Extending the Host Range of Bacteriophage Particles for DNA Transduction.
Yosef, Ido; Goren, Moran G; Globus, Rea; Molshanski-Mor, Shahar; Qimron, Udi
2017-06-01
A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability. Copyright © 2017 Elsevier Inc. All rights reserved.
Bortolaia, Valeria; Larsen, Jesper; Damborg, Peter; Guardabassi, Luca
2011-01-01
Thirty of 33 epidemiologically unrelated extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from healthy poultry lacked the virulence genes commonly associated with human-pathogenic strains. The main zoonotic risk is associated with the broad host range of avian E. coli belonging to sequence type complex 10 and of IncN and IncI1 plasmids carrying blaCTX-M or blaSHV. PMID:21705531
USDA-ARS?s Scientific Manuscript database
A field exploration was conducted to confirm the southernmost distribution of Cactoblastis cactorum in Argentina. The distribution of the moth was extended to the south (40° 10´S) and west (66° 56´W). The native Opuntia penicilligera was recorded as a host for the first time. These findings should ...
Castro, Ruth M.; Moreira, Lisela; Rojas, María R.; Gilbertson, Robert L.; Hernández, Eduardo; Mora, Floribeth; Ramírez, Pilar
2013-01-01
Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1) was obtained from a chayote (S. edule) leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV) infecting chayote in the Western Hemisphere. PMID:25288955
Castro, Ruth M; Moreira, Lisela; Rojas, María R; Gilbertson, Robert L; Hernández, Eduardo; Mora, Floribeth; Ramírez, Pilar
2013-09-01
Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ∼1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ∼580 bp corresponding to the coat protein (AV1) was obtained from a chayote (S. edule) leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV) infecting chayote in the Western Hemisphere.
Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.
Jacob, Alison S; Busby, Eloise J; Levy, Abigail D; Komm, Natasha; Clark, C Graham
2016-01-01
Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.
Star formation quenching in quasar host galaxies
NASA Astrophysics Data System (ADS)
Carniani, Stefano
2017-10-01
Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.
USDA-ARS?s Scientific Manuscript database
Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae), commonly known as the carambola fruit fly, is native to Southeast Asia, but has extended its geographic range to several countries in South America. As with other tephritid fruit fly species, establishment of B.carambolae in areas where it...
Does scavenging extend the host range of entomopathogenic nematodes (Nematoda: Steinernematidae)?
Půza, Vladimír; Mrácek, Zdenĕk
2010-05-01
Living and freeze-killed natural and laboratory hosts, with different susceptibility to entomopathogenic nematodes, were exposed to the larvae of Steinernema affine and Steinernema kraussei in two different experimental arenas (Eppendorf tubes, Petri dishes), and the success of the colonisation and eventual progeny production were observed. Both nematodes were able to colonise both living and dead larvae of Galleria mellonella (Lepidoptera) and adult Blatella germanica (Blattodea) even though the progeny production in dead hosts was lower on average. Living carabid beetles, Poecilus cupreus, and elaterid larvae (Coleoptera) were resistant to the infection, however, both nematodes were able to colonise and multiply in several dead P. cupreus and in a majority of dead elaterid larvae. By scavenging, EPNs can utilise cadavers of insects that are naturally resistant to EPN infection, and so broaden their host range. (c) 2010 Elsevier Inc. All rights reserved.
Understanding Host-Switching by Ecological Fitting
Araujo, Sabrina B. L.; Braga, Mariana Pires; Brooks, Daniel R.; Agosta, Salvatore J.; Hoberg, Eric P.; von Hartenthal, Francisco W.; Boeger, Walter A.
2015-01-01
Despite the fact that parasites are highly specialized with respect to their hosts, empirical evidence demonstrates that host switching rather than co-speciation is the dominant factor influencing the diversification of host-parasite associations. Ecological fitting in sloppy fitness space has been proposed as a mechanism allowing ecological specialists to host-switch readily. That proposal is tested herein using an individual-based model of host switching. The model considers a parasite species exposed to multiple host resources. Through time host range expansion can occur readily without the prior evolution of novel genetic capacities. It also produces non-linear variation in the size of the fitness space. The capacity for host colonization is strongly influenced by propagule pressure early in the process and by the size of the fitness space later. The simulations suggest that co-adaptation may be initiated by the temporary loss of less fit phenotypes. Further, parasites can persist for extended periods in sub-optimal hosts, and thus may colonize distantly related hosts by a "stepping-stone" process. PMID:26431199
Marianne Elliott; Gary A. Chastaner; Annie DeBauw; Gil Dermott; Richard A. Sniezko
2012-01-01
Phytophthora cinnamomi (Oomycetes) causes root disease and basal canker on a number of hardwood and conifer hosts, including Pacific madrone (Arbutus menziesii Pursh) (figs. 1, 2), a broadleaf evergreen species whose range extends from coastal British Columbia to southern California (Reeves 2007). Increasing mortality...
Delwart, Eric; Li, Linlin
2011-01-01
The genomes of numerous circoviruses and distantly related circular DNA viruses encoding a rolling circle replication initiator protein (Rep) have been characterized from the tissues of mammals, fish, insects, and plants (geminivirus and nanovirus), human and animal feces, in an algae cell, and in diverse environmental samples. We review the genome organization, phylogenetic relationships and initial prevalence studies of cycloviruses, a proposed new genus in the Circoviridae family. Viral fossil rep sequences were also identified integrated on the chromosomes of mammals, frogs, lancelets, crustaceans, mites, gastropods, roundworms, placozoans, hydrozoans, protozoans, land plants, fungi, algae, and phytoplasma bacterias and their plasmids, reflecting their past host range. An ancient origin for viruses with rep-encoding single stranded small circular genomes, predating the diversification of eukaryotes, is discussed. The cellular hosts and pathogenicity of many recently described rep-containing circular genomes remain to be determined. Future studies of the virome of single cell and multi-cellular eukaryotes are likely to further extend the known diversity and host-range of small rep-containing circular viral genomes. PMID:22155583
Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C. Miguel; Vallejo, Gustavo A.
2015-01-01
Abstract Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(−)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579
Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J
2015-12-01
Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.
On the Formation of Extended Galactic Disks by Tidally Disrupted Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Peñarrubia, Jorge; McConnachie, Alan; Babul, Arif
2006-10-01
We explore the possibility that extended disks, such as that recently discovered in M31, are the result of a single dwarf (109-1010 Msolar) satellite merger. We conduct N-body simulations of dwarf NFW halos with embedded spheroidal stellar components on coplanar, prograde orbits in an M31-like host galaxy. As the orbit decays due to dynamical friction and the system is disrupted, the stellar particles relax to form an extended, exponential-disk-like structure that spans the radial range 30-200 kpc. The disk scale length Rd correlates with the initial extent of the stellar component within the satellite halo: the more embedded the stars, the smaller the resulting disk scale length. If the progenitors start on circular orbits, the kinematics of the stars that make up the extended disk have an average rotational motion that is 30-50 km s-1 lower than the host's circular velocity. For dwarf galaxies moving on highly eccentric orbits (e~=0.7), the stellar debris exhibits a much lower rotational velocity. Our results imply that extended galactic disks might be a generic feature of the hierarchical formation of spiral galaxies such as M31 and the Milky Way.
Infectivity of Sf-rhabdovirus variants in insect and mammalian cell lines.
Maghodia, Ajay B; Jarvis, Donald L
2017-12-01
Sf-rhabdovirus was only recently identified as an adventitious agent of Spodoptera frugiperda (Sf) cell lines used as hosts for baculovirus vectors. As such, we still know little about its genetic variation, infectivity, and the potential impact of variation on the Sf-rhabdovirus-host interaction. Here, we characterized Sf-rhabdoviruses from two widely used Sf cell lines to confirm and extend information on Sf-rhabdovirus variation. We then used our novel Sf-rhabdovirus-negative (Sf-RVN) Sf cell line to assess the infectivity of variants with and without a 320bp X/L deletion and found both established productive persistent infections in Sf-RVN cells. We also assessed their infectivity using heterologous insect and mammalian cell lines and found neither established productive persistent infections in these cells. These results are the first to directly demonstrate Sf-rhabdoviruses are infectious for Sf cells, irrespective of the X/L deletion. They also confirm and extend previous results indicating Sf-rhabdoviruses have a narrow host range. Copyright © 2017 Elsevier Inc. All rights reserved.
Genes involved in host-parasite interactions can be revealed by their correlated expression.
Reid, Adam James; Berriman, Matthew
2013-02-01
Molecular interactions between a parasite and its host are key to the ability of the parasite to enter the host and persist. Our understanding of the genes and proteins involved in these interactions is limited. To better understand these processes it would be advantageous to have a range of methods to predict pairs of genes involved in such interactions. Correlated gene expression profiles can be used to identify molecular interactions within a species. Here we have extended the concept to different species, showing that genes with correlated expression are more likely to encode proteins, which directly or indirectly participate in host-parasite interaction. We go on to examine our predictions of molecular interactions between the malaria parasite and both its mammalian host and insect vector. Our approach could be applied to study any interaction between species, for example, between a host and its parasites or pathogens, but also symbiotic and commensal pairings.
Modeling seasonal migration of fall armyworm moths
USDA-ARS?s Scientific Manuscript database
Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a highly mobile insect pest of a wide range of host crops. However, this pest of tropical origin cannot survive extended periods of freezing temperature, but must repeat a series of northward migratory flights each spring if it is to re-infest ...
Enhanced external and culturally sensitive attributions after extended intercultural contact.
Vollhardt, Johanna Ray
2010-06-01
This study examined the effect of close and extended intercultural contact on attributions for behaviour of out-group members. Specifically, it was hypothesized that extended intercultural contact would enhance the ability to make external and culturally sensitive attributions for ambiguous behaviour of out-group members, while decreasing the common tendency to overestimate internal factors. A content analysis of open-ended attributions supported these hypotheses, revealing that majority group members in Germany who had hosted an exchange student from another continent used significantly less internal and more external as well as culturally sensitive attributions to explain the behaviour described in critical intercultural incidents, compared to future hosts. The effect remained significant when controlling for perspective taking and prior intercultural experience. Moreover, the hypothesis was supported for scenarios describing different cultural groups (regardless of the exchange students' country of origin), suggesting a generalized effect. Problems of selection bias are discussed, and the importance of studying a range of positive outcomes of intercultural contact is emphasized.
Delwart, Eric; Li, Linlin
2012-03-01
The genomes of numerous circoviruses and distantly related circular ssDNA viruses encoding a rolling circle replication initiator protein (Rep) have been characterized from the tissues of mammals, fish, insects, plants (geminivirus and nanovirus), in human and animal feces, in an algae cell, and in diverse environmental samples. We review the genome organization, phylogenetic relationships and initial prevalence studies of cycloviruses, a proposed new genus in the Circoviridae family. Viral fossil rep sequences were also recently identified integrated on the chromosomes of mammals, frogs, lancelets, crustaceans, mites, gastropods, roundworms, placozoans, hydrozoans, protozoans, land plants, fungi, algae, and phytoplasma bacterias and their plasmids, reflecting the very wide past host range of rep bearing viruses. An ancient origin for viruses with Rep-encoding small circular ssDNA genomes, predating the diversification of eukaryotes, is discussed. The cellular hosts and pathogenicity of many recently described rep-containing circular ssDNA genomes remain to be determined. Future studies of the virome of single cell and multi-cellular eukaryotes are likely to further extend the known diversity and host-range of small rep-containing circular ssDNA viral genomes. Copyright © 2011 Elsevier B.V. All rights reserved.
Oman, Sarah J; White, Merlin M
2012-01-01
Trichomycetes or gut fungi are currently considered to be an ecological group consisting of both fungi and protists that inhabit the guts of arthropods from varied environments. Baltomyces styrax has been included as a member of the Asellariales, a small and understudied order of true gut fungi. Baltomyces styrax has remained monotypic and not been reported formally since it was first described by Cafaro in 1999 from one collection in Louisiana. Herein we report on subsequent collections of this fungus, from both lentic and lotic locations, over the past several years from four other states, most recently Idaho, where we have records over a 4 y span. We repeatedly collected at one lentic site in Idaho for 5 mo, which allowed an extended study of not only the life history of B. styrax but also the discovery of morphological characteristics that were not reported earlier. Therefore we are emending the species description and providing additional information on the ecology and host range of B. styrax as well as providing a context for comparison to Asellaria, the type genus of the Asellariales. We also extend the known host range and suggest that the fungus is much more widespread than current records indicate.
Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks
Belkin, Harvey E.; MacDonald, R.; Wall, F.; Baginski, B.
2009-01-01
Electron microprobe analyses are presented of chevkinite-group minerals from Canada, USA, Guatemala, Norway, Scotland, Italy and India. The host rocks are metacarbonates, alkaline and subalkaline granitoids, quartz-bearing pegmatites, carbonatite and an inferred K-rich tuff. The analyses extend slightly the range of compositions in the chevkinite group, e.g. the most MgO-rich phases yet recorded, and we report two further examples where La is the dominant cation in the A site. Patchily- zoned crystals from Virginia and Guatemala contain both perrierite and chevkinite compositions. The new and published analyses are used to review compositional variation in minerals of the perrierite subgroup, which can form in a wide range of host rock compositions and over a substantial pressure- temperature range. The dominant substitutions in the various cation sites and a generalized substitution scheme are described.
Pathogenic and host range determinants of the feline aplastic anemia retrovirus.
Riedel, N; Hoover, E A; Dornsife, R E; Mullins, J I
1988-01-01
Feline leukemia virus (FeLV) C-Sarma (or FSC) is a prototype of subgroup C FeLVs, which induce fatal aplastic anemia in outbred specific-pathogen-free (SPF) cats. FeLV C isolates also possess an extended host range in vitro, including an ability, unique among FeLVs, to replicate in guinea pig cells. To identify the viral determinants responsible for the pathogenicity and host range of FSC we constructed a series of proviral DNAs by exchanging gene fragments between FSC and FeLV-61E (or F6A), the latter of which is minimally pathogenic and whose host range in vitro is restricted to feline cells. Transfer of an 886-base-pair (bp) fragment of FSC, encompassing the codons for 73 amino acids at the 3' end of pol (the integrase/endonuclease gene) and the codons for 241 amino acids of the N-terminal portion of env [the extracellular glycoprotein (gp70) gene], into the F6A genome was sufficient to confer onto chimeric viruses the ability to induce fatal aplastic anemia in SPF cats. In contrast, no chimera lacking this sequence induced disease. When assayed in vitro, all chimeric viruses containing the 886-bp fragment of FSC acquired the ability to replicate in heterologous cells, including dog and guinea pig cells. Thus, the pathogenic and the host range determinants of the feline aplastic anemia retrovirus colocalize to a 3' pol-5' env region of the FSC genome and likely reside within a region encoding 241 amino acid residues of the N terminus of the extracellular glycoprotein. Images PMID:2833751
USDA-ARS?s Scientific Manuscript database
Amblyomma mixtum is a tick species in the Amblyomma cajennense complex. The known geographic range of A. mixtum extends from Texas in the USA to western Ecuador and some islands in the Caribbean. Amblyomma mixtum is a vector of disease agents of veterinary and public health importance. The objective...
Host range, host ecology, and distribution of more than 11800 fish parasite species
Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.
2013-01-01
Our data set includes 38 008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.
Influenza A(H1N1)pdm09 virus infection in giant pandas, China.
Li, Desheng; Zhu, Ling; Cui, Hengmin; Ling, Shanshan; Fan, Shengtao; Yu, Zhijun; Zhou, Yuancheng; Wang, Tiecheng; Qian, Jun; Xia, Xianzhu; Xu, Zhiwen; Gao, Yuwei; Wang, Chengdong
2014-03-01
We confirmed infection with influenza A(H1N1)pdm09 in giant pandas in China during 2009 by using virus isolation and serologic analysis methods. This finding extends the host range of influenza viruses and indicates a need for increased surveillance for and control of influenza viruses among giant pandas.
Compositional variation in the chevkinite group: New data from igneous and metamorphic rocks
Macdonald, R.; Belkin, H.E.; Wall, F.; Baginski, B.
2009-01-01
Electron microprobe analyses are presented of chevkinite-group minerals from Canada, USA, Guatemala, Norway, Scotland, Italy and India. The host rocks are metacarbonates, alkaline and subalkaline granitoids, quartz-bearing pegmatites, carbonatite and an inferred K-rich tuff. The analyses extend slightly the range of compositions in the chevkinite group, e.g. the most MgO-rich phases yet recorded, and we report two further examples where La is the dominant cation in the A site. Patchilyzoned crystals from Virginia and Guatemala contain both perrierite and chevkinite compositions. The new and published analyses are used to review compositional variation in minerals of the perrierite subgroup, which can form in a wide range of host rock compositions and over a substantial pressure-temperature range. The dominant substitutions in the various cation sites and a generalized substitution scheme are described. ?? 2009 The Mineralogical Society.
USDA-ARS?s Scientific Manuscript database
Cabomba caroliniana Gray (Cabombaceae), otherwise known as cabomba or water fanwort, is a submerged, rooted macrophyte with heavily dissected leaves that produces flowers that extend above the water’s surface. It has been disseminated around the world through the aquarium trade and has become a nox...
Zheng, Shou-Tian; Zhao, Xiang; Lau, Samuel; Fuhr, Addis; Feng, Pingyun; Bu, Xianhui
2013-07-17
Reported here are the new concept of utilizing open metal sites (OMSs) for architectural pore design and its practical implementation. Specifically, it is shown here that OMSs can be used to run extended hooks (isonicotinates in this work) from the framework walls to the channel centers to effect the capture of single metal ions or clusters, with the concurrent partitioning of the large channel spaces into multiple domains, alteration of the host-guest charge relationship and associated guest-exchange properties, and transfer of OMSs from the walls to the channel centers. The concept of the extended hook, demonstrated here in the multicomponent dual-metal and dual-ligand system, should be generally applicable to a range of framework types.
Lemoine, Nathan P
2015-01-01
Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration.
Lemoine, Nathan P.
2015-01-01
Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration. PMID:25705876
Digital Alloy Absorber for Photodetectors
NASA Technical Reports Server (NTRS)
Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)
2016-01-01
In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.
NASA Astrophysics Data System (ADS)
Wylezalek, Dominika; Veilleux, Sylvain; Zakamska, Nadia; Barrera-Ballesteros, J.; Luetzgendorf, N.; Nesvadba, N.; Rupke, D.; Sun, A.
2017-11-01
In the last few years, optical and near-IR IFU observations from the ground have revolutionized extragalactic astronomy. The unprecedented infrared sensitivity, spatial resolution, and spectral coverage of the JWST IFUs will ensure high demand from the community. For a wide range of extragalactic phenomena (e.g. quasars, starbursts, supernovae, gamma ray bursts, tidal disruption events) and beyond (e.g. nebulae, debris disks around bright stars), PSF contamination will be an issue when studying the underlying extended emission. We propose to provide the community with a PSF decomposition and spectral analysis package for high dynamic range JWST IFU observations allowing the user to create science-ready maps of relevant spectral features. Luminous quasars, with their bright central source (quasar) and extended emission (host galaxy), are excellent test cases for this software. Quasars are also of high scientific interest in their own right as they are widely considered to be the main driver in regulating massive galaxy growth. JWST will revolutionize our understanding of black hole-galaxy co-evolution by allowing us to probe the stellar, gas, and dust components of nearby and distant galaxies, spatially and spectrally. We propose to use the IFU capabilities of NIRSpec and MIRI to study the impact of three carefully selected luminous quasars on their hosts. Our program will provide (1) a scientific dataset of broad interest that will serve as a pathfinder for JWST science investigations in IFU mode and (2) a powerful new data analysis tool that will enable frontier science for a wide swath of astrophysical research.
Natural selection underlies apparent stress-induced mutagenesis in a bacteriophage infection model.
Yosef, Ido; Edgar, Rotem; Levy, Asaf; Amitai, Gil; Sorek, Rotem; Munitz, Ariel; Qimron, Udi
2016-04-18
The emergence of mutations following growth-limiting conditions underlies bacterial drug resistance, viral escape from the immune system and fundamental evolution-driven events. Intriguingly, whether mutations are induced by growth limitation conditions or are randomly generated during growth and then selected by growth limitation conditions remains an open question(1). Here, we show that bacteriophage T7 undergoes apparent stress-induced mutagenesis when selected for improved recognition of its host's receptor. In our unique experimental set-up, the growth limitation condition is physically and temporally separated from mutagenesis: growth limitation occurs while phage DNA is outside the host, and spontaneous mutations occur during phage DNA replication inside the host. We show that the selected beneficial mutations are not pre-existing and that the initial slow phage growth is enabled by the phage particle's low-efficiency DNA injection into the host. Thus, the phage particle allows phage populations to initially extend their host range without mutagenesis by virtue of residual recognition of the host receptor. Mutations appear during non-selective intracellular replication, and the frequency of mutant phages increases by natural selection acting on free phages, which are not capable of mutagenesis.
Tsai, Yu-Huan; Disson, Olivier; Bierne, Hélène; Lecuit, Marc
2013-01-01
Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been “murinized” to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlAm) mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlAm-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlAm-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen. PMID:23737746
Tsai, Yu-Huan; Disson, Olivier; Bierne, Hélène; Lecuit, Marc
2013-01-01
Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been "murinized" to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlA(m)) mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlA(m)-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlA(m)-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen.
Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.
Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo
2018-06-01
The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Travi, B L; Zea, A; D'Alessandro, A
1989-04-01
Trypanosoma (Herpetosoma) leeuwenhoeki, originally described in Panamanian sloths, was isolated from Didelphis marsupialis (Marsupialia) and Choloepus hoffmanni (Edentata) inhabiting the Pacific coast of Colombia. Trypanosomes were characterized by their large blood forms (total length 51-53 microns), poor infectivity for mice, and lack of development in Rhodnius prolixus. Isoenzyme studies, with either strains or clones, revealed homogeneous profiles clearly distinct from Trypanosoma cruzi and Trypanosoma rangeli reference strains. The present report extends the geographical distribution of T. leeuwenhoeki to South America and broadens its known host range to another order of mammals.
Extending the granularity of representation and control for the MIL-STD CAIS 1.0 node model
NASA Technical Reports Server (NTRS)
Rogers, Kathy L.
1986-01-01
The Common APSE (Ada 1 Program Support Environment) Interface Set (CAIS) (DoD85) node model provides an excellent baseline for interfaces in a single-host development environment. To encompass the entire spectrum of computing, however, the CAIS model should be extended in four areas. It should provide the interface between the engineering workstation and the host system throughout the entire lifecycle of the system. It should provide a basis for communication and integration functions needed by distributed host environments. It should provide common interfaces for communications mechanisms to and among target processors. It should provide facilities for integration, validation, and verification of test beds extending to distributed systems on geographically separate processors with heterogeneous instruction set architectures (ISAS). Additions to the PROCESS NODE model to extend the CAIS into these four areas are proposed.
Silicon-based silicon–germanium–tin heterostructure photonics
Soref, Richard
2014-01-01
The wavelength range that extends from 1550 to 5000 nm is a new regime of operation for Si-based photonic and opto-electronic integrated circuits. To actualize the new chips, heterostructure active devices employing the ternary SiGeSn alloy are proposed in this paper. Foundry-based monolithic integration is described. Opportunities and challenges abound in creating laser diodes, optical amplifiers, light-emitting diodes, photodetectors, modulators, switches and a host of high-performance passive infrared waveguided components. PMID:24567479
Dynamically Reconfigurable Systolic Array Accelorators
NASA Technical Reports Server (NTRS)
Dasu, Aravind (Inventor); Barnes, Robert C. (Inventor)
2014-01-01
A polymorphic systolic array framework that works in conjunction with an embedded microprocessor on an FPGA, that allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms and extendable to more complex applications in the area of aerospace embedded systems.
Arai, Satoru; Taniguchi, Satoshi; Aoki, Keita; Yoshikawa, Yasuhiro; Kyuwa, Shigeru; Tanaka-Taya, Keiko; Masangkay, Joseph S; Omatsu, Tsutomu; Puentespina, Roberto; Watanabe, Shumpei; Alviola, Phillip; Alvarez, James; Eres, Eduardo; Cosico, Edison; Quibod, Ma Niña Regina M; Morikawa, Shigeru; Yanagihara, Richard; Oishi, Kazunori
2016-11-01
The recent discovery of genetically distinct hantaviruses in multiple species of shrews and moles (order Eulipotyphla, families Soricidae and Talpidae) prompted a further exploration of their host diversification and geographic distribution by analyzing lung tissues from 376 fruit bats representing six genera (order Chiroptera, suborder Yinpterochiroptera, family Pteropodidae), collected in the Republic of the Philippines during 2008 to 2013. Hantavirus RNA was detected by RT-PCR in one of 15 Geoffroy's rousettes (Rousettus amplexicaudatus), captured in Quezon Memorial National Park on Luzon Island in 2009. Phylogenetic analyses of the S, M and L segments, using maximum-likelihood and Bayesian methods, showed that the newfound hantavirus, designated Quezon virus (QZNV), shared a common ancestry with hantaviruses hosted by insectivorous bats, in keeping with their evolutionary relationships and suggests that ancestral bats may have served as the early or original mammalian hosts of primordial hantaviruses. As the first hantavirus detected in a megabat or flying fox species, QZNV extends our knowledge about the reservoir host range. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, H-W; Li, Q-W; Ning, G-Z; Han, Z-S; Jiang, Z-L; Duan, Y-F
2009-03-15
Although Rhodiola sacra aqueous extract (RSAE) has been used in many studies as an antioxidant, its effects on semen characteristics and its antioxidant properties during cryopreservation of boar sperm have never been evaluated. Semen was collected from five Duroc boars (2-4-year-old) twice weekly and frozen-thawed in extender with RSEA. Motion characteristics were assessed with a computer-aided semen analysis (CASA) system, whereas other sperm quality end points were assessed by routine methods. The effective concentration of RSEA in extender ranged from 4 to 8mg/L and the effect of RSEA on sperm quality was better in glycerol-free extender than extender containing glycerol (P<0.05). In frozen-thawed boar semen, there was a direct correlation (P<0.05) between RSEA concentration and glutathione (GSH) concentrations, mitochondrial activity, and hypoosmotic swelling test (HOST), and an inverse correlation (r=-0.982, P<0.05) between RSEA concentration and malondialdehyde (all end points were significantly higher at 6mg/L than in the control group). In summary: (i) the effective concentration of RSEA in extender ranged from 4 to 8mg/L; (ii) the effect of RSEA on sperm quality was better in extender without glycerol; and (iii) there was a significant correlation between RSEA concentrations and concentrations of GSH and MAD in frozen-thawed boar semen (antioxidant effects of RSEA were concentration-dependent). Further studies are needed to define the active ingredient in RSEA that protects boar sperm against ROS.
NASA Astrophysics Data System (ADS)
Bayliss, Matthew B.; Sharon, Keren; Acharyya, Ayan; Gladders, Michael D.; Rigby, Jane R.; Bian, Fuyan; Bordoloi, Rongmon; Runnoe, Jessie; Dahle, Hakon; Kewley, Lisa; Florian, Michael; Johnson, Traci; Paterno-Mahler, Rachel
2017-08-01
We report the detection of extended Lyα emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Lyα in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ˜200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Lyα emission to its physical origin on one side of the host galaxy at radii ˜0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyα and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyα, host galaxy Lyα, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.
Lukacik, Petra; Lobley, Carina M C; Bumann, Mario; Arena de Souza, Victoria; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A
2015-10-01
Probiotic bacterial strains have been shown to enhance the health of the host through a range of mechanisms including colonization, resistance against pathogens, secretion of antimicrobial compounds and modulation of the activity of the innate immune system. Lactobacillus salivarius UCC118 is a well characterized probiotic strain which survives intestinal transit and has many desirable host-interaction properties. Probiotic bacteria display a wide range of catabolic activities, which determine their competitiveness in vivo. Some lactobacilli are heterofermentative and can metabolize pentoses, using a pathway in which transketolase and transaldolase are key enzymes. L. salivarius UCC118 is capable of pentose utilization because it encodes the key enzymes on a megaplasmid. The crystal structures of the megaplasmid-encoded transketolase with and without the enzyme cofactor thiamine pyrophosphate have been determined. Comparisons with other known transketolase structures reveal a high degree of structural conservation in both the catalytic site and the overall conformation. This work extends structural knowledge of the transketolases to the industrially and commercially important Lactobacillus genus.
Spitzer Observations of GRB Hosts: A Legacy Approach
NASA Astrophysics Data System (ADS)
Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew
2012-09-01
The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).
Morin-Adeline, Victoria; Fraser, Stuart T; Stack, Colin; Šlapeta, Jan
2015-10-01
The ability for protozoan parasites to tolerate pH fluctuations within their niche is critical for the establishment of infection and require the parasite to be capable of adapting to a distinct pH range. We used two host adapted Tritrichomonas foetus isolates, capable of infecting either the digestive tract (pH 5.3-6.6) of feline hosts or the reproductive tract (pH 7.4-7.8) of bovine hosts to address their adaptability to changing pH. Using flow cytometry, we investigated the pH tolerance of the bovine and feline T. foetus isolates over a range of physiologically relevant pH in vitro. Following exposure to mild acid stress (pH 6), the bovine T. foetus isolates showed a significant decrease in cell viability and increased cytoplasmic granularity (p-value < 0.003, p-value < 0.0002) compared to pH 7 and 8 (p-value > 0.7). In contrast, the feline genotype displayed an enhanced capacity to maintain cell morphology and viability (p-value > 0.05). Microscopic assessment revealed that following exposure to a weak acidic stress (pH 6), the bovine T. foetus transformed into rounded parasites with extended cell volumes and displays a decrease in viability. The higher tolerance for acidic extracellular environment of the feline isolate compared to the bovine isolate suggests that pH could be a critical factor in regulating T. foetus infections and host-specificity. Copyright © 2015 Elsevier Inc. All rights reserved.
The Fossil Record of Black Hole Seeds, with Spatially Resolved Spectroscopy
NASA Astrophysics Data System (ADS)
Trump, Jonathan R.; CANDELS, 3D-HST
2016-01-01
I will present the first robust measurement of black hole occupation over a wide range of host galaxy mass (8
Factors affecting host range in a generalist seed pathogen of semi-arid shrublands
Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg
2014-01-01
Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren
We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission tomore » its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.« less
Poxviruses and the Evolution of Host Range and Virulence
Haller, Sherry L.; Peng, Chen; McFadden, Grant; Rothenburg, Stefan
2013-01-01
Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health. PMID:24161410
Unveiling the Secrets of Metallicity and Massive Star Formation Using DLAs Along Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Cucchiara, A.; Fumagalli, M.; Rafelski, M.; Kocevski, D.; Prochaska, J. X.; Cooke, R. J.; Becker, G. D.
2015-01-01
We present the largest, publicly available, sample of Damped Lyman-alpha systems (DLAs) along Swift discovered Gamma-ray Bursts (GRB) line of sights in order to investigate the environmental properties of long GRB hosts in the z = 1.8 - 6 redshift range. Compared with the most recent quasar DLAs sample (QSO-DLA), our analysis shows that GRB-DLAs probe a more metal enriched environment at z approximately greater than 3, up to [X/H] approximately -0.5. In the z = 2 - 3 redshift range, despite the large number of lower limits, there are hints that the two populations may be more similar (only at 90% significance level) than at higher redshifts. Also, at high-z, the GRB-DLA average metallicity seems to decline at a shallower rate than the QSO-DLAs: GRB-DLA hosts may be polluted with metals at least as far as approximately 2 kpc from the GRB explosion site, probably due to previous star-formation episodes and/or supernovae explosions. This shallow metallicity trend, extended now up to z approximately 5, confirms previous results that GRB hosts are star-forming and have, on average, higher metallicity than the general QSO-DLA population. Finally, our host metallicity measurements are broadly consistent with the predictions derived from the hypothesis of two channels of GRB progenitors, one of which is mildly affected by a metallicity bias, although more data are needed to constrain the models at z approximately greater than 4.
Quenching and ram pressure stripping of simulated Milky Way satellite galaxies
NASA Astrophysics Data System (ADS)
Simpson, Christine; Grand, Robert; Gomez, Facundo; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David; Frenk, Carlos; Auriga Project, Virgo Consortium
2018-01-01
We present predictions for the quenching of star formation in satellite galaxies of the Local Group from a suite of 30 cosmological zoom simulations of Milky Way-like host galaxies. The Auriga simulations resolve satellites down to the luminosity of the classical dwarf spheroidal galaxies of the Milky Way. We find strong mass-dependent and distance-dependent quenching signals, where dwarf systems beyond 600 kpc are only strongly quenched below a stellar mass of 107 M⊙. Ram pressure stripping appears to be the dominant quenching mechanism and 50% of quenched systems cease star formation within 1 Gyr of first infall. We demonstrate that systems within a host galaxy's R200 radius are comprised of two populations: (i) a first infall population that has entered the host halo within the past few Gyrs and (ii) a population of returning `backsplash' systems that have had a much more extended interaction with the host. Backsplash galaxies that do not return to the host galaxy by redshift zero exhibit quenching properties similar to galaxies within R200 and are distinct from other external systems. The simulated quenching trend with stellar mass has some tension with observations, but our simulations are able reproduce the range of quenching times measured from resolved stellar populations of Local Group dwarf galaxies.
Quenching and ram pressure stripping of simulated Milky Way satellite galaxies
NASA Astrophysics Data System (ADS)
Simpson, Christine M.; Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.
2018-07-01
We present predictions for the quenching of star formation in satellite galaxies of the Local Group from a suite of 30 cosmological zoom simulations of Milky Way-like host galaxies. The Auriga simulations resolve satellites down to the luminosity of the classical dwarf spheroidal galaxies of the Milky Way. We find strong mass-dependent and distance-dependent quenching signals, where dwarf systems beyond 600 kpc are only strongly quenched below a stellar mass of 107 M⊙. Ram pressure stripping appears to be the dominant quenching mechanism and 50 per cent of quenched systems cease star formation within 1 Gyr of first infall. We demonstrate that systems within a host galaxy's R200 radius are comprised of two populations: (i) a first infall population that has entered the host halo within the past few Gyrs and (ii) a population of returning `backsplash' systems that have had a much more extended interaction with the host. Backsplash galaxies that do not return to the host galaxy by redshift zero exhibit quenching properties similar to galaxies within R200 and are distinct from other external systems. The simulated quenching trend with stellar mass has some tension with observations, but our simulations are able reproduce the range of quenching times measured from resolved stellar populations of Local Group dwarf galaxies.
Quenching and ram pressure stripping of simulated Milky Way satellite galaxies
NASA Astrophysics Data System (ADS)
Simpson, Christine M.; Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.
2018-03-01
We present predictions for the quenching of star formation in satellite galaxies of the Local Group from a suite of 30 cosmological zoom simulations of Milky Way-like host galaxies. The Auriga simulations resolve satellites down to the luminosity of the classical dwarf spheroidal galaxies of the Milky Way. We find strong mass-dependent and distance-dependent quenching signals, where dwarf systems beyond 600 kpc are only strongly quenched below a stellar mass of 107 M⊙. Ram pressure stripping appears to be the dominant quenching mechanism and 50% of quenched systems cease star formation within 1 Gyr of first infall. We demonstrate that systems within a host galaxy's R200 radius are comprised of two populations: (i) a first infall population that has entered the host halo within the past few Gyrs and (ii) a population of returning `backsplash' systems that have had a much more extended interaction with the host. Backsplash galaxies that do not return to the host galaxy by redshift zero exhibit quenching properties similar to galaxies within R200 and are distinct from other external systems. The simulated quenching trend with stellar mass has some tension with observations, but our simulations are able reproduce the range of quenching times measured from resolved stellar populations of Local Group dwarf galaxies.
An optical approach to proximity-operations communications for Space Station Freedom
NASA Technical Reports Server (NTRS)
Marshalek, Robert G.
1991-01-01
An optical communications system is described that supports bi-directional interconnections between Space Station Freedom (SSF) and a host of attached and co-orbiting platforms. These proximity-operations (Prox-Ops) platforms are categorized by their maximum distance from SSF, with several remaining inside 1-km range and several extending out to 37-km and 2000-km ranges in the initial and growth phases, respectively. Two distinct Prox-Ops optical terminals are described. A 1-cm-aperture system is used on the short-range platforms to reduce payload mass, and a 10-cm-aperture system is used on the long-range platforms and on SSF to support the optical link budgets. The system supports up to four simultaneous user links, by assigning wavelengths to the various platforms and by using separate SSF terminals for each link.
Host association drives genetic divergence in the bed bug, Cimex lectularius.
Booth, Warren; Balvín, Ondřej; Vargo, Edward L; Vilímová, Jitka; Schal, Coby
2015-03-01
Genetic differentiation may exist among sympatric populations of a species due to long-term associations with alternative hosts (i.e. host-associated differentiation). While host-associated differentiation has been documented in several phytophagus insects, there are far fewer cases known in animal parasites. The bed bug, Cimex lectularius, a wingless insect, represents a potential model organism for elucidating the processes involved in host-associated differentiation in animal parasites with relatively limited mobility. In conjunction with the expansion of modern humans from Africa into Eurasia, it has been speculated that bed bugs extended their host range from bats to humans in their shared cave domiciles throughout Eurasia. C. lectularius that associate with humans have a cosmopolitan distribution, whereas those associated with bats occur across Europe, often in human-built structures. We assessed genetic structure and gene flow within and among populations collected in association with each host using mtDNA, microsatellite loci and knock-down resistance gene variants. Both nuclear and mitochondrial data support a lack of significant contemporary gene flow between host-specific populations. Within locations human-associated bed bug populations exhibit limited genetic diversity and elevated levels of inbreeding, likely due to human-mediated movement, infrequent additional introduction events per infestation, and pest control. In contrast, populations within bat roosts exhibit higher genetic diversity and lower levels of relatedness, suggesting populations are stable with temporal fluctuations due to host dispersal and bug mortality. In concert with previously published evidence of morphological and behavioural differentiation, the genetic data presented here suggest C. lectularius is currently undergoing lineage divergence through host association. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagne, Roderick B.; Hogan, J. Derek; McIntyre, Peter B.
1. Co-introductions of non-native parasites with non-native hosts can be a major driver of disease emergence in native species, but the conditions that promote the establishment and spread of nonnative parasites remain poorly understood. Here, we characterise the infection of a native host species by a non-native parasite relative to the distribution and density of the original non-native host species and a suite of organismal and environmental factors that have been associated with parasitism, but not commonly considered within a single system. 2. We examined the native Hawaiian goby Awaous stamineus across 23 catchments on five islands for infection bymore » the non-native nematode parasite Camallanus cotti. We used model selection to test whether parasite infection was associated with the genetic diversity, size and population density of native hosts, the distribution and density of non-native hosts, land use and water quality. 3. We found that the distribution of non-native C. cotti parasites has become decoupled from the non-native hosts that were primary vectors of introduction to the Hawaiian Islands. Although no single intrinsic or extrinsic factor was identified that best explains parasitism of A. stamineus by C. cotti, native host size, population density and water quality were consistently identified as influencing parasite intensity and prevalence. 4. The introduction of non-native species can indirectly influence native species through infection of co-introduced parasites. Here, we show that the effects of enemy addition can extend beyond the range of non-native hosts through the independent spread of non-native parasites. This suggests that control of non-native hosts is not sufficient to halt the spread of introduced parasites. Furthermore, designing importation regulations to prevent host parasite co-introductions can promote native species conservation, even in remote areas that may not seem susceptible to human influence.« less
NASA Astrophysics Data System (ADS)
Kamenetsky, V. S.; Norman, M. D.; Garcia, M. O.
2002-12-01
Melt inclusions carry potentially unique information about magmatic processes and the compositional evolution of erupted lavas. Major element compositions of olivine-hosted melt inclusions in submarine tholeiitic picrites from the southwest rift zone of Mauna Loa volcano have been studied to examine the compositional variability of primitive magmas feeding the world's largest volcano. Approximately 600 naturally quenched inclusions were examined from 8 samples with 3-25 vol% olivine phenocrysts and 9-22 wt% MgO. Olivine compositions ranged from Fo91-Fo82. The inclusions show a continuous variation in FeO contents from near-magmatic values (9 to 11 wt%) in the most evolved olivines to extremely low values (3.5 to 7.0 wt%) in the most primitive olivines. This appears to reflect a complex magmatic history for these crystals involving extensive re-equlibration of melts trapped by early formed phenocrysts with their host olivine. Extreme compositional variability also characterizes incompatible elements that would not be affected by equilibration with the host olivine. Inclusions trapped in relatively primitive olivines (Fo88-91) show a large range of K2O contents (0.1 to 2.1 wt%), whereas inclusions in more evolved olivines converge on whole rock compositions with 0.3 to 0.4 wt% K2O. Similarly, TiO2/K2O, Na2O/K2O, and K2O/P2O5 ratios of inclusions in primitive olivines span a much larger range than do inclusions hosted by more evolved olivines, with TiO2/K2O ratios extending from enriched to depleted compositions (1.2 to 24.7) in primitive olivines, and converging on whole rock compositions (TiO2/K2O = 6-9) in more evolved host olivine. This points toward extreme compositional variability in melts feeding Mauna Loa, and effective mixing of these melt parcels in the shallower summit reservoir to produce the restricted range of whole rock compositions sampled by erupted lavas. Whole rock compositions, therefore provide an integrated view of melting and high-level mixing processes, whereas melt inclusions provide more detailed information about source characteristics.
Bodner, Florian; Brehm, Gunnar; Homeier, Jürgen; Strutzenberger, Patrick; Fiedler, Konrad
2010-01-01
During four months of field surveys at the Reserva Biológica San Francisco in the south Ecuadorian Andes, caterpillars of 59 Geometridae species were collected in a montane rainforest between 1800 and 2800m altitude and reared to adults. The resulting data on host plant affiliations of these species was collated. The preimaginal stages of 58 and adult stages of all 59 species are depicted in colour plates. Observations on morphology and behaviour are briefly described. Five species, documented for the first time in the study area by means of larval collections, had not been previously collected by intensive light-trap surveys. Together with published literature records, life-history data covers 8.6% of the 1271 geometrid species observed so far in the study area. For 50 species these are the first records of their early stages, and for another 7 the data significantly extend known host plant ranges. Most larvae were collected on shrubs or trees, but more unusual host plant affiliations, such as ferns (6 geometrid species) and lichens (3 geometrid species), were also recorded. Thirty-four percent of the caterpillars were infested by wasp or tachinid parasitoids.
Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars
Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica
2013-01-01
SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573
Olsen, Anne Berit; Gulla, Snorre; Steinum, Terje; Colquhoun, Duncan J; Nilsen, Hanne K; Duchaud, Eric
2017-06-01
Skin ulcer development in sea-reared salmonids, commonly associated with Tenacibaculum spp., is a significant fish welfare- and economical problem in Norwegian aquaculture. A collection of 89 Tenacibaculum isolates was subjected to multilocus sequence analysis (MLSA). The isolates were retrieved from outbreaks of clinical disease in farms spread along the Norwegian coast line from seven different fish species over a period of 19 years. MLSA analysis reveals considerable genetic diversity, but allows identification of four main clades. One clade encompasses isolates belonging to the species T. dicentrarchi, whereas three clades encompass bacteria that likely represent novel, as yet undescribed species. The study identified T. maritimum in lumpsucker, T. ovolyticum in halibut, and has extended the host and geographic range for T. soleae, isolated from wrasse. The overall lack of clonality and host specificity, with some indication of geographical range restriction argue for local epidemics involving multiple strains. The diversity of Tenacibaculum isolates from fish displaying ulcerative disease may complicate vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.
Wool-Lewis, R J; Bates, P
1998-04-01
Studies analyzing Ebola virus replication have been severely hampered by the extreme pathogenicity of this virus. To permit analysis of the host range and function of the Ebola virus glycoprotein (Ebo-GP), we have developed a system for pseudotyping these glycoproteins into murine leukemia virus (MLV). This pseudotyped virus, MLV(Ebola), can be readily concentrated to titers which exceed 5 x 10(6) infectious units/ml and is effectively neutralized by antibodies specific for Ebo-GP. Analysis of MLV(Ebola) infection revealed that the host range conferred by Ebo-GP is very broad, extending to cells of a variety of species. Notably, all lymphoid cell lines tested were completely resistant to infection; we speculate that this is due to the absence of a cellular receptor for Ebo-GP on B and T cells. The generation of high-titer MLV(Ebola) pseudotypes will be useful for the analysis of immune responses to Ebola virus infection, development of neutralizing antibodies, analysis of glycoprotein function, and isolation of the cellular receptor(s) for the Ebola virus.
An abundance of small exoplanets around stars with a wide range of metallicities.
Buchhave, Lars A; Latham, David W; Johansen, Anders; Bizzarro, Martin; Torres, Guillermo; Rowe, Jason F; Batalha, Natalie M; Borucki, William J; Brugamyer, Erik; Caldwell, Caroline; Bryson, Stephen T; Ciardi, David R; Cochran, William D; Endl, Michael; Esquerdo, Gilbert A; Ford, Eric B; Geary, John C; Gilliland, Ronald L; Hansen, Terese; Isaacson, Howard; Laird, John B; Lucas, Philip W; Marcy, Geoffrey W; Morse, Jon A; Robertson, Paul; Shporer, Avi; Stefanik, Robert P; Still, Martin; Quinn, Samuel N
2012-06-13
The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form by accumulation of dust and ice particles. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets. However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.
NASA Astrophysics Data System (ADS)
Blum, Hubert E.; Stowring, Linda; Figus, Annalena; Montgomery, Carolyn K.; Haase, Ashley T.; Vyas, Girish N.
1983-11-01
A radiolabeled probe specific for hepatitis B virus (HBV) nucleotide sequences was hybridized in situ to liver tissue from three patients with chronic hepatitis B. The HBV genome was detected not only in infected hepatocytes but also in bile duct epithelial cells, endothelial cells, and smooth muscle cells. These findings extend the known host cell range for HBV, suggest new mechanisms of viral dissemination, and illustrate the usefulness of in situ hybridization in the study of pathogenesis of HBV infection.
Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review
Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos
2017-01-01
The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165
Jorge, Fátima; Perera, Ana; Poulin, Robert; Roca, Vicente; Carretero, Miguel A
2018-01-01
Episodes of expansion and isolation in geographic range over space and time, during which parasites have the opportunity to expand their host range, are linked to the development of host-parasite mosaic assemblages and parasite diversification. In this study, we investigated whether island colonization events lead to host range oscillations in a taxon of host-specific parasitic nematodes of the genus Spauligodon in the Canary Islands. We further investigated whether range oscillations also resulted in shifts in host breadth (i.e., specialization), as expected for parasites on islands. Parasite phylogeny and divergence time estimates were inferred from molecular data with Bayesian methods. Host divergence times were set as calibration priors after a priori evaluation with a global-fit method of which individual host-parasite associations likely represent cospeciation links. Parasite colonization history was reconstructed, followed by an estimation of oscillation events and specificity level. The results indicate the presence of four Spauligodon clades in the Canary Islands, which originated from at least three different colonization events. We found evidence of host range oscillations to truly novel hosts, which in one case led to higher diversification. Contemporary host-parasite associations show strong host specificity, suggesting that changes in host breadth were limited to the shift period. Lineages with more frequent and wider taxonomic host range oscillations prior to the initial colonization event showed wider range oscillations during colonization and diversification within the archipelago. Our results suggest that a lineage's evolutionary past may be the best indicator of a parasite's potential for future range expansions. © 2017 John Wiley & Sons Ltd.
Shared Skeletal Support in a Coral-Hydroid Symbiosis
Pantos, Olga; Hoegh-Guldberg, Ove
2011-01-01
Hydroids form symbiotic relationships with a range of invertebrate hosts. Where they live with colonial invertebrates such as corals or bryozoans the hydroids may benefit from the physical support and protection of their host's hard exoskeleton, but how they interact with them is unknown. Electron microscopy was used to investigate the physical interactions between the colonial hydroid Zanclea margaritae and its reef-building coral host Acropora muricata. The hydroid tissues extend below the coral tissue surface sitting in direct contact with the host's skeleton. Although this arrangement provides the hydroid with protective support, it also presents problems of potential interference with the coral's growth processes and exposes the hydroid to overgrowth and smothering. Desmocytes located within the epidermal layer of the hydroid's perisarc-free hydrorhizae fasten it to the coral skeleton. The large apical surface area of the desmocyte and high bifurcation of the distal end within the mesoglea, as well as the clustering of desmocytes suggests that a very strong attachment between the hydroid and the coral skeleton. This is the first study to provide a detailed description of how symbiotic hydroids attach to their host's skeleton, utilising it for physical support. Results suggest that the loss of perisarc, a characteristic commonly associated with symbiosis, allows the hydroid to utilise desmocytes for attachment. The use of these anchoring structures provides a dynamic method of attachment, facilitating detachment from the coral skeleton during extension, thereby avoiding overgrowth and smothering enabling the hydroid to remain within the host colony for prolonged periods of time. PMID:21695083
CGM-GRB: A survey of the CircumGalactic Medium around GRB hosts
NASA Astrophysics Data System (ADS)
Gatkine, Pradip; Veilleux, Sylvain; Cucchiara, Antonino; Cenko, Bradley
2018-01-01
Recent space- and ground-based studies of the circumgalactic medium around galaxies have revealed the dynamic interplay between the galaxy ecosystem and surrounding CGM using bright background quasars. Here, we extend this investigation of the CGM to higher redshifts by using the bright afterglows of gamma-ray bursts as background sources. This provides a unique opportunity to probe the host galaxy ISM and its surrounding CGM together. We compiled a sample of 25 high-resolution (R > 8000) and high-quality (typical S/N ~ 20) rest-frame UV spectra of GRB afterglows with a redshift range (1.5 < z < 5.9) obtained using Keck-HIRES, VLT-UVES, and VLT-X-shooter spectrographs. We fit multi-component Voigt profiles to several absorption lines of both high-ionization (O VI, C IV, Si IV, etc) and low-ionization species (Si II, C II, Fe II, etc) to extract the column densities (N), Doppler parameters (b) and line-centroids. The preliminary results of our analysis on the kinematics and physical properties of the ISM and CGM of these GRB hosts are presented here.
Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria
Chahales, Peter; Thanassi, David G.
2015-01-01
Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities such as biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections. PMID:26542038
Novel application of species richness estimators to predict the host range of parasites.
Watson, David M; Milner, Kirsty V; Leigh, Andrea
2017-01-01
Host range is a critical life history trait of parasites, influencing prevalence, virulence and ultimately determining their distributional extent. Current approaches to measure host range are sensitive to sampling effort, the number of known hosts increasing with more records. Here, we develop a novel application of results-based stopping rules to determine how many hosts should be sampled to yield stable estimates of the number of primary hosts within regions, then use species richness estimation to predict host ranges of parasites across their distributional ranges. We selected three mistletoe species (hemiparasitic plants in the Loranthaceae) to evaluate our approach: a strict host specialist (Amyema lucasii, dependent on a single host species), an intermediate species (Amyema quandang, dependent on hosts in one genus) and a generalist (Lysiana exocarpi, dependent on many genera across multiple families), comparing results from geographically-stratified surveys against known host lists derived from herbarium specimens. The results-based stopping rule (stop sampling bioregion once observed host richness exceeds 80% of the host richness predicted using the Abundance-based Coverage Estimator) worked well for most bioregions studied, being satisfied after three to six sampling plots (each representing 25 host trees) but was unreliable in those bioregions with high host richness or high proportions of rare hosts. Although generating stable predictions of host range with minimal variation among six estimators trialled, distribution-wide estimates fell well short of the number of hosts known from herbarium records. This mismatch, coupled with the discovery of nine previously unrecorded mistletoe-host combinations, further demonstrates the limited ecological relevance of simple host-parasite lists. By collecting estimates of host range of constrained completeness, our approach maximises sampling efficiency while generating comparable estimates of the number of primary hosts, with broad applicability to many host-parasite systems. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Ustuner, Burcu; Alcay, Selim; Toker, M Berk; Nur, Zekariya; Gokce, Elif; Sonat, Fusun Ak; Gul, Zulfiye; Duman, Muhammed; Ceniz, Cafer; Uslu, Aydın; Sagirkaya, Hakan; Soylu, M Kemal
2016-01-01
The aim of the current study was to evaluate the effects of different concentrations of rainbow trout seminal plasma (RTSP) (0.1%, 1% and 10%) in extenders containing either egg yolk or lecithin for use in Awassi ram semen cryopreservation. Pooled sperm were diluted in a two-step dilution method to a final concentration of 1/5 (semen/extender) in egg yolk or lecithin extender containing no RTSP, 0.1%, 1% or 10% RTSP (v/v). Semen samples were assessed for sperm motility, plasma membrane integrity [hypoosmotic swelling test (HOST) and Hoechst 33258] and defective acrosomes [FITC-conjugated Pisum sativum agglutinin (PSA-FITC)] at the following five time points: after dilution with extender A; after equilibration; and post-thaw at 0h, 3h and 5h. Malondialdehyde (MDA) was examined only after thawing. Freezing and thawing procedures (dilution, equilibration and post-thaw incubation at 0h, 3h and 5h) negatively affected the motility (P<0.001) and acrosome integrity (P<0.001). Additionally, freezing and thawing negatively affected the plasma membrane integrity, as determined by the HOST and Hoechst 33258 (P<0.001). The extender group affected the motility (P<0.001) and the HOST results (P<0.001). Levels of MDA in the egg yolk extender with 1% RTSP group were significantly lower than in the lecithin control group (P<0.05). In conclusion, the egg yolk extender groups that were supplemented with 10% and 1% RTSP provided greater cryoprotective effects for semen survivability during 5h incubation than the other extender groups. Copyright © 2015 Elsevier B.V. All rights reserved.
Spread of an introduced parasite across the Hawaiian archipelago independent of its introduced host
Gagne, Roderick B.; Hogan, J. Derek; McIntyre, Peter B.; ...
2014-11-11
1. Co-introductions of non-native parasites with non-native hosts can be a major driver of disease emergence in native species, but the conditions that promote the establishment and spread of nonnative parasites remain poorly understood. Here, we characterise the infection of a native host species by a non-native parasite relative to the distribution and density of the original non-native host species and a suite of organismal and environmental factors that have been associated with parasitism, but not commonly considered within a single system. 2. We examined the native Hawaiian goby Awaous stamineus across 23 catchments on five islands for infection bymore » the non-native nematode parasite Camallanus cotti. We used model selection to test whether parasite infection was associated with the genetic diversity, size and population density of native hosts, the distribution and density of non-native hosts, land use and water quality. 3. We found that the distribution of non-native C. cotti parasites has become decoupled from the non-native hosts that were primary vectors of introduction to the Hawaiian Islands. Although no single intrinsic or extrinsic factor was identified that best explains parasitism of A. stamineus by C. cotti, native host size, population density and water quality were consistently identified as influencing parasite intensity and prevalence. 4. The introduction of non-native species can indirectly influence native species through infection of co-introduced parasites. Here, we show that the effects of enemy addition can extend beyond the range of non-native hosts through the independent spread of non-native parasites. This suggests that control of non-native hosts is not sufficient to halt the spread of introduced parasites. Furthermore, designing importation regulations to prevent host parasite co-introductions can promote native species conservation, even in remote areas that may not seem susceptible to human influence.« less
Extending semi-numeric reionization models to the first stars and galaxies
NASA Astrophysics Data System (ADS)
Koh, Daegene; Wise, John H.
2018-03-01
Semi-numeric methods have made it possible to efficiently model the epoch of reionization (EoR). While most implementations involve a reduction to a simple three-parameter model, we introduce a new mass-dependent ionizing efficiency parameter that folds in physical parameters that are constrained by the latest numerical simulations. This new parametrization enables the effective modelling of a broad range of host halo masses containing ionizing sources, extending from the smallest Population III host haloes with M ˜ 106 M⊙, which are often ignored, to the rarest cosmic peaks with M ˜ 1012 M⊙ during EoR. We compare the resulting ionizing histories with a typical three-parameter model and also compare with the latest constraints from the Planck mission. Our model results in an optical depth due to Thomson scattering, τe = 0.057, that is consistent with Planck. The largest difference in our model is shown in the resulting bubble size distributions that peak at lower characteristic sizes and are broadened. We also consider the uncertainties of the various physical parameters, and comparing the resulting ionizing histories broadly disfavours a small contribution from galaxies. The smallest haloes cease a meaningful contribution to the ionizing photon budget after z = 10, implying that they play a role in determining the start of EoR and little else.
A Gene for an Extended Phenotype
K. Hoover; M. Grove; M. Gardner; D. P. Hughes; J. McNeil; J. Slavicek
2011-01-01
Manipulation of host behavior by parasites and pathogens has been widely observed, but the basis for these behaviors has remained elusive. Gypsy moths infected by a baculovirus climb to the top of trees to die, liquefy, and "rain" virus on the foliage below to infect new hosts. The viral gene that manipulates climbing behavior of the host was identified,...
The life of a dead ant: the expression of an adaptive extended phenotype.
Andersen, Sandra B; Gerritsma, Sylvia; Yusah, Kalsum M; Mayntz, David; Hywel-Jones, Nigel L; Billen, Johan; Boomsma, Jacobus J; Hughes, David P
2009-09-01
Specialized parasites are expected to express complex adaptations to their hosts. Manipulation of host behavior is such an adaptation. We studied the fungus Ophiocordyceps unilateralis, a locally specialized parasite of arboreal Camponotus leonardi ants. Ant-infecting Ophiocordyceps are known to make hosts bite onto vegetation before killing them. We show that this represents a fine-tuned fungal adaptation: an extended phenotype. Dead ants were found under leaves, attached by their mandibles, on the northern side of saplings approximately 25 cm above the soil, where temperature and humidity conditions were optimal for fungal growth. Experimental relocation confirmed that parasite fitness was lower outside this manipulative zone. Host resources were rapidly colonized and further secured by extensive internal structuring. Nutritional composition analysis indicated that such structuring allows the parasite to produce a large fruiting body for spore production. Our findings suggest that the osmotrophic lifestyle of fungi may have facilitated novel exploitation strategies.
Density-dependent sex ratio and sex-specific preference for host traits in parasitic bat flies.
Szentiványi, Tamara; Vincze, Orsolya; Estók, Péter
2017-08-29
Deviation of sex ratios from unity in wild animal populations has recently been demonstrated to be far more prevalent than previously thought. Ectoparasites are prominent examples of this bias, given that their sex ratios vary from strongly female- to strongly male-biased both among hosts and at the metapopulation level. To date our knowledge is very limited on how and why these biased sex ratios develop. It was suggested that sex ratio and sex-specific aggregation of ectoparasites might be shaped by the ecology, behaviour and physiology of both hosts and their parasites. Here we investigate a highly specialised, hematophagous bat fly species with strong potential to move between hosts, arguably limited inbreeding effects, off-host developmental stages and extended parental care. We collected a total of 796 Nycteribia kolenatii bat flies from 147 individual bats using fumigation and subsequently determined their sex. We report a balanced sex ratio at the metapopulation level and a highly variable sex ratio among infrapopulations ranging from 100% male to 100% female. We show that infrapopulation sex ratio is not random and is highly correlated with infrapopulation size. Sex ratio is highly male biased in small and highly female biased in large infrapopulations. We show that this pattern is most probably the result of sex-specific preference in bat flies for host traits, most likely combined with a higher mobility of males. We demonstrate that female bat flies exert a strong preference for high host body condition and female hosts, while the distribution of males is more even. Our results suggest that locally biased sex ratios can develop due to sex-specific habitat preference of parasites. Moreover, it is apparent that the sex of both hosts and parasites need to be accounted for when a better understanding of host-parasite systems is targeted.
High-contrast imaging with the JWST-NIRSpec Integral Field Unit
NASA Astrophysics Data System (ADS)
Ygouf, M.; Beichman, C.; Hodapp, K.; Roellig, T.
2017-12-01
With its integral field unit, the near-infrared spectrograph NIRSPEC on JWST will allow to measure high-resolution spectra into the 3-\\SI{5}μm range with an increased sensitivity over ground-based systems. This capability will considerably extend our knowledge of brown dwarfs and bright exoplanets at large separations from their host star. But because there is not any coronagraph on NIRSPEC, the performance in term of contrast at close separation will be extremely limited. In this communication, we explore possibilities to further push this limitation by exploiting the wavelength diversity offered by the spectral differential imaging strategy.
X-Ray photoelectron Spectroscopy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelhard, Mark H.; Droubay, Timothy C.; Du, Yingge
2017-01-03
With capability for obtaining quantitative elemental composition, chemical and electronic state, and overlayer thickness information from the top ~10 nm of a sample surface, X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA) is a versatile and widely used technique for analyzing surfaces. The technique is applied to a host of materials, from insulators to conductors in virtually every scientific field and sub-discipline. More recently, XPS has been extended under in-situ and operando conditions. Following a brief introduction to XPS principles and instrument components, this article exemplifies widely ranging XPS applications in material and life sciences.
Assessing the advantage of morphological changes in Candida albicans: a game theoretical study
Tyc, Katarzyna M.; Kühn, Clemens; Wilson, Duncan; Klipp, Edda
2014-01-01
A range of attributes determines the virulence of human pathogens. During interactions with their hosts, pathogenic microbes often undergo transitions between distinct stages, and the ability to switch between these can be directly related to the disease process. Understanding the mechanisms and dynamics of these transitions is a key factor in understanding and combating infectious diseases. The human fungal pathogen Candida albicans exhibits different morphotypes at different stages during the course of infection (candidiasis). For example, hyphae are considered to be the invasive form, which causes tissue damage, while yeast cells are predominant in the commensal stage. Here, we described interactions of C. albicans with its human host in a game theoretic model. In the game, players are fungal cells. Each fungal cell can adopt one of the two strategies: to exist as a yeast or hyphal cell. We characterized the ranges of model parameters in which the coexistence of both yeast and hyphal forms is plausible. Stability analysis of the system showed that, in theory, a reduced ability of the host to specifically recognize yeast and hyphal cells can result in bi-stability of the microbial populations' profile. Inspired by the model analysis we reasoned that the types of microbial interactions can change during invasive candidiasis. We found that positive cooperation among fungal cells occurs in mild infections and an enhanced tendency to invade the host is associated with negative cooperation. The model can easily be extended to multi-player systems with direct application to identifying individuals that enhance either positive or negative cooperation. Results of the modeling approach have potential application in developing treatment strategies. PMID:24567730
Kęsik-Szeloch, Agata; Drulis-Kawa, Zuzanna; Weber-Dąbrowska, Beata; Kassner, Jerzy; Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lusiak-Szelachowska, Marzanna; Zaczek, Maciej; Górski, Andrzej; Kropinski, Andrew M
2013-03-28
Members of the genus Klebsiella are among the leading microbial pathogens associated with nosocomial infection. The increased incidence of antimicrobial resistance in these species has propelled the need for alternate/combination therapeutic regimens to aid clinical treatment. Bacteriophage therapy forms one of these alternate strategies. Electron microscopy, burst size, host range, sensitivity of phage particles to temperature, chloroform, pH, and restriction digestion of phage DNA were used to characterize Klebsiella phages. Of the 32 isolated phages eight belonged to the family Myoviridae, eight to the Siphoviridae whilst the remaining 16 belonged to the Podoviridae. The host range of these phages was characterised against 254 clinical Enterobacteriaceae strains including multidrug resistant Klebsiella isolates producing extended-spectrum beta-lactamases (ESBLs). Based on their lytic potential, six of the phages were further characterised for burst size, physicochemical properties and sensitivity to restriction endonuclease digestion. In addition, five were fully sequenced. Multiple phage-encoded host resistance mechanisms were identified. The Siphoviridae phage genomes (KP16 and KP36) contained low numbers of host restriction sites similar to the strategy found in T7-like phages (KP32). In addition, phage KP36 encoded its own DNA adenine methyltransferase. The φKMV-like KP34 phage was sensitive to all endonucleases used in this study. Dam methylation of KP34 DNA was detected although this was in the absence of an identifiable phage encoded methyltransferase. The Myoviridae phages KP15 and KP27 both carried Dam and Dcm methyltransferase genes and other anti-restriction mechanisms elucidated in previous studies. No other anti-restriction mechanisms were found, e.g. atypical nucleotides (hmC or glucosyl hmC), although Myoviridae phage KP27 encodes an unknown anti-restriction mechanism that needs further investigation.
Lithologic and structural controls of limestone-hosted Pb-Zn-Ag mineralization in Chihuahua, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lofquist, D.J.; Ruiz, J.
1985-01-01
The state of Chihuahua contains some of the most important limestone-hosted ore deposits in Mexico. The best example are Santa Eulalia and Naica which together have produced 53 million tons or ore averaging 7.7% Pb, 6.4% Zn, and 280 g/ton Ag. These deposits occur as mantos and chimneys often accompanied by calc-silicates. Among the most critical questions in this type of deposit is the control that the limestone-host exerts on the mineralizing process. Here the authors present the first detailed data on the stratigraphic and lithologic character of the limestone-hosts at Naica and Santa Eulalia. All ore at Naica andmore » Santa Eulalia is hosted by micrites, biomicrites and biosparites indicative of generally quiet marine deposition. The authors work suggests that the western edge of the this trough might be a low angle, east dipping ramp which extends below the Sierra Madre Occidental. The primary permeability of the limestone that hosts Naica and Santa Eulalia is in the micro to nanodarcy range. The effective permeability has been augmented by 3 or 4 stages of micro-fracturing. Most of the ore is controlled by these fractures and by felsic dikes, which in cases are mostly endoskarn. Stylolites also appear to have exerted a control on the mineralizing process. Numerous instances of alteration and recrystallization confined to one side of a horizontal stylolite have been noted. At Santa Eulalia, horizontal stylolites have controlled the emplacement of massive sulfide mantos, suggesting that the mineralizing process was rather passive.« less
Peyrard, N; Dieckmann, U; Franc, A
2008-05-01
Models of infectious diseases are characterized by a phase transition between extinction and persistence. A challenge in contemporary epidemiology is to understand how the geometry of a host's interaction network influences disease dynamics close to the critical point of such a transition. Here we address this challenge with the help of moment closures. Traditional moment closures, however, do not provide satisfactory predictions close to such critical points. We therefore introduce a new method for incorporating longer-range correlations into existing closures. Our method is technically simple, remains computationally tractable and significantly improves the approximation's performance. Our extended closures thus provide an innovative tool for quantifying the influence of interaction networks on spatially or socially structured disease dynamics. In particular, we examine the effects of a network's clustering coefficient, as well as of new geometrical measures, such as a network's square clustering coefficients. We compare the relative performance of different closures from the literature, with or without our long-range extension. In this way, we demonstrate that the normalized version of the Bethe approximation-extended to incorporate long-range correlations according to our method-is an especially good candidate for studying influences of network structure. Our numerical results highlight the importance of the clustering coefficient and the square clustering coefficient for predicting disease dynamics at low and intermediate values of transmission rate, and demonstrate the significance of path redundancy for disease persistence.
Kargarfard, Fatemeh; Sami, Ashkan; Mohammadi-Dehcheshmeh, Manijeh; Ebrahimie, Esmaeil
2016-11-16
Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.
Imo, Miriam; Maixner, Michael; Johannesen, Jes
2013-04-01
The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host-plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle-specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host-race evolution in the northern range: Host-plant associated populations were significantly differentiated among syntopic sites (0.054 < F(HT) < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host-race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host-race diversification but suggests the introduction of a stinging nettle-specific phytoplasma strain by plant-unspecific vectors. The evolution of host races in the northern range has led to specific vector-based bois noir disease cycles. © 2013 Blackwell Publishing Ltd.
Complete identification of the Parkes half-Jansky sample of GHz peaked spectrum radio galaxies
NASA Astrophysics Data System (ADS)
de Vries, N.; Snellen, I. A. G.; Schilizzi, R. T.; Lehnert, M. D.; Bremer, M. N.
2007-03-01
Context: Gigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources. Statistically complete samples of GPS sources are vital for studying the early evolution of radio-loud AGN and the trigger of their nuclear activity. The "Parkes half-Jansky" sample of GPS radio galaxies is such a sample, representing the southern counterpart of the 1998 Stanghellini sample of bright GPS sources. Aims: As a first step of the investigation of the sample, the host galaxies need to be identified and their redshifts determined. Methods: Deep R-band VLT-FORS1 and ESO 3.6 m EFOSC II images and long slit spectra have been taken for the unidentified sources in the sample. Results: We have identified all twelve previously unknown host galaxies of the radio sources in the sample. Eleven have host galaxies in the range 21.0 < RC < 23.0, while one object, PKS J0210+0419, is identified in the near infrared with a galaxy with Ks = 18.3. The redshifts of 21 host galaxies have been determined in the range 0.474 < z < 1.539, bringing the total number of redshifts to 39 (80%). Analysis of the absolute magnitudes of the GPS host galaxies show that at z>1 they are on average a magnitude fainter than classical 3C radio galaxies, as found in earlier studies. However their restframe UV luminosities indicate that there is an extra light contribution from the AGN, or from a population of young stars. Based on observations collected at the European Southern Observatory Very Large Telescope, Paranal, Chile (ESO prog. ID No. 073.B-0289(B)) and the European Southern Observatory 3.6 m Telescope, La Silla, Chile (prog. ID No. 073.B-0289(A)). Appendices are only available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderburg, Andrew; Latham, David W.; Bieryla, Allyson
The Kepler Space Telescope is currently searching for planets transiting stars along the ecliptic plane as part of its extended K2 mission. We processed the publicly released data from the first year of K2 observations (Campaigns 0, 1, 2, and 3) and searched for periodic eclipse signals consistent with planetary transits. Out of the 59,174 targets that we searched, we detect 234 planetary candidates around 208 stars. These candidates range in size from gas giants to smaller than the Earth, and range in orbital periods from hours to over a month. We conducted initial reconnaissance spectroscopy of 68 of themore » brighter candidate host stars, and present high-resolution optical spectra for these stars. We make all of our data products, including light curves, spectra, and vetting diagnostics available to users online.« less
Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates
2011-01-01
The successful replication of a viral agent in a host is a complex process that often leads to a species specificity of the virus and can make interspecies transmission difficult. Despite this difficulty, natural host switch seems to have been frequent among viruses of lower vertebrates, especially fish viruses, since there are several viruses known to be able to infect a wide range of species. In the present review we will focus on well documented reports of broad host range, variations in host specificity, and host shift events hypothesized for viruses within the genera Ranavirus, Novirhabdovirus, Betanodavirus, Isavirus, and some herpesvirus. PMID:21592358
Kuris, Armand M
1978-02-01
1. The geographic range of Carcinonemertes epialti has been greatly extended. The worms are found from Bahia San Quintin, Baja California, Mexico, to Page's Lagoon, Vancouver Island, British Columbia, Canada. 2. New host records for C. epialti include H. oregonensis, and H. nudus. It is rare on its type host Pugettia producta. Specimens of Carcinonemertes of uncertain affinities are also found on Cancer antennarius, C. anthonyi and C. productus. 3. Carcinonemertes epialti adults are egg predators on ovigerous hosts. Growth, demography and abundance are described in relation to the embryogenic stage of the host brood at Bodega Harbor, California. 4. Nonfeeding juveniles are ensheathed on individuals of both host sexes over 8.0 mm carapace width. 5. Transmission experiments show that contact transfer of juvenile nemerteans from males to other hosts may occur. 6. The percentage of infestation and mean density peak in autumn on H. oregonensis at Bodega Harbor. 7. Ovigerous female hosts are more frequently infested with C. epialti, particularly at small host sizes, than are male or nonovigerous female hosts at Bodega Harbor. However, average worm density on ovigerous females is low. 8. Mean density of C. epialti rises through late postmolt, declines during intermolt and rebuilds to a high level in late premolt H. oregonensisfrom Bodega Harbor. 9. Large crabs have a higher percentage of infestations and mean densities per infection than do small crabs. Nemerteans are more frequently found in the sternal-abdominal furrow and less frequently in the limb axillae on large crabs. 10. A model of C. epialti transmission and site occupancy is proposed, incorporating the influence of host size, sex, reproductive state, embryogenesis, molt cycle stage and molt cycle duration of H. oregonensis at Bodega Harbor. Site availability increases with host size. At higher densities the juvenile nemerteans increasingly occupy less preferred sites. Transferral of juvenile nemerteans occurs and is considered responsible for the high frequency of low infestation levels. Ovigerous females are more likely to be infested but with low density infestations.
Luijckx, Pepijn; Duneau, David; Andras, Jason P; Ebert, Dieter
2014-02-01
A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Microdiversity of Echinococcus granulosus sensu stricto in Australia.
Alvarez Rojas, C A; Ebi, D; Gauci, C G; Scheerlinck, J P; Wassermann, M; Jenkins, D J; Lightowlers, M W; Romig, T
2016-07-01
Echinococcus granulosus (sensu lato) is now recognized as an assemblage of cryptic species, which differ considerably in morphology, development, host specificity (including infectivity/pathogenicity for humans) and other aspects. One of these species, E. granulosus sensu stricto (s.s.), is now clearly identified as the principal agent causing cystic echinococcosis in humans. Previous studies of a small section of the cox1 and nadh1 genes identified two variants of E. granulosus s.s. to be present in Australia; however, no further work has been carried out to characterize the microdiversity of the parasite in its territory. We have analysed the sequence of the full length of the cox1 gene (1609 bp) from 37 isolates of E. granulosus from different hosts and geographic regions of Australia. The analysis shows that seven haplotypes of E. granulosus s.s. not previously described were found, together with five haplotypes known to be present in other parts of the world, including the haplotype EG01 which is widespread and present in all endemic regions. These data extend knowledge related to the geographical spread and host range of E. granulosus s.s. in a country such as Australia in which the parasite established around 200 years ago.
Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops
Moriones, Enrique; Chakraborty, Supriya
2017-01-01
The tomato leaf curl New Delhi virus (ToLCNDV) (genus Begomovirus, family Geminiviridae) represents an important constraint to tomato production, as it causes the most predominant and economically important disease affecting tomato in the Indian sub-continent. However, in recent years, ToLCNDV has been fast extending its host range and spreading to new geographical regions, including the Middle East and the western Mediterranean Basin. Extensive research on the genome structure, protein functions, molecular biology, and plant–virus interactions of ToLCNDV has been conducted in the last decade. Special emphasis has been given to gene silencing suppression ability in order to counteract host plant defense responses. The importance of the interaction with DNA alphasatellites and betasatellites in the biology of the virus has been demonstrated. ToLCNDV genetic variability has been analyzed, providing new insights into the taxonomy, host adaptation, and evolution of this virus. Recombination and pseudorecombination have been shown as motors of diversification and adaptive evolution. Important progress has also been made in control strategies to reduce disease damage. This review highlights these various achievements in the context of the previous knowledge of begomoviruses and their interactions with plants. PMID:28934148
Sieber, Michael; Gudelj, Ivana
2014-04-01
In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs. © 2014 John Wiley & Sons Ltd/CNRS.
A UHF RFID system with on-chip-antenna tag for short range communication
NASA Astrophysics Data System (ADS)
Qi, Peng; Chun, Zhang; Xijin, Zhao; Zhihua, Wang
2015-05-01
A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm2, which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna.
Maurer-Stroh, Sebastian; Lee, Raphael T C; Gunalan, Vithiagaran; Eisenhaber, Frank
2013-05-01
A characteristic difference between highly and non-highly pathogenic avian influenza strains is the presence of an extended, often multibasic, cleavage motif insertion in the hemagglutinin protein. Such motif is found in H7N3 strains from chicken farm outbreaks in 2012 in Mexico. Through phylogenetic, sequence and structural analysis, we try to shed light on the role, prevalence, likelihood of appearance and origin of the inserted cleavage motifs in these H7N3 avian influenza strains. The H7N3 avian influenza strain which caused outbreaks in chicken farms in June/July 2012 in Mexico has a new extended cleavage site which is the likely reason for its high pathogenicity in these birds. This cleavage site appears to have been naturally acquired and was not present in the closest low pathogenic precursors. Structural modeling shows that insertion of a productive cleavage site is quite flexible to accept insertions of different length and with sequences from different possible origins. Different from recent cleavage site insertions, the origin of the insert here is not from the viral genome but from host 28S ribosomal RNA (rRNA) instead. This is a novelty for a natural acquisition as a similar insertion has so far only been observed in a laboratory strain before. Given the abundance of viral and host RNA in infected cells, the acquisition of a pathogenicity-enhancing extended cleavage site through a similar route by other low-pathogenic avian strains in future does not seem unlikely. Important for surveillance of these H7N3 strains, the structural sites known to enhance mammalian airborne transmission are dominated by the characteristic avian residues and the risk of human to human transmission should currently be low but should be monitored for future changes accordingly. This highly pathogenic H7N3 avian influenza strain acquired a novel extended cleavage site which likely originated from recombination with 28S rRNA from the avian host. Notably, this new virus can infect humans but currently lacks critical host receptor adaptations that would facilitate human to human transmission.
FR0CAT: a FIRST catalog of FR 0 radio galaxies
NASA Astrophysics Data System (ADS)
Baldi, R. D.; Capetti, A.; Massaro, F.
2018-01-01
With the aim of exploring the properties of the class of FR 0 radio galaxies, we selected a sample of 108 compact radio sources, called FR0CAT, by combining observations from the NVSS, FIRST, and SDSS surveys. We included in the catalog sources with redshift ≤0.05, with a radio size ≲5 kpc, and with an optical spectrum characteristic of low-excitation galaxies. Their radio luminosities at 1.4 GHz are in the range 1038 ≲ νL1.4 ≲ 1040 erg s-1. The FR0CAT hosts are mostly (86%) luminous (-21 ≳ Mr ≳ -23) red early-type galaxies with black hole masses 108 ≲ MBH ≲ 109M⊙. These properties are similar to those seen for the hosts of FR I radio galaxies, but they are on average a factor 1.6 less massive. The number density of FR0CAT sources is 5 times higher than that of FR Is, and thus they represent the dominant population of radio sources in the local Universe. Different scenarios are considered to account for the smaller sizes and larger abundance of FR 0s with respect to FR Is. An age-size scenario that considers FR 0s as young radio galaxies that will all eventually evolve into extended radio sources cannot be reconciled with the large space density of FR 0s. However, the radio activity recurrence, with the duration of the active phase covering a wide range of values and with short active periods strongly favored with respect to longer ones, might account for their large density number. Alternatively, the jet properties of FR 0s might be intrinsically different from those of the FR Is, the former class having lower bulk Lorentz factors, possibly due to lower black hole spins. Our study indicates that FR 0s and FR I/IIs can be interpreted as two extremes of a continuous population of radio sources that is characterized by a broad distribution of sizes and luminosities of their extended radio emission, but shares a single class of host galaxies.
NASA Astrophysics Data System (ADS)
Robertson, K. E.; Thiel, S.; Heinson, G. S.
2017-12-01
The intraplate deformation of the north-south trending Neoproterozoic Ikara-Flinders Ranges in South Australia, Australia, draws interest due to its high heat flow, elevated seismicity and the presence of diamondiferous kimberlites and mineral deposits. To the west lies the highly prospective Archean-Paleoproterozoic Gawler Craton, boasting the world's largest IOCG-U deposit, Olympic Dam. The Paleo-Mesoproterozoic Curnamona Province lies to the east, thought to have once been connected to the Gawler Craton and host to the world-class Broken Hill Ag-Pb-Zn deposit. A total of 162 long-period (10 s - 10,000 s) magnetotelluric (MT) stations from the Australia-wide AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) dataset were used to image the electrical resistivity beneath the Ikara-Flinders Ranges and adjacent Curnamona Province. The most recent acquisition extends this survey region northward to an area predominantly covered with Paleo-Mesozoic sedimentary basins including the most significant on-shore oil and gas region in Australia, the Cooper Basin. The resultant model from 3D inversions using ModEM software shows a relatively resistive Ikara-Flinders Ranges, with two parallel arcuate conductors (the WNAC and ENAC) at 20 to 80 km depth in the Nackara Arc. These conductors correlate well with locations of diamondiferous kimberlites which suggests that the conductors may have derived from the ascent of carbon-rich kimberlite-hosting magma and volatiles up large lithospheric scale structures. The conductors appear to have no correlation with regions of intraplate seismicity within the Ikara-Flinders Ranges which may mean that enhanced pore fluid pressure is not the main cause for the seismicity as was recently proposed. A large conductor covering most of the Curnamona Province (the CC) extends over depths of 10-40 km. The Curnamona Province's most recent tectonothermal activity is from Delamerian reworking during the Cambrian at its margins but is thought to exhibit a mostly cratonic core, supported by high wavespeeds imaged using seismic tomography. Given the pervasive nature of the conductor, it is attributed to a widespread fossil fluid flux event, perhaps either a long-lived response from Olarian (1.6 Ga) subduction-related fluids or a more recent event.
Donor cornea preparation in partial big bubble deep anterior lamellar keratoplasty.
Lim, Li; Lim, Samuel Wen Yan
2014-01-01
The purpose of this paper is to describe a technique of donor cornea preparation to ensure good graft-host apposition in incomplete big bubble deep anterior lamellar keratoplasty. Following a partial-thickness trephination, manual dissection and excision of corneal stroma was performed. Anwar's big-bubble technique involving a deep stromal air injection was then initiated. However, the big bubble could not extend to the trephination edge and the peripheral residual corneal stroma could not be removed. Donor cornea preparation involving trimming of the posterior lip of the corneal button was then performed and good graft-host apposition was obtained without graft over-ride. We performed peripheral donor cornea trimming prior to allograft placement in order to ensure good graft-host apposition. Postoperatively, best-corrected visual acuity in both eyes was 6/7.5. Donor cornea preparation involving trimming of the posterior lip of the corneal button is a useful technique in instances where the big bubble does not extend to the trephination edge and ensures good graft-host apposition.
Acosta, Roxana; Hastriter, Michael W.
2017-01-01
Abstract A redescription of the genus Phalacropsylla Rothschild is provided. Six species are recognized: Phalacropsylla allos Wagner, P. hamata Tipton and Mendez, P. morlani Eads and Campos, P. nivalis Barrera and Traub, P. oregonensis Lewis and Maser, and P. paradisea Rothschild. Phalacropsylla hamata is designated herein as a junior synonym of P. paradisea. The distribution of P. paradisea is more extensive than previously thought, extending from Arizona through southern Colorado, into New Mexico, Texas, and northern Mexico (State of Nuevo León). It is the least host-specific of all species of Phalacropsylla, occurring on 13 different host species including cricetid, heteromyid, murid, and sciurid rodents and several carnivores, although it most commonly occurs on Neotoma albigula Hartley. The range of P. oregonensis is expanded from eastern Oregon to southeastern Idaho. Numerous records are documented for the most common and ubiquitous species, P. allos, which is found in British Columbia, central to northern California, Idaho, Montana, Colorado, Nevada, Utah, Wyoming, Arizona, and New Mexico. Neotoma cinerea Ord is the principal host of P. allos. Phalacropsylla allos is a winter flea west of the Rocky Mountains, but it has been reported in warmer months of the year on the eastern slopes of the Rocky Mountains in Larimer County, Colorado. A distribution map and key are provided for all species in the genus Phalacropsylla. PMID:28769677
George, David R; Finn, Robert D; Graham, Kirsty M; Mul, Monique F; Maurer, Veronika; Moro, Claire Valiente; Sparagano, Olivier Ae
2015-03-25
The poultry red mite Dermanyssus gallinae is best known as a threat to the laying-hen industry; adversely affecting production and hen health and welfare throughout the globe, both directly and through its role as a disease vector. Nevertheless, D. gallinae is being increasingly implemented in dermatological complaints in non-avian hosts, suggesting that its significance may extend beyond poultry. The main objective of the current work was to review the potential of D. gallinae as a wider veterinary and medical threat. Results demonstrated that, as an avian mite, D. gallinae is unsurprisingly an occasional pest of pet birds. However, research also supports that these mites will feed from a range of other animals including: cats, dogs, rodents, rabbits, horses and man. We conclude that although reported cases of D. gallinae infesting mammals are relatively rare, when coupled with the reported genetic plasticity of this species and evidence of permanent infestations on non-avian hosts, potential for host-expansion may exist. The impact of, and mechanisms and risk factors for such expansion are discussed, and suggestions for further work made. Given the potential severity of any level of host-expansion in D. gallinae, we conclude that further research should be urgently conducted to confirm the full extent of the threat posed by D. gallinae to (non-avian) veterinary and medical sectors.
Acosta, Roxana; Hastriter, Michael W
2017-01-01
A redescription of the genus Phalacropsylla Rothschild is provided. Six species are recognized: Phalacropsylla allos Wagner, P. hamata Tipton and Mendez, P. morlani Eads and Campos, P. nivalis Barrera and Traub, P. oregonensis Lewis and Maser, and P. paradisea Rothschild. Phalacropsylla hamata is designated herein as a junior synonym of P. paradisea . The distribution of P. paradisea is more extensive than previously thought, extending from Arizona through southern Colorado, into New Mexico, Texas, and northern Mexico (State of Nuevo León). It is the least host-specific of all species of Phalacropsylla , occurring on 13 different host species including cricetid, heteromyid, murid, and sciurid rodents and several carnivores, although it most commonly occurs on Neotoma albigula Hartley. The range of P. oregonensis is expanded from eastern Oregon to southeastern Idaho. Numerous records are documented for the most common and ubiquitous species, P. allos , which is found in British Columbia, central to northern California, Idaho, Montana, Colorado, Nevada, Utah, Wyoming, Arizona, and New Mexico. Neotoma cinerea Ord is the principal host of P. allos . Phalacropsylla allos is a winter flea west of the Rocky Mountains, but it has been reported in warmer months of the year on the eastern slopes of the Rocky Mountains in Larimer County, Colorado. A distribution map and key are provided for all species in the genus Phalacropsylla .
Characterisation of North American Brucella isolates from marine mammals.
Whatmore, Adrian M; Dawson, Claire; Muchowski, Jakub; Perrett, Lorraine L; Stubberfield, Emma; Koylass, Mark; Foster, Geoffrey; Davison, Nicholas J; Quance, Christine; Sidor, Inga F; Field, Cara L; St Leger, Judy
2017-01-01
Extension of known ecological niches of Brucella has included the description of two novel species from marine mammals. Brucella pinnipedialis is associated predominantly with seals, while two major Brucella ceti clades, most commonly associated with porpoises or dolphins respectively, have been identified. To date there has been limited characterisation of Brucella isolates obtained from marine mammals outside Northern European waters, including North American waters. To address this gap, and extend knowledge of the global population structure and host associations of these Brucella species, 61 isolates from marine mammals inhabiting North American waters were subject to molecular and phenotypic characterisation enabling comparison with existing European isolates. The majority of isolates represent genotypes previously described in Europe although novel genotypes were identified in both B. ceti clades. Harp seals were found to carry B. pinnipedialis genotypes previously confined to hooded seals among a diverse repertoire of sequence types (STs) associated with this species. For the first time Brucella isolates were characterised from beluga whales and found to represent a number of distinct B. pinnipedialis genotypes. In addition the known host range of ST27 was extended with the identification of this ST from California sea lion samples. Finally the performance of the frequently used diagnostic tool Bruce-ladder, in differentiating B. ceti and B. pinnipedialis, was critically assessed based on improved knowledge of the global population structure of Brucella associated with marine mammals.
Characterisation of North American Brucella isolates from marine mammals
Dawson, Claire; Muchowski, Jakub; Perrett, Lorraine L.; Stubberfield, Emma; Koylass, Mark; Foster, Geoffrey; Davison, Nicholas J.; Quance, Christine; Sidor, Inga F.; Field, Cara L.; St. Leger, Judy
2017-01-01
Extension of known ecological niches of Brucella has included the description of two novel species from marine mammals. Brucella pinnipedialis is associated predominantly with seals, while two major Brucella ceti clades, most commonly associated with porpoises or dolphins respectively, have been identified. To date there has been limited characterisation of Brucella isolates obtained from marine mammals outside Northern European waters, including North American waters. To address this gap, and extend knowledge of the global population structure and host associations of these Brucella species, 61 isolates from marine mammals inhabiting North American waters were subject to molecular and phenotypic characterisation enabling comparison with existing European isolates. The majority of isolates represent genotypes previously described in Europe although novel genotypes were identified in both B. ceti clades. Harp seals were found to carry B. pinnipedialis genotypes previously confined to hooded seals among a diverse repertoire of sequence types (STs) associated with this species. For the first time Brucella isolates were characterised from beluga whales and found to represent a number of distinct B. pinnipedialis genotypes. In addition the known host range of ST27 was extended with the identification of this ST from California sea lion samples. Finally the performance of the frequently used diagnostic tool Bruce-ladder, in differentiating B. ceti and B. pinnipedialis, was critically assessed based on improved knowledge of the global population structure of Brucella associated with marine mammals. PMID:28934239
Julie Beckstead; Susan E. Meyer; Toby S. Ishizuka; Kelsey M. McEvoy; Craig E. Coleman
2016-01-01
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora...
Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O
2012-01-01
Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231
Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O
2012-12-01
Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.
The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)
2013-01-01
Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Methods Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. Conclusions The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts. PMID:23497628
Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders; Christiansen, Lasse E; Bødker, René
2013-03-15
Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts.
Black Molds and Melanized Yeasts Pathogenic to Humans
Chowdhary, Anuradha; Perfect, John; de Hoog, G. Sybren
2015-01-01
A review is given of melanized fungi involved in human infection, including species forming budding cells and strictly filamentous representatives. Classically, they are known as “phaeoid” or “dematiaceous” fungi, and, today, agents are recognized to belong to seven orders of fungi, of which the Chaetothyriales and Pleosporales are the most important. Infections range from cutaneous or pulmonary colonization to systemic or disseminated invasion. Subcutaneous involvement, either primary or after dissemination, may lead to host tissue proliferation of dermis or epidermis. Particularly in the Chaetothyriales, subcutaneous and systemic infections may occur in otherwise apparently healthy individuals. Infections are mostly chronic and require extended antifungal therapy and/or surgery. PMID:25384772
Mathematical modeling of infectious disease dynamics
Siettos, Constantinos I.; Russo, Lucia
2013-01-01
Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814
Barreto-Lima, A F; Toledo, G M; Anjos, L A
2012-12-01
Studies focusing on communities of helminths from Brazilian lizards are increasing, but there are many blanks in the knowledge of parasitic fauna of wild fauna. This lack of knowledge hampers understanding of ecological and parasitological aspects of involved species. Moreover, the majority of research has focused on parasitic fauna of lizards from families Tropiduridae and Scincidae. Only a few studies have looked at lizards from the family Leiosauridae, including some species of Enyalius. This study presents data on the gastrointestinal parasite fauna of Enyalius perditus and their relationships with ecological aspects of hosts in a disturbed Atlantic rainforest area in the state of Minas Gerais, south-eastern Brazil. Two nematode species, Oswaldocruzia burseyi [(Molineidae) and Strongyluris oscari (Heterakidae) were found. Nematode species showed an aggregated distribution in this host population, with O. burseyi being more aggregated than S. oscari. The present study extends the range of occurrence of O. burseyi to the Brazilian continental area.
Lead isotopes and trace metals in dust at Yucca Mountain
Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.
2008-01-01
Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.
Methods of expanding bacteriophage host-range and bacteriophage produced by the methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crown, Kevin K.; Santarpia, Joshua
A method of producing novel bacteriophages with expanded host-range and bacteriophages with expanded host ranges are disclosed. The method produces mutant phage strains which are infectious to a second host and can be more infectious to their natural host than in their natural state. The method includes repeatedly passaging a selected phage strain into bacterial cultures that contain varied ratios of its natural host bacterial strain with a bacterial strain that the phage of interest is unable to infect; the target-host. After each passage the resulting phage are purified and screened for activity against the target-host via double-overlay assays. Whenmore » mutant phages that are shown to infect the target-host are discovered, they are further propagated in culture that contains only the target-host to produce a stock of the resulting mutant phage.« less
Greene, J
1990-07-09
Erie Chapman's idea of being a hospital chief executive extends to hosting a television talk show and spending work days as a patient escort or janitor. A critic of executives who rule their hospitals from their offices, Mr. Chapman advocates being visible and accessible to front-line staff and the public.
Hosts and parasites as aliens.
Taraschewski, H
2006-06-01
Over the past decades, various free-living animals (hosts) and their parasites have invaded recipient areas in which they had not previously occurred, thus gaining the status of aliens or exotics. In general this happened to a low extent for hundreds of years. With variable frequency, invasions have been followed by the dispersal and establishment of non-indigenous species, whether host or parasite. In the literature thus far, colonizations by both hosts and parasites have not been treated and reviewed together, although both are usually interwoven in various ways. As to those factors permitting invasive success and colonization strength, various hypotheses have been put forward depending on the scientific background of respective authors and on the conspicuousness of certain invasions. Researchers who have tried to analyse characteristic developmental patterns, the speed of dispersal or the degree of genetic divergence in populations of alien species have come to different conclusions. Among parasitologists, the applied aspects of parasite invasions, such as the negative effects on economically important hosts, have long been at the centre of interest. In this contribution, invasions by hosts as well as parasites are considered comparatively, revealing many similarities and a few differences. Two helminths, the liver fluke, Fasciola hepatica, of cattle and sheep and the swimbladder nematode, Anguillicola crassus, of eels are shown to be useful as model parasites for the study of animal invasions and environmental global change. Introductions of F. hepatica have been associated with imports of cattle or other grazing animals. In various target areas, susceptible lymnaeid snails serving as intermediate hosts were either naturally present and/or were introduced from the donor continent of the parasite (Europe) and/or from other regions which were not within the original range of the parasite, partly reflecting progressive stages of a global biota change. In several introduced areas, F. hepatica co-occurs with native or exotic populations of the congeneric F. gigantica, with thus far unknown implications. Over the fluke's extended range, in addition to domestic stock animals, wild native or naturalized mammals can also serve as final hosts. Indigenous and displaced populations of F. hepatica, however, have not yet been studied comparatively from an evolutionary perspective. A. crassus, from the Far East, has invaded three continents, without the previous naturalization of its natural host Anguilla japonica, by switching to the respective indigenous eel species. Local entomostrac crustaceans serve as susceptible intermediate hosts. The novel final hosts turned out to be naive in respect to the introduced nematode with far reaching consequences for the parasite's morphology (size), abundance and pathogenicity. Comparative infection experiments with Japanese and European eels yielded many differences in the hosts' immune defence, mirroring coevolution versus an abrupt host switch associated with the introduction of the helminth. In other associations of native hosts and invasive parasites, the elevated pathogenicity of the parasite seems to result from other deficiencies such as a lack of anti-parasitic behaviour of the naïve host compared to the donor host which displays distinct behavioural patterns, keeping the abundance of the parasite low. From the small amount of available literature, it can be concluded that the adaptation of certain populations of the novel host to the alien parasite takes several decades to a century or more. Summarizing all we know about hosts and parasites as aliens, tentative patterns and principles can be figured out, but individual case studies teach us that generalizations should be avoided.
Péron, Guillaume; Altwegg, Res; Jamie, Gabriel A; Spottiswoode, Claire N
2016-09-01
As populations shift their ranges in response to global change, local species assemblages can change, setting the stage for new ecological interactions, community equilibria and evolutionary responses. Here, we focus on the range dynamics of four avian brood parasite species and their hosts in southern Africa, in a context of bush encroachment (increase in woody vegetation density in places previously occupied by savanna-grassland mosaics) favouring some species at the expense of others. We first tested whether hosts and parasites constrained each other's ability to expand or maintain their ranges. Secondly, we investigated whether range shifts represented an opportunity for new host-parasite and parasite-parasite interactions. We used multispecies dynamic occupancy models with interactions, fitted to citizen science data, to estimate the contribution of interspecific interactions to range shifts and to quantify the change in species co-occurrence probability over a 25-year period. Parasites were able to track their hosts' range shifts. We detected no deleterious effect of the parasites' presence on either the local population viability of host species or the hosts' ability to colonize newly suitable areas. In the recently diversified indigobird radiation (Vidua spp.), following bush encroachment, the new assemblages presented more potential opportunities for speciation via host switch, but also more potential for hybridization between extant lineages, also via host switch. Multispecies dynamic occupancy models with interactions brought new insights into the feedbacks between range shifts, biotic interactions and local demography: brood parasitism had little detected impact on extinction or colonization processes, but inversely the latter processes affected biotic interactions via the modification of co-occurrence patterns. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
Braschler, Brigitte; Hill, Jane K
2007-05-01
1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the exploitation of more widespread host plants on which performance is improved. This study demonstrates how polyphagy may enhance the ability of species to track climate change. Our findings suggest that observed differences in climate-driven range shifts of generalist vs. specialist species may increase in the future and are likely to lead to greatly altered community composition.
Herman, C.M.; Reeves, W.C.; McClure, H.E.; French, E.M.; Hammon, W.M.
1954-01-01
An epizoological study of Plasmodium infections in wild birds of Kern County, California, in the years 1946 through 1951 greatly extended knowledge of the occurrence of these parasites and their behavior in nature. Examination of 10,459 blood smears from 8,674 birds representing 73 species resulted in the observation of Plasmodium spp. in 1,094 smears representing 888 individual birds of 27 species. Seven species of Plasmodium were found: relictum, elongatum, hexamerium, nucleophilum, polare, rouxi and vaughani. Plasmodium relictum was by far the most frequently observed species, occurring in at least 79 per cent of the infected birds. Twelve new host species are recorded for this parasite. Sufficient morphological variation was observed to indicate that two strains of this species probably exist in nature. Numerous new host records were made of plasmodia with elongate gametocytes. The finding of parasites believed to be P. rouxi in two new host species represents the first record of the occurrence of this Plasmodium outside of Algeria. Multiple smears were obtained from a number of individual birds over varying time periods. Evidence of prolonged parasitemia was unusual, but some individuals had parasitemia on consecutive months and even for three successive years. In most individuals, parasitemias were of short duration. The inoculation of blood from wild birds into canaries led to the demonstration of many infections not observed on blood smear examination of donors. Use of these two complementary techniques led to more complete host records and a truer picture of the prevalence of infection. Three age classes of birds were studied--nestling, immature (less than 1 year of age) and adult. Parasites were observed in all three groups but infections in the younger individuals were most susceptible to interpretation. As to time of onset, numerous records were obtained of infection in nestling birds. Prevalence rates in immature birds after a single season's exposure ranged from 64 to 100 per cent in the house finch and 17 to 68 per cent in the English sparrow in different areas and years. Marked differences were found in the prevalence rates in different summer months, years and areas. It is believed these differences reflect variation in a number of environmental factors. This study indicates the extensive distribution of Plasmodium infection in a wide range of wild avian hosts. The observations are of possible importance in epidemiological studies of other arthropod-borne diseases such as the viral encephalitides for which these birds serve as hosts.
Sota, Masahiro; Yano, Hirokazu; Hughes, Julie; Daughdrill, Gary W.; Abdo, Zaid; Forney, Larry J.; Top, Eva M.
2011-01-01
The ability of bacterial plasmids to adapt to novel hosts and thereby shift their host range is key to their long-term persistence in bacterial communities. Promiscuous plasmids of the IncP-1 group can colonize a wide range of hosts, but it is not known if and how they can contract, shift or further expand their host range. To understand the evolutionary mechanisms of host range shifts of IncP-1 plasmids, an IncP-1β mini-replicon was experimentally evolved in four hosts wherein it was initially unstable. After 1000 generations in serial batch cultures under antibiotic selection for plasmid maintenance (kanamycin resistance), the stability of the mini-plasmid had dramatically improved in all coevolved hosts. However, only plasmids evolved in Shewanella oneidensis showed improved stability in the ancestor, indicating that adaptive mutations had occurred in the plasmid itself. Complete genome sequence analysis of nine independently evolved plasmids showed seven unique plasmid genotypes that had various kinds of single mutations at one locus, namely the N-terminal region of the replication initiation protein TrfA. Such parallel evolution indicates that this region was under strong selection. In five of the seven evolved plasmids these trfA mutations resulted in a significantly higher plasmid copy number. Evolved plasmids were found to be stable in four other naïve hosts, but could no longer replicate in Pseudomonas aeruginosa. This study demonstrates that plasmids can specialize to a novel host through trade-offs between improved stability in the new host and the ability to replicate in a previously permissive host. PMID:20520653
NASA Astrophysics Data System (ADS)
Cristiano Amorisco, Nicola; Martinez-Delgado, David
2015-08-01
Low surface brightness tidal features around massive galaxies are the smoking gun of hierarchical galaxy formation. These debris are informative of: (i) the evolutionary struggles of the progenitor dwarf galaxies, transformed and partially destroyed by the tides; (ii) the formation history of the massive host, its halo populations and the structure of its dark matter halo. However, extracting reliable measurements of the progenitor’s initial mass, infall time, host halo mass and density profile has so far been difficult, as the parameter space is too wide to explore with N-body simulations.We use new deep imaging data of the extended, X shaped stream in NGC1097 [1,2] and a new dynamical technique to quantitatively reconstruct: (i) the density profile of the massive spiral host (inferred virial mass M200=1012.25±0.1 M⊙) ; and (ii) the dramatic evolution of the progenitor galaxy; by modeling its stream within a fully statistical framework. I will show that the current location of the remnant coincides with a nucleated dwarf Spheroidal, with a luminosity of ~3.3x106LV,⊙ [3], and a predicted total mass of M(<0.45±0.2 kpc)=107.8±0.6 M⊙. This is the result of a strong transformation: at its first interaction with the host, 4.4±0.4 Gyr and three pericentric passages ago, the progenitor was over two orders of magnitude more massive, with Mtot(3.2±0.7 kpc)=1010.4±0.2 M⊙. Its orbit has a pericenter of a few kpc, but reaches out to 150±12 kpc. In this range the stream’s morphology allows us to see the total density slope of the host bending and steepening towards large radii. For the first time in a single galaxy (rather than on stacked data), both central and outer slope are constrained by observations and can be compared to LCDM expectations [4]. Finally, I will discuss prospects of applying this technique to more known streams, to map the structure of a wider sample of galaxy haloes and unveil the evolutionary histories of more individual dwarf galaxies.Refs.[1] Arp, 1976, ApJ, 207[2] Higdon & Wallin, 2003, ApJ, 585[3] Galianni et al., 2010, A&A, 521[4] Diemer & Kravtsov, 2014, ApJ, 789
McQuate, Grant T.; Teruya, Tadashi
2015-01-01
Bactrocera cucurbitae (Coquillett) is a tephritid fruit fly native to the Indo-Malayan region. Its distribution, though, has extended to include Africa, temperate Asia, and a number of Pacific islands. It became established in Japan in 1919 in the Yaeyama Islands and spread north in the Southwestern Islands of Japan. It was subsequently eradicated from these islands by an eradication program that extended from 1972 to 1993. As part of an effort to develop a worldwide database on the status of fruits as hosts of melon fly, the infestation data gathered from host fruits collected in this eradication program, before the initiation of suppression activities, are summarized here. Bactrocera cucurbitae infestation was documented in 24 plant taxa of four plant families (Caricaceae, Cucurbitaceae, Moraceae, and Solanaceae), with the following four new hosts identified: Ficus erecta Thunb., F. pumila L. (Moraceae), Solanum erianthum D. Don (Solanaceae), and Zehneria liukiuensis Jeffrey ex Walker (Cucurbitaceae). PMID:26816487
HABITABILITY OF EARTH-MASS PLANETS AND MOONS IN THE KEPLER-16 SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarles, B.; Musielak, Z. E.; Cuntz, M., E-mail: billyq@uta.edu, E-mail: zmusielak@uta.edu, E-mail: cuntz@uta.edu
2012-05-01
We demonstrate that habitable Earth-mass planets and moons can exist in the Kepler-16 system, known to host a Saturn-mass planet around a stellar binary, by investigating their orbital stability in the standard and extended habitable zone (HZ). We find that Earth-mass planets in satellite-like (S-type) orbits are possible within the standard HZ in direct vicinity of Kepler-16b, thus constituting habitable exomoons. However, Earth-mass planets cannot exist in planetary-like (P-type) orbits around the two stellar components within the standard HZ. Yet, P-type Earth-mass planets can exist superior to the Saturnian planet in the extended HZ pertaining to considerably enhanced back-warming inmore » the planetary atmosphere if facilitated. We briefly discuss the potential detectability of such habitable Earth-mass moons and planets positioned in satellite and planetary orbits, respectively. The range of inferior and superior P-type orbits in the HZ is between 0.657-0.71 AU and 0.95-1.02 AU, respectively.« less
Engineering tolerance to industrially relevant stress factors in yeast cell factories.
Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M
2017-06-01
The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.
Qasem, Jamal R.
2012-01-01
A field survey was carried out to record plant species climbed by Ephedra alte in certain parts of Jordan during 2008–2010. Forty species of shrubs, ornamental, fruit, and forest trees belonging to 24 plant families suffered from the climbing habit of E. alte. Growth of host plants was adversely affected by E. alte growth that extended over their vegetation. In addition to its possible competition for water and nutrients, the extensive growth it forms over host species prevents photosynthesis, smothers growth and makes plants die underneath the extensive cover. However, E. alte did not climb all plant species, indicating a host preference range. Damaged fruit trees included Amygdalus communis, Citrus aurantifolia, Ficus carica, Olea europaea, Opuntia ficus-indica, and Punica granatum. Forestry species that were adversely affected included Acacia cyanophylla, Ceratonia siliqua, Crataegus azarolus, Cupressus sempervirens, Pinus halepensis, Pistacia atlantica, Pistacia palaestina, Quercus coccifera, Quercus infectoria, Retama raetam, Rhamnus palaestina, Rhus tripartita, and Zizyphus spina-christi. Woody ornamentals attacked were Ailanthus altissima, Hedera helix, Jasminum fruticans, Jasminum grandiflorum, Nerium oleander, and Pyracantha coccinea. Results indicated that E. alte is a strong competitive for light and can completely smother plants supporting its growth. A. communis, F. carica, R. palaestina, and C. azarolus were most frequently attacked. PMID:22645486
Engineering tolerance to industrially relevant stress factors in yeast cell factories
Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.
2017-01-01
Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408
USDA-ARS?s Scientific Manuscript database
In its native range the invasive weed, Rhodomyrtus tomentosa is host to a suite of herbivores. One, Strepsicrates sp. (Lepidoptera: Tortricidae) was collected in China in 2014, introduced under quarantine in Florida, USA and tested against related species to determine its host range and suitability ...
Parasitic castration: the evolution and ecology of body snatchers
Lafferty, Kevin D.; Kuris, Armand M.
2009-01-01
Castration is a response to the tradeoff between consumption and longevity faced by parasites. Common parasitic castrators include larval trematodes in snails, and isopod and barnacle parasites of crustaceans. The infected host (with its many unique properties) is the extended phenotype of the parasitic castrator. Because an individual parasitic castrator can usurp all the reproductive energy from a host, and that energy is limited, intra- and interspecific competition among castrators is generally intense. These parasites can be abundant and can substantially depress host density. Host populations subject to high rates of parasitic castration appear to respond by maturing more rapidly.
Host density drives the postglacial migration of the tree parasite, Epifagus virginiana.
Tsai, Yi-Hsin Erica; Manos, Paul S
2010-09-28
To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host-parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas.
Codon optimization underpins generalist parasitism in fungi
Badet, Thomas; Peyraud, Remi; Mbengue, Malick; Navaud, Olivier; Derbyshire, Mark; Oliver, Richard P; Barbacci, Adelin; Raffaele, Sylvain
2017-01-01
The range of hosts that parasites can infect is a key determinant of the emergence and spread of disease. Yet, the impact of host range variation on the evolution of parasite genomes remains unknown. Here, we show that codon optimization underlies genome adaptation in broad host range parasites. We found that the longer proteins encoded by broad host range fungi likely increase natural selection on codon optimization in these species. Accordingly, codon optimization correlates with host range across the fungal kingdom. At the species level, biased patterns of synonymous substitutions underpin increased codon optimization in a generalist but not a specialist fungal pathogen. Virulence genes were consistently enriched in highly codon-optimized genes of generalist but not specialist species. We conclude that codon optimization is related to the capacity of parasites to colonize multiple hosts. Our results link genome evolution and translational regulation to the long-term persistence of generalist parasitism. DOI: http://dx.doi.org/10.7554/eLife.22472.001 PMID:28157073
Di Azevedo, M I N; Carvalho, V L; Iñiguez, A M
2016-01-01
Anisakid nematodes are parasites with an indirect life cycle, involving many hosts, including cetaceans that act as definitive hosts. Identification at species level is crucial for a better understanding of the epidemiology and ecology of these parasites, but an accurate diagnosis based only on morphology is difficult. In Brazil, genetic characterization of anisakids is still rare, with Anisakis typica and A. physeteris being the only two species identified by genetic markers until now. The definitive hosts of A. nascettii are Mesoplodon grayi, M. bowdoini, M. layardii and M. mirus. Geographical locations of A. nascettii include the coasts of New Zealand, South Africa and Europe. In this study, a nematode was collected from a Gervais' beaked whale, Mesoplodon europaeus, stranded in Ceará State, north-east Brazil. Genetic analysis based on 18S rDNA, internal transcribed spacer (ITS) region and mtDNA cox2 gene revealed 100% identity with Anisakis sp. U94365, 99% with Anisakis sp. (MP-2005 EU718477 A. nascettii) and 99% with A. nascettii DQ116431, respectively. Phylogenetic analyses of ITS and cox2 sequences using both neighbour-joining and maximum-likelihood methods provided strong support for a clade with only A. nascettii specimens. This study demonstrated for the first time the identification of A. nascettii in the Brazilian Atlantic Coast, revealing a wider geographical distribution of this parasite worldwide and extending the range of its definitive hosts to a new Mesoplodon species, M. europaeus, the Gervais' beaked whale.
Marroquin-Flores, Rosario A; Williamson, Jessie L; Chavez, Andrea N; Bauernfeind, Selina M; Baumann, Matthew J; Gadek, Chauncey R; Johnson, Andrew B; McCullough, Jenna M; Witt, Christopher C; Barrow, Lisa N
2017-01-01
Avian malaria and related haemosporidian parasites (genera Haemoproteus , Plasmodium , and Leucocytozoon ) affect bird demography, species range limits, and community structure, yet they remain unsurveyed in most bird communities and populations. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe their diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2,150-2,460 m). We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian haemosporidian genera. We detected infections in 68 out of 186 birds (36.6%), the highest proportion of which were infected with Haemoproteus (20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus , 12 Leucocytozoon , 6 Plasmodium ). When compared to all previously known haplotypes in the MalAvi and GenBank databases, 63% (27) of the haplotypes we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera, in that Haemoproteus and Leucocytozoon were each restricted to three avian groups (out of six), while Plasmodium occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian haemosporidian diversity to be 70 haplotypes (95% CI [43-98]); thus, we may have already sampled ∼60% of the diversity of avian haemosporidians in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the present study. Fortunately, this study is fully extendable via voucher specimens, frozen tissues, blood smears, parasite images, and documentation provided in open-access databases (MalAvi, GenBank, and ARCTOS).
From flavoenzymes to devices: The role of electronic effects in recognition
NASA Astrophysics Data System (ADS)
Deans, Robert
Acylated aminopyridines provide models for specific flavoenzyme-cofactor interactions, allowing isolation and observation of the effects of hydrogen bonding on flavin NMR. To determine the relative hydrogen bond affinities of O(2) and O(4) of the flavin, a 2-aminopyridine based receptor was investigated. Additionally, this receptor allowed the effects of hydrogen bonding at O(2) and O(4) on the electron distribution in the flavin nucleus to be determined using sp{13}C NMR. A new family of receptors for flavins based on 6-aryl-2,4-(acyldiamino)-s-triazines was synthesized. In these synthetic hosts, systematic variation of the spatially remote substituents on the 6-aryl ring altered the hydrogen bond donating abilities of the amide functionality and the hydrogen bond accepting properties of the triazine N(3). This variation resulted in a strong modulation of the efficiency of flavin binding, with association constants for the receptor flavin complexes ranging over an 8-fold range. In addition, the communication of electronic information over extended distances was also investigated. Polymers can provide relevant media for the modeling of biological processes, including molecular recognition. To explore this possibility, a diaminotriazine-functionalized polymer was synthesized, starting from Merrifield's peptide resin. This polymer selectively bound a flavin derivative through hydrogen bonding, efficiently extracting it from a chloroform solution, as monitored by UV-vis extraction studies. The temperature profile of this polymer-flavin binding was also investigated and compared to the analogous solution-phase triazine-flavin dyad. Hydrogen bonding and aromatic stacking are fundamental interactions in molecular recognition. These interactions are sensitive to the redox states of the components of the host-guest complex. To explore the interplay of recognition and redox processes, a system consisting of two hosts and one guest, where guest binding interactions (hydrogen bonding and aromatic stacking) were modulated via choice of redox state was examined. Proper choice of receptors then provided a device where the competition between the two hosts was controlled by the redox state of the guest. The efficient reversal of host preference in this assembly provided an electrochemically-controlled three-component, two-pole, molecular switch.
Marroquin-Flores, Rosario A.; Williamson, Jessie L.; Chavez, Andrea N.; Bauernfeind, Selina M.; Baumann, Matthew J.; Gadek, Chauncey R.; Johnson, Andrew B.; McCullough, Jenna M.
2017-01-01
Avian malaria and related haemosporidian parasites (genera Haemoproteus, Plasmodium, and Leucocytozoon) affect bird demography, species range limits, and community structure, yet they remain unsurveyed in most bird communities and populations. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe their diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2,150–2,460 m). We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian haemosporidian genera. We detected infections in 68 out of 186 birds (36.6%), the highest proportion of which were infected with Haemoproteus (20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus, 12 Leucocytozoon, 6 Plasmodium). When compared to all previously known haplotypes in the MalAvi and GenBank databases, 63% (27) of the haplotypes we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera, in that Haemoproteus and Leucocytozoon were each restricted to three avian groups (out of six), while Plasmodium occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian haemosporidian diversity to be 70 haplotypes (95% CI [43–98]); thus, we may have already sampled ∼60% of the diversity of avian haemosporidians in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the present study. Fortunately, this study is fully extendable via voucher specimens, frozen tissues, blood smears, parasite images, and documentation provided in open-access databases (MalAvi, GenBank, and ARCTOS). PMID:28828279
Two-Way Communication Using RFID Equipment and Techniques
NASA Technical Reports Server (NTRS)
Jedry, Thomas; Archer, Eric
2007-01-01
Equipment and techniques used in radio-frequency identification (RFID) would be extended, according to a proposal, to enable short-range, two-way communication between electronic products and host computers. In one example of a typical contemplated application, the purpose of the short-range radio communication would be to transfer image data from a user s digital still or video camera to the user s computer for recording and/or processing. The concept is also applicable to consumer electronic products other than digital cameras (for example, cellular telephones, portable computers, or motion sensors in alarm systems), and to a variety of industrial and scientific sensors and other devices that generate data. Until now, RFID has been used to exchange small amounts of mostly static information for identifying and tracking assets. Information pertaining to an asset (typically, an object in inventory to be tracked) is contained in miniature electronic circuitry in an RFID tag attached to the object. Conventional RFID equipment and techniques enable a host computer to read data from and, in some cases, to write data to, RFID tags, but they do not enable such additional functions as sending commands to, or retrieving possibly large quantities of dynamic data from, RFID-tagged devices. The proposal would enable such additional functions. The figure schematically depicts an implementation of the proposal for a sensory device (e.g., a digital camera) that includes circuitry that converts sensory information to digital data. In addition to the basic sensory device, there would be a controller and a memory that would store the sensor data and/or data from the controller. The device would also be equipped with a conventional RFID chipset and antenna, which would communicate with a host computer via an RFID reader. The controller would function partly as a communication interface, implementing two-way communication protocols at all levels (including RFID if needed) between the sensory device and the memory and between the host computer and the memory. The controller would perform power V
Mathenge, C W; Holford, P; Hoffmann, J H; Zimmermann, H G; Spooner-Hart, R; Beattie, G A C
2009-12-01
Cylindropuntia fulgida (Engelmann) F.M. Knuth var. fulgida (Engelmann) F.M. Knuth (Cff) (Caryophyllales: Cactaceae) is native to Mexico and Arizona and was introduced into South Africa for ornamental purposes. It subsequently became highly invasive, necessitating control. The cochineal insect, Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae), was selected as a potential biological control agent based on its restricted host range among Cylindropuntia species and previous success in controlling C. imbricata (DC.) F. Knuth (Ci). Eight D. tomentosus provenances (Cholla, Cholla E, Fulgida, Mamillata, Imbricata, Tunicata U, Tunicata V and Rosea) from Cylindropuntia species in their native ranges were reared on Cff, whilst Cholla and Imbricata were also reared on Ci. Large differences were found in the development and survival of crawlers, and in the reproductive capacity of females. Three subjective categories of provenance interaction with host plants were identified based on a fitness index (FI) calculated from data relating to crawler survival, female development time and fecundity: (i) thriving (FI > or = 1) - insects had shorter developmental times, high crawler survival and highly fecund females (Cholla); (ii) surviving (FI<1 but >0) - insects had extended development times, low crawler survival and low fecundity (Imbricata, Fulgida and Mamillata); and (iii) dying (FI = 0) - insects died before or at the second instar (Rosea, Tunicata U and Tunicata V). Cholla, therefore, is highly suitable for biological control of Cff in South Africa. In addition, Cholla thrived on Cff but only survived on Ci whilst, in contrast, Imbricata thrived on Ci but only survived on Cff. This differential ability of provenances to thrive or survive on different host plants demonstrated that host adapted biotypes of D. tomentosus exist; therefore, biotypes should be taken into account when considering this species as a biological control agent of cactus weeds.
Lenstronomy: Multi-purpose gravitational lens modeling software package
NASA Astrophysics Data System (ADS)
Birrer, Simon; Amara, Adam
2018-04-01
Lenstronomy is a multi-purpose open-source gravitational lens modeling python package. Lenstronomy reconstructs the lens mass and surface brightness distributions of strong lensing systems using forward modelling and supports a wide range of analytic lens and light models in arbitrary combination. The software is also able to reconstruct complex extended sources as well as point sources. Lenstronomy is flexible and numerically accurate, with a clear user interface that could be deployed across different platforms. Lenstronomy has been used to derive constraints on dark matter properties in strong lenses, measure the expansion history of the universe with time-delay cosmography, measure cosmic shear with Einstein rings, and decompose quasar and host galaxy light.
NASA Astrophysics Data System (ADS)
Zhao, Jing-bo; Han, Bing-yuan; Bei, Shao-yi
2017-10-01
Range extender is the core component of E-REV, its start-stop control determines the operation modes of vehicle. This paper based on a certain type of E-REV, researched constant power control strategy of range extender in extended-range model, to target range as constraint condition, combined with different driving cycle conditions, by correcting battery SOC for range extender start-stop moment, optimized the control strategy of range extender, and established the vehicle and range extender start-stop control simulation model. Selected NEDC and UDDS conditions simulation results show that: under certain target mileage, the range extender running time reduced by 37.2% and 28.2% in the NEDC condition, and running time UDDS conditions were reduced by 40.6% and 33.5% in the UDDS condition, reached the purpose of meeting the vehicle mileage and reducing consumption and emission.
NASA Astrophysics Data System (ADS)
Kamzolkin, V. A.; Latyshev, A. V.; Vidyapin, Yu. P.; Somin, M. L.; Smul'skaya, A. I.; Ivanov, S. D.
2018-05-01
The paper presents new data on the composition, age, and relationships (with host and overlying deposits) of intrusive rocks in the basement of the Fore Range zone (Greater Caucasus), in the Malaya Laba River Basin. The evolutionary features of intrusive units located within the Blyb metamorphic complex are described. It is shown for the first time that the lower levels of this complex are, in a structural sense, outcrops of the Late Vendian basement. The basement is composed of the Balkan Formation and a massif of quartz metadiorites that intrudes it; for the rocks of this massif, ages ranging from 549 ± 7.4 to 574.1 ± 6.7 Ma are obtained for three U-Pb datings by the SHRIMP-II method. The Herzyinan magmatic event is represented by a group of granodiorite intrusions penetrating the Blyb complex on a series of faults extending along its boundary with the Main Range zone. The obtained estimate for the U-Pb age of one of the intrusions (319 ± 3.8 Ma) corresponds to the end of the Serpukhovian stage of the Early Carboniferous.
The potential for host switching via ecological fitting in the emerald ash borer-host plant system.
Cipollini, Don; Peterson, Donnie L
2018-02-27
The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.
Esposito, Lauren A; Gupta, Swati; Streiter, Fraida; Prasad, Ashley; Dennehy, John J
2016-10-01
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis , a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis , but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species.
Esposito, Lauren A.; Gupta, Swati; Streiter, Fraida; Prasad, Ashley
2016-01-01
In an genomics course sponsored by the Howard Hughes Medical Institute (HHMI), undergraduate students have isolated and sequenced the genomes of more than 1,150 mycobacteriophages, creating the largest database of sequenced bacteriophages able to infect a single host, Mycobacterium smegmatis, a soil bacterium. Genomic analysis indicates that these mycobacteriophages can be grouped into 26 clusters based on genetic similarity. These clusters span a continuum of genetic diversity, with extensive genomic mosaicism among phages in different clusters. However, little is known regarding the primary hosts of these mycobacteriophages in their natural habitats, nor of their broader host ranges. As such, it is possible that the primary host of many newly isolated mycobacteriophages is not M. smegmatis, but instead a range of closely related bacterial species. However, determining mycobacteriophage host range presents difficulties associated with mycobacterial cultivability, pathogenicity and growth. Another way to gain insight into mycobacteriophage host range and ecology is through bioinformatic analysis of their genomic sequences. To this end, we examined the correlations between the codon usage biases of 199 different mycobacteriophages and those of several fully sequenced mycobacterial species in order to gain insight into the natural host range of these mycobacteriophages. We find that UPGMA clustering tends to match, but not consistently, clustering by shared nucleotide sequence identify. In addition, analysis of GC content, tRNA usage and correlations between mycobacteriophage and mycobacterial codon usage bias suggests that the preferred host of many clustered mycobacteriophages is not M. smegmatis but other, as yet unknown, members of the mycobacteria complex or closely allied bacterial species. PMID:28348827
NASA Astrophysics Data System (ADS)
Veglia, A. J.; Milford, C. R.; Marston, M.
2016-02-01
Viruses infecting marine Synechococcus are abundant in coastal marine environments and influence the community composition and abundance of their cyanobacterial hosts. In this study, we focused on the cyanopodoviruses which have smaller genomes and narrower host ranges relative to cyanomyoviruses. While previous studies have compared the genomes of diverse podoviruses, here we analyzed the genomic variation, host ranges, and infection kinetics of podoviruses within the same OTU. The genomes of fifty-five podoviral isolates from the coastal waters of New England were fully sequenced. Based on DNA polymerase gene sequences, these isolates fall into five discrete OTUs (termed RIP - Rhode Island Podovirus). Although all the isolates belonging to the same RIP have very similar DNA polymerase gene sequences (>98% sequence identity), differences in genome content, particularly in regions associated with tail fiber genes, were observed among isolates in the same RIP. Host range tests reveal variation both across and within RIPs. Notably within RIP1, isolates that had similar tail fiber regions also had similar host ranges. Isolates belonging to RIP4 do not contain the host-derived psbA photosynthesis gene, while isolates in the other four RIPs do possess a psbA gene. Nevertheless, infection kinetic experiments suggest that the latent period and burst size for RIP4 isolates are similar to RIP1 isolates. We are continuing to investigate the correlations among genome content, host range, and infection kinetics of isolates belonging to the same OTU. Our results to date suggest that there is substantial genomic variation within an OTU and that this variation likely influences cyanopodoviral - host interactions.
ERIC Educational Resources Information Center
Grieve, Averil Marie
2015-01-01
This study focuses on the relationships between host family success, social integration, length of stay and acquisition of adolescent language by students on extended international homestay programmes. Degree of adolescent language acquisition and integration is measured by use of two hallmarks of adolescent language: markers of approximation…
USDA-ARS?s Scientific Manuscript database
The adaptation of Salmonella enterica to the eukaryotic host is a key process that enables the bacterium to survive in a hostile environment. Salmonella has evolved an intimate relationship with its host that extends to their cellular and molecular levels. Colonization, invasion, and replication o...
INTEGRATING PARASITES AND PATHOGENS INTO THE STUDY OF GEOGRAPHIC RANGE LIMITS.
Bozick, Brooke A; Real, Leslie A
2015-12-01
The geographic distributions of all species are limited, and the determining factors that set these limits are of fundamental importance to the fields of ecology and evolutionary biology. Plant and animal ranges have been of primary concern, while those of parasites, which represent much of the Earth's biodiversity, have been neglected. Here, we review the determinants of the geographic ranges of parasites and pathogens, and explore how parasites provide novel systems with which to investigate the ecological and evolutionary processes governing host/parasite spatial distributions. Although there is significant overlap in the causative factors that determine range borders of parasites and free-living species, parasite distributions are additionally constrained by the geographic range and ecology of the host species' population, as well as by evolutionary factors that promote host-parasite coevolution. Recently, parasites have been used to infer population demographic and ecological information about their host organisms and we conclude that this strategy can be further exploited to understand geographic range limitations of both host and parasite populations.
Environmentally transmitted parasites: Host-jumping in a heterogeneous environment.
Caraco, Thomas; Cizauskas, Carrie A; Wang, Ing-Nang
2016-05-21
Groups of chronically infected reservoir-hosts contaminate resource patches by shedding a parasite׳s free-living stage. Novel-host groups visit the same patches, where they are exposed to infection. We treat arrival at patches, levels of parasite deposition, and infection of the novel host as stochastic processes, and derive the expected time elapsing until a host-jump (initial infection of a novel host) occurs. At stationarity, mean parasite densities are independent of reservoir-host group size. But within-patch parasite-density variances increase with reservoir group size. The probability of infecting a novel host declines with parasite-density variance; consequently larger reservoir groups extend the mean waiting time for host-jumping. Larger novel-host groups increase the probability of a host-jump during any single patch visit, but also reduce the total number of visits per unit time. Interaction of these effects implies that the waiting time for the first infection increases with the novel-host group size. If the reservoir-host uses resource patches in any non-uniform manner, reduced spatial overlap between host species increases the waiting time for host-jumping. Copyright © 2016 Elsevier Ltd. All rights reserved.
Standardised online data access and publishing for Earth Systems and Climate data in Australia
NASA Astrophysics Data System (ADS)
Evans, B. J. K.; Druken, K. A.; Trenham, C.; Wang, J.; Wyborn, L. A.; Smillie, J.; Allen, C.; Porter, D.
2015-12-01
The National Computational Infrastructure (NCI) hosts Australia's largest repository (10+ PB) of research data collections spanning a wide range of fields from climate, coasts, oceans, and geophysics through to astronomy, bioinformatics, and the social sciences. Spatial scales range from global to local ultra-high resolution, requiring storage volumes from MB to PB. The data have been organised to be highly connected to both the NCI HPC and cloud resources (e.g., interactive visualisation and analysis environments). Researchers can login to utilise the high performance infrastructure for these data collections, or access the data via standards-based web services. Our aim is to provide a trusted platform to support interdisciplinary research across all the collections as well as services for use of the data within individual communities. We thus cater to a wide range of researcher needs, whilst needing to maintain a consistent approach to data management and publishing. All research data collections hosted at NCI are governed by a data management plan, prior to being published through a variety of platforms and web services such as OPeNDAP, HTTP, and WMS. The data management plan ensures the use of standard formats (when available) that comply with relevant data conventions (e.g., CF-Convention) and metadata standards (e.g., ISO19115). Digital Object Identifiers (DOIs) can be minted at NCI and assigned to datasets and collections. Large scale data growth and use in a variety of research fields has led to a rise in, and acceptance of, open spatial data formats such as NetCDF4/HDF5, prompting a need to extend these data conventions to fields such as geophysics and satellite Earth observations. The fusion of DOI-minted data that is discoverable and accessible via metadata and web services, creates a complete picture of data hosting, discovery, use, and citation. This enables standardised and reproducible data analysis.
NASA Astrophysics Data System (ADS)
Froning, Cynthia
2017-08-01
JWST will be able to observe the atmospheres of rocky planets transiting nearby M dwarfs. A few such planets are already known (around GJ1132, Proxima Cen, and Trappist-1) and TESS is predicted to find many more, including 14 habitable zone planets. To interpret observations of these exoplanets' atmospheres, we must understand the high-energy SED of their host stars: X-ray/EUV irradiation can erode a planet's gaseous envelope and FUV/NUV-driven photochemistry shapes an atmosphere's molecular abundances, including potential biomarkers like O2, O3, and CH4. Our MUSCLES Treasury Survey (Cycles 19+22) used Hubble/COS+STIS UV observations with contemporaneous X-ray and ground-based data to construct complete SEDs for 11 low-mass exoplanet hosts. MUSCLES is the most widely used database for early-M and K dwarf (>0.3 M_sun) irradiance spectra and has supported a wide range of atmospheric stability and biomarker modeling work. However, TESS will find most of its habitable planets transiting stars less massive than this, and these will be the planets to characterize with JWST. Here, we propose to expand the MUSCLES project to: (a) new M dwarf exoplanet hosts with varying properties; (b) reference M dwarfs below 0.3 solar masses that may be used as proxies for M dwarf planet hosts discovered after HST's lifetime; and (c) more rapidly rotating stars of GJ1132's mass to probe XUV evolution over gigayear timescales. We propose to gather the first panchromatic SEDs of rocky planet hosts GJ1132 and Trappist-1. This proposal extends proven methods to a key new sample of stars, upon which critically depends the long-term goal of studying habitable planet atmospheres with JWST and beyond.
The Spitzer/Swift Gamma-Ray Burst Host Galaxy Extended Legacy Survey
NASA Astrophysics Data System (ADS)
Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna
2014-12-01
Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample and provide the definitive resource with which to examine all aspects of the GRB/galaxy connection for years and possibly decades to come.
Banday, M. N.; Lone, F. A.; Rasool, F.; Rather, H. A.; Rather, M. A.
2017-01-01
Antibiotics are added to semen extenders to take care of heavy microbial load, however, their continuous use poses a constant threat of developing antibiotic resistance by the common microbes present in the semen. Our hypothesis was that natural honey, having antibacterial activity and rich in fructose could replace the use of antibiotics and fructose in the semen extender. Twenty-four ejaculates from six crossbred rams were obtained and extended with tris-based extender without (control) and with honey at 2.5% (T1), 5% (T2) and 7% (T3). Sperm quality was measured in terms of percentage sperm motility, live sperm count, intact acrosome and hypo-osmotic swelling test (HOST) reacted spermatozoa. The semen samples at post-thaw were also evaluated for total viable count (colony forming units/ml). At post-thaw, control exhibited significantly (P<0.05) higher sperm motility in comparison to T2 and T3. The percent of live sperm count, intact acrosome and HOST reacted spermatozoa were significantly higher (P<0.05) for control than all other treatment groups at post-thaw. Among treatment groups, T1 maintained significantly higher (P<0.05) percentage of live sperm count, intact acrosome and HOST reacted spermatozoa than T2 and T3. The total viable count at post-thaw was significantly lower (P<0.05) for control than all the treatment groups. In conclusion, honey cannot be used as an alternative to antibiotics to take care of heavy microbial load in semen, however, levels up to 2.5% may be supplemented to semen as an energy source. PMID:29387098
USDA-ARS?s Scientific Manuscript database
We have fulfilled Koch’s postulates and conducted host range tests with Septoria lepidii Desm. on five geographical accessions of hoary cress. Host range results showed the fungus specific to Lepidium spp. and damaging to hoary cress. This fungus is potentially an important biological control agent ...
Derek W. Rosenberger; Robert C. Venette; Brian H. Aukema; Jörg Müller
2018-01-01
Some subcortical insects have devastating effects on native tree communities in new ranges, despite benign interactions with their historical hosts. Examples of how insects, aggressive in their native habitat might respond in novel host environs are less common. One aggressive tree-killing insect undergoing a dramatic range shift is the mountain pine beetle (...
VideoANT: Extending Online Video Annotation beyond Content Delivery
ERIC Educational Resources Information Center
Hosack, Bradford
2010-01-01
This paper expands the boundaries of video annotation in education by outlining the need for extended interaction in online video use, identifying the challenges faced by existing video annotation tools, and introducing Video-ANT, a tool designed to create text-based annotations integrated within the time line of a video hosted online. Several…
Donald, Kirsten M; Spencer, Hamish G
2016-08-01
Digenean parasites infecting four Cominella whelk species (C. glandiformis, C. adspersa, C. maculosa and C. virgata), which inhabit New Zealand's intertidal zone, were analysed using molecular techniques. Mitochondrial 16S and cytochrome oxidase 1 (COI) and nuclear rDNA ITS1 sequences were used to infer phylogenetic relationships amongst digenea. Host species were parasitized by a diverse range of digenea (Platyhelminthes, Trematoda), representing seven families: Echinostomatidae, Opecoelidae, Microphallidae, Strigeidae and three, as yet, undetermined families A, B and C. Each parasite family infected between one and three host whelk species, and infection levels were typically low (average infection rates ranged from 1·4 to 3·6%). Host specificity ranged from highly species-specific amongst the echinostomes, which were only ever observed infecting C. glandiformis, to the more generalist opecoelids and strigeids, which were capable of infecting three out of four of the Cominella species analysed. Digeneans displayed a highly variable geographic range; for example, echinostomes had a large geographic range stretching the length of New Zealand, from Northland to Otago, whereas Family B parasites were restricted to fairly small areas of the North Island. Our results add to a growing body of research identifying wide ranges in both host specificity and geographic range amongst intertidal, multi-host parasite systems.
USDA-ARS?s Scientific Manuscript database
Open-field host-specificity testing assesses the host-range of a biological control agent in a setting that permits the agent to use its full complement of host-seeking behaviors. This form of testing, particularly when it includes a no-choice phase in which the target weed is killed, may provide th...
Host-specificity among abundant and rare taxa in the sponge microbiome.
Reveillaud, Julie; Maignien, Loïs; Murat Eren, A; Huber, Julie A; Apprill, Amy; Sogin, Mitchell L; Vanreusel, Ann
2014-06-01
Microbial communities have a key role in the physiology of the sponge host, and it is therefore essential to understand the stability and specificity of sponge-symbiont associations. Host-specific bacterial associations spanning large geographic distance are widely acknowledged in sponges. However, the full spectrum of specificity remains unclear. In particular, it is not known whether closely related sponges host similar or very different microbiota over wide bathymetric and geographic gradients, and whether specific associations extend to the rare members of the sponge microbiome. Using the ultra-deep Illumina sequencing technology, we conducted a comparison of sponge bacterial communities in seven closely related Hexadella species with a well-resolved host phylogeny, as well as of a distantly related sponge Mycale. These samples spanned unprecedentedly large bathymetric (15-960 m) gradients and varying European locations. In addition, this study included a bacterial community analysis of the local background seawater for both Mycale and the widespread deep-sea taxa Hexadella cf. dedritifera. We observed a striking diversity of microbes associated with the sponges, spanning 47 bacterial phyla. The data did not reveal any Hexadella microbiota co-speciation pattern, but confirmed sponge-specific and species-specific host-bacteria associations, even within extremely low abundant taxa. Oligotyping analysis also revealed differential enrichment preferences of closely related Nitrospira members in closely related sponges species. Overall, these results demonstrate highly diverse, remarkably specific and stable sponge-bacteria associations that extend to members of the rare biosphere at a very fine phylogenetic scale, over significant geographic and bathymetric gradients.
Patrock, Richard J. W.; Porter, Sanford D.; Gilbert, Lawrence E.; Folgarait, Patricia J.
2009-01-01
Classical biological control efforts against imported fire ants have largely involved the use of Pseudacteon parasitoids. To facilitate further exploration for species and population biotypes a database of collection records for Pseudacteon species was organized, including those from the literature and other sources. These data were then used to map the geographical ranges of species associated with the imported fire ants in their native range in South America. In addition, we found geographical range metrics for all species in the genus and related these metrics to latitude and host use. Approximately equal numbers of Pseudacteon species were found in temperate and tropical regions, though the majority of taxa found only in temperate areas were found in the Northern Hemisphere. No significant differences in sizes of geographical ranges were found between Pseudacteon associated with the different host complexes of fire ants despite the much larger and systemic collection effort associated with the S. saevissima host group. The geographical range of the flies was loosely associated with both the number of hosts and the geographical range of their hosts. Pseudacteon with the most extensive ranges had either multiple hosts or hosts with broad distributions. Mean species richnesses of Pseudacteon in locality species assemblages associated with S. saevissima complex ants was 2.8 species, but intensively sampled locations were usually much higher. Possible factors are discussed related to variation in the size of geographical range, and areas in southern South America are outlined that are likely to have been under-explored for Pseudacteon associated with imported fire ants. PMID:20050779
Sereno-Uribe, A L; Pinacho-Pinacho, C D; Sanchéz Cordero, V; García-Varela, M
2015-07-01
In central Mexico, populations of the freshwater snail Physella cubensis were infected with metacercariae from a species of Echinoparyphium (Digenea: Echinostomatidae). In the current study, we describe both larval and adult stages of this species obtained from experimental and natural infections. A total 180 snails were collected from Patzcuaro Lake, Michoacan state in central Mexico in July 2012. In the laboratory snails were placed in individual vials and exposed to light with the aim of observing emergence of cercariae. To obtain metacercariae, uninfected snails (P. cubensis) were exposed to cercariae. Chicks were infected with metacercariae to obtain adults. Nine days post-infection, eggs were recovered and incubated in tap water at room temperature to observe miracidia. Adults obtained from natural and experimentally infected hosts possess a head collar with 45 spines in two alternating rows, confirming the identification as Echinoparyphium recurvatum von Linstow 1873. To test the conspecificity of all stages, sequences of nuclear internal transcribed spacer 1 (ITS1), 5.8S and ITS2 rDNA were obtained from two adult worms recovered from chicks and also a natural avian host, the shoveler duck Anas clypeata, together with five cercarial and four metacercarial isolates from nine snails. The genetic divergence estimated among the 13 isolates was very low, ranging from 0 to 0.6%. Phylogenetic analyses inferred by maximum likelihood and Bayesian methods showed that all isolates of E. recurvatum form a single clade with strong support. The presence of E. recurvatum in P. cubensis and A. clypeata from central Mexico represents new host reports, and extends the distribution range in the Americas.
Host-imposed manganese starvation of invading pathogens: two routes to the same destination
Morey, Jacqueline R.; McDevitt, Christopher A.; Kehl-Fie, Thomas E.
2015-01-01
During infection invading pathogens must acquire all essential nutrients, including first row transition metals, from the host. To combat invaders, the host exploits this fact and restricts the availability of these nutrients using a defense mechanism known as nutritional immunity. While iron sequestration is the most well-known aspect of this defense, recent work has revealed that the host restricts the availability of other essential elements, notably manganese, during infection. Furthermore, these studies have revealed that the host utilizes multiple strategies that extend beyond metal sequestration to prevent bacteria from obtaining these metals. This review will discuss the mechanisms by which bacteria attempt to obtain the essential first row transition metal ion manganese during infection, and the approaches utilized by the host to prevent this occurrence. In addition, this review will discuss the impact of host-imposed manganese starvation on invading bacteria. PMID:25836716
Xie, Yicheng; Wahab, Laith; Gill, Jason J
2018-04-12
Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format.
Xie, Yicheng; Wahab, Laith
2018-01-01
Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format. PMID:29649135
Diagnosis of a new variant of soybean yellow mottle mosaic virus with extended host-range in India.
Sandra, Nagamani; Kumar, Alok; Sharma, Prachi; Kapoor, Reetika; Jain, Rakesh Kumar; Mandal, Bikash
2015-12-01
Soybean yellow mottle mosaic virus (SYMMV, genus Carmovirus) was previously known to occur in South Korea and USA causing bright yellow mosaic in soybean. In this study, SYMMV (Car-Mb14 isolate) was isolated from mungbean (Vigna radiata) exhibiting mild mottling and puckering symptoms in the experimental field at Indian Agricultural Research Institute, New Delhi during 2012. The virus isolate, Car-Mb14 induced veinal mottling, mild mottling, chlorotic blotching, local and systemic necrosis in soybean, mungbean, blackgram, French bean and guar bean, respectively. The symptomatology of the present isolate of SYMMV was different from the previously reported South Korean isolate, as the later did not induce symptoms in any of the above legumes other than soybean. The present isolate was phylogenetically distinct and shared 90-93 % sequence identity in coat protein (CP) of 52 SYMMV isolates reported from Korea and USA. In order to know the serological relationships, the CP gene of the present isolate was over expressed as a 39 kDa protein in E. coli and an antiserum of 1:16,000 titer against the recombinant CP was produced. Serological cross reactivity analysis revealed that SYMMV was serologically related to blackgram mottle virus but not to cowpea mottle virus, the other legume infecting carmoviruses. The antiserum was used to detect prevalence of SYMMV in legume crops by ELISA. Out of 145 field samples of legumes (mungbean, blackgram, French bean and soybean) collected from different places in India, SYMMV was detected only in 16 samples of mungbean and one sample of blackgram. The natural infection of SYMMV in mungbean and blackgram was further confirmed based on CP gene sequence. This study provides evidence of occurrence of a new variant of SYMMV with distinct symptom phenotype and extended host-range in India.
Interactome of the hepatitis C virus: Literature mining with ANDSystem.
Saik, Olga V; Ivanisenko, Timofey V; Demenkov, Pavel S; Ivanisenko, Vladimir A
2016-06-15
A study of the molecular genetics mechanisms of host-pathogen interactions is of paramount importance in developing drugs against viral diseases. Currently, the literature contains a huge amount of information that describes interactions between HCV and human proteins. In addition, there are many factual databases that contain experimentally verified data on HCV-host interactions. The sources of such data are the original data along with the data manually extracted from the literature. However, the manual analysis of scientific publications is time consuming and, because of this, databases created with such an approach often do not have complete information. One of the most promising methods to provide actualisation and completeness of information is text mining. Here, with the use of a previously developed method by the authors using ANDSystem, an automated extraction of information on the interactions between HCV and human proteins was conducted. As a data source for the text mining approach, PubMed abstracts and full text articles were used. Additionally, external factual databases were analyzed. On the basis of this analysis, a special version of ANDSystem, extended with the HCV interactome, was created. The HCV interactome contains information about the interactions between 969 human and 11 HCV proteins. Among the 969 proteins, 153 'new' proteins were found not previously referred to in any external databases of protein-protein interactions for HCV-host interactions. Thus, the extended ANDSystem possesses a more comprehensive detailing of HCV-host interactions versus other existing databases. It was interesting that HCV proteins more preferably interact with human proteins that were already involved in a large number of protein-protein interactions as well as those associated with many diseases. Among human proteins of the HCV interactome, there were a large number of proteins regulated by microRNAs. It turned out that the results obtained for protein-protein interactions and microRNA-regulation did not depend on how well the proteins were studied, while protein-disease interactions appeared to be dependent on the level of study. In particular, the mean number of diseases linked to well-studied proteins (proteins were considered well-studied if they were mentioned in 50 or more PubMed publications) from the HCV interactome was 20.8, significantly exceeding the mean number of associations with diseases (10.1) for the total set of well-studied human proteins present in ANDSystem. For proteins not highly poorly-studied investigated, proteins from the HCV interactome (each protein was referred to in less than 50 publications) distribution of the number of diseases associated with them had no statistically significant differences from the distribution of the number of diseases associated with poorly-studied proteins based on the total set of human proteins stored in ANDSystem. With this, the average number of associations with diseases for the HCV interactome and the total set of human proteins were 0.3 and 0.2, respectively. Thus, ANDSystem, extended with the HCV interactome, can be helpful in a wide range of issues related to analyzing HCV-host interactions in the search for anti-HCV drug targets. The demo version of the extended ANDSystem covered here containing only interactions between human proteins, genes, metabolites, diseases, miRNAs and molecular-genetic pathways, as well as interactions between human proteins/genes and HCV proteins, is freely available at the following web address: http://www-bionet.sscc.ru/psd/andhcv/. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Flight Test Results for the NICMOS Cryocooler
NASA Technical Reports Server (NTRS)
Dolan, F. X.; McCormick, J. A.; Nellis, G. F.; Sixsmith, H.; Swift, W. L.
1999-01-01
In October 1998 a mechanical cryocooler and cryogenic circulator loop were flown on NASA's STS-95 as part of the Hubble Orbital System Test (HOST). The system will be installed on the Hubble Space Telescope (HST) during Service Mission #3 in 2000 and will provide cooling to the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). It will extend the useful life of that instrument by 5 to 10 years. This was the first successful space demonstration of a turbobrayton cryocooler. The cooler is a single stage reverse Brayton type, using low-vibration high-speed miniature turbomachines for the compression and expansion functions. A miniature centrifugal cryogenic circulator is used to deliver refrigerated neon to the instrument. During the mission, the cooler operated without anomalies for approximately 185 hours over a range of conditions to verify its mechanical, thermodynamic and control functions. The cryocooler satisfied all mission objectives including maximum cooldown to near-design operating conditions, warm and cold starts and stops, operation at near-design temperatures, and demonstration of long-term temperature stability. This paper presents a description of the cooler and its operation during the HOST flight.
Chemically Stable Lipids for Membrane Protein Crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishchenko, Andrii; Peng, Lingling; Zinovev, Egor
2017-05-01
The lipidic cubic phase (LCP) has been widely recognized as a promising membrane-mimicking matrix for biophysical studies of membrane proteins and their crystallization in a lipidic environment. Application of this material to a wide variety of membrane proteins, however, is hindered due to a limited number of available host lipids, mostly monoacylglycerols (MAGs). Here, we designed, synthesized, and characterized a series of chemically stable lipids resistant to hydrolysis, with properties complementary to the widely used MAGs. In order to assess their potential to serve as host lipids for crystallization, we characterized the phase properties and lattice parameters of mesophases mademore » of two most promising lipids at a variety of different conditions by polarized light microscopy and small-angle X-ray scattering. Both lipids showed remarkable chemical stability and an extended LCP region in the phase diagram covering a wide range of temperatures down to 4 °C. One of these lipids has been used for crystallization and structure determination of a prototypical membrane protein bacteriorhodopsin at 4 and 20 °C.« less
Geothermal and volcanism in west Java
NASA Astrophysics Data System (ADS)
Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah
2018-02-01
Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.
Host selection and lethality of attacks by sea lampreys (Petromyzon marinus) in laboratory studies
Swink, William D.
2003-01-01
Parasitic-phase sea lampreys (Petromyzon marinus) are difficult to study in the wild. A series of laboratory studies (1984-1995) of single attacks on lake trout (Salvelinus namaycush), rainbow trout (Oncorhynchus mykiss), and burbot (Lota lota) examined host size selection; determined the effects of host size, host species, host strain, and temperature on host mortality; and estimated the weight of hosts killed per lamprey. Rainbow trout were more able and burbot less able to survive attacks than lake trout. Small sea lampreys actively selected the larger of two small hosts; larger sea lampreys attacked larger hosts in proportion to the hosts' body sizes, but actively avoided shorter hosts (a?? 600 mm) when larger were available. Host mortality was significantly less for larger (43-44%) than for smaller hosts (64%). However, the yearly loss of hosts per sea lamprey was less for small hosts (range, 6.8-14.2 kg per sea lamprey) than larger hosts (range, 11.4-19.3 kg per sea lamprey). Attacks at the lower of two temperature ranges (6.1-11.8A?C and 11.1-15.0A?C) did not significantly reduce the percentage of hosts killed (54% vs. 69%, p > 0.21), but longer attachment times at lower temperatures reduced the number of hosts attacked (33 vs. 45), and produced the lowest loss of hosts (6.6 kg per sea lamprey). Low temperature appeared to offset other factors that increase host mortality. Reanalysis of 789 attacks pooled from these studies, using forward stepwise logistic regression, also identified mean daily temperature as the dominant factor affecting host mortality. Observations in Lakes Superior, Huron, and Ontario support most laboratory results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less
Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina; ...
2016-06-28
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less
Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário
2016-02-01
Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.
NASA Astrophysics Data System (ADS)
Zhu, Jing-Ling; Liu, Kerh Li; Wen, Yuting; Song, Xia; Li, Jun
2016-01-01
A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin.A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin. Electronic supplementary information (ESI) available: Polymer synthesis, characterization, preparation of drug-loaded nanovesicles, intracellular drug release and cytotoxicity assays, TEM and DLS measurements. See DOI: 10.1039/c5nr06744h
The MVMp P4 promoter is a host cell-type range determinant in vivo.
Meir, Chen; Mincberg, Michal; Rostovsky, Irina; Tal, Saar; Vollmers, Ellen M; Levi, Adi; Tattersall, Peter; Davis, Claytus
2017-06-01
The protoparvovirus early promoters, e.g. P4 of Minute Virus of Mice (MVM), play a critical role during infection. Initial P4 activity depends on the host transcription machinery only. Since this is cell-type dependent, it is hypothesized that P4 is a host cell-type range determinant. Yet host range determinants have mapped mostly to capsid, never P4. Here we test the hypothesis using the mouse embryo as a model system. Disruption of the CRE element of P4 drastically decreased infection levels without altering range. However, when we swapped promoter elements of MVM P4 with those from equivalent regions of the closely related H1 virus, we observed elimination of infection in fibroblasts and chondrocytes and the acquisition of infection in skeletal muscle. We conclude that P4 is a host range determinant and a target for modifying the productive infection potential of the virus - an important consideration in adapting these viruses for oncotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Liang; Cooper, Tamara; Eldi, Preethi; Garcia-Valtanen, Pablo; Diener, Kerrilyn R; Howley, Paul M; Hayball, John D
2017-04-01
Recombinant vaccinia viruses (rVACVs) are promising antigen-delivery systems for vaccine development that are also useful as research tools. Two common methods for selection during construction of rVACV clones are (i) co-insertion of drug resistance or reporter protein genes, which requires the use of additional selection drugs or detection methods, and (ii) dominant host-range selection. The latter uses VACV variants rendered replication-incompetent in host cell lines by the deletion of host-range genes. Replicative ability is restored by co-insertion of the host-range genes, providing for dominant selection of the recombinant viruses. Here, we describe a new method for the construction of rVACVs using the cowpox CP77 protein and unmodified VACV as the starting material. Our selection system will expand the range of tools available for positive selection of rVACV during vector construction, and it is substantially more high-fidelity than approaches based on selection for drug resistance.
One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants.
Silva, Claudia; Calva, Edmundo; Maloy, Stanley
2014-02-01
There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.
Suzuki, Hiromu C; Ozaki, Katsuhisa; Makino, Takashi; Uchiyama, Hironobu; Yajima, Shunsuke; Kawata, Masakado
2018-06-01
The host plant range of herbivorous insects is a major aspect of insect-plant interaction, but the genetic basis of host range expansion in insects is poorly understood. In butterflies, gustatory receptor genes (GRs) play important roles in host plant selection by ovipositing females. Since several studies have shown associations between the repertoire sizes of chemosensory gene families and the diversity of resource use, we hypothesized that the increase in the number of genes in the GR family is associated with host range expansion in butterflies. Here, we analyzed the evolutionary dynamics of GRs among related species, including the host generalist Vanessa cardui and three specialists. Although the increase of the GR repertoire itself was not observed, we found that the gene birth rate of GRs was the highest in the lineage leading to V. cardui compared with other specialist lineages. We also identified two taxon-specific subfamilies of GRs, characterized by frequent lineage-specific duplications and higher non-synonymous substitution rates. Together, our results suggest that frequent gene duplications in GRs, which might be involved in the detection of plant secondary metabolites, were associated with host range expansion in the V. cardui lineage. These evolutionary patterns imply that the capability to perceive various compounds during host selection was favored during adaptation to diverse host plants.
Nylin, Sören; Slove, Jessica; Janz, Niklas
2014-01-01
It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598
High Diversity of Hepatozoon spp. in Geckos of the Genus Tarentola.
Tomé, Beatriz; Rato, Catarina; Harris, D James; Perera, Ana
2016-08-01
: Hemogregarines are the most-commonly reported hemoparasites in reptiles. In this work we analyzed samples from 572 individuals of 6 species of the wall gecko genus Tarentola from European and African countries adjacent to the Mediterranean Sea as well as from the Macaronesian islands. Screening was done using hemogregarine-specific primers for the 18S rRNA gene. Positive amplifications were sequenced so that the diversity of the hemogregarines from these hosts could be assessed within a phylogenetic framework. The results from the phylogenetic analysis showed that within Tarentola, the detected parasites are comprised of at least 4 distinct main lineages of Hepatozoon spp. In clades A and B, the new sequences clustered closely together with the ones previously known from individuals of the genus Tarentola and other species of geckos but also with those from other vertebrate host groups including skinks, snakes, iguanids, and rodents. Clade C included a sample from Tarentola angustimentalis of the Canary Islands. This sequence is the first molecular characterization of these hemogregarines in this archipelago. Until now, this lineage had only been found in lacertids, skinks, and snakes, so this infection extends the host range for this clade. Lastly, in the newly detected clade D, the retrieved parasite sequences form a group currently identified as exclusive of geckos. Our results show that geckos of Tarentola spp. harbor a great diversity of hemogregarines but also that further sampling and other tools, including a multi-locus approach using faster-evolving genetic markers, and identification of definitive hosts are needed to better understand the biology, diversity, and distribution of these parasites.
Bain, Odile; Junker, Kerstin
2013-01-01
Trichospirura aethiopica n. sp. is described from unidentified tubular structures (pancreatic ducts?) near the stomach of the murid Malacomys longipes Milne-Edwards, 1877 in Gabon. The extremely long and narrow buccal capsule, posterior position of the vulva, unequal spicules and absence of caudal alae readily identified the specimens as belonging to Trichospirura Smith & Chitwood, 1967, but a combination of several characters distinguished them from the described species in this genus. Males of the new species are characterized by the absence of precloacal papillae, the presence of four pairs of postcloacal papillae and a left spicule length of 165–200 μm. With only five nominal and one unnamed species, the host range of Trichospirura extends into the Neotropical, Indo-Malayan and Ethiopian Realms and comprises three classes of vertebrates, Amphibia, Reptilia and Mammalia, suggesting a larger species diversity than that currently recorded. Detection is difficult as predilection sites are often outside the gut lumen. It was noted that, irrespective of their geographic origin, species from mammals share certain characters (shorter left spicule and absence of precloacal papillae) that oppose them to those from amphibians and reptiles. A hypothesis for the origin of Trichospirura in mammals through a remote host-switching event in tupaiids in southern Asia, likely facilitated by the intermediate hosts, and for their subsequent migration to the Ethiopian and finally Neotropical Realm is proposed. Regarding the two species from anurans and saurians in the Antilles, one or two host-switching events are considered equally possible, based on morphological characters. PMID:23369432
Hedrick, R.P.; Batts, W.N.; Yun, S.; Traxler, G.S.; Kaufman, J.; Winton, J.R.
2003-01-01
Viral hemorrhagic septicemia virus (VHSV) was isolated from populations of Pacific sardine Sardinops sagaxfrom the coastal waters of Vancouver Island, British Columbia, Canada, and central and southern California, USA. The virus was also isolated from Pacific mackerel Scomber japonicus in southern California, from eulachon or smeltThaleichthys pacificus, and surf smelt Hypomesus pretiosus pretiosus from Oregon, USA. Mortality and skin lesions typical of viral hemorrhagic septicemia in other marine fish species were observed among sardine in Canada and in a few surf smelt from Oregon, but the remaining isolates of VHSV were obtained from healthy appearing fish. The prevalence of VHSV among groups of apparently healthy sardine, mackerel and smelt ranged from 4 to 8% in California and Oregon. A greater prevalence of infection (58%) occurred in groups of sardine sampled in Canada that sustained a naturally occurring epidemic during 1998-99. A captive group of surf smelt in Oregon exhibited an 81% prevalence of infection with clinical signs in only a few fish. The new isolates were confirmed as North American VHSV and were closely related based on comparisons of the partial nucleotide sequence of the glycoprotein (G) gene. The VHSV isolates from sardine in Canada and California were the most closely related, differing from isolates obtained from other marine fish species and salmonids in British Columbia, Canada, Alaska and Washington, USA. These new virus isolations extend both the known hosts (sardine, mackerel and 2 species of smelt) and geographic range (Oregon and California, USA) of VHSV.
Momentum-resolved spectroscopy of a Fermi liquid
Doggen, Elmer V. H.; Kinnunen, Jami J.
2015-01-01
We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948
Milazzo, Mary L.; Barragán-Gomez, Artemio; Hanson, John Delton; Estrada-Franco, Jose G.; Arellano, Elizabeth; González-Cózatl, Francisco X.; Fernández-Salas, Ildefonso; Ramirez-Aguilar, Francisco; Rogers, Duke S.; Bradley, Robert D.
2010-01-01
Abstract Blood samples from 4893 cricetid rodents were tested for antibody (immunoglobulin G) to Whitewater Arroyo virus and Amaparí virus to extend our knowledge of the natural host range and geographical distribution of Tacaribe serocomplex viruses in North America. Antibodies to arenaviruses were found in northern pygmy mice (Baiomys taylori), woodrats (Neotoma spp.), northern grasshopper mice (Onychomys leucogaster), oryzomys (Oryzomys spp.), deermice (Megadontomys nelsoni and Peromyscus spp.), harvest mice (Reithrodontomys spp.), and cotton rats (Sigmodon spp.) captured in New Mexico, Texas, or Mexico. Comparison of endpoint antibody titers to Whitewater Arroyo virus and Amaparí virus in individual blood samples indicated that the Tacaribe complex viruses enzootic in Texas and Mexico are antigenically diverse. PMID:20795917
Gao, Tao; Li, Liudi; Wang, Bei; Zhi, Jun; Xiang, Yang; Li, Genxi
2016-10-18
Artificial control of cell adhesion on smart surface is an on-demand technique in areas ranging from tissue engineering, stem cell differentiation, to the design of cell-based diagnostic system. In this paper, we report an electrochemical system for dynamic control of cell catch-and-release, which is based on the redox-controlled host-guest interaction. Experimental results reveal that the interaction between guest molecule (ferrocene, Fc) and host molecule (β-cyclodextrin, β-CD) is highly sensitive to electrochemical stimulus. By applying a reduction voltage, the uncharged Fc can bind to β-CD that is immobilized at the electrode surface. Otherwise, it is disassociated from the surface as a result of electrochemical oxidation, thus releasing the captured cells. The catch-and-release process on this voltage-responsive surface is noninvasive with the cell viability over 86%. Moreover, because Fc can act as an electrochemical probe for signal readout, the integration of this property has further extended the ability of this system to cell detection. Electrochemical signal has been greatly enhanced for cell detection by introducing branched polymer scaffold that are carrying large quantities of Fc moieties. Therefore, a minimum of 10 cells can be analyzed. It is anticipated that such redox-controlled system can be an important tool in biological and biomedical research, especially for electrochemical stimulated tissue engineering and cell-based clinical diagnosis.
Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini.
Janz, N; Nyblom, K; Nylin, S
2001-04-01
Two general patterns that have emerged from the intense studies on insect-host plant associations are a predominance of specialists over generalists and a taxonomic conservatism in host-plant use. In most insect-host plant systems, explanations for these patterns must be based on biases in the processes of host colonizations, host shifts, and specialization, rather than cospeciation. In the present paper, we investigate changes in host range in the nymphalid butterfly tribe Nymphalini, using parsimony optimizations of host-plant data on the butterfly phylogeny. In addition, we performed larval establishment tests to search for larval capacity to feed and survive on plants that have been lost from the female egg-laying repertoire. Optimizations suggested an ancestral association with Urticaceae, and most of the tested species showed a capacity to feed on Urtica dioica regardless of actual host-plant use. In addition, there was a bias among the successful establishments on nonhosts toward plants that are used as hosts by other species in the Nymphalini. An increased likelihood of colonizing ancestral or related plants could also provide an alternative explanation for the observed pattern that some plant families appear to have been colonized independently several times in the tribe. We also show that there is no directionality in host range evolution toward increased specialization, that is, specialization is not a dead end. Instead, changes in host range show a very dynamic pattern.
USDA-ARS?s Scientific Manuscript database
Spalangia cameroni is used as a biological control agent of filth flies. These parasitoids are reared commercially, but little is known about the impact of colony age on host-seeking and life history parameters. Host-seeking in equine shavings and manure was analyzed with two colony ages established...
Bulgarella, Mariana; Heimpel, George E
2015-09-01
Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host-parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest-parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists, with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis, a phylogenetically informed host specificity index (Poulin and Mouillot's S TD), and a branch length-based S TD. We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds - the parasite species richness, and a variant of the S TD index based on nodes rather than on taxonomic levels - and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node-based S TD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance.
Cottell, Jennifer L; Webber, Mark A; Piddock, Laura J V
2012-09-01
The treatment of infections caused by antibiotic-resistant bacteria is one of the great challenges faced by clinicians in the 21st century. Antibiotic resistance genes are often transferred between bacteria by mobile genetic vectors called plasmids. It is commonly believed that removal of antibiotic pressure will reduce the numbers of antibiotic-resistant bacteria due to the perception that carriage of resistance imposes a fitness cost on the bacterium. This study investigated the ability of the plasmid pCT, a globally distributed plasmid that carries an extended-spectrum-β-lactamase (ESBL) resistance gene (bla(CTX-M-14)), to persist and disseminate in the absence of antibiotic pressure. We investigated key attributes in plasmid success, including conjugation frequencies, bacterial-host growth rates, ability to cause infection, and impact on the fitness of host strains. We also determined the contribution of the bla(CTX-M-14) gene itself to the biology of the plasmid and host bacterium. Carriage of pCT was found to impose no detectable fitness cost on various bacterial hosts. An absence of antibiotic pressure and inactivation of the antibiotic resistance gene also had no effect on plasmid persistence, conjugation frequency, or bacterial-host biology. In conclusion, plasmids such as pCT have evolved to impose little impact on host strains. Therefore, the persistence of antibiotic resistance genes and their vectors is to be expected in the absence of antibiotic selective pressure regardless of antibiotic stewardship. Other means to reduce plasmid stability are needed to prevent the persistence of these vectors and the antibiotic resistance genes they carry.
Host range diversification within the IncP-1 plasmid group
Yano, Hirokazu; Rogers, Linda M.; Knox, Molly G.; Heuer, Holger; Smalla, Kornelia; Brown, Celeste J.
2013-01-01
Broad-host-range plasmids play a critical role in the spread of antibiotic resistance and other traits. In spite of increasing information about the genomic diversity of closely related plasmids, the relationship between sequence divergence and host range remains unclear. IncP-1 plasmids are currently classified into six subgroups based on the genetic distance of backbone genes. We investigated whether plasmids from two subgroups exhibit a different host range, using two IncP-1γ plasmids, an IncP-1β plasmid and their minireplicons. Efficiencies of plasmid establishment and maintenance were compared using five species that belong to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. The IncP-1β plasmid replicated and persisted in all five hosts in the absence of selection. Of the two IncP-1γ plasmids, both were unable to replicate in alphaproteobacterial host Sphingobium japonicum, and one established itself in Agrobacterium tumefaciens but was very unstable. In contrast, both IncP-1γ minireplicons, which produced higher levels of replication initiation protein than the wild-type plasmids, replicated in all strains, suggesting that poor establishment of the native plasmids is in part due to suboptimal replication initiation gene regulation. The findings suggest that host ranges of distinct IncP-1 plasmids only partially overlap, which may limit plasmid recombination and thus result in further genome divergence. PMID:24002747
Truyen, U; Parrish, C R
1992-01-01
Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts. Images PMID:1323703
Elsheikha, Hany M
2009-08-26
The question of how Sarcocystis neurona is able to overcome species barrier and adapt to new hosts is central to the understanding of both the evolutionary origin of S. neurona and the prediction of its field host range. Therefore, it is worth reviewing current knowledge on S. neurona host specificity. The available host range data for S. neurona are discussed in relation to a subject of evolutionary importance-specialist or generalist and its implications to understand the strategies of host adaptation. Current evidences demonstrate that a wide range of hosts exists for S. neurona. This parasite tends to be highly specific for its definitive host but much less so for its intermediate host (I.H.). The unique specificity of S. neurona for its definitive host may be mediated by a probable long coevolutionary relationship of the parasite and carnivores in a restricted ecological niche 'New World'. This might be taken as evidence that carnivores are the 'original' host group for S. neurona. Rather, the capacity of S. neurona to exploit an unusually large number of I.H. species probably indicates that S. neurona maintains non-specificity to its I.H. as an adaptive response to insure the survival of the parasite in areas in which the 'preferred' host is not available. This review concludes with the view that adaptation of S. neurona to a new host is a complex interplay that involves a large number of determinants.
Adaptation to different host plant ages facilitates insect divergence without a host shift
Zhang, Bin; Segraves, Kari A.; Xue, Huai-Jun; Nie, Rui-E; Li, Wen-Zhu; Yang, Xing-Ke
2015-01-01
Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts. PMID:26378220
Host tree resistance against the polyphagous
W. D. Morewood; K. Hoover; P. R. Neiner; J.R. McNeil; J. C. Sellmer
2004-01-01
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood-boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe,...
Hosts of stolbur phytoplasmas in maize redness affected fields
USDA-ARS?s Scientific Manuscript database
The plant host range of a phytoplasma is strongly dependent on the host range of its insect vector. Maize redness in Serbia is caused by stolbur phytoplasma (subgroup 16SrXII-A) and is transmitted by the cixiid planthoper, Reptalus panzeri (Löw). R. panzeri was the only potential vector found to be ...
Eop1 from a Rubus strain of Erwinia amylovora functions as a host-range limiting factor.
Asselin, J E; Bonasera, J M; Kim, J F; Oh, C-S; Beer, S V
2011-08-01
Strains of Erwinia amylovora, the bacterium causing the disease fire blight of rosaceous plants, are separated into two groups based on host range: Spiraeoideae and Rubus strains. Spiraeoideae strains have wide host ranges, infecting plants in many rosaceous genera, including apple and pear. In the field, Rubus strains infect the genus Rubus exclusively, which includes raspberry and blackberry. Based on comparisons of limited sequence data from a Rubus and a Spiraeoideae strain, the gene eop1 was identified as unusually divergent, and it was selected as a possible host specificity factor. To test this, eop1 genes from a Rubus strain and a Spiraeoideae strain were cloned and mutated. Expression of the Rubus-strain eop1 reduced the virulence of E. amylovora in immature pear fruit and in apple shoots. Sequencing the orfA-eop1 regions of several strains of E. amylovora confirmed that forms of eop1 are conserved among strains with similar host ranges. This work provides evidence that eop1 from a Rubus-specific strain can function as a determinant of host specificity in E. amylovora.
A model for the energy band gap of GaSbxAs1-x and InSbxAs1-x in the whole composition range
NASA Astrophysics Data System (ADS)
Zhao, Chuan-Zhen; Ren, He-Yu; Wei, Tong; Wang, Sha-Sha; Wang, Jun
2018-04-01
The band gap evolutions of GaSbxAs1-x and InSbxAs1-x in the whole composition range are investigated. It is found that the band gap evolutions of GaSbxAs1-x and InSbxAs1-x are determined by two factors. One is the impurity-host interaction in the As-rich and Sb-rich composition ranges. The other is the intraband coupling within the conduction band and separately within the valence band in the moderate composition range. Based on the band gap evolutions of GaSbxAs1-x and InSbxAs1-x, a model is established. In addition, it is found that the impurity-host interaction is determined by not only the mismatches in size and electronegativity between the introduced atoms in the host material and the anions of the host material, but also the difference in electronegativity between the introduced atoms in the host material and the cations of the host material.
NASA Technical Reports Server (NTRS)
Heckman, Timothy M.
1997-01-01
We have analysed ROSAT X-ray data for a small sample of starburst galaxies in order to understand the physical origin of the X-ray emission and probe the physics and phenomenology of galactic-scale outflows of hot gas ('superwinds') that are driven by tile mechanical energy supplied by the ensemble of supernovae in the starbursts. We have found that the X-ray emission in the ROSAT energy band comes from a population of compact hard sources (most likely X-ray binaries) and hot diffuse gas with a temperature ranging from a few to ten million K. This gas is spatially-extended on galactic scales and its properties are entirely consistent with theoretical expectations for a starburst-driven superwind. The starbursts studied span a range of roughly 1000 in bolometric luminosity and are hosted by galaxies ranging from dwarfs through L* spirals through ma,ior galactic mergers. The X-ray properties of these o@jecls scale in a natural way with the luminosity of tile starburst: more powerful starbursts are more X-ray luminous and create hot outflowing gas whose energy content is likewise larger.
Split Personality of a Potyvirus: To Specialize or Not to Specialize?
Kehoe, Monica A.; Coutts, Brenda A.; Buirchell, Bevan J.; Jones, Roger A. C.
2014-01-01
Bean yellow mosaic virus (BYMV), genus Potyvirus, has an extensive natural host range encompassing both dicots and monocots. Its phylogenetic groups were considered to consist of an ancestral generalist group and six specialist groups derived from this generalist group during plant domestication. Recombination was suggested to be playing a role in BYMV's evolution towards host specialization. However, in subsequent phylogenetic analysis of whole genomes, group names based on the original hosts of isolates within each of them were no longer supported. Also, nine groups were found and designated I-IX. Recombination analysis was conducted on the complete coding regions of 33 BYMV genomes and two genomes of the related Clover yellow vein virus (CYVV). This analysis found evidence for 12 firm recombination events within BYMV phylogenetic groups I–VI, but none within groups VII–IX or CYVV. The greatest numbers of recombination events within a sequence (two or three each) occurred in four groups, three which formerly constituted the single ancestral generalist group (I, II and IV), and group VI. The individual sequences in groups III and V had one event each. These findings with whole genomes are consistent with recombination being associated with expanding host ranges, and call into question the proposed role of recombination in the evolution of BYMV, where it was previously suggested to play a role in host specialization. Instead, they (i) indicate that recombination explains the very broad natural host ranges of the three BYMV groups which infect both monocots and dicots (I, II, IV), and (ii) suggest that the three groups with narrow natural host ranges (III, V, VI) which also showed recombination now have the potential to reduce host specificity and broaden their natural host ranges. PMID:25148372
Imaging the host galaxies of high-redshift radio-quiet QSOs
NASA Technical Reports Server (NTRS)
Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.
1995-01-01
We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over short timescales. This is consistent with the general trend at low redshifts that radio-loud QSOs are found in giant elliptical galaxies while radio-quiet QSOs are found in less luminous disk galaxies. It also suggests that the processes responsible for the spectacular properties of radio-loud AGNs at high redshifts might not be generally relevent to the (far more numerous) radio-quiet population.
New Hepatitis B Virus of Cranes That Has an Unexpected Broad Host Range
Prassolov, Alexej; Hohenberg, Heinz; Kalinina, Tatyana; Schneider, Carola; Cova, Lucyna; Krone, Oliver; Frölich, Kai; Will, Hans; Sirma, Hüseyin
2003-01-01
All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation. PMID:12525630
New hepatitis B virus of cranes that has an unexpected broad host range.
Prassolov, Alexej; Hohenberg, Heinz; Kalinina, Tatyana; Schneider, Carola; Cova, Lucyna; Krone, Oliver; Frölich, Kai; Will, Hans; Sirma, Hüseyin
2003-02-01
All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation.
González, M T; Oliva, M E
2009-04-01
Nested structure is a pattern originally described in island biogeography to characterize how a set of species is distributed among a set of islands. In parasite communities, nestedness has been intensively studied among individual fish from a locality. However, nested patterns among parasite assemblages from different host populations (localities) have scarcely been investigated. We recorded the occurrence of parasites in 9 fish species widely distributed along the southeastern Pacific coast to determine whether the ecto- and endoparasite assemblages of marine fishes show a nested structure associated with host distributional range. Nestedness was tested using Brualdi-Sanderson index of discrepancy (BR); and 5 null models incorporated in a 'Nestedness' programme (Ulrich, 2006). The ecto- and endoparasite richness do not show similar patterns of latitudinal gradients among fish hosts, with 33-66% of analysed ectoparasite assemblages, and 25-75% of endoparasite assemblages showing nested structures through the host distributional range. For ectoparasites, species richness gradients and nested structure (when present) might be associated with decreased host densities or could reflect negative environmental conditions in the distributional border of the host species, whereas for endoparasites might be caused by geographical breaks of prey or changes in prey availability (intermediate hosts). The sampled extension of the distributional range of the host species, as well as the lack of specificity of some parasites, could influence the detection of nestedness.
Association and Host Selectivity in Multi-Host Pathogens
Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando
2006-01-01
The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670
Morelli, Federico; Benedetti, Yanina; Møller, Anders Pape; Liang, Wei; Carrascal, Luis M
2018-05-01
The evolutionary distinctiveness (ED) score is a measure of phylogenetic isolation that quantifies the evolutionary uniqueness of a species. Here, we compared the ED score of parasitic and non-parasitic cuckoo species world-wide, to understand whether parental care or parasitism represents the largest amount of phylogenetic uniqueness. Next, we focused only on 46 cuckoo species characterized by brood parasitism with a known number of host species, and we explored the associations among ED score, number of host species and breeding range size for these species. We assessed these associations using phylogenetic generalized least squares (PGLS) models, taking into account the phylogenetic signal. Parasitic cuckoo species were not more unique in terms of ED than non-parasitic species. However, we found a significant negative association between the evolutionary uniqueness and host range and a positive correlation between the number of host species and range size of parasitic cuckoos, probably suggesting a passive sampling of hosts by parasitic species as the breeding range broadens. The findings of this study showed that more generalist brood parasites occupied very different positions in a phylogenetic tree, suggesting that they have evolved independently within the Cuculiformes order. Finally, we demonstrated that specialist cuckoo species also represent the most evolutionarily unique species in the order of Cuculiformes. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Wolfe, Benjamin E; Pringle, Anne
2012-04-01
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.
Wolfe, Benjamin E; Pringle, Anne
2012-01-01
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world. PMID:22134645
A Spatially Resolved Study of the GRB 020903 Host Galaxy
NASA Astrophysics Data System (ADS)
Thorp, Mallory D.; Levesque, Emily M.
2018-03-01
GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.
Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?
Arnold, A Elizabeth; Lutzoni, F
2007-03-01
Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests.
Janz, Niklas; Schäpers, Alexander; Gamberale-Stille, Gabriella
2017-01-01
An ovipositing insect experiences many sensory challenges during her search for a suitable host plant. These sensory challenges become exceedingly pronounced when host range increases, as larger varieties of sensory inputs have to be perceived and processed in the brain. Neural capacities can be exceeded upon information overload, inflicting costs on oviposition accuracy. One presumed generalist strategy to diminish information overload is the acquisition of a focused search during its lifetime based on experiences within the current environment, a strategy opposed to a more genetically determined focus expected to be seen in relative specialists. We hypothesized that a broader host range is positively correlated with mushroom body (MB) plasticity, a brain structure related to learning and memory. To test this hypothesis, butterflies with diverging host ranges (Polygonia c-album, Aglais io and Aglais urticae) were subjected to differential environmental complexities for oviposition, after which ontogenetic MB calyx volume differences were compared among species. We found that the relative generalist species exhibited remarkable plasticity in ontogenetic MB volumes; MB growth was differentially stimulated based on the complexity of the experienced environment. For relative specialists, MB volume was more canalized. All in all, this study strongly suggests an impact of host range on brain plasticity in Nymphalid butterflies. PMID:29093221
Comparing host and target environments for distributed Ada programs
NASA Technical Reports Server (NTRS)
Paulk, Mark C.
1986-01-01
The Ada programming language provides a means of specifying logical concurrency by using multitasking. Extending the Ada multitasking concurrency mechanism into a physically concurrent distributed environment which imposes its own requirements can lead to incompatibilities. These problems are discussed. Using distributed Ada for a target system may be appropriate, but when using the Ada language in a host environment, a multiprocessing model may be more suitable than retargeting an Ada compiler for the distributed environment. The tradeoffs between multitasking on distributed targets and multiprocessing on distributed hosts are discussed. Comparisons of the multitasking and multiprocessing models indicate different areas of application.
Cross-species Virus-host Protein-Protein Interactions Inhibiting Innate Immunity
2016-07-01
Distribution A: Approved for public release; distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The single- stranded negative sense RNA...focused upon members of three negative-sense single- stranded RNA (ssRNA(-)) virus families with know or suspected histories of changes in host-species...however, the N and C-termini are disordered extended strands . In contrast, our covariance analysis mapped hotspots for protein interaction to the
Effects of host species and population density on Anoplophora glabripennis flight propensity
Joseph A. Francese; David R. Lance; Baode Wang; Zhichun Xu; Alan J. Sawyer; Victor C. Mastro
2007-01-01
Anoplophora glabripennis Motschulsky (Coleoptera: Cerambycidae), the Asian longhorned beetle (ALB) is a pest of hardwoods in its native range of China. While the host range of this pest has been studied extensively, its mechanisms for host selection are still unknown. Our goal was to study the factors influencing movement and orientation of adult ALB...
Host specialization in ticks and transmission of tick-borne diseases: a review
McCoy, Karen D.; Léger, Elsa; Dietrich, Muriel
2013-01-01
Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock. PMID:24109592
Host specialization in ticks and transmission of tick-borne diseases: a review.
McCoy, Karen D; Léger, Elsa; Dietrich, Muriel
2013-01-01
Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.
Foley, Janet; Stephenson, Nicole; Cubilla, Michelle Pires; Qurollo, Barbara; Breitschwerdt, Edward B
2016-03-01
Anaplasma phagocytophilum is an Ixodes species tick-transmitted bacterium that is capable of infecting a variety of host species, although there is a diversity of bacterial strains with differing host tropism. Recent analysis of A. phagocytophilum strains suggested that "drhm", a gene locus designated "distantly related to human marker" (drhm), which was predicted to be an integral membrane protein with possible transporter functions was not present in available canine and human isolates. By assessing 117 strains from 14 host species from across the US, we extended this analysis. Phylogenetic clades were associated with geography, but not host species. Additionally, a virulent clade that lacks drhm and infects dogs, horses, and humans in northeastern US was identified. Copyright © 2015 Elsevier GmbH. All rights reserved.
2016-07-01
ER D C/ EL C R- 16 -5 Aquatic Plant Control Research Program Complete Host Range Testing on Common Reed with Potential Biological...client/default. Aquatic Plant Control Research Program ERDC/EL CR-16-5 July 2016 Complete Host Range Testing on Common Reed with Potential...and started with sequential no-choice oviposition tests. So far, no eggs were found on any of the 22 test plants offered. The authors also found the
Escalation of a coevolutionary arms race through host rejection of brood parasitic young.
Langmore, Naomi E; Hunt, Sarah; Kilner, Rebecca M
2003-03-13
Cuckoo nestlings that evict all other young from the nest soon after hatching impose a high reproductive cost on their hosts. In defence, hosts have coevolved strategies to prevent brood parasitism. Puzzlingly, they do not extend beyond the egg stage. Thus, hosts adept at recognizing foreign eggs remain vulnerable to exploitation by cuckoo nestlings. Here we show that the breach of host egg defences by cuckoos creates a new stage in the coevolutionary cycle. We found that defences used during the egg-laying period by host superb fairy-wrens (Malurus cyaneus) are easily evaded by the Horsfield's bronze-cuckoo (Chrysococcyx basalis), a specialist fairy-wren brood parasite. However, although hosts never deserted their own broods, they later abandoned 40% of nests containing a lone Horsfield's bronze-cuckoo nestling, and 100% of nests with a lone shining bronze-cuckoo nestling (Chrysococcyx lucidus), an occasional fairy-wren brood parasite. Our experiments demonstrate that host discrimination against evictor-cuckoo nestlings is possible, and suggest that it has selected for the evolution of nestling mimicry in bronze-cuckoos.
Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.
Walter, M J; Kohn, S C; Araujo, D; Bulanova, G P; Smith, C B; Gaillou, E; Wang, J; Steele, A; Shirey, S B
2011-10-07
A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.
A few good reasons why species-area relationships do not work for parasites.
Strona, Giovanni; Fattorini, Simone
2014-01-01
Several studies failed to find strong relationships between the biological and ecological features of a host and the number of parasite species it harbours. In particular, host body size and geographical range are generally only weak predictors of parasite species richness, especially when host phylogeny and sampling effort are taken into account. These results, however, have been recently challenged by a meta-analytic study that suggested a prominent role of host body size and range extent in determining parasite species richness (species-area relationships). Here we argue that, in general, results from meta-analyses should not discourage researchers from investigating the reasons for the lack of clear patterns, thus proposing a few tentative explanations to the fact that species-area relationships are infrequent or at least difficult to be detected in most host-parasite systems. The peculiar structure of host-parasite networks, the enemy release hypothesis, the possible discrepancy between host and parasite ranges, and the evolutionary tendency of parasites towards specialization may explain why the observed patterns often do not fit those predicted by species-area relationships.
Eilat virus host range restriction is present at multiple levels of the virus life cycle.
Nasar, Farooq; Gorchakov, Rodion V; Tesh, Robert B; Weaver, Scott C
2015-01-15
Most alphaviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. This ability of most alphaviruses to infect arthropods and vertebrates is essential for their maintenance in nature. Recently, a new alphavirus, Eilat virus (EILV), was described, and in contrast to all other mosquito-borne viruses, it is unable to replicate in vertebrate cell lines. Investigations into the nature of its host range restriction showed the inability of genomic EILV RNA to replicate in vertebrate cells. Here, we investigated whether the EILV host range restriction is present at the entry level and further explored the viral factors responsible for the lack of genomic RNA replication. Utilizing Sindbis virus (SINV) and EILV chimeras, we show that the EILV vertebrate host range restriction is also manifested at the entry level. Furthermore, the EILV RNA replication restriction is independent of the 3' untranslated genome region (UTR). Complementation experiments with SINV suggested that RNA replication is restricted by the inability of the EILV nonstructural proteins to form functional replicative complexes. These data demonstrate that the EILV host range restriction is multigenic, involving at least one gene from both nonstructural protein (nsP) and structural protein (sP) open reading frames (ORFs). As EILV groups phylogenetically within the mosquito-borne virus clade of pathogenic alphaviruses, our findings have important evolutionary implications for arboviruses. Our work explores the nature of host range restriction of the first "mosquito-only alphavirus," EILV. EILV is related to pathogenic mosquito-borne viruses (Eastern equine encephalitis virus [EEEV], Western equine encephalitis virus [WEEV], Venezuelan equine encephalitis virus [VEEV], and Chikungunya virus [CHIKV]) that cause severe disease in humans. Our data demonstrate that EILV is restricted both at entry and genomic RNA replication levels in vertebrate cells. These findings have important implications for arbovirus evolution and will help elucidate the viral factors responsible for the broad host range of pathogenic mosquito-borne alphaviruses, facilitate vaccine development, and inform potential strategies to reduce/prevent alphavirus transmission. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Sperm DNA fragmentation in boars is delayed or abolished by using sperm extenders.
Pérez-Llano, Begoña; Enciso, María; García-Casado, Pedro; Sala, Rubén; Gosálvez, Jaime
2006-12-01
The semen quality of seven young adult boars was assessed for percentages of sperm motility, normal acrosomes, abnormal sperm, cells positive to sHOST (short Hipoosmotic Swelling Test), HPNA cells (sHOST Positive with Normal Acrosome cells) and the percentage of sperm heads, which exhibited DNA fragmentation using the Sperm Chromatin Dispersion test (SCD). These parameters were analysed in sperm samples both undiluted and diluted using a commercial extender and stored at 15 degrees C for 21 days. Results showed that semen quality decreases faster in the undiluted semen samples from day 0 to day 7 compared to diluted semen samples that remained with a high quality up to day 11. The undiluted semen exhibited a low DNA fragmentation index (DFI) during the first days and then a significant increase from day 7 up to day 21. This increase in the DFI coincided with the lowest levels of the other semen quality parameters. On the contrary, the samples diluted in the commercial extender showed very low levels of DNA fragmentation in all boars during the preservation period. When the evolution of DNA fragmentation was analysed in the undiluted samples, differences were found among boars. These differences were not shown in the samples diluted in the extender where the basal DFI remained stable during the 21 days. The main conclusion of this study was that some sperm extenders delay or partially prevent sperm DNA fragmentation.
2015-01-01
Materials and coatings that inhibit bacterial colonization are of interest in a broad range of biomedical, environmental, and industrial applications. In view of the rapid increase in bacterial resistance to conventional antibiotics, the development of new strategies that target nonessential pathways in bacterial pathogens—and that thereby limit growth and reduce virulence through nonbiocidal means—has attracted considerable attention. Bacterial quorum sensing (QS) represents one such target, and is intimately connected to virulence in many human pathogens. Here, we demonstrate that the properties of nanoporous, polymer-based superhydrophobic coatings can be exploited to host and subsequently sustain the extended release of potent and water-labile peptide-based inhibitors of QS (QSIs) in Staphylococcus aureus. Our results demonstrate that these peptidic QSIs can be released into surrounding media for periods of at least 8 months, and that they strongly inhibit agr-based QS in S. aureus for at least 40 days. These results also suggest that these extremely nonwetting coatings can confer protection against the rapid hydrolysis of these water-labile peptides, thereby extending their useful lifetimes. Finally, we demonstrate that these peptide-loaded superhydrophobic coatings can strongly modulate the QS-controlled formation of biofilm in wild-type S. aureus. These nanoporous superhydrophobic films provide a new, useful, and nonbiocidal approach to the design of coatings that attenuate bacterial virulence. This approach has the potential to be general, and could prove suitable for the encapsulation, protection, and release of other classes of water-sensitive agents. We anticipate that the materials, strategies, and concepts reported here will enable new approaches to the long-term attenuation of QS and associated bacterial phenotypes in a range of basic research and applied contexts. PMID:26501126
NASA Astrophysics Data System (ADS)
Goudfrooij, Paul
2016-10-01
Recently, deep color-magnitude diagrams (CMDs) from HST data revealed that several massive intermediate-age star clusters in the Magellanic Clouds exhibit extended main-sequence turn-offs (eMSTOs), and in some cases also dual red clumps. This poses serious questions regarding the mechanisms responsible for the formation of massive star clusters and their well-known light-element abundance variations. The nature of eMSTOs is currently a hotly debated topic of study. Several recent studies indicate that the eMSTOs are caused by an age spread of about 100-500 Myr among cluster stars, while other studies indicate that eMSTOs can be caused by a coeval population in which the relevant stars span a range of rotation velocities. Formal evidence to (dis-)prove either scenario still remains at large, mainly because the available stellar tracks that incorporate the effects of rotation are only available for masses > 1.7 Msun whereas the stars in the known eMSTOs of intermediate-age clusters are less massive. To circumvent this issue, we identified a massive star cluster in the Large Magellanic Cloud (LMC) that has the right dynamical properties to host an eMSTO along with an age at which the effects of age spreads to CMD morphology are substantially different from those of spreads of rotation rates: the 600 Myr old cluster NGC 1831. We propose to obtain deep WFC3/UVIS imaging with filters F336W and F814W to analyze the morphologies of the MSTO and upper MS regions of NGC 1831 at high precision and compare with model predictions. This will have a lasting impact on our understanding of the eMSTO phenomenon and of star cluster formation in general.
Experimental Adaptation of Burkholderia cenocepacia to Onion Medium Reduces Host Range ▿ † ‡
Ellis, Crystal N.; Cooper, Vaughn S.
2010-01-01
It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted. PMID:20154121
Darwell, C T; Fox, K A; Althoff, D M
2014-12-01
There is ample evidence that host shifts in plant-feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host-associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide-ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
On the Existence of Regular and Irregular Outer Moons Orbiting the Pluto-Charon System
NASA Astrophysics Data System (ADS)
Michaely, Erez; Perets, Hagai B.; Grishin, Evgeni
2017-02-01
The dwarf planet Pluto is known to host an extended system of five co-planar satellites. Previous studies have explored the formation and evolution of the system in isolation, neglecting perturbative effects by the Sun. Here we show that secular evolution due to the Sun can strongly affect the evolution of outer satellites and rings in the system, if such exist. Although precession due to extended gravitational potential from the inner Pluto-Charon binary quench such secular evolution up to a crit ˜ 0.0035 au (˜0.09 R Hill the Hill radius; including all of the currently known satellites), outer orbits can be significantly altered. In particular, we find that co-planar rings and satellites should not exist beyond a crit; rather, satellites and dust particles in these regions secularly evolve on timescales ranging between 104 and 106 years, and quasi-periodically change their inclinations and eccentricities through secular evolution (Lidov-Kozai oscillations). Such oscillations can lead to high inclinations and eccentricities, constraining the range where such satellites (and dust particles) can exist without crossing the orbits of the inner satellites or crossing the outer Hill stability range. Outer satellites, if such exist are therefore likely to be irregular satellites, with orbits limited to be non-circular and/or highly inclined. Current observations, including the recent data from the New-Horizons mission explored only inner regions (<0.0012 au) and excluded the existence of additional satellites; however, the irregular satellites discussed here should reside farther, in the yet uncharted regions around Pluto.
The X-33 Extended Flight Test Range
NASA Technical Reports Server (NTRS)
Mackall, Dale A.; Sakahara, Robert; Kremer, Steven E.
1998-01-01
Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.
Blok, Vivian C; Jones, John T; Phillips, Mark S; Trudgill, David L
2008-03-01
This essay considers biotrophic cyst and root-knot nematodes in relation to their biology, host-parasite interactions and molecular genetics. These nematodes have to face the biological consequences of the physical constraints imposed by the soil environment in which they live while their hosts inhabit both above and below ground environments. The two groups of nematodes appear to have adopted radically different solutions to these problems with the result that one group is a host specialist and reproduces sexually while the other has an enormous host range and reproduces by mitotic parthenogenesis. We consider what is known about the modes of parasitism used by these nematodes and how it relates to their host range, including the surprising finding that parasitism genes in both nematode groups have been recruited from bacteria. The nuclear and mitochondrial genomes of these two nematode groups are very different and we consider how these findings relate to the biology of the organisms.
M. E. Ostry; K. Woeste
2004-01-01
Butternut canker is killing trees throughout the range of butternut in North America and is threatening the viability of many populations in several areas. Although butternut is the primary host, other Juglans species and some hardwood species also are potential hosts. Evidence is building that genetic resistance within butternut populations may be...
Gao, Liu; Zhang, Mian; Zhao, Wanyu; Hao, Lu; Chen, Hongcai; Zhang, Rong; Batzer, Jean C.; Gleason, Mark L.; Sun, Guangyu
2014-01-01
Species in the genus Zygophiala are associated with sooty blotch and flyspeck disease on a wide range of hosts. In this study, 63 Zygophiala isolates collected from flyspeck colonies on a range of plants from several regions of China were used for phylogeny, host range and geographic distribution analysis. Phylogenetic trees were constructed on four genes - internal transcribed spacer (ITS), partial translation elongation factor 1-alpha (TEF), β-tubulin (TUB2), and actin (ACT) – both individually and in combination. Isolates were grouped into 11 clades among which five new species, Z. emperorae, Z. trispora, Z. musae, Z. inaequalis and Z. longispora, were described. Species of Zygophiala differed in observed host range and geographic distribution. Z. wisconsinensis and Z. emperorae were the most prevalent throughout the sampled regions of China, whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were collected only in southern China. The hosts of Z. wisconsinensis and Z. emperorae were mainly in the family Rosaceae whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were found mainly on banana (Musa spp.). Cross inoculation tests provided evidence of host specificity among SBFS species. PMID:25329930
The Mpc-scale radio source associated with the GPS galaxy B1144+352
NASA Astrophysics Data System (ADS)
Schoenmakers, A. P.; de Bruyn, A. G.; Röttgering, H. J. A.; van der Laan, H.
1999-01-01
We present the results of new observations of the enigmatic radio source B1144+352 with the WSRT at 1.4 GHz. This source is hosted by an m_r = 14.3 +/- 0.1 galaxy at a redshift of z=0.063 +/- 0.002 and is one of the lowest redshift Gigahertz Peaked Spectrum (GPS) sources known. It has been known to show radio structure on pc-scale in the radio core and on 20-60 kpc-scale in two jet-like radio structures. The WENSS and NVSS surveys have now revealed faint extended radio structures on an even much larger scale. We have investiga ted these large-scale radio components with new 1.4-GHz WSRT observations. Our radio data indicate that the eastern radio structure has a leading hotspot and we conclude that this structure is a radio lobe originating in the galaxy hosting the GPS source. The western radio structure contains two separate radio sources which are superposed on the sky. The first is a low-power radio source, hosted by a m_R = 15.3 +/- 0.5 galaxy at a similar redshift (z=0.065+/-0.001) to the GPS host galaxy; the second is an extended radio lobe, which we believe is associated with the GPS host galaxy and which contains an elongated tail. The total projected linear size of the extended radio structure associated with B1144+352 is ~ 1.2 Mpc. The core of B1144+353 is a known variable radio source: its flux density at 1.4 GHz has increased continuously between 1974 and 1994. We have measured the flux density of the core in our WSRT observations (epoch 1997.7) and find a value of 541+/-10 mJy This implies that its flux density has decreased by ~ 70 mJy between 1994 and 1997. Further, we have retrieved unpublished archival ROSAT HRI data of B1144+352. The source has been detected and appears to be slightly extended in X-rays. We find a luminosity of (1.26 +/- 0.15)*E(43) erg s(-1) between 0.1 and 2.4 keV, assumin that the X-ray emission is due to an AGN with a powerlaw spectrum with photon index 1.8, or (0.95 +/- 0.11) *E(43) erg s(-1) if it is due to thermal bremsstrahlung at T=10(7) K. The detection of the X-ray source suggests that the intrinsic Hi column density cannot be much larger than a few times 10(21) cm(-2) . The non-detection of an extended X-ray halo in a radius of 250 kpc around the host galaxy limits the X-ray luminosity of an intra-cluster gas component within this radius to <~2.3 x 10(42) erg s(-1) (1sigma upper limit). This is below the luminosity of an X-ray luminous cluster and is more comparable to that of poor groups of galaxies. Also the optical data show no evidence for a rich cluster around the host galaxy. B1144+352 is the second GPS galaxy known to be associated with a Mpc-sized radio source, the other being B1245+676. We argue that the observed structure in both these GPS radio sources must be the result of an interrupted central jet-activity, and that a such they may well be the progenitors of sources belonging to the class of double-double radio galaxy.
Revisiting Trypanosoma rangeli Transmission Involving Susceptible and Non-Susceptible Hosts
Ferreira, Luciana de Lima; Pereira, Marcos Horácio; Guarneri, Alessandra Aparecida
2015-01-01
Trypanosoma rangeli infects several triatomine and mammal species in South America. Its transmission is known to occur when a healthy insect feeds on an infected mammal or when an infected insect bites a healthy mammal. In the present study we evaluated the classic way of T. rangeli transmission started by the bite of a single infected triatomine, as well as alternative ways of circulation of this parasite among invertebrate hosts. The number of metacyclic trypomastigotes eliminated from salivary glands during a blood meal was quantified for unfed and recently fed nymphs. The quantification showed that ~50,000 parasites can be liberated during a single blood meal. The transmission of T. rangeli from mice to R. prolixus was evaluated using infections started through the bite of a single infected nymph. The mice that served as the blood source for single infected nymphs showed a high percentage of infection and efficiently transmitted the infection to new insects. Parasites were recovered by xenodiagnosis in insects fed on mice with infections that lasted approximately four months. Hemolymphagy and co-feeding were tested to evaluate insect-insect T. rangeli transmission. T. rangeli was not transmitted during hemolymphagy. However, insects that had co-fed on mice with infected conspecifics exhibited infection rates of approximately 80%. Surprisingly, 16% of the recipient nymphs became infected when pigeons were used as hosts. Our results show that T. rangeli is efficiently transmitted between the evaluated hosts. Not only are the insect-mouse-insect transmission rates high, but parasites can also be transmitted between insects while co-feeding on a living host. We show for the first time that birds can be part of the T. rangeli transmission cycle as we proved that insect-insect transmission is feasible during a co-feeding on these hosts. PMID:26469403
Synthesis, characterization and processing of active rare earth-doped chalcohalide glasses
NASA Astrophysics Data System (ADS)
Debari, Roberto Mauro
Applications for infrared-transmitting non-oxide glass fibers span a broad range of topics. They can be used in the military, the medical field, telecommunications, and even in agriculture. Rare earth ions are used as dopants in these glasses in order to stimulate emissions in the infrared spectral region. In order to extend the host glass transmission further into the infrared, selenium atoms were substituted for sulfur in the established Ge-S-I chalcohalide glass system and the fundamental properties of these latter glasses were explored. Over 30 different compositions in the Ge-Se-I glass system were investigated as to their thermal and optical properties. The resulting optimum host with a composition of Ge15Se80I5 has a broad transmission range from 0.7 mum to 17.0 mum and a high working range over 145°C. The host glass also exhibited a Tg of 125°C, making rotational casting of a cladding tube for rod-and-tube fiberization a possibility. The base glass was doped with 1000 to 4000 ppm/wt of erbium, dysprosium, or neodymium. When doped with Er3+-ions, absorptions at 1.54 mum and 3.42 mum were observed. Nd3+-doping resulted in an absorption peak near 4.24 mum and Dy3+ ions caused absorption at 1.30 mum. Fluorescence emissions were found for neodymium at 1.396 mum with a FWHM of 74 nm, and for dysprosium at 1.145 mum with a FWHM of 75 nm, at 1.360 mum with a FWHM of 98 rim and at 1.674 mum with a FWHM of 60 nm. High optical quality tubes of the host glass could be formed using rotational casting in silica ampoules. Glass tubes, 4 to 6 cm long with a 1 cm outer diameter and a tailored inner-hole diameter ranging from 0.4 to 0.6 cm could be synthesized by this process with excellent dimensional tolerances around the circumference as well as along the length. A preform of this size provided 25 continuous meters of unclad fiber with diameters ranging from 140 to 200 mum. A UV-curable acrylate cladding was applied via an external coating cup. An x-ray analysis of the resulting fiber verified the constituents of the fiber. Due to tradeoffs between thermal properties, optical properties and rare earth solubility, the Ge-Se-I glass system must still be optimized prior to use as an active fiber device. Nevertheless, the viability of this host system has been demonstrated in this investigation. Some very promising advantages to adding halides to chalcogenide glass systems have been confirmed, including the tailoring of glass transition temperatures, enhancement of rare earth solubility, expanded fluorescence emissions in the IR, and suppression of some impurity absorption bands. Also, the potential for rod-and-tube fiberization utilizing the rotational casting method for tube synthesis has been established along with its resulting pristine core-clad interface. This research provides a foundation for active fiber device applications in the 2 to 10 mum spectral region.
Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael
2012-01-01
Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774
Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael
2012-01-01
Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.
Morse, Solon F; Bush, Sarah E; Patterson, Bruce D; Dick, Carl W; Gruwell, Matthew E; Dittmar, Katharina
2013-05-01
Bat flies are a diverse clade of obligate ectoparasites on bats. Like most blood-feeding insects, they harbor endosymbiotic prokaryotes, but the origins and nature of these symbioses are still poorly understood. To expand the knowledge of bacterial associates in bat flies, the diversity and evolution of the dominant endosymbionts in six of eight nominal subfamilies of bat flies (Streblidae and Nycteribiidae) were studied. Furthermore, the localization of endosymbionts and their transmission across developmental stages within the family Streblidae were explored. The results show diverse microbial associates in bat flies, with at least four ancestral invasions of distantly related microbial lineages throughout bat fly evolution. Phylogenetic relationships support the presence of at least two novel symbiont lineages (here clades B and D), and extend the geographic and taxonomic range of a previously documented lineage ("Candidatus Aschnera chinzeii"; here clade A). Although these lineages show reciprocally monophyletic clusters with several bat fly host clades, their phylogenetic relationships generally do not reflect current bat fly taxonomy or phylogeny. However, within some endosymbiont clades, congruent patterns of symbiont-host divergence are apparent. Other sequences identified in this study fall into the widely distributed, highly invasive, insect-associated Arsenophonus lineage and may be the result of symbiont replacements and/or transient infections (here clade C). Vertical transmission of endosymbionts of clades B and D is supported by fluorescent signal (fluorescent in situ hybridization [FISH]) and microbial DNA detection across developmental stages. The fluorescent bacterial signal is consistently localized within structures resembling bacteriomes, although their anatomical position differs by host fly clade. In summary, the results suggest an obligate host-endosymbiont relationship for three of the four known symbiont clades associated with bat flies (clades A, B, and D).
Morse, Solon F.; Bush, Sarah E.; Patterson, Bruce D.; Dick, Carl W.; Gruwell, Matthew E.
2013-01-01
Bat flies are a diverse clade of obligate ectoparasites on bats. Like most blood-feeding insects, they harbor endosymbiotic prokaryotes, but the origins and nature of these symbioses are still poorly understood. To expand the knowledge of bacterial associates in bat flies, the diversity and evolution of the dominant endosymbionts in six of eight nominal subfamilies of bat flies (Streblidae and Nycteribiidae) were studied. Furthermore, the localization of endosymbionts and their transmission across developmental stages within the family Streblidae were explored. The results show diverse microbial associates in bat flies, with at least four ancestral invasions of distantly related microbial lineages throughout bat fly evolution. Phylogenetic relationships support the presence of at least two novel symbiont lineages (here clades B and D), and extend the geographic and taxonomic range of a previously documented lineage (“Candidatus Aschnera chinzeii”; here clade A). Although these lineages show reciprocally monophyletic clusters with several bat fly host clades, their phylogenetic relationships generally do not reflect current bat fly taxonomy or phylogeny. However, within some endosymbiont clades, congruent patterns of symbiont-host divergence are apparent. Other sequences identified in this study fall into the widely distributed, highly invasive, insect-associated Arsenophonus lineage and may be the result of symbiont replacements and/or transient infections (here clade C). Vertical transmission of endosymbionts of clades B and D is supported by fluorescent signal (fluorescent in situ hybridization [FISH]) and microbial DNA detection across developmental stages. The fluorescent bacterial signal is consistently localized within structures resembling bacteriomes, although their anatomical position differs by host fly clade. In summary, the results suggest an obligate host-endosymbiont relationship for three of the four known symbiont clades associated with bat flies (clades A, B, and D). PMID:23435889
Identification and genomic characterization of a novel rat bocavirus from brown rats in China.
Lau, Susanna K P; Yeung, Hazel C; Li, Kenneth S M; Lam, Carol S F; Cai, Jian-Piao; Yuen, Ming-Chi; Wang, Ming; Zheng, Bo-Jian; Woo, Patrick C Y; Yuen, Kwok-Yung
2017-01-01
Despite recent discoveries of novel animal bocaparvoviruses, current understandings on the diversity and evolution of bocaparvoviruses are still limited. We report the identification and genome characterization of a novel bocaparvovirus, rat bocaparvovirus (RBoV), in brown rats (Rattus norvegicus) in China. RBoV was detected in 11.5%, 2.4%, 16.2% and 0.3% of alimentary, respiratory, spleen and kidney samples respectively, of 636 brown rats by PCR, but not in samples of other rodent species, suggesting that brown rats are the primary reservoir of RBoV. Six RBoV genomes sequenced from three brown rats revealed the presence of three ORFs, characteristic of bocaparvoviruses. Phylogenetic analysis showed that RBoV was distantly related to other bocaparvoviruses, forming a distinct cluster within the genus, with ≤55.5% nucleotide identities to the genome of ungulate bocaparvovirus 3, supporting its classification as a novel bocaparvovirus species. RBoV possessed a putative second exon encoding the C-terminal region of NS1 and conserved RNA splicing signals, similar to human bocaparvoviruses and canine bocaparvovirus. In contrast to human, feline and canine bocaparvoviruses which demonstrates inter/intra-host viral diversity, partial VP1/VP2 sequences of 49 RBoV strains demonstrated little inter-host genetic diversity, suggesting a single genetic group. Although the pathogenicity of RBoV remains to be determined, its presence in different host tissues suggests wide tissue tropism. RBoV represents the first bocaparvovirus in rodents with genome sequenced, which extends our knowledge on the host range of bocaparvoviruses. Further studies are required to better understand the epidemiology, genetic diversity and pathogenicity of bocaparvoviruses in different rodent populations. Copyright © 2016 Elsevier B.V. All rights reserved.
James, Joe; Howard, Wendy; Iqbal, Munir; Nair, Venugopal K.; Barclay, Wendy S.
2016-01-01
Avian influenza is a significant economic burden on the poultry industry in geographical regions where it is enzootic. It also poses a public health concern when avian influenza subtypes infect humans, often with high mortality. Understanding viral genetic factors which positively contribute to influenza A virus (IAV) fitness – infectivity, spread and pathogenesis – is of great importance both for human and livestock health. PB1-F2 is a small accessory protein encoded by IAV and in mammalian hosts has been implicated in a wide range of functions that contribute to increased pathogenesis. In the avian host, the protein has been understudied despite high-level full-length conservation in avian IAV isolates, which is in contrast to the truncations of the PB1-F2 length frequently found in mammalian host isolates. Here we report that the presence of a full-length PB1-F2 protein, from a low pathogenicity H9N2 avian influenza virus, prolongs infectious virus shedding from directly inoculated chickens, thereby enhancing transmission of the virus by lengthening the transmission window to contact birds. As well as extending transmission, the presence of a full-length PB1-F2 suppresses pathogenicity evidenced by an increased minimum lethal dose in embryonated chicken eggs and increasing survival in directly infected birds when compared to a virus lacking an ORF for PB1-F2. We propose that there is a positive pressure to maintain a full-length functional PB1-F2 protein upon infection of avian hosts as it contributes to the effective transmission of IAV in the field. PMID:27558742
James, Joe; Howard, Wendy; Iqbal, Munir; Nair, Venugopal K; Barclay, Wendy S; Shelton, Holly
2016-10-01
Avian influenza is a significant economic burden on the poultry industry in geographical regions where it is enzootic. It also poses a public health concern when avian influenza subtypes infect humans, often with high mortality. Understanding viral genetic factors which positively contribute to influenza A virus (IAV) fitness - infectivity, spread and pathogenesis - is of great importance both for human and livestock health. PB1-F2 is a small accessory protein encoded by IAV and in mammalian hosts has been implicated in a wide range of functions that contribute to increased pathogenesis. In the avian host, the protein has been understudied despite high-level full-length conservation in avian IAV isolates, which is in contrast to the truncations of the PB1-F2 length frequently found in mammalian host isolates. Here we report that the presence of a full-length PB1-F2 protein, from a low pathogenicity H9N2 avian influenza virus, prolongs infectious virus shedding from directly inoculated chickens, thereby enhancing transmission of the virus by lengthening the transmission window to contact birds. As well as extending transmission, the presence of a full-length PB1-F2 suppresses pathogenicity evidenced by an increased minimum lethal dose in embryonated chicken eggs and increasing survival in directly infected birds when compared to a virus lacking an ORF for PB1-F2. We propose that there is a positive pressure to maintain a full-length functional PB1-F2 protein upon infection of avian hosts as it contributes to the effective transmission of IAV in the field.
Medeiros, Matthew C. I.; Hamer, Gabriel L.; Ricklefs, Robert E.
2013-01-01
Blood-feeding arthropod vectors are responsible for transmitting many parasites between vertebrate hosts. While arthropod vectors often feed on limited subsets of potential host species, little is known about the extent to which this influences the distribution of vector-borne parasites in some systems. Here, we test the hypothesis that different vector species structure parasite–host relationships by restricting access of certain parasites to a subset of available hosts. Specifically, we investigate how the feeding patterns of Culex mosquito vectors relate to distributions of avian malaria parasites among hosts in suburban Chicago, IL, USA. We show that Plasmodium lineages, defined by cytochrome b haplotypes, are heterogeneously distributed across avian hosts. However, the feeding patterns of the dominant vectors (Culex restuans and Culex pipiens) are similar across these hosts, and do not explain the distributions of Plasmodium parasites. Phylogenetic similarity of avian hosts predicts similarity in their Plasmodium parasites. This effect was driven primarily by the general association of Plasmodium parasites with particular host superfamilies. Our results suggest that a mosquito-imposed encounter rate does not limit the distribution of avian Plasmodium parasites across hosts. This implies that compatibility between parasites and their avian hosts structure Plasmodium host range. PMID:23595266
Liberating Virtual Machines from Physical Boundaries through Execution Knowledge
2015-12-01
trivial infrastructures such as VM distribution networks, clients need to wait for an extended period of time before launching a VM. In cloud settings...hardware support. MobiDesk [28] efficiently supports virtual desktops in mobile environments by decou- pling the user’s workload from host systems and...experiment set-up. VMs are migrated between a pair of source and destination hosts, which are connected through a backend 10 Gbps network for
Leal, Anangela Ravena da Silva; Freire, Simone Mousinho; Knoff, Marcelo; Gomes, Delir Corrêa; Santos, Jeannie Nascimento Dos; Mendonça, Ivete Lopes de
2018-03-01
Atractis thapari Petter, 1966, an atractid nematode, was collected parasitizing the large intestine of tortoises of the species Chelonoidis carbonarius (Spix, 1824) (Cc) and C. denticulatus (Linnaeus, 1766) (Cd) (Testudinidae) in the Zoobotanical Park of the municipality of Teresina, state of Piauí, Brazil. Taxonomic identification was based on morphological and morphometrical features, and using bright-field and scanning electron microscopy. The present study adds new observations on the morphology of A. thapari, mainly relating to mouth papillae, the excretory pore, deirids, and male and female posterior ends. The parasitic indices of prevalence (P), mean intensity (MI), mean abundance (MA) and range of infection (RI) for A. thapari in these two tortoise species were: P = 100%, MI = 154,667, MA = 154,667, RI = 5,500-588,500 (Cc); P = 100%, MI = 93,639, MA = 93,639, RI = 1,000-224,500 (Cd). This report confirms the occurrence of A. thapari in Neotropical region, South America, Brazil, and extends its occurrences to a new host, the tortoise C. carbonarius. Adjustment of host management with the aim of improving hygiene and health conditions is suggested.
Chronic and persistent viral hemorrhagic septicemia virus infections in Pacific herring
Hershberger, P.K.; Gregg, J.L.; Grady, C.A.; Taylor, L.; Winton, J.R.
2010-01-01
Chronic viral hemorrhagic septicemia virus (VHSV) infections were established in a laboratory stock of Pacific herring Clupea pallasii held in a large-volume tank supplied with pathogenfree seawater at temperatures ranging from 6.8 to 11.6??C. The infections were characterized by viral persistence for extended periods and near-background levels of host mortality. Infectious virus was recovered from mortalities occurring up to 167 d post-exposure and was detected in normal-appearing herring for as long as 224 d following initial challenge. Geometric mean viral titers were generally as high as or higher in brain tissues than in pools of kidney and spleen tissues, with overall prevalence of infection being higher in the brain. Upon re-exposure to VHSV in a standard laboratory challenge, negligible mortality occurred among groups of herring that were either chronically infected or fully recovered, indicating that survival from chronic manifestations conferred protection against future disease. However, some survivors of chronic VHS infections were capable of replicating virus upon re-exposure. Demonstration of a chronic manifestation of VHSV infection among Pacific herring maintained at ambient seawater temperatures provides insights into the mechanisms by which the virus is maintained among populations of endemic hosts. ?? 2010 Inter-Research.
Chronic and persistent viral hemorrhagic septicemia virus infections in Pacific herring
Hershberger, Paul K.; Gregg, Jacob L.; Winton, James R.; Grady, Cortney A.; Taylor, L.
2010-01-01
Chronic viral hemorrhagic septicemia virus (VHSV) infections were established in a laboratory stock of Pacific herring Clupea pallasii held in a large-volume tank supplied with pathogen-free seawater at temperatures ranging from 6.8 to 11.6°C. The infections were characterized by viral persistence for extended periods and near-background levels of host mortality. Infectious virus was recovered from mortalities occurring up to 167 d post-exposure and was detected in normal-appearing herring for as long as 224 d following initial challenge. Geometric mean viral titers were generally as high as or higher in brain tissues than in pools of kidney and spleen tissues, with overall prevalence of infection being higher in the brain. Upon re-exposure to VHSV in a standard laboratory challenge, negligible mortality occurred among groups of herring that were either chronically infected or fully recovered, indicating that survival from chronic manifestations conferred protection against future disease. However, some survivors of chronic VHS infections were capable of replicating virus upon re-exposure. Demonstration of a chronic manifestation of VHSV infection among Pacific herring maintained at ambient seawater temperatures provides insights into the mechanisms by which the virus is maintained among populations of endemic hosts.
Cryptosporidium meleagridis in an Indian ring-necked parrot (Psittacula krameri).
Morgan, U M; Xiao, L; Limor, J; Gelis, S; Raidal, S R; Fayer, R; Lal, A; Elliot, A; Thompson, R C
2000-03-01
To perform a morphological and genetic characterisation of a Cryptosporidium infection in an Indian ring-necked parrot (Psittacula krameri) and to compare this with C meleagridis from a turkey. Tissue and intestinal sections from an Indian ring-necked parrot were examined microscopically for Cryptosporidium. The organism was also purified from the crop and intestine, the DNA extracted and a portion of the 18S rDNA gene amplified, sequenced and compared with sequence and biological information obtained for C meleagridis from a turkey as well as sequence information for other species of Cryptosporidium. Morphological examination of tissue sections from an Indian ring-necked parrot revealed large numbers of Cryptosporidium oocysts attached to the apical border of enterocytes lining the intestinal tract. Purified Cryptosporidium oocysts measured about 5.1 x 4.5 microns, which conformed morphologically to C meleagridis. The sequence obtained from this isolate was identical to sequence information obtained from a C meleagridis isolate from a turkey. Cryptosporidium meleagridis was detected in an Indian ring-necked parrot using morphological and molecular methods. This is the first time that this species of Cryptosporidium has been reported in a non-galliform host and extends the known host range of C meleagridis.
Yellowstone wolf (Canis lupus) denisty predicted by elk (Cervus elaphus) biomass
Mech, L. David; Barber-Meyer, Shannon
2015-01-01
The Northern Range (NR) of Yellowstone National Park (YNP) hosts a higher prey biomass density in the form of elk (Cervus elaphus L., 1758) than any other system of gray wolves (Canis lupus L., 1758) and prey reported. Therefore, it is important to determine whether that wolf–prey system fits a long-standing model relating wolf density to prey biomass. Using data from 2005 to 2012 after elk population fluctuations dampened 10 years subsequent to wolf reintroduction, we found that NR prey biomass predicted wolf density. This finding and the trajectory of the regression extend the validity of the model to prey densities 19% higher than previous data and suggest that the model would apply to wolf–prey systems of even higher prey biomass.
High Density Methane Storage in Nanoporous Carbon
NASA Astrophysics Data System (ADS)
Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team
2014-03-01
Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.
Dynamically Reconfigurable Systolic Array Accelerator
NASA Technical Reports Server (NTRS)
Dasu, Aravind; Barnes, Robert
2012-01-01
A polymorphic systolic array framework has been developed that works in conjunction with an embedded microprocessor on a field-programmable gate array (FPGA), which allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and a hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms, and is extendable to more complex applications in the area of aerospace embedded systems. FPGA chips can be responsive to realtime demands for changing applications needs, but only if the electronic fabric can respond fast enough. This systolic array framework allows for rapid partial and dynamic reconfiguration of the chip in response to the real-time needs of scalability, and adaptability of executables.
Hamm, J J; Styer, E L; Federici, B A
1998-09-01
Six field-collected ascovirus isolates obtained from five noctuid species in the continental United States were compared with respect to the general relatedness of their DNA, host range, and histopathology. Two isolates were from Spodoptera frugiperda, and the other four were from Autographa precationis, Heliothis virescens, Helicoverpa zea, and Trichoplusia ni. DNA-DNA hybridization studies showed that the six isolates belonged to three distinct viral species, with the isolates from S. frugiperda composing one species, those from A. precationis and H. virescens a second species, and those from H. zea and T. ni a third species. The host range and histopathology of each isolate was studied in eight noctuid species, S. frugiperda, Spodoptera ornithogalli, Spodoptera exigua, Spodoptera eridania, H. virescens, H. zea, A. precationis, and Feltia subterranea. Though some variation existed between the different isolates of each viral species, distinct patterns were apparent for each. The viral species from S. frugiperda had a host range that was limited primarily to Spodoptera species and both isolates of this virus only replicated and caused significant pathology in the fat body, whereas the viral species from A. precationis and H. virescens had a much broader host range that included most of the species tested, but also had a tissue tropism primarily restricted to the fat body. The viral species from T. ni and H. zea readily infected all the hosts tested, where the principal site of replication and significant pathology was the epidermis. In many test hosts, however, this viral species also replicated and caused significant pathology in the tracheal epithelium and to a lesser extent in the fat body. Aside from contributing to knowledge of ascovirus biology, these studies indicate that DNA hybridization profiles combined with studies of host range and tissue tropism can be used as characters for defining ascovirus species. Copyright 1998 Academic Press.
Multi-stage Vector-Borne Zoonoses Models: A Global Analysis.
Bichara, Derdei; Iggidr, Abderrahman; Smith, Laura
2018-04-25
A class of models that describes the interactions between multiple host species and an arthropod vector is formulated and its dynamics investigated. A host-vector disease model where the host's infection is structured into n stages is formulated and a complete global dynamics analysis is provided. The basic reproduction number acts as a sharp threshold, that is, the disease-free equilibrium is globally asymptotically stable (GAS) whenever [Formula: see text] and that a unique interior endemic equilibrium exists and is GAS if [Formula: see text]. We proceed to extend this model with m host species, capturing a class of zoonoses where the cross-species bridge is an arthropod vector. The basic reproduction number of the multi-host-vector, [Formula: see text], is derived and shown to be the sum of basic reproduction numbers of the model when each host is isolated with an arthropod vector. It is shown that the disease will persist in all hosts as long as it persists in one host. Moreover, the overall basic reproduction number increases with respect to the host and that bringing the basic reproduction number of each isolated host below unity in each host is not sufficient to eradicate the disease in all hosts. This is a type of "amplification effect," that is, for the considered vector-borne zoonoses, the increase in host diversity increases the basic reproduction number and therefore the disease burden.
Gallet, Romain; Fontaine, Colin; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Fournier, Elisabeth; Tharreau, Didier
2016-04-01
Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.
Host range, immunity and antigenic properties of lambdoid coliphage HK97.
Dhillon, E K; Dhillon, T S; Lai, A N; Linn, S
1980-09-01
Temperate coliphage HK97 was isolated from pig dung. Although HK97 is antigenically unrelated to coliphage lambda, it has similar morphology, host range and immunity properties, and can recombine with it.
Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya
2014-02-01
Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Dutta, Sujoy; Ongarora, Benson G.; Li, Hairong; Vicente, Maria da Graca H.; Kolli, Bala K.; Chang, Kwang Poo
2011-01-01
Photodynamic therapy, unlikely to elicit drug-resistance, deserves attention as a strategy to counter this outstanding problem common to the chemotherapy of all diseases. Previously, we have broadened the applicability of this modality to photodynamic vaccination by exploiting the unusual properties of the trypanosomatid protozoa, Leishmania, i.e., their innate ability of homing to the phagolysosomes of the antigen-presenting cells and their selective photolysis therein, using transgenic mutants endogenously inducible for porphyrin accumulation. Here, we extended the utility of this host-parasite model for in vitro photodynamic therapy and vaccination by exploring exogenously supplied photosensitizers. Seventeen novel phthalocyanines (Pcs) were screened in vitro for their photolytic activity against cultured Leishmania. Pcs rendered cationic and soluble (csPcs) for cellular uptake were phototoxic to both parasite and host cells, i.e., macrophages and dendritic cells. The csPcs that targeted to mitochondria were more photolytic than those restricted to the endocytic compartments. Treatment of infected cells with endocytic csPcs resulted in their accumulation in Leishmania-containing phagolysosomes, indicative of reaching their target for photodynamic therapy, although their parasite versus host specificity is limited to a narrow range of csPc concentrations. In contrast, Leishmania pre-loaded with csPc were selectively photolyzed intracellularly, leaving host cells viable. Pre-illumination of such csPc-loaded Leishmania did not hinder their infectivity, but ensured their intracellular lysis. Ovalbumin (OVA) so delivered by photo-inactivated OVA transfectants to mouse macrophages and dendritic cells were co-presented with MHC Class I molecules by these antigen presenting cells to activate OVA epitope-specific CD8+T cells. The in vitro evidence presented here demonstrates for the first time not only the potential of endocytic csPcs for effective photodynamic therapy against Leishmania but also their utility in photo-inactivation of Leishmania to produce a safe carrier to express and deliver a defined antigen with enhanced cell-mediated immunity. PMID:21673971
The Mega-MUSCLES HST Treasury Survey
NASA Astrophysics Data System (ADS)
Froning, Cynthia S.; France, Kevin; Loyd, R. O. Parke; Youngblood, Allison; Brown, Alexander; Schneider, Christian; Berta-Thompson, Zachory; Kowalski, Adam
2018-01-01
JWST will be able to observe the atmospheres of rocky planets transiting nearby M dwarfs. A few such planets are already known (around GJ1132, Proxima Cen, and Trappist-1) and TESS is predicted to find many more, including ~14 habitable zone planets. To interpret observations of these exoplanets' atmospheres, we must understand the high-energy SED of their host stars: X-ray/EUV irradiation can erode a planet's gaseous envelope and FUV/NUV-driven photochemistry shapes an atmosphere's molecular abundances, including potential biomarkers like O2, O3, and CH4. Our MUSCLES Treasury Survey (Cycles 19+22) used Hubble/COS+STIS UV observations with contemporaneous X-ray and ground-based data to construct complete SEDs for 11 low-mass exoplanet hosts. MUSCLES is the most widely used database for early-M and K dwarf (>0.3 M_sun) irradiance spectra and has supported a wide range of atmospheric stability and biomarker modeling work. However, TESS will find most of its habitable planets transiting stars less massive than this, and these will be the planets to characterize with JWST. Here, we introduce the Mega-MUSCLES project, an approved HST Cycle 25 Treasury program. Following on the successful MUSCLES survey, Mega-MUSCLES will expand our target list to focus on: (a) new M dwarf exoplanet hosts with varying properties; (b) reference M dwarfs below 0.3 solar masses that may be used as proxies for M dwarf planet hosts discovered after HST's lifetime; and (c) more rapidly rotating stars of GJ1132's mass to probe XUV evolution over gigayear timescales. We will also gather the first panchromatic SEDs of rocky planet hosts GJ1132 and Trappist-1. Here, we present an overview of the Mega-MUSCLES motivation, targets list, and status of the survey and show how it extends proven methods to a key new sample of stars, upon which critically depends the long-term goal of studying habitable planet atmospheres with JWST and beyond.
Host-microbiota interactions in the intestine.
Elson, Charles O; Alexander, Katie L
2015-01-01
The comprehensive collection of bacterial species, termed microbiota, within human and other mammalian hosts has profound effects on both innate and adaptive immunity. Multiple host innate mechanisms contribute to intestinal homeostasis, including epithelial production of protective mucin layers maintaining spatial segregation in the intestine as well as epithelial cell secretion of a broad range of antimicrobial peptides. Additionally, epithelial cells employ autophagy to contain and eliminate invading bacteria; interestingly, genetic variants in specific autophagy genes are linked to susceptibility to Crohn's disease. Innate lymphoid cells, which rapidly respond to cytokine and microbial signals, have emerged as important regulators of the intestinal immune response to the microbiota. With regard to adaptive immunity, specific microbial species stimulate induction of regulatory T cells while others induce effector T cells within the gut. Such stimulation is subject to dysregulation during inflammation and disease, contributing to 'dysbiosis' or an abnormal microbiota composition that has been associated with a variety of immune-mediated inflammatory disorders, including celiac disease. The microbiota communicates with the immune system and vice versa; thus, an abnormal microbiota composition likely translates into an altered host immune response, though the exact mechanisms of such are not yet clear. Immunoglobulin A plays a critical role in limiting bacterial access to the host and in maintaining mutualism with the microbiota. Perturbation of the mucosal barrier via infection or other means can induce effector T cells reactive to the intestinal microbiota, and these cells can persist as memory cells for extended periods of time and potentially serve as pathogenic effector cells upon re-encounter with antigen. Health is associated with a diverse microbiota that functions to maintain the balance between T effector and T regulatory cells in the intestine. Whether dysbiosis can be reversed in immune-mediated disease, thus restoring health, is a question of intense interest for this active area of research. © 2015 S. Karger AG, Basel.
A. L. Ross-Davis; J. E. Stewart; J. W. Hanna; M.-S. Kim; B. J. Knaus; R. Cronn; H. Rai; B. A. Richardson; G. I. McDonald; N. B. Klopfenstein
2013-01-01
Armillaria species display diverse ecological roles ranging from beneficial saprobe to virulent pathogen. Armillaria solidipes (formerly A. ostoyae), a causal agent of Armillaria root disease, is a virulent primary pathogen with a broad host range of woody plants across the Northern Hemisphere. This white-rot pathogen grows between trees as rhizomorphs and attacks...
Runge, Fabian; Ndambi, Beninweck; Thines, Marco
2012-01-01
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation.
Runge, Fabian; Ndambi, Beninweck; Thines, Marco
2012-01-01
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation. PMID:23166582
Rosas-Valdez, Rogelio; de León, Gerardo Pérez-Ponce
2011-04-01
Host specificity plays an essential role in shaping the evolutionary history of host-parasite associations. In this study, an index of host specificity recently proposed was used to test, quantitatively, the hypothesis that some groups of parasites are characteristics of some host fish families along their distribution range. A database with all published records on the helminth parasites of freshwater siluriforms of Mexico was used. The host specificity index was used considering its advantage to measure the taxonomic heterogeneity of the host assemblages and its appropriateness for unequal sampling data. The helminth parasite fauna of freshwater siluriforms in Mexico seems to be specific for different host taxonomic categories. However, a relatively high number of species (47% of the total helminth fauna) is specific to their respective host family. This result provides further corroboration for the biogeographic hypothesis of the core helminth fauna proposed previously. The statistical values for host specificity obtained herein seem to be independent of host range. However, the accurate taxonomic identification of the parasites is fundamental for the evaluation of host specificity and the accurate evolutionary interpretation of this phenomenon.
Worldwide phylogenetic relationship of avian poxviruses
Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly
2013-01-01
Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.
Worldwide Phylogenetic Relationship of Avian Poxviruses
Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly
2013-01-01
Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy. PMID:23408635
First report of Blastocystis infections in cattle in China.
Zhu, Weining; Tao, Wei; Gong, Binbin; Yang, Hang; Li, Yijing; Song, Mingxin; Lu, Yixin; Li, Wei
2017-11-15
Blastocystis is one of the most common intestinal protists of humans and can also infect a variety of other mammals and birds. Blastocystis infections and subtype distribution in cattle have been documented, while nothing is known about those in China. Herein, a total of 526 dairy cattle from northeast China were sampled and investigated for the prevalence and genetic characteristics of Blastocystis and the potential role of bovine animals in zoonotic transmission of Blastocystis. The parasite was identified in 54 (10.3%) fecal specimens by nested PCR and DNA sequencing of the small subunit ribosomal RNA gene. Sequence analysis enabled identification of four Blastocystis subtypes (STs). Among those, subtype ST10 (75.9%, 41/54) has the highest frequency, followed by ST14 (18.5%, 10/54), ST4 (3.7%, 2/54), and ST5 (1.9%, 1/54). High prevalence and widespread distribution of ST10 and ST14 in cattle observed herein, together with analysis of their host distribution patterns in earlier studies, indicated some host-adapted potential in the two subtypes. The identification of human-pathogenic subtypes ST4 and ST5 might imply a potential zoonotic risk of cattle origin. This is the first study exploring the prevalence and genetic characteristics of Blastocystis in cattle in China. The host range of subtype ST4 was extended. The findings of this study should be helpful for a better understanding of the epidemiology and public health potential of Blastocystis. Copyright © 2017 Elsevier B.V. All rights reserved.
Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms
2015-03-04
were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we...performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can...virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their
Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman-James, Kristin
The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hostsmore » joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO 4 2- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through the pyrazine π system. Additionally appendages capable of influencing solvation effects can be introduced, and a number of other potential applications can be realized in areas such as soft materials chemistry, catalysis, sensing, and proton switches, the latter for binding and release of targeted guests. These findings provide a better foundation for understanding the selective binding of anions by targeted placement of hydrogen binding sites, and the strengths and weaknesses of various functional groups, that will allow for more the design of more effective anion sequestering agents. Our design strategy also used simple, cost-effective building blocks for host synthesis to allow for scale-up should real-world applications be forthcoming.« less
Models for integrated pest control and their biological implications.
Tang, Sanyi; Cheke, Robert A
2008-09-01
Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.
Barker, C.E.; Bone, Y.; Lewan, M.D.
1999-01-01
Nine basalt dikes, ranging from 6 cm to 40 m thick, intruding the Upper Jurassic-Lower Cretaceous Strzelecki Group, western onshore Gippsland Basin, were used to study maximum temperatures (Tmax) reached next to dikes. Tmax was estimated from fluid inclusion and vitrinitereflectance geothermometry and compared to temperatures calculated using heat-flow models of contact metamorphism. Thermal history reconstruction suggests that at the time of dike intrusion the host rock was at a temperature of 100-135??C. Fracture-bound fluid inclusions in the host rocks next to thin dikes ( 1.5, using a normalized distance ratio used for comparing measurements between dikes regardless of their thickness. In contrast, the pattern seen next to the thin dikes is a relatively narrow zone of elevated Rv-r. Heat-flow modeling, along with whole rock elemental and isotopic data, suggests that the extended zone of elevated Rv-r is caused by a convection cell with local recharge of the hydrothermal fluids. The narrow zone of elevated Rv-r found next to thin dikes is attributed to the rise of the less dense, heated fluids at the dike contact causing a flow of cooler groundwater towards the dike and thereby limiting its heating effects. The lack of extended heating effects suggests that next to thin dikes an incipient convection system may form in which the heated fluid starts to travel upward along the dike but cooling occurs before a complete convection cell can form. Close to the dike contact at X/D 1.5. ?? 1998 Elsevier Science B.V. All rights reserved.
The host immunological response to cancer therapy: An emerging concept in tumor biology.
Voloshin, Tali; Voest, Emile E; Shaked, Yuval
2013-07-01
Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction-both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. Copyright © 2013 Elsevier Inc. All rights reserved.
Morrot, Alexandre; Villar, Silvina R; González, Florencia B; Pérez, Ana R
2016-01-01
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.
NASA Astrophysics Data System (ADS)
Froning, Cynthia
2017-09-01
To interpret observations of exoplanets' atmospheres, we must understand the high-energy SEDs of their host stars. We propose to expand our Cycle 19/22 MUSCLES project to: (a) new M dwarf exoplanet hosts with varying properties; (b) reference M dwarfs below 0.3 solar masses that may be used as proxies for M dwarf planet hosts discovered after HST's lifetime; and (c) more rapidly rotating stars of GJ1132's mass to probe XUV evolution over gigayear timescales. We propose to gather the first panchromatic SEDs of rocky planet hosts GJ1132 and Trappist-1. This proposal extends proven methods to a key new sample of stars, upon which critically depends the long-term goal of studying habitable planet atmospheres with JWST and beyond.
Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.
2012-01-01
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180
Coates, Andrew; Barnett, Louise K; Hoskin, Conrad; Phillips, Ben L
2017-02-01
Species interactions can determine range limits, and parasitism is the most intimate of such interactions. Intriguingly, the very conditions on range edges likely change host-parasite dynamics in nontrivial ways. Range edges are often associated with clines in host density and with environmental transitions, both of which may affect parasite transmission. On advancing range edges, founder events and fitness/dispersal costs of parasitism may also cause parasites to be lost on range edges. Here we examine the prevalence of three species of parasite across the range edge of an invasive gecko, Hemidactylus frenatus, in northeastern Australia. The gecko's range edge spans the urban-woodland interface at the edge of urban areas. Across this edge, gecko abundance shows a steep decline, being lower in the woodland. Two parasite species (a mite and a pentastome) are coevolved with H. frenatus, and these species become less prevalent as the geckos become less abundant. A third species of parasite (another pentastome) is native to Australia and has no coevolutionary history with H. frenatus. This species became more prevalent as the geckos become less abundant. These dramatic shifts in parasitism (occurring over 3.5 km) confirm that host-parasite dynamics can vary substantially across the range edge of this gecko host.
Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)
NASA Astrophysics Data System (ADS)
Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter
2008-06-01
The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.
Ionised gas structure of 100 kpc in an over-dense region of the galaxy group COSMOS-Gr30 at z 0.7
NASA Astrophysics Data System (ADS)
Epinat, B.; Contini, T.; Finley, H.; Boogaard, L. A.; Guérou, A.; Brinchmann, J.; Carton, D.; Michel-Dansac, L.; Bacon, R.; Cantalupo, S.; Carollo, M.; Hamer, S.; Kollatschny, W.; Krajnović, D.; Marino, R. A.; Richard, J.; Soucail, G.; Weilbacher, P. M.; Wisotzki, L.
2018-01-01
We report the discovery of a 104 kpc2 gaseous structure detected in [O II]λλ3727, 3729 in an over-dense region of the COSMOS-Gr30 galaxy group at z 0.725 with deep MUSE Guaranteed Time Observations. We estimate the total amount of diffuse ionised gas to be of the order of ( 5 ± 3) × 1010 M⊙ and explore its physical properties to understand its origin and the source(s) of the ionisation. The MUSE data allow the identification of a dozen group members that are embedded in this structure through emission and absorption lines. We extracted spectra from small apertures defined for both the diffuse ionised gas and the galaxies. We investigated the kinematics and ionisation properties of the various galaxies and extended gas regions through line diagnostics (R23, O32, and [O III]/Hβ) that are available within the MUSE wavelength range. We compared these diagnostics to photo-ionisation models and shock models. The structure is divided into two kinematically distinct sub-structures. The most extended sub-structure of ionised gas is likely rotating around a massive galaxy and displays filamentary patterns that link some galaxies. The second sub-structure links another massive galaxy that hosts an active galactic nucleus (AGN) to a low-mass galaxy, but it also extends orthogonally to the AGN host disc over 35 kpc. This extent is likely ionised by the AGN itself. The location of small diffuse regions in the R23 vs. O32 diagram is compatible with photo-ionisation. However, the location of three of these regions in this diagram (low O32, high R23) can also be explained by shocks, which is supported by their high velocity dispersions. One edge-on galaxy shares the same properties and may be a source of shocks. Regardless of the hypothesis, the extended gas seems to be non-primordial. We favour a scenario where the gas has been extracted from galaxies by tidal forces and AGN triggered by interactions between at least the two sub-structures. Based on observations made with ESO telescopes at the Paranal Observatory under programs 094.A-0247 and 095.A-0118.
von Beeren, Christoph; Brückner, Adrian; Maruyama, Munetoshi; Burke, Griffin; Wieschollek, Jana; Kronauer, Daniel J C
2018-01-01
Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of potential host species and the level of specialization on any particular host.
Structural Insights into SraP-Mediated Staphylococcus aureus Adhesion to Host Cells
Zhang, Juan; Wang, Lei; Bai, Xiao-Hui; Zhang, Shi-Jie; Ren, Yan-Min; Li, Na; Zhang, Yong-Hui; Zhang, Zhiyong; Gong, Qingguo; Mei, Yide; Xue, Ting; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao
2014-01-01
Staphylococcus aureus, a Gram-positive bacterium causes a number of devastating human diseases, such as infective endocarditis, osteomyelitis, septic arthritis and sepsis. S. aureus SraP, a surface-exposed serine-rich repeat glycoprotein (SRRP), is required for the pathogenesis of human infective endocarditis via its ligand-binding region (BR) adhering to human platelets. It remains unclear how SraP interacts with human host. Here we report the 2.05 Å crystal structure of the BR of SraP, revealing an extended rod-like architecture of four discrete modules. The N-terminal legume lectin-like module specifically binds to N-acetylneuraminic acid. The second module adopts a β-grasp fold similar to Ig-binding proteins, whereas the last two tandem repetitive modules resemble eukaryotic cadherins but differ in calcium coordination pattern. Under the conditions tested, small-angle X-ray scattering and molecular dynamic simulation indicated that the three C-terminal modules function as a relatively rigid stem to extend the N-terminal lectin module outwards. Structure-guided mutagenesis analyses, in addition to a recently identified trisaccharide ligand of SraP, enabled us to elucidate that SraP binding to sialylated receptors promotes S. aureus adhesion to and invasion into host epithelial cells. Our findings have thus provided novel structural and functional insights into the SraP-mediated host-pathogen interaction of S. aureus. PMID:24901708
The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage
Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko
2016-01-01
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729
Dezfuli, Bahram S; Manera, Maurizio; Lorenzoni, Massimo; Pironi, Flavio; Shinn, Andrew P; Giari, Luisa
2015-04-15
The European perch, Perca fluviatilis L. is a common paratenic host of dioctophymatid nematodes belonging to the genus Eustrongylides. In this host, once infected oligochaetes, which serve as the first intermediate host, are ingested, Eustrongylides migrates through the intestine and is frequently encountered within the musculature, free within the body cavity, or encapsulated on the viscera. The current study details the first Italian record of Eustrongylides sp. with larvae reported in the muscle of P. fluviatilis. Uninfected and nematode-infected muscle tissues of perch were fixed and prepared for histological evaluation and electron microscopy. Some sections were subjected to an indirect immunohistochemical method using anti-PCNA, anti-piscidin 3 and anti-piscidin 4 antibodies. A total of 510 P. fluviatilis (TL range 15-25 cm) from Lake Trasimeno, Perugia were post-mortemed; 31 individuals had encysted nematode larvae within their musculature (1-2 worms fish(-1)). Histologically, larvae were surrounded by a capsule with an evident acute inflammatory reaction. Muscle degeneration and necrosis extending throughout the sarcoplasm, sarcolemmal basal lamina, endomysial connective tissue cells and capillaries was frequently observed. Within the encapsulating reaction, macrophage aggregates (MAs) were seen. Immunohistochemical staining with the proliferating cell nuclear antigen (PCNA) revealed numerous PCNA-positive cells within the thickness of the capsule and in the immediate vicinity surrounding Eustrongylides sp. larvae (i.e. fibroblasts and satellite cells), suggesting a host response had been initiated to repair the nematode-damaged muscle. Mast cells (MCs) staining positively for piscidin 3, were demonstrated for the first time in response to a muscle-infecting nematode. The piscidin 3 positive MC's were seen principally in the periphery of the capsule surrounding the Eustrongylides sp. larva. A host tissue response to Eustrongylides sp. larvae infecting the musculature of P. fluviatilis was observed. Numerous fibroblasts, MAs and MCs were seen throughout the thick fibroconnectival layer of the capsule enclosing larvae. PCNA positive cells within the capsule suggest that host repair of nematode damaged muscle does occur, while the presence of the antimicrobial peptide piscidin 3 is shown for the first time. This is first report of Eustrongylides sp. in an Italian population of P. fluviatilis.
The Transiting Exoplanet Survey Satellite (TESS): Discovering Exoplanets in the Solar Neighborhood
NASA Astrophysics Data System (ADS)
Ricker, G. R.
2016-12-01
The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In its two-year prime survey mission, TESS will monitor more than 200,000 bright stars in the solar neighborhood for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances.TESS stars will typically be 30-100 times brighter than those surveyed by the Kepler satellite; thus, TESS planets will be far easier to characterize with follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. An additional data product from the TESS mission will be full frame images (FFI) with a cadence of 30 minutes. These FFI will provide precise photometric information for every object within the 2300 square degree instantaneous field of view of the TESS cameras. These objects will include more than 1 million stars and bright galaxies observed during sessions of several weeks. In total, more than 30 million objects brighter than magnitude I=16 will be precisely photometered during the two-year prime mission. In principle, the lunar-resonant TESS orbit could provide opportunities for an extended mission lasting more than a decade, with data rates in excess of 100 Mbits/s.An extended survey by TESS of regions surrounding the North and South Ecliptic Poles will provide prime exoplanet targets for characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future.A NASA Guest Investigator program is planned for TESS. The TESS legacy will be a catalog of the nearest and brightest main-sequence stars hosting transiting exoplanets, which should endure as the most favorable targets for detailed future investigations.TESS is targeted for launch in 2017 as a NASA Astrophysics Explorer mission.
Dubey, J P; Chapman, Jennifer L; Rosenthal, Benjamin M; Mense, M; Schueler, Ronald L
2006-04-15
Sarcocystis neurona, Sarcocystis canis, Toxoplasma gondii, and Neospora caninum are related apicomplexans that can cause systemic illness in many species of animals, including dogs. We investigated one breeder's 25 Basset Hounds for these infections. In addition, tissues from dogs and other non-canine hosts previously reported as S. canis infections were studied retrospectively. Schizonts resembling those of S. neurona, and recognized by polyclonal rabbit anti-S. neurona antibodies, were found in six of eight retrospective cases, as well as in two additional dogs (one Basset Hound, one Springer Spaniel) not previously reported. S. neurona schizonts were found in several tissues including the central nervous system, lungs, and kidneys. Fatal toxoplasmosis was diagnosed in an adult dog, and neosporosis was diagnosed in an adult and a pup related to the one diagnosed with S. neurona. No serological reactivity to S. neurona antibodies occurred when S. canis-like liver schizonts were retrospectively assayed from two dogs, a dolphin, a sea lion, a horse, a chinchilla, a black or either of two polar bears. Sequencing conserved (18S) and variable (ITS-1) portions of nuclear ribosomal DNA isolated from the schizont-laden liver of a polar bear distinguished it from all previously characterized species of Sarcocystis. We take this genetic signature as provisionally representative of S. canis, an assumption that should be tested with future sequencing of similar liver infections in other mammalian hosts. These findings further extend the uncharacteristically broad intermediate host range for S. neurona, which also causes a neurologic disease in cats, mink, raccoons, skunks, Pacific harbor seals, ponies, zebras, lynxes, and sea otters. Further work is necessary to delineate the causative agent(s) of other cases of canine sarcocystosis, and in particular to specify the attributes of S. canis, which corresponds morphologically to infections reported from wide range of terrestrial and marine mammals.
NASA Astrophysics Data System (ADS)
Nasholds, M. W.; Karlstrom, L.; Morriss, M. C.
2016-12-01
The Chief Joseph dike swarm, spanning northeastern OR, southeastern WA, and parts of western ID, is one of the primary dike swarms feeding the mid-Miocene Columbia River Basalt Group (CRBG) (e.g. Reidel et al. 2013). William H. Taubeneck (1923-2016) mapped these and other CRBG feeder dikes over 40 years, generating an expansive dataset with locations and characteristics of dike segments, primarily centered within the Wallowa Mountains, extending as far north as Lewiston, ID, and as far south as Farewell Bend, OR. Taubeneck is credited with originally defining the Chief Joseph swarm, but his data was not made available until his death. Using ArcMap, we are in the process of digitizing, field checking, and making available relevant data from Taubeneck's annotated maps and notebooks. We extract dike locations, orientations, thicknesses, and host rock characteristics. We present an overview of the Taubeneck data, relating to Chief Joseph dikes in WA, ID, and newer field measurements in the Wallowas, OR. Strikes of the 4410 dike segments range from NNW to NNE, with outliers that define smaller clusters with distinct orientations. The dikes have primarily near-vertical dips, paleo-depths ranging from 2 km to 0.3 km, and limited observations indicate widths from <5 m to 40 m. A majority of dikes are exposed in uplifted granites of the Wallowa batholith and metamorphosed host: 1606 dikes occur in quartz diorite, 60 occur in the Hurwal Formation, 139 occur in metavolcanics, while 401 occur in CRBG basalt. The other 2204 dikes are not in the Chief Joseph area. There does not seem to be a significant relation between host rock composition and dike orientation, although wall rock interactions are more dramatic in non-granitic Tertiary rocks. This dataset may provide further insight into both dike emplacement dynamics and the plumbing system of the CRBG.
Moniuszko, Hanna; Mąkol, Joanna
2016-02-02
The time-extended contact of trombiculid larvae with hosts poses a question of its ecological determinants. The phenomenon, which may facilitate the overwintering of larvae in the temperate zone, was previously observed in few parasitengone taxa, but not confirmed for mammal-associated trombiculids. The study aims at tracing the phenology of larvae of Hirsutiella zachvatkini and at verifying the hypothesis of contact with the host, extending beyond the parasitic phase. Apodemus agrarius, Apodemus flavicollis and Myodes glareolus, trapped during 2-year studies, were checked for the presence of trombiculid larvae. Larvae of H. zachvatkini served for the studies. The degree of mites' engorgement was checked over time in order to estimate the duration of feeding phase and to measure the maximum size increase. The experimental rearing aimed at ascertaining the relations between the level of engorgement and successful transformation of larva into subsequent instar. The mass appearance of larvae on hosts fell on autumn and winter, with a decrease observed in spring, leading to an almost total absence in early and mid summer. The highest intensity, attained in late autumn or in winter, was not followed by further increase in the number of host-associated larvae. The percentage of unengorged larvae on hosts was disproportionately small, irrespective of the season. The size increase of larva was 12.6-fold at maximum. Engorged or partly engorged larvae, observed from the beginning of mass appearance over the entire period of host-parasite association in the field, transformed into subsequent instar when removed from host. An increase in intensity observed from the onset of appearance of larvae on hosts, through autumn and winter months, at rarity of observations of unengorged larvae and absence of engorged larvae off-host, indicates a prolonged contact with hosts, aimed at synchronisation of life cycle, conditioned by food resources available for active postlarval forms and constitutes a strategy enabling larvae to survive the unfavourable winter conditions. The proportion of engorged and partly engorged vs. unfed larvae, observed over the survey, along with their ability to transform into subsequent instars, indicates a relatively short feeding phase. The lack of continuous increase in abundance and intensity towards spring and summer suggests a gradual detachment of partly and fully engorged larvae which attained the readiness to subsequent development. The size increase of larvae during their parasitic phase does not corroborate the neosomy in H. zachvatkini. Host-associated differences in topic preferences of the chiggers become less obvious at maximum infection rates. Quantitative descriptors of parasite population place M. glareolus among the most infected hosts of H. zachvatkini in contrast to Apodemus mice collected in the same habitat.
Fourcade, Yoan; Ranius, Thomas; Öckinger, Erik
2017-10-01
Prediction of species distributions in an altered climate requires knowledge on how global- and local-scale factors interact to limit their current distributions. Such knowledge can be gained through studies of spatial population dynamics at climatic range margins. Here, using a butterfly (Pyrgus armoricanus) as model species, we first predicted based on species distribution modelling that its climatically suitable habitats currently extend north of its realized range. Projecting the model into scenarios of future climate, we showed that the distribution of climatically suitable habitats may shift northward by an additional 400 km in the future. Second, we used a 13-year monitoring dataset including the majority of all habitat patches at the species northern range margin to assess the synergetic impact of temperature fluctuations and spatial distribution of habitat, microclimatic conditions and habitat quality, on abundance and colonization-extinction dynamics. The fluctuation in abundance between years was almost entirely determined by the variation in temperature during the species larval development. In contrast, colonization and extinction dynamics were better explained by patch area, between-patch connectivity and host plant density. This suggests that the response of the species to future climate change may be limited by future land use and how its host plants respond to climate change. It is, thus, probable that dispersal limitation will prevent P. armoricanus from reaching its potential future distribution. We argue that models of range dynamics should consider the factors influencing metapopulation dynamics, especially at the range edges, and not only broad-scale climate. It includes factors acting at the scale of habitat patches such as habitat quality and microclimate and landscape-scale factors such as the spatial configuration of potentially suitable patches. Knowledge of population dynamics under various environmental conditions, and the incorporation of realistic scenarios of future land use, appears essential to provide predictions useful for actions mitigating the negative effects of climate change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
The host immunological response to cancer therapy: An emerging concept in tumor biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voloshin, Tali; Voest, Emile E.; Shaked, Yuval, E-mail: yshaked@tx.technion.ac.il
Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet onlymore » partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome.« less
Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W
2014-01-01
The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in this new host.
Morphological variation and host range of two Ganoderma species from Papua New Guinea.
Pilotti, Carmel A; Sanderson, Frank R; Aitken, Elizabeth A B; Armstrong, Wendy
2004-08-01
Two species of Ganoderma belonging to different subgenera which cause disease on oil palms in PNG are identified by basidiome morphology and the morphology of their basidiospores. The names G. boninense and G. tornatum have been applied. Significant pleiomorphy was observed in basidiome characters amongst the specimens examined. This variation in most instances did not correlate well with host or host status. Spore morphology appeared uniform within a species and spore indices varied only slightly. G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms in Papua New Guinea.
Benefits of fidelity: does host specialization impact nematode parasite life history and fecundity?
Koprivnikar, J; Randhawa, H S
2013-04-01
The range of hosts used by a parasite is influenced by macro-evolutionary processes (host switching, host-parasite co-evolution), as well as 'encounter filters' and 'compatibility filters' at the micro-evolutionary level driven by host/parasite ecology and physiology. Host specialization is hypothesized to result in trade-offs with aspects of parasite life history (e.g. reproductive output), but these have not been well studied. We used previously published data to create models examining general relationships among host specificity and important aspects of life history and reproduction for nematodes parasitizing animals. Our results indicate no general trade-off between host specificity and the average pre-patent period (time to first reproduction), female size, egg size, or fecundity of these nematodes. However, female size was positively related to egg size, fecundity, and pre-patent period. Host compatibility may thus not be the primary determinant of specificity in these parasitic nematodes if there are few apparent trade-offs with reproduction, but rather, the encounter opportunities for new host species at the micro-evolutionary level, and other processes at the macro-evolutionary level (i.e. phylogeny). Because host specificity is recognized as a key factor determining the spread of parasitic diseases understanding factors limiting host use are essential to predict future changes in parasite range and occurrence.
Teng, Qiaoyang; Xu, Dawei; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Li, Xuesong; Yan, Liping; Yang, Jianmei; Chen, Hongjun; Yu, Hai
2016-01-01
ABSTRACT H9N2 avian influenza virus (AIV) has an extended host range, but the molecular basis underlying H9N2 AIV transmission to mammals remains unclear. We isolated more than 900 H9N2 AIVs in our 3-year surveillance in live bird markets in China from 2009 to 2012. Thirty-seven representative isolates were selected for further detailed characterization. These isolates were categorized into 8 genotypes (B64 to B71) and formed a distinct antigenic subgroup. Three isolates belonging to genotype B69, which is a predominant genotype circulating in China, replicated efficiently in mice, while the viruses tested in parallel in other genotypes replicated poorly, although they, like the three B69 isolates, have a leucine at position 226 in the hemagglutinin (HA) receptor binding site, which is critical for binding human type sialic acid receptors. Further molecular and single mutation analysis revealed that a valine (V) residue at position 190 in HA is responsible for efficient replication of these H9N2 viruses in mice. The 190V in HA does not affect virus receptor binding specificity but enhances binding affinity to human cells and lung tissues from mouse and humans. All these data indicate that the 190V in HA is one of the important determinants for H9N2 AIVs to cross the species barrier to infect mammals despite multiple genes conferring adaptation and replication of H9N2 viruses in mammals. Our findings provide novel insights on understanding host range expansion of H9N2 AIVs. IMPORTANCE Influenza virus hemagglutinin (HA) is responsible for binding to host cell receptors and therefore influences the viral host range and pathogenicity in different species. We showed that the H9N2 avian influenza viruses harboring 190V in the HA exhibit enhanced virus replication in mice. Further studies demonstrate that 190V in the HA does not change virus receptor binding specificity but enhances virus binding affinity of the H9N2 virus to human cells and attachment to lung tissues from humans and mouse. Our findings suggest that more attention should be given to the H9N2 AIVs with HA-190V during surveillance due to their potential threat to mammals, including humans. PMID:27558420
Teng, Qiaoyang; Xu, Dawei; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Li, Xuesong; Yan, Liping; Yang, Jianmei; Chen, Hongjun; Yu, Hai; Ma, Wenjun; Li, Zejun
2016-11-01
H9N2 avian influenza virus (AIV) has an extended host range, but the molecular basis underlying H9N2 AIV transmission to mammals remains unclear. We isolated more than 900 H9N2 AIVs in our 3-year surveillance in live bird markets in China from 2009 to 2012. Thirty-seven representative isolates were selected for further detailed characterization. These isolates were categorized into 8 genotypes (B64 to B71) and formed a distinct antigenic subgroup. Three isolates belonging to genotype B69, which is a predominant genotype circulating in China, replicated efficiently in mice, while the viruses tested in parallel in other genotypes replicated poorly, although they, like the three B69 isolates, have a leucine at position 226 in the hemagglutinin (HA) receptor binding site, which is critical for binding human type sialic acid receptors. Further molecular and single mutation analysis revealed that a valine (V) residue at position 190 in HA is responsible for efficient replication of these H9N2 viruses in mice. The 190V in HA does not affect virus receptor binding specificity but enhances binding affinity to human cells and lung tissues from mouse and humans. All these data indicate that the 190V in HA is one of the important determinants for H9N2 AIVs to cross the species barrier to infect mammals despite multiple genes conferring adaptation and replication of H9N2 viruses in mammals. Our findings provide novel insights on understanding host range expansion of H9N2 AIVs. Influenza virus hemagglutinin (HA) is responsible for binding to host cell receptors and therefore influences the viral host range and pathogenicity in different species. We showed that the H9N2 avian influenza viruses harboring 190V in the HA exhibit enhanced virus replication in mice. Further studies demonstrate that 190V in the HA does not change virus receptor binding specificity but enhances virus binding affinity of the H9N2 virus to human cells and attachment to lung tissues from humans and mouse. Our findings suggest that more attention should be given to the H9N2 AIVs with HA-190V during surveillance due to their potential threat to mammals, including humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören
2009-01-01
Background The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. Results In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Conclusion Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies. PMID:19878603
Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören
2009-10-31
The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies.
Evolution in action: climate change, biodiversity dynamics and emerging infectious disease
Hoberg, Eric P.; Brooks, Daniel R.
2015-01-01
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host–parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)—phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference—provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. PMID:25688014
Heuer, Holger; Fox, Randal E; Top, Eva M
2007-03-01
IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.
Raymond J. Gagné; John C. Moser
1997-01-01
Many Holarctic genera of trees and shrubs are host over much of their ranges to particular genera of Cecidomyiidae. As examples, willows host gall midges of Rabdophaga and Iteomyia, oaks host Macrodiplosis and Polystepha, and birches host Semudobia in both the Nearctic and...
Identification of Mycobacterium avium subsp. hominissuis Isolated From Drinking Water
Mycobacterium avium (MA) is divided into four subspecies based primarily on host-range and consists of MA subsp. avium (birds), MA subsp. silvaticum (wood pigeons), MA subsp. paratuberculosis (broad, poorly-defined host range), and the recently described MA subsp. hominissuis (hu...
Variable Length Inflatable Ramp Launch and Recovery System
2016-09-22
deployment and when not in use, for retraction . [0017] The positioning cart is the primary interface with the tow body by hosting a capture and swing...the air beams 20. The tow cable winch 14 also extends the tow cable 15 into the water to tow a tow body 100 during deployment and retraction during...for deployment and retract back into the ABDF when not in use. The positioning cart 24 is the primary interface with the tow body by hosting the
On the Existence of Regular and Irregular Outer Moons Orbiting the Pluto–Charon System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaely, Erez; Perets, Hagai B.; Grishin, Evgeni
The dwarf planet Pluto is known to host an extended system of five co-planar satellites. Previous studies have explored the formation and evolution of the system in isolation, neglecting perturbative effects by the Sun. Here we show that secular evolution due to the Sun can strongly affect the evolution of outer satellites and rings in the system, if such exist. Although precession due to extended gravitational potential from the inner Pluto–Charon binary quench such secular evolution up to a {sub crit} ∼ 0.0035 au (∼0.09 R {sub Hill} the Hill radius; including all of the currently known satellites), outer orbitsmore » can be significantly altered. In particular, we find that co-planar rings and satellites should not exist beyond a {sub crit}; rather, satellites and dust particles in these regions secularly evolve on timescales ranging between 10{sup 4} and 10{sup 6} years, and quasi-periodically change their inclinations and eccentricities through secular evolution (Lidov–Kozai oscillations). Such oscillations can lead to high inclinations and eccentricities, constraining the range where such satellites (and dust particles) can exist without crossing the orbits of the inner satellites or crossing the outer Hill stability range. Outer satellites, if such exist are therefore likely to be irregular satellites, with orbits limited to be non-circular and/or highly inclined. Current observations, including the recent data from the New-Horizons mission explored only inner regions (<0.0012 au) and excluded the existence of additional satellites; however, the irregular satellites discussed here should reside farther, in the yet uncharted regions around Pluto.« less
Morrot, Alexandre; Villar, Silvina R.; González, Florencia B.; Pérez, Ana R.
2016-01-01
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease. PMID:27242726
Ecology of coliphages in southern California coastal waters.
Reyes, V C; Jiang, S C
2010-08-01
This study aims to investigate the ecology of coliphages, an important microbial pollution indicator. Specifically, our experiments address (i) the ability of environmental Escherichia coli (E. coli) to serve as hosts for coliphage replication, and (ii) the temporal and spatial distribution of coliphages in coastal waters. Water samples from three locations in California's Newport Bay watershed were tested for the presence of coliphages every 2 weeks for an entire year. A total of nine E. coli strains isolated from various sources served as hosts for coliphage detection. Coliphage occurrence was significantly different between freshwater, estuarine and coastal locations and correlated with water temperature, salinity and rainfall in the watershed. The coliphages isolated on the environmental hosts had a broad host-range relative to the coliphages isolated on an E. coli strain from sewage and a US EPA recommended strain for coliphage detection. Coliphage occurrence was related to the temperature, rainfall and salinity within the bay. The adaptation to a broad host-range may enable the proliferation of coliphages in the aquatic environment. Understanding the seasonal variation of phages is useful for establishing a background level of coliphage presence in coastal waters. The broad host-range of coliphages isolated on the environmental E. coli host calls for investigation of coliphage replication in the aquatic environment.
The change in aggressiveness of neoplasms with age.
Ershler, W B
1987-01-01
With aging, tumors occur more frequently. The "malignant" characteristics of tumors (ie, rapid growth and metastases), however, appear to be less prominent in the elderly. In experimental tumor models, similar observations have been recorded. The reason for this phenomenon could be that tumors (ie, malignant cells) are different in different-aged hosts. Alternatively, host features such as the fibrotic, angiogenic, or immune response may be altered by the aging process and may render the host "soil" less fertile for "malignant" tumor growth. Indeed, experimental evidence has supported the importance of each of these host features. The significance of the exploration and eventual understanding of the age-related change in tumor behavior extends beyond clinical geriatric medicine; it may, in fact, involve the very unraveling of some of the basic biology of both tumor control and the aging process itself.
Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens
Read, Andrew F.; Baigent, Susan J.; Powers, Claire; Kgosana, Lydia B.; Blackwell, Luke; Smith, Lorraine P.; Kennedy, David A.; Walkden-Brown, Stephen W.; Nair, Venugopal K.
2015-01-01
Could some vaccines drive the evolution of more virulent pathogens? Conventional wisdom is that natural selection will remove highly lethal pathogens if host death greatly reduces transmission. Vaccines that keep hosts alive but still allow transmission could thus allow very virulent strains to circulate in a population. Here we show experimentally that immunization of chickens against Marek's disease virus enhances the fitness of more virulent strains, making it possible for hyperpathogenic strains to transmit. Immunity elicited by direct vaccination or by maternal vaccination prolongs host survival but does not prevent infection, viral replication or transmission, thus extending the infectious periods of strains otherwise too lethal to persist. Our data show that anti-disease vaccines that do not prevent transmission can create conditions that promote the emergence of pathogen strains that cause more severe disease in unvaccinated hosts. PMID:26214839
Effect of the digenean parasites of fish on the fauna of Mediterranean lagoons.
Bartoli, P; Boudouresque, C F
2007-09-01
Attention is drawn to the effects of parasites on their hosts, taking as a model the digenean parasites of teleosts (hereafter: fish) from lagoons along the French Mediterranean coast. Because digeneans have a heteroxenic life cycle, their impact is not limited to the definitive host, which harbours the sexual adults, but is extended to the first host (mollusc) and to the second host ("invertebrate" or fish). Adult parasites, in order to ensure efficient sexual reproduction, never cause excessive damage to their definitive host, usually only exploiting the intestinal fluids; however, the host must intensify its search for prey, which results in a diminished fitness. Within the first host, 'larval' stages of digenean parasites invade the gonads, resulting in its castration, then exhaustion and eventually death. The diversion of energy from the second hosts towards the parasites forces them to intensify their search for food, resulting in decreased fitness and an increased risk of being eaten; in addition, manipulation of the host's behaviour by parasites drives this host into the food chain of the definitive host. In lagoons, many individuals of almost all species of fish and invertebrates act as first, second and/or definitive hosts for digeneans. Obviously, parasites have a severe impact on the population dynamics of key taxa, on the food web and therefore also on the functioning of the whole lagoon ecosystem. Yet this impact has been largely overlooked or underestimated in functioning models, by ecologists, who tend to prioritize more apparent trophic relationships.
NASA Astrophysics Data System (ADS)
Fabbiano, Giuseppina
2017-09-01
Recent Chandra studies of Compton thick (CT) AGNs have led to the discovery of 1-2 kpc-scale extended hard (>3 keV) continuum and Fe Kα components, showing that these emissions are not confined to the immediate vicinity of the AGN (the CT torus ). This is an important discovery as it changes our perception of CT AGNs and their interaction with their host galaxies. It may provide a unique probe of the host ISM, and/or the interaction of a radio jet or wind, including ultra-fast outflows (UFOs), with a dense ISM. Suitable CT AGNs close enough to resolve this region are rare, but a Chandra archival investigation has identified NGC7212 as an optimal target. We propose 130ks with ACIS-S to provide the deep data needed for this investigation.
Hadfield, Kerry A; Sikkel, Paul C; Smit, Nico J
2014-01-01
Two species of Mothocya Costa, in Hope, 1851 are reported from the Virgin Islands. Mothocya xenobranchia Bruce, 1986 was collected from St. John Island from the gills of the Atlantic needlefish, Strongylura marina, which is a new locality record and also confirms a previously uncertain host identity. Mothocya bertlucy sp. n. is described from St. Thomas, St John and Guana Islands, from the gills of the redlip blenny, Ophioblennius macclurei, the first record of a blenny as host for any Mothocya. The distinguishing characters of Mothocya bertlucy sp. n. include its small size (< 9 mm) and eyes, the slender pleotelson with a narrowly rounded caudomedial point, extended uropod peduncle and uropods which do not extend past the pleotelson posterior margin, and the narrow pleon which is only slightly overlapped by pereonite 7.
Hadfield, Kerry A.; Sikkel, Paul C.; Smit, Nico J.
2014-01-01
Abstract Two species of Mothocya Costa, in Hope, 1851 are reported from the Virgin Islands. Mothocya xenobranchia Bruce, 1986 was collected from St. John Island from the gills of the Atlantic needlefish, Strongylura marina, which is a new locality record and also confirms a previously uncertain host identity. Mothocya bertlucy sp. n. is described from St. Thomas, St John and Guana Islands, from the gills of the redlip blenny, Ophioblennius macclurei, the first record of a blenny as host for any Mothocya. The distinguishing characters of Mothocya bertlucy sp. n. include its small size (< 9 mm) and eyes, the slender pleotelson with a narrowly rounded caudomedial point, extended uropod peduncle and uropods which do not extend past the pleotelson posterior margin, and the narrow pleon which is only slightly overlapped by pereonite 7. PMID:25317058
Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio
2014-04-01
Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction. © 2014 John Wiley & Sons Ltd.
Evolution in action: climate change, biodiversity dynamics and emerging infectious disease.
Hoberg, Eric P; Brooks, Daniel R
2015-04-05
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host-parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)--phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference--provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Determinants of host species range in plant viruses.
Moury, Benoît; Fabre, Frédéric; Hébrard, Eugénie; Froissart, Rémy
2017-04-01
Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.
Rate of resistance evolution and polymorphism in long- and short-lived hosts.
Bruns, Emily; Hood, Michael E; Antonovics, Janis
2015-02-01
Recent theoretical work has shown that long-lived hosts are expected to evolve higher equilibrium levels of disease resistance than shorter-lived hosts, but questions of how longevity affects the rate of resistance evolution and the maintenance of polymorphism remain unanswered. Conventional wisdom suggests that adaptive evolution should occur more slowly in long-lived organisms than in short-lived organisms. However, the opposite may be true for the evolution of disease-resistance traits where exposure to disease, and therefore the strength of selection for resistance increases with longevity. In a single locus model of innate resistance to a frequency-dependent, sterilizing disease, longer lived hosts evolved resistance more rapidly than short-lived hosts. Moreover, resistance in long-lived hosts could only be polymorphic for more costly and more extreme resistance levels than short-lived hosts. The increased rate of evolution occurred in spite of longer generation times because longer-lived hosts had both a longer period of exposure to disease as well as higher disease prevalence. Qualitatively similar results were found when the model was extended to mortality-inducing diseases, or to density-dependent transmission modes. Our study shows that the evolutionary dynamics of host resistance is determined by more than just levels of resistance and cost, but is highly sensitive to the life-history traits of the host. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Lopes, Ana M; Breiman, Adrien; Lora, Mónica; Le Moullac-Vaidye, Béatrice; Galanina, Oxana; Nyström, Kristina; Marchandeau, Stephane; Le Gall-Reculé, Ghislaine; Strive, Tanja; Neimanis, Aleksija; Bovin, Nicolai V; Ruvoën-Clouet, Nathalie; Esteves, Pedro J; Abrantes, Joana; Le Pendu, Jacques
2017-11-29
The rabbit hemorrhagic disease virus (RHDV) and the European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus , respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged and many non-pathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, non-pathogenic lagoviruses and EBHSV potentially play a role in determining host range and virulence of lagoviruses. We observed binding to A, B or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits ( Oryctolagus cuniculus ), that have recently been classified as GI strains. Yet, we could not explain the emergence of virulence since similar glycan specificities were found between several pathogenic and non-pathogenic strains. By contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species ( Oryctolagus cuniculus, Lepus europaeus and Sylvilagus floridanus ) showed species-specific patterns regarding the susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagoviruses host specificity and range. IMPORTANCE Lagoviruses constitute a genus of the Caliciviridae family, comprising highly pathogenic viruses, RHDV and EBHSV, which infect rabbits and hares, respectively. Recently, non-pathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs are observed. The mechanisms responsible for the emergence of pathogenicity and host-species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely doors of virus entry. Here we studied the glycan-binding properties of novel pathogenic and non-pathogenic strains looking for a link between glycan-binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host range of the virus strains, suggesting that glycan diversity contributes to lagoviruses' host range. Copyright © 2017 American Society for Microbiology.
Novel narrow-host-range vectors for direct cloning of foreign DNA in Pseudomonas.
Boivin, R; Bellemare, G; Dion, P
1994-01-01
Narrow-host-range vectors, based on an indigenous replicon and containing a multiple cloning site, have been constructed in a Pseudomonas host capable of growth on unusual substrates. The new cloning vectors yield sufficient amounts of DNA for preparative purposes and belong to an incompatibility group different from that of the incP and incQ broad-host-range vectors. One of these vectors, named pDB47F, was used to clone, directly in Pseudomonas, DNA fragments from Agrobacterium, Pseudomonas, and Rhizobium. A clone containing Agrobacterium and KmR gene sequences was transformed with a higher efficiency than an RSF1010-derived vector (by as much as 1250-fold) in four out of five Pseudomonas strains tested. The considerable efficiency obtained with this system makes possible the direct cloning and phenotypic selection of foreign DNA in Pseudomonas.
Perry, Joe N; Devos, Yann; Arpaia, Salvatore; Bartsch, Detlef; Ehlert, Christina; Gathmann, Achim; Hails, Rosemary S; Hendriksen, Niels B; Kiss, Jozsef; Messéan, Antoine; Mestdagh, Sylvie; Neemann, Gerd; Nuti, Marco; Sweet, Jeremy B; Tebbe, Christoph C
2012-01-01
In farmland biodiversity, a potential risk to the larvae of non-target Lepidoptera from genetically modified (GM) Bt-maize expressing insecticidal Cry1 proteins is the ingestion of harmful amounts of pollen deposited on their host plants. A previous mathematical model of exposure quantified this risk for Cry1Ab protein. We extend this model to quantify the risk for sensitive species exposed to pollen containing Cry1F protein from maize event 1507 and to provide recommendations for management to mitigate this risk. A 14-parameter mathematical model integrating small- and large-scale exposure was used to estimate the larval mortality of hypothetical species with a range of sensitivities, and under a range of simulated mitigation measures consisting of non-Bt maize strips of different widths placed around the field edge. The greatest source of variability in estimated mortality was species sensitivity. Before allowance for effects of large-scale exposure, with moderate within-crop host-plant density and with no mitigation, estimated mortality locally was <10% for species of average sensitivity. For the worst-case extreme sensitivity considered, estimated mortality locally was 99·6% with no mitigation, although this estimate was reduced to below 40% with mitigation of 24-m-wide strips of non-Bt maize. For highly sensitive species, a 12-m-wide strip reduced estimated local mortality under 1·5%, when within-crop host-plant density was zero. Allowance for large-scale exposure effects would reduce these estimates of local mortality by a highly variable amount, but typically of the order of 50-fold. Mitigation efficacy depended critically on assumed within-crop host-plant density; if this could be assumed negligible, then the estimated effect of mitigation would reduce local mortality below 1% even for very highly sensitive species. Synthesis and applications. Mitigation measures of risks of Bt-maize to sensitive larvae of non-target lepidopteran species can be effective, but depend on host-plant densities which are in turn affected by weed-management regimes. We discuss the relevance for management of maize events where cry1F is combined (stacked) with a herbicide-tolerance trait. This exemplifies how interactions between biota may occur when different traits are stacked irrespective of interactions between the proteins themselves and highlights the importance of accounting for crop management in the assessment of the ecological impact of GM plants. PMID:22496596
USDA-ARS?s Scientific Manuscript database
The wide host range of Cucumber mosaic virus (CMV) has been expanded by the identification of Odontonema cuspidatum (firespike) and Psychotria punctata (dotted wild coffee) as CMV hosts in Florida....
Modeling conduction in host-graft interactions between stem cell grafts and cardiomyocytes.
Chen, Michael Q; Yu, Jin; Whittington, R Hollis; Wu, Joseph C; Kovacs, Gregory T A; Giovangrandi, Laurent
2009-01-01
Cell therapy has recently made great strides towards aiding heart failure. However, while transplanted cells may electromechanically integrate into host tissue, there may not be a uniform propagation of a depolarization wave between the heterogeneous tissue boundaries. A model using microelectrode array technology that maps the electrical interactions between host and graft tissues in co-culture is presented and sheds light on the effects of having a mismatch of conduction properties at the boundary. Skeletal myoblasts co-cultured with cardiomyocytes demonstrated that conduction velocity significantly decreases at the boundary despite electromechanical coupling. In an attempt to improve the uniformity of conduction with host cells, differentiating human embryonic stem cells (hESC) were used in co-culture. Over the course of four to seven days, synchronous electrical activity was observed at the hESC boundary, implying differentiation and integration. Activity did not extend far past the boundary, and conduction velocity was significantly greater than that of the host tissue, implying the need for other external measures to properly match the conduction properties between host and graft tissue.
Small RNAs—The Secret Agents in the Plant-Pathogen Interactions
Weiberg, Arne; Jin, Hailing
2015-01-01
Eukaryotic regulatory small RNAs (sRNAs) that induce RNA interference (RNAi) are involved in a plethora of biological processes, including host immunity and pathogen virulence. In plants, diverse classes of sRNAs contribute to the regulation of host innate immunity. These immune-regulatory sRNAs operate through distinct RNAi pathways that trigger transcriptional or post-transcriptional gene silencing. Similarly, many pathogen-derived sRNAs also regulate pathogen virulence. Remarkably, the influence of regulatory sRNAs is not limited to the individual organism in which they are generated. It can sometimes extend to interacting species from even different kingdoms. There they trigger gene silencing in the interacting organism, a phenomenon called cross-kingdom RNAi. This is exhibited in advanced pathogens and parasites that produce sRNAs to suppress host immunity. Conversely, in host-induced gene silencing (HIGS), diverse plants are engineered to trigger RNAi against pathogens and pests to confer host resistance. Cross-kingdom RNAi opens up a vastly unexplored area of research on mobile sRNAs in the battlefield between hosts and pathogens. PMID:26123395
Host specificity and the probability of discovering species of helminth parasites.
Poulin, R; Mouillot, D
2005-06-01
Different animal species have different probabilities of being discovered and described by scientists, and these probabilities are determined to a large extent by the biological characteristics of these species. For instance, species with broader geographical ranges are more likely to be encountered by collectors than species with restricted distributions; indeed, the size of the geographical range is often the best predictor of a species' date of description. For parasitic organisms, host specificity may be similarly linked to the probability of a species being found. Here, using data on 170 helminth species parasitic in freshwater fishes, we show that host specificity is associated with the year in which the helminths were described. Helminths that exploit more host species, and to a lesser degree those that exploit a broader taxonomic range of host species, tend to be discovered earlier than the more host-specific helminths. This pattern was observed across all helminth species, as well as within the different helminth taxa (trematodes, cestodes, nematodes and acanthocephalans). Our results demonstrate that the parasite species known at any given point in time are not a random subset of existing species, but rather a biased subset with respect to the parasites' biological properties.
Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.
2015-01-01
Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686
Characterizing the next-generation matrix and basic reproduction number in ecological epidemiology.
Roberts, M G; Heesterbeek, J A P
2013-03-01
We address the interaction of ecological processes, such as consumer-resource relationships and competition, and the epidemiology of infectious diseases spreading in ecosystems. Modelling such interactions seems essential to understand the dynamics of infectious agents in communities consisting of interacting host and non-host species. We show how the usual epidemiological next-generation matrix approach to characterize invasion into multi-host communities can be extended to calculate R₀, and how this relates to the ecological community matrix. We then present two simple examples to illustrate this approach. The first of these is a model of the rinderpest, wildebeest, grass interaction, where our inferred dynamics qualitatively matches the observed phenomena that occurred after the eradication of rinderpest from the Serengeti ecosystem in the 1980s. The second example is a prey-predator system, where both species are hosts of the same pathogen. It is shown that regions for the parameter values exist where the two host species are only able to coexist when the pathogen is present to mediate the ecological interaction.
Emergence of zoonotic arboviruses by animal trade and migration
2010-01-01
Arboviruses are transmitted in nature exclusively or to a major extend by arthropods. They belong to the most important viruses invading new areas in the world and their occurrence is strongly influenced by climatic changes due to the life cycle of the transmitting vectors. Several arboviruses have emerged in new regions of the world during the last years, like West Nile virus (WNV) in the Americas, Usutu virus (USUV) in Central Europe, or Rift Valley fever virus (RVFV) in the Arabian Peninsula. In most instances the ways of introduction of arboviruses into new regions are not known. Infections acquired during stays in the tropics and subtropics are diagnosed with increasing frequency in travellers returning from tropical countries, but interestingly no attention is paid on accompanying pet animals or the hematophagous ectoparasites that may still be attached to them. Here we outline the known ecology of the mosquito-borne equine encephalitis viruses (WEEV, EEEV, and VEEV), WNV, USUV, RVFV, and Japanese Encephalitis virus, as well as Tick-Borne Encephalitis virus and its North American counterpart Powassan virus, and will discuss the most likely mode that these viruses could expand their respective geographical range. All these viruses have a different epidemiology as different vector species, reservoir hosts and virus types have adapted to promiscuous and robust or rather very fine-balanced transmission cycles. Consequently, these viruses will behave differently with regard to the requirements needed to establish new endemic foci outside their original geographical ranges. Hence, emphasis is given on animal trade and suitable ecologic conditions, including competent vectors and vertebrate hosts. PMID:20377873
Broad-band spectrophotometry of the hot Jupiter HAT-P-12b from the near-UV to the near-IR
NASA Astrophysics Data System (ADS)
Mallonn, M.; Nascimbeni, V.; Weingrill, J.; von Essen, C.; Strassmeier, K. G.; Piotto, G.; Pagano, I.; Scandariato, G.; Csizmadia, Sz.; Herrero, E.; Sada, P. V.; Dhillon, V. S.; Marsh, T. R.; Künstler, A.; Bernt, I.; Granzer, T.
2015-11-01
Context. The detection of trends or gradients in the transmission spectrum of extrasolar planets is possible with observations at very low spectral resolution. Transit measurements of sufficient accuracy using selected broad-band filters allow for an initial characterization of the atmosphere of the planet. Aims: We want to investigate the atmosphere of the hot Jupiter HAT-P-12b for an increased absorption at the very blue wavelength regions caused by scattering. Furthermore, we aim for a refinement of the transit parameters and the orbital ephemeris. Methods: We obtained time series photometry of 20 transit events and analyzed them homogeneously, along with eight light curves obtained from the literature. In total, the light curves span a range from 0.35 to 1.25 microns. During two observing seasons over four months each, we monitored the host star to constrain the potential influence of starspots on the derived transit parameters. Results: We rule out the presence of a Rayleigh slope extending over the entire optical wavelength range, a flat spectrum is favored for HAT-P-12b with respect to a cloud-free atmosphere model spectrum. A potential cause of such gray absorption is the presence of a cloud layer at the probed latitudes. Furthermore, in this work we refine the transit parameters, the ephemeris and perform a TTV analysis in which we found no indication for an unseen companion. The host star showed a mild non-periodic variability of up to 1%. However, no stellar rotation period could be detected to high confidence.
Carr, Michael; Gonzalez, Gabriel; Sasaki, Michihito; Dool, Serena E; Ito, Kimihito; Ishii, Akihiro; Hang'ombe, Bernard M; Mweene, Aaron S; Teeling, Emma C; Hall, William W; Orba, Yasuko; Sawa, Hirofumi
2017-10-06
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes
Vayssier-Taussat, Muriel; Le Rhun, Danielle; Deng, Hong Kuan; Biville, Francis; Cescau, Sandra; Danchin, Antoine; Marignac, Geneviève; Lenaour, Evelyne; Boulouis, Henri Jean; Mavris, Maria; Arnaud, Lionel; Yang, Huanming; Wang, Jing; Quebatte, Maxime; Engel, Philipp; Saenz, Henri; Dehio, Christoph
2010-01-01
Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals. PMID:20548954
Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson
2018-01-01
This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.
Venette, Robert C.; Maddox, Mitchell P.; Aukema, Brian H.
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death. PMID:28472047
Rosenberger, Derek W; Venette, Robert C; Maddox, Mitchell P; Aukema, Brian H
2017-01-01
As climates change, thermal limits may no longer constrain some native herbivores within their historical ranges. The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a tree-killing bark beetle native to western North America that is currently expanding its range. Continued eastward expansion through the newly invaded and novel jack pine (Pinus banksiana Lamb.) trees of the Canadian boreal forest could result in exposure of several species of novel potential host pines common in northeastern North America to this oligophagous herbivore. Due to the tightly co-evolved relationship between mountain pine beetle and western pine hosts, in which the insect utilizes the defensive chemistry of the host to stimulate mass attacks, we hypothesized that lack of co-evolutionary association would affect the host attraction and acceptance behaviors of this insect among novel hosts, particularly those with little known historical association with an aggressive stem-infesting insect. We studied how beetle behavior differed among the various stages of colonization on newly cut logs of four novel potential pine host species; jack, red (P. resinosa Ait.), eastern white (P. strobus L.) and Scots (P. sylvestris L.) pines, as well as two historical hosts, ponderosa (P. ponderosa Dougl. ex. Laws. var. scopulorum Engelm.) and lodgepole (P. contorta Dougl. var. latifolia Engelm.) pines. Overall, we found that beetle colonization behaviors at each stage in the colonization process differ between pine hosts, likely due to differing chemical and physical bark traits. Pines without co-evolved constitutive defenses against mountain pine beetle exhibited reduced amounts of defensive monoterpenoid chemicals; however, such patterns also reduced beetle attraction and colonization. Neither chemical nor physical defenses fully defended trees against the various stages of host procurement that can result in tree colonization and death.
Hybridization between two cestode species and its consequences for intermediate host range
2013-01-01
Background Many parasites show an extraordinary degree of host specificity, even though a narrow range of host species reduces the likelihood of successful transmission. In this study, we evaluate the genetic basis of host specificity and transmission success of experimental F1 hybrids from two closely related tapeworm species (Schistocephalus solidus and S. pungitii), both highly specific to their respective vertebrate second intermediate hosts (three- and nine-spined sticklebacks, respectively). Methods We used an in vitro breeding system to hybridize Schistocephalus solidus and S. pungitii; hybridization rate was quantified using microsatellite markers. We measured several fitness relevant traits in pure lines of the parental parasite species as well as in their hybrids: hatching rates, infection rates in the copepod first host, and infection rates and growth in the two species of stickleback second hosts. Results We show that the parasites can hybridize in the in vitro system, although the proportion of self-fertilized offspring was higher in the heterospecific breeding pairs than in the control pure parental species. Hybrids have a lower hatching rate, but do not show any disadvantages in infection of copepods. In fish, hybrids were able to infect both stickleback species with equal frequency, whereas the pure lines were only able to infect their normal host species. Conclusions Although not yet documented in nature, our study shows that hybridization in Schistocephalus spp. is in principle possible and that, in respect to their expanded host range, the hybrids are fitter. Further studies are needed to find the reason for the maintenance of the species boundaries in wild populations. PMID:23390985
Schmidt, J.M.; Rogers, R.K.
2007-01-01
Recent geologic mapping has identified areas of extrusive basalts of the Middle to Late Triassic Nikolai Greenstone within the Wrangellia terrane that extend at least 80 km southwest of their previously known extent. Abundant dolerite sills of similar composition intrude Paleozoic and Mesozoic stratigraphy below the Nikolai throughout the central Talkeetna Mountains. The Talkeetna Mountains, therefore, have newly identified potential for copper, nickel, and platinum-group elements (PGEs) as disseminated, net-textured, or massive magmatic sulfide deposits hosted in mafic and ultramafic sill-form complexes related to emplacement of the Nikolai. Because of their potential high grades, similar magmatic sulfide targets have been the focus of increasing mineral exploration activity over the last decade in the Amphitheater Mountains and central Alaska Range, 100-200 km to the northeast. The Nikolai Greenstone, associated intrusions, and their metamorphosed equivalents also have potential to host stratabound disseminated "basaltic copper" deposits. Sedimentary and metasedimentary rocks overlying the Nikolai have the potential to host stratabound, disseminated, or massive "reduced-facies" type Cu-Ag deposits. Ultramafic rocks have been identified only in the extreme northeastern Talkeetna Mountains to date. However, coincident gravity and magnetic highs along the leading (northwestern) edge of and within Wrangellia in the Talkeetna and Clearwater Mountains suggest several areas that are highly prospective for ultramafic rocks related to extrusion of Nikolai lavas. In particular, the distribution, geometry, and composition of sills within the pre-Nikolai stratigraphy and the structural and tectonic controls on intrusive versus extrusive rock distribution deserve serious examination. Copyright ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Lyman, J. D.; Taddia, F.; Stritzinger, M. D.; Galbany, L.; Leloudas, G.; Anderson, J. P.; Eldridge, J. J.; James, P. A.; Krühler, T.; Levan, A. J.; Pignata, G.; Stanway, E. R.
2018-01-01
SN 2002cx-like Type Ia supernovae (also known as SNe Iax) represent one of the most numerous peculiar SN classes. They differ from normal SNe Ia by having fainter peak magnitudes, faster decline rates and lower photospheric velocities, displaying a wide diversity in these properties. We present both integral-field and long-slit visual-wavelength spectroscopy of the host galaxies and explosion sites of SNe Iax to provide constraints on their progenitor formation scenarios. The SN Iax explosion-site metallicity distribution is similar to that of core-collapse SNe and metal poor compared to either normal SNe Ia or SN 1991T-like events. Fainter members, speculated to form distinctly from brighter SN Iax, are found at a range of metallicities, extending to very metal poor environments. Although the SN Iax explosion-sites' ages and star formation rates are comparatively older and less intense than the distribution of star-forming regions across their host galaxies, we confirm the presence of young stellar populations (SPs) at explosion environments for most SNe Iax, expanded here to a larger sample. Ages of the young SPs (several × 107 to 108 yr) are consistent with predictions for young thermonuclear and electron-capture SN progenitors. The lack of extremely young SPs at the explosion sites disfavours very massive progenitors such as Wolf-Rayet explosions with significant fallback. We find weak ionized gas in the only SN Iax host without obvious signs of star formation. The source of the ionization remains ambiguous but appears unlikely to be mainly due to young, massive stars.
Guest Chain ``Melting'' in Incommensurate Host-Guest Potassium
NASA Astrophysics Data System (ADS)
McBride, Emma; Munro, Keith; McMahon, Malcolm
2013-06-01
Upon increasing pressure the group-I elements transform from close-packed structures (bcc and fcc) to a series of low-symmetry complex structures. Residing in the middle of the group, potassium (K) has numerous structures in common with its neighbours, and, in fact, is remarkably structurally similar to sodium (Na) and rubidium (Rb). For example, the post-fcc transition in K is to a composite incommensurate host-guest structure (tI19), and the host structure of this phase is isostructural with that found in Na and Rb. Previously we have reported that below 16.7GPa, the Bragg peaks from the guest component of tI19-Rb broaden considerably, signalling a loss of the inter-chain correlation, or a ``melting'' of the chains. Furthermore, in tI19-Na above 125 GPa, the Bragg peaks from the guest component are also broadened, suggesting that the guest chains are also nearly ``melted.'' During studies of the melting curve of K, we observed that the guest peaks from tI19-K broaden dramatically on heating. Here we report single-crystal, quasi-single-crystal, and powder synchrotron x-ray diffraction measurements of tI19-K to 50 GPa and 800 K, which allowed a detailed study of this chain ``melting'' transition. The order-disorder transition is clearly visible over a 30 GPa pressure range, and there are significant changes in the gradient of the phase boundary, which may be influenced by the nature of the guest structure. Furthermore, data extending the melting curve will also be presented.
USDA-ARS?s Scientific Manuscript database
Colletotrichum gloeosporioides f. sp. salsolae (Penz.) Penz. & Sacc. in Penz. (CGS) is a facultative parasitic fungus being evaluated as a classical biological control agent of Russian thistle or tumbleweed (Salsola tragus L.). In initial host range determination tests, Henderson’s mixed model equat...
Yanzhuo Zhang; James L. Hanula; Scott Horn; Cera Jones; S. Kristine Braman; Jianghua Sun
2016-01-01
Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et...
Beckstead, Julie; Meyer, Susan E.; Ishizuka, Toby S.; McEvoy, Kelsey M.; Coleman, Craig E.
2016-01-01
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen. PMID:26950931
Molecular basis of recognition between phytophthora pathogens and their hosts.
Tyler, Brett M
2002-01-01
Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.
Auty, Harriet; Cleaveland, Sarah; Malele, Imna; Masoy, Joseph; Lembo, Tiziana; Bessell, Paul; Torr, Stephen; Picozzi, Kim; Welburn, Susan C.
2016-01-01
Background Identifying hosts of blood-feeding insect vectors is crucial in understanding their role in disease transmission. Rhodesian human African trypanosomiasis (rHAT), also known as acute sleeping sickness is caused by Trypanosoma brucei rhodesiense and transmitted by tsetse flies. The disease is commonly associated with wilderness areas of east and southern Africa. Such areas hold a diverse range of species which form communities of hosts for disease maintenance. The relative importance of different wildlife hosts remains unclear. This study quantified tsetse feeding preferences in a wilderness area of great host species richness, Serengeti National Park, Tanzania, assessing tsetse feeding and host density contemporaneously. Methods Glossina swynnertoni and G. pallidipes were collected from six study sites. Bloodmeal sources were identified through matching Cytochrome B sequences amplified from bloodmeals from recently fed flies to published sequences. Densities of large mammal species in each site were quantified, and feeding indices calculated to assess the relative selection or avoidance of each host species by tsetse. Results The host species most commonly identified in G. swynnertoni bloodmeals, warthog (94/220), buffalo (48/220) and giraffe (46/220), were found at relatively low densities (3-11/km2) and fed on up to 15 times more frequently than expected by their relative density. Wildebeest, zebra, impala and Thomson’s gazelle, found at the highest densities, were never identified in bloodmeals. Commonly identified hosts for G. pallidipes were buffalo (26/46), giraffe (9/46) and elephant (5/46). Conclusions This study is the first to quantify tsetse host range by molecular analysis of tsetse diet with simultaneous assessment of host density in a wilderness area. Although G. swynnertoni and G. pallidipes can feed on a range of species, they are highly selective. Many host species are rarely fed on, despite being present in areas where tsetse are abundant. These feeding patterns, along with the ability of key host species to maintain and transmit T. b. rhodesiense, drive the epidemiology of rHAT in wilderness areas. PMID:27706167
McClure, Melanie; Elias, Marianne
2016-06-16
Understanding the processes underlying diversification is a central question in evolutionary biology. For butterflies, access to new host plants provides opportunities for adaptive speciation. On the one hand, locally abundant host species can generate ecologically significant selection pressure. But a diversity of host plant species within the geographic range of each population and/or species might also eliminate any advantage conferred by specialization. This paper focuses on four Melinaea species, which are oligophagous on the family Solanaceae: M. menophilus, M. satevis, M. marsaeus, and finally, M. mothone. We examined both female preference and larval performance on two host plant species that commonly occur in this butterfly's native range, Juanulloa parasitica and Trianaea speciosa, to determine whether the different Melinaea species show evidence of local adaptation. In choice experiments, M. mothone females used both host plants for oviposition, whereas all other species used J. parasitica almost exclusively. In no choice experiment, M. mothone was the only species that readily accepted T. speciosa as a larval host plant. Larval survival was highest on J. parasitica (82.0 % vs. 60.9 %) and development took longer on T. speciosa (14.12 days vs. 13.35 days), except for M. mothone, which did equally well on both host plants. For all species, average pupal weight was highest on J. parasitica (450.66 mg vs. 420.01 mg), although this difference was least apparent in M. mothone. We did not find that coexisting species of Melinaea partition host plant resources as expected if speciation is primarily driven by host plant divergence. Although M. mothone shows evidence of local adaptation to a novel host plant, T. speciosa, which co-occurs, it does not preferentially lay more eggs on or perform better on this host plant than on host plants used by other Melinaea species and not present in its distributional range. It is likely that diversification in this genus is driven by co-occurring Müllerian mimics and the resulting predation pressure, although this is also likely made possible by greater niche diversity as a consequence of plasticity for potential hosts.
Wang, Li; Wu, Jieting; Ma, Fang; Yang, Jixian; Li, Shiyang; Li, Zhe; Zhang, Xue
2015-01-01
Within the rhizosphere, AM fungi are a sensitive variable to changes of botanic and environmental conditions, and they may interact with the biomass of plant and other microbes. During the vegetative period of the Phragmites australis growing in the Sun Island Wetland (SIW), the variations of AM fungi colonization were studied. Root samples of three hydrologic gradients generally showed AM fungi colonization, suggesting that AM fungi have the ability for adaptation to flooded habitats. There were direct and indirect hydrological related effects with respect to AM fungi biomass, which interacted simultaneously in the rhizosphere. Though water content in soil and reed growth parameters were both positively associated with AM fungi colonization, only the positive correlations between reed biomass parameters and the colonization could be expected, or both the host plant biomass and the AM fungi could be beneficial. The variations in response of host plant to the edaphic and hydrologic conditions may influence the effectiveness of the plant-mycorrhizal association. This study included a hydrologic component to better assess the role and distribution of AM fungi in wetland ecosystems. And because of that, the range of AM fungi was extended, since they actually showed a notable adaptability to hydrologic gradients. PMID:26146633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayal, Pratika; Cockell, Charles; Rice, Ken
The field of astrobiology has made huge strides in understanding the habitable zones around stars (stellar habitable zones) where life can begin, sustain its existence and evolve into complex forms. A few studies have extended this idea by modeling galactic-scale habitable zones (galactic habitable zones) for our Milky Way (MW) and specific elliptical galaxies. However, estimating the habitability for galaxies spanning a wide range of physical properties has so far remained an outstanding issue. Here, we present a “cosmobiological” framework that allows us to sift through the entire galaxy population in the local universe and answer the question, “Which typemore » of galaxy is most likely to host complex life in the cosmos?” Interestingly, the three key astrophysical criteria governing habitability (total mass in stars, total metal mass and ongoing star formation rate) are found to be intricately linked through the “fundamental metallicity relation” as shown by Sloan Digital Sky Survey observations of more than a hundred thousand galaxies in the local universe. Using this relation we show that metal-rich, shapeless giant elliptical galaxies at least twice as massive as the MW (with a tenth of its star formation rate) can potentially host ten thousand times as many habitable (Earth-like) planets, making them the most probable “cradles of life” in the universe.« less
Potential roles for microbial endophytes in herbicide tolerance in plants.
Tétard-Jones, Catherine; Edwards, Robert
2016-02-01
Herbicide tolerance in crops and weeds is considered to be monotrophic, i.e. determined by the relative susceptibility of the physiological process targeted and the plant's ability to metabolise and detoxify the agrochemical. A growing body of evidence now suggests that endophytes, microbes that inhabit plant tissues and provide a range of growth, health and defence enhancements, can contribute to other types of abiotic and biotic stress tolerance. The current evidence for herbicide tolerance being bitrophic, with both free-living and plant-associated endophytes contributing to tolerance in the host plant, has been reviewed. We propose that endophytes can directly contribute to herbicide detoxification through their ability to metabolise xenobiotics. In addition, we explore the paradigm that microbes can 'prime' resistance mechanisms in plants such that they enhance herbicide tolerance by inducing the host's stress responses to withstand the downstream toxicity caused by herbicides. This latter mechanism has the potential to contribute to the growth of non-target-site-based herbicide resistance in weeds. Microbial endophytes already contribute to herbicide detoxification in planta, and there is now significant scope to extend these interactions using synthetic biology approaches to engineer new chemical tolerance traits into crops via microbial engineering. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Structural and optical properties of CuO in zinc phosphate glasses and effects of gamma irradiation
NASA Astrophysics Data System (ADS)
Ouis, M. A.; ElBatal, H. A.; Abdelghany, A. M.; Hammad, Ahmed H.
2016-01-01
Collective optical and infrared measurements have been employed to investigate the state of increasing copper ions in host 0.5ZnO-0.5P2O5 glass composition. The same spectral measurements were repeated after gamma irradiation with a dose of 20 and 80 KGy. Optical absorption spectra reveal strong UV absorption due to trace ferric ions present as unavoidable impurities within the chemicals used in the preparation of the glasses. Copper containing glasses show an additional broad visible-near infrared band due to distorted octahedrally coordinated Cu2+ ions which at high CuO contents exhibit splitting to several component absorption peaks. Gamma irradiation causes several variations between the response of the base host zinc phosphate glass and effect of increasing CuO. These changes are correlated with both the formation of induced defects through suggested photochemical reactions in the UV region and some shielding effects with increasing CuO in the visible-near infrared spectrum. Infrared absorption spectra reveal repetitive vibrational bands due to phosphate groups mainly from metaphosphate units and the spectra show some variations with the increase of CuO content visualize by the increase of the intensity of the mid broad band extending in the range 800-1500 cm-1.
Isolation of a novel 'atypical' Brucella strain from a bluespotted ribbontail ray (Taeniura lymma).
Eisenberg, Tobias; Riße, Karin; Schauerte, Nicole; Geiger, Christina; Blom, Jochen; Scholz, Holger C
2017-02-01
A pleomorphic Gram-negative, motile coccobacillus was isolated from the gills of a wild-caught bluespotted ribbontail ray after its sudden death during quarantine. Strain 141012304 was observed to grow aerobically, to be clearly positive for cytochrome oxidase, catalase, urease and was initially identified as "Brucella melitensis" or "Ochrobactrum anthropi" by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and VITEK2-compact ® , respectively. Affiliation to the genus Brucella was confirmed by bcsp31 and IS711 PCR as well as by Brucella species-specific multiplex PCR, therein displaying a characteristic banding pattern recently described for Brucella strains obtained from amphibian hosts. Likewise, based on recA sequencing, strain 141012304 was found to form a separate lineage, within the so called 'atypical' Brucella, consisting of genetically more distantly related strains. The closest similarity was detected to brucellae, which have recently been isolated from edible bull frogs. Subsequent next generation genome sequencing and phylogenetic analysis confirmed that the ray strain represents a novel Brucella lineage within the atypical group of Brucella and in vicinity to Brucella inopinata and Brucella strain BO2, both isolated from human patients. This is the first report of a natural Brucella infection in a saltwater fish extending the host range of this medically important genus.
USDA-ARS?s Scientific Manuscript database
Visual cues may be the first line of host plant recognition and an important determining factor when selecting host plants for feeding and oviposition, especially for highly polyphagous insects, such as leafhoppers, which have a broad range of potential host plants. Temperate Empoasca fabae and trop...
Morphologies of mid-IR variability-selected AGN host galaxies
NASA Astrophysics Data System (ADS)
Polimera, Mugdha; Sarajedini, Vicki; Ashby, Matthew L. N.; Willner, S. P.; Fazio, Giovanni G.
2018-05-01
We use multi-epoch 3.6 and 4.5 μm data from the Spitzer Extended Deep Survey (SEDS) to probe the AGN population among galaxies to redshifts ˜3 via their mid-IR variability. About 1 per cent of all galaxies in our survey contain varying nuclei, 80 per cent of which are likely to be AGN. Twenty-three per cent of mid-IR variables are also X-ray sources. The mid-IR variables have a slightly greater fraction of weakly disturbed morphologies compared to a control sample of normal galaxies. The increased fraction of weakly distorted hosts becomes more significant when we remove the X-ray emitting AGN, while the frequency of strongly disturbed hosts remains similar to the control galaxy sample. These results suggest that mid-IR variability identifies a unique population of obscured, Compton-thick AGN revealing elevated levels of weak distortion among their host galaxies.
Molecular epidemiology and evolution of fish Novirhabdoviruses
Kurath, Gael
2014-01-01
The genus Novirhabdoviridae contains several of the important rhabdoviruses that infect fish hosts. There are four established virus species: Infectious hematopoietic necrosis virus (IHNV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus(HIRRV), and Snakehead rhabdovirus (SHRV). Viruses of these species vary in host and geographic range, and they have all been studied at the molecular and genomic level. As globally significant pathogens of cultured fish, IHNV and VHSV have been particularly well studied in terms of molecular epidemiology and evolution. Phylogenic analyses of hundreds of field isolates have defined five major genogroups of IHNV and four major genotypes of VHSV worldwide. These phylogenies are informed by the known histories of IHNV and VHSV, each involving a series of viral emergence events that are sometimes associated with host switches, most often into cultured rainbow trout. In general, IHNV has relatively low genetic diversity and a narrow host range, and has been spread from its endemic source in North American to Europe and Asia due to aquaculture activities. In contrast, VHSV has broad host range and high genetic diversity, and the source of emergence events is virus in widespread marine fish reservoirs in the northern Atlantic and Pacific Oceans. Common mechanisms of emergence and host switch events include use of raw feed, proximity to wild fish reservoirs of virus, and geographic translocations of virus or naive fish hosts associated with aquaculture.
Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouses in Bulgaria
Yovkova, Mariya; Petrović-Obradović, Olivera; Tasheva-Terzieva, Elena; Pencheva, Aneliya
2013-01-01
Abstract Investigations on the species composition and host range of aphids on ornamental greenhouse plants in Bulgaria was conducted over a period of five years, from 2008 to 2012. Twenty greenhouses, growing ornamentals for landscaping, plant collections and other purposes were observed. They were located in the regions of Sofia, Plovdiv, Smolyan, Pavlikeni, Varna and Burgas. The total number of collected aphid samples was 279. Their composition included 33 aphid species and one subspecies from 13 genera and 5 subfamilies. Twenty-eight species were found to belong to subfamily Aphidinae. Almost 70 % of all recorded species were polyphagous. The most widespread aphid species was Myzus persicae, detected in 13 greenhouses all year round, followed by Aulacorthum solani (10 greenhouses) and Aphis gossypii (9 greenhouses). The widest host range was shown by Myzus persicae (43 hosts), Aulacorthum solani (32 hosts) and Aulacorthum circumflexum (23 hosts). The list of host plants includes 114 species from 95 genera and 58 families. The greatest variety of aphid species was detected on Hibiscus (9 species). Out of all aphid samples 12.9 % were collected on Hibiscus and 6.8 %, on Dendranthema. The greatest variety of aphid species was detected on Hibiscus (9 species). Periphyllus californiensis and Aphis (Aphis) fabae mordvilkoi are reported for the first time for Bulgaria. Furthermore, Aphis spiraecola has been found in new localities and has widened its host range in this country. PMID:24039530
Host selection by the shiny cowbird
Wiley, J.W.
1988-01-01
Factors important in Shiny Cowbird (Molothrus bonariensis) host selection were examined within the mangrove community in Puerto Rico. Cowbirds did not parasitize birds in proportion to their abundance. The cowbird breeding season coincided with those of its major hosts, which were 'high-quality' foster species (i.e., species that fledge .gtoreq. 55% of cowbirds hatched: Yellow Warbler, Dendroica petechia; Yellow-shouldered Blackbird, Agelaius xanthomus; Black-whiskered Vireo, Vireo altiloquus; Black-cowled Oriole, Icterus dominicensis; Peurto Rican Flycatcher, Myiarchus antillarum; Troupial, Icterus icterus), and did not extend into other periods even though nests of 'low-quality: species (i.e., species that fledge < 55% of cowbird chicks that hatched: Bronze Mannikin, Lonchura cucullata; Greater Antillean Grackle, Quiscalus niger; Gray Kingbird, Tyrannus dominicensis; Northern Mockingbird, Mimus polyglottos; Red-legged Thrush, Turdus plumbeus) were available. Shiny Cowbird food habits and egg size were similar to those of their hosts, suggesting that cowbirds choose hosts partly on the basis of this combination. Cowbirds located host nests primarily by cryptically watching activities of birds in likely habitats. Other nest locating strategies were active searching of suitable habitat and 'flushing' of hosts by the cowbird's noisy approach. Cowbirds closely monitored nest status with frequent visits that peaked on the host's first day of egg laying. Hosts using covered nests (e.g., cavities, domed nests) were as vulnerable to cowbird parasitism as those building open nests.
Li depletion in solar analogues with exoplanets. Extending the sample
NASA Astrophysics Data System (ADS)
Delgado Mena, E.; Israelian, G.; González Hernández, J. I.; Sousa, S. G.; Mortier, A.; Santos, N. C.; Adibekyan, V. Zh.; Fernandes, J.; Rebolo, R.; Udry, S.; Mayor, M.
2014-02-01
Aims: We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods: In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600-5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results: We confirm significant differences in the Li distribution of solar twins (Teff = T⊙ ± 80 K, log g = log g⊙ ± 0.2 and [Fe/H] = [Fe/H]⊙ ± 0.2): the full sample of planet host stars (22) shows Li average values lower than "single" stars with no detected planets (60). If we focus on subsamples with narrower ranges in metallicity and age, we observe indications of a similar result though it is not so clear for some of the subsamples. Furthermore, we compare the observed spectra of several couples of stars with very similar parameters that show differences in Li abundances up to 1.6 dex. Therefore we show that neither age, mass, nor metallicity of a parent star is the only cause for enhanced Li depletion in solar analogues. Conclusions: We conclude that another variable must account for that difference and suggest that this could be the presence of planets that causes additional rotationally induced mixing in the external layers of planet host stars. Moreover, we find indications that the amount of depletion of Li in planet-host solar-type stars is higher when the planets are more massive than Jupiter. Based on observations collected at the La Silla Observatory, ESO (Chile), with the HARPS spectrograph at the 3.6 m ESO telescope, with CORALIE spectrograph at the 1.2 m Euler Swiss telescope and with the FEROS spectrograph at the 1.52 m ESO telescope; at the Paranal Observatory, ESO (Chile), using the UVES spectrograph at the VLT/UT2 Kueyen telescope, and with the FIES, SARG, and UES spectrographs at the 2.5 m NOT, the 3.6 m TNG and the 4.2 WHT, respectively, operated on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos.Table 6 is available in electronic form at http://www.aanda.org
Comparative whole genome analysis of six diagnostic brucellaphages.
Farlow, Jason; Filippov, Andrey A; Sergueev, Kirill V; Hang, Jun; Kotorashvili, Adam; Nikolich, Mikeljon P
2014-05-15
Whole genome sequencing of six diagnostic brucellaphages, Tbilisi (Tb), Firenze (Fz), Weybridge (Wb), S708, Berkeley (Bk) and R/C, was followed with genomic comparisons including recently described genomes of the Tb phage from Mexico (TbM) and Pr phage to elucidate genomic diversity and candidate host range determinants. Comparative whole genome analysis revealed high sequence homogeneity among these brucellaphage genomes and resolved three genetic groups consistent with defined host range phenotypes. Group I was composed of Tb and Fz phages that are predominantly lytic for Brucella abortus and Brucella neotomae; Group II included Bk, R/C, and Pr phages that are lytic mainly for B. abortus, Brucella melitensis and Brucella suis; Group III was composed of Wb and S708 phages that are lytic for B. suis, B. abortus and B. neotomae. We found that the putative phage collar protein is a variable locus with features that may be contributing to the host specificities exhibited by different brucellaphage groups. The presence of several candidate host range determinants is illustrated herein for future dissection of the differential host specificity observed among these phages. Published by Elsevier B.V.
Airborne multispectral detection of regrowth cotton fields
USDA-ARS?s Scientific Manuscript database
Regrowth of cotton, Gossypium hirsutum L., can provide boll weevils, Anthonomus grandis Boheman, with an extended opportunity to feed and reproduce beyond the production season. Effective methods for timely areawide detection of these potential host plants are critically needed to achieve eradicati...
Are adaptation costs necessary to build up a local adaptation pattern?
Magalhães, Sara; Blanchet, Elodie; Egas, Martijn; Olivieri, Isabelle
2009-08-03
Ecological specialization is pervasive in phytophagous arthropods. In such specialization mode, limits to host range are imposed by trade-offs preventing adaptation to several hosts. The occurrence of such trade-offs is inferred by a pattern of local adaptation, i.e., a negative correlation between relative performance on different hosts. To establish a causal link between local adaptation and trade-offs, we performed experimental evolution of spider mites on cucumber, tomato and pepper, starting from a population adapted to cucumber. Spider mites adapted to each novel host within 15 generations and no further evolution was observed at generation 25. A pattern of local adaptation was found, as lines evolving on a novel host performed better on that host than lines evolving on other hosts. However, costs of adaptation were absent. Indeed, lines adapted to tomato had similar or higher performance on pepper than lines evolving on the ancestral host (which represent the initial performance of all lines) and the converse was also true, e.g. negatively correlated responses were not observed on the alternative novel host. Moreover, adapting to novel hosts did not result in decreased performance on the ancestral host. Adaptation did not modify host ranking, as all lines performed best on the ancestral host. Furthermore, mites from all lines preferred the ancestral to novel hosts. Mate choice experiments indicated that crosses between individuals from the same or from a different selection regime were equally likely, hence development of reproductive isolation among lines adapted to different hosts is unlikely. Therefore, performance and preference are not expected to impose limits to host range in our study species. Our results show that the evolution of a local adaptation pattern is not necessarily associated with the evolution of an adaptation cost.
Analysis of electric vehicle extended range misalignment based on rigid-flexible dynamics
NASA Astrophysics Data System (ADS)
Xu, Xiaowei; Lv, Mingliang; Chen, Zibo; Ji, Wei; Gao, Ruiceng
2017-04-01
The safety of the extended range electric vehicle is seriously affected by the misalignment fault. Therefore, this paper analyzed the electric vehicle extended range misalignment based on rigid-flexible dynamics. Through comprehensively applied the hybrid modeling of rigid-flexible and the method of fault diagnosis of machinery and equipment comprehensively, it established a extender hybrid rigid flexible mechanical model by means of the software ADAMS and ANSYS. By setting the relevant parameters to simulate the misalignment of shafting, the failure phenomenon, the spectrum analysis and the evolution rules were analyzed. It concluded that 0.5th and 1 harmonics are considered as the characteristic parameters of misalignment diagnostics for electric vehicle extended range.
Eight new Arthrinium species from China
Wang, Mei; Tan, Xiao-Ming; Liu, Fang; Cai, Lei
2018-01-01
Abstract The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morphological characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species. PMID:29755262
Eight new Arthrinium species from China.
Wang, Mei; Tan, Xiao-Ming; Liu, Fang; Cai, Lei
2018-01-01
The genus Arthrinium includes important plant pathogens, endophytes and saprobes with a wide host range and geographic distribution. In this paper, 74 Arthrinium strains isolated from various substrates such as bamboo leaves, tea plants, soil and air from karst caves in China were examined using a multi-locus phylogeny based on a combined dataset of ITS rDNA, TEF1 and TUB2, in conjunction with morphological characters, host association and ecological distribution. Eight new species were described based on their distinct phylogenetic relationships and morphological characters. Our results indicated a high species diversity of Arthrinium with wide host ranges, amongst which, Poaceae and Cyperaceae were the major host plant families of Arthrinium species.
Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L.
Hernandez-Lucas, I; Segovia, L; Martinez-Romero, E; Pueppke, S G
1995-07-01
We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala.
Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard
2012-01-01
The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063. PMID:22379095
Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard; McFadden, Grant
2012-05-01
The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063.
Hahn, D.C.; O'Connor, R.J.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.
2002-01-01
Avian species distributions are typically regarded as constrained by spatially extensive variables such as climate, habitat, spatial patchiness, and microhabitat attributes. We hypothesized that the distribution of a brood parasite depends as strongly on host distribution patterns as on biophysical factors and examined this hypothesis with respect to the national distribution of the Brown-headed Cowbird (Molothrus ater). We applied a classification and regression (CART) analysis to data from the Breeding Bird Survey (BBS) and the Christmas Bird Count (CBC) and derived hierarchically organized statistical models of the influence of climate and weather, cropping and land use, and host abundance and distribution on the distribution of the Brown-headed Cowbird within the conterminous United States. The model accounted for 47.2% of the variation in cowbird incidence, and host abundance was the top predictor with an R2 of 18.9%. The other predictors identified by the model (crops 15.7%, weather and climate 14.3%, and region 9.6%) fit the ecological profile of this cowbird. We showed that host abundance was independent of these environmental predictors of cowbird distribution. At the regional scale host abundance played a very strong role in determining cowbird abundance in the cowbird?s colonized range east and west of their ancestral range in the Great Plains (26.6%). Crops were not a major predictor for cowbirds in their ancestral range, although they are the most important predictive factor (33%) for the grassland passerines that are the cowbird?s ancestral hosts. Consequently our findings suggest that the distribution of hosts does indeed take precedence over habitat attributes in shaping the cowbird?s distribution at a national scale, within an envelope of constraint set by biophysical factors.
Yang, Kui; Wen, Jia; Chao, Shuang; Liu, Jing; Yang, Ke; Pei, Yuxin; Pei, Zhichao
2018-06-05
A supramolecular photosensitizer system WP6-MB was synthesized based on water-soluble pillar[6]arene and the photosensitizer methylene blue (MB) via host-guest interaction. MB can complex with WP6 directly with a high complex constant without further modification. In particular, WP6-MB can reduce the dark toxicity of MB remarkably. Furthermore, it can efficiently overcome photobleaching and extend the time for singlet oxygen production of MB upon light irradiation, which is significant for durable photodynamic therapy.
First experience with the new .cern Top Level Domain
NASA Astrophysics Data System (ADS)
Alvarez, E.; Malo de Molina, M.; Salwerowicz, M.; Silva De Sousa, B.; Smith, T.; Wagner, A.
2017-10-01
In October 2015, CERN’s core website has been moved to a new address, http://home.cern, marking the launch of the brand new top-level domain .cern. In combination with a formal governance and registration policy, the IT infrastructure needed to be extended to accommodate the hosting of Web sites in this new top level domain. We will present the technical implementation in the framework of the CERN Web Services that allows to provide virtual hosting, a reverse proxy solution and that also includes the provisioning of SSL server certificates for secure communications.
Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C.
2004-01-01
The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.
Characterization of two biologically distinct variants of Tomato spotted wilt virus
USDA-ARS?s Scientific Manuscript database
Significant economic losses result on a wide range of crops due to infection with Tomato spotted wilt virus (TSWV). In this study, two TSWV isolates, one from basil and a second from tomato, were established in a common plant host. Viral proteins were monitored over time, plant host ranges were comp...
USDA-ARS?s Scientific Manuscript database
Chinese tallow, Triadica sebifera, is an invasive weed that infests natural and agricultural areas of the southeastern USA. A candidate for biological control of Chinese tallow has been studied under quarantine conditions. The biology and host range of a primitive leaf feeding beetle, Heterapoderops...
USDA-ARS?s Scientific Manuscript database
Sclerotinia sclerotiorum and S. trifoliorum cause Sclerotinia stem and crown rot of chickpea and white mold on many economically important crops. The host range of S. trifoliorum is mainly on cool season forage and grain legumes of about 40 plant species, whereas the host range of S. sclerotiorum ...
USDA-ARS?s Scientific Manuscript database
The fundamental host range of the arundo leafminer, Lasioptera donacis a candidate agent for the invasive weed, Arundo donax was evaluated. Lasioptera donacis collects and inserts spores of a saprophytic fungus, Arthrinium arundinis, during oviposition. Larvae feed and develop in the decomposing le...
Anthropogenic drivers of gypsy moth spread
Kevin M. Bigsby; Patrick C. Tobin; Erin O. Sills
2011-01-01
The gypsy moth, Lymantria dispar (L.), is a polyphagous defoliator introduced to Medford, Massachusetts in 1869. It has spread to over 860,000 km2 in North America, but this still only represents 1/4 of its susceptible host range in the United States. To delay defoliation in the remaining susceptible host range, the government...
NREL to Host Range of Activities for Energy Awareness Month
Host Range of Activities for Energy Awareness Month Events devoted to energy savings Golden, Colo., Sept. 20, 2000 - Visitors will get an inside look at advanced energy technologies and learn tips for cutting utility bills when the U.S. Department of Energy's National Renewable Energy
Bridle, Jon R; Buckley, James; Bodsworth, Edward J; Thomas, Chris D
2014-02-07
Generalist species and phenotypes are expected to perform best under rapid environmental change. In contrast to this view that generalists will inherit the Earth, we find that increased use of a single host plant is associated with the recent climate-driven range expansion of the UK brown argus butterfly. Field assays of female host plant preference across the UK reveal a diversity of adaptations to host plants in long-established parts of the range, whereas butterflies in recently colonized areas are more specialized, consistently preferring to lay eggs on one host plant species that is geographically widespread throughout the region of expansion, despite being locally rare. By common-garden rearing of females' offspring, we also show an increase in dispersal propensity associated with the colonization of new sites. Range expansion is therefore associated with an increase in the spatial scale of adaptation as dispersive specialists selectively spread into new regions. Major restructuring of patterns of local adaptation is likely to occur across many taxa with climate change, as lineages suited to regional colonization rather than local success emerge and expand.
Infectious disease agents mediate interaction in food webs and ecosystems
Selakovic, Sanja; de Ruiter, Peter C.; Heesterbeek, Hans
2014-01-01
Infectious agents are part of food webs and ecosystems via the relationship with their host species that, in turn, interact with both hosts and non-hosts. Through these interactions, infectious agents influence food webs in terms of structure, functioning and stability. The present literature shows a broad range of impacts of infectious agents on food webs, and by cataloguing that range, we worked towards defining the various mechanisms and their specific effects. To explore the impact, a direct approach is to study changes in food-web properties with infectious agents as separate species in the web, acting as additional nodes, with links to their host species. An indirect approach concentrates not on adding new nodes and links, but on the ways that infectious agents affect the existing links across host and non-host nodes, by influencing the ‘quality’ of consumer–resource interaction as it depends on the epidemiological state host involved. Both approaches are natural from an ecological point of view, but the indirect approach may connect more straightforwardly to commonly used tools in infectious disease dynamics. PMID:24403336
Daniel R. West; Jennifer S. Briggs; William R. Jacobi; Jose F. Negron
2016-01-01
Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for...
Amphibian chytridiomycosis: a review with focus on fungus-host interactions.
Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank
2015-11-25
Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.
Reverter, Miriam; Cutmore, Scott C; Bray, Rodney; Cribb, Thomas H; Sasal, Pierre
2016-10-01
We studied the monogenean communities of 34 species of butterflyfish from the tropical Indo-West Pacific, identifying 13 dactylogyrid species (including two species that are presently undescribed). Monogenean assemblages differed significantly between host species in terms of taxonomic structure, intensity and prevalence. Parasite richness ranged from 0 (Chaetodon lunulatus) to 11 (C. auriga, C. citrinellus and C. lunula). Host specificity varied between the dactylogyrids species, being found on 2-29 of the 34 chaetodontid species examined. Sympatric butterflyfish species were typically parasitized by different combinations of dactylogyrid species, suggesting the existence of complex host-parasite interactions. We identified six clusters of butterflyfish species based on the similarities of their dactylogyrid communities. Dactylogyrid richness and diversity were not related to host size, diet specialization, depth range or phylogeny of butterflyfish species. However, there was a weak positive correlation between monogenean richness and diversity and host geographical range. Most communities of dactylogyrids were dominated by Haliotrema aurigae and H. angelopterum, indicating the importance of the genus Haliotrema in shaping monogenean communities of butterflyfishes. This study casts light on the structure of the monogenean communities of butterflyfishes, suggesting that the diversity and complexity of community structures arises from a combination of host species-specific parameters.
Three-stage Fabry-Perot liquid crystal tunable filter with extended spectral range.
Zheng, Zhenrong; Yang, Guowei; Li, Haifeng; Liu, Xu
2011-01-31
A method to extend spectral range of tunable optical filter is proposed in this paper. Two same tunable Fabry-Perot filters and an additional tunable filter with different free spectral range are cascaded to extend spectral range and reduce sidelobes. Over 400 nm of free spectral range and 4 nm of full width at half maximum of the filter were achieved. Design procedure and simulation are described in detail. An experimental 3-stage tunable Fabry-Perot filter with visible and infrared spectra is demonstrated. The experimental results and the theoretical analysis are presented in detail to verify this method. The results revealed that a compact and extended tunable spectral range of Fabry-Perot filter can be easily attainable by this method.
Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L
2016-06-01
Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions.
NASA Astrophysics Data System (ADS)
Sartori, Lia F.; Schawinski, Kevin; Koss, Michael; Treister, Ezequiel; Maksym, W. Peter; Keel, William C.; Urry, C. Megan; Lintott, Chris J.; Wong, O. Ivy
2016-04-01
We present deep Chandra X-ray observations of the core of IC 2497, the galaxy associated with Hanny's Voorwerp and hosting a fading AGN. We find extended soft X-ray emission from hot gas around the low intrinsic luminosity (unobscured) AGN (Lbol ˜ 1042-1044 erg s-1). The temperature structure in the hot gas suggests the presence of a bubble or cavity around the fading AGN ({{E}}_bub ˜ 10^{54}{-}10^{55} erg). A possible scenario is that this bubble is inflated by the fading AGN, which after changing accretion state is now in a kinetic mode. Other possibilities are that the bubble has been inflated by the past luminous quasar (Lbol ˜ 1046 erg s-1), or that the temperature gradient is an indication of a shock front from a superwind driven by the AGN. We discuss the possible scenarios and the implications for the AGN-host galaxy interaction, as well as an analogy between AGN and X-ray binaries lifecycles. We conclude that the AGN could inject mechanical energy into the host galaxy at the end of its lifecycle, and thus provide a source for mechanical feedback, in a similar way as observed for X-ray binaries.
Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms
Memišević, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V.; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders
2015-01-01
Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread. PMID:25738731
Memišević, Vesna; Zavaljevski, Nela; Rajagopala, Seesandra V; Kwon, Keehwan; Pieper, Rembert; DeShazer, David; Reifman, Jaques; Wallqvist, Anders
2015-03-01
Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread.
What is Next in Bark Beetle Phylogeography?
Avtzis, Dimitrios N.; Bertheau, Coralie; Stauffer, Christian
2012-01-01
Bark beetle species within the scolytid genera Dendroctonus, Ips, Pityogenes and Tomicus are known to cause extensive ecological and economical damage in spruce and pine forests during epidemic outbreaks all around the world. Dendroctonus ponderosae poses the most recent example having destroyed almost 100,000 km2 of conifer forests in North America. The success and effectiveness of scolytid species lies mostly in strategies developed over the course of time. Among these, a complex system of semiochemicals promotes the communication and aggregation on the spot of infestation facilitating an en masse attack against a host tree’s defenses; or an association with fungi that evolved either in the form of nutrition (ambrosia fungi) or even by reducing the resistance of host trees (blue-stain fungi). Although often specific to a tree genus or species, some bark beetles are polyphagous and have the ability to switch on to new hosts and extend their host range (i.e., between conifer genera such as Pityogenes chalcographus or even from conifer to deciduous trees as Polygraphus grandiclava). A combination of these capabilities in concert with life history or ecological traits explains why bark beetles are considered interesting subjects in evolutionary studies. Several bark beetle species appear in phylogeographic investigations, in an effort to improve our understanding of their ecology, epidemiology and evolution. In this paper investigations that unveil the phylogeographic history of bark beetles are reviewed. A close association between refugial areas and postglacial migration routes that insects and host trees have followed in the last 15,000 BP has been suggested in many studies. Finally, a future perspective of how next generation sequencing will influence the resolution of phylogeographic patterns in the coming years is presented. Utilization of such novel techniques will provide a more detailed insight into the genome of scolytids facilitating at the same time the application of neutral and non-neutral markers. The latter markers in particular promise to enhance the study of eco-physiological reaction types like the so-called pioneer beetles or obligate diapausing individuals. PMID:26466538
Fire blight: applied genomic insights of the pathogen and host
USDA-ARS?s Scientific Manuscript database
The enterobacterial phytopathogen, Erwinia amylovora, causes fire blight, an invasive disease that threatens a wide range of commercial and ornamental Rosaceae host plants. The response elicited by E. amylovora in its host during disease development is similar to the hypersensitive reaction that ty...
Roles of Long and Short Replication Initiation Proteins in the Fate of IncP-1 Plasmids
Yano, Hirokazu; Deckert, Gail E.; Rogers, Linda M.
2012-01-01
Broad-host-range IncP-1 plasmids generally encode two replication initiation proteins, TrfA1 and TrfA2. TrfA2 is produced from an internal translational start site within trfA1. While TrfA1 was previously shown to be essential for replication in Pseudomonas aeruginosa, its role in other bacteria within its broad host range has not been established. To address the role of TrfA1 and TrfA2 in other hosts, efficiency of transformation, plasmid copy number (PCN), and plasmid stability were first compared between a mini-IncP-1β plasmid and its trfA1 frameshift variant in four phylogenetically distant hosts: Escherichia coli, Pseudomonas putida, Sphingobium japonicum, and Cupriavidus necator. TrfA2 was sufficient for replication in these hosts, but the presence of TrfA1 enhanced transformation efficiency and PCN. However, TrfA1 did not contribute to, and even negatively affected, long-term plasmid persistence. When trfA genes were cloned under a constitutive promoter in the chromosomes of the four hosts, strains expressing either both TrfA1 and TrfA2 or TrfA1 alone, again, generally elicited a higher PCN of an IncP1-β replicon than strains expressing TrfA2 alone. When a single species of TrfA was produced at different concentrations in E. coli cells, TrfA1 maintained a 3- to 4-fold higher PCN than TrfA2 at the same TrfA concentrations, indicating that replication mediated by TrfA1 is more efficient than that by TrfA2. These results suggest that the broad-host-range properties of IncP-1 plasmids are essentially conferred by TrfA2 and the intact replication origin alone but that TrfA1 is nonetheless important to efficiently establish plasmid replication upon transfer into a broad range of hosts. PMID:22228734
Friends of the National Library of Medicine - How You Can Help the Library Extend Medical Knowledge
... Lipman (center), Director of the National Center for Biotechnology Information (NCBI) was among the hosts for the ... sponsorship and other charitable donations for NIH MedlinePlus magazine's publication and distribution, many more thousands of Americans ...
NASA Astrophysics Data System (ADS)
Akeson, Rachel
Measuring the occurrence rate of extrasolar planets is one of the most fundamental constraints on our understanding of planets throughout the Galaxy. By studying planet populations across a wide parameter space in stellar age, type, metallicity, and multiplicity, we can inform planet formation, migration and evolution theories. The ground-based ELTs and the flagship space missions that NASA is planning in the next decades and beyond will be designed to make the first observations of potential biomarkers in the atmospheres of extrasolar planets understanding how common these planets and how they are distributed will be crucial for this effort. One of the most important results of the main Kepler mission was a measurement of the frequency of planets orbiting FGK dwarfs. Although that result is crucial for estimating the frequency of planetary systems orbiting middle-aged Sun-like stars, the majority of stars in the galaxy have lower masses. We propose to extend the Kepler occurrence rates to lower stellar masses by using publicly available data from the second-generation K2 mission to estimate the frequency of planets orbiting low-mass stars. The confluence of the lower temperature, smaller size, and relative abundance of M dwarfs makes them attractive and efficient targets for habitable planet detection and characterization. The archived K2 data contain nearly an order of magnitude more M dwarfs than the original Kepler data set ( 30,000 compared to 3700), allowing us to constrain occurrence rates both more precisely and with more granularity across the M dwarf parameter range. We will also take advantage of the wide variety of stellar environments sampled by the community-driven K2 mission to estimate the frequency of planets orbiting stars with a range of metallicities and ages. The K2 mission has observed several clusters across a wide range of ages, including the Upper Scorpius OB association (10My old), the Pleiades cluster (115My old), and the Hyades and Praesepe clusters (600My old). One goal of this proposal is to pinpoint when and if the planet occurrence rate converges with that of the Kepler field, whose stars have a median age of 4Gy. This will inform the timescales of the dominant formation and migration mechanisms, and improve our ability to discriminate between competing proposed theories. The proposed work encompasses the following tasks: (1) Generating and publishing a uniform, repeatable, robust catalogue of planet candidates using the publicly available K2 data comprising the first 33 months of observations; (2) Measuring the completeness (false negative rate) and reliability (false positive rate) of the resulting candidate catalogue; (3) Systematically and accurately characterizing the properties of the stellar sample (both exoplanet hosts and non-hosts); (4) Calculating the distribution of the underlying planet population across a wide range of stellar host parameters. The proposed work is relevant to several of NASA s strategic goals, including ascertaining the content, origin, and evolution of the solar system and the potential for life elsewhere , and discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars . With respect to the Astrophysics Data Analysis Program call, the proposed work builds on the legacy of Kepler occurrence rate calculations by placing them in the wider context afforded by the publicly available K2 data.
Per-oral endoscopic myotomy: Major advance in achalasia treatment and in endoscopic surgery
Friedel, David; Modayil, Rani; Stavropoulos, Stavros N
2014-01-01
Per-oral endoscopic myotomy (POEM) represents a natural orifice endoscopic surgery (NOTES) approach to laparoscopy Heller myotomy (LHM). POEM is arguably the most successful clinical application of NOTES. The growth of POEM from a single center in 2008 to approximately 60 centers worldwide in 2014 with several thousand procedures having been performed attests to the success of POEM. Initial efficacy, safety and acid reflux data suggest at least equivalence of POEM to LHM, the previous gold standard for achalasia therapy. Adjunctive techniques used in the West include impedance planimetry for real-time intraprocedural luminal assessment and endoscopic suturing for challenging mucosal defect closures during POEM. The impact of POEM extends beyond the realm of esophageal motility disorders as it is rapidly popularizing endoscopic submucosal dissection in the West and spawning offshoots that use the submucosal tunnel technique for a host of new indications ranging from resection of tumors to pyloromyotomy for gastroparesis. PMID:25548473
Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai
2015-12-01
In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. © 2015 Authors; published by Portland Press Limited.
K2: Extending Kepler's Power to the Ecliptic-Ecliptic Plane Input Catalog
NASA Technical Reports Server (NTRS)
Huber, Daniel; Bryson, Stephen T.
2017-01-01
This document describes the Ecliptic Plane Input Catalog (EPIC) for the K2 mission (Howell et al. 2014). The primary purpose of this catalog is to provide positions and Kepler magnitudes for target management and aperture photometry. The Ecliptic Plane Input Catalog is hosted at MAST (http://archive.stsci.edu/k2/epic/search.php) and should be used for selecting targets when ever possible. The EPIC is updated for future K2 campaigns as their fields of view are finalized and the associated target management is completed. Table 0 summarizes the EPIC updates to date and the ID range for each. The main algorithms used to construct the EPIC are described in Sections 2 through 4. The details for individual campaigns are described in the subsequent sections, with the references listed in the last section. Further details can be found in Huber et al. (2016).
Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal
Silva, F.; Austin, D.R.; Thai, A.; Baudisch, M.; Hemmer, M.; Faccio, D.; Couairon, A.; Biegert, J.
2012-01-01
In supercontinuum generation, various propagation effects combine to produce a dramatic spectral broadening of intense ultrashort optical pulses. With a host of applications, supercontinuum sources are often required to possess a range of properties such as spectral coverage from the ultraviolet across the visible and into the infrared, shot-to-shot repeatability, high spectral energy density and an absence of complicated pulse splitting. Here we present an all-in-one solution, the first supercontinuum in a bulk homogeneous material extending from 450 nm into the mid-infrared. The spectrum spans 3.3 octaves and carries high spectral energy density (2 pJ nm−1–10 nJ nm−1), and the generation process has high shot-to-shot reproducibility and preserves the carrier-to-envelope phase. Our method, based on filamentation of femtosecond mid-infrared pulses in the anomalous dispersion regime, allows for compact new supercontinuum sources. PMID:22549836
Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry
NASA Technical Reports Server (NTRS)
Zuber,Maria T.; Smith, David E.; Phillips, Roger J.; Solomon, Sean C.; Neumann, Gregory A.; Hauck, Steven A., Jr.; Peale, Stanton J.; Barnouin, Oliver S.; Head, James W.; Johnson, Catherine L.;
2012-01-01
Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury s topography occurred after the earliest phases of the planet s geological history.
Martínez, Maria M Ramírez; Lopez, M Pilar Ibarra; Iñiguez-Dávalos, Luis Ignacio; Yuill, Thomas; Orlova, Maria V; Reeves, Will K
2016-12-01
Ectoparasites of bats in the Neotropics are diverse and play numerous ecological roles as vectors of microbial pathogens and endoparasites and as food sources for other cave fauna living both on their hosts and in bat roosts. The ectoparasites of bats in Jalisco State of western Mexico have not been as well described as those of other states with recent checklists that have focused primarily on the Yucatan Peninsula. We captured bats from 2011-2015 on the south coast and Sierra de Amula, Jalisco using mist nets, and we removed ectoparasites by hand. We identified 24 species of streblid bat flies and six ectoparasitic mites from bats caught in mist nets. There were an additional eight possibly undescribed species of Streblidae. Our collections extend the known range of species into Jalisco. © 2016 The Society for Vector Ecology.
Partitioning problems in parallel, pipelined and distributed computing
NASA Technical Reports Server (NTRS)
Bokhari, S.
1985-01-01
The problem of optimally assigning the modules of a parallel program over the processors of a multiple computer system is addressed. A Sum-Bottleneck path algorithm is developed that permits the efficient solution of many variants of this problem under some constraints on the structure of the partitions. In particular, the following problems are solved optimally for a single-host, multiple satellite system: partitioning multiple chain structured parallel programs, multiple arbitrarily structured serial programs and single tree structured parallel programs. In addition, the problems of partitioning chain structured parallel programs across chain connected systems and across shared memory (or shared bus) systems are also solved under certain constraints. All solutions for parallel programs are equally applicable to pipelined programs. These results extend prior research in this area by explicitly taking concurrency into account and permit the efficient utilization of multiple computer architectures for a wide range of problems of practical interest.
First-Principles Prediction of Liquid/Liquid Interfacial Tension.
Andersson, M P; Bennetzen, M V; Klamt, A; Stipp, S L S
2014-08-12
The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid/liquid systems of arbitrary compositions. The consistency of the predictions with experimental data is significant for binary, ternary, and multicomponent water/organic compound systems, which offers confidence in using the model to predict behavior where no data exists. The method is fast and can be used as a screening technique as well as to extend experimental data into conditions where measurements are technically too difficult, time consuming, or impossible.
Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes
Beliveau, Brian J.; Joyce, Eric F.; Apostolopoulos, Nicholas; Yilmaz, Feyza; Fonseka, Chamith Y.; McCole, Ruth B.; Chang, Yiming; Li, Jin Billy; Senaratne, Tharanga Niroshini; Williams, Benjamin R.; Rouillard, Jean-Marie; Wu, Chao-ting
2012-01-01
A host of observations demonstrating the relationship between nuclear architecture and processes such as gene expression have led to a number of new technologies for interrogating chromosome positioning. Whereas some of these technologies reconstruct intermolecular interactions, others have enhanced our ability to visualize chromosomes in situ. Here, we describe an oligonucleotide- and PCR-based strategy for fluorescence in situ hybridization (FISH) and a bioinformatic platform that enables this technology to be extended to any organism whose genome has been sequenced. The oligonucleotide probes are renewable, highly efficient, and able to robustly label chromosomes in cell culture, fixed tissues, and metaphase spreads. Our method gives researchers precise control over the sequences they target and allows for single and multicolor imaging of regions ranging from tens of kilobases to megabases with the same basic protocol. We anticipate this technology will lead to an enhanced ability to visualize interphase and metaphase chromosomes. PMID:23236188
McCaffrey, Keegan; Johnson, Pieter T. J.
2017-01-01
Decades of community ecology research have highlighted the importance of resource availability, habitat heterogeneity, and colonization opportunities in driving biodiversity. Less clear, however, is whether a similar suite of factors explains the diversity of symbionts. Here, we used a hierarchical dataset involving 12,712 freshwater snail hosts representing five species to test the relative importance of potential factors in driving symbiont richness. Specifically, we used model selection to assess the explanatory power of variables related to host species identity, resource availability (average body size, host density), ecological heterogeneity (richness of hosts and other taxa), and colonization opportunities (wetland size and amount of neighboring wetland area) on symbiont richness in 146 snail host populations in California, USA. We encountered a total of 24 taxa of symbionts, including both obligatory parasites such as digenetic trematodes as well as more commensal, mutualistic, or opportunistic groups such as aquatic insect larvae, annelids, and leeches. After validating richness estimates per host population using species accumulative curves, we detected positive effects on symbiont richness from host body size, total richness of the aquatic community, and colonization opportunities. Neither snail density nor the richness of snail species accounted for significant variation in symbiont diversity. Host species identity also affected symbiont richness, with higher gamma and average alpha diversity among more common host species and with higher local abundances. These findings highlight the importance of multiple, concurrent factors in driving symbiont richness that extend beyond epidemiological measures of host abundance or host diversity alone. PMID:28039528
2017-01-01
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451
Vision-mediated exploitation of a novel host plant by a tephritid fruit fly.
Piñero, Jaime C; Souder, Steven K; Vargas, Roger I
2017-01-01
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion.
Vision-mediated exploitation of a novel host plant by a tephritid fruit fly
2017-01-01
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera (Zeugodacus) cucurbitae (Coquillett) (Diptera: Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female B. cucurbitae rely strongly on vision to locate host fruit. Given that the papaya fruit is visually conspicuous in the papaya agro-ecosystem, we hypothesized that female B. cucurbitae used vision as the main sensory modality to find and exploit the novel host fruit. Using a comparative approach that involved a series of studies under natural and semi-natural conditions in Hawaii, we assessed the ability of female B. cucurbitae to locate and oviposit in papaya fruit using the sensory modalities of olfaction and vision alone and also in combination. The results of these studies demonstrate that, under a variety of conditions, volatiles emitted by the novel host do not positively stimulate the behavior of the herbivore. Rather, vision seems to be the main mechanism driving the exploitation of the novel host. Volatiles emitted by the novel host papaya fruit did not contribute in any way to the visual response of females. Our findings highlight the remarkable role of vision in the host-location process of B. cucurbitae and provide empirical evidence for this sensory modality as a potential mechanism involved in host range expansion. PMID:28380069
Documentary of MFENET, a national computer network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuttleworth, B.O.
1977-06-01
The national Magnetic Fusion Energy Computer Network (MFENET) is a newly operational star network of geographically separated heterogeneous hosts and a communications subnetwork of PDP-11 processors. Host processors interfaced to the subnetwork currently include a CDC 7600 at the Central Computer Center (CCC) and several DECsystem-10's at User Service Centers (USC's). The network was funded by a U.S. government agency (ERDA) to provide in an economical manner the needed computational resources to magnetic confinement fusion researchers. Phase I operation of MFENET distributed the processing power of the CDC 7600 among the USC's through the provision of file transport between anymore » two hosts and remote job entry to the 7600. Extending the capabilities of Phase I, MFENET Phase II provided interactive terminal access to the CDC 7600 from the USC's. A file management system is maintained at the CCC for all network users. The history and development of MFENET are discussed, with emphasis on the protocols used to link the host computers and the USC software. Comparisons are made of MFENET versus ARPANET (Advanced Research Projects Agency Computer Network) and DECNET (Digital Distributed Network Architecture). DECNET and MFENET host-to host, host-to-CCP, and link protocols are discussed in detail. The USC--CCP interface is described briefly. 43 figures, 2 tables.« less
Jin, Min; Chen, Yanjiang; Xu, Chenxi; Zhang, Xiaobo
2014-04-28
In eukaryotes, the manipulation of the host actin cytoskeleton is a necessary strategy for viral pathogens to invade host cells. Increasing evidence indicates that the actin homolog MreB of bacteria plays key roles in cell shape formation, cell polarity, cell wall biosynthesis, and chromosome segregation. However, the role of bacterial MreB in the bacteriophage infection is not extensively investigated. To address this issue, in this study, the MreB of thermophilic Geobacillus sp. E263 from a deep-sea hydrothermal field was characterized by inhibiting the MreB polymerization and subsequently evaluating the bacteriophage GVE2 infection. The results showed that the host MreB played important roles in the bacteriophage infection at high temperature. After the host cells were treated with small molecule drug A22 or MP265, the specific inhibitors of MreB polymerization, the adsorption of GVE2 and the replication of GVE2 genome were significantly repressed. The confocal microscopy data revealed that MreB facilitated the GVE2 infection by inducing the polar distribution of virions during the phage infection. Our study contributed novel information to understand the molecular events of the host in response to bacteriophage challenge and extended our knowledge about the host-virus interaction in deep-sea vent ecosystems.
Recent Progress in Understanding Coxsackievirus Replication, Dissemination, and Pathogenesis
Sin, Jon; Mangale, Vrushali; Thienphrapa, Wdee; Gottlieb, Roberta A.; Feuer, Ralph
2015-01-01
Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses – although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis. PMID:26142496
The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs.
Coen, Loren D; Bishop, Melanie J
2015-10-01
Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to complex relationships between diseases and cultivated and natural molluscan populations. Further, in some instances the enhancement or restoration of valued ecosystem services may be contingent on management of molluscan disease. The application of newly emerging molecular tools and remote sensing techniques to the study of molluscan disease will be important in identifying how changes at varying spatial and temporal scales with global change are modifying host-parasite systems. Copyright © 2015 Elsevier Inc. All rights reserved.
The MUSE view of the host galaxy of GRB 100316D
NASA Astrophysics Data System (ADS)
Izzo, L.; Thöne, C. C.; Schulze, S.; Mehner, A.; Flores, H.; Cano, Z.; de Ugarte Postigo, A.; Kann, D. A.; Amorín, R.; Anderson, J. P.; Bauer, F. E.; Bensch, K.; Christensen, L.; Covino, S.; Della Valle, M.; Fynbo, J. P. U.; Jakobsson, P.; Klose, S.; Kuncarayakti, H.; Leloudas, G.; Milvang-Jensen, B.; Møller, P.; Puech, M.; Rossi, A.; Sánchez-Ramírez, R.; Vergani, S. D.
2017-12-01
The low distance, z = 0.0591, of GRB 100316D and its association with SN 2010bh represent two important motivations for studying this host galaxy and the GRB's immediate environment with the integral field spectrographs like Very Large Telescope/Multi-Unit Spectroscopic Explorer. Its large field of view allows us to create 2D maps of gas metallicity, ionization level and the star formation rate (SFR) distribution maps, as well as to investigate the presence of possible host companions. The host is a late-type dwarf irregular galaxy with multiple star-forming regions and an extended central region with signatures of on-going shock interactions. The gamma-ray burst (GRB) site is characterized by the lowest metallicity, the highest SFR and the youngest (∼20-30 Myr) stellar population in the galaxy, which suggest a GRB progenitor stellar population with masses up to 20-40 M⊙. We note that the GRB site has an offset of ∼660 pc from the most luminous SF region in the host. The observed SF activity in this galaxy may have been triggered by a relatively recent gravitational encounter between the host and a small undetected (LH α ≤ 1036 erg s-1) companion.
Multispecies Biofilms and Host Responses: “Discriminating the Trees from the Forest”
Peyyala, R.; Ebersole, J.L.
2014-01-01
Periodontal diseases reflect a tissue destructive process of the hard and soft tissues of the periodontium that are initiated by the accumulation of multispecies bacterial biofilms in the subgingival sulcus. This accumulation, in both quantity and quality of bacteria, results in a chronic immunoinflammatory response of the host to control this noxious challenge, leading to collateral damage of the tissues. As knowledge of the characteristics of the host-bacterial interactions in the oral cavity has expanded, new knowledge has become available on the complexity of the microbial challenge and the repertoire of host responses to this challenge. Recent results from the Human Microbiome Project continue to extend the array of taxa, genera, and species of bacteria that inhabit the multiple niches in the oral cavity; however, there is rather sparse information regarding variations in how host cells discriminate commensal from pathogenic species, as well as how the host response is affected by the 3-dimensional architecture and interbacterial interactions that occur in the oral biofilms. This review provides some insights into thes- processes by including existing literature on the biology of nonoral bacterial biofilms, and the more recent literature just beginning to document how the oral cavity responds to multispecies biofilms. PMID:23141757
Co-niche construction between hosts and symbionts: ideas and evidence.
Borges, Renee M
2017-07-01
Symbiosis is a process that can generate evolutionary novelties and can extend the phenotypic niche space of organisms. Symbionts can act together with their hosts to co-construct host organs, within which symbionts are housed. Once established within hosts, symbionts can also influence various aspects of host phenotype, such as resource acquisition, protection from predation by acquisition of toxicity, as well as behaviour. Once symbiosis is established, its fidelity between generations must be ensured. Hosts evolve various mechanisms to screen unwanted symbionts and to facilitate faithful transmission of mutualistic partners between generations. Microbes are the most important symbionts that have influenced plant and animal phenotypes; multicellular organisms engage in developmental symbioses with microbes at many stages in ontogeny. The co-construction of niches may result in composite organisms that are physically nested within each other. While it has been advocated that these composite organisms need new evolutionary theories and perspectives to describe their properties and evolutionary trajectories, it appears that standard evolutionary theories are adequate to explore selection pressures on their composite or individual traits. Recent advances in our understanding of composite organisms open up many important questions regarding the stability and transmission of these units.
Anany, H.; Chen, W.; Pelton, R.; Griffiths, M. W.
2011-01-01
The ability of phages to specifically interact with and lyse their host bacteria makes them ideal antibacterial agents. The range of applications of bacteriophage can be extended by their immobilization on inert surfaces. A novel method for the oriented immobilization of bacteriophage has been developed. The method was based on charge differences between the bacteriophage head, which exhibits an overall net negative charge, and the tail fibers, which possess an overall net positive charge. Hence, the head would be more likely to attach to positively charged surfaces, leaving the tails free to capture and lyse bacteria. Cellulose membranes modified so that they had a positive surface charge were used as the support for phage immobilization. It was established that the number of infective phages immobilized on the positively charged cellulose membranes was significantly higher than that on unmodified membranes. Cocktails of phages active against Listeria or Escherichia coli immobilized on these membranes were shown to effectively control the growth of L. monocytogenes and E. coli O157:H7 in ready-to-eat and raw meat, respectively, under different storage temperatures and packaging conditions. The phage storage stability was investigated to further extend their industrial applications. It was shown that lyophilization can be used as a phage-drying method to maintain their infectivity on the newly developed bioactive materials. In conclusion, utilizing the charge difference between phage heads and tails provided a simple technique for oriented immobilization applicable to a wide range of phages and allowed the retention of infectivity. PMID:21803890
Lateritic, supergene rare earth element (REE) deposits
Cocker, Mark D.
2014-01-01
Intensive lateritic weathering of bedrock under tropical or sub-tropical climatic conditions can form a variety of secondary, supergene-type deposits. These secondary deposits may range in composition from aluminous bauxites to iron and niobium, and include rare earth elements (REE). Over 250 lateritic deposits of REE are currently known and many have been important sources of REE. In southeastern China, lateritic REE deposits, known as ion-adsorption type deposits, have been the world’s largest source of heavy REE (HREE). The lateritized upper parts of carbonatite intrusions are being investigated for REE in South America, Africa, Asia and Australia, with the Mt. Weld deposit in Australia being brought into production in late 2012. Lateritic REE deposits may be derived from a wide range of primary host rocks, but all have similar laterite and enrichment profiles, and are probably formed under similar climatic conditions. The weathering profile commonly consists of a depleted zone, an enriched zone, and a partially weathered zone which overlie the protolith. Lateritic weathering may commonly extend to depths of 30 to 60 m. REE are mobilized from the breakdown of primary REE-bearing minerals and redeposited in the enriched zone deeper in the weathering horizon as secondary minerals, as colloids, or adsorbed on other secondary minerals. Enrichment of REE may range from 3 to 10 times that of the source lithology; in some instances, enrichment may range up to 100 times.
Seasonal parasitism and host specificity of Trissolcus japonicus in northern China
USDA-ARS?s Scientific Manuscript database
The Asian egg parasitoid Trissolcus japonicus is considered the most promising species for classical biological control of Halyomorpha halys. We investigated the fundamental and ecological host range of T. japonicus in northern China to define its host specificity, and we determined that T. japonicu...
Spatially Resolved Spectroscopy of Narrow-line Seyfert 1 Host Galaxies
NASA Astrophysics Data System (ADS)
Scharwächter, J.; Husemann, B.; Busch, G.; Komossa, S.; Dopita, M. A.
2017-10-01
We present optical integral field spectroscopy for five z< 0.062 narrow-line Seyfert 1 (NLS1) galaxies, probing their host galaxies at ≳ 2{--}3 {kpc} scales. Emission lines from the active galactic nucleus (AGN) and the large-scale host galaxy are analyzed separately, based on an AGN-host decomposition technique. The host galaxy gas kinematics indicates large-scale gas rotation in all five sources. At the probed scales of ≳ 2{--}3 {kpc}, the host galaxy gas is found to be predominantly ionized by star formation without any evidence of a strong AGN contribution. None of the five objects shows specific star formation rates (SFRs) exceeding the main sequence of low-redshift star-forming galaxies. The specific SFRs for MCG-05-01-013 and WPVS 007 are roughly consistent with the main sequence, while ESO 399-IG20, MS 22549-3712, and TON S180 show lower specific SFRs, intermediate to the main sequence and the red quiescent galaxies. The host galaxy metallicities, derived for the two sources with sufficient data quality (ESO 399-IG20 and MCG-05-01-013), indicate central oxygen abundances just below the low-redshift mass-metallicity relation. Based on this initial case study, we outline a comparison of AGN and host galaxy parameters as a starting point for future extended NLS1 studies with similar methods.
Andreou, Demetra; Gozlan, Rodolphe Elie
2016-08-01
The rosette agent Sphaerothecum destruens is a novel pathogen, which is currently believed to have been introduced into Europe along with the introduction of the invasive fish topmouth gudgeon Pseudorasbora parva (Temminck & Schlegel, 1846). Its close association with P. parva and its wide host species range and associated host mortalities, highlight this parasite as a potential source of disease emergence in European fish species. Here, using a meta-analysis of the reported S. destruens prevalence across all reported susceptible hosts species; we calculated host-specificity providing support that S. destruens is a true generalist. We have applied all the available information on S. destruens and host-range to an established framework for risk-assessing non-native parasites to evaluate the risks posed by S. destruens and discuss the next steps to manage and prevent disease emergence of this generalist parasite.
USDA-ARS?s Scientific Manuscript database
Host range tests were conducted with Colletotrichum gloeosporioides f. sp. salsolae (CGS) in quarantine to determine whether the fungus is safe to release in N. America for biological control of tumbleweed (Salsola tragus L., Chenopodiaceae). Ninety-two accessions were analyzed from 19 families and...
USDA-ARS?s Scientific Manuscript database
The host range of Eucosmophora schinusivora Davis & Wheeler (Lepidoptera: Gracillariidae) was studied to assess its suitability as a biological control agent of Schinus terebinthifolius Raddi (Anacardiaceae), a serious environmental and agricultural weed in the USA and elsewhere in the world. The l...
USDA-ARS?s Scientific Manuscript database
In this study we investigated the host range, transmission and symptom development of TVCV in several species of plants, as a step toward developing management strategy against seed transmissible viruses. While several species of plants failed to show symptoms of TVCV infection, we report that bush ...
Feng, Yansong; Li, Ping; Zhuang, Xuming; Ye, Kaiqi; Peng, Tai; Liu, Yu; Wang, Yue
2015-08-14
A novel phosphorescent host FPYPCA possessing the bipolar charge transporting ability realizes the most efficient deep-red PhOLED, which maintains very high-level EQEs of >23% at rather a high and wide luminance range of 1000-10 000 cd m(-2).
USDA-ARS?s Scientific Manuscript database
Apanteles opuntiarum, a parasitoid of cactus-feeding lepidopteran larvae, was incorrectly identified as A. alexanderi during the last 50 years. The discovery of A. opuntiarum as a new and separate species was followed by studies of its native host range. These studies revealed that the host range o...
Pedrotti, Emilio; Carones, Francesco; Aiello, Francesco; Mastropasqua, Rodolfo; Bruni, Enrico; Bonacci, Erika; Talli, Pietro; Nucci, Carlo; Mariotti, Cesare; Marchini, Giorgio
2018-02-01
To compare the visual acuity, refractive outcomes, and quality of vision in patients with bilateral implantation of 4 intraocular lenses (IOLs). Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, and Carones Ophthalmology Center, Milano, Italy. Prospective case series. The study included patients who had bilateral cataract surgery with the implantation of 1 of 4 IOLs as follows: Tecnis 1-piece monofocal (monofocal IOL), Tecnis Symfony extended range of vision (extended-range-of-vision IOL), Restor +2.5 diopter (D) (+2.5 D multifocal IOL), and Restor +3.0 D (+3.0 D multifocal IOL). Visual acuity, refractive outcome, defocus curve, objective optical quality, contrast sensitivity, spectacle independence, and glare perception were evaluated 6 months after surgery. The study comprised 185 patients. The extended-range-of-vision IOL (55 patients) showed better distance visual outcomes than the monofocal IOL (30 patients) and high-addition apodized diffractive-refractive multifocal IOLs (P ≤ .002). The +3.0 D multifocal IOL (50 patients) showed the best near visual outcomes (P < .001). The +2.5 D multifocal IOL (50 patients) and extended-range-of-vision IOL provided significantly better intermediate visual outcomes than the other 2 IOLs, with significantly better vision for a defocus level of -1.5 D (P < .001). Better spectacle independence was shown for the +2.5 D multifocal IOL and extended-range-of-vision IOL (P < .001). The extended-range-of-vision IOL and +2.5 D multifocal IOL provided significantly better intermediate visual restoration after cataract surgery than the monofocal IOL and +3.0 D multifocal IOL, with significantly better quality of vision with the extended-range-of-vision IOL. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L.
Hernandez-Lucas, I; Segovia, L; Martinez-Romero, E; Pueppke, S G
1995-01-01
We determined the nucleotide sequences of 16S rRNA gene segments from five Rhizobium strains that have been isolated from tropical legume species. All share the capacity to nodulate Phaseolus vulgaris L., the common bean. Phylogenetic analysis confirmed that these strains are of two different chromosomal lineages. We defined the host ranges of two strains of Rhizobium etli and three strains of R. tropici, comparing them with those of the two most divergently related new strains. Twenty-two of the 43 tested legume species were nodulated by three or more of these strains. All seven strains have broad host ranges that include woody species such as Albizia lebbeck, Gliricidia maculata, and Leucaena leucocephala. PMID:7618891
Hoddle, Mark S; Pandey, Raju
2014-02-01
ABSTRACT Tests evaluating the host range of Tamarixia radiata (Waterson) (Hymenoptera: Eulophidae), a parasitoid of the pestiferous Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), sourced from the Punjab of Pakistan, were conducted in quarantine at the University of California, Riverside, CA. Seven nontarget psyllid species (five native and two self-introduced species) representing five families were exposed to T radiata under the following three different exposure scenarios: 1) sequential no-choice tests, 2) static no-choice tests, and 3) choice tests. Nontarget species were selected for testing based on the following criteria: 1) taxonomic relatedness to the target, D. citri; 2) native psyllids inhabiting native host plants related to citrus that could release volatiles attractive to T. radiata; 3) native psyllids with a high probability of occurrence in native vegetation surrounding commercial citrus groves that could be encountered by T. radiata emigrating from D. citri-infested citrus orchards; 4) a common native pest psyllid species; and 5) a beneficial psyllid attacking a noxious weed. The results of host range testing were unambiguous; T radiata exhibited a narrow host range and high host specificity, with just one species of nontarget psyllid, the abundant native pest Bactericera cockerelli Sulc, being parasitized at low levels (< 5%). These results suggest that the likelihood of significant nontarget impacts is low, and the establishment of T. radiata in southern California for the classical biological control of D. citri poses negligible environmental risk.
On the development of an underground geoscience laboratory at Boulby in NE England (Invited)
NASA Astrophysics Data System (ADS)
Petley, D. N.; Rosser, N.; Barlow, J.; Brain, M. J.; Lim, M.; Sapsford, M.; Pybus, D.
2009-12-01
The Boulby Mine in NE England is a major potash extraction facility located in NE England. Opened in 1973, the mine extracts both potash and rock salt from Zechstein deposits located at a depth of about 1100 m below the land surface. For the last 20 years the mine has housed an important laboratory built to provide a base for Dark Matter research. However, in the last ten years the mine has progressively become been the site of research into geophysical and geological processes, primarily through a strategic partnership between the mine operators, Cleveland Potash Ltd, and the University of Durham. The site is now the base for an initial proof of concept project, funded by the Regional Development Agency One Northeast, to explore the viability of establishing a permanent geosciences research facility at Boulby. The vision is a facility that provides access for researchers into the range of geological environments at Boulby, extending from the coastal cliffs at the surface, through the access shafts to the deepest potash seams. The facility is designed to host research in geophysics, hydrology, geophysics, geomorphology, geochemistry, microbiology, rock mechanics, mining engineering, petrology and related fields. This proof of concept study has three key strategic aims: 1. To establish the range of uses of a research laboratory at Boulby and to determine the nature of the facilities required; 2. To initiate research programmes into: a. palaeoenvironmental reconstruction of the Zechstein deposits; b. the mechanics of the potash and halite rocks; and c. the mechanisms of failure of the coastal cliffs; 3. To construct an initial four serviced research caverns within the mine. The proof of concept stage of the project is intended to run until September 2010, with development of the facility being completed by 2015. However, the facility is currently in a position to host research projects across a wide range of disciplines.
Kriticos, Darren J.; Morin, Louise; Leriche, Agathe; Anderson, Robert C.; Caley, Peter
2013-01-01
Puccinia psidii sensu lato (s.l.) is an invasive rust fungus threatening a wide range of plant species in the family Myrtaceae. Originating from Central and South America, it has invaded mainland USA and Hawai'i, parts of Asia and Australia. We used CLIMEX to develop a semi-mechanistic global climatic niche model based on new data on the distribution and biology of P. psidii s.l. The model was validated using independent distribution data from recently invaded areas in Australia, China and Japan. We combined this model with distribution data of its potential Myrtaceae host plant species present in Australia to identify areas and ecosystems most at risk. Myrtaceaeous species richness, threatened Myrtaceae and eucalypt plantations within the climatically suitable envelope for P. psidii s.l in Australia were mapped. Globally the model identifies climatically suitable areas for P. psidii s.l. throughout the wet tropics and sub-tropics where moist conditions with moderate temperatures prevail, and also into some cool regions with a mild Mediterranean climate. In Australia, the map of species richness of Myrtaceae within the P. psidii s.l. climatic envelope shows areas where epidemics are hypothetically more likely to be frequent and severe. These hotspots for epidemics are along the eastern coast of New South Wales, including the Sydney Basin, in the Brisbane and Cairns areas in Queensland, and in the coastal region from the south of Bunbury to Esperance in Western Australia. This new climatic niche model for P. psidii s.l. indicates a higher degree of cold tolerance; and hence a potential range that extends into higher altitudes and latitudes than has been indicated previously. The methods demonstrated here provide some insight into the impacts an invasive species might have within its climatically suited range, and can help inform biosecurity policies regarding the management of its spread and protection of valued threatened assets. PMID:23704988
Kong, Fred Ka-Wai; Chan, Alan Kwun-Wa; Ng, Maggie; Low, Kam-Hung; Yam, Vivian Wing-Wah
2017-11-20
Discrete pentanuclear Pt II stacks were prepared by the host-guest adduct formation between multinuclear tweezer-type Pt II complexes. The formation of the Pt II stacks in solution was accompanied by color changes and the turning on of near-infrared emission resulting from Pt⋅⋅⋅Pt and π-π interactions. The X-ray crystal structure revealed the formation of a discrete 1:1 adduct, in which a linear stack of five Pt II centers with extended Pt⋅⋅⋅Pt interactions was observed. Additional binding affinity and stability have been achieved through a multinuclear host-guest system. The binding behaviors can be fine-tuned by varying the spacer between the two Pt II moieties in the guests. This work provides important insights for the construction of discrete higher-order supramolecular metal-ligand aggregates using a tweezer-directed approach. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Host plants of the wheat stem sawfly (Hymenoptera: Cephidae)
USDA-ARS?s Scientific Manuscript database
Wheat stem sawfly (Cephus cinctus Norton) is a pest of economic importance across much of the wheat cultivating areas of the western Great Plains as well as an ecologically important insect due to its wide range of grass hosts. Little research has been published involving the native host preference ...
Identifying Francisella tularensis genes required for growth in host cells
USDA-ARS?s Scientific Manuscript database
Technical Abstract: Francisella tularensis is a highly virulent Gram negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cel...
Uromyces ciceris-arietini, the cause of chickpea rust: new hosts in the Trifolieae, Fabaceae
USDA-ARS?s Scientific Manuscript database
Plants of Medicago polymorpha in Riverside and San Diego, California were collected with severe rust caused by Uromyces ciceris-arietini. Reported hosts of U. ciceris-arietini are Cicer arietinum (chickpea) and Medicago polyceratia. To confirm the potential new host range, a monouredinial isolate RM...
Vision-Mediated exploitation of a novel host plant by a tephritid fruit fly
USDA-ARS?s Scientific Manuscript database
Shortly after its introduction into the Hawaiian Islands around 1895, the polyphagous, invasive fruit fly Bactrocera cucurbitae (Coquillett)(Diptera:Tephritidae) was provided the opportunity to expand its host range to include a novel host, papaya (Carica papaya). It has been documented that female ...
Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P
2009-10-22
Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.
Zhang, H.; Fouts, D. E.; DePew, J.
2013-01-01
ϕEf11 is a temperate bacteriophage originally isolated by induction from a lysogenic Enterococcus faecalis strain recovered from an infected root canal, and the ϕEf11 prophage is widely disseminated among strains of E. faecalis. Because E. faecalis has emerged as a significant opportunistic human pathogen, we were interested in examining the genes and regulatory sequences predicted to be critical in the establishment/maintenance of lysogeny by ϕEf11 as a first step in the construction of the genome of a virulent, highly lytic phage that could be used in treating serious E. faecalis infections. Passage of ϕEf11 in E. faecalis JH2-2 yielded a variant that produced large, extensively spreading plaques in lawns of indicator cells, and elevated phage titres in broth cultures. Genetic analysis of the cloned virus producing the large plaques revealed that the variant was a recombinant between ϕEf11 and a defective ϕFL1C-like prophage located in the E. faecalis JH2-2 chromosome. The recombinant possessed five ORFs of the defective ϕFL1C-like prophage in place of six ORFs of the ϕEf11 genome. Deletion of the putative lysogeny gene module (ORFs 31–36) and replacement of the putative cro promoter from the recombinant phage genome with a nisin-inducible promoter resulted in no loss of virus infectivity. The genetic construct incorporating all the aforementioned ϕEf11 genomic modifications resulted in the generation of a variant that was incapable of lysogeny and insensitive to repressor, rendering it virulent and highly lytic, with a notably extended host range. PMID:23579685
Komorová, Petronela; Sitko, Jiljí; Špakulová, Marta; Hurníková, Zuzana
2016-07-01
During 2012-2014 up to 286 birds of the orders Falconiformes (5 species), Accipitriformes (11 species), and Strigiformes (7 species) were examined for trematodes and this represents the first detailed study in Slovakia. A total of 12 trematode species belonging to the families Diplostomidae, Cyathocotylidae, Strigeidae, and Opisthorchiidae were identified. Rare infections were found in falcons where only two species (40 %) and three of 85 examined birds (3.5 %) were infected with a low range of two to four worms of generalists Strigea falconis or Plagiorchis elegans. Contrary to that, ten accipitriformes species (90.9 %) and 63 of 156 bird individuals (40.4 %) were infected with nine flukes: Conodiplostomum perlatum, Conodiplostomum spathula, Neodiplostomum attenuatum, Neodiplostomum spathoides, Parastrigea flexilis, Strigea falconis, Strigea vandenbrokae, Paracoenogonimus ovatus, and Metorchis bilis. S. falconis and N. attenuatum were the most frequent, occurring in parallel in eight and four bird species, in numbers up to 575 and 224. The intensity of infection with other fluke species was low ranging from one to 13 worms. Three owl (Strigiformes) representatives (42.9 %) were exclusive hosts for Neodiplostomum canaliculatum and Strigea strigis, and the proportion of positive and dissected individual birds was 10:45 (22.2 %). Both trematodes occurred in two or three owl species. In conclusion, apparent dissimilarity of trematode load of three unrelated lines of falcons, eagles, and owls was revealed. The present study extends our knowledge on the composition of the trematode fauna in Slovakia as all species except S. falconis and P. elegans that represent new host and species records in Slovakia.
NASA Astrophysics Data System (ADS)
da Costa, I. Ribeiro; Mourão, C.; Récio, C.; Guimarães, F.; Antunes, I. M.; Ramos, J. Farinha; Barriga, F. J. A. S.; Palmer, M. R.; Milton, J. A.
2014-04-01
Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl-oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17-57 %) and Mg/(Mg + Fe) ratios (0.19-0.50 in two-mica granitic rocks, and 0.05-0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (-78.2 ± 4.7 ‰) and δ11B (-10.7 to -9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31-0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = -29.5 ‰, and δ11B = -9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26-0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1-13.3 ‰), though wider-ranging δD (-58.5 to -36.5 ‰) and δ11B (-10.2 to -8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35-0.78] and oxydravite [Mg/(Mg + Fe) = 0.51-0.58], respectively. Boron contents of the granitic rocks are low (<650 ppm) compared to the minimum B contents normally required for tourmaline saturation in granitic melts, implying loss of B and other volatiles to the surrounding host-rocks during the late-magmatic stages. This process was responsible for tourmalinization at the exocontact of the Penamacor-Monsanto pluton, either as direct tourmaline precipitation in cavities and fractures crossing the pluton margin (vein/breccia tourmalinites), or as replacement of mafic minerals (chlorite or biotite) in the host-rocks (replacement tourmalinites) along the exocontact of the granite. Thermometry based on 18O equilibrium fractionation between tourmaline and fluid indicates that a late, B-enriched magmatic aqueous fluid (av. δ18O ~12.1 ‰, at ~600 °C) precipitated the vein/breccia tourmaline (δ18O ~12.4 ‰) at ~500-550 °C, and later interacted with the cooler surrounding host-rocks to produce tourmaline at lower temperatures (400-450 °C), and an average δ18O ~13.2 ‰, closer to the values for the host-rock. Although B-metasomatism associated with some granitic plutons in the Iberian Peninsula seems to be relatively confined in space, extending integrated studies such as this to a larger number of granitic plutons may afford us a better understanding of Variscan magmatism and related mineralizations.
Goodman, Brett A; Johnson, Pieter T J
2011-01-01
By definition, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite transmission between hosts, such that manipulated hosts can be considered extensions of the parasite's phenotype. While well accepted in principle, surprisingly few studies have quantified how parasite manipulations alter host performance and survival under field and laboratory conditions. By interfering with limb development, the trematode Ribeiroia ondatrae causes particularly severe morphological alterations within amphibian hosts that provide an ideal system to evaluate parasite-induced changes in phenotype. Here, we coupled laboratory performance trials with a capture-mark-recapture study of 1388 Pacific chorus frogs (Pseudacris regilla) to quantify the effects of parasite-induced malformations on host locomotion, foraging, and survival. Malformations, which affected ∼ 50% of metamorphosing frogs in nature, caused dramatic reductions in all measures of organismal function. Malformed frogs exhibited significantly shorter jumping distances (41% reduction), slower swimming speeds (37% reduction), reduced endurance (66% reduction), and lower foraging success relative to infected hosts without malformations. Furthermore, while normal and malformed individuals had comparable survival within predator-free exclosures, deformed frogs in natural populations had 22% lower biweekly survival than normal frogs and rarely recruited to the adult population over a two-year period. Our results highlight the ability of parasites to deeply alter multiple dimensions of host phenotype with important consequences for performance and survival. These patterns were best explained by malformation status, rather than infection per se, helping to decouple the direct and indirect effects of parasitism on host fitness.
Goodman, Brett A.; Johnson, Pieter T. J.
2011-01-01
Background By definition, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite transmission between hosts, such that manipulated hosts can be considered extensions of the parasite's phenotype. While well accepted in principle, surprisingly few studies have quantified how parasite manipulations alter host performance and survival under field and laboratory conditions. Methodology/Principal Findings By interfering with limb development, the trematode Ribeiroia ondatrae causes particularly severe morphological alterations within amphibian hosts that provide an ideal system to evaluate parasite-induced changes in phenotype. Here, we coupled laboratory performance trials with a capture-mark-recapture study of 1388 Pacific chorus frogs (Pseudacris regilla) to quantify the effects of parasite-induced malformations on host locomotion, foraging, and survival. Malformations, which affected ∼50% of metamorphosing frogs in nature, caused dramatic reductions in all measures of organismal function. Malformed frogs exhibited significantly shorter jumping distances (41% reduction), slower swimming speeds (37% reduction), reduced endurance (66% reduction), and lower foraging success relative to infected hosts without malformations. Furthermore, while normal and malformed individuals had comparable survival within predator-free exclosures, deformed frogs in natural populations had 22% lower biweekly survival than normal frogs and rarely recruited to the adult population over a two-year period. Conclusions/Significance Our results highlight the ability of parasites to deeply alter multiple dimensions of host phenotype with important consequences for performance and survival. These patterns were best explained by malformation status, rather than infection per se, helping to decouple the direct and indirect effects of parasitism on host fitness. PMID:21633498
A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies
NASA Astrophysics Data System (ADS)
Lawther, D.; Vestergaard, M.; Fan, X.
2018-04-01
We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.
Kim, Jaynee R.; Hayes, Kenneth A.; Yeung, Norine W.; Cowie, Robert H.
2014-01-01
Eosinophilic meningitis caused by the parasitic nematode Angiostrongylus cantonensis is an emerging infectious disease with recent outbreaks primarily in tropical and subtropical locations around the world, including Hawaii. Humans contract the disease primarily through ingestion of infected gastropods, the intermediate hosts of Angiostrongylus cantonensis. Effective prevention of the disease and control of the spread of the parasite require a thorough understanding of the parasite's hosts, including their distributions, as well as the human and environmental factors that contribute to transmission. The aim of this study was to screen a large cross section of gastropod species throughout the main Hawaiian Islands to determine which act as hosts of Angiostrongylus cantonensis and to assess the parasite loads in these species. Molecular screening of 7 native and 30 non-native gastropod species revealed the presence of the parasite in 16 species (2 native, 14 non-native). Four of the species tested are newly recorded hosts, two species introduced to Hawaii (Oxychilus alliarius, Cyclotropis sp.) and two native species (Philonesia sp., Tornatellides sp.). Those species testing positive were from a wide diversity of heterobranch taxa as well as two distantly related caenogastropod taxa. Review of the global literature showed that many gastropod species from 34 additional families can also act as hosts. There was a wide range of parasite loads among and within species, with an estimated maximum of 2.8 million larvae in one individual of Laevicaulis alte. This knowledge of the intermediate host range of Angiostrongylus cantonensis and the range of parasite loads will permit more focused efforts to detect, monitor and control the most important hosts, thereby improving disease prevention in Hawaii as well as globally. PMID:24788772
Interplay between Candida albicans and the Mammalian Innate Host Defense
Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan
2012-01-01
Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867
Sedivy, Claudio; Praz, Christophe J; Müller, Andreas; Widmer, Alex; Dorn, Silvia
2008-10-01
To trace the evolution of host-plant choice in bees of the genus Chelostoma (Megachilidae), we assessed the host plants of 35 Palearctic, North American and Indomalayan species by microscopically analyzing the pollen loads of 634 females and reconstructed their phylogenetic history based on four genes and a morphological dataset, applying both parsimony and Bayesian methods. All species except two were found to be strict pollen specialists at the level of plant family or genus. These oligolectic species together exploit the flowers of eight different plant orders that are distributed among all major angiosperm lineages. Based on ancestral state reconstruction, we found that oligolecty is the ancestral state in Chelostoma and that the two pollen generalists evolved from oligolectic ancestors. The distinct pattern of host broadening in these two polylectic species, the highly conserved floral specializations within the different clades, the exploitation of unrelated hosts with a striking floral similarity as well as a recent report on larval performance on nonhost pollen in two Chelostoma species clearly suggest that floral host choice is physiologically or neurologically constrained in bees of the genus Chelostoma. Based on this finding, we propose a new hypothesis on the evolution of host range in bees.
Gehman, Alyssa-Lois M; Hall, Richard J; Byers, James E
2018-01-23
Host-parasite systems have intricately coupled life cycles, but each interactor can respond differently to changes in environmental variables like temperature. Although vital to predicting how parasitism will respond to climate change, thermal responses of both host and parasite in key traits affecting infection dynamics have rarely been quantified. Through temperature-controlled experiments on an ectothermic host-parasite system, we demonstrate an offset in the thermal optima for survival of infected and uninfected hosts and parasite production. We combine experimentally derived thermal performance curves with field data on seasonal host abundance and parasite prevalence to parameterize an epidemiological model and forecast the dynamical responses to plausible future climate-warming scenarios. In warming scenarios within the coastal southeastern United States, the model predicts sharp declines in parasite prevalence, with local parasite extinction occurring with as little as 2 °C warming. The northern portion of the parasite's current range could experience local increases in transmission, but assuming no thermal adaptation of the parasite, we find no evidence that the parasite will expand its range northward under warming. This work exemplifies that some host populations may experience reduced parasitism in a warming world and highlights the need to measure host and parasite thermal performance to predict infection responses to climate change.
Five challenges in evolution and infectious diseases.
Metcalf, C J E; Birger, R B; Funk, S; Kouyos, R D; Lloyd-Smith, J O; Jansen, V A A
2015-03-01
Evolution is a key aspect of the biology of many pathogens, driving processes ranging from immune escape to changes in virulence. Because evolution is inherently subject to feedbacks, and because pathogen evolution plays out at scales ranging from within-host to between-host and beyond, evolutionary questions provide special challenges to the modelling community. In this article, we provide an overview of five challenges in modelling the evolution of pathogens and their hosts, and point to areas for development, focussing in particular on the issue of linking theory and data. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Varney, Michael C. M.
Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science. In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to deviate from Stokes-like behavior at very low Reynolds numbers and is understood by accounting for periodic landscapes of elastic interaction potential between the particle and cholesteric host medium due to surface anchoring. This work extends our understanding of how colloids interact with liquid crystals and topological defects, and introduces a powerful method of colloidal manipulation with many potential applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Shubhagata, E-mail: sdas@csu.edu.au
Competing roles of coevolution, selective pressure and recombination are an emerging interest in virus evolution. We report a novel aviadenovirus from captive red-bellied parrots (Poicephalus rufiventris) that uncovers evidence of deep recombination among aviadenoviruses. The sequence identity of the virus was most closely related to Turkey adenovirus D (42% similarity) and other adenoviruses in chickens, turkeys and pigeons. Sequencing and comparative analysis showed that the genome comprised 40,930 nucleotides containing 42 predicted open reading frames (ORFs) 19 of which had strong similarity with genes from other adenovirus species. The new genome unveiled a lineage that likely participated in deep recombinationmore » events across the genus Aviadenovirus accounting for an ancient evolutionary relationship. We hypothesize frequent host switch events and recombination among adenovirus progenitors in Galloanserae hosts caused the radiation of extant aviadenoviruses and the newly assembled Poicephalus adenovirus genome points to a potentially broader host range of these viruses among birds. - Highlights: •Shows how a single new genome can change overall phylogeny. •Reveals host switch events among adenovirus progenitors in Galloanserae hosts. •Points to a potentially broader host range of adenoviruses among birds and wildlife .« less
Host specificity in biological control: insights from opportunistic pathogens
Brodeur, Jacques
2012-01-01
Host/prey specificity is a significant concern in biological control. It influences the effectiveness of a natural enemy and the risks it might have on non-target organisms. Furthermore, narrow host specificity can be a limiting factor for the commercialization of natural enemies. Given the great diversity in taxonomy and mode of action of natural enemies, host specificity is a highly variable biological trait. This variability can be illustrated by opportunist fungi from the genus Lecanicillium, which have the capacity to exploit a wide range of hosts – from arthropod pests to fungi causing plant diseases – through different modes of action. Processes determining evolutionary trajectories in host specificity are closely linked to the modes of action of the natural enemy. This hypothesis is supported by advances in fungal genomics concerning the identity of genes and biological traits that are required for the evolution of life history strategies and host range. Despite the significance of specificity, we still need to develop a conceptual framework for better understanding of the relationship between specialization and successful biological control. The emergence of opportunistic pathogens and the development of ‘omic’ technologies offer new opportunities to investigate evolutionary principles and applications of the specificity of biocontrol agents. PMID:22949922
Extended Hard-X-Ray Emission in the Inner Few Parsecs of the Galaxy
NASA Technical Reports Server (NTRS)
Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.; Krivonos, Roman A.; Mori, Kaya; Baganoff, Frederick K.; Barriere, Nicholas M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.;
2015-01-01
The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems2, 3, 4, 5.
NASA Astrophysics Data System (ADS)
Singh, R. G.; Singh, Fouran; Kanjilal, D.; Agarwal, V.; Mehra, R. M.
2009-03-01
White light emission across the extended visible region of the electromagnetic spectrum from the ZnO-porous silicon (PS) nanocomposite is reported. Nanocrystallites of ZnO were grown inside the spongy structures of PS by the chemical route of sol-gel spin coating. The property of the material arises from versatile interactions among the host structures of PS and ZnO. The origin of the observed extended white light emission from 1.4 to 3.3 eV is discussed by developing a flat band energy diagram.
Oleiro, Marina; Mc Kay, Fernando; Wheeler, Gregory S
2011-06-01
During surveys for natural enemies that could be used as classical biological control agents of Schinus terebinthifolius Raddi (Brazilian pepper), the caterpillar, Tecmessa elegans Schaus (Lepidoptera: Notodontidae), was recorded feeding on the leaves of the shrub in South America. The biology and larval and adult host range of this species were examined to determine the insect's suitability for biological control of this invasive weed in North America and Hawaii. Biological observations indicate that the larvae have five instars. When disturbed, the late instar larvae emit formic acid from a prothoracic gland that may protect larvae from generalist predators. Larval host range tests conducted both in South and North America indicated that this species feeds and completes development primarily on members of the Anacardiaceae within the tribe Rhoeae. Oviposition tests indicated that when given a choice in large cages the adults will select the target weed over Pistacia spp. However, considering the many valued plant species in its host range, especially several North American natives, this species will not be considered further for biological control of S. terebinthifolius in North America.
NASA Astrophysics Data System (ADS)
Fillingham, Sean P.; Cooper, Michael C.; Wheeler, Coral; Garrison-Kimmel, Shea; Boylan-Kolchin, Michael; Bullock, James S.
2015-12-01
The vast majority of dwarf satellites orbiting the Milky Way and M31 are quenched, while comparable galaxies in the field are gas rich and star forming. Assuming that this dichotomy is driven by environmental quenching, we use the Exploring the Local Volume in Simulations (ELVIS) suite of N-body simulations to constrain the characteristic time-scale upon which satellites must quench following infall into the virial volumes of their hosts. The high satellite quenched fraction observed in the Local Group demands an extremely short quenching time-scale (˜2 Gyr) for dwarf satellites in the mass range M⋆ ˜ 106-108 M⊙. This quenching time-scale is significantly shorter than that required to explain the quenched fraction of more massive satellites (˜8 Gyr), both in the Local Group and in more massive host haloes, suggesting a dramatic change in the dominant satellite quenching mechanism at M⋆ ≲ 108 M⊙. Combining our work with the results of complementary analyses in the literature, we conclude that the suppression of star formation in massive satellites (M⋆ ˜ 108-1011 M⊙) is broadly consistent with being driven by starvation, such that the satellite quenching time-scale corresponds to the cold gas depletion time. Below a critical stellar mass scale of ˜108 M⊙, however, the required quenching times are much shorter than the expected cold gas depletion times. Instead, quenching must act on a time-scale comparable to the dynamical time of the host halo. We posit that ram-pressure stripping can naturally explain this behaviour, with the critical mass (of M⋆ ˜ 108 M⊙) corresponding to haloes with gravitational restoring forces that are too weak to overcome the drag force encountered when moving through an extended, hot circumgalactic medium.
Implications of the Large O VI Columns around Low-redshift L ∗ Galaxies
NASA Astrophysics Data System (ADS)
McQuinn, Matthew; Werk, Jessica K.
2018-01-01
Observations reveal massive amounts of O VI around star-forming L * galaxies, with covering fractions of near unity extending to the host halo’s virial radius. This O VI absorption is typically kinematically centered upon photoionized gas, with line widths that are suprathermal and kinematically offset from the galaxy. We discuss various scenarios and whether they could result in the observed phenomenology (cooling gas flows, boundary layers, shocks, virialized gas). If collisionally ionized, as we argue is most probable, the O VI observations require that the circumgalactic medium (CGM) of L * galaxies holds nearly all of the associated baryons within a virial radius (∼ {10}11 {M}ȯ ) and hosts massive flows of cooling gas with ≈ 30[{nT}/30 {{cm}}-3 {{K}}] {M}ȯ {{yr}}-1, which must be largely prevented from accreting onto the host galaxy. Cooling and feedback energetics considerations require 10< {nT}< 100 cm‑3 K for the warm and hot halo gases. We argue that virialized gas, boundary layers, hot winds, and shocks are unlikely to directly account for the bulk of the O VI. Furthermore, we show that there is a robust constraint on the number density of many of the photoionized ∼ {10}4 {{K}} absorption systems that yields upper bounds in the range n< (0.1-3) × {10}-3(Z/0.3) cm‑3, suggesting that the dominant pressure in some photoionized clouds is nonthermal. This constraint is in accordance with the low densities inferred from more complex photoionization modeling. The large amount of cooling gas that is inferred could re-form these clouds in a fraction of the halo dynamical time, and it requires much of the feedback energy available from supernovae to be dissipated in the CGM.
Camarinha-Silva, Amelia; Maushammer, Maria; Wellmann, Robin; Vital, Marius; Preuss, Siegfried; Bennewitz, Jörn
2017-07-01
The aim of the present study was to analyze the interplay between gastrointestinal tract (GIT) microbiota, host genetics, and complex traits in pigs using extended quantitative-genetic methods. The study design consisted of 207 pigs that were housed and slaughtered under standardized conditions, and phenotyped for daily gain, feed intake, and feed conversion rate. The pigs were genotyped with a standard 60 K SNP chip. The GIT microbiota composition was analyzed by 16S rRNA gene amplicon sequencing technology. Eight from 49 investigated bacteria genera showed a significant narrow sense host heritability, ranging from 0.32 to 0.57. Microbial mixed linear models were applied to estimate the microbiota variance for each complex trait. The fraction of phenotypic variance explained by the microbial variance was 0.28, 0.21, and 0.16 for daily gain, feed conversion, and feed intake, respectively. The SNP data and the microbiota composition were used to predict the complex traits using genomic best linear unbiased prediction (G-BLUP) and microbial best linear unbiased prediction (M-BLUP) methods, respectively. The prediction accuracies of G-BLUP were 0.35, 0.23, and 0.20 for daily gain, feed conversion, and feed intake, respectively. The corresponding prediction accuracies of M-BLUP were 0.41, 0.33, and 0.33. Thus, in addition to SNP data, microbiota abundances are an informative source of complex trait predictions. Since the pig is a well-suited animal for modeling the human digestive tract, M-BLUP, in addition to G-BLUP, might be beneficial for predicting human predispositions to some diseases, and, consequently, for preventative and personalized medicine. Copyright © 2017 by the Genetics Society of America.
Act together—implications of symbioses in aquatic ciliates
Dziallas, Claudia; Allgaier, Martin; Monaghan, Michael T.; Grossart, Hans-Peter
2012-01-01
Mutual interactions in the form of symbioses can increase the fitness of organisms and provide them with the capacity to occupy new ecological niches. The formation of obligate symbioses allows for rapid evolution of new life forms including multitrophic consortia. Microbes are important components of many known endosymbioses and their short generation times and strong potential for genetic exchange may be important drivers of speciation. Hosts provide endo- and ectosymbionts with stable, nutrient-rich environments, and protection from grazers. This is of particular importance in aquatic ecosystems, which are often highly variable, harsh, and nutrient-deficient habitats. It is therefore not surprising that symbioses are widespread in both marine and freshwater environments. Symbioses in aquatic ciliates are good model systems for exploring symbiont-host interactions. Many ciliate species are globally distributed and have been intensively studied in the context of plastid evolution. Their relatively large cell size offers an ideal habitat for numerous microorganisms with different functional traits including commensalism and parasitism. Phagocytosis facilitates the formation of symbiotic relationships, particularly since some ingested microorganisms can escape the digestion. For example, photoautotrophic algae and methanogens represent endosymbionts that greatly extend the biogeochemical functions of their hosts. Consequently, symbiotic relationships between protists and prokaryotes are widespread and often result in new ecological functions of the symbiotic communities. This enables ciliates to thrive under a wide range of environmental conditions including ultraoligotrophic or anoxic habitats. We summarize the current understanding of this exciting research topic to identify the many areas in which knowledge is lacking and to stimulate future research by providing an overview on new methodologies and by formulating a number of emerging questions in this field. PMID:22891065
AGN are cooler than you think: the intrinsic far-IR emission from QSOs
NASA Astrophysics Data System (ADS)
Symeonidis, M.; Giblin, B. M.; Page, M. J.; Pearson, C.; Bendo, G.; Seymour, N.; Oliver, S. J.
2016-06-01
We present an intrinsic AGN spectral energy distribution (SED) extending from the optical to the submm, derived with a sample of unobscured, optically luminous (νLν,5100 > 1043.5 erg s-1) QSOs at z < 0.18 from the Palomar Green survey. The intrinsic AGN SED was computed by removing the contribution from stars using the 11.3 μm polycyclic aromatic hydrocarbon (PAH) feature in the QSOs' mid-IR spectra; the 1σ uncertainty on the SED ranges between 12 and 45 per cent as a function of wavelength and is a combination of PAH flux measurement errors and the uncertainties related to the conversion between PAH luminosity and star-forming luminosity. Longwards of 20 μm, the shape of the intrinsic AGN SED is independent of the AGN power indicating that our template should be applicable to all systems hosting luminous AGN (νLν, 5100 or L_X(2-10 keV) ≳ 1043.5 erg s-1). We note that for our sample of luminous QSOs, the average AGN emission is at least as high as, and mostly higher than, the total stellar powered emission at all wavelengths from the optical to the submm. This implies that in many galaxies hosting powerful AGN, there is no `safe' broad-band photometric observation (at λ < 1000 μm) which can be used in calculating star formation rates without subtracting the AGN contribution. Roughly, the AGN contribution may be ignored only if the intrinsic AGN luminosity at 5100 AA is at least a factor of 4 smaller than the total infrared luminosity (LIR, 8-1000 μm) of the galaxy. Finally, we examine the implication of our work in statistical studies of star formation in AGN host galaxies.
Campião, Karla Magalhães; Ribas, Augusto Cesar de Aquino; Morais, Drausio Honorio; da Silva, Reinaldo José; Tavares, Luiz Eduardo Roland
2015-01-01
There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR). We also test whether parasite diversity is related to hosts' phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts' phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts' clade diversification suggests it is strongly influenced by ecological and contemporary constrains.
Models of microbiome evolution incorporating host and microbial selection.
Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen
2017-09-25
Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong parental contribution, when host-mediated selection acts on microbes concomitantly. We present a computational framework that integrates different selective processes acting on the evolution of microbiomes. Our framework demonstrates that selection acting on microbes can have a strong effect on microbial diversities and fitnesses, whereas selection on hosts can have weaker outcomes.
Life modeling of thermal barrier coatings for aircraft gas turbine engines
NASA Technical Reports Server (NTRS)
Miller, R. A.
1989-01-01
Thermal barrier coating life models developed under the NASA Lewis Research Center's Hot Section Technology (HOST) Program are summarized. An initial laboratory model and three design-capable models are discussed. Current understanding of coating failure mechanisms are also summarized. The materials and structural aspects of thermal barrier coatings have been successfully integrated under the HOST program to produce models which may now or in the near future be used in design. Efforts on this program continue at Pratt and Whitney Aircraft where their model is being extended to the life prediction of physical vapor deposited thermal barrier coatings.
NASA Astrophysics Data System (ADS)
Druken, K. A.; Trenham, C. E.; Wang, J.; Bastrakova, I.; Evans, B. J. K.; Wyborn, L. A.; Ip, A. I.; Poudjom Djomani, Y.
2016-12-01
The National Computational Infrastructure (NCI) hosts one of Australia's largest repositories (10+ PBytes) of research data, colocated with a petascale High Performance Computer and a highly integrated research cloud. Key to maximizing benefit of NCI's collections and computational capabilities is ensuring seamless interoperable access to these datasets. This presents considerable data management challenges across the diverse range of geoscience data; spanning disciplines where netCDF-CF is commonly utilized (e.g., climate, weather, remote-sensing), through to the geophysics and seismology fields that employ more traditional domain- and study-specific data formats. These data are stored in a variety of gridded, irregularly spaced (i.e., trajectories, point clouds, profiles), and raster image structures. They often have diverse coordinate projections and resolutions, thus complicating the task of comparison and inter-discipline analysis. Nevertheless, much can be learned from the netCDF-CF model that has long served the climate community, providing a common data structure for the atmospheric, ocean and cryospheric sciences. We are extending the application of the existing Climate and Forecast (CF) metadata conventions to NCI's broader geoscience data collections. We present simple implementations that can significantly improve interoperability of the research collections, particularly in the case of line survey data. NCI has developed a compliance checker to assist with the data quality across all hosted netCDF-CF collections. The tool is an extension to one of the main existing CF Convention checkers, that we have modified to incorporate the Attribute Convention for Data Discovery (ACDD) and ISO19115 standards, and to perform parallelised checks over collections of files, ensuring compliance and consistency across the NCI data collections as a whole. It is complemented by a checker that also verifies functionality against a range of scientific analysis, programming, and data visualisation tools. By design, these tests are not necessarily domain-specific, and demonstrate that verified data is accessible to end-users, thus allowing for seamless interoperability with other datasets across a wide range of fields.
An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.
Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B
2017-03-01
Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.
Staphylococcus aureus pathogenesis in diverse host environments
Balasubramanian, Divya; Harper, Lamia; Shopsin, Bo; Torres, Victor J.
2017-01-01
Abstract Staphylococcus aureus is an eminent human pathogen that can colonize the human host and cause severe life-threatening illnesses. This bacterium can reside in and infect a wide range of host tissues, ranging from superficial surfaces like the skin to deeper tissues such as in the gastrointestinal tract, heart and bones. Due to its multifaceted lifestyle, S. aureus uses complex regulatory networks to sense diverse signals that enable it to adapt to different environments and modulate virulence. In this minireview, we explore well-characterized environmental and host cues that S. aureus responds to and describe how this pathogen modulates virulence in response to these signals. Lastly, we highlight therapeutic approaches undertaken by several groups to inhibit both signaling and the cognate regulators that sense and transmit these signals downstream. PMID:28104617
USDA-ARS?s Scientific Manuscript database
Pathogenic leptospires colonize the renal tubules of reservoir hosts of infection and are excreted via urine into the environment. Reservoir hosts include a wide range of domestic and wild animal species and include cattle, dogs and rats which can persistently excrete large numbers of pathogenic lep...
M. Garbelotto; W.J. Otrosina; F.W. Cobb; T.D. Bruns
1998-01-01
Populations of the basidiomycete Heterobasidion annosum display varying degrees, of intersterility and differential host specialization. At least three intersterility groups have been formally described, each characterized by a range of "preferred" hosts. It has been hypothesized that processes of host-pathogen compatibility may have been...
Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Jun, E-mail: Jun.Liu.1@uth.tmc.edu; Chen Chengyen; Shiomi, Daisuke
2011-09-01
Bacteriophage P1 has a contractile tail that targets the conserved lipopolysaccharide on the outer membrane surface of the host for initial adsorption. The mechanism by which P1 DNA enters the host cell is not well understood, mainly because the transient molecular interactions between bacteriophage and bacteria have been difficult to study by conventional approaches. Here, we engineered tiny E. coli host cells so that the initial stages of P1-host interactions could be captured in unprecedented detail by cryo-electron tomography. Analysis of three-dimensional reconstructions of frozen-hydrated specimens revealed three predominant configurations: an extended tail stage with DNA present in the phagemore » head, a contracted tail stage with DNA, and a contracted tail stage without DNA. Comparative analysis of various conformations indicated that there is uniform penetration of the inner tail tube into the E. coli periplasm and a significant movement of the baseplate away from the outer membrane during tail contraction.« less
What is a pathogen? Toward a process view of host-parasite interactions
Méthot, Pierre-Olivier; Alizon, Samuel
2014-01-01
Until quite recently and since the late 19th century, medical microbiology has been based on the assumption that some micro-organisms are pathogens and others are not. This binary view is now strongly criticized and is even becoming untenable. We first provide a historical overview of the changing nature of host-parasite interactions, in which we argue that large-scale sequencing not only shows that identifying the roots of pathogenesis is much more complicated than previously thought, but also forces us to reconsider what a pathogen is. To address the challenge of defining a pathogen in post-genomic science, we present and discuss recent results that embrace the microbial genetic diversity (both within- and between-host) and underline the relevance of microbial ecology and evolution. By analyzing and extending earlier work on the concept of pathogen, we propose pathogenicity (or virulence) should be viewed as a dynamical feature of an interaction between a host and microbes. PMID:25483864
Armitage, David W
2017-11-01
Ecosystem development theory predicts that successional turnover in community composition can influence ecosystem functioning. However, tests of this theory in natural systems are made difficult by a lack of replicable and tractable model systems. Using the microbial digestive associates of a carnivorous pitcher plant, I tested hypotheses linking host age-driven microbial community development to host functioning. Monitoring the yearlong development of independent microbial digestive communities in two pitcher plant populations revealed a number of trends in community succession matching theoretical predictions. These included mid-successional peaks in bacterial diversity and metabolic substrate use, predictable and parallel successional trajectories among microbial communities, and convergence giving way to divergence in community composition and carbon substrate use. Bacterial composition, biomass, and diversity positively influenced the rate of prey decomposition, which was in turn positively associated with a host leaf's nitrogen uptake efficiency. Overall digestive performance was greatest during late summer. These results highlight links between community succession and ecosystem functioning and extend succession theory to host-associated microbial communities.
The quest for extraterrestrial life: what about the viruses?
Griffin, Dale Warren
2013-01-01
Recently, viruses have been recognized as the most numerous entities and the primary drivers of evolution on Earth. Historically, viruses have been mostly ignored in the field of astrobiology due to the view that they are not alive in the classical sense and if encountered would not present risk due to their host-specific nature. What we currently know of viruses is that we are most likely to encounter them on other life-bearing planets; that while some are exquisitely host-specific, many viruses can utilize hundreds of different host species; that viruses are known to exist in our planet's most extreme environments; and that while many do not survive long outside their hosts, some can survive for extended periods, especially in the cold. In our quest for extraterrestrial life, we should be looking for viruses; and while any encountered may pose no risk, the possibility of an encounter with a virus capable of accessing multiple cell types exists, and any prospective contact with such an organism should be treated accordingly.
The quest for extraterrestrial life: what about the viruses?
Griffin, Dale Warren
2013-08-01
Recently, viruses have been recognized as the most numerous entities and the primary drivers of evolution on Earth. Historically, viruses have been mostly ignored in the field of astrobiology due to the view that they are not alive in the classical sense and if encountered would not present risk due to their host-specific nature. What we currently know of viruses is that we are most likely to encounter them on other life-bearing planets; that while some are exquisitely host-specific, many viruses can utilize hundreds of different host species; that viruses are known to exist in our planet's most extreme environments; and that while many do not survive long outside their hosts, some can survive for extended periods, especially in the cold. In our quest for extraterrestrial life, we should be looking for viruses; and while any encountered may pose no risk, the possibility of an encounter with a virus capable of accessing multiple cell types exists, and any prospective contact with such an organism should be treated accordingly.
Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.
Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W
2017-06-01
Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.
Diverse Broad-Host-Range Plasmids from Freshwater Carry Few Accessory Genes
Sen, Diya; Yano, Hirokazu; Bauer, Matthew L.; Rogers, Linda M.; Van der Auwera, Geraldine A.
2013-01-01
Broad-host-range self-transferable plasmids are known to facilitate bacterial adaptation by spreading genes between phylogenetically distinct hosts. These plasmids typically have a conserved backbone region and a variable accessory region that encodes host-beneficial traits. We do not know, however, how well plasmids that do not encode accessory functions can survive in nature. The goal of this study was to characterize the backbone and accessory gene content of plasmids that were captured from freshwater sources without selecting for a particular phenotype or cultivating their host. To do this, triparental matings were used such that the only required phenotype was the plasmid's ability to mobilize a nonconjugative plasmid. Based on complete genome sequences of 10 plasmids, only 5 carried identifiable accessory gene regions, and none carried antibiotic resistance genes. The plasmids belong to four known incompatibility groups (IncN, IncP-1, IncU, and IncW) and two potentially new groups. Eight of the plasmids were shown to have a broad host range, being able to transfer into alpha-, beta-, and gammaproteobacteria. Because of the absence of antibiotic resistance genes, we resampled one of the sites and compared the proportion of captured plasmids that conferred antibiotic resistance to their hosts with the proportion of such plasmids captured from the effluent of a local wastewater treatment plant. Few of the captured plasmids from either site encoded antibiotic resistance. A high diversity of plasmids that encode no or unknown accessory functions is thus readily found in freshwater habitats. The question remains how the plasmids persist in these microbial communities. PMID:24096417
Life history and biology of Fascioloides magna (Trematoda) and its native and exotic hosts
Malcicka, Miriama
2015-01-01
Host–parasite interactions are model systems in a wide range of ecological and evolutionary fields and may be utilized for testing numerous theories and hypotheses in terms of both applied and fundamental research. For instance, they are important in terms of studying coevolutionary arms races, species invasions, and in economic terms the health of livestock and humans. Here, I present a comprehensive description of the life history, biogeography, and biology of the giant liver fluke, Fascioloides magna, and both its intermediate and definitive hosts. F. magna is native to North America where it uses several species of freshwater snails (Lymnaeidae) as intermediate hosts and four main species of ungulates as definitive hosts. The fluke has also been introduced into parts of Europe where it is now established in two lymnaeid snail species and three ungulate species. This study gives a comprehensive description of different developmental stages of the fluke in its two host classes, as well as detailed notes on historical and present distributions of F. magna in North America and Europe as well as in its snail and deer hosts (with range maps provided). Aberrant and dead-end hosts are also discussed in detail, and descriptive phylogenies are provided for all of the organisms. I briefly discuss how F. magna represents a model example of multiple-level ecological fitting, a phenomenon not yet described in the empirical literature. Lastly, I explore possible future scenarios for fluke invasion in Europe, where it is currently expanding its range. PMID:25897378
Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent
2014-01-01
Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John T; Kelly, Kenneth J; Duran, Adam W
Range-extended electric vehicle (EV) technology can be a viable option for reducing fuel consumption from medium-duty (MD) and heavy-duty (HD) engines by approximately 50 percent or more. Such engines have wide variations in use and duty cycles, however, and identifying the vocations/duty cycles most suitable for range-extended applications is vital for maximizing the potential benefits. This presentation provides information about NREL's research on range-extended EV technologies, with a focus on NREL's real-world data collection and analysis approach to identifying the vocations/duty cycles best suited for range-extender applications and to help guide related powertrain optimization and design requirements. The presentation alsomore » details NREL's drive cycle development process as it pertains to package delivery applications.« less
Species coextinctions and the biodiversity crisis.
Koh, Lian Pin; Dunn, Robert R; Sodhi, Navjot S; Colwell, Robert K; Proctor, Heather C; Smith, Vincent S
2004-09-10
To assess the coextinction of species (the loss of a species upon the loss of another), we present a probabilistic model, scaled with empirical data. The model examines the relationship between coextinction levels (proportion of species extinct) of affiliates and their hosts across a wide range of coevolved interspecific systems: pollinating Ficus wasps and Ficus, parasites and their hosts, butterflies and their larval host plants, and ant butterflies and their host ants. Applying a nomographic method based on mean host specificity (number of host species per affiliate species), we estimate that 6300 affiliate species are "coendangered" with host species currently listed as endangered. Current extinction estimates need to be recalibrated by taking species coextinctions into account.
Bamunusinghe, Devinka; Naghashfar, Zohreh; Buckler-White, Alicia; Plishka, Ronald; Baliji, Surendranath; Liu, Qingping; Kassner, Joshua; Oler, Andrew J; Hartley, Janet; Kozak, Christine A
2016-04-01
Mouse leukemia viruses (MLVs) are found in the common inbred strains of laboratory mice and in the house mouse subspecies ofMus musculus Receptor usage and envelope (env) sequence variation define three MLV host range subgroups in laboratory mice: ecotropic, polytropic, and xenotropic MLVs (E-, P-, and X-MLVs, respectively). These exogenous MLVs derive from endogenous retroviruses (ERVs) that were acquired by the wild mouse progenitors of laboratory mice about 1 million years ago. We analyzed the genomes of seven MLVs isolated from Eurasian and American wild mice and three previously sequenced MLVs to describe their relationships and identify their possible ERV progenitors. The phylogenetic tree based on the receptor-determining regions ofenvproduced expected host range clusters, but these clusters are not maintained in trees generated from other virus regions. Colinear alignments of the viral genomes identified segmental homologies to ERVs of different host range subgroups. Six MLVs show close relationships to a small xenotropic ERV subgroup largely confined to the inbred mouse Y chromosome.envvariations define three E-MLV subtypes, one of which carries duplications of various sizes, sequences, and locations in the proline-rich region ofenv Outside theenvregion, all E-MLVs are related to different nonecotropic MLVs. These results document the diversity in gammaretroviruses isolated from globally distributedMussubspecies, provide insight into their origins and relationships, and indicate that recombination has had an important role in the evolution of these mutagenic and pathogenic agents. Laboratory mice carry mouse leukemia viruses (MLVs) of three host range groups which were acquired from their wild mouse progenitors. We sequenced the complete genomes of seven infectious MLVs isolated from geographically separated Eurasian and American wild mice and compared them with endogenous germ line retroviruses (ERVs) acquired early in house mouse evolution. We did this because the laboratory mouse viruses derive directly from specific ERVs or arise by recombination between different ERVs. The six distinctively different wild mouse viruses appear to be recombinants, often involving different host range subgroups, and most are related to a distinctive, largely Y-chromosome-linked MLV ERV subtype. MLVs with ecotropic host ranges show the greatest variability with extensive inter- and intrasubtype envelope differences and with homologies to other host range subgroups outside the envelope. The sequence diversity among these wild mouse isolates helps define their relationships and origins and emphasizes the importance of recombination in their evolution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Host Factors in Ebola Infection.
Rasmussen, Angela L
2016-08-31
Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.
Mariani, Robert Dominick
2014-09-09
Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.
Isolation and characterization of bacteriophages specific to hydrogen-sulfide-producing bacteria.
Gong, Chao; Heringa, Spencer; Singh, Randhir; Kim, Jinkyung; Jiang, Xiuping
2013-01-01
The objectives of this study were to isolate and characterize bacteriophages specific to hydrogen-sulfide-producing bacteria (SPB) from raw animal materials, and to develop a SPB-specific bacteriophage cocktail for rendering application. Meat, chicken offal, and feather samples collected from local supermarkets and rendering processing plants were used to isolate SPB (n = 142). Bacteriophages (n = 52) specific to SPB were isolated and purified from the above samples using 18 of those isolated SPB strains as hosts. The host ranges of bacteriophages against 5 selected SPB strains (Escherichia coli, Citrobacter freundii, and Hafnia alvei) were determined. Electron microscopy observation of 9 phages selected for the phage cocktail revealed that 6 phages belonged to the family of Siphoviridae and 3 belonged to the Myoviridae family. Restriction enzyme digestion analysis with endonuclease DraI detected 6 distinguished patterns among the 9 phages. Phage treatment prevented the growth of SPB for up to 10 h with multiplicity of infection ratios of 1, 10, 100, and 1000 in tryptic soy broth at 30 °C, and extended the lag phase of SPB growth for 2 h at 22 °C with multiplicities of infection of 10, 100, and 1000. These results suggest that the selected bacteriophage cocktail has a high potential for phage application to control SPB in raw animal materials destined for the rendering process.
Orris, Greta J.; Dunlap, Pamela; Wallis, John; Wynn, Jeff
2015-01-01
As part of a larger study, the U.S. Geological Survey undertook a study to identify the potential for phosphate deposits in Afghanistan. As part of this study, a geographic information system was constructed containing a database of phosphate occurrences in Afghanistan and adjacent countries, and a database of potential host lithologies compiled from 1:1,000,000 scale maps. Within Afghanistan, a handful of known occurrences and reports indicate the presence of phosphate in Permian, Cretaceous, and Paleogene sediments and in carbonatite. With the exception of the Khanneshin carbonatite, very little is known about these occurrences. In the countries surrounding Afghanistan, economic phosphate is known to occur in Cambrian, Devonian, and Paleogene sediments and in Kiruna-type Fe-apatite deposits. Many of the host units may extend into Afghanistan or equivalent units may be present. Although the possibility of economic phosphate deposits exist for Afghanistan, the need for detailed exploration for phosphate, the remoteness of some locations, and the probability that a deposit would not be exposed at the surface mean that one or more deposits are not likely to be identified in the near future. Even if a phosphate-bearing deposit is identified in Afghanistan, it is not clear if the probable size, thickness, and grade ranges would allow economic development of the hypothesized resource.
Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys
2010-01-01
Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268
Burbank, Lindsey P; Stenger, Drake C
2016-08-01
The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.
Seven challenges for metapopulation models of epidemics, including households models.
Ball, Frank; Britton, Tom; House, Thomas; Isham, Valerie; Mollison, Denis; Pellis, Lorenzo; Scalia Tomba, Gianpaolo
2015-03-01
This paper considers metapopulation models in the general sense, i.e. where the population is partitioned into sub-populations (groups, patches,...), irrespective of the biological interpretation they have, e.g. spatially segregated large sub-populations, small households or hosts themselves modelled as populations of pathogens. This framework has traditionally provided an attractive approach to incorporating more realistic contact structure into epidemic models, since it often preserves analytic tractability (in stochastic as well as deterministic models) but also captures the most salient structural inhomogeneity in contact patterns in many applied contexts. Despite the progress that has been made in both the theory and application of such metapopulation models, we present here several major challenges that remain for future work, focusing on models that, in contrast to agent-based ones, are amenable to mathematical analysis. The challenges range from clarifying the usefulness of systems of weakly-coupled large sub-populations in modelling the spread of specific diseases to developing a theory for endemic models with household structure. They include also developing inferential methods for data on the emerging phase of epidemics, extending metapopulation models to more complex forms of human social structure, developing metapopulation models to reflect spatial population structure, developing computationally efficient methods for calculating key epidemiological model quantities, and integrating within- and between-host dynamics in models. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ohmura, Ryo; Ripmeester, John A.
2011-02-01
Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO2 molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.
Tomé, Beatriz; Pereira, Ana; Jorge, Fátima; Carretero, Miguel A; Harris, D James; Perera, Ana
2018-03-19
Host-parasite relationships are expected to be strongly shaped by host specificity, a crucial factor in parasite adaptability and diversification. Because whole host communities have to be considered to assess host specificity, oceanic islands are ideal study systems given their simplified biotic assemblages. Previous studies on insular parasites suggest host range broadening during colonization. Here, we investigate the association between one parasite group (haemogregarines) and multiple sympatric hosts (of three lizard genera: Gallotia, Chalcides and Tarentola) in the Canary Islands. Given haemogregarine characteristics and insular conditions, we hypothesized low host specificity and/or occurrence of host-switching events. A total of 825 samples were collected from the three host taxa inhabiting the seven main islands of the Canarian Archipelago, including locations where the different lizards occurred in sympatry. Blood slides were screened to assess prevalence and parasitaemia, while parasite genetic diversity and phylogenetic relationships were inferred from 18S rRNA gene sequences. Infection levels and diversity of haplotypes varied geographically and across host groups. Infections were found in all species of Gallotia across the seven islands, in Tarentola from Tenerife, La Gomera and La Palma, and in Chalcides from Tenerife, La Gomera and El Hierro. Gallotia lizards presented the highest parasite prevalence, parasitaemia and diversity (seven haplotypes), while the other two host groups (Chalcides and Tarentola) harbored one haplotype each, with low prevalence and parasitaemia levels, and very restricted geographical ranges. Host-sharing of the same haemogregarine haplotype was only detected twice, but these rare instances likely represent occasional cross-infections. Our results suggest that: (i) Canarian haemogregarine haplotypes are highly host-specific, which might have restricted parasite host expansion; (ii) haemogregarines most probably reached the Canary Islands in three colonization events with each host genus; and (iii) the high number of parasite haplotypes infecting Gallotia hosts and their restricted geographical distribution suggest co-diversification. These findings contrast with our expectations derived from results on other insular parasites, highlighting how host specificity depends on parasite characteristics and evolutionary history.
Can Host Plant Resistance Protect the Quality of Wheat from Fusarium Head Blight?
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) infection reduces the amount of millable grain from an infected field, reduces mill yields, and generally degrades end-use quality. In 2009, the Logan County, KY, wheat trial had extended conditions for infection with FHB resulting in extensive and uniform infection withi...
Blowin' in the wind: both `negative' and `positive' feedback in an outflowing quasar at z~1.6
NASA Astrophysics Data System (ADS)
Cresci, Giovanni
2015-02-01
Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation, preventing massive galaxies to over-grow and producing the red colors of ellipticals. On the other hand, some models are also requiring `positive' AGN feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively-driven winds are available. We present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z=1.59 QSO, in which we clearly resolve a fast (1500 km/s) and extended (up to 13 kpc from the black hole) outflow in the [OIII] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U band flux show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy (`negative feedback'), but also triggering star formation by outflow induced pressure at the edges (`positive feedback'). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.
Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang
2013-01-04
Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.
Jin, Min; Chen, Yanjiang; Xu, Chenxi; Zhang, Xiaobo
2014-01-01
In eukaryotes, the manipulation of the host actin cytoskeleton is a necessary strategy for viral pathogens to invade host cells. Increasing evidence indicates that the actin homolog MreB of bacteria plays key roles in cell shape formation, cell polarity, cell wall biosynthesis, and chromosome segregation. However, the role of bacterial MreB in the bacteriophage infection is not extensively investigated. To address this issue, in this study, the MreB of thermophilic Geobacillus sp. E263 from a deep-sea hydrothermal field was characterized by inhibiting the MreB polymerization and subsequently evaluating the bacteriophage GVE2 infection. The results showed that the host MreB played important roles in the bacteriophage infection at high temperature. After the host cells were treated with small molecule drug A22 or MP265, the specific inhibitors of MreB polymerization, the adsorption of GVE2 and the replication of GVE2 genome were significantly repressed. The confocal microscopy data revealed that MreB facilitated the GVE2 infection by inducing the polar distribution of virions during the phage infection. Our study contributed novel information to understand the molecular events of the host in response to bacteriophage challenge and extended our knowledge about the host-virus interaction in deep-sea vent ecosystems. PMID:24769758
Krebs, Bethany L; Anderson, Tavis K; Goldberg, Tony L; Hamer, Gabriel L; Kitron, Uriel D; Newman, Christina M; Ruiz, Marilyn O; Walker, Edward D; Brawn, Jeffrey D
2014-12-07
Animals can decrease their individual risk of predation by forming groups. The encounter-dilution hypothesis extends the potential benefits of gregariousness to biting insects and vector-borne disease by predicting that the per capita number of insect bites should decrease within larger host groups. Although vector-borne diseases are common and can exert strong selective pressures on hosts, there have been few tests of the encounter-dilution effect in natural systems. We conducted an experimental test of the encounter-dilution hypothesis using the American robin (Turdus migratorius), a common host species for the West Nile virus (WNV), a mosquito-borne pathogen. By using sentinel hosts (house sparrows, Passer domesticus) caged in naturally occurring communal roosts in the suburbs of Chicago, we assessed sentinel host risk of WNV exposure inside and outside of roosts. We also estimated per capita host exposure to infected vectors inside roosts and outside of roosts. Sentinel birds caged inside roosts seroconverted to WNV more slowly than those outside of roosts, suggesting that social groups decrease per capita exposure to infected mosquitoes. These results therefore support the encounter-dilution hypothesis in a vector-borne disease system. Our results suggest that disease-related selective pressures on sociality may depend on the mode of disease transmission. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardamone, Carolin N.; Megan Urry, C.; Brammer, Gabriel
2010-09-20
Using new, highly accurate photometric redshifts from the MUSYC medium-band survey in the Extended Chandra Deep Field-South (ECDF-S), we fit synthetic stellar population models to compare active galactic nucleus (AGN) host galaxies to inactive galaxies at 0.8 {<=} z {<=} 1.2. We find that AGN host galaxies are predominantly massive galaxies on the red sequence and in the green valley of the color-mass diagram. Because both passive and dusty galaxies can appear red in optical colors, we use rest-frame near-infrared colors to separate passively evolving stellar populations from galaxies that are reddened by dust. As with the overall galaxy population,more » {approx}25% of the 'red' AGN host galaxies and {approx}75% of the 'green' AGN host galaxies have colors consistent with young stellar populations reddened by dust. The dust-corrected rest-frame optical colors are the blue colors of star-forming galaxies, which imply that these AGN hosts are not passively aging to the red sequence. At z {approx} 1, AGN activity is roughly evenly split between two modes of black hole growth: the first in passively evolving host galaxies, which may be heating up the galaxy's gas and preventing future episodes of star formation, and the second in dust-reddened young galaxies, which may be ionizing the galaxy's interstellar medium and shutting down star formation.« less
Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle
NASA Astrophysics Data System (ADS)
Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri
2017-01-01
In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.
Dorchin, Netta; Astrin, Jonas J.; Bodner, Levona; Harris, Keith M.
2015-01-01
The Palaearctic gall-midge genus Ozirhincus is unique among the Cecidomyiidae for its morphology and biology. Unlike most other phytophagous gall midges, species in this genus do not induce galls but develop inside achenes of Asteraceae plants. The heads of adults are characterized by an unusually elongate proboscis, the function of which is unclear. Despite a lot of attention from taxonomists in the 19th and early 20th century, a proper revision of the genus has been hindered by complex host associations, the loss of most relevant type material, and the lack of a thorough comparative study of all life stages. The present revision integrated morphological, molecular, and life-history data to clearly define species boundaries within Ozirhincus, and delimit host-plant ranges for each of them. A phylogenetic analysis based on the mitochondrial COI and 16S genes confirmed the validity of four distinct species but did not resolve the relationships among them. All species are oligophages, and some may occur together on the same host plant. Species with wider host-plant ranges have wider European and circum-Mediterranean distribution ranges, whereas species with narrower host ranges are limited to Europe and the Russian Far East. As part of the present work, O. hungaricus is reinstated from synonymy, O. tanaceti is synonymized under O. longicollis, neotypes are designated for O. longicollis and O. millefolii, and a lectotype is designated for O. anthemidis. PMID:26134526
Management Options for Control of a Stunt and Needle Nematode in Southern Forest Nurseries
Michelle M. Cram; Stephen W. Fraedrich
2005-01-01
Crop rotation and fallow are management options that can be used to control plant parasitic nematodes in forest tree nurseries. Before these options can be put into practice, it is important to determine the host range and survivability under fallow of the parasitic nematode to be controlled. The results of host range tests on a needle nematode (Longidorus...
Seroprevalence and risk factors of Chlamydia abortus infection in free-ranging white yaks in China.
Qin, Si-Yuan; Huang, Si-Yang; Yin, Ming-Yang; Tan, Qi-Dong; Liu, Guang-Xue; Zhou, Dong-Hui; Zhu, Xing-Quan; Zhou, Ji-Zhang; Qian, Ai-Dong
2015-01-20
Chlamydia is gram-negative obligate bacteria which causes a wide variety of diseases in humans and animals. To date, there are a few reports about the seroprevalence of Chlamydia and the risk factors associated with Chlamydia infection in yaks in the world. In this study, 974 blood samples were collected from white yaks (Bos grunniens) in Tianzhu Tibetan Autonomous County, Gansu province, northwest China from June 2013 to April 2014. Antibodies against Chlamydia abortus were examined by the indirect hemagglutination (IHA) test, and 158 of 974 (16.22%) white yaks were seropositive for C. abortus antibodies at the cut-off of 1:16. The risk factors associated with seroprevalence were evaluated by a multivariate logistic regression analysis. Region, gender and age of white yak were left out of the final model, due to its insignificance in the logistic regression analysis (P > 0.05). However, season was considered as a major risk factor associated with C. abortus infection in white yaks. To our knowledge, this is the first survey of C. abortus seroprevalence in white yaks in China, which extends the host range for C. abortus and has important implications for public health and the local Tibetan economy.
The mass dependence of satellite quenching in Milky Way-like haloes
NASA Astrophysics Data System (ADS)
Phillips, John I.; Wheeler, Coral; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Tollerud, Erik
2015-02-01
Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant over two orders of magnitude in satellite stellar mass (M⋆ = 108.5-1010.5 M⊙), with only ˜20 per cent of systems quenched as a result of environmental processes. While largely independent of satellite stellar mass, satellite quenching does exhibit clear dependence on the properties of the host. We show that satellites of passive hosts are substantially more likely to be quenched than those of star-forming hosts, and we present evidence that more massive haloes quench their satellites more efficiently. These results extend trends seen previously in more massive host haloes and for higher satellite masses. Taken together, it appears that galaxies with stellar masses larger than about 108 M⊙ are uniformly resistant to environmental quenching, with the relative harshness of the host environment likely serving as the primary driver of satellite quenching. At lower stellar masses (<108 M⊙), however, observations of the Local Group suggest that the vast majority of satellite galaxies are quenched, potentially pointing towards a characteristic satellite mass scale below which quenching efficiency increases dramatically.
Tree phylogenetic diversity promotes host-parasitoid interactions.
Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria
2016-07-13
Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. © 2016 The Author(s).
Harwood, James F.; Chen, Kehui; Müller, Hans-Georg; Wang, Jane-Ling; Vargas, Roger I.; Carey, James R.
2013-01-01
The reproductive ability of female tephritids can be limited and prevented by denying access to host plants and restricting the dietary precursors of vitellogenesis. The mechanisms underlying the delayed egg production in each case are initiated by different physiological processes that are anticipated to have dissimilar effects on lifespan and reproductive ability later in life. The egg laying abilities of laboratory reared females of the Mediterranean fruit fly (Ceratitis capitata Wiedmann) and melon fly (Bactrocera cucurbitae Coquillett) from Hawaii are delayed or suppressed by limiting access to host fruits and dietary protein. In each case, this is expected to prevent the loss of lifespan associated with reproduction until protein or hosts are introduced. Two trends are observed in each species: Firstly, access to protein at eclosion leads to a greater probability of survival and higher reproductive ability than if it is delayed, and secondly, that delayed host access reduces lifetime reproductive ability without improving life expectancy. When host access and protein availability are delayed, the rate of reproductive senescence is reduced in the medfly, whereas the rate of reproductive senescence is generally increased in the melon fly. Overall, delaying reproduction lowers the fitness of females by constraining their fecundity for the remainder of the lifespan without extending the lifespan. PMID:23483775
Yu, Xiaobo; Woolery, Andrew R.; Luong, Phi; Hao, Yi Heng; Grammel, Markus; Westcott, Nathan; Park, Jin; Wang, Jie; Bian, Xiaofang; Demirkan, Gokhan; Hang, Howard C.; Orth, Kim; LaBaer, Joshua
2014-01-01
AMPylation (adenylylation) is a recently discovered mechanism employed by infectious bacteria to regulate host cell signaling. However, despite significant effort, only a few host targets have been identified, limiting our understanding of how these pathogens exploit this mechanism to control host cells. Accordingly, we developed a novel nonradioactive AMPylation screening platform using high-density cell-free protein microarrays displaying human proteins produced by human translational machinery. We screened 10,000 unique human proteins with Vibrio parahaemolyticus VopS and Histophilus somni IbpAFic2, and identified many new AMPylation substrates. Two of these, Rac2, and Rac3, were confirmed in vivo as bona fide substrates during infection with Vibrio parahaemolyticus. We also mapped the site of AMPylation of a non-GTPase substrate, LyGDI, to threonine 51, in a region regulated by Src kinase, and demonstrated that AMPylation prevented its phosphorylation by Src. Our results greatly expanded the repertoire of potential host substrates for bacterial AMPylators, determined their recognition motif, and revealed the first pathogen-host interaction AMPylation network. This approach can be extended to identify novel substrates of AMPylators with different domains or in different species and readily adapted for other post-translational modifications. PMID:25073739
Verocai, Guilherme G; Kutz, Susan J; Hoberg, Eric P
2018-05-03
Varestrongylus lungworms (Nematoda: Protostrongylidae) include 10 nominal species that parasitize wild and domesticated artiodactyles. Eight species are endemic to the western Palearctic and Eurasia, whereas two are limited in distribution to the Nearctic. Complex host associations, primarily among Cervidae and Bovidae (Caprinae), and biogeography were explored based on direct comparisons of parasite and host phylogenies to reveal the historical development of this fauna. Diversification among Varestrongylus species has an intricate history extending over the Pliocene and Quaternary involving episodic processes for geographic and host colonization: (1) Varestrongylus has origins in Eurasia with independent expansion events into bordering ecozones; (2) cervids are ancestral hosts; (3) the caprine-associated V. pneumonicus is basal and a result of an independent host colonization event; (4) secondary diversification, linked to sequential and independent host colonization events, occurred within cervids (V. sagittatus + V. tuvae; V. alpenae; and V. capreoli, V. alces + V. eleguneniensis); (5) at least two additional host colonization events into caprines occurred, followed or not by diversification (V. qinghaiensis + V. longispiculatus; V. capricola, respectively); (6) two independent events of geographic expansion into North America from Eurasia with cervids in the late Pliocene and early Pleistocene are postulated (V. alpenae, V. eleguneniensis). Comparisons based on phylogenetic hypotheses derived from comparative morphology and molecular inference for these nematodes are consistent with the postulated history for coevolutionary and biogeographic history. Episodes of geographic and host colonization, often in relation to rapid shifts in climate and habitat perturbation, have dominated the history of diversification of Varestrongylus.
Invertebrate Iridoviruses: A Glance over the Last Decade
Özcan, Orhan; Ilter-Akulke, Ayca Zeynep; Scully, Erin D.; Özgen, Arzu
2018-01-01
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions. PMID:29601483
Invertebrate Iridoviruses: A Glance over the Last Decade.
İnce, İkbal Agah; Özcan, Orhan; Ilter-Akulke, Ayca Zeynep; Scully, Erin D; Özgen, Arzu
2018-03-30
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions.
Diversity and function of bacterial microbiota in the mosquito holobiont
2013-01-01
Mosquitoes (Diptera: Culicidae) have been shown to host diverse bacterial communities that vary depending on the sex of the mosquito, the developmental stage, and ecological factors. Some studies have suggested a potential role of microbiota in the nutritional, developmental and reproductive biology of mosquitoes. Here, we present a review of the diversity and functions of mosquito-associated bacteria across multiple variation factors, emphasizing recent findings. Mosquito microbiota is considered in the context of possible extended phenotypes conferred on the insect hosts that allow niche diversification and rapid adaptive evolution in other insects. These kinds of observations have prompted the recent development of new mosquito control methods based on the use of symbiotically-modified mosquitoes to interfere with pathogen transmission or reduce the host life span and reproduction. New opportunities for exploiting bacterial function for vector control are highlighted. PMID:23688194
Profiling users in the UNIX os environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dao, V N P; Vemuri, R; Templeton, S J
2000-09-29
This paper presents results obtained by using a method of profiling a user based on the login host, the login time, the command set, and the command set execution time of the profiled user. It is assumed that the user is logging onto a UNIX host on a computer network. The paper concentrates on two areas: short-term and long-term profiling. In short-term profiling the focus is on profiling the user at a given session where user characteristics do not change much. In long-term profiling, the duration of observation is over a much longer period of time. The latter is moremore » challenging because of a phenomenon called concept or profile drift. Profile drift occurs when a user logs onto a host for an extended period of time (over several sessions).« less
Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia
2009-11-01
Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.
Blowin' in the Wind: Both "Negative" and "Positive" Feedback in an Obscured High-z Quasar
NASA Astrophysics Data System (ADS)
Cresci, G.; Mainieri, V.; Brusa, M.; Marconi, A.; Perna, M.; Mannucci, F.; Piconcelli, E.; Maiolino, R.; Feruglio, C.; Fiore, F.; Bongiorno, A.; Lanzuisi, G.; Merloni, A.; Schramm, M.; Silverman, J. D.; Civano, F.
2015-01-01
Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation in galaxies, preventing massive galaxies to overgrow and producing the red colors of ellipticals. On the other hand, some models are also requiring "positive" active galactic nucleus feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively driven winds are available. Here we present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z = 1.59 QSO detected in the XMM-COSMOS survey, in which we clearly resolve a fast (1500 km s-1) and extended (up to 13 kpc from the black hole) outflow in the [O III] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U-band flux from Hubble Space Telescope/Advanced Camera for Surveys imaging enable to map the current star formation in the host galaxy: both tracers independently show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy ("negative feedback"), but also triggering star formation by outflow induced pressure at the edges ("positive feedback"). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.
Maixner, Michael; Albert, Andreas; Johannesen, Jes
2014-01-01
Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan–Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains. PMID:25247065
Maixner, Michael; Albert, Andreas; Johannesen, Jes
2014-08-01
Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan-Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains.
D. Huberli; M. Garbelotto
2011-01-01
Variation in virulence was examined among isolates of Phytophthora ramorum from epidemiologically important or infectious (non-oak) and transmissive dead-end (oak) hosts from North America. Twelve isolates representative of the genetic, geographic and host range of P. ramorum in the western United States were inoculated on...
Janz, N.; Nylin, S.
1997-01-01
Recent theoretical studies have suggested that host range in herbivorous insects may be more restricted by constraints on information processing on the ovipositing females than by trade-offs in larval feeding efficiency. We have investigated if females from polyphagous species have to pay for their ability to localize and evaluate plants from different species with a lower ability to discriminate between conspecific host plants with differences in quality. Females of the monophagous butterflies Polygonia satyrus, Vanessa indica and Inachis io and the polyphagous P. c-album and Cynthia cardui (all in Lepidoptera, Nymphalidae) were given a simultaneous choice of stinging nettles (Urtica dioica) of different quality. In addition, the same choice trial was given to females from two populations of P. c-album with different degrees of specificity. As predicted from the information processing hypothesis, all specialists discriminated significantly against the bad quality nettle, whereas the generalists laid an equal amount of eggs on both types of nettle. There were no corresponding differences between specialist and generalist larvae in their ability to utilize poor quality leaves. Our study therefore suggests that female host-searching behaviour plays an important role in determining host plant range.
NASA Astrophysics Data System (ADS)
Janz, Niklas; Nylin, Soren
1997-05-01
Recent theoretical studies have suggested that host range in herbivorous insects may be more restricted by constraints on information processing on the ovipositing females than by trade-offs in larval feeding efficiency. We have investigated if females from polyphagous species have to pay for their ability to localize and evaluate plants from different species with a lower ability to discriminate between conspecific host plants with differences in quality. Females of the monophagous butterflies Polygonia satyrus, Vanessa indica and Inachis io and the polyphagous P. c-album and Cynthia cardui (all in Lepidoptera, Nymphalidae) were given a simultaneous choice of stinging nettles (Urtica dioica) of different quality. In addition, the same choice trial was given to females from two populations of P. c-album with different degrees of specificity. As predicted from the information processing hypothesis, all specialists discriminated significantly against the bad quality nettle, whereas the generalists laid an equal amount of eggs on both types of nettle. There were no corresponding differences between specialist and generalist larvae in their ability to utilize poor quality leaves. Our study therefore suggests that female host-searching behaviour plays an important role in determining host plant range.
Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens.
John Von Freyend, Simona; Kwok-Schuelein, Terry; Netter, Hans J; Haqshenas, Gholamreza; Semblat, Jean-Philippe; Doerig, Christian
2017-04-21
Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.
A checklist of macroparasites of Liza haematocheila (Temminck & Schlegel) (Teleostei: Mugilidae)
Kostadinova, Aneta
2008-01-01
Background The mugilid fish Liza haematocheila (syn. Mugil soiuy), native to the Western North Pacific, provides opportunities to examine the changes of its parasite fauna after its translocation to the Sea of Azov and subsequent establishment in the Black Sea. However, the information on macroparasites of this host in both ranges of its current distribution comes from isolated studies published in difficult-to-access literature sources. Materials and methods Data from 53 publications, predominantly in Chinese, Russian and Ukrainian, were compiled from an extensive search of the literature and the Host-Parasite Database maintained up to 2005 at the Natural History Museum, London. Results The complete checklist of the metazoan parasites of L. haematocheila throughout its distributional range comprises summarised information for 69 nominal species of helminth and ectoparasitic crustacean parasites, from 45 genera and 27 families (370 host-parasite records in total) and includes the name of the parasite species, the area/locality of the host capture, and the author and date of the published record. The taxonomy is updated and the validity of the records and synonymies are critically evaluated. A comparison of the parasite faunas based on the records in the native and introduced/invasive range of L. haematocheila suggests that a large number of parasite species was 'lost' in the new distributional range whereas an even greater number was 'gained'. Conclusion Although the present checklist provides information that will facilitate future studies, the interesting question of macroparasite faunal diversity in L. haematocheila in its natural and introduced/invasive ranges cannot be dealt with the current data because of unreliability associated with the large number of non-documented and questionable records. This stresses the importance of data quality analysis in using host-parasite database and checklist data. PMID:19117506
A checklist of macroparasites of Liza haematocheila (Temminck & Schlegel) (Teleostei: Mugilidae).
Kostadinova, Aneta
2008-12-31
The mugilid fish Liza haematocheila (syn. Mugil soiuy), native to the Western North Pacific, provides opportunities to examine the changes of its parasite fauna after its translocation to the Sea of Azov and subsequent establishment in the Black Sea. However, the information on macroparasites of this host in both ranges of its current distribution comes from isolated studies published in difficult-to-access literature sources. Data from 53 publications, predominantly in Chinese, Russian and Ukrainian, were compiled from an extensive search of the literature and the Host-Parasite Database maintained up to 2005 at the Natural History Museum, London. The complete checklist of the metazoan parasites of L. haematocheila throughout its distributional range comprises summarised information for 69 nominal species of helminth and ectoparasitic crustacean parasites, from 45 genera and 27 families (370 host-parasite records in total) and includes the name of the parasite species, the area/locality of the host capture, and the author and date of the published record. The taxonomy is updated and the validity of the records and synonymies are critically evaluated. A comparison of the parasite faunas based on the records in the native and introduced/invasive range of L. haematocheila suggests that a large number of parasite species was 'lost' in the new distributional range whereas an even greater number was 'gained'. Although the present checklist provides information that will facilitate future studies, the interesting question of macroparasite faunal diversity in L. haematocheila in its natural and introduced/invasive ranges cannot be dealt with the current data because of unreliability associated with the large number of non-documented and questionable records. This stresses the importance of data quality analysis in using host-parasite database and checklist data.