 3)(S-4(sup 0)(sub 3/2), D-2(sup 0 sub 3/2, 5/2), P-2(sup 0 sub 1/2, 3/2)) in highly- charged B-like Ne, Mg, Al, Si, S, Ar, Ca and Fe. Rate coefficients have been tabulated at a wide range of temperatures, depending on the ion charge and abundance in plasma sources. Earlier work for O IV has also been extended to include the high temperature range. A brief discussion of the calculations, sample results, and comparison with earlier works is also given. While much of the new data should be applicable to UV spectral diagnostics, the new rates for the important ground state fine structure transition P-2(sup 0 sub 1/2)-P-2(sup 0 sub 3/2) should result in significant revision of the IR cooling rates in plasmas where B-like ions are prominent constituents, since the new rate coefficients are generally higher by several factors compared with the older data.

  6. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy studies of CaSO 4:Dy thermoluminescent phosphors

    NASA Astrophysics Data System (ADS)

    Bakshi, A. K.; Jha, S. N.; Olivi, L.; Phase, D. M.; Kher, R. K.; Bhattacharyya, D.

    2007-11-01

    Extended X-ray absorption fine structure (EXAFS) measurements have been carried out on CaSO4:Dy phosphor samples at the Dy L3 edge with synchrotron radiation. Measurements were carried out on a set of samples which were subjected to post-preparation annealing at different temperatures and for different cycles. The EXAFS data have been analysed to find the Dy-S and Dy-O bond lengths in the neighbourhood of the Dy atoms in a CaSO4 matrix. The observations from EXAFS measurements were verified with XANES and XPS techniques. On the basis of these measurements, efforts were made to explain the loss of thermoluminescence sensitivity of CaSO4:Dy phosphors after repeated cycles of annealing at 400 °C in air for 1 h.

  7. Searching for high-k RE2O3 nanoparticles embedded in SiO2 glass matrix

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Lin, Y. H.; Kao, T. H.; Chou, C. C.; Yang, H. D.

    2012-03-01

    Significant experimental effort has been explored to search and characterize high-k materials with magnetodielectric effect (MDE) of series of rare earth (RE) oxide (RE2O3) nanoparticles (NPs) embedded in SiO2 glass matrix by a sol-gel route. Properly annealed sol-gel glass (in which RE = Sm, Gd, and Er) shows colossal response of dielectric constant along with diffuse phase transition and MDE around room temperature. The radial distribution functions, reconstructed from extended x-ray absorption fine structure, show the shortening of RE3 + -O depending on the RE2O3 NP size, which is consistent with oxygen vacancy induced dielectric anomaly. The magnetoresistive MDE is very much conditioned by magnetic property of RE2O3 NP grain, the degree of deformation of the lattice and constituent host.

  8. Effect of reflection and refraction on NEXAFS spectra measured in TEY mode

    PubMed Central

    2018-01-01

    The evolution of near-edge X-ray absorption fine structure in the vicinity of the K-absorption edge of oxygen for HfO2 over a wide range of incidence angles is analyzed by simultaneous implementation of the total-electron-yield (TEY) method and X-ray reflection spectroscopy. It is established that the effect of refraction on the TEY spectrum is greater than that of reflection and extends into the angular region up to angles 2θc. Within angles that are less than the critical angle, both the reflection and refraction strongly distort the shape of the TEY spectrum. Limitations of the technique for the calculation of optical constants from the reflection spectra using the Kramers–Kronig relation in the limited energy region in the vicinity of thresholds are discussed in detail. PMID:29271772

  9. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE PAGES

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...

    2017-02-17

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  10. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  11. Simple preparation of magnetic field-responsive structural colored Janus particles.

    PubMed

    Teshima, Midori; Seki, Takahiro; Takeoka, Yukikazu

    2018-03-08

    We established a simple method for preparing Janus particles displaying different structural colors using submicron-sized fine silica particles and magnetic nanoparticles composed of Fe 3 O 4 . A w/o emulsion is prepared by vortex-stirring a mixed aqueous solution of suspended fine silica particles and magnetic nanoparticles and of hexadecane containing an emulsifier. Subsequent drying of the emulsion on a hot plate using a magnetic stirrer provides a polydisperse particle aggregate displaying two different structural colors according to the ratio of the amount of fine silica particles to the amount of magnetic nanoparticles. This polydisperse particle aggregate can be converted into monodisperse particles simply by using a sieve made of stainless steel. In the presence of a magnet, the monodisperse Janus particles can change their orientation and can switch between two different structural colors.

  12. The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.

    1994-01-01

    The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.

  13. Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi

    2007-10-19

    We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensedmore » liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.« less

  14. Adaptive root foraging strategies along a boreal-temperate forest gradient.

    PubMed

    Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak

    2017-08-01

    The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. A preliminary investigation of projectile shape effects in hypervelocity impact of a double-sheet structure

    NASA Technical Reports Server (NTRS)

    Morrison, R. H.

    1972-01-01

    Impact tests of a sphere and several cylinders of various masses and fineness ratios, all of aluminum, fired into an aluminum double-sheet structure at velocities near 7 km/sec, show that a cylinder, impacting in the direction of its axis, is considerably more effective as a penetrator than a sphere. Impacts of three cylinders of equal mass, but different fineness ratios, produced holes through the structures' rear sheet, whereas impact of a sphere of the same mass did not. Moreover, it was found that to prevent rear-sheet penetration, the mass of the 1/2-fineness-ratio cylinder had to be reduced by a factor greater than three. Further tests wherein the cylinder diameter was held constant while the cylinder length was systematically reduced showed that a cylinder with a fineness ratio of 0.07 and a mass of only 1/7 that of the sphere was still capable of producing a hole in the rear sheet.

  16. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite I: X-ray absorption extended fine structure spectroscopy analysis

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Davis, J.A.

    2002-01-01

    "Two-line" ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10-5 to 10-3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(0.2) A?? and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) A?? and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) A?? in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further, and a second type of precipitate forms. This has a structure based on a brucite layer topology, with mainly octahedral Zn coordination. Amorphous zinc hydroxide samples prepared for comparison had a closely similar local structure. Analysis of the Fe K-edge EXAFS is consistent with surface complexation reactions and surface precipitation at high Zn loadings with little or no Fe-Zn solid solution formation. The formation of Zn-containing precipitates at solution conditions two or more orders of magnitude below their solubility limit is compared with other sorption and spectroscopic studies that describe similar behavior. Copyright ?? 2002 Elsevier Science Ltd.

  17. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)

    Treesearch

    Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara Afzal-Rafii

    2013-01-01

    The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species’ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...

  18. Precision microwave measurement of the 2(3)P(1)-2(3)P(0) interval in atomic helium: a determination of the fine-structure constant.

    PubMed

    George, M C; Lombardi, L D; Hessels, E A

    2001-10-22

    The 2(3)P(1)-to- 2(3)P(0) interval in atomic helium is measured using a thermal beam of metastable helium atoms excited to the 2(3)P state using a 1.08-microm diode laser. The 2(3)P(1)-to- 2(3)P(0) transition is driven by 29.6-GHz microwaves in a rectangular waveguide cavity. Our result of 29,616,950.9+/-0.9 kHz is the most precise measurement of helium 2(3)P fine structure. When compared to precise theory for this interval, this measurement leads to a determination of the fine-structure constant of 1/137.0359864(31).

  19. Fine Structure of Reovirus Type 2

    PubMed Central

    Loh, Philip C.; Hohl, H. R.; Soergel, M.

    1965-01-01

    Loh, Philip C. (University of Hawaii, Honolulu), H. R. Hohl, and M. Soergel. Fine structure of reovirus type 2. J. Bacteriol. 89:1140–1144. 1965.—The fine structure reovirus type 2 was studied by electron microscopy with the negative-staining method. The virus has a mean diameter of 772 A and shows evidence of icosahedral shape and 5:3:2 symmetry. The particle is composed of a core, an inner layer, and a capsid composed of 92 elongated hollow capsomeres. These capsomeres have mean dimensions of 116 A × 110 A and a central hole 48 A in diameter. In size and architecture, reovirus type 2 is very similar to the other members (reoviruses types 1 and 3) of this group of animal viruses. Images PMID:14276109

  20. Linking Sediment Transport to Coherent Flow Structures: First Results Using 2-Phase PIV and Considerations of the Origin of Large-Scale Turbulence

    NASA Astrophysics Data System (ADS)

    Best, J.

    2004-05-01

    The origin and scaling of large-scale coherent flow structures has been of central interest in furthering understanding of the nature of turbulent boundary layers, and recent work has shown the presence of large-scale turbulent flow structures that may extend through the whole flow depth. Such structures may dominate the entrainment of bedload sediment and advection of fine sediment in suspension. However, we still know remarkably little of the interactions between the dynamics of coherent flow structures and sediment transport, and its implications for ecosystem dynamics. This paper will discuss the first results of two-phase particle imaging velocimetry (PIV) that has been used to visualize large-scale turbulent flow structures moving over a flat bed in a water channel, and the motion of sand particles within these flows. The talk will outline the methodology, involving the fluorescent tagging of sediment and its discrimination from the fluid phase, and show results that illustrate the key role of these large-scale structures in the transport of sediment. Additionally, the presence of these structures will be discussed in relation to the origin of vorticity within flat-bed boundary layers and recent models that envisage these large-scale motions as being linked to whole-flow field structures. Discussion will focus on if these recent models simply reflect the organization of turbulent boundary layer structure and vortex packets, some of which are amply visualised at the laminar-turbulent transition.

  1. Nine Years of Irrigation Cause Vegetation and Fine Root Shifts in a Water-Limited Pine Forest

    PubMed Central

    Herzog, Claude; Steffen, Jan; Graf Pannatier, Elisabeth; Hajdas, Irka; Brunner, Ivano

    2014-01-01

    Scots pines (Pinus sylvestris L.) in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd.) has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C) measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling. PMID:24802642

  2. USSR Report, International Affairs.

    DTIC Science & Technology

    1986-03-27

    the Giza pyramids I was told how all of its residents, even those with small kitchen gardens, on one fine day turned into near millionaires. But...south it extended to the well-known pyramids of Cheops, Chefren and Mikerin, and on the other end it swallowed up the suburban settlement of Geliopolis

  3. New framework for extending cloud chemistry in the Community Multiscale Air Quality (CMAQ) modeling

    EPA Science Inventory

    Clouds and fogs significantly impact the amount, composition, and spatial distribution of gas and particulate atmospheric species, not least of which through the chemistry that occurs in cloud droplets. Atmospheric sulfate is an important component of fine aerosol mass and in an...

  4. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  5. Fine structure transitions in Fe XIV

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2013-07-01

    Results are reported for Fe XIV energy levels and transitions obtained from the ab initio relativistic Breit-Pauli R-matrix (BPRM) method. BPRM method developed under the Iron Project is capable of calculating very large number of fine structure energy levels and corresponding transitions. However, unlike in the atomic structure calculations, where levels are identified spectroscopically based on the leading percentage contributions of configurations, BPRM is incapable of such identification of the levels and hence the transitions. The main reason for it is that the percentage contributions can not be determined exactly from the large number of channels in the R-matrix space. The present report describes an identification method that uses considerations of quantum defects of channels, contributions of channel from outer regions, Hund's rule, and angular momenta algebra for addition and completeness of fine structure components. The present calculations are carried out using a close coupling wave function expansion that included 26 core excitations from configurations 2s22p63s2, 2s22p63s3p,2s22p63p2,2s22p63s3d, and 2s22p63p3d. A total of 1002 fine structure levels with n ⩽ 10, l⩽9, and 0.5 ⩽J⩽ 9.5 with even and odd parities and the corresponding 130,520 electric dipole allowed (E1) fine structure transitions, a most complete set for astrophysical modelings of spectral analysis and opacities, is presented. Large number of new energy levels are found and identified. The energies agree very well, mostly in less than 1% with the highest being 1.9%, with the 68 observed fine structure levels. While the high lying levels may have some uncertainty, an overall accuracy of energy levels should be within 10%. BPRM transitions have been benchmarked with the existing most accurate calculated transition probabilities with very good agreement for most cases. Based on the accuracy of the method and comparisons, most of the transitions can be rated with A (⩽10%) to C (⩽30%).

  6. Size structure of marine soft-bottom macrobenthic communities across natural habitat gradients: implications for productivity and ecosystem function.

    PubMed

    Macdonald, Tara A; Burd, Brenda J; van Roodselaar, Albert

    2012-01-01

    Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2(-6)J to 2(16)J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m(2)/yr/δ(15)N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m(2)/yr/δ(15)N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m(2)/yr/δ(15)N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed.

  7. Size Structure of Marine Soft-Bottom Macrobenthic Communities across Natural Habitat Gradients: Implications for Productivity and Ecosystem Function

    PubMed Central

    Macdonald, Tara A.; Burd, Brenda J.; van Roodselaar, Albert

    2012-01-01

    Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2−6J to 216J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m2/yr/δ15N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m2/yr/δ15N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m2/yr/δ15N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed. PMID:22911694

  8. XFAS SPECTROSCOPY ANALYSIS OF SELECTED HAP ELEMENTS IN FINE PM DERIVED FROM COAL COMBUSTION: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-RTP-P-646 Shoji, T., Huggins, F.E., Huffman, G.P., Linak*, W.P., and Miller*, C.A. XFAS Spectroscopy Analysis of Selected HAP Elements in Fine PM Derived from Coal Combustion. Energy and Fuels 16 (2): (2002). 11/30/2001 X-ray absorption fine structure (XAFS) spectroscop...

  9. Using 2D: 4D digit ratios to determine motor skills in children.

    PubMed

    Wang, Y; Wang, H-L; Li, Y-H; Zhu, F-L; Li, S-J; Ni, H

    2016-03-01

    In past few decades, there has an outburst of research surrounding second to fourth finger digit ratio (2D:4D) and its relation to prenatal sex steroids including both testosterone and estrogen. In utero, testosterone and estrogen are responsible for the differences in digit ratio between the genders. Recent research has tried to extend past the influence of steroids and look at the potential effect of digit ratios on fine and gross motor skills in children. We compiled the current understanding of the connection between sex hormones and the development of the 2D:4D ratio as well as the effect the ratio has on motor skills. There seems to be a significant positive correlation between 2D:4D digit ratio and precision of fine motor skill. In addition, there is a negative correlation between 2D:4D ratio and speed of fine motor activity. In this review, we will outline the use of 2D:4D ratio as a biomarker for prenatal sex steroids and through that, a proxy marker for fine and gross motor skills.

  10. Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch.

    PubMed

    Goldstein, Avi; Annor, George; Blennow, Andreas; Bertoft, Eric

    2017-09-01

    The impact of diurnal photosynthetic activity on the fine structure of the amylopectin fraction of starch synthesized by normal barley (NBS) and waxy barley (WBS), the latter completely devoid of amylose biosynthesis, was determined following the cultivation under normal diurnal or constant light growing conditions. The amylopectin fine structures were analysed by characterizing its unit chain length profiles after enzymatic debranching as well as its φ,β-limit dextrins and its clusters and building blocks after their partial and complete hydrolysis with α-amylase from Bacillus amyloliquefaciens, respectively. Regardless of lighting conditions, no structural effects were found when comparing both the amylopectin side-chain distribution and the internal chain fragments of these amylopectins. However, the diurnally grown NBS and WBS both showed larger amylopectin clusters and these had lower branching density and longer average chain lengths than clusters derived from plants grown under constant light conditions. Amylopectin clusters from diurnally grown plants also consisted of a greater number of building blocks, and shorter inter-block chain lengths compared to clusters derived from plants grown under constant light. Our data demonstrate that the diurnal light regime influences the fine structure of the amylopectin component both in amylose and non-amylose starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Natural SM-like 126 GeV Higgs boson via nondecoupling D terms

    DOE PAGES

    Bertuzzo, Enrico; Frugiuele, Claudia

    2016-02-16

    Accommodating both a 126 GeV mass and standard model (SM)-like couplings for the Higgs has a fine-tuning price in supersymmetric models. Examples are the minimal supersymmetric standard model, in which SM-like couplings are natural, but raising the Higgs mass to 126 GeV requires a considerable tuning, and the nonminimal supersymmetric standard model, in which the situation is reversed: the Higgs is naturally heavier, but being SM-like requires some tuning. Finally, we show that models with nondecoupling D terms alleviate this tension—a 126 GeV SM-like Higgs comes out basically with no fine-tuning cost. In addition, the analysis of the fine-tuning of the extended gaugemore » sector shows that naturalness requires the heavy gauge bosons to likely be within the reach of LHC run II.« less

  12. Structural, electronic, magnetic, and transport properties of the equiatomic quaternary Heusler alloy CoRhMnGe: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Rani, Deepika; Enamullah, Suresh, K. G.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Varma, Manoj Raama; Alam, Aftab

    2017-11-01

    In this work, we present structural, electronic, magnetic, mechanical, and transport properties of equiatomic quaternary Heusler alloy, CoRhMnGe, using theoretical and experimental techniques. A detailed structural analysis is performed using x-ray diffraction and extended x-ray absorption fine structure spectroscopy. The alloy is found to crystallize in Y -type structure having space group F 4 ¯3 m (no. 216). The ab initio simulation predicts half-metallic ferromagnetic characteristics leading to large spin polarization. The calculated magnetization is found to be in fair agreement with experiment as well as those predicted by the Slater-Pauling rule, which is a prerequisite for half-metallicity. The magnetic transition temperature (TC) is found to be ˜760 K. Measured electrical resistivity in the temperature range 2-400 K also gives an indication of half-metallic behavior. Effect of hydrostatic pressure on electronic structure, magnetic, and mechanical properties are investigated in detail. The alloy is found to preserve half-metallic characteristics up to 30.27 GPa, beyond which it transits to metallic phase. No magnetic phase transition is found to occur in the whole range of pressure. The system also satisfies the Born-Huang criteria for mechanical stability up to a limited range of pressure. All these properties make the CoRhMnGe alloy promising for spintronics devices.

  13. Studies on the wintertime current structure and T-S fine-structure in the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Hu, Jianyu; Fu, Zilang; Wu, Lianxing

    1990-12-01

    A cruise through the western sea area of the Taiwan Strait was carried out by the R/V Dong Fang Hong in December, 1987. Eight anchored and 10 not anchored stations were set up. Over 25 time-series current observations were made at each station and CTD (Conductivity-temperature-depth) measurements were made at 5 anchored and 10 not anchored stations. Based on the measured data. fine-structures and step-like vertical structures of temperature and salinity were analysed and a tentative wintertime current structure in the Taiwan Strait was described.

  14. Corrosion Prediction with Parallel Finite Element Modeling for Coupled Hygro-Chemo Transport into Concrete under Chloride-Rich Environment

    PubMed Central

    Na, Okpin; Cai, Xiao-Chuan; Xi, Yunping

    2017-01-01

    The prediction of the chloride-induced corrosion is very important because of the durable life of concrete structure. To simulate more realistic durability performance of concrete structures, complex scientific methods and more accurate material models are needed. In order to predict the robust results of corrosion initiation time and to describe the thin layer from concrete surface to reinforcement, a large number of fine meshes are also used. The purpose of this study is to suggest more realistic physical model regarding coupled hygro-chemo transport and to implement the model with parallel finite element algorithm. Furthermore, microclimate model with environmental humidity and seasonal temperature is adopted. As a result, the prediction model of chloride diffusion under unsaturated condition was developed with parallel algorithms and was applied to the existing bridge to validate the model with multi-boundary condition. As the number of processors increased, the computational time decreased until the number of processors became optimized. Then, the computational time increased because the communication time between the processors increased. The framework of present model can be extended to simulate the multi-species de-icing salts ingress into non-saturated concrete structures in future work. PMID:28772714

  15. Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study.

    PubMed

    Guiné, V; Spadini, L; Sarret, G; Muris, M; Delolme, C; Gaudet, J P; Martins, J M F

    2006-03-15

    The acid-base and Zn sorption properties of three bacteria, Cupriavidus metallidurans CH34, Pseudomonas putida ATCC12633, and Escherichia coli K12DH5alpha, were investigated through an original combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and equilibrium titration studies. Acid-base titration curves of the three strains were fitted with a model accounting for three conceptual reactive sites: an acidic (carboxyl and/or phosphodiester), a neutral (phosphomonoester), and a basic (amine and/or hydroxyl) group. Calculated proton and Zn equilibrium constants and site densities compare with literature data. The nature of Zn binding sites was studied by EXAFS spectroscopy. Phosphoester, carboxyl, and unexpectedly sulfhydryl ligands were identified. Their proportions depended on Zn loading and bacterial strain and were consistent with the titration results. These findings were compared to the structure and site density of the major cell wall components. It appeared that the cumulated theoretical site density of these structures (<2 Zn nm(-2)) was much lower than the total site density of the investigated strains (16-56 Zn nm(-2)). These results suggest a dominant role of extracellular polymeric substances in Zn retention processes, although Zn binding to inner cell components cannot be excluded.

  16. Band gaps in grid structure with periodic local resonator subsystems

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoqin; Wang, Jun; Wang, Rongqi; Lin, Jieqiong

    2017-09-01

    The grid structure is widely used in architectural and mechanical field for its high strength and saving material. This paper will present a study on an acoustic metamaterial beam (AMB) based on the normal square grid structure with local resonators owning both flexible band gaps and high static stiffness, which have high application potential in vibration control. Firstly, the AMB with variable cross-section frame is analytically modeled by the beam-spring-mass model that is provided by using the extended Hamilton’s principle and Bloch’s theorem. The above model is used for computing the dispersion relation of the designed AMB in terms of the design parameters, and the influences of relevant parameters on band gaps are discussed. Then a two-dimensional finite element model of the AMB is built and analyzed in COMSOL Multiphysics, both the dispersion properties of unit cell and the wave attenuation in a finite AMB have fine agreement with the derived model. The effects of design parameters of the two-dimensional model in band gaps are further examined, and the obtained results can well verify the analytical model. Finally, the wave attenuation performances in three-dimensional AMBs with equal and unequal thickness are presented and discussed.

  17. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 < T < 350 K) magneto transport measurements were done on the Fe(Si1-xGex)2 thin films via Van Der Paw (VDP) Hall configuration using a 0.5-1T magnetic field and a current of 10-200 μA through indium ohmic contacts, the Hall coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  18. Structure of possible long-lived asteroid belts

    NASA Astrophysics Data System (ADS)

    Evans, N. W.; Tabachnik, S. A.

    2002-06-01

    High-resolution simulations are used to map out the detailed structure of two long-lived stable belts of asteroid orbits in the inner Solar system. The Vulcanoid belt extends from 0.09 to 0.20au, though with a gaps at 0.15 and 0.18au corresponding to de-stabilizing mean motion resonances with Mercury and Venus. As collisional evolution proceeds slower at larger heliocentric distances, km-sized or larger Vulcanoids are most likely to be found in the region between 0.16 and 0.18au. The optimum location to search is at geocentric ecliptic longitudes 9°<=|lg|<=10° and latitudes |βg|<1°. Dynamically speaking, the Earth-Mars belt between 1.08 and 1.28au is a stable repository for asteroids on nearly circular orbits. It is interrupted at 1.21au owing to the 3:4 commensurability with the Earth, while secular resonances with Saturn are troublesome beyond 1.17au. These detailed maps of the fine structure of the belts can be used to plan search methodologies. Strategies for detecting members of the belts are discussed, including the use of infrared wide-field imaging with VISTA, and forthcoming European Space Agency satellite missions such as GAIA and BepiColombo.

  19. Effects of a suppressor tone on distortion product otoacoustic emissions fine structure: why a universal suppressor level is not a practical solution to obtaining single-generator DP-grams.

    PubMed

    Dhar, Sumitrajit; Shaffer, Lauren A

    2004-12-01

    The use of a suppressor tone has been proposed as the method of choice in obtaining single-generator distortion product (DP) grams, the speculation being that such DP grams will be more predictive of hearing thresholds. Current distortion product otoacoustic emissions (DPOAE) theory points to the ear canal DPOAE signal being a complex interaction between multiple components. The effectiveness of a suppressor tone is predicted to be dependent entirely on the relative levels of these components. We examine the validity of using a suppressor tone through a detailed examination of the effects of a suppressor on DPOAE fine structure in individual ears. DPOAE fine structure, recorded in 10 normal-hearing individuals with a suppressor tone at 45, 55, and 65 dB SPL, was compared with recordings without a suppressor. Behavioral hearing thresholds were also measured in the same subjects, using 2-dB steps. The effect of the suppressor tone on DPOAE fine structure varied between ears and was dependent on frequency within ears. Correlation between hearing thresholds and DPOAE level measured without a suppressor was similar to previous reports. The effects of the suppressor are explained in the theoretical framework of a model involving multiple DPOAE components. Our results suggest that a suppressor tone can have highly variable effects on fine structure across individuals or even across frequency within one ear, thereby making the use of a suppressor less viable as a clinical tool for obtaining single-generator DP grams.

  20. Assessing the in vitro toxicity of the lunar dust environment using respiratory cells exposed to Al(2)O(3) or SiO(2) fine dust particles.

    PubMed

    Jordan, Jacqueline A; Verhoff, Ashley M; Morgan, Julie E; Fischer, David G

    2009-12-01

    Prior chemical and physical analysis of lunar soil suggests a composition of dust particles that may contribute to the development of acute and chronic respiratory disorders. In this study, fine Al(2)O(3) (0.7 μm) and fine SiO(2) (mean 1.6 μm) were used to assess the cellular uptake and cellular toxicity of lunar dust particle analogs. Respiratory cells, murine alveolar macrophages (RAW 264.7) and human type II epithelial (A549), were cultured as the in vitro model system. The phagocytic activity of both cell types using ultrafine (0.1 μm) and fine (0.5 μm) fluorescent polystyrene beads was determined. Following a 6-h exposure, RAW 264.7 cells had extended pseudopods with beads localized in the cytoplasmic region of cells. After 24 h, the macrophage cells were rounded and clumped and lacked pseudopods, which suggest impairment of phagocytosis. A549 cells did not contain beads, and after 24 h, the majority of the beads appeared to primarily coat the surface of the cells. Next, we investigated the cellular response to fine SiO(2) and Al(2)O(3) (up to 5 mg/ml). RAW 264.7 cells exposed to 1.0 mg/ml of fine SiO(2) for 6 h demonstrated pseudopods, cellular damage, apoptosis, and necrosis. A549 cells showed slight toxicity when exposed to fine SiO(2) for the same time and dose. A549 cells had particles clustered on the surface of the cells. Only a higher dose (5.0 mg/ml) of fine SiO(2) resulted in a significant cytotoxicity to A549 cells. Most importantly, both cell types showed minimal cytotoxicity following exposure to fine Al(2)O(3). Overall, this study suggests differential cellular toxicity associated with exposure to fine mineral dust particles.

  1. Microwave spectroscopy of the 1 s n p P3J fine structure of high Rydberg states in 4He

    NASA Astrophysics Data System (ADS)

    Deller, A.; Hogan, S. D.

    2018-01-01

    The 1 s n p P3J fine structure of high Rydberg states in helium has been measured by microwave spectroscopy of single-photon transitions from 1 s n s S31 levels in pulsed supersonic beams. For states with principal quantum numbers in the range from n =34 to 36, the J =0 →2 and J =1 →2 fine structure intervals were both observed. For values of n between 45 and 51 only the larger J =0 →2 interval was resolved. The experimental results are in good agreement with theoretical predictions. Detailed characterization of residual uncanceled electric and magnetic fields in the experimental apparatus and calculations of the Stark and Zeeman structures of the Rydberg states in weak fields were used to quantify systematic contributions to the uncertainties in the measurements.

  2. Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi

    2017-04-01

    An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.

  3. Strained spiral vortex model for turbulent fine structure

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  4. Photoionization modeling of the LWS fine-structure lines in IR bright galaxies

    NASA Technical Reports Server (NTRS)

    Satyapal, S.; Luhman, M. L.; Fischer, J.; Greenhouse, M. A.; Wolfire, M. G.

    1997-01-01

    The long wavelength spectrometer (LWS) fine structure line spectra from infrared luminous galaxies were modeled using stellar evolutionary synthesis models combined with photoionization and photodissociation region models. The calculations were carried out by using the computational code CLOUDY. Starburst and active galactic nuclei models are presented. The effects of dust in the ionized region are examined.

  5. Study of the Role of Vortex Annihilation in the Mechanism of Neutron and X-Ray Production in the Plasma Focus.

    DTIC Science & Technology

    This paper shows that an understanding of the nature of the x-ray and neutron producing processes in the plasma focus requires a study of the ’fine...structure’ of the plasma focus and that this fine structure study requires diagnostic techniques with spacial resolution down to 50 micrometers and

  6. Balloon Borne Arc-Second Pointer Feasibility Study

    NASA Technical Reports Server (NTRS)

    Ward, Philip R.; DeWeese, Keith D.

    2003-01-01

    For many years scientists have been utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The foundation for a high fidelity controller simulation is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is introduced for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static fiction are provided. A unique bearing hub design is introduced that eliminates static fiction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. This paper establishes that the proposed control strategy can be made robustly stable with significant design margins. Also demonstrated is the efficacy of the proposed system in rejecting disturbances larger than those considered realistic. Finally, we see that sub arc-second pointing stability can be achieved for a large instrument pointing at an inertial target.

  7. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    NASA Astrophysics Data System (ADS)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  8. Effective Collision Strengths for Fine-structure Transitions in Si VII

    NASA Astrophysics Data System (ADS)

    Sossah, A. M.; Tayal, S. S.

    2014-05-01

    The effective collision strengths for electron-impact excitation of fine-structure transitions in Si VII are calculated as a function of electron temperature in the range 5000-2,000,000 K. The B-spline Breit-Pauli R-matrix method has been used to calculate collision strengths by electron impact. The target wave functions have been obtained using the multi-configuration Hartree-Fock method with term-dependent non-orthogonal orbitals. The 92 fine-structure levels belonging to the 46 LS states of 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, 2s 22p 33d, and 2s2p 43s configurations are included in our calculations of oscillator strengths and collision strengths. There are 4186 possible fine-structure allowed and forbidden transitions among the 92 levels. The present excitation energies, oscillator strengths, and collision strengths have been compared with previous theoretical results and available experimental data. Generally, a good agreement is found with the 6 LS-state close-coupling approximation results of Butler & Zeippen and the 44 LS-state distorted wave calculation of Bhatia & Landi.

  9. Rotational and fine structure of open-shell molecules in nearly degenerate electronic states

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun

    2018-03-01

    An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.

  10. Analytical SuperSTEM for extraterrestrial materials research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J P; Dai, Z R

    2009-09-08

    Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried outmore » with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.« less

  11. Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.

    PubMed

    Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya

    2018-04-10

    In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.

  12. Isochronal annealing effects on local structure, crystalline fraction, and undamaged region size of radiation damage in Ga-stabilized δ-Pu

    DOE PAGES

    Olive, D. T.; Booth, C. H.; Wang, D. L.; ...

    2016-07-19

    The effects on the local structure due to self-irradiation damage of Ga stabilized δ-Pu stored at cryogenic temperatures have been examined using extended x-ray absorption fine structure (EXAFS) experiments. Extensive damage, seen as a loss of local order, was evident after 72 days of storage below 15 K. The effect was observed from both the Pu and the Ga sites, although less pronounced around Ga. Isochronal annealing was performed on this sample to study the annealing processes that occur between cryogenic and room temperature storage conditions, where damage is mostly reversed. Damage fractions at various points along the annealing curvemore » have been determined using an amplitude-ratio method, a standard EXAFS fitting, and a spherical crystallite model, and provide information complementary to the previous electrical resistivity- and susceptibility-based isochronal annealing studies. The use of a spherical crystallite model accounts for the changes in EXAFS spectra using just two parameters, namely, the crystalline fraction and the particle radius. Altogether, these results are discussed in terms of changes to the local structure around Ga and Pu throughout the annealing process and highlight the unusual role of Ga in the behavior of the lowest temperature anneals.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhicheng; Rao, Linfeng; Abney, Carter W.

    Adsorbents developed for the recovery of uranium from seawater display poor selectivity over other transition metals present in the ocean, with vanadium particularly problematic. To improve selectivity, an indispensable step is the positive identification of metal binding environments following actual seawater deployment. In this work we apply x-ray absorption fine structure (XAFS) spectroscopy to directly investigate the vanadium binding environment on seawater-deployed polyamidoxime adsorbents. Comparison of the x-ray absorption near edge spectra (XANES) reveal marked similarities to recently a reported non-oxido vanadium (V) structure formed upon binding with cyclic imidedioxime, a byproduct of generating amidoxime functionalities. Density functional theory (DFT)more » calculations provided a series of putative vanadium binding environments for both vanadium (IV) and vanadium (V) oxidation states, and with both amidoxime and cyclic imidedioxime. Fits of the extended XAFS (EXAFS) data confirmed vanadium (V) is bound exclusively by the cyclic imidedioxime moiety in a 1:2 metal:ligand fashion, though a modest structural distortion is also observed compared to crystal structure data and computationally optimized geometries which is attributed to morphology effects from the polymer graft chain and the absence of crystal packing interactions. These results demonstrate that improved selectivity for uranium over vanadium can be achieved by suppressing the formation of cyclic imidedioxime during preparation of polyamidoxime adsorbents for seawater uranium recovery.« less

  14. Isochronal annealing effects on local structure, crystalline fraction, and undamaged region size of radiation damage in Ga-stabilized δ-Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, D. T.; Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545; Wang, D. L.

    2016-07-21

    The effects on the local structure due to self-irradiation damage of Ga stabilized δ-Pu stored at cryogenic temperatures have been examined using extended x-ray absorption fine structure (EXAFS) experiments. Extensive damage, seen as a loss of local order, was evident after 72 days of storage below 15 K. The effect was observed from both the Pu and the Ga sites, although less pronounced around Ga. Isochronal annealing was performed on this sample to study the annealing processes that occur between cryogenic and room temperature storage conditions, where damage is mostly reversed. Damage fractions at various points along the annealing curve havemore » been determined using an amplitude-ratio method, a standard EXAFS fitting, and a spherical crystallite model, and provide information complementary to the previous electrical resistivity- and susceptibility-based isochronal annealing studies. The use of a spherical crystallite model accounts for the changes in EXAFS spectra using just two parameters, namely, the crystalline fraction and the particle radius. Together, these results are discussed in terms of changes to the local structure around Ga and Pu throughout the annealing process and highlight the unusual role of Ga in the behavior of the lowest temperature anneals.« less

  15. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images showmore » that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.« less

  16. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes.

    PubMed

    López-Oyama, A B; Silva-Molina, R A; Ruíz-García, J; Gámez-Corrales, R; Guirado-López, R A

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ~2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ~0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.

  17. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  18. The fine structure of human germ layers in vivo: clues to the early differentiation of embryonic stem cells in vitro.

    PubMed

    Sathananthan, Henry; Selvaraj, Kamala; Clark, Joan

    2011-08-01

    The fine structure of the three germ layers in human ectopic embryos (stage 7) have been documented by digital light and electron microscopy. The formation of ectoderm, endoderm and mesoderm and notochordal cells, and also the extraembryonic membranes, amnion and yolk sac, are imaged. The germ layers give rise to all the cells and tissues of the human body. Possible clues to the early differentiation of embryonic stem cells (ESC) in vitro were obtained, since these events are more or less mimicked in cultures of ESC derived from the inner cell mass of human blastocysts. The findings are discussed with reference to previous studies on the fine structure of ESC using the same technique. Copyright © 2011. Published by Elsevier Ltd.

  19. 21-cm radiation: a new probe of variation in the fine-structure constant.

    PubMed

    Khatri, Rishi; Wandelt, Benjamin D

    2007-03-16

    We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%.

  20. Measuring the fine structure constant with Bragg diffraction and Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Parker, Richard; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger

    2017-04-01

    We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δÎ+/-/Î+/-=0.25ppb in the fine structure constant measurement, which gives over 10 million radians of phase difference between freely evolving matter waves. We have suppressed many systematic effects known in most atom interferometers with Raman beam splitters such as light shift, Zeeman effect shift as well as vibration. We have also simulated multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implemented spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.

  1. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Murphy, Michael Wayne

    2010-06-01

    Various II-VI semiconducting nanomaterials such as ZnO-ZnS nanoribbons (NRs), CdSxSe1-x nanostructures, ZnS:Mn NRs, ZnS:Mn,Eu nanoprsims (NPs), ZnO:Mn nanopowders, and ZnO:Co nanopowders were synthesized for study. These materials were characterized by techniques such as scanning electron microscopy, transmission electron microscopy, element dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The electronic and optical properties of these nanomaterials were studied by X-ray absorption fine structure (XAFS) spectroscopy and X-ray excited optical luminescence (XEOL) techniques, using tuneable soft X-rays from a synchrotron light source. The complementary nature ofthe XAFS and XEOL techniques give site, element and chemical specific measurements which allow a better understanding of the interplay and role of each element in the system. Chemical vapour deposition (CVD) of ZnS powder in a limited oxygen environment resulted in side-by-side biaxial ZnO-ZnS NR heterostructures. The resulting NRs contained distinct wurtzite ZnS and wurtzite ZnO components with widths of 10--100 nm and 20 --500 nm, respectively and a uniform interface region of 5-15 nm. XAFS and XEOL measurements revealed the luminescence of ZnO-ZnS NRs is from the ZnO component. The luminescence of CdSxSe1-x nanostructures is shown to be dependent on the S to Se ratio, with the band-gap emission being tunable between that of pure CdS and CdSe. Excitation of the CdSxSe 1-x nanostructures by X-ray in XEOL has revealed new de-excitation channels which show a defect emission band not seen by laser excitation. CVD of Mn2+ doped ZnS results in nanostructures with luminescence dominated by the yellow Mn2+ emission due to energy transfer from the ZnS host to the Mn dopant sites. The addition of EuCl3 to the reactants in the CVD process results in a change in morphology from NR to NP. Zn1-xMnxO and Zn1-xCOxO nanopowders were prepared by sol-gel methods at dopant concentrations of 0, 1,3, and 10% and annealed at 400, 600 and 800°C in air. XAFS spectra show that low dopant concentrations and low processing temperatures limit the amount of secondary phase formation. The nanopowders did not show roomtemperature ferromagnetism and increased secondary phase formation increases the paramagnetic character of the hysteresis curves at 5°K. Keywords: X-ray absorption fine structures (XAFS), X-ray absorption near-edge structures (XANES), extended X-ray absorption fine structure (EXAFS), X-ray absorption spectroscopy(XAS), X-ray excited optical luminescence (XEOL), time-resolved, II-VI semiconductors, nanostructure, nanomaterial, nanoribbon, nanowire, nanopartic1e, heterostructure, ZnO, ZnS, ZnO-ZnS, CdS, CdSe, CdSSe, ZnO:Mn, ZnO:Co, ZnS:Mn, dilute magnetic semiconductor (DMS), dilute magnetic oxide (DMO), spintronics, magnetism, paramagnetism, ferromagnetism.

  2. Fine-scale spatial patterns in the demersal fish and invertebrate community in a northwest Atlantic ecosystem

    NASA Astrophysics Data System (ADS)

    Malek, Anna J.; Collie, Jeremy S.; Gartland, James

    2014-06-01

    The abundance, biomass, diversity, and species composition of the demersal fish and invertebrate community in Rhode Island Sound and Block Island Sound, an area identified for offshore renewable energy development, were evaluated for spatial and seasonal structure. We conducted 58 otter trawls and 51 beam trawls in the spring, summer and fall of 2009-2012, and incorporated additional data from 88 otter trawls conducted by the Northeast Area Monitoring and Assessment Program. We used regionally-grouped abundance, biomass, diversity, and size spectra to assess spatial patterns in the aggregate fish community, and hierarchical cluster analysis to evaluate trends in species assemblages. Our analyses revealed coherent gradients in fish community biomass, diversity and species composition extending from inshore to offshore waters, as well as patterns related to the differing bathymetry of Rhode Island and Block Island Sounds. The fish communities around Block Island and Cox's Ledge are particularly diverse, suggesting that the proximity of hard bottom habitat may be important in structuring fish communities in this area. Species assemblages in Rhode Island and Block Island Sounds are characterized by a combination of piscivores (silver hake, summer flounder, spiny dogfish), benthivores (American lobster, black sea bass, Leucoraja spp. skates, scup) and planktivores (sea scallop), and exhibit geographic patterns that are persistent from year to year, yet variable by season. Such distributions reflect the cross-shelf migration of fish and invertebrate species in the spring and fall, highlighting the importance of considering seasonal fish behavior when planning construction schedules for offshore development projects. The fine spatial scale (10 s of kms) of this research makes it especially valuable for local marine spatial planning efforts by identifying local-scale patterns in fish community structure that will enable future assessment of the ecological impacts of offshore development. As such, this knowledge of the spatial and temporal structure of the demersal fish community in Rhode Island and Block Island Sounds will help to guide the placement of offshore structures so as to preserve the ecological and economic value of the area.

  3. Extended calculations of energy levels, radiative properties, AJ, BJ hyperfine interaction constants, and Landé gJ-factors for nitrogen-like Ge XXVI

    NASA Astrophysics Data System (ADS)

    Wang, K.; Zhang, C. Y.; Jönsson, P.; Si, R.; Zhao, X. H.; Chen, Z. B.; Guo, X. L.; Chen, C. Y.; Yan, J.

    2018-03-01

    Employing two state-of-the-art methods, multiconfiguration Dirac-Hartree-Fock and second-order many-body perturbation theory, highly accurate calculations are performed for the lowest 272 fine-structure levels arising from the 2s22p3, 2s2p4, 2p5, 2s22p23l (l = s , p , d), 2s2p33l (l = s , p , d), and 2p43l (l = s , p , d) configurations in nitrogen-like Ge XXVI. Complete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors, and E1, E2, M1, M2 line strengths, oscillator strengths, and transition rates among these 272 levels are provided. Comparisons are made between the present two data sets, as well as with other available experimental and theoretical values. The present data are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing fusion plasmas.

  4. Counter-ion and dopant effects on charge carriers in intrinsically conductive polymer

    NASA Astrophysics Data System (ADS)

    Ogle, Jonathan; Yehulie, Mandefro; Boehme, Christoph; Whittaker-Brooks, Luisa

    Recently, a significant amount of attention has been devoted to the optimization and applications of organic electronics. In particular, intrinsically conductive polymers have seen a strong continued interest for their use in thermoelectric and photovoltaic devices. With conductivities ranging from 10-8 to 103 S cm-1, the conductive polymer poly(3,4-ethylenedioxythiophene) -PEDOT is one of the most studied solution-processable polymer material due to its unique optical and electronic properties. While charge carriers at lower conductivities have been identified as polarons, an understanding of the electronic structure of PEDOT as its conductivity increases is not well understood. We have investigated the effect that counter-ion exchange and doping has on the polaron concentration of PEDOT via electron paramagnetic resonance, ultraviolet photoelectron spectroscopy, and X-ray absorption fine structure spectroscopy studies. Such studies have allowed us to correlate charge carriers concentrations and the real and virtual electronic states in PEDOT as a function of various dopants. As discussed in our talk, we believe our findings could be extended to the understanding of other polymeric materials.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Chao; Hong Fashui; Wu Kang

    Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd{sup 3+} treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200 kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gelmore » electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd{sup 3+}-treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd{sup 3+}-treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89 A, respectively.« less

  6. Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies.

    PubMed

    Tan, Xiaoli; Fan, Qiaohui; Wang, Xiangke; Grambow, Bernd

    2009-05-01

    The sorption of Eu(III) on anatase and rutile was studied as a function of ionic strength, humic acid (HA, 7.5 mg/L), and electrolyte anions over a large range of pH (2-12). The presence of HA significantly affected Eu(III) sorption to anatase and rutile. The sorption of Eu(III) on anatase and rutile was independent of ionic strength. Results of an X-ray photoelectron spectroscopy (XPS) analysis showed that Eu(III) was chemically present within the near-surface of TiO2 due to the formation of triple bond SOEu and triple bond SOHAEu complexes. An extended X-ray absorption fine structure (EXAFS) technique was applied to characterize the local structural environment of the adsorbed Eu(III), and the results indicated that Eu(III) was bound to about seven or eight O atoms at a distance of about 2.40 A. The functional groups of surface-bound HA were expected to be involved in the sorption process. The measured Eu-Ti distance confirmed the formation of inner-sphere sorption complexes on a TiO2 surface.

  7. Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells.

    PubMed

    Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S

    2006-05-25

    In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.

  8. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lei; Qin, Feiyu; Sanson, Andrea

    The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engi-neered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortionmore » presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.« less

  9. Structural Characterization of Am(III)- and Pu(III)-DOTA Complexes.

    PubMed

    Audras, Matthieu; Berthon, Laurence; Berthon, Claude; Guillaumont, Dominique; Dumas, Thomas; Illy, Marie-Claire; Martin, Nicolas; Zilbermann, Israel; Moiseev, Yulia; Ben-Eliyahu, Yeshayahu; Bettelheim, Armand; Cammelli, Sebastiano; Hennig, Christoph; Moisy, Philippe

    2017-10-16

    The complexation of 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) ligand with two trivalent actinides (Am 3+ and Pu 3+ ) was investigated by UV-visible spectrophotometry, NMR spectroscopy, and extended X-ray absorption fine structure in conjunction with computational methods. The complexation process of these two cations is similar to what has been previously observed with lanthanides(III) of similar ionic radius. The complexation takes place in different steps and ends with the formation of a (1:1) complex [(An(III)DOTA)(H 2 O)] - , where the cation is bonded to the nitrogen atoms of the ring, the four carboxylate arms, and a water molecule to complete the coordination sphere. The formation of An(III)-DOTA complexes is faster than the Ln(III)-DOTA systems of equivalent ionic radius. Furthermore, it is found that An-N distances are slightly shorter than Ln-N distances. Theoretical calculations showed that the slightly higher affinity of DOTA toward Am over Nd is correlated with slightly enhanced ligand-to-metal charge donation arising from oxygen and nitrogen atoms.

  10. Directed evolution of a model primordial enzyme provides insights into the development of the genetic code.

    PubMed

    Müller, Manuel M; Allison, Jane R; Hongdilokkul, Narupat; Gaillon, Laurent; Kast, Peter; van Gunsteren, Wilfred F; Marlière, Philippe; Hilvert, Donald

    2013-01-01

    The contemporary proteinogenic repertoire contains 20 amino acids with diverse functional groups and side chain geometries. Primordial proteins, in contrast, were presumably constructed from a subset of these building blocks. Subsequent expansion of the proteinogenic alphabet would have enhanced their capabilities, fostering the metabolic prowess and organismal fitness of early living systems. While the addition of amino acids bearing innovative functional groups directly enhances the chemical repertoire of proteomes, the inclusion of chemically redundant monomers is difficult to rationalize. Here, we studied how a simplified chorismate mutase evolves upon expanding its amino acid alphabet from nine to potentially 20 letters. Continuous evolution provided an enhanced enzyme variant that has only two point mutations, both of which extend the alphabet and jointly improve protein stability by >4 kcal/mol and catalytic activity tenfold. The same, seemingly innocuous substitutions (Ile→Thr, Leu→Val) occurred in several independent evolutionary trajectories. The increase in fitness they confer indicates that building blocks with very similar side chain structures are highly beneficial for fine-tuning protein structure and function.

  11. Elucidating the oxide growth mechanism on platinum at the cathode in PEM fuel cells.

    PubMed

    Redmond, Erin L; Setzler, Brian P; Alamgir, Faisal M; Fuller, Thomas F

    2014-03-21

    Simulations of platinum oxidation in literature have yet to fully replicate an experimental cyclic voltammogram. In this manuscript a mechanism for platinum oxidation is proposed based upon the results of in operando X-ray absorption spectroscopy, where it was found that PtO2 is present at longer hold times. A new method to quantify extended X-ray absorption fine structure data is presented, and the extent of oxidation is directly compared to electrochemical data. This comparison indicated that PtO2 was formed at the expense of an initial oxide species. From previous literature studies it can be concluded that the rate of platinum oxidation is not a function of only potential and coverage. To that end, the concept of a heterogeneous oxide layer was introduced into the model, whereby place-exchanged PtO2 structures of varying energy states are formed through a single transition state. This treatment allowed, for the first time, the simulation of the correct current-potential behavior at varying scan rates and upper potential limits.

  12. Arsenic Re-Mobilization in Water Treatment Adsorbents Under Reducing Conditions: Part II, XAS and Modeling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu,S.; Jing, C.; Meng, X.

    2008-01-01

    The mechanism of arsenic re-mobilization in spent adsorbents under reducing conditions was studied using X-ray absorption spectroscopy and surface complexation model calculations. X-ray absorption near edge structure (XANES) spectroscopy demonstrated that As(V) was partially reduced to As(III) in spent granular ferric hydroxide (GFH), titanium dioxide (TiO2), activated alumina (AA) and modified activated alumina (MAA) adsorbents after 2 years of anaerobic incubation. As(V) was completely reduced to As(III) in spent granular ferric oxide (GFO) under 2-year incubation. The extended X-ray absorption fine structure (EXAFS) spectroscopy analysis showed that As(III) formed bidentate binuclear surface complexes on GFO as evidenced by an averagemore » As(III)-O bond distance of 1.78 Angstroms and As(III)-Fe distance of 3.34 Angstroms . The release of As from the spent GFO and TiO2 was simulated using the charge distribution multi-site complexation (CD-MUSIC) model. The observed redox ranges for As release and sulfate mobility were described by model calculations.« less

  13. Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances

    USGS Publications Warehouse

    Haitzer, M.; Aiken, G.R.; Ryan, J.N.

    2003-01-01

    Conditional distribution coefficients (KDOM???) for Hg(II) binding to seven dissolved organic matter (DOM) isolates were measured at environmentally relevant ratios of Hg(II) to DOM. The results show that KDOM??? values for different types of samples (humic acids, fulvic acids, hydrophobic acids) isolated from diverse aquatic environments were all within 1 order of magnitude (1022.5??1.0-1023.5??1.0 L kg-1), suggesting similar Hg(II) binding environments, presumably involving thiol groups, for the different isolates. KDOM??? values decreased at low pHs (4) compared to values at pH 7, indicating proton competition for the strong Hg(II) binding sites. Chemical modeling of Hg(II)-DOM binding at different pH values was consistent with bidentate binding of Hg(II) by one thiol group (pKa = 10.3) and one other group (pKa = 6.3) in the DOM, which is in agreement with recent results on the structure of Hg(II)-DOM bonds obtained by extended X-ray absorption fine structure spectroscopy (EXAFS).

  14. Lower Length Scale Characterization and Validation of Formation and Stability of Helium Bubbles in Nano-structured Ferritic Alloys under Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Huijuan; Yun, Di; Hoelzer, David

    In order to extend the operating license of current light water reactors (LWRs) in the United States and other countries to as many as 80 years or longer, it is demanding to identify potential materials for many of the internal structural components and fasteners. We proposed that 14YWT iron alloy can be adopted in such applications with its excellent material properties, such as high-temperature strength, low creep rate, and high irradiation resistance. Application with 14YWT would improve the void/helium swelling characteristics of the LWR fuels, extend the burn-up limits with the tolerant temperature up to 800oC and reduce the hydrogenmore » production. One key feature of 14YWT material property enhancement is the ultrafine high density of 2-4nm Y-Ti-O enriched nanoclusters (NCs) within the 14YWT iron matrix. The NCs can effectively pin the ultra-fine grain boundaries and dislocations, which significantly enhance mechanical properties of the alloy. Moreover, these nanoclusters remain stable with no coarsening after a large dose of ion irradiation. After ion irradiation, the helium bubbles are observed extremely uniform in size (1nm) and quite homogeneously distributed within the 14YWT matrix, which indicates that the microstructure of 14YWT remains remarkably tolerance to radiation damage. However, there is a lack of understanding of 14YWT both theoretically and experimentally in order to understand the mechanism behind the material property enhancement and to further develop and design a new generation of advanced structural material for current LWR applications and future fusion applications.« less

  15. Fine Motor Skills and Early Comprehension of the World: Two New School Readiness Indicators

    ERIC Educational Resources Information Center

    Grissmer, David; Grimm, Kevin J.; Aiyer, Sophie M.; Murrah, William M.; Steele, Joel S.

    2010-01-01

    Duncan et al. (2007) presented a new methodology for identifying kindergarten readiness factors and quantifying their importance by determining which of children's developing skills measured around kindergarten entrance would predict later reading and math achievement. This article extends Duncan et al.'s work to identify kindergarten readiness…

  16. Extending Methods: Using Bourdieu's Field Analysis to Further Investigate Taste

    ERIC Educational Resources Information Center

    Dimick, Alexandra Schindel

    2015-01-01

    In this commentary on Per Anderhag, Per-Olof Wickman and Karim Hamza's article "Signs of taste for science," I consider how their study is situated within the concern for the role of science education in the social and cultural production of inequality. Their article provides a finely detailed methodology for analyzing the constitution…

  17. Decisions, Decisions, Decisions: What Determines the Path Taken in Lectures?

    ERIC Educational Resources Information Center

    Paterson, Judy; Thomas, Mike; Taylor, Steve

    2011-01-01

    A group of mathematicians and mathematics educators are collaborating in the fine-grained examination of selected "slices" of video recordings of lectures, drawing on Schoenfeld's Resources, Orientations and Goals framework of teaching-in-context. In the larger project, we are exploring ways in which this model can be extended to examine…

  18. Updating Circulation Policy for the 21st Century

    ERIC Educational Resources Information Center

    Rupp, Eric; Sweetman, Kimberly; Perry, David

    2010-01-01

    In 2007, New York University's Bobst Library assembled a group of staff charged with suggesting improvements to circulation policy. As a result of these efforts many changes were implemented at the beginning of the 2007-2008 academic year, including extended loan periods and the elimination of routine daily overdue fines. The changes were…

  19. Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.

    PubMed

    Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G

    2018-05-10

    A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Blowing in the Wind: I. Velocities of Chondrule-sized Particles in a Turbulent Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hogan, Robert C.; Fonda, Mark (Technical Monitor)

    2003-01-01

    Small but macroscopic particles - chondrules, higher temperature mineral inclusions, metal grains, and their like - dominate the fabric of primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, suggest that they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In this paper we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (relevant to diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relative to each other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size dependence of these velocities in this important particle size regime, and compare these expressions with new numerical calculations. The magnitude and size dependence of these velocities have immediate applications to chondrule and CAI rimming by fine dust, and to their diffusion in the nebula, which we explore separately.

Top