Theatre Ballistic Missile Defense-Multisensor Fusion, Targeting and Tracking Techniques
1998-03-01
Washington, D.C., 1994. 8. Brown , R., and Hwang , P., Introduction to Random Signals and Applied Kaiman Filtering, Third Edition, John Wiley and Sons...C. ADDING MEASUREMENT NOISE 15 III. EXTENDED KALMAN FILTER 19 A. DISCRETE TIME KALMAN FILTER 19 B. EXTENDED KALMAN FILTER 21 C. EKF IN TARGET...tracking algorithms. 17 18 in. EXTENDED KALMAN FILTER This chapter provides background information on the development of a tracking algorithm
Xiao, Mengli; Zhang, Yongbo; Wang, Zhihua; Fu, Huimin
2018-04-01
Considering the performances of conventional Kalman filter may seriously degrade when it suffers stochastic faults and unknown input, which is very common in engineering problems, a new type of adaptive three-stage extended Kalman filter (AThSEKF) is proposed to solve state and fault estimation in nonlinear discrete-time system under these conditions. The three-stage UV transformation and adaptive forgetting factor are introduced for derivation, and by comparing with the adaptive augmented state extended Kalman filter, it is proven to be uniformly asymptotically stable. Furthermore, the adaptive three-stage extended Kalman filter is applied to a two-dimensional radar tracking scenario to illustrate the effect, and the performance is compared with that of conventional three stage extended Kalman filter (ThSEKF) and the adaptive two-stage extended Kalman filter (ATEKF). The results show that the adaptive three-stage extended Kalman filter is more effective than these two filters when facing the nonlinear discrete-time systems with information of unknown inputs not perfectly known. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Attitude Determination Using a MEMS-Based Flight Information Measurement Unit
Ma, Der-Ming; Shiau, Jaw-Kuen; Wang, I.-Chiang; Lin, Yu-Heng
2012-01-01
Obtaining precise attitude information is essential for aircraft navigation and control. This paper presents the results of the attitude determination using an in-house designed low-cost MEMS-based flight information measurement unit. This study proposes a quaternion-based extended Kalman filter to integrate the traditional quaternion and gravitational force decomposition methods for attitude determination algorithm. The proposed extended Kalman filter utilizes the evolution of the four elements in the quaternion method for attitude determination as the dynamic model, with the four elements as the states of the filter. The attitude angles obtained from the gravity computations and from the electronic magnetic sensors are regarded as the measurement of the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative accelerations, and the accelerations due to body rotation. The constraint of the four elements of the quaternion method is treated as a perfect measurement and is integrated into the filter computation. Approximations of the time-varying noise variances of the measured signals are discussed and presented with details through Taylor series expansions. The algorithm is intuitive, easy to implement, and reliable for long-term high dynamic maneuvers. Moreover, a set of flight test data is utilized to demonstrate the success and practicality of the proposed algorithm and the filter design. PMID:22368455
Attitude determination using a MEMS-based flight information measurement unit.
Ma, Der-Ming; Shiau, Jaw-Kuen; Wang, I-Chiang; Lin, Yu-Heng
2012-01-01
Obtaining precise attitude information is essential for aircraft navigation and control. This paper presents the results of the attitude determination using an in-house designed low-cost MEMS-based flight information measurement unit. This study proposes a quaternion-based extended Kalman filter to integrate the traditional quaternion and gravitational force decomposition methods for attitude determination algorithm. The proposed extended Kalman filter utilizes the evolution of the four elements in the quaternion method for attitude determination as the dynamic model, with the four elements as the states of the filter. The attitude angles obtained from the gravity computations and from the electronic magnetic sensors are regarded as the measurement of the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative accelerations, and the accelerations due to body rotation. The constraint of the four elements of the quaternion method is treated as a perfect measurement and is integrated into the filter computation. Approximations of the time-varying noise variances of the measured signals are discussed and presented with details through Taylor series expansions. The algorithm is intuitive, easy to implement, and reliable for long-term high dynamic maneuvers. Moreover, a set of flight test data is utilized to demonstrate the success and practicality of the proposed algorithm and the filter design.
An Indoor Slam Method Based on Kinect and Multi-Feature Extended Information Filter
NASA Astrophysics Data System (ADS)
Chang, M.; Kang, Z.
2017-09-01
Based on the frame of ORB-SLAM in this paper the transformation parameters between adjacent Kinect image frames are computed using ORB keypoints, from which priori information matrix and information vector are calculated. The motion update of multi-feature extended information filter is then realized. According to the point cloud data formed by depth image, ICP algorithm was used to extract the point features of the point cloud data in the scene and built an observation model while calculating a-posteriori information matrix and information vector, and weakening the influences caused by the error accumulation in the positioning process. Furthermore, this paper applied ORB-SLAM frame to realize autonomous positioning in real time in interior unknown environment. In the end, Lidar was used to get data in the scene in order to estimate positioning accuracy put forward in this paper.
Lei, Xusheng; Li, Jingjing
2012-01-01
This paper presents an adaptive information fusion method to improve the accuracy and reliability of the altitude measurement information for small unmanned aerial rotorcraft during the landing process. Focusing on the low measurement performance of sensors mounted on small unmanned aerial rotorcraft, a wavelet filter is applied as a pre-filter to attenuate the high frequency noises in the sensor output. Furthermore, to improve altitude information, an adaptive extended Kalman filter based on a maximum a posteriori criterion is proposed to estimate measurement noise covariance matrix in real time. Finally, the effectiveness of the proposed method is proved by static tests, hovering flight and autonomous landing flight tests. PMID:23201993
He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui
2015-08-13
In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.
Estimating Power System Dynamic States Using Extended Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw
2014-10-31
Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This newmore » dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.« less
Identifying Optimal Measurement Subspace for the Ensemble Kalman Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Huang, Zhenyu; Welch, Greg
2012-05-24
To reduce the computational load of the ensemble Kalman filter while maintaining its efficacy, an optimization algorithm based on the generalized eigenvalue decomposition method is proposed for identifying the most informative measurement subspace. When the number of measurements is large, the proposed algorithm can be used to make an effective tradeoff between computational complexity and estimation accuracy. This algorithm also can be extended to other Kalman filters for measurement subspace selection.
He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui
2015-01-01
In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well. PMID:26287194
Nonlinear Attitude Filtering Methods
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Crassidis, John L.; Cheng, Yang
2005-01-01
This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST, the super-iterated extended Kalman filter, the interlaced extended Kalman filter, and the second-order Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A two-step approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-parameter probability density function on SO(3). Finally, the predictive filter, nonlinear observers and adaptive approaches are shown. The strengths and weaknesses of the various approaches are discussed.
NASA Technical Reports Server (NTRS)
Brearley, Adrian J.
2002-01-01
Energy filtered TEM (Transmission Electron Microscopy) has been used to study the location of carbonaceous material in situ in Murchison matrix. Carbon occurs frequently as narrow rims around sulfide grains, but is rare in regions of matrix that are dominated by phyllosilicates. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Brearley, A. J.; Abreu, N. M.
2001-01-01
Energy filtered transmission electron microscopy shows that organic matter can be detected in situ in the matrices of carbonaceous chondrites at a spatial resolution of at least 1 nm. In CM chondrites, carbon is often associated with sulfide particles. Additional information is contained in the original extended abstract.
Vision-Based Position Estimation Utilizing an Extended Kalman Filter
2016-12-01
POSITION ESTIMATION UTILIZING AN EXTENDED KALMAN FILTER by Joseph B. Testa III December 2016 Thesis Advisor: Vladimir Dobrokhodov Co...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE VISION-BASED POSITION ESTIMATION UTILIZING AN EXTENDED KALMAN FILTER 5. FUNDING...spots” and network relay between the boarding team and ship. 14. SUBJECT TERMS UAV, ROS, extended Kalman filter , Matlab
Performance evaluation of an asynchronous multisensor track fusion filter
NASA Astrophysics Data System (ADS)
Alouani, Ali T.; Gray, John E.; McCabe, D. H.
2003-08-01
Recently the authors developed a new filter that uses data generated by asynchronous sensors to produce a state estimate that is optimal in the minimum mean square sense. The solution accounts for communications delay between sensors platform and fusion center. It also deals with out of sequence data as well as latent data by processing the information in a batch-like manner. This paper compares, using simulated targets and Monte Carlo simulations, the performance of the filter to the optimal sequential processing approach. It was found that the new asynchronous Multisensor track fusion filter (AMSTFF) performance is identical to that of the extended sequential Kalman filter (SEKF), while the new filter updates its track at a much lower rate than the SEKF.
Hornsby, Benjamin W. Y.; Johnson, Earl E.; Picou, Erin
2011-01-01
Objectives The purpose of this study was to examine the effects of degree and configuration of hearing loss on the use of, and benefit from, information in amplified high- and low-frequency speech presented in background noise. Design Sixty-two adults with a wide range of high- and low-frequency sensorineural hearing loss (5–115+ dB HL) participated. To examine the contribution of speech information in different frequency regions, speech understanding in noise was assessed in multiple low- and high-pass filter conditions, as well as a band-pass (713–3534 Hz) and wideband (143–8976 Hz) condition. To increase audibility over a wide frequency range, speech and noise were amplified based on each individual’s hearing loss. A stepwise multiple linear regression approach was used to examine the contribution of several factors to 1) absolute performance in each filter condition and 2) the change in performance with the addition of amplified high- and low-frequency speech components. Results Results from the regression analysis showed that degree of hearing loss was the strongest predictor of absolute performance for low- and high-pass filtered speech materials. In addition, configuration of hearing loss affected both absolute performance for severely low-pass filtered speech and benefit from extending high-frequency (3534–8976 Hz) bandwidth. Specifically, individuals with steeply sloping high-frequency losses made better use of low-pass filtered speech information than individuals with similar low-frequency thresholds but less high-frequency loss. In contrast, given similar high-frequency thresholds, individuals with flat hearing losses received more benefit from extending high-frequency bandwidth than individuals with more sloping losses. Conclusions Consistent with previous work, benefit from speech information in a given frequency region generally decreases as degree of hearing loss in that frequency region increases. However, given a similar degree of loss, the configuration of hearing loss also affects the ability to use speech information in different frequency regions. Except for individuals with steeply sloping high-frequency losses, providing high-frequency amplification (3534–8976 Hz) had either a beneficial effect on, or did not significantly degrade, speech understanding. These findings highlight the importance of extended high-frequency amplification for listeners with a wide range of high-frequency hearing losses, when seeking to maximize intelligibility. PMID:21336138
Liang, Zhibing; Liu, Fuxian; Gao, Jiale
2018-01-01
For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.
Liu, Fuxian; Gao, Jiale
2018-01-01
For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms. PMID:29444144
Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario
NASA Technical Reports Server (NTRS)
Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell
2010-01-01
Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.
Three-stage Fabry-Perot liquid crystal tunable filter with extended spectral range.
Zheng, Zhenrong; Yang, Guowei; Li, Haifeng; Liu, Xu
2011-01-31
A method to extend spectral range of tunable optical filter is proposed in this paper. Two same tunable Fabry-Perot filters and an additional tunable filter with different free spectral range are cascaded to extend spectral range and reduce sidelobes. Over 400 nm of free spectral range and 4 nm of full width at half maximum of the filter were achieved. Design procedure and simulation are described in detail. An experimental 3-stage tunable Fabry-Perot filter with visible and infrared spectra is demonstrated. The experimental results and the theoretical analysis are presented in detail to verify this method. The results revealed that a compact and extended tunable spectral range of Fabry-Perot filter can be easily attainable by this method.
Hesar, Hamed Danandeh; Mohebbi, Maryam
2017-05-01
In this paper, a model-based Bayesian filtering framework called the "marginalized particle-extended Kalman filter (MP-EKF) algorithm" is proposed for electrocardiogram (ECG) denoising. This algorithm does not have the extended Kalman filter (EKF) shortcoming in handling non-Gaussian nonstationary situations because of its nonlinear framework. In addition, it has less computational complexity compared with particle filter. This filter improves ECG denoising performance by implementing marginalized particle filter framework while reducing its computational complexity using EKF framework. An automatic particle weighting strategy is also proposed here that controls the reliance of our framework to the acquired measurements. We evaluated the proposed filter on several normal ECGs selected from MIT-BIH normal sinus rhythm database. To do so, artificial white Gaussian and colored noises as well as nonstationary real muscle artifact (MA) noise over a range of low SNRs from 10 to -5 dB were added to these normal ECG segments. The benchmark methods were the EKF and extended Kalman smoother (EKS) algorithms which are the first model-based Bayesian algorithms introduced in the field of ECG denoising. From SNR viewpoint, the experiments showed that in the presence of Gaussian white noise, the proposed framework outperforms the EKF and EKS algorithms in lower input SNRs where the measurements and state model are not reliable. Owing to its nonlinear framework and particle weighting strategy, the proposed algorithm attained better results at all input SNRs in non-Gaussian nonstationary situations (such as presence of pink noise, brown noise, and real MA). In addition, the impact of the proposed filtering method on the distortion of diagnostic features of the ECG was investigated and compared with EKF/EKS methods using an ECG diagnostic distortion measure called the "Multi-Scale Entropy Based Weighted Distortion Measure" or MSEWPRD. The results revealed that our proposed algorithm had the lowest MSEPWRD for all noise types at low input SNRs. Therefore, the morphology and diagnostic information of ECG signals were much better conserved compared with EKF/EKS frameworks, especially in non-Gaussian nonstationary situations.
A fast ellipse extended target PHD filter using box-particle implementation
NASA Astrophysics Data System (ADS)
Zhang, Yongquan; Ji, Hongbing; Hu, Qi
2018-01-01
This paper presents a box-particle implementation of the ellipse extended target probability hypothesis density (ET-PHD) filter, called the ellipse extended target box particle PHD (EET-BP-PHD) filter, where the extended targets are described as a Poisson model developed by Gilholm et al. and the term "box" is here equivalent to the term "interval" used in interval analysis. The proposed EET-BP-PHD filter is capable of dynamically tracking multiple ellipse extended targets and estimating the target states and the number of targets, in the presence of clutter measurements, false alarms and missed detections. To derive the PHD recursion of the EET-BP-PHD filter, a suitable measurement likelihood is defined for a given partitioning cell, and the main implementation steps are presented along with the necessary box approximations and manipulations. The limitations and capabilities of the proposed EET-BP-PHD filter are illustrated by simulation examples. The simulation results show that a box-particle implementation of the ET-PHD filter can avoid the high number of particles and reduce computational burden, compared to a particle implementation of that for extended target tracking.
A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors
Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin
2014-01-01
Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy. PMID:25490581
A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors.
Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin
2014-12-05
Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.
Generalized Optimal-State-Constraint Extended Kalman Filter (OSC-EKF)
2017-02-01
ARL-TR-7948• FEB 2017 US Army Research Laboratory GeneralizedOptimal-State-Constraint ExtendedKalman Filter (OSC-EKF) by James M Maley, Kevin...originator. ARL-TR-7948• FEB 2017 US Army Research Laboratory GeneralizedOptimal-State-Constraint ExtendedKalman Filter (OSC-EKF) by James M Maley Weapons and...
Filter assembly for metallic and intermetallic tube filters
Alvin, Mary Anne; Lippert, Thomas E.; Bruck, Gerald J.; Smeltzer, Eugene E.
2001-01-01
A filter assembly (60) for holding a filter element (28) within a hot gas cleanup system pressure vessel is provided, containing: a filter housing (62), said filter housing having a certain axial length and having a peripheral sidewall, said sidewall defining an interior chamber (66); a one piece, all metal, fail-safe/regenerator device (68) within the interior chamber (66) of the filter housing (62) and/or extending beyond the axial length of the filter housing, said device containing an outward extending radial flange (71) within the filter housing for seating an essential seal (70), the device also having heat transfer media (72) disposed inside and screens (80) for particulate removal; one compliant gasket (70) positioned next to and above the outward extending radial flange of the fail-safe/regenerator device; and a porous metallic corrosion resistant superalloy type filter element body welded at the bottom of the metal fail-safe/regenerator device.
Estimation of three-dimensional radar tracking using modified extended kalman filter
NASA Astrophysics Data System (ADS)
Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar
2018-03-01
Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-07-16
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.
NASA Technical Reports Server (NTRS)
Ledsham, W. H.; Staelin, D. H.
1978-01-01
An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.
Visualization of flow during cleaning process on a liquid nanofibrous filter
NASA Astrophysics Data System (ADS)
Bílek, P.
2017-10-01
This paper deals with visualization of flow during cleaning process on a nanofibrous filter. Cleaning of a filter is very important part of the filtration process which extends lifetime of the filter and improve filtration properties. Cleaning is carried out on flat-sheet filters, where particles are deposited on the filter surface and form a filtration cake. The cleaning process dislodges the deposited filtration cake, which is loose from the membrane surface to the retentate flow. The blocked pores in the filter are opened again and hydrodynamic properties are restored. The presented optical method enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. The local concentration of solid particles is possible to estimate and achieve new information about the cleaning process. In the article is described the cleaning process on nanofibrous membranes for waste water treatment. The hydrodynamic data were compared to the images of the cleaning process.
Absorption Filter Based Optical Diagnostics in High Speed Flows
NASA Technical Reports Server (NTRS)
Samimy, Mo; Elliott, Gregory; Arnette, Stephen
1996-01-01
Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2005-01-01
A new method is presented for the simultaneous estimation of the attitude of a spacecraft and an N-vector of bias parameters. This method uses a probability distribution function defined on the Cartesian product of SO(3), the group of rotation matrices, and the Euclidean space W N .The Fokker-Planck equation propagates the probability distribution function between measurements, and Bayes s formula incorporates measurement update information. This approach avoids all the issues of singular attitude representations or singular covariance matrices encountered in extended Kalman filters. In addition, the filter has a consistent initialization for a completely unknown initial attitude, owing to the fact that SO(3) is a compact space.
Maximally Informative Statistics for Localization and Mapping
NASA Technical Reports Server (NTRS)
Deans, Matthew C.
2001-01-01
This paper presents an algorithm for localization and mapping for a mobile robot using monocular vision and odometry as its means of sensing. The approach uses the Variable State Dimension filtering (VSDF) framework to combine aspects of Extended Kalman filtering and nonlinear batch optimization. This paper describes two primary improvements to the VSDF. The first is to use an interpolation scheme based on Gaussian quadrature to linearize measurements rather than relying on analytic Jacobians. The second is to replace the inverse covariance matrix in the VSDF with its Cholesky factor to improve the computational complexity. Results of applying the filter to the problem of localization and mapping with omnidirectional vision are presented.
Filter holder assembly having extended collar spacer ring
Alvin, Mary Anne; Bruck, Gerald J.
2002-01-01
A filter holder assembly is provided that utilizes a fail-safe regenerator unit with an annular spacer ring having an extended metal collar for containment and positioning of a compliant ceramic gasket used in the assembly. The filter holder assembly is disclosed for use with advanced composite, filament wound, and metal candle filters.
ARTSN: An Automated Real-Time Spacecraft Navigation System
NASA Technical Reports Server (NTRS)
Burkhart, P. Daniel; Pollmeier, Vincent M.
1996-01-01
As part of the Deep Space Network (DSN) advanced technology program an effort is underway to design a filter to automate the deep space navigation process.The automated real-time spacecraft navigation (ARTSN) filter task is based on a prototype consisting of a FORTRAN77 package operating on an HP-9000/700 workstation running HP-UX 9.05. This will be converted to C, and maintained as the operational version. The processing tasks required are: (1) read a measurement, (2) integrate the spacecraft state to the current measurement time, (3) compute the observable based on the integrated state, and (4) incorporate the measurement information into the state using an extended Kalman filter. This filter processes radiometric data collected by the DSN. The dynamic (force) models currently include point mass gravitational terms for all planets, the Sun and Moon, solar radiation pressure, finite maneuvers, and attitude maintenance activity modeled quadratically. In addition, observable errors due to troposphere are included. Further data types, force and observable models will be ncluded to enhance the accuracy of the models and the capability of the package. The heart of the ARSTSN is a currently available continuous-discrete extended Kalman filter. Simulated data used to test the implementation at various stages of development and the results from processing actual mission data are presented.
Feature aided Monte Carlo probabilistic data association filter for ballistic missile tracking
NASA Astrophysics Data System (ADS)
Ozdemir, Onur; Niu, Ruixin; Varshney, Pramod K.; Drozd, Andrew L.; Loe, Richard
2011-05-01
The problem of ballistic missile tracking in the presence of clutter is investigated. Probabilistic data association filter (PDAF) is utilized as the basic filtering algorithm. We propose to use sequential Monte Carlo methods, i.e., particle filters, aided with amplitude information (AI) in order to improve the tracking performance of a single target in clutter when severe nonlinearities exist in the system. We call this approach "Monte Carlo probabilistic data association filter with amplitude information (MCPDAF-AI)." Furthermore, we formulate a realistic problem in the sense that we use simulated radar cross section (RCS) data for a missile warhead and a cylinder chaff using Lucernhammer1, a state of the art electromagnetic signature prediction software, to model target and clutter amplitude returns as additional amplitude features which help to improve data association and tracking performance. A performance comparison is carried out between the extended Kalman filter (EKF) and the particle filter under various scenarios using single and multiple sensors. The results show that, when only one sensor is used, the MCPDAF performs significantly better than the EKF in terms of tracking accuracy under severe nonlinear conditions for ballistic missile tracking applications. However, when the number of sensors is increased, even under severe nonlinear conditions, the EKF performs as well as the MCPDAF.
Multirate and event-driven Kalman filters for helicopter flight
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Smith, Phillip; Suorsa, Raymond E.; Hussien, Bassam
1993-01-01
A vision-based obstacle detection system that provides information about objects as a function of azimuth and elevation is discussed. The range map is computed using a sequence of images from a passive sensor, and an extended Kalman filter is used to estimate range to obstacles. The magnitude of the optical flow that provides measurements for each Kalman filter varies significantly over the image depending on the helicopter motion and object location. In a standard Kalman filter, the measurement update takes place at fixed intervals. It may be necessary to use a different measurement update rate in different parts of the image in order to maintain the same signal to noise ratio in the optical flow calculations. A range estimation scheme that accepts the measurement only under certain conditions is presented. The estimation results from the standard Kalman filter are compared with results from a multirate Kalman filter and an event-driven Kalman filter for a sequence of helicopter flight images.
Input filter compensation for switching regulators
NASA Technical Reports Server (NTRS)
Kelkar, S. S.; Lee, F. C.
1983-01-01
A novel input filter compensation scheme for a buck regulator that eliminates the interaction between the input filter output impedance and the regulator control loop is presented. The scheme is implemented using a feedforward loop that senses the input filter state variables and uses this information to modulate the duty cycle signal. The feedforward design process presented is seen to be straightforward and the feedforward easy to implement. Extensive experimental data supported by analytical results show that significant performance improvement is achieved with the use of feedforward in the following performance categories: loop stability, audiosusceptibility, output impedance and transient response. The use of feedforward results in isolating the switching regulator from its power source thus eliminating all interaction between the regulator and equipment upstream. In addition the use of feedforward removes some of the input filter design constraints and makes the input filter design process simpler thus making it possible to optimize the input filter. The concept of feedforward compensation can also be extended to other types of switching regulators.
NASA Technical Reports Server (NTRS)
1979-01-01
The computer program DEKFIS (discrete extended Kalman filter/smoother), formulated for aircraft and helicopter state estimation and data consistency, is described. DEKFIS is set up to pre-process raw test data by removing biases, correcting scale factor errors and providing consistency with the aircraft inertial kinematic equations. The program implements an extended Kalman filter/smoother using the Friedland-Duffy formulation.
Evaluation of deconvolution modelling applied to numerical combustion
NASA Astrophysics Data System (ADS)
Mehl, Cédric; Idier, Jérôme; Fiorina, Benoît
2018-01-01
A possible modelling approach in the large eddy simulation (LES) of reactive flows is to deconvolve resolved scalars. Indeed, by inverting the LES filter, scalars such as mass fractions are reconstructed. This information can be used to close budget terms of filtered species balance equations, such as the filtered reaction rate. Being ill-posed in the mathematical sense, the problem is very sensitive to any numerical perturbation. The objective of the present study is to assess the ability of this kind of methodology to capture the chemical structure of premixed flames. For that purpose, three deconvolution methods are tested on a one-dimensional filtered laminar premixed flame configuration: the approximate deconvolution method based on Van Cittert iterative deconvolution, a Taylor decomposition-based method, and the regularised deconvolution method based on the minimisation of a quadratic criterion. These methods are then extended to the reconstruction of subgrid scale profiles. Two methodologies are proposed: the first one relies on subgrid scale interpolation of deconvolved profiles and the second uses parametric functions to describe small scales. Conducted tests analyse the ability of the method to capture the chemical filtered flame structure and front propagation speed. Results show that the deconvolution model should include information about small scales in order to regularise the filter inversion. a priori and a posteriori tests showed that the filtered flame propagation speed and structure cannot be captured if the filter size is too large.
Position Estimation for Projectiles Using Low-cost Sensors and Flight Dynamics
2012-04-01
GPS/INS Loose-coupling Parameter Estimation ............................................................6 2.6 Extended Kalman Filter ...environment using low-cost measurement devices and projectile flight dynamics. An extended Kalman filter (EKF) was developed to blend accelerometer...kGPSIbias B GPSIkGPSIbias B GPSIGPSIbias B aρaρa ,,1,,, 1 (15) 7 2.6 Extended Kalman Filter A sequential EKF was used to combine
2017-04-12
measurement of CT outside of stringent laboratory environments. This study evaluated ECTempTM, a heart rate-based extended Kalman Filter CT...based CT-estimation algorithms [7, 13, 14]. One notable example is ECTempTM, which utilizes an extended Kalman Filter to estimate CT from...3. The extended Kalman filter mapping function variance coefficient (Ct) was computed using the following equation: = −9.1428 ×
The Astro-E/XRS Blocking Filter Calibration
NASA Technical Reports Server (NTRS)
Audley, Michael D.; Arnaud, Keith A.; Gendreau, Keith C.; Boyce, Kevin R.; Fleetwood, Charles M.; Kelley, Richard L.; Keski-Kuha, Ritva A.; Porter, F. Scott; Stahle, Caroline K.; Szymkowiak, Andrew E.
1999-01-01
We describe the transmission calibration of the Astro-E XRS blocking filters. The XRS instrument has five aluminized polyimide blocking filters. These filters are located at thermal stages ranging from 200 K to 60 mK. They are each about 1000 A thick. XRS will have high energy resolution which will enable it to see some of the extended fine structure around the oxygen and aluminum K edges of these filters. Thus, we are conducting a high spectral resolution calibration of the filters near these energies to resolve out extended flue structure and absorption lines.
Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions.
Roujol, Sébastien; de Senneville, Baudouin Denis; Hey, Silke; Moonen, Chrit; Ries, Mario
2012-03-01
Real time magnetic resonance (MR) thermometry is gaining clinical importance for monitoring and guiding high intensity focused ultrasound (HIFU) ablations of tumorous tissue. The temperature information can be employed to adjust the position and the power of the HIFU system in real time and to determine the therapy endpoint. The requirement to resolve both physiological motion of mobile organs and the rapid temperature variations induced by state-of-the-art high-power HIFU systems require fast MRI-acquisition schemes, which are generally hampered by low signal-to-noise ratios (SNRs). This directly limits the precision of real time MR-thermometry and thus in many cases the feasibility of sophisticated control algorithms. To overcome these limitations, temporal filtering of the temperature has been suggested in the past, which has generally an adverse impact on the accuracy and latency of the filtered data. Here, we propose a novel filter that aims to improve the precision of MR-thermometry while monitoring and adapting its impact on the accuracy. For this, an adaptive extended Kalman filter using a model describing the heat transfer for acoustic heating in biological tissues was employed together with an additional outlier rejection to address the problem of sparse artifacted temperature points. The filter was compared to an efficient matched FIR filter and outperformed the latter in all tested cases. The filter was first evaluated on simulated data and provided in the worst case (with an approximate configuration of the model) a substantial improvement of the accuracy by a factor 3 and 15 during heat up and cool down periods, respectively. The robustness of the filter was then evaluated during HIFU experiments on a phantom and in vivo in porcine kidney. The presence of strong temperature artifacts did not affect the thermal dose measurement using our filter whereas a high measurement variation of 70% was observed with the FIR filter.
NASA Astrophysics Data System (ADS)
Luque, Pablo; Mántaras, Daniel A.; Fidalgo, Eloy; Álvarez, Javier; Riva, Paolo; Girón, Pablo; Compadre, Diego; Ferran, Jordi
2013-12-01
The main objective of this work is to determine the limit of safe driving conditions by identifying the maximal friction coefficient in a real vehicle. The study will focus on finding a method to determine this limit before reaching the skid, which is valuable information in the context of traffic safety. Since it is not possible to measure the friction coefficient directly, it will be estimated using the appropriate tools in order to get the most accurate information. A real vehicle is instrumented to collect information of general kinematics and steering tie-rod forces. A real-time algorithm is developed to estimate forces and aligning torque in the tyres using an extended Kalman filter and neural networks techniques. The methodology is based on determining the aligning torque; this variable allows evaluation of the behaviour of the tyre. It transmits interesting information from the tyre-road contact and can be used to predict the maximal tyre grip and safety margin. The maximal grip coefficient is estimated according to a knowledge base, extracted from computer simulation of a high detailed three-dimensional model, using Adams® software. The proposed methodology is validated and applied to real driving conditions, in which maximal grip and safety margin are properly estimated.
Comparison of Nonlinear Filtering Techniques for Lunar Surface Roving Navigation
NASA Technical Reports Server (NTRS)
Kimber, Lemon; Welch, Bryan W.
2008-01-01
Leading up to the Apollo missions the Extended Kalman Filter, a modified version of the Kalman Filter, was developed to estimate the state of a nonlinear system. Throughout the Apollo missions, Potter's Square Root Filter was used for lunar navigation. Now that NASA is returning to the Moon, the filters used during the Apollo missions must be compared to the filters that have been developed since that time, the Bierman-Thornton Filter (UD) and the Unscented Kalman Filter (UKF). The UD Filter involves factoring the covariance matrix into UDUT and has similar accuracy to the Square Root Filter; however it requires less computation time. Conversely, the UKF, which uses sigma points, is much more computationally intensive than any of the filters; however it produces the most accurate results. The Extended Kalman Filter, Potter's Square Root Filter, the Bierman-Thornton UD Filter, and the Unscented Kalman Filter each prove to be the most accurate filter depending on the specific conditions of the navigation system.
Bonnet, V; Dumas, R; Cappozzo, A; Joukov, V; Daune, G; Kulić, D; Fraisse, P; Andary, S; Venture, G
2017-09-06
This paper presents a method for real-time estimation of the kinematics and kinetics of a human body performing a sagittal symmetric motor task, which would minimize the impact of the stereophotogrammetric soft tissue artefacts (STA). The method is based on a bi-dimensional mechanical model of the locomotor apparatus the state variables of which (joint angles, velocities and accelerations, and the segments lengths and inertial parameters) are estimated by a constrained extended Kalman filter (CEKF) that fuses input information made of both stereophotogrammetric and dynamometric measurement data. Filter gains are made to saturate in order to obtain plausible state variables and the measurement covariance matrix of the filter accounts for the expected STA maximal amplitudes. We hypothesised that the ensemble of constraints and input redundant information would allow the method to attenuate the STA propagation to the end results. The method was evaluated in ten human subjects performing a squat exercise. The CEKF estimated and measured skin marker trajectories exhibited a RMS difference lower than 4mm, thus in the range of STAs. The RMS differences between the measured ground reaction force and moment and those estimated using the proposed method (9N and 10Nm) were much lower than obtained using a classical inverse dynamics approach (22N and 30Nm). From the latter results it may be inferred that the presented method allows for a significant improvement of the accuracy with which kinematic variables and relevant time derivatives, model parameters and, therefore, intersegmental moments are estimated. Copyright © 2016 Elsevier Ltd. All rights reserved.
RGB-D SLAM Combining Visual Odometry and Extended Information Filter
Zhang, Heng; Liu, Yanli; Tan, Jindong; Xiong, Naixue
2015-01-01
In this paper, we present a novel RGB-D SLAM system based on visual odometry and an extended information filter, which does not require any other sensors or odometry. In contrast to the graph optimization approaches, this is more suitable for online applications. A visual dead reckoning algorithm based on visual residuals is devised, which is used to estimate motion control input. In addition, we use a novel descriptor called binary robust appearance and normals descriptor (BRAND) to extract features from the RGB-D frame and use them as landmarks. Furthermore, considering both the 3D positions and the BRAND descriptors of the landmarks, our observation model avoids explicit data association between the observations and the map by marginalizing the observation likelihood over all possible associations. Experimental validation is provided, which compares the proposed RGB-D SLAM algorithm with just RGB-D visual odometry and a graph-based RGB-D SLAM algorithm using the publicly-available RGB-D dataset. The results of the experiments demonstrate that our system is quicker than the graph-based RGB-D SLAM algorithm. PMID:26263990
Model-Based Engine Control Architecture with an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The non-linear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.
Model-Based Engine Control Architecture with an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.
Noise removal in extended depth of field microscope images through nonlinear signal processing.
Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J
2013-04-01
Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.
He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong
2011-01-01
This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM. PMID:22346682
He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong
2011-01-01
This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.
A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications
Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser
2017-01-01
In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service. PMID:28574471
A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications.
Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser
2017-06-02
In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service.
Design of adaptive control systems by means of self-adjusting transversal filters
NASA Technical Reports Server (NTRS)
Merhav, S. J.
1986-01-01
The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.
2015-03-26
tracker, an Inertial Measurement Unit (IMU), and a barometric altimeter using an Extended Kalman Filter (EKF). Models of each of these components are...Positioning 15 2.5 Detector Device Improvement . . . . . . . . . . . . . . . 15 2.6 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6.1...Extended Kalman Filter . . . . . . . . . . . . . 17 2.7 System Properties . . . . . . . . . . . . . . . . . . . . . 21 2.8 Sun Exitance
NASA Technical Reports Server (NTRS)
Radebaugh, J.; McEwen, A. S.; Milazzo, M.; Davies, A. G.; Keszthelyi, L. P.; Geissler, P.
2002-01-01
Temperatures of Io's Pele hotspot were found using dual-filter observations from Galileo and Cassini. Temperatures average 1375 K, but vary widely over tens of minutes. Dropoff in emission with rotation consistent with lava fountaining at a lava lake. Additional information is contained in the original extended abstract.
Attitude Error Representations for Kalman Filtering
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Bauer, Frank H. (Technical Monitor)
2002-01-01
The quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation. The quaternion must obey a unit norm constraint, though, which has led to the development of an extended Kalman filter using a quaternion for the global attitude estimate and a three-component representation for attitude errors. We consider various attitude error representations for this Multiplicative Extended Kalman Filter and its second-order extension.
Spacecraft attitude determination using a second-order nonlinear filter
NASA Technical Reports Server (NTRS)
Vathsal, S.
1987-01-01
The stringent attitude determination accuracy and faster slew maneuver requirements demanded by present-day spacecraft control systems motivate the development of recursive nonlinear filters for attitude estimation. This paper presents the second-order filter development for the estimation of attitude quaternion using three-axis gyro and star tracker measurement data. Performance comparisons have been made by computer simulation of system models and filter mechanization. It is shown that the second-order filter consistently performs better than the extended Kalman filter when the performance index of the root sum square estimation error of the quaternion vector is compared. The second-order filter identifies the gyro drift rates faster than the extended Kalman filter. The uniqueness of this algorithm is the online generation of the time-varying process and measurement noise covariance matrices, derived as a function or the process and measurement nonlinearity, respectively.
Optimal causal inference: estimating stored information and approximating causal architecture.
Still, Susanne; Crutchfield, James P; Ellison, Christopher J
2010-09-01
We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.
Kalman and particle filtering methods for full vehicle and tyre identification
NASA Astrophysics Data System (ADS)
Bogdanski, Karol; Best, Matthew C.
2018-05-01
This paper considers identification of all significant vehicle handling dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle controller area network buses. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The paper extends previous work on augmented Kalman Filter state estimators to concentrate wholly on parameter identification. It also serves as a review of three alternative filtering methods; identifying forms of the unscented Kalman filter, extended Kalman filter and particle filter are proposed and compared for effectiveness, complexity and computational efficiency. All three filters are suited to applications of system identification and the Kalman Filters can also operate in real-time in on-line model predictive controllers or estimators.
Localization Methods for a Mobile Robot in Urban Environments
2004-10-04
Columbia University, Department of Computer Science, 2001. [30] R. Brown and P. Hwang , Introduction to random signals and applied Kalman filtering, 3rd...sensor. An extended Kalman filter integrates the sensor data and keeps track of the uncertainty associated with it. The second method is based on...errors+ compass/GPS errors corrected odometry pose odometry error estimates zk zk h(x)~ h(x)~ Kalman Filter zk Fig. 4. A diagram of the extended
The Science Advantage of a Redder Filter for WFIRST
NASA Astrophysics Data System (ADS)
Bauer, James; Stauffer, John; Milam, Stefanie N.; Holler, Bryan J.
2018-01-01
WFIRST will be capable of providing Hubble-quality imaging performance over several thousand square degrees of the sky. The wide-area, high spatial resolution survey data from WFIRST will be unsurpassed for probably many decades into the future. With the current baseline design, the WFIRST filter complement will extend from the bluest wavelength allowed by the optical design to a reddest filter (F184W) that has a red cutoff at 2.0 microns. Extension of the imaging capabilities even slightly beyond the 2.0 micron wavelength cut-off would provide significant advantages over the presently proposed science for objects both near and far. The inclusion of a Ks (2.0-2.3 micron) filter would result in a wider range and more comprehensive set of Solar System investigations. It would also extend the range of higher-redshift population studies. In this poster, we outline some of the science advantages for adding a K filter, similar in bandpass to the 2MASS Ks filter, in order to extend the wavelength range for WFIRST as far to the red as the thermal performance of the spacecraft allows.
Guide to Air Cleaners in the Home
... In-duct Particle Removal Flat or panel air filters Pleated or extended surface filters In-duct Gaseous Pollutant Removal In-duct Pollutant ... can remove particles from the air — mechanical air filters and electronic air cleaners. Mechanical air filters remove ...
Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior
NASA Technical Reports Server (NTRS)
Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.
2017-01-01
A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.
Localization from Visual Landmarks on a Free-Flying Robot
NASA Technical Reports Server (NTRS)
Coltin, Brian; Fusco, Jesse; Moratto, Zack; Alexandrov, Oleg; Nakamura, Robert
2016-01-01
We present the localization approach for Astrobee,a new free-flying robot designed to navigate autonomously on board the International Space Station (ISS). Astrobee will conduct experiments in microgravity, as well as assisst astronauts and ground controllers. Astrobee replaces the SPHERES robots which currently operate on the ISS, which were limited to operating in a small cube since their localization system relied on triangulation from ultrasonic transmitters. Astrobee localizes with only monocular vision and an IMU, enabling it to traverse the entire US segment of the station. Features detected on a previously-built map, optical flow information,and IMU readings are all integrated into an extended Kalman filter (EKF) to estimate the robot pose. We introduce several modifications to the filter to make it more robust to noise.Finally, we extensively evaluate the behavior of the filter on atwo-dimensional testing surface.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Deterministic Mean-Field Ensemble Kalman Filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements
Park, Nam Su; Chun, Soo Kyung; Han, Ga-Hee; Kim, Chang-Seok
2017-01-01
We demonstrate a novel wavelength-comb-swept laser based on two intra-cavity filters: an acousto-optic tunable filter (AOTF) and a Fabry-Pérot etalon filter. The AOTF is used for the tunable selection of the output wavelength with time and the etalon filter for the narrowing of the spectral linewidth to extend the coherence length. Compared to the conventional wavelength-swept laser, the acousto-optic–based wavelength-comb-swept laser (WCSL) can extend the measureable range of displacement measurements by decreasing the sensitivity roll-off of the point spread function. Because the AOTF contains no mechanical moving parts to select the output wavelength acousto-optically, the WCSL source has a high wavenumber (k) linearity of R2 = 0.9999 to ensure equally spaced wavelength combs in the wavenumber domain. PMID:28362318
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-07-26
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-01-01
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336
A comparative study of sensor fault diagnosis methods based on observer for ECAS system
NASA Astrophysics Data System (ADS)
Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli
2017-03-01
The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.
NASA Astrophysics Data System (ADS)
Tan, Jun; Song, Peng; Li, Jinshan; Wang, Lei; Zhong, Mengxuan; Zhang, Xiaobo
2017-06-01
The surface-related multiple elimination (SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.
Frey, Laurent; Masarotto, Lilian; Armand, Marilyn; Charles, Marie-Lyne; Lartigue, Olivier
2015-05-04
Thin film Fabry-Perot filter arrays with high selectivity can be realized with a single patterning step, generating a spatial modulation of the effective refractive index in the optical cavity. In this paper, we investigate the ability of this technology to address two applications in the field of image sensors. First, the spectral tuning may be used to compensate the blue-shift of the filters in oblique incidence, provided the filter array is located in an image plane of an optical system with higher field of view than aperture angle. The technique is analyzed for various types of filters and experimental evidence is shown with copper-dielectric infrared filters. Then, we propose a design of a multispectral filter array with an extended spectral range spanning the visible and near-infrared range, using a single set of materials and realizable on a single substrate.
Discovery of the Kalman filter as a practical tool for aerospace and industry
NASA Technical Reports Server (NTRS)
Mcgee, L. A.; Schmidt, S. F.
1985-01-01
The sequence of events which led the researchers at Ames Research Center to the early discovery of the Kalman filter shortly after its introduction into the literature is recounted. The scientific breakthroughs and reformulations that were necessary to transform Kalman's work into a useful tool for a specific aerospace application are described. The resulting extended Kalman filter, as it is now known, is often still referred to simply as the Kalman filter. As the filter's use gained in popularity in the scientific community, the problems of implementation on small spaceborne and airborne computers led to a square-root formulation of the filter to overcome numerical difficulties associated with computer word length. The work that led to this new formulation is also discussed, including the first airborne computer implementation and flight test. Since then the applications of the extended and square-root formulations of the Kalman filter have grown rapidly throughout the aerospace industry.
Empirical intrinsic geometry for nonlinear modeling and time series filtering.
Talmon, Ronen; Coifman, Ronald R
2013-07-30
In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.
Extended Kalman filter for attitude estimation of the earth radiation budget satellite
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack Y.
1989-01-01
The design and testing of an Extended Kalman Filter (EKF) for ground attitude determination, misalignment estimation and sensor calibration of the Earth Radiation Budget Satellite (ERBS) are described. Attitude is represented by the quaternion of rotation and the attitude estimation error is defined as an additive error. Quaternion normalization is used for increasing the convergence rate and for minimizing the need for filter tuning. The development of the filter dynamic model, the gyro error model and the measurement models of the Sun sensors, the IR horizon scanner and the magnetometers which are used to generate vector measurements are also presented. The filter is applied to real data transmitted by ERBS sensors. Results are presented and analyzed and the EKF advantages as well as sensitivities are discussed. On the whole the filter meets the expected synergism, accuracy and robustness.
Temperature profile retrievals with extended Kalman-Bucy filters
NASA Technical Reports Server (NTRS)
Ledsham, W. H.; Staelin, D. H.
1979-01-01
The Extended Kalman-Bucy Filter is a powerful technique for estimating non-stationary random parameters in situations where the received signal is a noisy non-linear function of those parameters. A practical causal filter for retrieving atmospheric temperature profiles from radiances observed at a single scan angle by the Scanning Microwave Spectrometer (SCAMS) carried on the Nimbus 6 satellite typically shows approximately a 10-30% reduction in rms error about the mean at almost all levels below 70 mb when compared with a regression inversion.
Small-kernel, constrained least-squares restoration of sampled image data
NASA Technical Reports Server (NTRS)
Hazra, Rajeeb; Park, Stephen K.
1992-01-01
Following the work of Park (1989), who extended a derivation of the Wiener filter based on the incomplete discrete/discrete model to a more comprehensive end-to-end continuous/discrete/continuous model, it is shown that a derivation of the constrained least-squares (CLS) filter based on the discrete/discrete model can also be extended to this more comprehensive continuous/discrete/continuous model. This results in an improved CLS restoration filter, which can be efficiently implemented as a small-kernel convolution in the spatial domain.
Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-01-01
This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293
Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-05-23
This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level.
Stable time filtering of strongly unstable spatially extended systems
Grote, Marcus J.; Majda, Andrew J.
2006-01-01
Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant–Friedrichs–Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection–diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system. PMID:16682626
Stable time filtering of strongly unstable spatially extended systems.
Grote, Marcus J; Majda, Andrew J
2006-05-16
Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant-Friedrichs-Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection-diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system.
Spatial filtering velocimeter for vehicle navigation with extended measurement range
NASA Astrophysics Data System (ADS)
He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu
2015-05-01
The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.
NASA Technical Reports Server (NTRS)
Lisano, M. E.
2003-01-01
This paper describes the design and initial test results of an extended Kalman filter that has been developed at Jet Propulsion Laboratory (JPL) for post-flight reconstruction of the trajectory and attitude history of a spacecraft entering a planetary atmosphere and descending upon a parachute.
Q-Method Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Zanetti, Renato; Ainscough, Thomas; Christian, John; Spanos, Pol D.
2012-01-01
A new algorithm is proposed that smoothly integrates non-linear estimation of the attitude quaternion using Davenport s q-method and estimation of non-attitude states through an extended Kalman filter. The new method is compared to a similar existing algorithm showing its similarities and differences. The validity of the proposed approach is confirmed through numerical simulations.
Applied estimation for hybrid dynamical systems using perceptional information
NASA Astrophysics Data System (ADS)
Plotnik, Aaron M.
This dissertation uses the motivating example of robotic tracking of mobile deep ocean animals to present innovations in robotic perception and estimation for hybrid dynamical systems. An approach to estimation for hybrid systems is presented that utilizes uncertain perceptional information about the system's mode to improve tracking of its mode and continuous states. This results in significant improvements in situations where previously reported methods of estimation for hybrid systems perform poorly due to poor distinguishability of the modes. The specific application that motivates this research is an automatic underwater robotic observation system that follows and films individual deep ocean animals. A first version of such a system has been developed jointly by the Stanford Aerospace Robotics Laboratory and Monterey Bay Aquarium Research Institute (MBARI). This robotic observation system is successfully fielded on MBARI's ROVs, but agile specimens often evade the system. When a human ROV pilot performs this task, one advantage that he has over the robotic observation system in these situations is the ability to use visual perceptional information about the target, immediately recognizing any changes in the specimen's behavior mode. With the approach of the human pilot in mind, a new version of the robotic observation system is proposed which is extended to (a) derive perceptional information (visual cues) about the behavior mode of the tracked specimen, and (b) merge this dissimilar, discrete and uncertain information with more traditional continuous noisy sensor data by extending existing algorithms for hybrid estimation. These performance enhancements are enabled by integrating techniques in hybrid estimation, computer vision and machine learning. First, real-time computer vision and classification algorithms extract a visual observation of the target's behavior mode. Existing hybrid estimation algorithms are extended to admit this uncertain but discrete observation, complementing the information available from more traditional sensors. State tracking is achieved using a new form of Rao-Blackwellized particle filter called the mode-observed Gaussian Particle Filter. Performance is demonstrated using data from simulation and data collected on actual specimens in the ocean. The framework for estimation using both traditional and perceptional information is easily extensible to other stochastic hybrid systems with mode-related perceptional observations available.
Bayesian Regression with Network Prior: Optimal Bayesian Filtering Perspective
Qian, Xiaoning; Dougherty, Edward R.
2017-01-01
The recently introduced intrinsically Bayesian robust filter (IBRF) provides fully optimal filtering relative to a prior distribution over an uncertainty class ofjoint random process models, whereas formerly the theory was limited to model-constrained Bayesian robust filters, for which optimization was limited to the filters that are optimal for models in the uncertainty class. This paper extends the IBRF theory to the situation where there are both a prior on the uncertainty class and sample data. The result is optimal Bayesian filtering (OBF), where optimality is relative to the posterior distribution derived from the prior and the data. The IBRF theories for effective characteristics and canonical expansions extend to the OBF setting. A salient focus of the present work is to demonstrate the advantages of Bayesian regression within the OBF setting over the classical Bayesian approach in the context otlinear Gaussian models. PMID:28824268
Nonlinear Estimation With Sparse Temporal Measurements
2016-09-01
Kalman filter , the extended Kalman filter (EKF) and unscented Kalman filter (UKF) are commonly used in practical application. The Kalman filter is an...optimal estimator for linear systems; the EKF and UKF are sub-optimal approximations of the Kalman filter . The EKF uses a first-order Taylor series...propagated covariance is compared for similarity with a Monte Carlo propagation. The similarity of the covariance matrices is shown to predict filter
System and Apparatus for Filtering Particles
NASA Technical Reports Server (NTRS)
Agui, Juan H. (Inventor); Vijayakumar, Rajagopal (Inventor)
2015-01-01
A modular pre-filtration apparatus may be beneficial to extend the life of a filter. The apparatus may include an impactor that can collect a first set of particles in the air, and a scroll filter that can collect a second set of particles in the air. A filter may follow the pre-filtration apparatus, thus causing the life of the filter to be increased.
Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams
Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B.; ...
2016-06-14
The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystalmore » reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. Ultimately, this finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.« less
NASA Technical Reports Server (NTRS)
Lisano, Michael E.
2007-01-01
Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to nonlinear sequential consider covariance analysis, i.e. in the presence of nonlinear dynamics and nonlinear measurements. A simple SPCF for orbit determination, exemplifying an algorithm hosted in the guidance, navigation and control (GN&C) computer processor of a hypothetical robotic spacecraft, was implemented, and compared with an identically-parameterized (standard) extended, consider-parameterized Kalman filter. The onboard filtering scenario examined is a hypothetical spacecraft orbit about a small natural body with imperfectly-known mass. The formulations, relative complexities, and performances of the filters are compared and discussed.
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.; Pototzky, Anthony S.
1989-01-01
A theoretical basis and example calculations are given that demonstrate the relationship between the Matched Filter Theory approach to the calculation of time-correlated gust loads and Phased Design Load Analysis in common use in the aerospace industry. The relationship depends upon the duality between Matched Filter Theory and Random Process Theory and upon the fact that Random Process Theory is used in Phased Design Loads Analysis in determining an equiprobable loads design ellipse. Extensive background information describing the relevant points of Phased Design Loads Analysis, calculating time-correlated gust loads with Matched Filter Theory, and the duality between Matched Filter Theory and Random Process Theory is given. It is then shown that the time histories of two time-correlated gust load responses, determined using the Matched Filter Theory approach, can be plotted as parametric functions of time and that the resulting plot, when superposed upon the design ellipse corresponding to the two loads, is tangent to the ellipse. The question is raised of whether or not it is possible for a parametric load plot to extend outside the associated design ellipse. If it is possible, then the use of the equiprobable loads design ellipse will not be a conservative design practice in some circumstances.
A Filtering Approach for Image-Guided Surgery With a Highly Articulated Surgical Snake Robot.
Tully, Stephen; Choset, Howie
2016-02-01
The objective of this paper is to introduce a probabilistic filtering approach to estimate the pose and internal shape of a highly flexible surgical snake robot during minimally invasive surgery. Our approach renders a depiction of the robot that is registered to preoperatively reconstructed organ models to produce a 3-D visualization that can be used for surgical feedback. Our filtering method estimates the robot shape using an extended Kalman filter that fuses magnetic tracker data with kinematic models that define the motion of the robot. Using Lie derivative analysis, we show that this estimation problem is observable, and thus, the shape and configuration of the robot can be successfully recovered with a sufficient number of magnetic tracker measurements. We validate this study with benchtop and in-vivo image-guidance experiments in which the surgical robot was driven along the epicardial surface of a porcine heart. This paper introduces a filtering approach for shape estimation that can be used for image guidance during minimally invasive surgery. The methods being introduced in this paper enable informative image guidance for highly articulated surgical robots, which benefits the advancement of robotic surgery.
NASA Astrophysics Data System (ADS)
Ahrens, H.; Argin, F.; Klinkenbusch, L.
2013-07-01
The non-invasive and radiation-free imaging of the electrical activity of the heart with Electrocardiography (ECG) or Magnetocardiography (MCG) can be helpful for physicians for instance in the localization of the origin of cardiac arrhythmia. In this paper we compare two Kalman Filter algorithms for the solution of a nonlinear state-space model and for the subsequent imaging of the activation/depolarization times of the heart muscle: the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). The algorithms are compared for simulations of a (6×6) magnetometer array, a torso model with piecewise homogeneous conductivities, 946 current dipoles located in a small part of the heart (apex), and several noise levels. It is found that for all tested noise levels the convergence of the activation times is faster for the UKF.
INS/EKF-based stride length, height and direction intent detection for walking assistance robots.
Brescianini, Dario; Jung, Jun-Young; Jang, In-Hun; Park, Hyun Sub; Riener, Robert
2011-01-01
We propose an algorithm used to obtain the information on stride length, height difference, and direction based on user's intent during walking. For exoskeleton robots used to assist paraplegic patients' walking, this information is used to generate gait patterns by themselves in on-line. To obtain this information, we attach an inertial measurement unit(IMU) on crutches and apply an extended kalman filter-based error correction method to reduce the phenomena of drift due to bias of the IMU. The proposed method is verifed in real walking scenarios including walking, climbing up-stairs, and changing direction of walking with normal. © 2011 IEEE
Tactile surface classification for limbed robots using a pressure sensitive robot skin.
Shill, Jacob J; Collins, Emmanuel G; Coyle, Eric; Clark, Jonathan
2015-02-02
This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies [Formula: see text]. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies [Formula: see text]. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains.
State of Charge estimation of lithium ion battery based on extended Kalman filtering algorithm
NASA Astrophysics Data System (ADS)
Yang, Fan; Feng, Yiming; Pan, Binbiao; Wan, Renzhuo; Wang, Jun
2017-08-01
Accurate estimation of state-of-charge (SOC) for lithium ion battery is crucial for real-time diagnosis and prognosis in green energy vehicles. In this paper, a state space model of the battery based on Thevenin model is adopted. The strategy of estimating state of charge (SOC) based on extended Kalman fil-ter is presented, as well as to combine with ampere-hour counting (AH) and open circuit voltage (OCV) methods. The comparison between simulation and experiments indicates that the model’s performance matches well with that of lithium ion battery. The algorithm of extended Kalman filter keeps a good accura-cy precision and less dependent on its initial value in full range of SOC, which is proved to be suitable for online SOC estimation.
Donai, Jeremy J; Halbritter, Rachel M
The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).
Supervised filters for EEG signal in naturally occurring epilepsy forecasting.
Muñoz-Almaraz, Francisco Javier; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma; Pardo, Juan
2017-01-01
Nearly 1% of the global population has Epilepsy. Forecasting epileptic seizures with an acceptable confidence level, could improve the disease treatment and thus the lifestyle of the people who suffer it. To do that the electroencephalogram (EEG) signal is usually studied through spectral power band filtering, but this paper proposes an alternative novel method of preprocessing the EEG signal based on supervised filters. Such filters have been employed in a machine learning algorithm, such as the K-Nearest Neighbor (KNN), to improve the prediction of seizures. The proposed solution extends with this novel approach an algorithm that was submitted to win the third prize of an international Data Science challenge promoted by Kaggle contest platform and the American Epilepsy Society, the Epilepsy Foundation, National Institutes of Health (NIH) and Mayo Clinic. A formal description of these preprocessing methods is presented and a detailed analysis in terms of Receiver Operating Characteristics (ROC) curve and Area Under ROC curve is performed. The obtained results show statistical significant improvements when compared with the spectral power band filtering (PBF) typical baseline. A trend between performance and the dataset size is observed, suggesting that the supervised filters bring better information, compared to the conventional PBF filters, as the dataset grows in terms of monitored variables (sensors) and time length. The paper demonstrates a better accuracy in forecasting when new filters are employed and its main contribution is in the field of machine learning algorithms to develop more accurate predictive systems.
Supervised filters for EEG signal in naturally occurring epilepsy forecasting
2017-01-01
Nearly 1% of the global population has Epilepsy. Forecasting epileptic seizures with an acceptable confidence level, could improve the disease treatment and thus the lifestyle of the people who suffer it. To do that the electroencephalogram (EEG) signal is usually studied through spectral power band filtering, but this paper proposes an alternative novel method of preprocessing the EEG signal based on supervised filters. Such filters have been employed in a machine learning algorithm, such as the K-Nearest Neighbor (KNN), to improve the prediction of seizures. The proposed solution extends with this novel approach an algorithm that was submitted to win the third prize of an international Data Science challenge promoted by Kaggle contest platform and the American Epilepsy Society, the Epilepsy Foundation, National Institutes of Health (NIH) and Mayo Clinic. A formal description of these preprocessing methods is presented and a detailed analysis in terms of Receiver Operating Characteristics (ROC) curve and Area Under ROC curve is performed. The obtained results show statistical significant improvements when compared with the spectral power band filtering (PBF) typical baseline. A trend between performance and the dataset size is observed, suggesting that the supervised filters bring better information, compared to the conventional PBF filters, as the dataset grows in terms of monitored variables (sensors) and time length. The paper demonstrates a better accuracy in forecasting when new filters are employed and its main contribution is in the field of machine learning algorithms to develop more accurate predictive systems. PMID:28632737
Industrial filter bags cleaned by high-frequency vibration: A concept
NASA Technical Reports Server (NTRS)
Kooy, A. V.
1973-01-01
System holds filter bag around fine-mesh metal screen and vibrates screen at its resonant frequency. This removes deposited byproducts and protects bag fibers from damaging forces. Because filter bags represent 20 to 40% of any industrial filtering investment, this method of extending bag life should be of interest to those responsible for plant maintenance.
Joint Filter and Waveform Design for Radar STAP in Signal Dependent Interference (Preprint)
2015-10-01
scheduling for extended targets in radar using information theoretic measures , tracking etc can be seen in [45]–[50], [51]–[56], and the references...range gate, the measured snapshot vector consists of the target returns and the undesired returns, i.e. clutter returns, interference and noise. The...D. Cochran, S. Suvorova, S. Howard, and W. Moran, “Waveform libraries: Measures of effectiveness for radar scheduling,” IEEE Signal Processing
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.
2005-01-01
An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.
Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar
NASA Astrophysics Data System (ADS)
Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan
2016-09-01
A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.
NASA Technical Reports Server (NTRS)
Klein, V.; Schiess, J. R.
1977-01-01
An extended Kalman filter smoother and a fixed point smoother were used for estimation of the state variables in the six degree of freedom kinematic equations relating measured aircraft responses and for estimation of unknown constant bias and scale factor errors in measured data. The computing algorithm includes an analysis of residuals which can improve the filter performance and provide estimates of measurement noise characteristics for some aircraft output variables. The technique developed was demonstrated using simulated and real flight test data. Improved accuracy of measured data was obtained when the data were corrected for estimated bias errors.
Alternatives to an extended Kalman Filter for target image tracking
NASA Astrophysics Data System (ADS)
Leuthauser, P. R.
1981-12-01
Four alternative filters are compared to an extended Kalman filter (EKF) algorithm for tracking a distributed (elliptical) source target in a closed loop tracking problem, using outputs from a forward looking (FLIR) sensor as measurements. These were (1) an EKF with (second order) bias correction term, (2) a constant gain EKF, (3) a constant gain EKF with bias correction term, and (4) a statistically linearized filter. Estimates are made of both actual target motion and of apparent motion due to atmospheric jitter. These alternative designs are considered specifically to address some of the significant biases exhibited by an EKF due to initial acquisition difficulties, unmodelled maneuvering by the target, low signal-to-noise ratio, and real world conditions varying significantly from those assumed in the filter design (robustness). Filter performance was determined with a Monte Carlo study under both ideal and non ideal conditions for tracking targets on a constant velocity cross range path, and during constant acceleration turns of 5G, 10G, and 20G.
A quantum extended Kalman filter
NASA Astrophysics Data System (ADS)
Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.
2017-06-01
In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.
Removable, hermetically-sealing, filter attachment system for hostile environments
Mayfield, Glenn L [Richland, WA
1983-01-01
A removable and reusable filter attachment system. A filter medium is fixed o, and surrounded by, a filter frame having a coaxial, longitudinally extending, annular rim. The rim engages an annular groove which surrounds the opening of a filter housing. The annular groove contains a fusible material and a heating mechanism for melting the fusible material. Upon resolidifying, the fusible material forms a hermetic bond with the rim and groove. Remelting allows detachment and replacement of the filter frame.
NASA Astrophysics Data System (ADS)
Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung
2017-04-01
Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.
Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators
Stuart, Andrew M.; Shukla, Abhishek; Sanz-Alonso, Daniel; ...
2016-02-23
In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz ’96 model is used to exemplify our findings. Here, we consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recovermore » the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.« less
Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, Andrew M.; Shukla, Abhishek; Sanz-Alonso, Daniel
In the context of filtering chaotic dynamical systems it is well-known that partial observations, if sufficiently informative, can be used to control the inherent uncertainty due to chaos. The purpose of this paper is to investigate, both theoretically and numerically, conditions on the observations of chaotic systems under which they can be accurately filtered. In particular, we highlight the advantage of adaptive observation operators over fixed ones. The Lorenz ’96 model is used to exemplify our findings. Here, we consider discrete-time and continuous-time observations in our theoretical developments. We prove that, for fixed observation operator, the 3DVAR filter can recovermore » the system state within a neighbourhood determined by the size of the observational noise. It is required that a sufficiently large proportion of the state vector is observed, and an explicit form for such sufficient fixed observation operator is given. Numerical experiments, where the data is incorporated by use of the 3DVAR and extended Kalman filters, suggest that less informative fixed operators than given by our theory can still lead to accurate signal reconstruction. Adaptive observation operators are then studied numerically; we show that, for carefully chosen adaptive observation operators, the proportion of the state vector that needs to be observed is drastically smaller than with a fixed observation operator. Indeed, we show that the number of state coordinates that need to be observed may even be significantly smaller than the total number of positive Lyapunov exponents of the underlying system.« less
Damarell, Raechel A; Tieman, Jennifer J; Sladek, Ruth M
2013-07-02
PubMed translations of OvidSP Medline search filters offer searchers improved ease of access. They may also facilitate access to PubMed's unique content, including citations for the most recently published biomedical evidence. Retrieving this content requires a search strategy comprising natural language terms ('textwords'), rather than Medical Subject Headings (MeSH). We describe a reproducible methodology that uses a validated PubMed search filter translation to create a textword-only strategy to extend retrieval to PubMed's unique heart failure literature. We translated an OvidSP Medline heart failure search filter for PubMed and established version equivalence in terms of indexed literature retrieval. The PubMed version was then run within PubMed to identify citations retrieved by the filter's MeSH terms (Heart failure, Left ventricular dysfunction, and Cardiomyopathy). It was then rerun with the same MeSH terms restricted to searching on title and abstract fields (i.e. as 'textwords'). Citations retrieved by the MeSH search but not the textword search were isolated. Frequency analysis of their titles/abstracts identified natural language alternatives for those MeSH terms that performed less effectively as textwords. These terms were tested in combination to determine the best performing search string for reclaiming this 'lost set'. This string, restricted to searching on PubMed's unique content, was then combined with the validated PubMed translation to extend the filter's performance in this database. The PubMed heart failure filter retrieved 6829 citations. Of these, 834 (12%) failed to be retrieved when MeSH terms were converted to textwords. Frequency analysis of the 834 citations identified five high frequency natural language alternatives that could improve retrieval of this set (cardiac failure, cardiac resynchronization, left ventricular systolic dysfunction, left ventricular diastolic dysfunction, and LV dysfunction). Together these terms reclaimed 157/834 (18.8%) of lost citations. MeSH terms facilitate precise searching in PubMed's indexed subset. They may, however, work less effectively as search terms prior to subject indexing. A validated PubMed search filter can be used to develop a supplementary textword-only search strategy to extend retrieval to PubMed's unique content. A PubMed heart failure search filter is available on the CareSearch website (http://www.caresearch.com.au) providing access to both indexed and non-indexed heart failure evidence.
Sensory Information Processing and Symbolic Computation
1975-06-01
filter so that noise is not ft See Appendix B for a discussion of constraints on the Impulse response length imposed by this technique. This approach...from Report) Same IB. SUPPLEMENTARY NOTES 19. KEY WORDS fUont/nu. on «v.r.. ./</. // noe...«y «nd (d.n«/fy by Wo.* numbar) image deblurring ...mage deblurring that extend results report^ in the last semi-annual report (1 July.74 - 31 Dec ^.Technical reports covering this work are planned
NASA Astrophysics Data System (ADS)
Ghasemi, S.; Khorasani, K.
2015-10-01
In this paper, the problem of fault detection and isolation (FDI) of the attitude control subsystem (ACS) of spacecraft formation flying systems is considered. For developing the FDI schemes, an extended Kalman filter (EKF) is utilised which belongs to a class of nonlinear state estimation methods. Three architectures, namely centralised, decentralised, and semi-decentralised, are considered and the corresponding FDI strategies are designed and constructed. Appropriate residual generation techniques and threshold selection criteria are proposed for these architectures. The capabilities of the proposed architectures for accomplishing the FDI tasks are studied through extensive numerical simulations for a team of four satellites in formation flight. Using a confusion matrix evaluation criterion, it is shown that the centralised architecture can achieve the most reliable results relative to the semi-decentralised and decentralised architectures at the expense of availability of a centralised processing module that requires the entire team information set. On the other hand, the semi-decentralised performance is close to the centralised scheme without relying on the availability of the entire team information set. Furthermore, the results confirm that the FDI results in formations with angular velocity measurement sensors achieve higher level of accuracy, true faulty, and precision, along with lower level of false healthy misclassification as compared to the formations that utilise attitude measurement sensors.
Kim, Keonwook
2013-08-23
The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably.
Sabatini, Angelo Maria
2011-01-01
In this paper we present a quaternion-based Extended Kalman Filter (EKF) for estimating the three-dimensional orientation of a rigid body. The EKF exploits the measurements from an Inertial Measurement Unit (IMU) that is integrated with a tri-axial magnetic sensor. Magnetic disturbances and gyro bias errors are modeled and compensated by including them in the filter state vector. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system that describes the process of motion tracking by the IMU is observable, namely it may provide sufficient information for performing the estimation task with bounded estimation errors. The observability conditions are that the magnetic field, perturbed by first-order Gauss-Markov magnetic variations, and the gravity vector are not collinear and that the IMU is subject to some angular motions. Computer simulations and experimental testing are presented to evaluate the algorithm performance, including when the observability conditions are critical. PMID:22163689
Coarse cluster enhancing collaborative recommendation for social network systems
NASA Astrophysics Data System (ADS)
Zhao, Yao-Dong; Cai, Shi-Min; Tang, Ming; Shang, Min-Sheng
2017-10-01
Traditional collaborative filtering based recommender systems for social network systems bring very high demands on time complexity due to computing similarities of all pairs of users via resource usages and annotation actions, which thus strongly suppresses recommending speed. In this paper, to overcome this drawback, we propose a novel approach, namely coarse cluster that partitions similar users and associated items at a high speed to enhance user-based collaborative filtering, and then develop a fast collaborative user model for the social tagging systems. The experimental results based on Delicious dataset show that the proposed model is able to dramatically reduce the processing time cost greater than 90 % and relatively improve the accuracy in comparison with the ordinary user-based collaborative filtering, and is robust for the initial parameter. Most importantly, the proposed model can be conveniently extended by introducing more users' information (e.g., profiles) and practically applied for the large-scale social network systems to enhance the recommending speed without accuracy loss.
Linear Phase Sharp Transition BPF to Detect Noninvasive Maternal and Fetal Heart Rate.
Marchon, Niyan; Naik, Gourish; Pai, K R
2018-01-01
Fetal heart rate (FHR) detection can be monitored using either direct fetal scalp electrode recording (invasive) or by indirect noninvasive technique. Weeks before delivery, the invasive method poses a risk factor to the fetus, while the latter provides accurate fetal ECG (FECG) information which can help diagnose fetal's well-being. Our technique employs variable order linear phase sharp transition (LPST) FIR band-pass filter which shows improved stopband attenuation at higher filter orders. The fetal frequency fiduciary edges form the band edges of the filter characterized by varying amounts of overlap of maternal ECG (MECG) spectrum. The one with the minimum maternal spectrum overlap was found to be optimum with no power line interference and maximum fetal heart beats being detected. The improved filtering is reflected in the enhancement of the performance of the fetal QRS detector (FQRS). The improvement has also occurred in fetal heart rate obtained using our algorithm which is in close agreement with the true reference (i.e., invasive fetal scalp ECG). The performance parameters of the FQRS detector such as sensitivity (Se), positive predictive value (PPV), and accuracy (F 1 ) were found to improve even for lower filter order. The same technique was extended to evaluate maternal QRS detector (MQRS) and found to yield satisfactory maternal heart rate (MHR) results.
Exploring an optimal wavelet-based filter for cryo-ET imaging.
Huang, Xinrui; Li, Sha; Gao, Song
2018-02-07
Cryo-electron tomography (cryo-ET) is one of the most advanced technologies for the in situ visualization of molecular machines by producing three-dimensional (3D) biological structures. However, cryo-ET imaging has two serious disadvantages-low dose and low image contrast-which result in high-resolution information being obscured by noise and image quality being degraded, and this causes errors in biological interpretation. The purpose of this research is to explore an optimal wavelet denoising technique to reduce noise in cryo-ET images. We perform tests using simulation data and design a filter using the optimum selected wavelet parameters (three-level decomposition, level-1 zeroed out, subband-dependent threshold, a soft-thresholding and spline-based discrete dyadic wavelet transform (DDWT)), which we call a modified wavelet shrinkage filter; this filter is suitable for noisy cryo-ET data. When testing using real cryo-ET experiment data, higher quality images and more accurate measures of a biological structure can be obtained with the modified wavelet shrinkage filter processing compared with conventional processing. Because the proposed method provides an inherent advantage when dealing with cryo-ET images, it can therefore extend the current state-of-the-art technology in assisting all aspects of cryo-ET studies: visualization, reconstruction, structural analysis, and interpretation.
Multiuser Transmit Beamforming for Maximum Sum Capacity in Tactical Wireless Multicast Networks
2006-08-01
commonly used extended Kalman filter . See [2, 5, 6] for recent tutorial overviews. In particle filtering , continuous distributions are approximated by...signals (using and developing associated particle filtering tools). Our work on these topics has been reported in seven (IEEE, SIAM) journal papers and...multidimensional scaling, tracking, intercept, particle filters . 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF
Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.
Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu
2018-03-10
This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.
On-line implementation of nonlinear parameter estimation for the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Buckland, Julia H.; Musgrave, Jeffrey L.; Walker, Bruce K.
1992-01-01
We investigate the performance of a nonlinear estimation scheme applied to the estimation of several parameters in a performance model of the Space Shuttle Main Engine. The nonlinear estimator is based upon the extended Kalman filter which has been augmented to provide estimates of several key performance variables. The estimated parameters are directly related to the efficiency of both the low pressure and high pressure fuel turbopumps. Decreases in the parameter estimates may be interpreted as degradations in turbine and/or pump efficiencies which can be useful measures for an online health monitoring algorithm. This paper extends previous work which has focused on off-line parameter estimation by investigating the filter's on-line potential from a computational standpoint. ln addition, we examine the robustness of the algorithm to unmodeled dynamics. The filter uses a reduced-order model of the engine that includes only fuel-side dynamics. The on-line results produced during this study are comparable to off-line results generated previously. The results show that the parameter estimates are sensitive to dynamics not included in the filter model. Off-line results using an extended Kalman filter with a full order engine model to address the robustness problems of the reduced-order model are also presented.
NASA Astrophysics Data System (ADS)
Xu, Zheyao; Qi, Naiming; Chen, Yukun
2015-12-01
Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.
Alignment and Calibration of Optical and Inertial Sensors Using Stellar Observations
2007-01-01
Force, Department of Defense, or the U.S Government. References [1] R. G. Brown and P. Y. Hwang . Introduction to Ran- dom Signals and Applied Kalman ...and stellar observations using an extended Kalman filter algorithm. The approach is verified using simulation and experimental data, and con- clusions...an extended Kalman filter (EKF) algorithm (see [10], [11]) to recur- sively estimate camera alignment and calibration param- eters by measuring the
Fusion of Low-Cost Imaging and Inertial Sensors for Navigation
2007-01-01
an Integrated GPS/MEMS Inertial Navigation Pack- age. In Proceedings of ION GNSS 2004, pp. 825–832, September 2004. [3] R. G. Brown and P. Y. Hwang ...track- ing, with no a priori knowledge is provided in [13]. An on- line (Extended Kalman Filter-based) method for calculat- ing a trajectory by tracking...transformation, effectively constraining the resulting correspondence search space. The algorithm was incorporated into an extended Kalman filter and
Comparison Between RGB and Rgb-D Cameras for Supporting Low-Cost Gnss Urban Navigation
NASA Astrophysics Data System (ADS)
Rossi, L.; De Gaetani, C. I.; Pagliari, D.; Realini, E.; Reguzzoni, M.; Pinto, L.
2018-05-01
A pure GNSS navigation is often unreliable in urban areas because of the presence of obstructions, thus preventing a correct reception of the satellite signal. The bridging between GNSS outages, as well as the vehicle attitude reconstruction, can be recovered by using complementary information, such as visual data acquired by RGB-D or RGB cameras. In this work, the possibility of integrating low-cost GNSS and visual data by means of an extended Kalman filter has been investigated. The focus is on the comparison between the use of RGB-D or RGB cameras. In particular, a Microsoft Kinect device (second generation) and a mirrorless Canon EOS M RGB camera have been compared. The former is an interesting RGB-D camera because of its low-cost, easiness of use and raw data accessibility. The latter has been selected for the high-quality of the acquired images and for the possibility of mounting fixed focal length lenses with a lower weight and cost with respect to a reflex camera. The designed extended Kalman filter takes as input the GNSS-only trajectory and the relative orientation between subsequent pairs of images. Depending on the visual data acquisition system, the filter is different because RGB-D cameras acquire both RGB and depth data, allowing to solve the scale problem, which is instead typical of image-only solutions. The two systems and filtering approaches were assessed by ad-hoc experimental tests, showing that the use of a Kinect device for supporting a u-blox low-cost receiver led to a trajectory with a decimeter accuracy, that is 15 % better than the one obtained when using the Canon EOS M camera.
Automated detection of extended sources in radio maps: progress from the SCORPIO survey
NASA Astrophysics Data System (ADS)
Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.
2016-08-01
Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.
Identifying Bearing Rotodynamic Coefficients Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Miller, Brad A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter's performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
Terminal homing position estimation forAutonomous underwater vehicle docking
2017-06-01
used by the AUV to improve its position estimate. Due to the nonlinearity of the D-USBL measurements, the Extended Kalman Filter (EKF), Unscented...Kalman Filter (UKF) and forward and backward smoothing (FBS) filter were utilized to estimate the position of the AUV. After performance of these... filters was deemed unsatisfactory, a new smoothing technique called the Moving Horizon Estimation (MHE) with epi-splines was introduced. The MHE
Constrained State Estimation for Individual Localization in Wireless Body Sensor Networks
Feng, Xiaoxue; Snoussi, Hichem; Liang, Yan; Jiao, Lianmeng
2014-01-01
Wireless body sensor networks based on ultra-wideband radio have recently received much research attention due to its wide applications in health-care, security, sports and entertainment. Accurate localization is a fundamental problem to realize the development of effective location-aware applications above. In this paper the problem of constrained state estimation for individual localization in wireless body sensor networks is addressed. Priori knowledge about geometry among the on-body nodes as additional constraint is incorporated into the traditional filtering system. The analytical expression of state estimation with linear constraint to exploit the additional information is derived. Furthermore, for nonlinear constraint, first-order and second-order linearizations via Taylor series expansion are proposed to transform the nonlinear constraint to the linear case. Examples between the first-order and second-order nonlinear constrained filters based on interacting multiple model extended kalman filter (IMM-EKF) show that the second-order solution for higher order nonlinearity as present in this paper outperforms the first-order solution, and constrained IMM-EKF obtains superior estimation than IMM-EKF without constraint. Another brownian motion individual localization example also illustrates the effectiveness of constrained nonlinear iterative least square (NILS), which gets better filtering performance than NILS without constraint. PMID:25390408
BJUT at TREC 2015 Microblog Track: Real-Time Filtering Using Non-negative Matrix Factorization
2015-11-20
information to extend the query, al- leviates the problem of concept drift in query expansion. In User profiles Twitter Google Bing accurate ambiguity...index as the query expansion document set; second- ly,put the interest file in twitter search energy to get back the relevant twetts, the interest in...for clustering is demonstrated in Figure 2. We will be the result of the search energy Twitter as the original expression of interest, the initial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schemmel, A.
High Efficiency Particulate Air (HEPA) filters are defined as extended-medium, dry-type filters with: (1) a minimum particle removal efficiency of no less than 99.97 percent for 0.3 micrometer particles, (2) a maximum, clean resistance of 1.0 inch water column (in. WC) when operated at 1,000 cubic feet per minute (CFM), and (3) a rigid casing that extends the full depth of the medium. Specifically, ceramic media HEPA filters provide better performance at elevated temperatures, are moisture resistant and nonflammable, can perform their function if wetted and exposed to greater pressures, and can be cleaned and reused. This paper describes themore » modification and design of a large scale test stand which properly evaluates the filtration characteristics of a range of ceramic media filters challenged with a nuclear aerosol agent in order to develop Section FO of ASME AG-1.« less
NASA Technical Reports Server (NTRS)
Bar-Itzhack, I. Y.; Deutschmann, J.; Markley, F. L.
1991-01-01
This work introduces, examines and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter to spacecraft attitude determination, which is based on vector measurements. Three new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstate the performance of all four schemes.
An introduction of component fusion extend Kalman filtering method
NASA Astrophysics Data System (ADS)
Geng, Yue; Lei, Xusheng
2018-05-01
In this paper, the Component Fusion Extend Kalman Filtering (CFEKF) algorithm is proposed. Assuming each component of error propagation are independent with Gaussian distribution. The CFEKF can be obtained through the maximum likelihood of propagation error, which can adjust the state transition matrix and the measured matrix adaptively. With minimize linearization error, CFEKF can an effectively improve the estimation accuracy of nonlinear system state. The computation of CFEKF is similar to EKF which is easy for application.
Accurate Filtering of Privacy-Sensitive Information in Raw Genomic Data.
Decouchant, Jérémie; Fernandes, Maria; Völp, Marcus; Couto, Francisco M; Esteves-Veríssimo, Paulo
2018-04-13
Sequencing thousands of human genomes has enabled breakthroughs in many areas, among them precision medicine, the study of rare diseases, and forensics. However, mass collection of such sensitive data entails enormous risks if not protected to the highest standards. In this article, we follow the position and argue that post-alignment privacy is not enough and that data should be automatically protected as early as possible in the genomics workflow, ideally immediately after the data is produced. We show that a previous approach for filtering short reads cannot extend to long reads and present a novel filtering approach that classifies raw genomic data (i.e., whose location and content is not yet determined) into privacy-sensitive (i.e., more affected by a successful privacy attack) and non-privacy-sensitive information. Such a classification allows the fine-grained and automated adjustment of protective measures to mitigate the possible consequences of exposure, in particular when relying on public clouds. We present the first filter that can be indistinctly applied to reads of any length, i.e., making it usable with any recent or future sequencing technologies. The filter is accurate, in the sense that it detects all known sensitive nucleotides except those located in highly variable regions (less than 10 nucleotides remain undetected per genome instead of 100,000 in previous works). It has far less false positives than previously known methods (10% instead of 60%) and can detect sensitive nucleotides despite sequencing errors (86% detected instead of 56% with 2% of mutations). Finally, practical experiments demonstrate high performance, both in terms of throughput and memory consumption. Copyright © 2018. Published by Elsevier Inc.
Instrument performance enhancement and modification through an extended instrument paradigm
NASA Astrophysics Data System (ADS)
Mahan, Stephen Lee
An extended instrument paradigm is proposed, developed and shown in various applications. The CBM (Chin, Blass, Mahan) method is an extension to the linear systems model of observing systems. In the most obvious and practical application of image enhancement of an instrument characterized by a time-invariant instrumental response function, CBM can be used to enhance images or spectra through a simple convolution application of the CBM filter for a resolution improvement of as much as a factor of two. The CBM method can be used in many applications. We discuss several within this work including imaging through turbulent atmospheres, or what we've called Adaptive Imaging. Adaptive Imaging provides an alternative approach for the investigator desiring results similar to those obtainable with adaptive optics, however on a minimal budget. The CBM method is also used in a backprojected filtered image reconstruction method for Positron Emission Tomography. In addition, we can use information theoretic methods to aid in the determination of model instrumental response function parameters for images having an unknown origin. Another application presented herein involves the use of the CBM method for the determination of the continuum level of a Fourier transform spectrometer observation of ethylene, which provides a means for obtaining reliable intensity measurements in an automated manner. We also present the application of CBM to hyperspectral image data of the comet Shoemaker-Levy 9 impact with Jupiter taken with an acousto-optical tunable filter equipped CCD camera to an adaptive optics telescope.
3-D Signal Processing in a Computer Vision System
Dongping Zhu; Richard W. Conners; Philip A. Araman
1991-01-01
This paper discusses the problem of 3-dimensional image filtering in a computer vision system that would locate and identify internal structural failure. In particular, a 2-dimensional adaptive filter proposed by Unser has been extended to 3-dimension. In conjunction with segmentation and labeling, the new filter has been used in the computer vision system to...
Estimating short-period dynamics using an extended Kalman filter
NASA Technical Reports Server (NTRS)
Bauer, Jeffrey E.; Andrisani, Dominick
1990-01-01
An extended Kalman filter (EKF) is used to estimate the parameters of a low-order model from aircraft transient response data. The low-order model is a state space model derived from the short-period approximation of the longitudinal aircraft dynamics. The model corresponds to the pitch rate to stick force transfer function currently used in flying qualities analysis. Because of the model chosen, handling qualities information is also obtained. The parameters are estimated from flight data as well as from a six-degree-of-freedom, nonlinear simulation of the aircraft. These two estimates are then compared and the discrepancies noted. The low-order model is able to satisfactorily match both flight data and simulation data from a high-order computer simulation. The parameters obtained from the EKF analysis of flight data are compared to those obtained using frequency response analysis of the flight data. Time delays and damping ratios are compared and are in agreement. This technique demonstrates the potential to determine, in near real time, the extent of differences between computer models and the actual aircraft. Precise knowledge of these differences can help to determine the flying qualities of a test aircraft and lead to more efficient envelope expansion.
Potocki, J K; Tharp, H S
1993-01-01
The success of treating cancerous tissue with heat depends on the temperature elevation, the amount of tissue elevated to that temperature, and the length of time that the tissue temperature is elevated. In clinical situations the temperature of most of the treated tissue volume is unknown, because only a small number of temperature sensors can be inserted into the tissue. A state space model based on a finite difference approximation of the bioheat transfer equation (BHTE) is developed for identification purposes. A full-order extended Kalman filter (EKF) is designed to estimate both the unknown blood perfusion parameters and the temperature at unmeasured locations. Two reduced-order estimators are designed as computationally less intensive alternatives to the full-order EKF. Simulation results show that the success of the estimation scheme depends strongly on the number and location of the temperature sensors. Superior results occur when a temperature sensor exists in each unknown blood perfusion zone, and the number of sensors is at least as large as the number of unknown perfusion zones. Unacceptable results occur when there are more unknown perfusion parameters than temperature sensors, or when the sensors are placed in locations that do not sample the unknown perfusion information.
Zulkifley, Mohd Asyraf; Moran, Bill; Rawlinson, David
2012-01-01
Foreground detection has been used extensively in many applications such as people counting, traffic monitoring and face recognition. However, most of the existing detectors can only work under limited conditions. This happens because of the inability of the detector to distinguish foreground and background pixels, especially in complex situations. Our aim is to improve the robustness of foreground detection under sudden and gradual illumination change, colour similarity issue, moving background and shadow noise. Since it is hard to achieve robustness using a single model, we have combined several methods into an integrated system. The masked grey world algorithm is introduced to handle sudden illumination change. Colour co-occurrence modelling is then fused with the probabilistic edge-based background modelling. Colour co-occurrence modelling is good in filtering moving background and robust to gradual illumination change, while an edge-based modelling is used for solving a colour similarity problem. Finally, an extended conditional random field approach is used to filter out shadow and afterimage noise. Simulation results show that our algorithm performs better compared to the existing methods, which makes it suitable for higher-level applications.
Wang, Xin; Wu, Linhui; Yi, Xi; Zhang, Yanqi; Zhang, Limin; Zhao, Huijuan; Gao, Feng
2015-01-01
Due to both the physiological and morphological differences in the vascularization between healthy and diseased tissues, pharmacokinetic diffuse fluorescence tomography (DFT) can provide contrast-enhanced and comprehensive information for tumor diagnosis and staging. In this regime, the extended Kalman filtering (EKF) based method shows numerous advantages including accurate modeling, online estimation of multiparameters, and universal applicability to any optical fluorophore. Nevertheless the performance of the conventional EKF highly hinges on the exact and inaccessible prior knowledge about the initial values. To address the above issues, an adaptive-EKF scheme is proposed based on a two-compartmental model for the enhancement, which utilizes a variable forgetting-factor to compensate the inaccuracy of the initial states and emphasize the effect of the current data. It is demonstrated using two-dimensional simulative investigations on a circular domain that the proposed adaptive-EKF can obtain preferable estimation of the pharmacokinetic-rates to the conventional-EKF and the enhanced-EKF in terms of quantitativeness, noise robustness, and initialization independence. Further three-dimensional numerical experiments on a digital mouse model validate the efficacy of the method as applied in realistic biological systems.
Recent results of nonlinear estimators applied to hereditary systems.
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Roland, V. R.; Wells, W. R.
1972-01-01
An application of the extended Kalman filter to delayed systems to estimate the state and time delay is presented. Two nonlinear estimators are discussed and the results compared with those of the Kalman filter. For all the filters considered, the hereditary system was treated with the delay in the pure form and by using Pade approximations of the delay. A summary of the convergence properties of the filters studied is given. The results indicate that the linear filter applied to the delayed system performs inadequately while the nonlinear filters provide reasonable estimates of both the state and the parameters.
Frequency domain FIR and IIR adaptive filters
NASA Technical Reports Server (NTRS)
Lynn, D. W.
1990-01-01
A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.
LIDAR-Aided Inertial Navigation with Extended Kalman Filtering for Pinpoint Landing
NASA Technical Reports Server (NTRS)
Busnardo, David M.; Aitken, Matthew L.; Tolson, Robert H.; Pierrottet, Diego; Amzajerdian, Farzin
2011-01-01
In support of NASA s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project, an extended Kalman filter routine has been developed for estimating the position, velocity, and attitude of a spacecraft during the landing phase of a planetary mission. The proposed filter combines measurements of acceleration and angular velocity from an inertial measurement unit (IMU) with range and Doppler velocity observations from an onboard light detection and ranging (LIDAR) system. These high-precision LIDAR measurements of distance to the ground and approach velocity will enable both robotic and manned vehicles to land safely and precisely at scientifically interesting sites. The filter has been extensively tested using a lunar landing simulation and shown to improve navigation over flat surfaces or rough terrain. Experimental results from a helicopter flight test performed at NASA Dryden in August 2008 demonstrate that LIDAR can be employed to significantly improve navigation based exclusively on IMU integration.
Localization from Visual Landmarks on a Free-Flying Robot
NASA Technical Reports Server (NTRS)
Coltin, Brian; Fusco, Jesse; Moratto, Zack; Alexandrov, Oleg; Nakamura, Robert
2016-01-01
We present the localization approach for Astrobee, a new free-flying robot designed to navigate autonomously on the International Space Station (ISS). Astrobee will accommodate a variety of payloads and enable guest scientists to run experiments in zero-g, as well as assist astronauts and ground controllers. Astrobee will replace the SPHERES robots which currently operate on the ISS, whose use of fixed ultrasonic beacons for localization limits them to work in a 2 meter cube. Astrobee localizes with monocular vision and an IMU, without any environmental modifications. Visual features detected on a pre-built map, optical flow information, and IMU readings are all integrated into an extended Kalman filter (EKF) to estimate the robot pose. We introduce several modifications to the filter to make it more robust to noise, and extensively evaluate the localization algorithm.
Hot gas cross flow filtering module
Lippert, Thomas E.; Ciliberti, David F.
1988-01-01
A filter module for use in filtering particulates from a high temperature gas has a central gas duct and at least one horizontally extending support mount affixed to the duct. The support mount supports a filter element thereon and has a chamber therein, which communicates with an inner space of the duct through an opening in the wall of the duct, and which communicates with the clean gas face of the filter element. The filter element is secured to the support mount over an opening in the top wall of the support mount, with releasable securement provided to enable replacement of the filter element when desired. Ceramic springs may be used in connection with the filter module either to secure a filter element to a support mount or to prevent delamination of the filter element during blowback.
2012-07-01
and foot dynamics,” IEEE Trans. Biomed. Eng., vol. 54, no. 5, pp. 895–902, May 2007. [25] R. G. Brown and P. Y. C. Hwang , Introduction to Random Signals...the direction of displacement or position. In [18], Sabatini described a quaternion-based extended Kalman filter for determining the orientation of a...position. In [19], Foxlin used a foot-mounted IMMU from Inter- Sense incorporating the ZVU and an extended Kalman filter to achieve error performance
Concurrent MR-NIR Imaging for Breast Cancer Diagnosis
2008-06-01
the extended Kalman filtering (EKF) framework. Note that both the fluorophore concentrations in different compartments, C(rj , k), and the system...r1 − r2)δ(k1 − k2)Z1. 10) Estimation of Pharmacokinetic-Rate Images by Extended Kalman Filtering: Our objective is to estimate the fluorophore...covariance update at time k. Hk is the recursive Kalman gain matrix at time k and I is the identity matrix. Jk−1 is the Jacobian matrix due to iterative
Helling, Thomas S; Kaswan, Sumesh; Miller, S Lee; Tretter, James F
2009-12-01
The use of permanent inferior vena cava filters (IVCFs) offers protection against pulmonary embolism (PE) but increases the long-term risk of deep vein thrombosis (DVT) and does not affect long-term mortality. The use of retrievable IVCFs in trauma patients offers the dual advantage of protection against PE during the risk period and the option of filter removal thus avoiding complications of DVT. Despite the safety of removal, it is likely that many of these retrievable filters are not removed. This was a retrospective, single-center, observational cohort study at a rural level I trauma center. We sought to investigate the number of patients and the circumstances under which retrievable IVCFs were placed and removed. During a 4-year period, 3,455 trauma patients were admitted and 125 patients had retrievable IVCFs placed (71 therapeutic and 54 prophylactic). The most common indications were traumatic brain and spinal cord injuries (66%). During in-hospital filter use, there were 36 new incidences (29%) of PE (1) and DVT (35). Nine patients died before removal. In 40 patients (32%), removal was attempted, and 32 (26%) retrievable IVCFs were successfully removed and in most patients (76%) within 180 days of insertion. Seventeen patients were transferred out of the area for extended care and lost to follow-up. In 55 patients, the filters were not removed. In 20 patients, the surgeon decided against removal. Thirty patients were transferred to extended care or rehabilitation within the community, but they did not return for removal. Thus, of 108/125 patients with follow-up, 76 patients (70%) did not have their IVCFs removed, and 50 patients did not have their IVCFs removed because of the choice of the surgeon, extended care, or rehabilitation. The use of retrievable IVCFs, when necessary, produced predictable protection against PE and DVT complications. Despite the opportunity for removal, most patients, in fact, did not have their filters removed, even when posthospital care could be tracked. The practices of the surgeon, the transfer to extended-care facilities, near or far, and the reluctance to remove long-standing IVCFs contributed to the high-retention rate.
Hadwin, Paul J; Peterson, Sean D
2017-04-01
The Bayesian framework for parameter inference provides a basis from which subject-specific reduced-order vocal fold models can be generated. Previously, it has been shown that a particle filter technique is capable of producing estimates and associated credibility intervals of time-varying reduced-order vocal fold model parameters. However, the particle filter approach is difficult to implement and has a high computational cost, which can be barriers to clinical adoption. This work presents an alternative estimation strategy based upon Kalman filtering aimed at reducing the computational cost of subject-specific model development. The robustness of this approach to Gaussian and non-Gaussian noise is discussed. The extended Kalman filter (EKF) approach is found to perform very well in comparison with the particle filter technique at dramatically lower computational cost. Based upon the test cases explored, the EKF is comparable in terms of accuracy to the particle filter technique when greater than 6000 particles are employed; if less particles are employed, the EKF actually performs better. For comparable levels of accuracy, the solution time is reduced by 2 orders of magnitude when employing the EKF. By virtue of the approximations used in the EKF, however, the credibility intervals tend to be slightly underpredicted.
Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang
2018-04-20
Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.
Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang
2018-01-01
Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified. PMID:29677124
Microscopy with spatial filtering for sorting particles and monitoring subcellular morphology
NASA Astrophysics Data System (ADS)
Zheng, Jing-Yi; Qian, Zhen; Pasternack, Robert M.; Boustany, Nada N.
2009-02-01
Optical scatter imaging (OSI) was developed to non-invasively track real-time changes in particle morphology with submicron sensitivity in situ without exogenous labeling, cell fixing, or organelle isolation. For spherical particles, the intensity ratio of wide-to-narrow angle scatter (OSIR, Optical Scatter Image Ratio) was shown to decrease monotonically with diameter and agree with Mie theory. In living cells, we recently reported this technique is able to detect mitochondrial morphological alterations, which were mediated by the Bcl-xL transmembrane domain, and could not be observed by fluorescence or differential interference contrast images. Here we further extend the ability of morphology assessment by adopting a digital micromirror device (DMD) for Fourier filtering. When placed in the Fourier plane the DMD can be used to select scattering intensities at desired combination of scattering angles. We designed an optical filter bank consisting of Gabor-like filters with various scales and rotations based on Gabor filters, which have been widely used for localization of spatial and frequency information in digital images and texture analysis. Using a model system consisting of mixtures of polystyrene spheres and bacteria, we show how this system can be used to sort particles on a microscopic slide based on their size, orientation and aspect ratio. We are currently applying this technique to characterize the morphology of subcellular organelles to help understand fundamental biological processes.
NASA Astrophysics Data System (ADS)
Reusch, L. M.; Franz, P.; Goetz, J. A.; den Hartog, D. J.; Nornberg, M. D.; van Meter, P.
2017-10-01
The two-color soft x-ray tomography (SXT) diagnostic on MST is now capable of Te measurement down to 500 eV. The previous lower limit was 1 keV, due to the presence of SXR emission lines from Al sputtered from the MST wall. The two-color technique uses two filters of different thickness to form a coarse spectrometer to estimate the slope of the continuum x-ray spectrum, which depends on Te. The 1.6 - 2.0 keV Al emission lines were previously filtered out by using thick Be filters (400 µm and 800 µm), thus restricting the range of the SXT diagnostic to Te >= 1 keV. Absolute brightness modeling explicitly includes several sources of radiation in the analysis model, enabling the use of thinner filters and measurement of much lower Te. Models based on the atomic database and analysis structure (ADAS) agree very well with our experimental SXR measurements. We used ADAS to assess the effect of bremsstrahlung, recombination, dielectronic recombination, and line emission on the inferred Te. This assessment informed the choice of the optimum filter pair to extend the Te range of the SXT diagnostic. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences program under Award Numbers DE-FC02-05ER54814 and DE-SC0015474.
1976-01-01
Trickling Filter Fairchild A.F.B. Trickling Filter Town of Medical Lake Lagoon Town of Fairfield Lagoon Town of Millwood Activated Sludge (Extended Aeration...sewer system is subject to high levels of in- filtration. The treatment plant has ice problems in winter, trickling filter spreading arm clogging...lagoons. There is need of a routine effluent quan- tity/quality monitoring program. Tekoa. The trickling filter plant is poorly maintained to the point
Angle only tracking with particle flow filters
NASA Astrophysics Data System (ADS)
Daum, Fred; Huang, Jim
2011-09-01
We show the results of numerical experiments for tracking ballistic missiles using only angle measurements. We compare the performance of an extended Kalman filter with a new nonlinear filter using particle flow to compute Bayes' rule. For certain difficult geometries, the particle flow filter is an order of magnitude more accurate than the EKF. Angle only tracking is of interest in several different sensors; for example, passive optics and radars in which range and Doppler data are spoiled by jamming.
An Inter-Personal Information Sharing Model Based on Personalized Recommendations
NASA Astrophysics Data System (ADS)
Kamei, Koji; Funakoshi, Kaname; Akahani, Jun-Ichi; Satoh, Tetsuji
In this paper, we propose an inter-personal information sharing model among individuals based on personalized recommendations. In the proposed model, we define an information resource as shared between people when both of them consider it important --- not merely when they both possess it. In other words, the model defines the importance of information resources based on personalized recommendations from identifiable acquaintances. The proposed method is based on a collaborative filtering system that focuses on evaluations from identifiable acquaintances. It utilizes both user evaluations for documents and their contents. In other words, each user profile is represented as a matrix of credibility to the other users' evaluations on each domain of interests. We extended the content-based collaborative filtering method to distinguish other users to whom the documents should be recommended. We also applied a concept-based vector space model to represent the domain of interests instead of the previous method which represented them by a term-based vector space model. We introduce a personalized concept-base compiled from each user's information repository to improve the information retrieval in the user's environment. Furthermore, the concept-spaces change from user to user since they reflect the personalities of the users. Because of different concept-spaces, the similarity between a document and a user's interest varies for each user. As a result, a user receives recommendations from other users who have different view points, achieving inter-personal information sharing based on personalized recommendations. This paper also describes an experimental simulation of our information sharing model. In our laboratory, five participants accumulated a personal repository of e-mails and web pages from which they built their own concept-base. Then we estimated the user profiles according to personalized concept-bases and sets of documents which others evaluated. We simulated inter-personal recommendation based on the user profiles and evaluated the performance of the recommendation method by comparing the recommended documents to the result of the content-based collaborative filtering.
Machine Learning in the Presence of an Adversary: Attacking and Defending the SpamBayes Spam Filter
2008-05-20
Machine learning techniques are often used for decision making in security critical applications such as intrusion detection and spam filtering...filter. The defenses shown in this thesis are able to work against the attacks developed against SpamBayes and are sufficiently generic to be easily extended into other statistical machine learning algorithms.
Air-to-Air Missile Vector Scoring
2012-03-22
SIR sampling-importance resampling . . . . . . . . . . . . . . 53 EPF extended particle filter . . . . . . . . . . . . . . . . . . . . 54 UPF unscented...particle filter ( EPF ) or a unscented particle fil- ter (UPF) [20]. The basic concept is to apply a bank of N EKF or UKF filters to move particles from...Merwe, Doucet, Freitas and Wan provide a comprehensive discussion on the EPF and UPF, including algorithms for implementation [20]. 2Result based on
ERIC Educational Resources Information Center
Booker, Queen Esther
2009-01-01
An approach used to tackle the problem of helping online students find the classes they want and need is a filtering technique called "social information filtering," a general approach to personalized information filtering. Social information filtering essentially automates the process of "word-of-mouth" recommendations: items are recommended to a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larry Zirker; James Francfort
2004-02-01
This Oil Bypass Filter Technology Evaluation quarterly report (October-December 2003) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 324,091 test miles. Thismore » represents an avoidance of 27 oil changes, which equate to 952 quarts (238 gallons) of new oil not conserved and therefore, 952 quarts of waste oil not generated. To validate the extended oil-drain intervals, an oil-analysis regime is used to evaluate the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. The test fleet has been expanded to include six Chevrolet Tahoe sport utility vehicles with gasoline engines.« less
Identifying Bearing Rotordynamic Coefficients using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Miller, Brad A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor-dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter s performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor-bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
Development of Test Protocols for International Space Station Particulate Filters
NASA Technical Reports Server (NTRS)
Green, Robert D.; Vijayakumar, R.; Agui, Juan H.
2014-01-01
Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High- Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. Over the years, the service life of these filters has been re-evaluated based on limited post-flight tests of returned filters and risk factors. On earth, a well designed and installed HEPA filter will last for several years, e.g. in industrial and research clean room applications. Test methods for evaluating these filters are being developed on the basis of established test protocols used by the industry and the military. This paper will discuss the test methods adopted and test results on prototypes of the ISS filters. The results will assist in establishing whether the service life can be extended for these filters. Results from unused filters that have been in storage will also be presented to ascertain the shelf life and performance deterioration, if any and determine if the shelf life may be extended.
A new fault diagnosis algorithm for AUV cooperative localization system
NASA Astrophysics Data System (ADS)
Shi, Hongyang; Miao, Zhiyong; Zhang, Yi
2017-10-01
Multiple AUVs cooperative localization as a new kind of underwater positioning technology, not only can improve the positioning accuracy, but also has many advantages the single AUV does not have. It is necessary to detect and isolate the fault to increase the reliability and availability of the AUVs cooperative localization system. In this paper, the Extended Multiple Model Adaptive Cubature Kalmam Filter (EMMACKF) method is presented to detect the fault. The sensor failures are simulated based on the off-line experimental data. Experimental results have shown that the faulty apparatus can be diagnosed effectively using the proposed method. Compared with Multiple Model Adaptive Extended Kalman Filter and Multi-Model Adaptive Unscented Kalman Filter, both accuracy and timelines have been improved to some extent.
NASA Astrophysics Data System (ADS)
Goh, Shu Ting
Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due to the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft's range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method's error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.
Use of a wire extender during neuroprotected vertebral artery angioplasty and stenting.
Lesley, Walter S; Kumar, Ravi; Rangaswamy, Rajesh
2010-09-01
The off-label use of an extender wire during vertebral artery stenting and angioplasty with or with neuroprotection has not been previously reported. Retrospective, single-patient, technical report. After monorail balloon angioplasty was performed on a proximal left vertebral artery stenosis, the 190 cm long Accunet neuroprotection filter device was not long enough for delivery of an over-the-wire stent. After mating a 145 cm long, 0.014 inch extension wire to the filter device, a balloon-mounted Liberté stent was implanted with good angiographic and clinical results. The off-label use of an extender wire permits successful over-the-wire stenting on a monorail neuroprotection device for vertebral artery endosurgery.
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter.
Kopp, M; Harmeling, S; Schütz, G; Schölkopf, B; Fähnle, M
2015-01-01
The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 10(5)), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that - nevertheless - there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Keonwook
2013-01-01
The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably. PMID:23979482
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Application of Consider Covariance to the Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Lundberg, John B.
1996-01-01
The extended Kalman filter (EKF) is the basis for many applications of filtering theory to real-time problems where estimates of the state of a dynamical system are to be computed based upon some set of observations. The form of the EKF may vary somewhat from one application to another, but the fundamental principles are typically unchanged among these various applications. As is the case in many filtering applications, models of the dynamical system (differential equations describing the state variables) and models of the relationship between the observations and the state variables are created. These models typically employ a set of constants whose values are established my means of theory or experimental procedure. Since the estimates of the state are formed assuming that the models are perfect, any modeling errors will affect the accuracy of the computed estimates. Note that the modeling errors may be errors of commission (errors in terms included in the model) or omission (errors in terms excluded from the model). Consequently, it becomes imperative when evaluating the performance of real-time filters to evaluate the effect of modeling errors on the estimates of the state.
Single photon laser altimeter data processing, analysis and experimental validation
NASA Astrophysics Data System (ADS)
Vacek, Michael; Peca, Marek; Michalek, Vojtech; Prochazka, Ivan
2015-10-01
Spaceborne laser altimeters are common instruments on-board the rendezvous spacecraft. This manuscript deals with the altimeters using a single photon approach, which belongs to the family of time-of-flight range measurements. Moreover, the single photon receiver part of the altimeter may be utilized as an Earth-to-spacecraft link enabling one-way ranging, time transfer and data transfer. The single photon altimeters evaluate actual altitude through the repetitive detections of single photons of the reflected laser pulses. We propose the single photon altimeter signal processing and data mining algorithm based on the Poisson statistic filter (histogram method) and the modified Kalman filter, providing all common altimetry products (altitude, slope, background photon flux and albedo). The Kalman filter is extended for the background noise filtering, the varying slope adaptation and the non-causal extension for an abrupt slope change. Moreover, the algorithm partially removes the major drawback of a single photon altitude reading, namely that the photon detection measurement statistics must be gathered. The developed algorithm deduces the actual altitude on the basis of a single photon detection; thus, being optimal in the sense that each detected signal photon carrying altitude information is tracked and no altitude information is lost. The algorithm was tested on the simulated datasets and partially cross-probed with the experimental data collected using the developed single photon altimeter breadboard based on the microchip laser with the pulse energy on the order of microjoule and the repetition rate of several kilohertz. We demonstrated that such an altimeter configuration may be utilized for landing or hovering a small body (asteroid, comet).
Zone heated diesel particulate filter electrical connection
Gonze, Eugene V.; Paratore, Jr., Michael J.
2010-03-30
An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.
Calcium (Ca2+) waves data calibration and analysis using image processing techniques
2013-01-01
Background Calcium (Ca2+) propagates within tissues serving as an important information carrier. In particular, cilia beat frequency in oviduct cells is partially regulated by Ca2+ changes. Thus, measuring the calcium density and characterizing the traveling wave plays a key role in understanding biological phenomena. However, current methods to measure propagation velocities and other wave characteristics involve several manual or time-consuming procedures. This limits the amount of information that can be extracted, and the statistical quality of the analysis. Results Our work provides a framework based on image processing procedures that enables a fast, automatic and robust characterization of data from two-filter fluorescence Ca2+ experiments. We calculate the mean velocity of the wave-front, and use theoretical models to extract meaningful parameters like wave amplitude, decay rate and time of excitation. Conclusions Measurements done by different operators showed a high degree of reproducibility. This framework is also extended to a single filter fluorescence experiments, allowing higher sampling rates, and thus an increased accuracy in velocity measurements. PMID:23679062
Cascaded K-means convolutional feature learner and its application to face recognition
NASA Astrophysics Data System (ADS)
Zhou, Daoxiang; Yang, Dan; Zhang, Xiaohong; Huang, Sheng; Feng, Shu
2017-09-01
Currently, considerable efforts have been devoted to devise image representation. However, handcrafted methods need strong domain knowledge and show low generalization ability, and conventional feature learning methods require enormous training data and rich parameters tuning experience. A lightened feature learner is presented to solve these problems with application to face recognition, which shares similar topology architecture as a convolutional neural network. Our model is divided into three components: cascaded convolution filters bank learning layer, nonlinear processing layer, and feature pooling layer. Specifically, in the filters learning layer, we use K-means to learn convolution filters. Features are extracted via convoluting images with the learned filters. Afterward, in the nonlinear processing layer, hyperbolic tangent is employed to capture the nonlinear feature. In the feature pooling layer, to remove the redundancy information and incorporate the spatial layout, we exploit multilevel spatial pyramid second-order pooling technique to pool the features in subregions and concatenate them together as the final representation. Extensive experiments on four representative datasets demonstrate the effectiveness and robustness of our model to various variations, yielding competitive recognition results on extended Yale B and FERET. In addition, our method achieves the best identification performance on AR and labeled faces in the wild datasets among the comparative methods.
Position Tracking During Human Walking Using an Integrated Wearable Sensing System.
Zizzo, Giulio; Ren, Lei
2017-12-10
Progress has been made enabling expensive, high-end inertial measurement units (IMUs) to be used as tracking sensors. However, the cost of these IMUs is prohibitive to their widespread use, and hence the potential of low-cost IMUs is investigated in this study. A wearable low-cost sensing system consisting of IMUs and ultrasound sensors was developed. Core to this system is an extended Kalman filter (EKF), which provides both zero-velocity updates (ZUPTs) and Heuristic Drift Reduction (HDR). The IMU data was combined with ultrasound range measurements to improve accuracy. When a map of the environment was available, a particle filter was used to impose constraints on the possible user motions. The system was therefore composed of three subsystems: IMUs, ultrasound sensors, and a particle filter. A Vicon motion capture system was used to provide ground truth information, enabling validation of the sensing system. Using only the IMU, the system showed loop misclosure errors of 1% with a maximum error of 4-5% during walking. The addition of the ultrasound sensors resulted in a 15% reduction in the total accumulated error. Lastly, the particle filter was capable of providing noticeable corrections, which could keep the tracking error below 2% after the first few steps.
Exploring synchronisation in nonlinear data assimilation
NASA Astrophysics Data System (ADS)
Rodrigues-Pinheiro, Flavia; van Leeuwen, Peter Jan
2016-04-01
Present-day data assimilation methods are based on linearizations and face serious problems in strongly nonlinear cases such as convection. A promising solution to this problem is a particle filter, which provides a representation of the model probability density function (pdf) by a discrete set of model states, or particles. The basic particle filter uses Bayes's theorem directly, but does not work in high-dimensional cases. The performance can be improved by considering the proposal density freedom. This allows one to change the model equations to bring the particles closer to the observations, resulting in very efficient update schemes at observation times, but extending these schemes between observation times is computationally expensive. Simple solutions like nudging have been shown to be not powerful enough. A potential solution might be synchronization, in which one tries to synchronise the model of a system with the true evolution of the system via the observations. In practice this means that an extra term is added to the model equations that hampers growth of instabilities on the synchronization manifold. Especially the delayed versions, where observations are allowed to influence the state in the past have shown some remarkable successes. Unfortunately, all efforts ignore errors in the observations, and as soon as these are introduced the performance degrades considerably. There is a close connection between time-delayed synchronization and a Kalman Smoother, which does allow for observational (and other) errors. In this presentation we will explore this connection to the full, with a view to extend synchronization to more realistic settings. Specifically performance of the spread of information from observed to unobserved variables is studied in detail. The results indicate that this extended synchronisation is a promising tool to steer the model states towards the observations efficiently. If time permits, we will show initial results of embedding the new synchronization method into a particle filter.
Advanced technology development for image gathering, coding, and processing
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.
1990-01-01
Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.
All Source Sensor Integration Using an Extended Kalman Filter
2012-03-22
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 All...Positioning System . . . . . . . . . . . . . . . . . . 1 ASPN All Source Positioning Navigation . . . . . . . . . . . . . . 2 DARPA Defense Advanced...equations are developed for sensor preprocessed mea- 1 surements, and these navigation equations are not dependent upon the integrating filter. That is
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-25
... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder Log, Filter Holder Log DHS Form 9500 AGENCY: Office of Health Affairs, DHS. ACTION: 60-Day Notice and....: Daniel Yereb, [email protected] 703- 647-8052. SUPPLEMENTARY INFORMATION: Following collection, the filter...
Choosing and using methodological search filters: searchers' views.
Beale, Sophie; Duffy, Steven; Glanville, Julie; Lefebvre, Carol; Wright, Dianne; McCool, Rachael; Varley, Danielle; Boachie, Charles; Fraser, Cynthia; Harbour, Jenny; Smith, Lynne
2014-06-01
Search filters or hedges are search strategies developed to assist information specialists and librarians to retrieve different types of evidence from bibliographic databases. The objectives of this project were to learn about searchers' filter use, how searchers choose search filters and what information they would like to receive to inform their choices. Interviews with information specialists working in, or for, the National Institute for Health and Care Excellence (NICE) were conducted. An online questionnaire survey was also conducted and advertised via a range of email lists. Sixteen interviews were undertaken and 90 completed questionnaires were received. The use of search filters tends to be linked to reducing a large amount of literature, introducing focus and assisting with searches that are based on a single study type. Respondents use numerous ways to identify search filters and can find choosing between different filters problematic because of knowledge gaps and lack of time. Search filters are used mainly for reducing large result sets (introducing focus) and assisting with searches focused on a single study type. Features that would help with choosing filters include making information about filters less technical, offering ratings and providing more detail about filter validation strategies and filter provenance. © 2014 The authors. Health Information and Libraries Journal © 2014 Health Libraries Group.
NASA Astrophysics Data System (ADS)
Tang, Shaojie; Tang, Xiangyang
2016-03-01
Axial cone beam (CB) computed tomography (CT) reconstruction is still the most desirable in clinical applications. As the potential candidates with analytic form for the task, the back projection-filtration (BPF) and the derivative backprojection filtered (DBPF) algorithms, in which Hilbert filtering is the common algorithmic feature, are originally derived for exact helical and axial reconstruction from CB and fan beam projection data, respectively. These two algorithms have been heuristically extended for axial CB reconstruction via adoption of virtual PI-line segments. Unfortunately, however, streak artifacts are induced along the Hilbert filtering direction, since these algorithms are no longer accurate on the virtual PI-line segments. We have proposed to cascade the extended BPF/DBPF algorithm with orthogonal butterfly filtering for image reconstruction (namely axial CB-BPP/DBPF cascaded with orthogonal butterfly filtering), in which the orientation-specific artifacts caused by post-BP Hilbert transform can be eliminated, at a possible expense of losing the BPF/DBPF's capability of dealing with projection data truncation. Our preliminary results have shown that this is not the case in practice. Hence, in this work, we carry out an algorithmic analysis and experimental study to investigate the performance of the axial CB-BPP/DBPF cascaded with adequately oriented orthogonal butterfly filtering for three-dimensional (3D) reconstruction in region of interest (ROI).
Abbey, Craig K.; Zemp, Roger J.; Liu, Jie; Lindfors, Karen K.; Insana, Michael F.
2009-01-01
We investigate and extend the ideal observer methodology developed by Smith and Wagner to detection and discrimination tasks related to breast sonography. We provide a numerical approach for evaluating the ideal observer acting on radio-frequency (RF) frame data, which involves inversion of large nonstationary covariance matrices, and we describe a power-series approach to computing this inverse. Considering a truncated power series suggests that the RF data be Wiener-filtered before forming the final envelope image. We have compared human performance for Wiener-filtered and conventional B-mode envelope images using psychophysical studies for 5 tasks related to breast cancer classification. We find significant improvements in visual detection and discrimination efficiency in four of these five tasks. We also use the Smith-Wagner approach to distinguish between human and processing inefficiencies, and find that generally the principle limitation comes from the information lost in computing the final envelope image. PMID:16468454
Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Coppa, Bertrand
2012-01-01
In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and in the other case, we have not assumed any observations for it. Quantitative evaluation of the proposed algorithm on the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows that an average SNR improvement of 8 dB is achieved for an input signal of -4 dB.
Normalised subband adaptive filtering with extended adaptiveness on degree of subband filters
NASA Astrophysics Data System (ADS)
Samuyelu, Bommu; Rajesh Kumar, Pullakura
2017-12-01
This paper proposes an adaptive normalised subband adaptive filtering (NSAF) to accomplish the betterment of NSAF performance. In the proposed NSAF, an extended adaptiveness is introduced from its variants in two ways. In the first way, the step-size is set adaptive, and in the second way, the selection of subbands is set adaptive. Hence, the proposed NSAF is termed here as variable step-size-based NSAF with selected subbands (VS-SNSAF). Experimental investigations are carried out to demonstrate the performance (in terms of convergence) of the VS-SNSAF against the conventional NSAF and its state-of-the-art adaptive variants. The results report the superior performance of VS-SNSAF over the traditional NSAF and its variants. It is also proved for its stability, robustness against noise and substantial computing complexity.
Adaptive Filtering Using Recurrent Neural Networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
State and force observers based on multibody models and the indirect Kalman filter
NASA Astrophysics Data System (ADS)
Sanjurjo, Emilio; Dopico, Daniel; Luaces, Alberto; Naya, Miguel Ángel
2018-06-01
The aim of this work is to present two new methods to provide state observers by combining multibody simulations with indirect extended Kalman filters. One of the methods presented provides also input force estimation. The observers have been applied to two mechanism with four different sensor configurations, and compared to other multibody-based observers found in the literature to evaluate their behavior, namely, the unscented Kalman filter (UKF), and the indirect extended Kalman filter with simplified Jacobians (errorEKF). The new methods have some more computational cost than the errorEKF, but still much less than the UKF. Regarding their accuracy, both are better than the errorEKF. The method with input force estimation outperforms also the UKF, while the method without force estimation achieves results almost identical to those of the UKF. All the methods have been implemented as a reusable MATLAB® toolkit which has been released as Open Source in https://github.com/MBDS/mbde-matlab.
Assisted Perception, Planning and Control for Remote Mobility and Dexterous Manipulation
2017-04-01
on unmanned aerial vehicles (UAVs). The underlying algorithm is based on an Extended Kalman Filter (EKF) that simultaneously estimates robot state...and sensor biases. The filter developed provided a probabilistic fusion of sensor data from many modalities to produce a single consistent position...estimation for a walking humanoid. Given a prior map using a Gaussian particle filter , the LIDAR based system is able to provide a drift-free
A Stabilized Sparse-Matrix U-D Square-Root Implementation of a Large-State Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Boggs, D.; Ghil, M.; Keppenne, C.
1995-01-01
The full nonlinear Kalman filter sequential algorithm is, in theory, well-suited to the four-dimensional data assimilation problem in large-scale atmospheric and oceanic problems. However, it was later discovered that this algorithm can be very sensitive to computer roundoff, and that results may cease to be meaningful as time advances. Implementations of a modified Kalman filter are given.
Joint Multi-Fiber NODDI Parameter Estimation and Tractography Using the Unscented Information Filter
Reddy, Chinthala P.; Rathi, Yogesh
2016-01-01
Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts. PMID:27147956
Reddy, Chinthala P; Rathi, Yogesh
2016-01-01
Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts.
Tracking moving radar targets with parallel, velocity-tuned filters
Bickel, Douglas L.; Harmony, David W.; Bielek, Timothy P.; Hollowell, Jeff A.; Murray, Margaret S.; Martinez, Ana
2013-04-30
Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.
Pinsard, Basile; Boutin, Arnaud; Doyon, Julien; Benali, Habib
2018-01-01
Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit the acquisition processes. The registration of single or multiple simultaneously acquired slices is achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation of continuous motion, while an intensity bias field is non-parametrically fitted. The proposed extraction of gray-matter BOLD activity from the acquisition space to an anatomical group template space, taking into account distortions, better preserves fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to high-resolution multi-slice techniques. When tested on simulated and real data the latter shows a reduction of motion explained variance and signal variability when compared to the conventional preprocessing approach. These improvements provide more stable patterns of activity, facilitating investigation of cerebral information representation in healthy and/or clinical populations where motion is known to impact fine-scale data. PMID:29755312
Pinsard, Basile; Boutin, Arnaud; Doyon, Julien; Benali, Habib
2018-01-01
Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit the acquisition processes. The registration of single or multiple simultaneously acquired slices is achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation of continuous motion, while an intensity bias field is non-parametrically fitted. The proposed extraction of gray-matter BOLD activity from the acquisition space to an anatomical group template space, taking into account distortions, better preserves fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to high-resolution multi-slice techniques. When tested on simulated and real data the latter shows a reduction of motion explained variance and signal variability when compared to the conventional preprocessing approach. These improvements provide more stable patterns of activity, facilitating investigation of cerebral information representation in healthy and/or clinical populations where motion is known to impact fine-scale data.
A distributed, dynamic, parallel computational model: the role of noise in velocity storage
Merfeld, Daniel M.
2012-01-01
Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic “real-time” calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique–“particle filtering”–that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception. PMID:22514288
NASA Technical Reports Server (NTRS)
Mashiku, Alinda; Garrison, James L.; Carpenter, J. Russell
2012-01-01
The tracking of space objects requires frequent and accurate monitoring for collision avoidance. As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full probability density function (PDF) of the random orbit state. Through representing the full PDF of the orbit state for orbit maintenance and collision avoidance, we can take advantage of the statistical information present in the heavy tailed distributions, more accurately representing the orbit states with low probability. The classical methods of orbit determination (i.e. Kalman Filter and its derivatives) provide state estimates based on only the second moments of the state and measurement errors that are captured by assuming a Gaussian distribution. Although the measurement errors can be accurately assumed to have a Gaussian distribution, errors with a non-Gaussian distribution could arise during propagation between observations. Moreover, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique that is capable of propagating and estimating a more complete representation of the state distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs to generate particles that approximate the full PDF representation. The PF is applied in the estimation and propagation of a highly eccentric orbit and the results are compared to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate its proficiency.
2013-01-01
Background PubMed translations of OvidSP Medline search filters offer searchers improved ease of access. They may also facilitate access to PubMed’s unique content, including citations for the most recently published biomedical evidence. Retrieving this content requires a search strategy comprising natural language terms (‘textwords’), rather than Medical Subject Headings (MeSH). We describe a reproducible methodology that uses a validated PubMed search filter translation to create a textword-only strategy to extend retrieval to PubMed’s unique heart failure literature. Methods We translated an OvidSP Medline heart failure search filter for PubMed and established version equivalence in terms of indexed literature retrieval. The PubMed version was then run within PubMed to identify citations retrieved by the filter’s MeSH terms (Heart failure, Left ventricular dysfunction, and Cardiomyopathy). It was then rerun with the same MeSH terms restricted to searching on title and abstract fields (i.e. as ‘textwords’). Citations retrieved by the MeSH search but not the textword search were isolated. Frequency analysis of their titles/abstracts identified natural language alternatives for those MeSH terms that performed less effectively as textwords. These terms were tested in combination to determine the best performing search string for reclaiming this ‘lost set’. This string, restricted to searching on PubMed’s unique content, was then combined with the validated PubMed translation to extend the filter’s performance in this database. Results The PubMed heart failure filter retrieved 6829 citations. Of these, 834 (12%) failed to be retrieved when MeSH terms were converted to textwords. Frequency analysis of the 834 citations identified five high frequency natural language alternatives that could improve retrieval of this set (cardiac failure, cardiac resynchronization, left ventricular systolic dysfunction, left ventricular diastolic dysfunction, and LV dysfunction). Together these terms reclaimed 157/834 (18.8%) of lost citations. Conclusions MeSH terms facilitate precise searching in PubMed’s indexed subset. They may, however, work less effectively as search terms prior to subject indexing. A validated PubMed search filter can be used to develop a supplementary textword-only search strategy to extend retrieval to PubMed’s unique content. A PubMed heart failure search filter is available on the CareSearch website (http://www.caresearch.com.au) providing access to both indexed and non-indexed heart failure evidence. PMID:23819658
Finessing filter scarcity problem in face recognition via multi-fold filter convolution
NASA Astrophysics Data System (ADS)
Low, Cheng-Yaw; Teoh, Andrew Beng-Jin
2017-06-01
The deep convolutional neural networks for face recognition, from DeepFace to the recent FaceNet, demand a sufficiently large volume of filters for feature extraction, in addition to being deep. The shallow filter-bank approaches, e.g., principal component analysis network (PCANet), binarized statistical image features (BSIF), and other analogous variants, endure the filter scarcity problem that not all PCA and ICA filters available are discriminative to abstract noise-free features. This paper extends our previous work on multi-fold filter convolution (ℳ-FFC), where the pre-learned PCA and ICA filter sets are exponentially diversified by ℳ folds to instantiate PCA, ICA, and PCA-ICA offspring. The experimental results unveil that the 2-FFC operation solves the filter scarcity state. The 2-FFC descriptors are also evidenced to be superior to that of PCANet, BSIF, and other face descriptors, in terms of rank-1 identification rate (%).
Nonlinear estimation theory applied to the interplanetary orbit determination problem.
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Choe, C. Y.
1972-01-01
Martingale theory and appropriate smoothing properties of Loeve (1953) have been used to develop a modified Gaussian second-order filter. The performance of the filter is evaluated through numerical simulation of a Jupiter flyby mission. The observations used in the simulation are on-board measurements of the angle between Jupiter and a fixed star taken at discrete time intervals. In the numerical study, the influence of each of the second-order terms is evaluated. Five filter algorithms are used in the simulations. Four of the filters are the modified Gaussian second-order filter and three approximations derived by neglecting one or more of the second-order terms in the equations. The fifth filter is the extended Kalman-Bucy filter which is obtained by neglecting all of the second-order terms.
NASA Astrophysics Data System (ADS)
Swanson, R. E.
2017-12-01
Climate data records typically exhibit considerable variation over short time scales both from natural variability and from instrumentation issues. The use of linear least squares regression can provide overall trend information from noisy data, however assessing intermediate time periods can also provide useful information unavailable from basic trend calculations. Extracting the short term information in these data for assessing changes to climate or for comparison of data series from different sources requires the application of filters to separate short period variations from longer period trends. A common method used to smooth data is the moving average, which is a simple digital filter that can distort the resulting series due to the aliasing of the sampling period into the output series. We utilized Hamming filters to compare MSU/AMSU satellite time series developed by three research groups (UAH, RSS and NOAA STAR), the results published in January 2017 [http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-16-0121.1]. Since the last release date (July 2016) for the data analyzed in that paper, some of these groups have updated their analytical procedures and additional months of data are available to extend the series. An updated analysis of these data using the latest data releases available from each group is to be presented. Improved graphics will be employed to provide a clearer visualization of the differences between each group's results. As in the previous paper, the greatest difference between the UAH TMT series and those from the RSS and NOAA data appears during the early period of data from the MSU instruments before about 2003, as shown in the attached figure, and preliminary results indicate this pattern continues. Also to be presented are other findings regarding seasonal changes which were not included in the previous study.
Optimal estimator model for human spatial orientation
NASA Technical Reports Server (NTRS)
Borah, J.; Young, L. R.; Curry, R. E.
1979-01-01
A model is being developed to predict pilot dynamic spatial orientation in response to multisensory stimuli. Motion stimuli are first processed by dynamic models of the visual, vestibular, tactile, and proprioceptive sensors. Central nervous system function is then modeled as a steady-state Kalman filter which blends information from the various sensors to form an estimate of spatial orientation. Where necessary, this linear central estimator has been augmented with nonlinear elements to reflect more accurately some highly nonlinear human response characteristics. Computer implementation of the model has shown agreement with several important qualitative characteristics of human spatial orientation, and it is felt that with further modification and additional experimental data the model can be improved and extended. Possible means are described for extending the model to better represent the active pilot with varying skill and work load levels.
Tightly-Coupled Image-Aided Inertial Navigation Using the Unscented Kalman Filter
2007-01-01
Integrated GPS/MEMS Inertial Navigation Package. In Proceedings of ION GNSS 2004, pp. 825–832, September 2004. [2] R. G. Brown and P. Y. Hwang ...Tightly-Coupled Image-Aided Inertial Navigation Using the Unscented Kalman Filter S. Ebcin, Air Force Institute of Technology M. Veth, Air Force...inertial sen- sors using an extended Kalman filter (EKF) algo- rithm. In this approach, the image feature corre- spondence search was aided using the
Spacecraft Formation Control and Estimation Via Improved Relative Motion Dynamics
2017-03-30
statistical (e.g. batch least-squares or Extended Kalman Filter ) estimator. In addition, the IROD approach can be applied to classical (ground-based...covariance Test the viability of IROD solutions by injecting them into precise orbit determination schemes (e.g. various strains of Kalman filters
Finite word length effects on digital filter implementation.
NASA Technical Reports Server (NTRS)
Bowman, J. D.; Clark, F. H.
1972-01-01
This paper is a discussion of two known techniques to analyze finite word length effects on digital filters. These techniques are extended to several additional programming forms and the results verified experimentally. A correlation of the analytical weighting functions for the two methods is made through the Mason Gain Formula.
NASA Astrophysics Data System (ADS)
Gyftakis, Konstantinos N.; Marques Cardoso, Antonio J.; Antonino-Daviu, Jose A.
2017-09-01
The Park's Vector Approach (PVA), together with its variations, has been one of the most widespread diagnostic methods for electrical machines and drives. Regarding the broken rotor bars fault diagnosis in induction motors, the common practice is to rely on the width increase of the Park's Vector (PV) ring and then apply some more sophisticated signal processing methods. It is shown in this paper that this method can be unreliable and is strongly dependent on the magnetic poles and rotor slot numbers. To overcome this constraint, the novel Filtered Park's/Extended Park's Vector Approach (FPVA/FEPVA) is introduced. The investigation is carried out with FEM simulations and experimental testing. The results prove to satisfyingly coincide, whereas the proposed advanced FPVA method is desirably reliable.
Generic Kalman Filter Software
NASA Technical Reports Server (NTRS)
Lisano, Michael E., II; Crues, Edwin Z.
2005-01-01
The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on the basis of the aforementioned templates. The GKF software can be used to develop many different types of unfactorized Kalman filters. A developer can choose to implement either a linearized or an extended Kalman filter algorithm, without having to modify the GKF software. Control dynamics can be taken into account or neglected in the filter-dynamics model. Filter programs developed by use of the GKF software can be made to propagate equations of motion for linear or nonlinear dynamical systems that are deterministic or stochastic. In addition, filter programs can be made to operate in user-selectable "covariance analysis" and "propagation-only" modes that are useful in design and development stages.
Chen, Xiyuan; Wang, Xiying; Xu, Yuan
2014-01-01
This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively. PMID:25502124
Chen, Xiyuan; Wang, Xiying; Xu, Yuan
2014-12-09
This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively.
NASA Astrophysics Data System (ADS)
Qiu, Jianrong; Shen, Yi; Shangguan, Ziwei; Bao, Wen; Yang, Shanshan; Li, Peng; Ding, Zhihua
2018-04-01
Although methods have been proposed to maintain high transverse resolution over an increased depth range, it is not straightforward to scale down the bulk-optic solutions to minimized probes of optical coherence tomography (OCT). In this paper, we propose a high-efficient fiber-based filter in an all-fiber OCT probe to realize an extended depth of focus (DOF) while maintaining a high transverse resolution. Mode interference in the probe is exploited to modulate the complex field with controllable radial distribution. The principle of DOF extension by the fiber-based filter is theoretically analyzed. Numerical simulations are conducted to evaluate the performances of the designed probes. A DOF extension ratio of 2.6 over conventional Gaussian beam is obtainable in one proposed probe under a focused beam diameter of 4 . 6 μm. Coupling efficiencies of internal interfaces of the proposed probe are below -40 dB except the last probe-air interface, which can also be depressed to be -44 dB after minor modification in lengths for the filter. Length tolerance of the proposed probe is determined to be - 28 / + 20 μm, which is readily satisfied in fabrication. With the merits of extended-DOF, high-resolution, high-efficiency and easy-fabrication, the proposed probe is promising in endoscopic applications.
Computer image processing in marine resource exploration
NASA Technical Reports Server (NTRS)
Paluzzi, P. R.; Normark, W. R.; Hess, G. R.; Hess, H. D.; Cruickshank, M. J.
1976-01-01
Pictographic data or imagery is commonly used in marine exploration. Pre-existing image processing techniques (software) similar to those used on imagery obtained from unmanned planetary exploration were used to improve marine photography and side-scan sonar imagery. Features and details not visible by conventional photo processing methods were enhanced by filtering and noise removal on selected deep-sea photographs. Information gained near the periphery of photographs allows improved interpretation and facilitates construction of bottom mosaics where overlapping frames are available. Similar processing techniques were applied to side-scan sonar imagery, including corrections for slant range distortion, and along-track scale changes. The use of digital data processing and storage techniques greatly extends the quantity of information that can be handled, stored, and processed.
A fast recognition method of warhead target in boost phase using kinematic features
NASA Astrophysics Data System (ADS)
Chen, Jian; Xu, Shiyou; Tian, Biao; Wu, Jianhua; Chen, Zengping
2015-12-01
The radar targets number increases from one to more when the ballistic missile is in the process of separating the lower stage rocket or casting covers or other components. It is vital to identify the warhead target quickly among these multiple targets for radar tracking. A fast recognition method of the warhead target is proposed to solve this problem by using kinematic features, utilizing fuzzy comprehensive method and information fusion method. In order to weaken the influence of radar measurement noise, an extended Kalman filter with constant jerk model (CJEKF) is applied to obtain more accurate target's motion information. The simulation shows the validity of the algorithm and the effects of the radar measurement precision upon the algorithm's performance.
Filter-Based Phase Shifts Distort Neuronal Timing Information.
Yael, Dorin; Vecht, Jacob J; Bar-Gad, Izhar
2018-01-01
Filters are widely used for the modulation, typically attenuation, of amplitudes of different frequencies within neurophysiological signals. Filters, however, also induce changes in the phases of different frequencies whose amplitude is unmodulated. These phase shifts cause time lags in the filtered signals, leading to a disruption of the timing information between different frequencies within the same signal and between different signals. The emerging time lags can be either constant in the case of linear phase (LP) filters or vary as a function of the frequency in the more common case of non-LP (NLP) filters. Since filters are used ubiquitously online in the early stages of data acquisition, the vast majority of neurophysiological signals thus suffer from distortion of the timing information even prior to their sampling. This distortion is often exacerbated by further multiple offline filtering stages of the sampled signal. The distortion of timing information may cause misinterpretation of the results and lead to erroneous conclusions. Here we present a variety of typical examples of filter-induced phase distortions and discuss the evaluation and restoration of the timing information underlying the original signal.
Filter-Based Phase Shifts Distort Neuronal Timing Information
Yael, Dorin; Vecht, Jacob J.
2018-01-01
Filters are widely used for the modulation, typically attenuation, of amplitudes of different frequencies within neurophysiological signals. Filters, however, also induce changes in the phases of different frequencies whose amplitude is unmodulated. These phase shifts cause time lags in the filtered signals, leading to a disruption of the timing information between different frequencies within the same signal and between different signals. The emerging time lags can be either constant in the case of linear phase (LP) filters or vary as a function of the frequency in the more common case of non-LP (NLP) filters. Since filters are used ubiquitously online in the early stages of data acquisition, the vast majority of neurophysiological signals thus suffer from distortion of the timing information even prior to their sampling. This distortion is often exacerbated by further multiple offline filtering stages of the sampled signal. The distortion of timing information may cause misinterpretation of the results and lead to erroneous conclusions. Here we present a variety of typical examples of filter-induced phase distortions and discuss the evaluation and restoration of the timing information underlying the original signal. PMID:29766044
An RC active filter design handbook
NASA Technical Reports Server (NTRS)
Deboo, G. J.
1977-01-01
The design of filters is described. Emphasis is placed on simplified procedures that can be used by the reader who has minimum knowledge about circuit design and little acquaintance with filter theory. The handbook has three main parts. The first part is a review of some information that is essential for work with filters. The second part includes design information for specific types of filter circuitry and describes simple procedures for obtaining the component values for a filter that will have a desired set of characteristics. Pertinent information relating to actual performance is given. The third part (appendix) is a review of certain topics in filter theory and is intended to provide some basic understanding of how filters are designed.
Current-State Constrained Filter Bank for Wald Testing of Spacecraft Conjunctions
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Markley, F. Landis
2012-01-01
We propose a filter bank consisting of an ordinary current-state extended Kalman filter, and two similar but constrained filters: one is constrained by a null hypothesis that the miss distance between two conjuncting spacecraft is inside their combined hard body radius at the predicted time of closest approach, and one is constrained by an alternative complementary hypothesis. The unconstrained filter is the basis of an initial screening for close approaches of interest. Once the initial screening detects a possibly risky conjunction, the unconstrained filter also governs measurement editing for all three filters, and predicts the time of closest approach. The constrained filters operate only when conjunctions of interest occur. The computed likelihoods of the innovations of the two constrained filters form a ratio for a Wald sequential probability ratio test. The Wald test guides risk mitigation maneuver decisions based on explicit false alarm and missed detection criteria. Since only current-state Kalman filtering is required to compute the innovations for the likelihood ratio, the present approach does not require the mapping of probability density forward to the time of closest approach. Instead, the hard-body constraint manifold is mapped to the filter update time by applying a sigma-point transformation to a projection function. Although many projectors are available, we choose one based on Lambert-style differential correction of the current-state velocity. We have tested our method using a scenario based on the Magnetospheric Multi-Scale mission, scheduled for launch in late 2014. This mission involves formation flight in highly elliptical orbits of four spinning spacecraft equipped with antennas extending 120 meters tip-to-tip. Eccentricities range from 0.82 to 0.91, and close approaches generally occur in the vicinity of perigee, where rapid changes in geometry may occur. Testing the method using two 12,000-case Monte Carlo simulations, we found the method achieved a missed detection rate of 0.1%, and a false alarm rate of 2%.
Feedback Robust Cubature Kalman Filter for Target Tracking Using an Angle Sensor.
Wu, Hao; Chen, Shuxin; Yang, Binfeng; Chen, Kun
2016-05-09
The direction of arrival (DOA) tracking problem based on an angle sensor is an important topic in many fields. In this paper, a nonlinear filter named the feedback M-estimation based robust cubature Kalman filter (FMR-CKF) is proposed to deal with measurement outliers from the angle sensor. The filter designs a new equivalent weight function with the Mahalanobis distance to combine the cubature Kalman filter (CKF) with the M-estimation method. Moreover, by embedding a feedback strategy which consists of a splitting and merging procedure, the proper sub-filter (the standard CKF or the robust CKF) can be chosen in each time index. Hence, the probability of the outliers' misjudgment can be reduced. Numerical experiments show that the FMR-CKF performs better than the CKF and conventional robust filters in terms of accuracy and robustness with good computational efficiency. Additionally, the filter can be extended to the nonlinear applications using other types of sensors.
Tightly Integrating Optical And Inertial Sensors For Navigation Using The UKF
2008-03-01
832. September 2004. 3. Brown , Robert Grover and Patrick Y.C. Hwang . Introduction to Random Signals and Applied Kalman Filtering. John Wiley and Sons...effectiveness of fusing imaging and inertial sensors using an Extended Kalman Filter (EKF) algorithm has been shown in previous research efforts. In this...model assumed by the EKF. In order to cope with divergence problem, the Unscented (Sigma-Point) Kalman Filter (UKF) has been proposed in the literature in
Mid-Level Planning and Control for Articulated Locomoting Systems
2017-02-12
accelerometers and gyros into each module of our snake robots. Prior work from our group has already used an extended Kalman filter (EKF) to fuse these distributed...body frame is performed as part of the measurement model at every iteration of the filter , using an SVD to identify the principle components of the...addi- tion the conventional EKF, although we found that all three methods worked equally well. All three filters used the same process and measurement
Oil Bypass Filter Technology Evaluation, Fourth Quarterly Report, July--September 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. Francfort; Larry Zirker
2003-11-01
This fourth Oil Bypass Filter Technology Evaluation report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 259,398 test miles. This represents anmore » avoidance of 21 oil changes, which equates to 740 quarts (185 gallons) of oil not used or disposed of. To validate the extended oil-drain intervals, an oil-analysis regime evaluates the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. For bus 73450, higher values of iron have been reported, but the wear rate ratio (parts per million of iron per thousand miles driven) has remained consistent. In anticipation of also evaluating oil bypass systems on six Chevrolet Tahoe sport utility vehicles, the oil is being sampled on each of the Tahoes to develop a characterization history or baseline for each engine.« less
NASA Astrophysics Data System (ADS)
Suri, Veenu; Meyer, Michael; Greenbaum, Alexandra Z.; Bell, Cameron; Beichman, Charles; Gordon, Karl D.; Greene, Thomas P.; Hodapp, K.; Horner, Scott; Johnstone, Doug; Leisenring, Jarron; Manara, Carlos; Mann, Rita; Misselt, K.; Raileanu, Roberta; Rieke, Marcia; Roellig, Thomas
2018-01-01
We describe observations of the embedded young cluster associated with the HII region NGC 2024 planned as part of the guaranteed time observing program for the James Webb Space Telescope with the NIRCam (Near Infrared Camera) instrument. Our goal is to obtain a census of the cluster down to 2 Jupiter masses, viewed through 10-20 magnitudes of extinction, using multi-band filter photometry, both broadband filters and intermediate band filters that are expected to be sensitive to temperature and surface gravity. The cluster contains several bright point sources as well as extended emission due to reflected light, thermal emission from warm dust, as well as nebular line emission. We first developed techniques to better understand which point sources would saturate in our target fields when viewed through several JWST NIRCam filters. Using images of the field with the WISE satellite in filters W1 and W2, as well as 2MASS (J and H) bands, we devised an algorithm that takes the K-band magnitudes of point sources in the field, and the known saturation limits of several NIRCam filters to estimate the impact of the extended emission on survey sensitivity. We provide an overview of our anticipated results, detecting the low mass end of the IMF as well as planetary mass objects likely liberated through dynamical interactions.
Virtual Observatory Science Applications
NASA Technical Reports Server (NTRS)
McGlynn, Tom
2005-01-01
Many Virtual-Observatory-based applications are now available to astronomers for use in their research. These span data discovery, access, visualization and analysis. Tools can quickly gather and organize information from sites around the world to help in planning a response to a gamma-ray burst, help users pick filters to isolate a desired feature, make an average template for z=2 AGN, select sources based upon information in many catalogs, or correlate massive distributed databases. Using VO protocols, the reach of existing software tools and packages can be greatly extended, allowing users to find and access remote information almost as conveniently as local data. The talk highlights just a few of the tools available to scientists, describes how both large and small scale projects can use existing tools, and previews some of the new capabilities that will be available in the next few years.
VizieR Online Data Catalog: Superluminous supernovae in faint galaxies (McCrum+, 2015)
NASA Astrophysics Data System (ADS)
McCrum, M.; Smartt, S. J.; Rest, A.; Smith, K.; Kotak, R.; Rodney, S. A.; Young, D. R.; Chornock, R.; Berger, E.; Foley, R. J.; Fraser, M.; Wright, D.; Scolnic, D.; Tonry, J. L.; Urata, Y.; Huang, K.; Pastorello, A.; Botticella, M. T.; Valenti, S.; Mattila, S.; Kankare, E.; Farrow, D. J.; Huber, M. E.; Stubbs, C. W.; Kirshner, R. P.; Bresolin, F.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Jedicke, R.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.
2015-09-01
From the period starting February 25th 2010 and ending July 9th 2011, 249 hostless transients or "orphans" were discovered in the PS1 Medium Deep fields. AN orphan is defined as an object that is >3.4" away from the centre of a catalogued galaxy or point source brighter than approximately 23.5m (in any of the gP1 rP1 iP1 filters that the transient was detected in). The PS1 observations are obtained through a set of five broadband filters, which we have designated as gP1, rP1, iP1, zP1, and yP1. Although the filter system for PS1 has much in common with that used in previous surveys, such as SDSS (Abazajian et al., 2009ApJS..182..543A), there are important differences. The gP1 filter extends 20nm redward of gSDSS, paying the price of 5577Å emission for greater sensitivity and lower systematics for photometric redshifts, and the zP1 filter is cut off at 930nm, giving it a different response than the detector response which defined zSDSS. SDSS has no corresponding yP1 filter. Further information on the passband shapes is described in Stubbs et al. (2010ApJS..191..376S). The PS1 photometric system and its response is covered in detailed in Tonry et al. (2012ApJ...750...99T, Cat. J/ApJ/750/99). Photometry is in the "natural" PS1 system, m=-2.5log(flux)+m', with a single zeropoint adjustment m' made in each band to conform to the AB magnitude scale. (8 data files).
Attitude Representations for Kalman Filtering
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Bauer, Frank H. (Technical Monitor)
2001-01-01
The four-component quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation, it represents the attitude matrix as a homogeneous quadratic function, and its dynamic propagation equation is bilinear in the quaternion and the angular velocity. The quaternion is required to obey a unit norm constraint, though, so Kalman filters often employ a quaternion for the global attitude estimate and a three-component representation for small errors about the estimate. We consider these mixed attitude representations for both a first-order Extended Kalman filter and a second-order filter, as well for quaternion-norm-preserving attitude propagation.
By-pass filters : taking your fleet the extra mile
DOT National Transportation Integrated Search
2000-01-01
There has been an industry-wide push over the last few years to extend oil drain intervals on fleet equipment. This industry demand is an effort to reduce downtime, reduce waste oil generation, and cut maintenance costs. Extended oil drain intervals ...
Nishino, Ken; Nakamura, Mutsuko; Matsumoto, Masayuki; Tanno, Osamu; Nakauchi, Shigeki
2011-03-28
We previously proposed a filter that could detect cosmetic foundations with high discrimination accuracy [Opt. Express 19, 6020 (2011)]. This study extends the filter's functionality to the quantification of the amount of foundation and applies the filter for the assessment of spatial distributions of foundation under realistic facial conditions. Human faces that are applied with quantitatively controlled amounts of cosmetic foundations were measured using the filter. A calibration curve between pixel values of the image and the amount of foundation was created. The optical filter was applied to visualize spatial foundation distributions under realistic facial conditions, which clearly indicated areas on the face where foundation remained even after cleansing. Results confirm that the proposed filter could visualize and nondestructively inspect the foundation distributions.
Inverse design of high-Q wave filters in two-dimensional phononic crystals by topology optimization.
Dong, Hao-Wen; Wang, Yue-Sheng; Zhang, Chuanzeng
2017-04-01
Topology optimization of a waveguide-cavity structure in phononic crystals for designing narrow band filters under the given operating frequencies is presented in this paper. We show that it is possible to obtain an ultra-high-Q filter by only optimizing the cavity topology without introducing any other coupling medium. The optimized cavity with highly symmetric resonance can be utilized as the multi-channel filter, raising filter and T-splitter. In addition, most optimized high-Q filters have the Fano resonances near the resonant frequencies. Furthermore, our filter optimization based on the waveguide and cavity, and our simple illustration of a computational approach to wave control in phononic crystals can be extended and applied to design other acoustic devices or even opto-mechanical devices. Copyright © 2016 Elsevier B.V. All rights reserved.
Analytical study to define a helicopter stability derivative extraction method, volume 1
NASA Technical Reports Server (NTRS)
Molusis, J. A.
1973-01-01
A method is developed for extracting six degree-of-freedom stability and control derivatives from helicopter flight data. Different combinations of filtering and derivative estimate are investigated and used with a Bayesian approach for derivative identification. The combination of filtering and estimate found to yield the most accurate time response match to flight test data is determined and applied to CH-53A and CH-54B flight data. The method found to be most accurate consists of (1) filtering flight test data with a digital filter, followed by an extended Kalman filter (2) identifying a derivative estimate with a least square estimator, and (3) obtaining derivatives with the Bayesian derivative extraction method.
Wilkinson Microwave Anisotropy Probe (WMAP) Attitude Estimation Filter Comparison
NASA Technical Reports Server (NTRS)
Harman, Richard R.
2005-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft was launched in June of 2001. The sensor complement of WMAP consists of two Autonomous Star Trackers (ASTs), two Fine Sun Sensors (FSSs), and a gyro package which contains redundancy about one of the WMAP body axes. The onboard attitude estimation filter consists of an extended Kalman filter (EKF) solving for attitude and gyro bias errors which are then resolved into a spacecraft attitude quaternion and gyro bias. A pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion, rate, and gyro bias. In this paper, the performance of the two filters is compared for the two major control modes of WMAP: inertial mode and observation mode.
Numeric invariants from multidimensional persistence
Skryzalin, Jacek; Carlsson, Gunnar
2017-05-19
Topological data analysis is the study of data using techniques from algebraic topology. Often, one begins with a finite set of points representing data and a “filter” function which assigns a real number to each datum. Using both the data and the filter function, one can construct a filtered complex for further analysis. For example, applying the homology functor to the filtered complex produces an algebraic object known as a “one-dimensional persistence module”, which can often be interpreted as a finite set of intervals representing various geometric features in the data. If one runs the above process incorporating multiple filtermore » functions simultaneously, one instead obtains a multidimensional persistence module. Unfortunately, these are much more difficult to interpret. In this article, we analyze the space of multidimensional persistence modules from the perspective of algebraic geometry. First we build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence instead of one-dimensional persistence. Fruthermore, we argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Finally, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data. This paper extends the results of Adcock et al. (Homol Homotopy Appl 18(1), 381–402, 2016) by constructing numeric invariants from the computation of a multidimensional persistence module as given by Carlsson et al. (J Comput Geom 1(1), 72–100, 2010).« less
Model-based flow rate control for an orfice-type low-volume air sampler
USDA-ARS?s Scientific Manuscript database
The standard method of measuring air suspended particulate matter concentration per volume of air consists of continuously drawing a defined volume of air across a filter over an extended period of time, then measuring the mass of the filtered particles and dividing it by the total volume sampled ov...
Navigation of a Satellite Cluster with Realistic Dynamics
1991-12-01
20 2.2.1 Dynamics ( Clohessy - Wiltshire Equations) ............ 21 2.2.2 Iterated, Extended Kalman Filter.................26 iv I1l...8 Figure 4. Point mass and Clohessy - Wiltshire orbits (10 orbits) .......... 16 Figure 5. Real dynamics and Clohessy - Wiltshire orbits (10...filter ..... 31 Figure 8. Comparison of the Clohessy - Wiltshire and truth model solutions
Extended Kalman filtering for the detection of damage in linear mechanical structures
NASA Astrophysics Data System (ADS)
Liu, X.; Escamilla-Ambrosio, P. J.; Lieven, N. A. J.
2009-09-01
This paper addresses the problem of assessing the location and extent of damage in a vibrating structure by means of vibration measurements. Frequency domain identification methods (e.g. finite element model updating) have been widely used in this area while time domain methods such as the extended Kalman filter (EKF) method, are more sparsely represented. The difficulty of applying EKF in mechanical system damage identification and localisation lies in: the high computational cost, the dependence of estimation results on the initial estimation error covariance matrix P(0), the initial value of parameters to be estimated, and on the statistics of measurement noise R and process noise Q. To resolve these problems in the EKF, a multiple model adaptive estimator consisting of a bank of EKF in modal domain was designed, each filter in the bank is based on different P(0). The algorithm was iterated by using the weighted global iteration method. A fuzzy logic model was incorporated in each filter to estimate the variance of the measurement noise R. The application of the method is illustrated by simulated and real examples.
Lefebvre, Carol; Glanville, Julie; Beale, Sophie; Boachie, Charles; Duffy, Steven; Fraser, Cynthia; Harbour, Jenny; McCool, Rachael; Smith, Lynne
2017-11-01
Effective study identification is essential for conducting health research, developing clinical guidance and health policy and supporting health-care decision-making. Methodological search filters (combinations of search terms to capture a specific study design) can assist in searching to achieve this. This project investigated the methods used to assess the performance of methodological search filters, the information that searchers require when choosing search filters and how that information could be better provided. Five literature reviews were undertaken in 2010/11: search filter development and testing; comparison of search filters; decision-making in choosing search filters; diagnostic test accuracy (DTA) study methods; and decision-making in choosing diagnostic tests. We conducted interviews and a questionnaire with experienced searchers to learn what information assists in the choice of search filters and how filters are used. These investigations informed the development of various approaches to gathering and reporting search filter performance data. We acknowledge that there has been a regrettable delay between carrying out the project, including the searches, and the publication of this report, because of serious illness of the principal investigator. The development of filters most frequently involved using a reference standard derived from hand-searching journals. Most filters were validated internally only. Reporting of methods was generally poor. Sensitivity, precision and specificity were the most commonly reported performance measures and were presented in tables. Aspects of DTA study methods are applicable to search filters, particularly in the development of the reference standard. There is limited evidence on how clinicians choose between diagnostic tests. No published literature was found on how searchers select filters. Interviewing and questioning searchers via a questionnaire found that filters were not appropriate for all tasks but were predominantly used to reduce large numbers of retrieved records and to introduce focus. The Inter Technology Appraisal Support Collaboration (InterTASC) Information Specialists' Sub-Group (ISSG) Search Filters Resource was most frequently mentioned by both groups as the resource consulted to select a filter. Randomised controlled trial (RCT) and systematic review filters, in particular the Cochrane RCT and the McMaster Hedges filters, were most frequently mentioned. The majority indicated that they used different filters depending on the requirement for sensitivity or precision. Over half of the respondents used the filters available in databases. Interviewees used various approaches when using and adapting search filters. Respondents suggested that the main factors that would make choosing a filter easier were the availability of critical appraisals and more detailed performance information. Provenance and having the filter available in a central storage location were also important. The questionnaire could have been shorter and could have included more multiple choice questions, and the reviews of filter performance focused on only four study designs. Search filter studies should use a representative reference standard and explicitly report methods and results. Performance measures should be presented systematically and clearly. Searchers find filters useful in certain circumstances but expressed a need for more user-friendly performance information to aid filter choice. We suggest approaches to use, adapt and report search filter performance. Future work could include research around search filters and performance measures for study designs not addressed here, exploration of alternative methods of displaying performance results and numerical synthesis of performance comparison results. The National Institute for Health Research (NIHR) Health Technology Assessment programme and Medical Research Council-NIHR Methodology Research Programme (grant number G0901496).
Lefebvre, Carol; Glanville, Julie; Beale, Sophie; Boachie, Charles; Duffy, Steven; Fraser, Cynthia; Harbour, Jenny; McCool, Rachael; Smith, Lynne
2017-01-01
BACKGROUND Effective study identification is essential for conducting health research, developing clinical guidance and health policy and supporting health-care decision-making. Methodological search filters (combinations of search terms to capture a specific study design) can assist in searching to achieve this. OBJECTIVES This project investigated the methods used to assess the performance of methodological search filters, the information that searchers require when choosing search filters and how that information could be better provided. METHODS Five literature reviews were undertaken in 2010/11: search filter development and testing; comparison of search filters; decision-making in choosing search filters; diagnostic test accuracy (DTA) study methods; and decision-making in choosing diagnostic tests. We conducted interviews and a questionnaire with experienced searchers to learn what information assists in the choice of search filters and how filters are used. These investigations informed the development of various approaches to gathering and reporting search filter performance data. We acknowledge that there has been a regrettable delay between carrying out the project, including the searches, and the publication of this report, because of serious illness of the principal investigator. RESULTS The development of filters most frequently involved using a reference standard derived from hand-searching journals. Most filters were validated internally only. Reporting of methods was generally poor. Sensitivity, precision and specificity were the most commonly reported performance measures and were presented in tables. Aspects of DTA study methods are applicable to search filters, particularly in the development of the reference standard. There is limited evidence on how clinicians choose between diagnostic tests. No published literature was found on how searchers select filters. Interviewing and questioning searchers via a questionnaire found that filters were not appropriate for all tasks but were predominantly used to reduce large numbers of retrieved records and to introduce focus. The Inter Technology Appraisal Support Collaboration (InterTASC) Information Specialists' Sub-Group (ISSG) Search Filters Resource was most frequently mentioned by both groups as the resource consulted to select a filter. Randomised controlled trial (RCT) and systematic review filters, in particular the Cochrane RCT and the McMaster Hedges filters, were most frequently mentioned. The majority indicated that they used different filters depending on the requirement for sensitivity or precision. Over half of the respondents used the filters available in databases. Interviewees used various approaches when using and adapting search filters. Respondents suggested that the main factors that would make choosing a filter easier were the availability of critical appraisals and more detailed performance information. Provenance and having the filter available in a central storage location were also important. LIMITATIONS The questionnaire could have been shorter and could have included more multiple choice questions, and the reviews of filter performance focused on only four study designs. CONCLUSIONS Search filter studies should use a representative reference standard and explicitly report methods and results. Performance measures should be presented systematically and clearly. Searchers find filters useful in certain circumstances but expressed a need for more user-friendly performance information to aid filter choice. We suggest approaches to use, adapt and report search filter performance. Future work could include research around search filters and performance measures for study designs not addressed here, exploration of alternative methods of displaying performance results and numerical synthesis of performance comparison results. FUNDING The National Institute for Health Research (NIHR) Health Technology Assessment programme and Medical Research Council-NIHR Methodology Research Programme (grant number G0901496). PMID:29188764
In-flight wind identification and soft landing control for autonomous unmanned powered parafoils
NASA Astrophysics Data System (ADS)
Luo, Shuzhen; Tan, Panlong; Sun, Qinglin; Wu, Wannan; Luo, Haowen; Chen, Zengqiang
2018-04-01
For autonomous unmanned powered parafoil, the ability to perform a final flare manoeuvre against the wind direction can allow a considerable reduction of horizontal and vertical velocities at impact, enabling a soft landing for a safe delivery of sensible loads; the lack of knowledge about the surface-layer winds will result in messing up terminal flare manoeuvre. Moreover, unknown or erroneous winds can also prevent the parafoil system from reaching the target area. To realize accurate trajectory tracking and terminal soft landing in the unknown wind environment, an efficient in-flight wind identification method merely using Global Positioning System (GPS) data and recursive least square method is proposed to online identify the variable wind information. Furthermore, a novel linear extended state observation filter is proposed to filter the groundspeed of the powered parafoil system calculated by the GPS information to provide a best estimation of the present wind during flight. Simulation experiments and real airdrop tests demonstrate the great ability of this method to in-flight identify the variable wind field, and it can benefit the powered parafoil system to fulfil accurate tracking control and a soft landing in the unknown wind field with high landing accuracy and strong wind-resistance ability.
Recent Flight Results of the TRMM Kalman Filter
NASA Technical Reports Server (NTRS)
Andrews, Stephen F.; Bilanow, Stephen; Bauer, Frank (Technical Monitor)
2002-01-01
The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls the roll and pitch attitude based on the Earth Sensor Assembly (ESA) output. TRMM's nominal orbit altitude was 350 km, until raised to 402 km to prolong mission life. During the boost, the ESA experienced a decreasing signal to noise ratio, until sun interference at 393 km altitude made the ESA data unreliable for attitude determination. At that point, the backup attitude determination algorithm, an extended Kalman filter, was enabled. After the boost finished, TRMM reacquired its nadir-pointing attitude, and continued its mission. This paper will briefly discuss the boost and the decision to turn on the backup attitude determination algorithm. A description of the extended Kalman filter algorithm will be given. In addition, flight results from analyzing attitude data and the results of software changes made onboard TRMM will be discussed. Some lessons learned are presented.
NASA Astrophysics Data System (ADS)
Basin, M.; Maldonado, J. J.; Zendejo, O.
2016-07-01
This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.
An Efficient Index Dissemination in Unstructured Peer-to-Peer Networks
NASA Astrophysics Data System (ADS)
Takahashi, Yusuke; Izumi, Taisuke; Kakugawa, Hirotsugu; Masuzawa, Toshimitsu
Using Bloom filters is one of the most popular and efficient lookup methods in P2P networks. A Bloom filter is a representation of data item indices, which achieves small memory requirement by allowing one-sided errors (false positive). In the lookup scheme besed on the Bloom filter, each peer disseminates a Bloom filter representing indices of the data items it owns in advance. Using the information of disseminated Bloom filters as a clue, each query can find a short path to its destination. In this paper, we propose an efficient extension of the Bloom filter, called a Deterministic Decay Bloom Filter (DDBF) and an index dissemination method based on it. While the index dissemination based on a standard Bloom filter suffers performance degradation by containing information of too many data items when its dissemination radius is large, the DDBF can circumvent such degradation by limiting information according to the distance between the filter holder and the items holders, i. e., a DDBF contains less information for faraway items and more information for nearby items. Interestingly, the construction of DDBFs requires no extra cost above that of standard filters. We also show by simulation that our method can achieve better lookup performance than existing ones.
1991-12-01
Kalman filtering. As GPS usage expands throughout the military and civilian communities, I hope this thesis provides a small contribution in this area...of the measurement’equation. In this thesis, some of the INS states not part of a measurement equation need a small amount of added noise to...estimating the state, but the variance often goes negative. A small amount of added noise in the filter keeps the variance of the state positive and does not
Bauer, Klaus; Ryberg, Trond; Fuis, Gary S.; Lüth, Stefan
2013-01-01
Near‐vertical faults can be imaged using reflected refractions identified in controlled‐source seismic data. Often theses phases are observed on a few neighboring shot or receiver gathers, resulting in a low‐fold data set. Imaging can be carried out with Kirchhoff prestack depth migration in which migration noise is suppressed by constructive stacking of large amounts of multifold data. Fresnel volume migration can be used for low‐fold data without severe migration noise, as the smearing along isochrones is limited to the first Fresnel zone around the reflection point. We developed a modified Fresnel volume migration technique to enhance imaging of steep faults and to suppress noise and undesired coherent phases. The modifications include target‐oriented filters to separate reflected refractions from steep‐dipping faults and reflections with hyperbolic moveout. Undesired phases like multiple reflections, mode conversions, direct P and S waves, and surface waves are suppressed by these filters. As an alternative approach, we developed a new prestack line‐drawing migration method, which can be considered as a proxy to an infinite frequency approximation of the Fresnel volume migration. The line‐drawing migration is not considering waveform information but requires significantly shorter computational time. Target‐oriented filters were extended by dip filters in the line‐drawing migration method. The migration methods were tested with synthetic data and applied to real data from the Waltham Canyon fault, California. The two techniques are applied best in combination, to design filters and to generate complementary images of steep faults.
NASA Technical Reports Server (NTRS)
Gourdeau, L.; Verron, J.; Murtugudde, R.; Busalacchi, A. J.
1997-01-01
A new implementation of the extended Kaman filter is developed for the purpose of assimilating altimetric observations into a primitive equation model of the tropical Pacific. Its specificity consists in defining the errors into a reduced basis that evolves in time with the model dynamic. Validation by twin experiments is conducted and the method is shown to be efficient in quasi real conditions. Data from the first 2 years of the Topex/Poseidon mission are assimilated into the Gent & Cane [1989] model. Assimilation results are evaluated against independent in situ data, namely TAO mooring observations.
Filtering observations without the initial guess
NASA Astrophysics Data System (ADS)
Chin, T. M.; Abbondanza, C.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Soja, B.; Wu, X.
2017-12-01
Noisy geophysical observations sampled irregularly over space and time are often numerically "analyzed" or "filtered" before scientific usage. The standard analysis and filtering techniques based on the Bayesian principle requires "a priori" joint distribution of all the geophysical parameters of interest. However, such prior distributions are seldom known fully in practice, and best-guess mean values (e.g., "climatology" or "background" data if available) accompanied by some arbitrarily set covariance values are often used in lieu. It is therefore desirable to be able to exploit efficient (time sequential) Bayesian algorithms like the Kalman filter while not forced to provide a prior distribution (i.e., initial mean and covariance). An example of this is the estimation of the terrestrial reference frame (TRF) where requirement for numerical precision is such that any use of a priori constraints on the observation data needs to be minimized. We will present the Information Filter algorithm, a variant of the Kalman filter that does not require an initial distribution, and apply the algorithm (and an accompanying smoothing algorithm) to the TRF estimation problem. We show that the information filter allows temporal propagation of partial information on the distribution (marginal distribution of a transformed version of the state vector), instead of the full distribution (mean and covariance) required by the standard Kalman filter. The information filter appears to be a natural choice for the task of filtering observational data in general cases where prior assumption on the initial estimate is not available and/or desirable. For application to data assimilation problems, reduced-order approximations of both the information filter and square-root information filter (SRIF) have been published, and the former has previously been applied to a regional configuration of the HYCOM ocean general circulation model. Such approximation approaches are also briefed in the presentation.
NASA Technical Reports Server (NTRS)
Carpenter, J. R.; Markley, F. L.; Alfriend, K. T.; Wright, C.; Arcido, J.
2011-01-01
Sequential probability ratio tests explicitly allow decision makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models 1he null hypothesis 1ha1 the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming highly-elliptical orbit formation flying mission.
Satellite Angular Rate Estimation From Vector Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.
Color Sparse Representations for Image Processing: Review, Models, and Prospects.
Barthélemy, Quentin; Larue, Anthony; Mars, Jérôme I
2015-11-01
Sparse representations have been extended to deal with color images composed of three channels. A review of dictionary-learning-based sparse representations for color images is made here, detailing the differences between the models, and comparing their results on the real and simulated data. These models are considered in a unifying framework that is based on the degrees of freedom of the linear filtering/transformation of the color channels. Moreover, this allows it to be shown that the scalar quaternionic linear model is equivalent to constrained matrix-based color filtering, which highlights the filtering implicitly applied through this model. Based on this reformulation, the new color filtering model is introduced, using unconstrained filters. In this model, spatial morphologies of color images are encoded by atoms, and colors are encoded by color filters. Color variability is no longer captured in increasing the dictionary size, but with color filters, this gives an efficient color representation.
Mastcam Special Filters Help Locate Variations Ahead
2017-11-01
This pair of images from the Mast Camera (Mastcam) on NASA's Curiosity rover illustrates how special filters are used to scout terrain ahead for variations in the local bedrock. The upper panorama is in the Mastcam's usual full color, for comparison. The lower panorama of the same scene, in false color, combines three exposures taken through different "science filters," each selecting for a narrow band of wavelengths. Filters and image processing steps were selected to make stronger signatures of hematite, an iron-oxide mineral, evident as purple. Hematite is of interest in this area of Mars -- partway up "Vera Rubin Ridge" on lower Mount Sharp -- as holding clues about ancient environmental conditions under which that mineral originated. In this pair of panoramas, the strongest indications of hematite appear related to areas where the bedrock is broken up. With information from this Mastcam reconnaissance, the rover team selected destinations in the scene for close-up investigations to gain understanding about the apparent patchiness in hematite spectral features. The Mastcam's left-eye camera took the component images of both panoramas on Sept. 12, 2017, during the 1,814th Martian day, or sol, of Curiosity's work on Mars. The view spans from south-southeast on the left to south-southwest on the right. The foreground across the bottom of the scene is about 50 feet (about 15 meters) wide. Figure 1 includes scale bars of 1 meter (3.3 feet) in the middle distance and 5 meters (16 feet) at upper right. Curiosity's Mastcam combines two cameras: the right eye with a telephoto lens and the left eye with a wider-angle lens. Each camera has a filter wheel that can be rotated in front of the lens for a choice of eight different filters. One filter for each camera is clear to all visible light, for regular full-color photos, and another is specifically for viewing the Sun. Some of the other filters were selected to admit wavelengths of light that are useful for identifying iron minerals. Each of the filters used for the lower panorama shown here admits light from a narrow band of wavelengths, extending to only about 5 to 10 nanometers longer or shorter than the filter's central wavelength. The three observations combined into this product used filters centered at three near-infrared wavelengths: 751 nanometers, 867 nanometers and 1,012 nanometers. Hematite distinctively absorbs some frequencies of infrared light more than others. Usual color photographs from digital cameras -- such as the upper panorama here from Mastcam -- combine information from red, green and blue filtering. The filters are in a microscopic grid in a "Bayer" filter array situated directly over the detector behind the lens, with wider bands of wavelengths. The colors of the upper panorama, as with most featured images from Mastcam, have been tuned with a color adjustment similar to white balancing for approximating how the rocks and sand would appear under daytime lighting conditions on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22065
Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping
2014-01-01
High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method. PMID:25479331
Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping
2014-12-03
High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method.
76 FR 42130 - Agency Information Collection Activities: BioWatch Filter Holder Log
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder...) assigned responsibility for installing and removing filters from aerosol collection devices and transportation to local laboratories for sample analysis. A standard filter log form is completed for each sample...
76 FR 24504 - Agency Information Collection Activities: BioWatch Filter Holder Log
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... DEPARTMENT OF HOMELAND SECURITY Agency Information Collection Activities: BioWatch Filter Holder...) assigned responsibility for installing and removing filters from aerosol collection devices and transportation to local laboratories for sample analysis. A standard filter log form is completed for each sample...
NASA Astrophysics Data System (ADS)
Salmon, B. P.; Kleynhans, W.; Olivier, J. C.; van den Bergh, F.; Wessels, K. J.
2018-05-01
Humans are transforming land cover at an ever-increasing rate. Accurate geographical maps on land cover, especially rural and urban settlements are essential to planning sustainable development. Time series extracted from MODerate resolution Imaging Spectroradiometer (MODIS) land surface reflectance products have been used to differentiate land cover classes by analyzing the seasonal patterns in reflectance values. The proper fitting of a parametric model to these time series usually requires several adjustments to the regression method. To reduce the workload, a global setting of parameters is done to the regression method for a geographical area. In this work we have modified a meta-optimization approach to setting a regression method to extract the parameters on a per time series basis. The standard deviation of the model parameters and magnitude of residuals are used as scoring function. We successfully fitted a triply modulated model to the seasonal patterns of our study area using a non-linear extended Kalman filter (EKF). The approach uses temporal information which significantly reduces the processing time and storage requirements to process each time series. It also derives reliability metrics for each time series individually. The features extracted using the proposed method are classified with a support vector machine and the performance of the method is compared to the original approach on our ground truth data.
Incorporating a Spatial Prior into Nonlinear D-Bar EIT Imaging for Complex Admittivities.
Hamilton, Sarah J; Mueller, J L; Alsaker, M
2017-02-01
Electrical Impedance Tomography (EIT) aims to recover the internal conductivity and permittivity distributions of a body from electrical measurements taken on electrodes on the surface of the body. The reconstruction task is a severely ill-posed nonlinear inverse problem that is highly sensitive to measurement noise and modeling errors. Regularized D-bar methods have shown great promise in producing noise-robust algorithms by employing a low-pass filtering of nonlinear (nonphysical) Fourier transform data specific to the EIT problem. Including prior data with the approximate locations of major organ boundaries in the scattering transform provides a means of extending the radius of the low-pass filter to include higher frequency components in the reconstruction, in particular, features that are known with high confidence. This information is additionally included in the system of D-bar equations with an independent regularization parameter from that of the extended scattering transform. In this paper, this approach is used in the 2-D D-bar method for admittivity (conductivity as well as permittivity) EIT imaging. Noise-robust reconstructions are presented for simulated EIT data on chest-shaped phantoms with a simulated pneumothorax and pleural effusion. No assumption of the pathology is used in the construction of the prior, yet the method still produces significant enhancements of the underlying pathology (pneumothorax or pleural effusion) even in the presence of strong noise.
Baladi, Fadwa; Lee, Min Won; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A
2016-07-01
A highly detailed and extended map of low-frequency fluctuations is established for a high-power multi-mode 980 nm laser diode subject to filtered optical feedback from a fiber Bragg grating. The low-frequency fluctuations limits and substructures exhibit substantial differences with previous works.
Use of entanglement in quantum optics
NASA Technical Reports Server (NTRS)
Horne, Michael A.; Bernstein, Herbert J.; Greenberger, Daniel M.; Zeilinger, Anton
1992-01-01
Several recent demonstrations of two-particle interferometry are reviewed and shown to be examples of either color entanglement or beam entanglement. A device, called a number filter, is described and shown to be of value in preparing beam entanglements. Finally, we note that all three concepts (color and beam entaglement, and number filtering) may be extended to three or more particles.
Signal detection by means of orthogonal decomposition
NASA Astrophysics Data System (ADS)
Hajdu, C. F.; Dabóczi, T.; Péceli, G.; Zamantzas, C.
2018-03-01
Matched filtering is a well-known method frequently used in digital signal processing to detect the presence of a pattern in a signal. In this paper, we suggest a time variant matched filter, which, unlike a regular matched filter, maintains a given alignment between the input signal and the template carrying the pattern, and can be realized recursively. We introduce a method to synchronize the two signals for presence detection, usable in case direct synchronization between the signal generator and the receiver is not possible or not practical. We then propose a way of realizing and extending the same filter by modifying a recursive spectral observer, which gives rise to orthogonal filter channels and also leads to another way to synchronize the two signals.
Adaptive waveform optimization design for target detection in cognitive radar
NASA Astrophysics Data System (ADS)
Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao
2017-01-01
The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.
NASA Technical Reports Server (NTRS)
Lin, Qian; Allebach, Jan P.
1990-01-01
An adaptive vector linear minimum mean-squared error (LMMSE) filter for multichannel images with multiplicative noise is presented. It is shown theoretically that the mean-squared error in the filter output is reduced by making use of the correlation between image bands. The vector and conventional scalar LMMSE filters are applied to a three-band SIR-B SAR, and their performance is compared. Based on a mutliplicative noise model, the per-pel maximum likelihood classifier was derived. The authors extend this to the design of sequential and robust classifiers. These classifiers are also applied to the three-band SIR-B SAR image.
Oil Bypass Filter Technology Evaluation - Third Quarterly Report, April--June 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence R. Zirker; James E. Francfort
2003-08-01
This Third Quarterly report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the PuraDYN Corporation. The reported engine lubricating oil-filtering capability (down to 0.1 microns) and additive package of the bypass filter system is intended to extend oil-drain intervals. To validate the extended oil-drain intervals, an oil-analysis regime monitors the presence of necessary additives inmore » the oil, detects undesirable contaminants and engine wear metals, and evaluates the fitness of the oil for continued service. The eight buses have accumulated 185,000 miles to date without any oil changes. The preliminary economic analysis suggests that the per bus payback point for the oil bypass filter technology should be between 108,000 miles when 74 gallons of oil use is avoided and 168,000 miles when 118 gallons of oil use is avoided. As discussed in the report, the variation in the payback point is dependant on the assumed cost of oil. In anticipation of also evaluating oil bypass systems on six Chevrolet Tahoe sport utility vehicles, the oil is being sampled on the six Tahoes to develop an oil characterization history for each engine.« less
NASA Technical Reports Server (NTRS)
West, M. E.
1992-01-01
A real-time estimation filter which reduces sensitivity to system variations and reduces the amount of preflight computation is developed for the instrument pointing subsystem (IPS). The IPS is a three-axis stabilized platform developed to point various astronomical observation instruments aboard the shuttle. Currently, the IPS utilizes a linearized Kalman filter (LKF), with premission defined gains, to compensate for system drifts and accumulated attitude errors. Since the a priori gains are generated for an expected system, variations result in a suboptimal estimation process. This report compares the performance of three real-time estimation filters with the current LKF implementation. An extended Kalman filter and a second-order Kalman filter are developed to account for the system nonlinearities, while a linear Kalman filter implementation assumes that the nonlinearities are negligible. The performance of each of the four estimation filters are compared with respect to accuracy, stability, settling time, robustness, and computational requirements. It is shown, that for the current IPS pointing requirements, the linear Kalman filter provides improved robustness over the LKF with less computational requirements than the two real-time nonlinear estimation filters.
Haldipur, G.B.; Dilmore, W.J.
1992-09-01
A vertical vessel is described having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas. 18 figs.
Haldipur, Gaurang B.; Dilmore, William J.
1992-01-01
A vertical vessel having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas.
Nonlinear estimation theory applied to orbit determination
NASA Technical Reports Server (NTRS)
Choe, C. Y.
1972-01-01
The development of an approximate nonlinear filter using the Martingale theory and appropriate smoothing properties is considered. Both the first order and the second order moments were estimated. The filter developed can be classified as a modified Gaussian second order filter. Its performance was evaluated in a simulated study of the problem of estimating the state of an interplanetary space vehicle during both a simulated Jupiter flyby and a simulated Jupiter orbiter mission. In addition to the modified Gaussian second order filter, the modified truncated second order filter was also evaluated in the simulated study. Results obtained with each of these filters were compared with numerical results obtained with the extended Kalman filter and the performance of each filter is determined by comparison with the actual estimation errors. The simulations were designed to determine the effects of the second order terms in the dynamic state relations, the observation state relations, and the Kalman gain compensation term. It is shown that the Kalman gain-compensated filter which includes only the Kalman gain compensation term is superior to all of the other filters.
Improved digital filters for evaluating Fourier and Hankel transform integrals
Anderson, Walter L.
1975-01-01
New algorithms are described for evaluating Fourier (cosine, sine) and Hankel (J0,J1) transform integrals by means of digital filters. The filters have been designed with extended lengths so that a variable convolution operation can be applied to a large class of integral transforms having the same system transfer function. A f' lagged-convolution method is also presented to significantly decrease the computation time when computing a series of like-transforms over a parameter set spaced the same as the filters. Accuracy of the new filters is comparable to Gaussian integration, provided moderate parameter ranges and well-behaved kernel functions are used. A collection of Fortran IV subprograms is included for both real and complex functions for each filter type. The algorithms have been successfully used in geophysical applications containing a wide variety of integral transforms
Testing the Stability of 2-D Recursive QP, NSHP and General Digital Filters of Second Order
NASA Astrophysics Data System (ADS)
Rathinam, Ananthanarayanan; Ramesh, Rengaswamy; Reddy, P. Subbarami; Ramaswami, Ramaswamy
Several methods for testing stability of first quadrant quarter-plane two dimensional (2-D) recursive digital filters have been suggested in 1970's and 80's. Though Jury's row and column algorithms, row and column concatenation stability tests have been considered as highly efficient mapping methods. They still fall short of accuracy as they need infinite number of steps to conclude about the exact stability of the filters and also the computational time required is enormous. In this paper, we present procedurally very simple algebraic method requiring only two steps when applied to the second order 2-D quarter - plane filter. We extend the same method to the second order Non-Symmetric Half-plane (NSHP) filters. Enough examples are given for both these types of filters as well as some lower order general recursive 2-D digital filters. We applied our method to barely stable or barely unstable filter examples available in the literature and got the same decisions thus showing that our method is accurate enough.
Feldkaemper, M; Diether, S; Kleine, G; Schaeffel, F
1999-01-01
Degrading the retinal image by frosted eye occluders produces elongated eyes and 'deprivation myopia' in a variety of animal models. The postulated retinal 'deprivation detector' is quite sensitive to even small changes in image contrast or spatial frequency composition. Because psychophysical experiments have shown that a decline in luminance shifts the contrast sensitivity function to lower spatial frequencies, it is likely that only a reduced spatial frequency range is available for image analysis to control eye growth. It is even possible that the compression might be sufficient to promote deprivation myopia. We have tested this hypothesis, using the animal model of the chicken. (1) At an ambient illumination of 550 lux (about 76 cd m-2), neutral density (ND) filters placed in front of the eye with 0.0, 0.5 or 1.0 log unit attenuation did not change refractive development. However, monocularly or binocularly attached filters with 2 log units attenuation produced 5-7 D of myopia relative to normal eyes. Black occluders were not more effective. Frosted eye occluders with little effect on image brightness (about 0.5 log units attenuation) produced much more myopia (about 16 D compared with the controls). (2) The effects of the ND filters on refractive development could not be reproduced if the ambient illumination was reduced by 2 log units. Probably, minor effects on image quality were introduced by optical imperfections of the ND filters which were more critical at low retinal image brightness. (3) In an optomotor experiment (spatial frequency 0.2 cyc deg-1, stripe speed 57 deg sec-1), it was shown that the chickens' contrast sensitivity was severely reduced when the eyes were covered by 2.0 ND filters. (4) Since there is evidence that changes in dopamine release from the retina may be one of the factors affecting the development of myopia, we have tested how selective these changes were for spatial information. It was found that dopamine release was controlled by both spatial and luminance information and that the inputs of both could be scarcely separated. (5) Because the experiments show that the eye becomes more sensitive to image degradation at low light, the human eye may also be more prone to develop myopia if the light levels are low during extended periods of near work. Copyright 1999 Academic Press.
Extracting tissue deformation using Gabor filter banks
NASA Astrophysics Data System (ADS)
Montillo, Albert; Metaxas, Dimitris; Axel, Leon
2004-04-01
This paper presents a new approach for accurate extraction of tissue deformation imaged with tagged MR. Our method, based on banks of Gabor filters, adjusts (1) the aspect and (2) orientation of the filter"s envelope and adjusts (3) the radial frequency and (4) angle of the filter"s sinusoidal grating to extract information about the deformation of tissue. The method accurately extracts tag line spacing, orientation, displacement and effective contrast. Existing, non-adaptive methods often fail to recover useful displacement information in the proximity of tissue boundaries while our method works in the proximity of the boundaries. We also present an interpolation method to recover all tag information at a finer resolution than the filter bank parameters. Results are shown on simulated images of translating and contracting tissue.
Using Collaborative Filtering to Support College Students' Use of Online Forum for English Learning
ERIC Educational Resources Information Center
Wang, Pei-Yu; Yang, Hui-Chun
2012-01-01
This study examined the impact of collaborative filtering (the so-called recommender) on college students' use of an online forum for English learning. The forum was created with an open-source software, Drupal, and its extended recommender module. This study was guided by three main questions: 1) Is there any difference in online behaviors…
Effects of measurement unobservability on neural extended Kalman filter tracking
NASA Astrophysics Data System (ADS)
Stubberud, Stephen C.; Kramer, Kathleen A.
2009-05-01
An important component of tracking fusion systems is the ability to fuse various sensors into a coherent picture of the scene. When multiple sensor systems are being used in an operational setting, the types of data vary. A significant but often overlooked concern of multiple sensors is the incorporation of measurements that are unobservable. An unobservable measurement is one that may provide information about the state, but cannot recreate a full target state. A line of bearing measurement, for example, cannot provide complete position information. Often, such measurements come from passive sensors such as a passive sonar array or an electronic surveillance measure (ESM) system. Unobservable measurements will, over time, result in the measurement uncertainty to grow without bound. While some tracking implementations have triggers to protect against the detrimental effects, many maneuver tracking algorithms avoid discussing this implementation issue. One maneuver tracking technique is the neural extended Kalman filter (NEKF). The NEKF is an adaptive estimation algorithm that estimates the target track as it trains a neural network on line to reduce the error between the a priori target motion model and the actual target dynamics. The weights of neural network are trained in a similar method to the state estimation/parameter estimation Kalman filter techniques. The NEKF has been shown to improve target tracking accuracy through maneuvers and has been use to predict target behavior using the new model that consists of the a priori model and the neural network. The key to the on-line adaptation of the NEKF is the fact that the neural network is trained using the same residuals as the Kalman filter for the tracker. The neural network weights are treated as augmented states to the target track. Through the state-coupling function, the weights are coupled to the target states. Thus, if the measurements cause the states of the target track to be unobservable, then the weights of the neural network have unobservable modes as well. In recent analysis, the NEKF was shown to have a significantly larger growth in the eigenvalues of the error covariance matrix than the standard EKF tracker when the measurements were purely bearings-only. This caused detrimental effects to the ability of the NEKF to model the target dynamics. In this work, the analysis is expanded to determine the detrimental effects of bearings-only measurements of various uncertainties on the performance of the NEKF when these unobservable measurements are interlaced with completely observable measurements. This analysis provides the ability to put implementation limitations on the NEKF when bearings-only sensors are present.
Szczęsna, Agnieszka; Pruszowski, Przemysław
2016-01-01
Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.
Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Slojkowski, Steven; Lowe, Jonathan; Woodburn, James
2015-01-01
Orbit determination (OD) analysis results are presented for the Lunar Reconnaissance Orbiter (LRO) using a commercially available Extended Kalman Filter, Analytical Graphics' Orbit Determination Tool Kit (ODTK). Process noise models for lunar gravity and solar radiation pressure (SRP) are described and OD results employing the models are presented. Definitive accuracy using ODTK meets mission requirements and is better than that achieved using the operational LRO OD tool, the Goddard Trajectory Determination System (GTDS). Results demonstrate that a Vasicek stochastic model produces better estimates of the coefficient of solar radiation pressure than a Gauss-Markov model, and prediction accuracy using a Vasicek model meets mission requirements over the analysis span. Modeling the effect of antenna motion on range-rate tracking considerably improves residuals and filter-smoother consistency. Inclusion of off-axis SRP process noise and generalized process noise improves filter performance for both definitive and predicted accuracy. Definitive accuracy from the smoother is better than achieved using GTDS and is close to that achieved by precision OD methods used to generate definitive science orbits. Use of a multi-plate dynamic spacecraft area model with ODTK's force model plugin capability provides additional improvements in predicted accuracy.
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack Y.; Rokni, Mohammad
1990-01-01
The testing and comparison of two Extended Kalman Filters (EKFs) developed for the Earth Radiation Budget Satellite (ERBS) is described. One EKF updates the attitude quaternion using a four component additive error quaternion. This technique is compared to that of a second EKF, which uses a multiplicative error quaternion. A brief development of the multiplicative algorithm is included. The mathematical development of the additive EKF was presented in the 1989 Flight Mechanics/Estimation Theory Symposium along with some preliminary testing results using real spacecraft data. A summary of the additive EKF algorithm is included. The convergence properties, singularity problems, and normalization techniques of the two filters are addressed. Both filters are also compared to those from the ERBS operational ground support software, which uses a batch differential correction algorithm to estimate attitude and gyro biases. Sensitivity studies are performed on the estimation of sensor calibration states. The potential application of the EKF for real time and non-real time ground attitude determination and sensor calibration for future missions such as the Gamma Ray Observatory (GRO) and the Small Explorer Mission (SMEX) is also presented.
Extraction of user's navigation commands from upper body force interaction in walker assisted gait.
Frizera Neto, Anselmo; Gallego, Juan A; Rocon, Eduardo; Pons, José L; Ceres, Ramón
2010-08-05
The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i) the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii) the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished. For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 +/- 0.358).10(-2) kgf) and delay ((1.897 +/- 0.3697).10(1)ms). A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters. The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.
On the performance of digital phase locked loops in the threshold region
NASA Technical Reports Server (NTRS)
Hurst, G. T.; Gupta, S. C.
1974-01-01
Extended Kalman filter algorithms are used to obtain a digital phase lock loop structure for demodulation of angle modulated signals. It is shown that the error variance equations obtained directly from this structure enable one to predict threshold if one retains higher frequency terms. This is in sharp contrast to the similar analysis of the analog phase lock loop, where the higher frequency terms are filtered out because of the low pass filter in the loop. Results are compared to actual simulation results and threshold region results obtained previously.
Shrestha, Vivek Raj; Park, Chul-Soon; Lee, Sang-Shin
2014-02-10
The enhancement of color saturation and color gamut has been demonstrated, by taking advantage of a dual-band color filter based on a subwavelength rectangular metal-dielectric resonant grating, which exhibits an adjustable spectral response with respect to its relative transmittances at the two bands of green and red, thereby producing any color in between green and red, through the adjustment of incoming light polarization. Also, the prominent features of the spectral response of the filter, namely the bandwidth and resonant wavelength, can be readily adjusted by varying the dielectric layer thickness and the grating pitch, respectively. The dependence of chromaticity coordinates of the filter in the CIE (International Commission on Illumination) 1931 chromaticity diagram upon the parameters of the spectral response, including the center wavelength, spectral bandwidth and sideband level, has been rigorously examined, and their influence on the color gamut and the excitation purity, which is a colorimetric measure of saturation, has been analytically explored at the same time, in order to optimize the color performance of the filters. In particular, a device with wider spectral bandwidth was observed to efficiently extend the color gamut and enhance the color saturation, i.e. the excitation purity for a given sideband level. Two dual-band green-red filters, exhibiting different bandwidths of about 17 and 36 nm, were specifically designed and fabricated. As compared with the case with narrower bandwidth, the device with wider bandwidth was observed to provide both higher excitation purity leading to better color saturation and greater separation of the chromaticity coordinates for the filter output for different incident polarizations, which provides extended color gamut. The proposed device structure may permit the color tuning span to encompass all primary color bands, by adjusting the grating pitch.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.
2016-01-01
The atmosphere revitalization equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provides the vital functions of maintaining a habitable environment for the crew as well as protecting the hardware from fouling by suspended particulate matter. Providing these functions are challenging in pressurized spacecraft cabins because no outside air ventilation is possible and a larger particulate load is imposed on the filtration system due to lack of sedimentation in reduced gravity conditions. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) filters deployed at multiple locations in each module. These filters are referred to as Bacteria Filter Elements (BFEs). As more experience has been gained with ISS operations, the BFE service life, which was initially one year, has been extended to two to five years, dependent on the location in the U.S. Segment. In previous work we developed a test facility and test protocol for leak testing the ISS BFEs. For this work, we present results of leak testing a sample set of returned BFEs with a service life of 2.5 years, along with particulate removal efficiency and pressure drop measurements. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS to 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Favaro, Livio; Gamba, Marco; Alfieri, Chiara; Pessani, Daniela; McElligott, Alan G
2015-11-25
The African penguin is a nesting seabird endemic to southern Africa. In penguins of the genus Spheniscus vocalisations are important for social recognition. However, it is not clear which acoustic features of calls can encode individual identity information. We recorded contact calls and ecstatic display songs of 12 adult birds from a captive colony. For each vocalisation, we measured 31 spectral and temporal acoustic parameters related to both source and filter components of calls. For each parameter, we calculated the Potential of Individual Coding (PIC). The acoustic parameters showing PIC ≥ 1.1 were used to perform a stepwise cross-validated discriminant function analysis (DFA). The DFA correctly classified 66.1% of the contact calls and 62.5% of display songs to the correct individual. The DFA also resulted in the further selection of 10 acoustic features for contact calls and 9 for display songs that were important for vocal individuality. Our results suggest that studying the anatomical constraints that influence nesting penguin vocalisations from a source-filter perspective, can lead to a much better understanding of the acoustic cues of individuality contained in their calls. This approach could be further extended to study and understand vocal communication in other bird species.
Favaro, Livio; Gamba, Marco; Alfieri, Chiara; Pessani, Daniela; McElligott, Alan G.
2015-01-01
The African penguin is a nesting seabird endemic to southern Africa. In penguins of the genus Spheniscus vocalisations are important for social recognition. However, it is not clear which acoustic features of calls can encode individual identity information. We recorded contact calls and ecstatic display songs of 12 adult birds from a captive colony. For each vocalisation, we measured 31 spectral and temporal acoustic parameters related to both source and filter components of calls. For each parameter, we calculated the Potential of Individual Coding (PIC). The acoustic parameters showing PIC ≥ 1.1 were used to perform a stepwise cross-validated discriminant function analysis (DFA). The DFA correctly classified 66.1% of the contact calls and 62.5% of display songs to the correct individual. The DFA also resulted in the further selection of 10 acoustic features for contact calls and 9 for display songs that were important for vocal individuality. Our results suggest that studying the anatomical constraints that influence nesting penguin vocalisations from a source-filter perspective, can lead to a much better understanding of the acoustic cues of individuality contained in their calls. This approach could be further extended to study and understand vocal communication in other bird species. PMID:26602001
A miniature filter on a suspended substrate with a two-sided pattern of strip conductors
NASA Astrophysics Data System (ADS)
Belyaev, B. A.; Voloshin, A. S.; Bulavchuk, A. S.; Galeev, R. G.
2016-06-01
A miniature bandpass filter of new design with original stripline resonators on suspended substrate has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and mush smaller size in comparison to analogs. It is shown that a broad stopband extending above three-fold central bandpass frequency is determined by weak coupling of resonators at resonances of the second and third modes. A prototype sixth-order filter with a central frequency of 1 GHz, manufactured on a ceramic substrate with dielectric permittivity ɛ = 80, has contour dimensions of 36.6 × 4.8 × 0.5 mm3. Parametric synthesis of the filter, based on electrodynamic 3D model simulations, showed quite good agreement with the results of measurements.
A CLT on the SNR of Diagonally Loaded MVDR Filters
NASA Astrophysics Data System (ADS)
Rubio, Francisco; Mestre, Xavier; Hachem, Walid
2012-08-01
This paper studies the fluctuations of the signal-to-noise ratio (SNR) of minimum variance distorsionless response (MVDR) filters implementing diagonal loading in the estimation of the covariance matrix. Previous results in the signal processing literature are generalized and extended by considering both spatially as well as temporarily correlated samples. Specifically, a central limit theorem (CLT) is established for the fluctuations of the SNR of the diagonally loaded MVDR filter, under both supervised and unsupervised training settings in adaptive filtering applications. Our second-order analysis is based on the Nash-Poincar\\'e inequality and the integration by parts formula for Gaussian functionals, as well as classical tools from statistical asymptotic theory. Numerical evaluations validating the accuracy of the CLT confirm the asymptotic Gaussianity of the fluctuations of the SNR of the MVDR filter.
Estimating ice-affected streamflow by extended Kalman filtering
Holtschlag, D.J.; Grewal, M.S.
1998-01-01
An extended Kalman filter was developed to automate the real-time estimation of ice-affected streamflow on the basis of routine measurements of stream stage and air temperature and on the relation between stage and streamflow during open-water (ice-free) conditions. The filter accommodates three dynamic modes of ice effects: sudden formation/ablation, stable ice conditions, and eventual elimination. The utility of the filter was evaluated by applying it to historical data from two long-term streamflow-gauging stations, St. John River at Dickey, Maine and Platte River at North Bend, Nebr. Results indicate that the filter was stable and that parameters converged for both stations, producing streamflow estimates that are highly correlated with published values. For the Maine station, logarithms of estimated streamflows are within 8% of the logarithms of published values 87.2% of the time during periods of ice effects and within 15% 96.6% of the time. Similarly, for the Nebraska station, logarithms of estimated streamflows are within 8% of the logarithms of published values 90.7% of the time and within 15% 97.7% of the time. In addition, the correlation between temporal updates and published streamflows on days of direct measurements at the Maine station was 0.777 and 0.998 for ice-affected and open-water periods, respectively; for the Nebraska station, corresponding correlations were 0.864 and 0.997.
Filtering as a reasoning-control strategy: An experimental assessment
NASA Technical Reports Server (NTRS)
Pollack, Martha E.
1994-01-01
In dynamic environments, optimal deliberation about what actions to perform is impossible. Instead, it is sometimes necessary to trade potential decision quality for decision timeliness. One approach to achieving this trade-off is to endow intelligent agents with meta-level strategies that provide them guidance about when to reason (and what to reason about) and when to act. We describe our investigations of a particular meta-level reasoning strategy, filtering, in which an agent commits to the goals it has already adopted, and then filters from consideration new options that would conflict with the successful completion of existing goals. To investigate the utility of filtering, a series of experiments was conducted using the Tileworld testbed. Previous experiments conducted by Kinny and Georgeff used an earlier version of the Tileworld to demonstrate the feasibility of filtering. Results are presented that replicate and extend those of Kinny and Georgeff and demonstrate some significant environmental influences on the value of filtering.
Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey
2015-12-01
The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.
A high-power spatial filter for Thomson scattering stray light reduction
NASA Astrophysics Data System (ADS)
Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.
2011-03-01
The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.
Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Markley, F. Landis
2013-01-01
A document discusses sequential probability ratio tests that explicitly allow decision-makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models the null hypotheses that the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming, highly elliptical orbit formation flying mission.
Preconditioner-free Wiener filtering with a dense noise matrix
NASA Astrophysics Data System (ADS)
Huffenberger, Kevin M.
2018-05-01
This work extends the Elsner & Wandelt (2013) iterative method for efficient, preconditioner-free Wiener filtering to cases in which the noise covariance matrix is dense, but can be decomposed into a sum whose parts are sparse in convenient bases. The new method, which uses multiple messenger fields, reproduces Wiener-filter solutions for test problems, and we apply it to a case beyond the reach of the Elsner & Wandelt (2013) method. We compute the Wiener-filter solution for a simulated Cosmic Microwave Background (CMB) map that contains spatially varying, uncorrelated noise, isotropic 1/f noise, and large-scale horizontal stripes (like those caused by atmospheric noise). We discuss simple extensions that can filter contaminated modes or inverse-noise-filter the data. These techniques help to address complications in the noise properties of maps from current and future generations of ground-based Microwave Background experiments, like Advanced ACTPol, Simons Observatory, and CMB-S4.
Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography
2013-01-01
Background The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. Methods In this study we propose a reconstruction strategy to recover the mechanical properties of the tissue. After the discrepancies between the biomechanical model and data are modeled as the process noise, and the biomechanical model constraint is transformed into a state space representation the reconstruction of elasticity can be accomplished through one filtering identification process, which is to recursively estimate the material properties and kinematic functions from ultrasound data according to the minimum mean square error (MMSE) criteria. In the implementation of this model-based algorithm, the linear isotropic elasticity is adopted as the biomechanical constraint. The estimation of kinematic functions (i.e., the full displacement and velocity field), and the distribution of Young’s modulus are computed simultaneously through an extended Kalman filter (EKF). Results In the following experiments the accuracy and robustness of this filtering framework is first evaluated on synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantom and patients using the ultrasound system. Quantitative analysis verifies that strain fields estimated by our filtering strategy are more closer to the ground truth. The distribution of Young’s modulus is also well estimated. Further, the effects of measurement noise and process noise have been investigated as well. Conclusions The advantage of this model-based algorithm over the conventional strain-based algorithm is its potential of providing the distribution of elasticity under a proper biomechanical model constraint. We address the model-data discrepancy and measurement noise by introducing process noise and measurement noise in our framework, and then the absolute values of Young’s modulus are estimated through the EFK in the MMSE sense. However, the initial conditions, and the mesh strategy will affect the performance, i.e., the convergence rate, and computational cost, etc. PMID:23937814
Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography.
Lu, Minhua; Zhang, Heye; Wang, Jun; Yuan, Jinwei; Hu, Zhenghui; Liu, Huafeng
2013-08-10
The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. In this study we propose a reconstruction strategy to recover the mechanical properties of the tissue. After the discrepancies between the biomechanical model and data are modeled as the process noise, and the biomechanical model constraint is transformed into a state space representation the reconstruction of elasticity can be accomplished through one filtering identification process, which is to recursively estimate the material properties and kinematic functions from ultrasound data according to the minimum mean square error (MMSE) criteria. In the implementation of this model-based algorithm, the linear isotropic elasticity is adopted as the biomechanical constraint. The estimation of kinematic functions (i.e., the full displacement and velocity field), and the distribution of Young's modulus are computed simultaneously through an extended Kalman filter (EKF). In the following experiments the accuracy and robustness of this filtering framework is first evaluated on synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantom and patients using the ultrasound system. Quantitative analysis verifies that strain fields estimated by our filtering strategy are more closer to the ground truth. The distribution of Young's modulus is also well estimated. Further, the effects of measurement noise and process noise have been investigated as well. The advantage of this model-based algorithm over the conventional strain-based algorithm is its potential of providing the distribution of elasticity under a proper biomechanical model constraint. We address the model-data discrepancy and measurement noise by introducing process noise and measurement noise in our framework, and then the absolute values of Young's modulus are estimated through the EFK in the MMSE sense. However, the initial conditions, and the mesh strategy will affect the performance, i.e., the convergence rate, and computational cost, etc.
Tronstad, Christian; Staal, Odd M; Saelid, Steinar; Martinsen, Orjan G
2015-08-01
Measurement of electrodermal activity (EDA) has recently made a transition from the laboratory into daily life with the emergence of wearable devices. Movement and nongelled electrodes make these devices more susceptible to noise and artifacts. In addition, real-time interpretation of the measurement is needed for user feedback. The Kalman filter approach may conveniently deal with both these issues. This paper presents a biophysical model for EDA implemented in an extended Kalman filter. Employing the filter on data from Physionet along with simulated noise and artifacts demonstrates noise and artifact suppression while implicitly providing estimates of model states and parameters such as the sudomotor nerve activation.
High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras.
Lapray, Pierre-Jean; Thomas, Jean-Baptiste; Gouton, Pierre
2017-06-03
Spectral filter arrays imaging exhibits a strong similarity with color filter arrays. This permits us to embed this technology in practical vision systems with little adaptation of the existing solutions. In this communication, we define an imaging pipeline that permits high dynamic range (HDR)-spectral imaging, which is extended from color filter arrays. We propose an implementation of this pipeline on a prototype sensor and evaluate the quality of our implementation results on real data with objective metrics and visual examples. We demonstrate that we reduce noise, and, in particular we solve the problem of noise generated by the lack of energy balance. Data are provided to the community in an image database for further research.
Discrete-time state estimation for stochastic polynomial systems over polynomial observations
NASA Astrophysics Data System (ADS)
Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.
2018-07-01
This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.
Banerjee, Biswanath; Roy, Debasish; Vasu, Ram Mohan
2009-08-01
A computationally efficient pseudodynamical filtering setup is established for elasticity imaging (i.e., reconstruction of shear modulus distribution) in soft-tissue organs given statically recorded and partially measured displacement data. Unlike a regularized quasi-Newton method (QNM) that needs inversion of ill-conditioned matrices, the authors explore pseudodynamic extended and ensemble Kalman filters (PD-EKF and PD-EnKF) that use a parsimonious representation of states and bypass explicit regularization by recursion over pseudotime. Numerical experiments with QNM and the two filters suggest that the PD-EnKF is the most robust performer as it exhibits no sensitivity to process noise covariance and yields good reconstruction even with small ensemble sizes.
Monitoring the startup of a wet detention pond equipped with sand filters and sorption filters.
Vollertsen, J; Lange, K H; Pedersen, J; Hallager, P; Bruus, A; Laustsen, A; Bundesen, V W; Brix, H; Nielsen, A H; Nielsen, N H; Wium-Andersen, T; Hvitved-Jacobsen, T
2009-01-01
The startup of a wet retention pond designed for extended stormwater treatment was monitored by more than one year of continual measurement of hydraulic parameters, nutrients and quality parameters in the pond itself (pH, temperature, dissolved oxygen, turbidity). The data revealed that photosynthesis played an important role for dissolved oxygen and pH for most of the year. Another important observation was that the pond behaved more like a completely mixed reactor than like a plug flow reactor--even though the length to width ratio was as high as 4.5:1. The pond was equipped with sand filters and sorption filters whereby very good nutrient removal efficiencies were achieved.
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack
1997-01-01
Traditionally satellite attitude and trajectory have been estimated with completely separate systems, using different measurement data. The estimation of both trajectory and attitude for low earth orbit satellites has been successfully demonstrated in ground software using magnetometer and gyroscope data. Since the earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. This work further tests the single augmented Extended Kalman Filter (EKF) which simultaneously and autonomously estimates spacecraft trajectory and attitude with data from the Rossi X-Ray Timing Explorer (RXTE) magnetometer and gyro-measured body rates. In addition, gyro biases are added to the state and the filter's ability to estimate them is presented.
Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.
Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana
2018-02-01
This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.
A new fold-cross metal mesh filter for suppressing side lobe leakage in terahertz region
NASA Astrophysics Data System (ADS)
Lu, Changgui; Qi, Zhengqing; Guo, Wengao; Cui, Yiping
2018-04-01
In this paper we propose a new type of fold-cross metal mesh band pass filter, which keeps diffraction side lobe far away from the main transmission peak and shows much better side lobe suppression. Both experimental and theoretical studies are made to analyze the mechanism of side lobe. Compared to the traditional cross filter, the fold-cross filter has a much lower side lobe with almost the same central frequency, bandwidth and highest transmission about 98%. Using the photolithography and electroplating techniques, we experimentally extend the distance between the main peak and diffraction side lobe to larger than 1 THz for the fold-cross filter, which is two times larger than the cross filter while maintaining the main peak transmissions of 89% at 1.25 THz for the two structures. This type of single layer substrate-free fold-cross metal structure shows better design flexibility and structure reliability with the introduction of fold arms for metal mesh band pass filters.
CDGPS-Based Relative Navigation for Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Mitchell, Megan Leigh
2004-01-01
This thesis investigates the use of Carrier-phase Differential GPS (CDGPS) in relative navigation filters for formation flying spacecraft. This work analyzes the relationship between the Extended Kalman Filter (EKF) design parameters and the resulting estimation accuracies, and in particular, the effect of the process and measurement noises on the semimajor axis error. This analysis clearly demonstrates that CDGPS-based relative navigation Kalman filters yield good estimation performance without satisfying the strong correlation property that previous work had associated with "good" navigation filters. Several examples are presented to show that the Kalman filter can be forced to create solutions with stronger correlations, but these always result in larger semimajor axis errors. These linear and nonlinear simulations also demonstrated the crucial role of the process noise in determining the semimajor axis knowledge. More sophisticated nonlinear models were included to reduce the propagation error in the estimator, but for long time steps and large separations, the EKF, which only uses a linearized covariance propagation, yielded very poor performance. In contrast, the CDGPS-based Unscented Kalman relative navigation Filter (UKF) handled the dynamic and measurement nonlinearities much better and yielded far superior performance than the EKF. The UKF produced good estimates for scenarios with long baselines and time steps for which the EKF would diverge rapidly. A hardware-in-the-loop testbed that is compatible with the Spirent Simulator at NASA GSFC was developed to provide a very flexible and robust capability for demonstrating CDGPS technologies in closed-loop. This extended previous work to implement the decentralized relative navigation algorithms in real time.
NASA Astrophysics Data System (ADS)
Goodman, J.; McKay, J.; Evans, W.; Gadsden, S. Andrew
2016-05-01
This paper is based on a proposed unmanned aerial system platform that is to be outfitted with high-resolution sensors. The proposed system is to be tethered to a moveable ground station, which may be a research vessel or some form of ground vehicle (e.g., car, truck, or rover). The sensors include, at a minimum: camera, infrared sensor, thermal, normalized difference vegetation index (NDVI) camera, global positioning system (GPS), and a light-based radar (LIDAR). The purpose of this paper is to provide an overview of existing methods for pollution detection of failing septic systems, and to introduce the proposed system. Future work will look at the high-resolution data from the sensors and integrating the data through a process called information fusion. Typically, this process is done using the popular and well-published Kalman filter (or its nonlinear formulations, such as the extended Kalman filter). However, future work will look at using a new type of strategy based on variable structure estimation for the information fusion portion of the data processing. It is hypothesized that fusing data from the thermal and NDVI sensors will be more accurate and reliable for a multitude of applications, including the detection of pollution entering the Chesapeake Bay area.
NASA Astrophysics Data System (ADS)
Faes, Luca; Nollo, Giandomenico; Stramaglia, Sebastiano; Marinazzo, Daniele
2017-10-01
In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared to pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.
Coding tools investigation for next generation video coding based on HEVC
NASA Astrophysics Data System (ADS)
Chen, Jianle; Chen, Ying; Karczewicz, Marta; Li, Xiang; Liu, Hongbin; Zhang, Li; Zhao, Xin
2015-09-01
The new state-of-the-art video coding standard, H.265/HEVC, has been finalized in 2013 and it achieves roughly 50% bit rate saving compared to its predecessor, H.264/MPEG-4 AVC. This paper provides the evidence that there is still potential for further coding efficiency improvements. A brief overview of HEVC is firstly given in the paper. Then, our improvements on each main module of HEVC are presented. For instance, the recursive quadtree block structure is extended to support larger coding unit and transform unit. The motion information prediction scheme is improved by advanced temporal motion vector prediction, which inherits the motion information of each small block within a large block from a temporal reference picture. Cross component prediction with linear prediction model improves intra prediction and overlapped block motion compensation improves the efficiency of inter prediction. Furthermore, coding of both intra and inter prediction residual is improved by adaptive multiple transform technique. Finally, in addition to deblocking filter and SAO, adaptive loop filter is applied to further enhance the reconstructed picture quality. This paper describes above-mentioned techniques in detail and evaluates their coding performance benefits based on the common test condition during HEVC development. The simulation results show that significant performance improvement over HEVC standard can be achieved, especially for the high resolution video materials.
A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.
Suk, Heung-Il; Lee, Seong-Whan
2013-02-01
As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.
Study on UKF based federal integrated navigation for high dynamic aviation
NASA Astrophysics Data System (ADS)
Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie
2011-08-01
High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is superior than EKF based integrated scheme, in which has smaller estimation error and quickly convergence rate.
Optical implementation of the synthetic discriminant function
NASA Astrophysics Data System (ADS)
Butler, S.; Riggins, J.
1984-10-01
Much attention is focused on the use of coherent optical pattern recognition (OPR) using matched spatial filters for robotics and intelligent systems. The OPR problem consists of three aspects -- information input, information processing, and information output. This paper discusses the information processing aspect which consists of choosing a filter to provide robust correlation with high efficiency. The filter should ideally be invariant to image shift, rotation and scale, provide a reasonable signal-to-noise (S/N) ratio and allow high throughput efficiency. The physical implementation of a spatial matched filter involves many choices. These include the use of conventional holograms or computer-generated holograms (CGH) and utilizing absorption or phase materials. Conventional holograms inherently modify the reference image by non-uniform emphasis of spatial frequencies. Proper use of film nonlinearity provides improved filter performance by emphasizing frequency ranges crucial to target discrimination. In the case of a CGH, the emphasis of the reference magnitude and phase can be controlled independently of the continuous tone or binary writing processes. This paper describes computer simulation and optical implementation of a geometrical shape and a Synthetic Discriminant Function (SDF) matched filter. The authors chose the binary Allebach-Keegan (AK) CGH algorithm to produce actual filters. The performances of these filters were measured to verify the simulation results. This paper provides a brief summary of the matched filter theory, the SDF, CGH algorithms, Phase-Only-Filtering, simulation procedures, and results.
Filtering and polychromatic vision in mantis shrimps: themes in visible and ultraviolet vision.
Cronin, Thomas W; Bok, Michael J; Marshall, N Justin; Caldwell, Roy L
2014-01-01
Stomatopod crustaceans have the most complex and diverse assortment of retinal photoreceptors of any animals, with 16 functional classes. The receptor classes are subdivided into sets responsible for ultraviolet vision, spatial vision, colour vision and polarization vision. Many of these receptor classes are spectrally tuned by filtering pigments located in photoreceptors or overlying optical elements. At visible wavelengths, carotenoproteins or similar substances are packed into vesicles used either as serial, intrarhabdomal filters or lateral filters. A single retina may contain a diversity of these filtering pigments paired with specific photoreceptors, and the pigments used vary between and within species both taxonomically and ecologically. Ultraviolet-filtering pigments in the crystalline cones serve to tune ultraviolet vision in these animals as well, and some ultraviolet receptors themselves act as birefringent filters to enable circular polarization vision. Stomatopods have reached an evolutionary extreme in their use of filter mechanisms to tune photoreception to habitat and behaviour, allowing them to extend the spectral range of their vision both deeper into the ultraviolet and further into the red.
Symmetric/Asymmetrical SIRs Dual-Band BPF Design for WLAN Applications
NASA Astrophysics Data System (ADS)
Ho, Min-Hua; Ho, Hao-Hung; Chen, Mingchih
This paper presents the dual-band bandpass filters (BPFs) design composed of λ/2 and symmetrically/asymmetrically paired λ/4 stepped impedance resonators (SIRs) for the WLAN applications. The filters cover both the operating frequencies of 2.45 and 5.2GHz. The dual-coupling mechanism is used in the filter design to provide alternative routes for signals of selected frequencies. A prototype filter is composed of λ/2 and symmetrical λ/4 SIRs. The enhanced wide-stopband filter is then developed from the filter with the symmetrical λ/4 SIRs replaced by the asymmetrical ones. The asymmetrical λ/4 SIRs have their higher resonances frequencies isolated from the adjacent I/O SIRs and extend the enhanced filter an upper stopband limit beyond ten time the fundamental frequency. Also, the filter might possess a cross-coupling structure which introduces transmission zeros by the passband edges to improve the signal selectivity. The tapped-line feed is adopted in this circuit to create additional attenuation poles for improving the stopband rejection levels. Experiments are conducted to verify the circuit performance.
On selecting satellite conjunction filter parameters
NASA Astrophysics Data System (ADS)
Alfano, Salvatore; Finkleman, David
2014-06-01
This paper extends concepts of signal detection theory to predict the performance of conjunction screening techniques and guiding the selection of keepout and screening thresholds. The most efficient way to identify satellites likely to collide is to employ filters to identify orbiting pairs that should not come close enough over a prescribed time period to be considered hazardous. Such pairings can then be eliminated from further computation to accelerate overall processing time. Approximations inherent in filtering techniques include screening using only unperturbed Newtonian two body astrodynamics and uncertainties in orbit elements. Therefore, every filtering process is vulnerable to including objects that are not threats and excluding some that are threats, Type I and Type II errors. The approach in this paper guides selection of the best operating point for the filters suited to a user's tolerance for false alarms and unwarned threats. We demonstrate the approach using three archetypal filters with an initial three-day span, select filter parameters based on performance, and then test those parameters using eight historical snapshots of the space catalog. This work provides a mechanism for selecting filter parameters but the choices depend on the circumstances.
Initial flight results of the TRMM Kalman filter
NASA Technical Reports Server (NTRS)
Andrews, Stephen F.; Morgenstern, Wendy M.
1998-01-01
The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls attitude based on the Earth Sensor Assembly (ESA) output. After a potential single point failure in the ESA was identified, the contingency attitude determination method chosen to backup the ESA-based system was a sixth-order extended Kalman filter that uses magnetometer and digital sun sensor measurements. A brief description of the TRMM Kalman filter will be given, including some implementation issues and algorithm heritage. Operational aspects of the Kalman filter and some failure detection and correction will be described. The Kalman filter was tested in a sun pointing attitude and in a nadir pointing attitude during the in-orbit checkout period, and results from those tests will be presented. This paper will describe some lessons learned from the experience of the TRMM team.
Initial Flight Results of the TRMM Kalman Filter
NASA Technical Reports Server (NTRS)
Andrews, Stephen F.; Morgenstern, Wendy M.
1998-01-01
The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls attitude based on the Earth Sensor Assembly (ESA) output. After a potential single point failure in the ESA was identified, the contingency attitude determination method chosen to backup the ESA-based system was a sixth-order extended Kalman filter that uses magnetometer and digital sun sensor measurements. A brief description of the TRMM Kalman filter will be given, including some implementation issues and algorithm heritage. Operational aspects of the Kalman filter and some failure detection and correction will be described. The Kalman filter was tested in a sun pointing attitude and in a nadir pointing attitude during the in-orbit checkout period, and results from those tests will be presented. This paper will describe some lessons learned from the experience of the TRMM team.
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; DeMars, Kyle; Trawny, Nikolas; Crain, Tim; Hanak, Chad; Carson, John M.; Christian, John
2016-01-01
The navigation filter architecture successfully deployed on the Morpheus flight vehicle is presented. The filter was developed as a key element of the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and over the course of 15 free fights was integrated into the Morpheus vehicle, operations, and flight control loop. Flight testing completed by demonstrating autonomous hazard detection and avoidance, integration of an altimeter, surface relative velocity (velocimeter) and hazard relative navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman flter software, and landing within 2 meters of the vertical testbed GPS-based navigation solution at the safe landing site target. Morpheus followed a trajectory that included an ascent phase followed by a partial descent-to-landing, although the proposed filter architecture is applicable to more general planetary precision entry, descent, and landings. The main new contribution is the incorporation of a sophisticated hazard relative navigation sensor-originally intended to locate safe landing sites-into the navigation system and employed as a navigation sensor. The formulation of a dual-state inertial extended Kalman filter was designed to address the precision planetary landing problem when viewed as a rendezvous problem with an intended landing site. For the required precision navigation system that is capable of navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors on the translational state estimation are included in a fully integrated navigation structure in which translation state estimation is combined with attitude state estimation. The map tie errors are estimated as part of the process, thereby creating a dual-state filter implementation. Also, the filter is implemented using inertial states rather than states relative to the target. External measurements include altimeter, velocimeter, star camera, terrain relative navigation sensor, and a hazard relative navigation sensor providing information regarding hazards on a map generated on-the-fly.
Upgrading and extended testing of the MSC integrated water and waste management hardware
NASA Technical Reports Server (NTRS)
Bambenek, R. A.; Nuccio, P. P.; Hurley, T. L.; Jasionowski, W. J.
1972-01-01
The results are presented of upgrading and testing an integrated water and waste management system, which uses the compression distillation, reverse osmosis, adsorption filtration and ion-exchange processes to recover potable water from urine, flush water and used wash water. Also included is the development of techniques for extending the useful biological life of biological filters, activated carbon filters and ion-exchange resins to at least 30 days, and presterilizing ion-exchange resins so that sterile water can be recovered from waste water. A wide variety of reverse osmosos materials, surfactants and germicides were experimentally evaluated to determine the best combination for a wash water subsystem. Full-scale module tests with real wash water demonstrated that surface fouling is a major problem.
Monocular Visual Odometry Based on Trifocal Tensor Constraint
NASA Astrophysics Data System (ADS)
Chen, Y. J.; Yang, G. L.; Jiang, Y. X.; Liu, X. Y.
2018-02-01
For the problem of real-time precise localization in the urban street, a monocular visual odometry based on Extend Kalman fusion of optical-flow tracking and trifocal tensor constraint is proposed. To diminish the influence of moving object, such as pedestrian, we estimate the motion of the camera by extracting the features on the ground, which improves the robustness of the system. The observation equation based on trifocal tensor constraint is derived, which can form the Kalman filter alone with the state transition equation. An Extend Kalman filter is employed to cope with the nonlinear system. Experimental results demonstrate that, compares with Yu’s 2-step EKF method, the algorithm is more accurate which meets the needs of real-time accurate localization in cities.
Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng
2015-01-01
Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255
On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alex; Ragaller, Paul; Herman, Andrew
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directlymore » monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications. The testing included controlled engine dynamometer evaluations, which characterized soot slip from various filter failure modes, as well as on-road fleet vehicle tests. The results show a high sensitivity to detect conditions resulting in soot leakage from the particulate filter, as well as potential for direct detection of structural failures including internal cracks and melted regions within the filter media itself. Furthermore, the measurements demonstrate, for the first time, the capability to employ a direct and continuous monitor of particulate filter diagnostics to both prevent and detect potential failure conditions in the field.« less
System identification of jet engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, N.
2000-01-01
System identification plays an important role in advanced control systems for jet engines, in which controls are performed adaptively using data from the actual engine and the identified engine. An identification technique for jet engine using the Constant Gain Extended Kalman Filter (CGEKF) is described. The filter is constructed for a two-spool turbofan engine. The CGEKF filter developed here can recognize parameter change in engine components and estimate unmeasurable variables over whole flight conditions. These capabilities are useful for an advanced Full Authority Digital Electric Control (FADEC). Effects of measurement noise and bias, effects of operating point and unpredicted performancemore » change are discussed. Some experimental results using the actual engine are shown to evaluate the effectiveness of CGEKF filter.« less
Verification testing of the US Filter 3M10C membrane system was conducted over a 44-day test period at the Aqua 2000 Research Center in Chula Vista, California. The test period extended from July 24, 2002 to September 5, 2002. The source water was a blend of Colorado River and ...
Sea-Based Automated Launch and Recovery System Virtual Testbed
2013-12-02
integrated with an Extended Kalman Filter to study sensor fusion in a fixed wing aircraft shipboard recovery scenario. 15. SUBJECT TERMS...the sensors and filter performance are graded both on pure estimation error, and by examining the touchdown performance of the aircraft on the ship...v, and w body-axis velocity components of the aircraft , while the velocities applied to the extremities are used to calculate estimated rotational
Filter performance parameters for vectorial high-aperture wave fields.
Sheppard, Colin J R; Martinez-Corral, M
2008-03-01
Performance parameters have been presented that can be used to compare the focusing performance of different optical systems, including the effect of pupil filters. These were originally given for the paraxial case and recently extended to the high-aperture scalar regime. We generalize these parameters to the full vectorial case for an aplanatic optical system illuminated by a plane-polarized wave. The behavior of different optical systems is compared.
Crystal Structure of an Ammonia-Permeable Aquaporin
Kirscht, Andreas; Kaptan, Shreyas S.; Bienert, Gerd Patrick; Chaumont, François; Nissen, Poul; de Groot, Bert L.; Kjellbom, Per; Gourdon, Pontus; Johanson, Urban
2016-01-01
Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants. PMID:27028365
Controlling soot formation with filtered EGR for diesel and biodiesel fuelled engines.
Gill, S S; Turner, D; Tsolakis, A; York, A P E
2012-04-03
Although exhaust gas recirculation (EGR) is an effective strategy for controlling the levels of nitrogen oxides (NO(X)) emitted from a diesel engine, the full potential of EGR in NO(X)/PM trade-off and engine performance (i.e., fuel economy) has not fully been exploited. Significant work into the cause and control of particulate matter (PM) has been made over the past decade with new cleaner fuels and after-treatment devices emerging to comply with the current and forthcoming emission regulations. In earlier work, we demonstrated that engine operation with oxygenated fuels (e.g., biodiesel) reduces the PM emissions and extends the engine tolerance to EGR before it reaches smoke-limited conditions. The same result has also been reported when high cetane number fuels such as gas-to-liquid (GTL) are used. To further our understanding of the relationship between EGR and PM formation, a diesel particulate filter (DPF) was integrated into the EGR loop to filter the recirculated soot particulates. The control of the soot recirculation penalty through filtered EGR (FEGR) resulted in a 50% engine-out soot reduction, thus showing the possibility of extending the maximum EGR limit or being able to run at the same level of EGR with an improved NO(X)/soot trade-off.
Su, Gui-yang; Li, Jian-hua; Ma, Ying-hua; Li, Sheng-hong
2004-09-01
With the flooding of pornographic information on the Internet, how to keep people away from that offensive information is becoming one of the most important research areas in network information security. Some applications which can block or filter such information are used. Approaches in those systems can be roughly classified into two kinds: metadata based and content based. With the development of distributed technologies, content based filtering technologies will play a more and more important role in filtering systems. Keyword matching is a content based method used widely in harmful text filtering. Experiments to evaluate the recall and precision of the method showed that the precision of the method is not satisfactory, though the recall of the method is rather high. According to the results, a new pornographic text filtering model based on reconfirming is put forward. Experiments showed that the model is practical, has less loss of recall than the single keyword matching method, and has higher precision.
Structural Information Detection Based Filter for GF-3 SAR Images
NASA Astrophysics Data System (ADS)
Sun, Z.; Song, Y.
2018-04-01
GF-3 satellite with high resolution, large swath, multi-imaging mode, long service life and other characteristics, can achieve allweather and all day monitoring for global land and ocean. It has become the highest resolution satellite system in the world with the C-band multi-polarized synthetic aperture radar (SAR) satellite. However, due to the coherent imaging system, speckle appears in GF-3 SAR images, and it hinders the understanding and interpretation of images seriously. Therefore, the processing of SAR images has big challenges owing to the appearance of speckle. The high-resolution SAR images produced by the GF-3 satellite are rich in information and have obvious feature structures such as points, edges, lines and so on. The traditional filters such as Lee filter and Gamma MAP filter are not appropriate for the GF-3 SAR images since they ignore the structural information of images. In this paper, the structural information detection based filter is constructed, successively including the point target detection in the smallest window, the adaptive windowing method based on regional characteristics, and the most homogeneous sub-window selection. The despeckling experiments on GF-3 SAR images demonstrate that compared with the traditional filters, the proposed structural information detection based filter can well preserve the points, edges and lines as well as smooth the speckle more sufficiently.
Information-Based Analysis of Data Assimilation (Invited)
NASA Astrophysics Data System (ADS)
Nearing, G. S.; Gupta, H. V.; Crow, W. T.; Gong, W.
2013-12-01
Data assimilation is defined as the Bayesian conditioning of uncertain model simulations on observations for the purpose of reducing uncertainty about model states. Practical data assimilation methods make the application of Bayes' law tractable either by employing assumptions about the prior, posterior and likelihood distributions (e.g., the Kalman family of filters) or by using resampling methods (e.g., bootstrap filter). We propose to quantify the efficiency of these approximations in an OSSE setting using information theory and, in an OSSE or real-world validation setting, to measure the amount - and more importantly, the quality - of information extracted from observations during data assimilation. To analyze DA assumptions, uncertainty is quantified as the Shannon-type entropy of a discretized probability distribution. The maximum amount of information that can be extracted from observations about model states is the mutual information between states and observations, which is equal to the reduction in entropy in our estimate of the state due to Bayesian filtering. The difference between this potential and the actual reduction in entropy due to Kalman (or other type of) filtering measures the inefficiency of the filter assumptions. Residual uncertainty in DA posterior state estimates can be attributed to three sources: (i) non-injectivity of the observation operator, (ii) noise in the observations, and (iii) filter approximations. The contribution of each of these sources is measurable in an OSSE setting. The amount of information extracted from observations by data assimilation (or system identification, including parameter estimation) can also be measured by Shannon's theory. Since practical filters are approximations of Bayes' law, it is important to know whether the information that is extracted form observations by a filter is reliable. We define information as either good or bad, and propose to measure these two types of information using partial Kullback-Leibler divergences. Defined this way, good and bad information sum to total information. This segregation of information into good and bad components requires a validation target distribution; in a DA OSSE setting, this can be the true Bayesian posterior, but in a real-world setting the validation target might be determined by a set of in situ observations.
Advanced data assimilation in strongly nonlinear dynamical systems
NASA Technical Reports Server (NTRS)
Miller, Robert N.; Ghil, Michael; Gauthiez, Francois
1994-01-01
Advanced data assimilation methods are applied to simple but highly nonlinear problems. The dynamical systems studied here are the stochastically forced double well and the Lorenz model. In both systems, linear approximation of the dynamics about the critical points near which regime transitions occur is not always sufficient to track their occurrence or nonoccurrence. Straightforward application of the extended Kalman filter yields mixed results. The ability of the extended Kalman filter to track transitions of the double-well system from one stable critical point to the other depends on the frequency and accuracy of the observations relative to the mean-square amplitude of the stochastic forcing. The ability of the filter to track the chaotic trajectories of the Lorenz model is limited to short times, as is the ability of strong-constraint variational methods. Examples are given to illustrate the difficulties involved, and qualitative explanations for these difficulties are provided. Three generalizations of the extended Kalman filter are described. The first is based on inspection of the innovation sequence, that is, the successive differences between observations and forecasts; it works very well for the double-well problem. The second, an extension to fourth-order moments, yields excellent results for the Lorenz model but will be unwieldy when applied to models with high-dimensional state spaces. A third, more practical method--based on an empirical statistical model derived from a Monte Carlo simulation--is formulated, and shown to work very well. Weak-constraint methods can be made to perform satisfactorily in the context of these simple models, but such methods do not seem to generalize easily to practical models of the atmosphere and ocean. In particular, it is shown that the equations derived in the weak variational formulation are difficult to solve conveniently for large systems.
Collaborative Information Filtering in Cooperative Communities.
ERIC Educational Resources Information Center
Okamoto, T.; Miyahara, K.
1998-01-01
The purpose of this study was to develop an information filtering system which collects, classifies, selects, and stores various kinds of information found through the Internet. A collaborative form of information gathering was examined and a model was built and implemented in the Internet information space. (AEF)
Adaptive Kalman filtering for real-time mapping of the visual field
Ward, B. Douglas; Janik, John; Mazaheri, Yousef; Ma, Yan; DeYoe, Edgar A.
2013-01-01
This paper demonstrates the feasibility of real-time mapping of the visual field for clinical applications. Specifically, three aspects of this problem were considered: (1) experimental design, (2) statistical analysis, and (3) display of results. Proper experimental design is essential to achieving a successful outcome, particularly for real-time applications. A random-block experimental design was shown to have less sensitivity to measurement noise, as well as greater robustness to error in modeling of the hemodynamic impulse response function (IRF) and greater flexibility than common alternatives. In addition, random encoding of the visual field allows for the detection of voxels that are responsive to multiple, not necessarily contiguous, regions of the visual field. Due to its recursive nature, the Kalman filter is ideally suited for real-time statistical analysis of visual field mapping data. An important feature of the Kalman filter is that it can be used for nonstationary time series analysis. The capability of the Kalman filter to adapt, in real time, to abrupt changes in the baseline arising from subject motion inside the scanner and other external system disturbances is important for the success of clinical applications. The clinician needs real-time information to evaluate the success or failure of the imaging run and to decide whether to extend, modify, or terminate the run. Accordingly, the analytical software provides real-time displays of (1) brain activation maps for each stimulus segment, (2) voxel-wise spatial tuning profiles, (3) time plots of the variability of response parameters, and (4) time plots of activated volume. PMID:22100663
Synthetic Air Data Estimation: A case study of model-aided estimation
NASA Astrophysics Data System (ADS)
Lie, F. Adhika Pradipta
A method for estimating airspeed, angle of attack, and sideslip without using conventional, pitot-static airdata system is presented. The method relies on measurements from GPS, an inertial measurement unit (IMU) and a low-fidelity model of the aircraft's dynamics which are fused using two, cascaded Extended Kalman Filters. In the cascaded architecture, the first filter uses information from the IMU and GPS to estimate the aircraft's absolute velocity and attitude. These estimates are used as the measurement updates for the second filter where they are fused with the aircraft dynamics model to generate estimates of airspeed, angle of attack and sideslip. Methods for dealing with the time and inter-state correlation in the measurements coming from the first filter are discussed. Simulation and flight test results of the method are presented. Simulation results using high fidelity nonlinear model show that airspeed, angle of attack, and sideslip angle estimation errors are less than 0.5 m/s, 0.1 deg, and 0.2 deg RMS, respectively. Factors that affect the accuracy including the implication and impact of using a low fidelity aircraft model are discussed. It is shown using flight tests that a single linearized aircraft model can be used in lieu of a high-fidelity, non-linear model to provide reasonably accurate estimates of airspeed (less than 2 m/s error), angle of attack (less than 3 deg error), and sideslip angle (less than 5 deg error). This performance is shown to be relatively insensitive to off-trim attitudes but very sensitive to off-trim velocity.
Rocadenbosch, F; Soriano, C; Comerón, A; Baldasano, J M
1999-05-20
A first inversion of the backscatter profile and extinction-to-backscatter ratio from pulsed elastic-backscatter lidar returns is treated by means of an extended Kalman filter (EKF). The EKF approach enables one to overcome the intrinsic limitations of standard straightforward nonmemory procedures such as the slope method, exponential curve fitting, and the backward inversion algorithm. Whereas those procedures are inherently not adaptable because independent inversions are performed for each return signal and neither the statistics of the signals nor a priori uncertainties (e.g., boundary calibrations) are taken into account, in the case of the Kalman filter the filter updates itself because it is weighted by the imbalance between the a priori estimates of the optical parameters (i.e., past inversions) and the new estimates based on a minimum-variance criterion, as long as there are different lidar returns. Calibration errors and initialization uncertainties can be assimilated also. The study begins with the formulation of the inversion problem and an appropriate atmospheric stochastic model. Based on extensive simulation and realistic conditions, it is shown that the EKF approach enables one to retrieve the optical parameters as time-range-dependent functions and hence to track the atmospheric evolution; the performance of this approach is limited only by the quality and availability of the a priori information and the accuracy of the atmospheric model used. The study ends with an encouraging practical inversion of a live scene measured at the Nd:YAG elastic-backscatter lidar station at our premises at the Polytechnic University of Catalonia, Barcelona.
Noise Adaptation and Correlated Maneuver Gating of an Extended Kalman Filter
1990-03-01
ay. 89 - (V) 2 + VY2,,o (A.11) v t E(A21 Y )(V’~2 + V 20r8 2 (A. 12) We also find that the covariance of ax and ay is E[axay] - E[ aya j - Vic) -Y G... Diary -- YES eval([’ diary ’,MatFilename]); end; 108 % System Information, in continuous time, for target, and initial guess A=[0 1 00 % x 0000 % xdot 000...Cleanup diary off; 114 D. KFBR.M function [Z,GI,Res,Pxy,xe] = kfbr(xobs,zobs,xO,IE,A,B,W,V,T,MD,P0,RAI,IL,IT,SG) * %KF BR % [Z,GI,Res,Pxy,xe] - kf__br
NASA Technical Reports Server (NTRS)
Bierman, G. J.
1975-01-01
Square root information estimation, starting from its beginnings in least-squares parameter estimation, is considered. Special attention is devoted to discussions of sensitivity and perturbation matrices, computed solutions and their formal statistics, consider-parameters and consider-covariances, and the effects of a priori statistics. The constant-parameter model is extended to include time-varying parameters and process noise, and the error analysis capabilities are generalized. Efficient and elegant smoothing results are obtained as easy consequences of the filter formulation. The value of the techniques is demonstrated by the navigation results that were obtained for the Mariner Venus-Mercury (Mariner 10) multiple-planetary space probe and for the Viking Mars space mission.
Control of Tollmien-Schlichting instabilities by finite distributed wall actuation
NASA Astrophysics Data System (ADS)
Losse, Nikolas R.; King, Rudibert; Zengl, Marcus; Rist, Ulrich; Noack, Bernd R.
2011-06-01
Tollmien-Schlichting waves are one of the key mechanisms triggering the laminar-turbulent transition in a flat-plate boundary-layer flow. By damping these waves and thus delaying transition, skin friction drag can be significantly decreased. In this simulation study, a wall segment is actuated according to a control scheme based on a POD-Galerkin model driven extended Kalman filter for state estimation and a model predictive controller to dampen TS waves by negative superposition based on this information. The setup of the simulation is chosen to resemble actuation with a driven compliant wall, such as a membrane actuator. Most importantly, a method is proposed to integrate such a localized wall actuation into a Galerkin model.
2017-01-20
This new, detailed global mosaic color map of Pluto is based on a series of three color filter images obtained by the Ralph/Multispectral Visual Imaging Camera aboard New Horizons during the NASA spacecraft's close flyby of Pluto in July 2015. The mosaic shows how Pluto's large-scale color patterns extend beyond the hemisphere facing New Horizons at closest approach- which were imaged at the highest resolution. North is up; Pluto's equator roughly bisects the band of dark red terrains running across the lower third of the map. Pluto's giant, informally named Sputnik Planitia glacier - the left half of Pluto's signature "heart" feature -- is at the center of this map. http://photojournal.jpl.nasa.gov/catalog/PIA11707
The Mystery of the Mars North Polar Gravity-Topography Correlation(Or Lack Thereof)
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Sjogren, W. L.; Johnson, C. L.
1999-01-01
Maps of moderately high resolution gravity data obtained from the Mars Global Surveyor (MGS) gravity calibration orbit campaign and high precision topography obtained from the Mars Orbiter Laser Altimeter (MOLA) experiment reveal relationships between gravity and topography in high northern latitudes of Mars. Figure 1 shows the results of a JPL spherical harmonic gravity model bandpass filtered between degrees 6 and 50 contoured over a MOLA topographic image. A positive gravity anomaly exists over the main North Polar cap, but there are at least six additional positive gravity anomalies, as well as a number of smaller negative anomalies, with no obvious correlation to topography. Additional information is contained in the original extended abstract.
Dynamic force signal processing system of a robot manipulator
NASA Technical Reports Server (NTRS)
Uchiyama, M.; Kitagaki, K.; Hakomori, K.
1987-01-01
If dynamic noises such as those caused by the inertia forces of the hand can be eliminated from the signal of the force sensor installed on the wrist of the robot manipulator and if the necessary information of the external force can be detected with high sensitivity and high accuracy, a fine force feedback control for robots used in high speed and various fields will be possible. As the dynamic force sensing system, an external force estimate method with the extended Kalman filter is suggested and simulations and tests for a one axis force were performed. Later a dynamic signal processing system of six axes was composed and tested. The results are presented.
Balbo, Nicoletta; Mills, Melinda
2011-11-01
This study investigates the importance of the effect of an individual's web of informal relationships with family and peers on the intention to have a second or third child. Drawing on sociological theories of social capital (help with childcare, emotional support) and social pressure, the study extends existing research by evaluating cross-national differences (between France, Germany, and Bulgaria) in the impact of personal network and institutional circumstances. It tests a non-linear relationship between social capital and fertility intentions. Social pressure and social capital are highly institutionally filtered, with the impact of personal network stronger where institutions are less family-supportive.
Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.
Brauers, Johannes; Aach, Til
2011-02-01
High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.
A Design Study of Onboard Navigation and Guidance During Aerocapture at Mars. M.S. Thesis
NASA Technical Reports Server (NTRS)
Fuhry, Douglas Paul
1988-01-01
The navigation and guidance of a high lift-to-drag ratio sample return vehicle during aerocapture at Mars are investigated. Emphasis is placed on integrated systems design, with guidance algorithm synthesis and analysis based on vehicle state and atmospheric density uncertainty estimates provided by the navigation system. The latter utilizes a Kalman filter for state vector estimation, with useful update information obtained through radar altimeter measurements and density altitude measurements based on IMU-measured drag acceleration. A three-phase guidance algorithm, featuring constant bank numeric predictor/corrector atmospheric capture and exit phases and an extended constant altitude cruise phase, is developed to provide controlled capture and depletion of orbital energy, orbital plane control, and exit apoapsis control. Integrated navigation and guidance systems performance are analyzed using a four degree-of-freedom computer simulation. The simulation environment includes an atmospheric density model with spatially correlated perturbations to provide realistic variations over the vehicle trajectory. Navigation filter initial conditions for the analysis are based on planetary approach optical navigation results. Results from a selection of test cases are presented to give insight into systems performance.
Uncued Low SNR Detection with Likelihood from Image Multi Bernoulli Filter
NASA Astrophysics Data System (ADS)
Murphy, T.; Holzinger, M.
2016-09-01
Both SSA and SDA necessitate uncued, partially informed detection and orbit determination efforts for small space objects which often produce only low strength electro-optical signatures. General frame to frame detection and tracking of objects includes methods such as moving target indicator, multiple hypothesis testing, direct track-before-detect methods, and random finite set based multiobject tracking. This paper will apply the multi-Bernoilli filter to low signal-to-noise ratio (SNR), uncued detection of space objects for space domain awareness applications. The primary novel innovation in this paper is a detailed analysis of the existing state-of-the-art likelihood functions and a likelihood function, based on a binary hypothesis, previously proposed by the authors. The algorithm is tested on electro-optical imagery obtained from a variety of sensors at Georgia Tech, including the GT-SORT 0.5m Raven-class telescope, and a twenty degree field of view high frame rate CMOS sensor. In particular, a data set of an extended pass of the Hitomi Astro-H satellite approximately 3 days after loss of communication and potential break up is examined.
Olelo: a web application for intuitive exploration of biomedical literature
Niedermeier, Julian; Jankrift, Marcel; Tietböhl, Sören; Stachewicz, Toni; Folkerts, Hendrik; Uflacker, Matthias; Neves, Mariana
2017-01-01
Abstract Researchers usually query the large biomedical literature in PubMed via keywords, logical operators and filters, none of which is very intuitive. Question answering systems are an alternative to keyword searches. They allow questions in natural language as input and results reflect the given type of question, such as short answers and summaries. Few of those systems are available online but they experience drawbacks in terms of long response times and they support a limited amount of question and result types. Additionally, user interfaces are usually restricted to only displaying the retrieved information. For our Olelo web application, we combined biomedical literature and terminologies in a fast in-memory database to enable real-time responses to researchers’ queries. Further, we extended the built-in natural language processing features of the database with question answering and summarization procedures. Combined with a new explorative approach of document filtering and a clean user interface, Olelo enables a fast and intelligent search through the ever-growing biomedical literature. Olelo is available at http://www.hpi.de/plattner/olelo. PMID:28472397
Bayesian Lagrangian Data Assimilation and Drifter Deployment Strategies
NASA Astrophysics Data System (ADS)
Dutt, A.; Lermusiaux, P. F. J.
2017-12-01
Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zooplankton, sediments, etc.) and man-made materials and other objects (e.g. pollutants, floating debris, search and rescue, etc.). Lagrangian Coherent Structures (LCSs) or the most influential/persistent material lines in a flow, provide a robust approach to characterize such Lagrangian transports and organize classic trajectories. Using the flow-map stochastic advection and a dynamically-orthogonal decomposition, we develop uncertainty prediction schemes for both Eulerian and Lagrangian variables. We then extend our Bayesian Gaussian Mixture Model (GMM)-DO filter to a joint Eulerian-Lagrangian Bayesian data assimilation scheme. The resulting nonlinear filter allows the simultaneous non-Gaussian estimation of Eulerian variables (e.g. velocity, temperature, salinity, etc.) and Lagrangian variables (e.g. drifter/float positions, trajectories, LCSs, etc.). Its results are showcased using a double-gyre flow with a random frequency, a stochastic flow past a cylinder, and realistic ocean examples. We further show how our Bayesian mutual information and adaptive sampling equations provide a rigorous efficient methodology to plan optimal drifter deployment strategies and predict the optimal times, locations, and types of measurements to be collected.
Model based estimation of image depth and displacement
NASA Technical Reports Server (NTRS)
Damour, Kevin T.
1992-01-01
Passive depth and displacement map determinations have become an important part of computer vision processing. Applications that make use of this type of information include autonomous navigation, robotic assembly, image sequence compression, structure identification, and 3-D motion estimation. With the reliance of such systems on visual image characteristics, a need to overcome image degradations, such as random image-capture noise, motion, and quantization effects, is clearly necessary. Many depth and displacement estimation algorithms also introduce additional distortions due to the gradient operations performed on the noisy intensity images. These degradations can limit the accuracy and reliability of the displacement or depth information extracted from such sequences. Recognizing the previously stated conditions, a new method to model and estimate a restored depth or displacement field is presented. Once a model has been established, the field can be filtered using currently established multidimensional algorithms. In particular, the reduced order model Kalman filter (ROMKF), which has been shown to be an effective tool in the reduction of image intensity distortions, was applied to the computed displacement fields. Results of the application of this model show significant improvements on the restored field. Previous attempts at restoring the depth or displacement fields assumed homogeneous characteristics which resulted in the smoothing of discontinuities. In these situations, edges were lost. An adaptive model parameter selection method is provided that maintains sharp edge boundaries in the restored field. This has been successfully applied to images representative of robotic scenarios. In order to accommodate image sequences, the standard 2-D ROMKF model is extended into 3-D by the incorporation of a deterministic component based on previously restored fields. The inclusion of past depth and displacement fields allows a means of incorporating the temporal information into the restoration process. A summary on the conditions that indicate which type of filtering should be applied to a field is provided.
Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.
Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk
2017-03-01
Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.
Robotic-Assisted Inferior Vena Cava Filter Retrieval.
Owji, Shahin; Lu, Tony; Loh, Thomas M; Schwein, Adeline; Lumsden, Alan B; Bismuth, Jean
2017-01-01
Although anticoagulation remains the mainstay of therapy for patients with venous thromboembolism, guidelines recommend the use of inferior vena cava (IVC) filters in those who fail anticoagulation or have contraindications to its use. Short-term use of filters has proven effective in reducing the rate of pulmonary embolism. However, their extended use is associated with a variety of complications such as thrombosis, filter migration, or caval perforation, thus making a case for timely filter retrieval. This is the case of a 68-year-old female with a history of chronic oral anticoagulation use for multiple deep venous thrombi (DVT) and pulmonary emboli (PE) who required cervical and thoracic spinal intervention for spondylosis and foramina stenosis. Given her increased risk of recurrent DVT and PE perioperatively, we elected to place a Cook Celect ™ IVC filter (Cook Medical, Bloomington, IN) after oral anticoagulation was stopped for the procedure. Her treatment course was prolonged due to wound-healing complications. We elected to use the Magellan Robotic Catheter System (Hansen Medical, Mountain View, CA) for filter retrieval when she presented 6 months later with caval perforation from the filter struts. With its ease of use, superior mechanical stability, and maneuverability, robot-assisted IVC filter retrieval may be a safer and more reliable substitute for traditional navigation techniques when presented with challenging filter retrievals.
A regularization of the Burgers equation using a filtered convective velocity
NASA Astrophysics Data System (ADS)
Norgard, Greg; Mohseni, Kamran
2008-08-01
This paper examines the properties of a regularization of the Burgers equation in one and multiple dimensions using a filtered convective velocity, which we have dubbed as the convectively filtered Burgers (CFB) equation. A physical motivation behind the filtering technique is presented. An existence and uniqueness theorem for multiple dimensions and a general class of filters is proven. Multiple invariants of motion are found for the CFB equation which are shown to be shared with the viscous and inviscid Burgers equations. Traveling wave solutions are found for a general class of filters and are shown to converge to weak solutions of the inviscid Burgers equation with the correct wave speed. Numerical simulations are conducted in 1D and 2D cases where the shock behavior, shock thickness and kinetic energy decay are examined. Energy spectra are also examined and are shown to be related to the smoothness of the solutions. This approach is presented with the hope of being extended to shock regularization of compressible Euler equations.
Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar.
Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le
2016-09-09
Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar's estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method.
Filter-based multiscale entropy analysis of complex physiological time series.
Xu, Yuesheng; Zhao, Liang
2013-08-01
Multiscale entropy (MSE) has been widely and successfully used in analyzing the complexity of physiological time series. We reinterpret the averaging process in MSE as filtering a time series by a filter of a piecewise constant type. From this viewpoint, we introduce filter-based multiscale entropy (FME), which filters a time series to generate multiple frequency components, and then we compute the blockwise entropy of the resulting components. By choosing filters adapted to the feature of a given time series, FME is able to better capture its multiscale information and to provide more flexibility for studying its complexity. Motivated by the heart rate turbulence theory, which suggests that the human heartbeat interval time series can be described in piecewise linear patterns, we propose piecewise linear filter multiscale entropy (PLFME) for the complexity analysis of the time series. Numerical results from PLFME are more robust to data of various lengths than those from MSE. The numerical performance of the adaptive piecewise constant filter multiscale entropy without prior information is comparable to that of PLFME, whose design takes prior information into account.
Far infrared filters for the Galileo-Jupiter and other missions
NASA Technical Reports Server (NTRS)
Seeley, J. S.; Hunneman, R.; Whatley, A.
1981-01-01
Progress in the development of FIR multilayer interference filters for the net flux radiometer and photopolarizing radiometer to be carried on board the Galileo mission to Jupiter is reported. The multilayer interference technique has been extended to the region above 40 microns by the use of PbTe/II-VI materials in hard-coated combination, with the thickest layers composed of CdSe QWOT at 74 microns and PbTe QWOT. Improvements have also been obtained in filters below 20 microns on the basis of the Chebyshev stack design. A composite filter cutting on steeply at 40 microns has been designed which employs a thin crystal quartz substrate, shorter wavelength absorption in ZnS and As2S3 thin films, and supplementary multilayer interference. Finally, absorptive filters have been developed based on II-VI compounds in multilayer combination with KRS-5 (or 6) on a KRS-5 (or 6) substrate
Online attitude determination of a passively magnetically stabilized spacecraft
NASA Astrophysics Data System (ADS)
Burton, R.; Rock, S.; Springmann, J.; Cutler, J.
2017-04-01
An online attitude determination filter is developed for a nano satellite that has no onboard attitude sensors or gyros. Specifically, the attitude of NASA Ames Research Center's O/OREOS, a passively magnetically stabilized 3U CubeSat, is determined using only an estimate of the solar vector obtained from solar panel currents. The filter is based upon the existing multiplicative extended Kalman filter (MEKF) but instead of relying on gyros to drive the motion model, the filter instead incorporates a model of the spacecraft's attitude dynamics in the motion model. An attitude determination accuracy of five degrees is demonstrated, a performance verified using flight data from the University of Michigan's RAX-1. Although the filter was designed for the specific problem of a satellite without gyros or attitude determination it could also be used to provide smoothing of noisy gyro signals or to provide a backup in the event of gyro failures.
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil
2011-01-01
Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.
Effective Filtering of Query Results on Updated User Behavioral Profiles in Web Mining
Sadesh, S.; Suganthe, R. C.
2015-01-01
Web with tremendous volume of information retrieves result for user related queries. With the rapid growth of web page recommendation, results retrieved based on data mining techniques did not offer higher performance filtering rate because relationships between user profile and queries were not analyzed in an extensive manner. At the same time, existing user profile based prediction in web data mining is not exhaustive in producing personalized result rate. To improve the query result rate on dynamics of user behavior over time, Hamilton Filtered Regime Switching User Query Probability (HFRS-UQP) framework is proposed. HFRS-UQP framework is split into two processes, where filtering and switching are carried out. The data mining based filtering in our research work uses the Hamilton Filtering framework to filter user result based on personalized information on automatic updated profiles through search engine. Maximized result is fetched, that is, filtered out with respect to user behavior profiles. The switching performs accurate filtering updated profiles using regime switching. The updating in profile change (i.e., switches) regime in HFRS-UQP framework identifies the second- and higher-order association of query result on the updated profiles. Experiment is conducted on factors such as personalized information search retrieval rate, filtering efficiency, and precision ratio. PMID:26221626
NASA Technical Reports Server (NTRS)
Balas, Mark; Frost, Susan
2012-01-01
Flexible structures containing a large number of modes can benefit from adaptive control techniques which are well suited to applications that have unknown modeling parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend our adaptive control theory to accommodate troublesome modal subsystems of a plant that might inhibit the adaptive controller. In some cases the plant does not satisfy the requirements of Almost Strict Positive Realness. Instead, there maybe be a modal subsystem that inhibits this property. This section will present new results for our adaptive control theory. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for the troublesome modal subsystem, or the Q modes. Here we present the theory for adaptive controllers modified by RMFs, with attention to the issue of disturbances propagating through the Q modes. We apply the theoretical results to a flexible structure example to illustrate the behavior with and without the residual mode filter.
The Ability to Process Abstract Information.
1983-09-01
Responses Associated with Stress . .. 8 2. Filter Theories: A. Broadbent’s filter model . . . . 12 B. Treisaman’s attentuation model . . . 12 3... model has been proposed by Schneider and Shiffrin (1977) and Shiffrin and Schneider (1977). Unlike Broadbent’s filter models Schneider and Shiffrin...allows for processing to take place only on the input "selected". This filter model is shown in Figure 2A. According to this theory, any information
Evolution of the cerebellum as a neuronal machine for Bayesian state estimation
NASA Astrophysics Data System (ADS)
Paulin, M. G.
2005-09-01
The cerebellum evolved in association with the electric sense and vestibular sense of the earliest vertebrates. Accurate information provided by these sensory systems would have been essential for precise control of orienting behavior in predation. A simple model shows that individual spikes in electrosensory primary afferent neurons can be interpreted as measurements of prey location. Using this result, I construct a computational neural model in which the spatial distribution of spikes in a secondary electrosensory map forms a Monte Carlo approximation to the Bayesian posterior distribution of prey locations given the sense data. The neural circuit that emerges naturally to perform this task resembles the cerebellar-like hindbrain electrosensory filtering circuitry of sharks and other electrosensory vertebrates. The optimal filtering mechanism can be extended to handle dynamical targets observed from a dynamical platform; that is, to construct an optimal dynamical state estimator using spiking neurons. This may provide a generic model of cerebellar computation. Vertebrate motion-sensing neurons have specific fractional-order dynamical characteristics that allow Bayesian state estimators to be implemented elegantly and efficiently, using simple operations with asynchronous pulses, i.e. spikes. The computational neural models described in this paper represent a novel kind of particle filter, using spikes as particles. The models are specific and make testable predictions about computational mechanisms in cerebellar circuitry, while providing a plausible explanation of cerebellar contributions to aspects of motor control, perception and cognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stetzel, KD; Aldrich, LL; Trimboli, MS
2015-03-15
This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables.more » (C) 2014 Elsevier B.V. All rights reserved.« less
High Pass Filtering of Satellite Altimeter Data,
1982-10-01
bathymetry [7] and filtered data tracks (N = 3, X = 200 km) near the Clipperton Fracture Zone just East of the Christmas Island Ridge. Along the multiple...We also notice a negative signature associated with the Clipperton Fracture Zone and extending over all the tracks. It may indicate a trough covered...in Mid-Pacific Seamount Province..Mid-Iat tic and near the Western Clipperton Fracture Zone respectively. These charts arc to he overlaid by Figures
Navigation in GPS Denied Environments: Feature-Aided Inertial Systems
2010-03-01
21] Brown , R. G. and Hwang , P. Y. C., Introduction to Random Signals and Applied Kalman Filtering, Third Edition, John Wiley & Sons, Inc., New York...knowledge is provided in [17]. An online (extended Kalman filter-based) method for calculating a trajectory by tracking features at an unknown location on...Finally, the trajectory error is estimated using these associated features in a Kalman estimator. The next couple of paragraphs will explain these
An Integrity Framework for Image-Based Navigation Systems
2010-06-01
Anton H. and Rorres C. Elementary Linear Algebra . New York, NY: John Wiley & Sons, Inc., 2000. 4. Arthur T. “The Disparity of Parity, Determining...107. Spilker , James J.J. Digital Communications by Satellite. Englewood Cliffs NJ: Prentice Hall, 1977. 108. Strang G. Linear Algebra and its...2.3 The Linearized and Extended Kalman Filters . . . . . . 22 2.3.1 State and Measurement Model Equations . . . 23 2.3.2 The Linearized Kalman Filter
van Haagen, Herman H. H. B. M.; 't Hoen, Peter A. C.; Mons, Barend; Schultes, Erik A.
2013-01-01
Motivation Weighted semantic networks built from text-mined literature can be used to retrieve known protein-protein or gene-disease associations, and have been shown to anticipate associations years before they are explicitly stated in the literature. Our text-mining system recognizes over 640,000 biomedical concepts: some are specific (i.e., names of genes or proteins) others generic (e.g., ‘Homo sapiens’). Generic concepts may play important roles in automated information retrieval, extraction, and inference but may also result in concept overload and confound retrieval and reasoning with low-relevance or even spurious links. Here, we attempted to optimize the retrieval performance for protein-protein interactions (PPI) by filtering generic concepts (node filtering) or links to generic concepts (edge filtering) from a weighted semantic network. First, we defined metrics based on network properties that quantify the specificity of concepts. Then using these metrics, we systematically filtered generic information from the network while monitoring retrieval performance of known protein-protein interactions. We also systematically filtered specific information from the network (inverse filtering), and assessed the retrieval performance of networks composed of generic information alone. Results Filtering generic or specific information induced a two-phase response in retrieval performance: initially the effects of filtering were minimal but beyond a critical threshold network performance suddenly drops. Contrary to expectations, networks composed exclusively of generic information demonstrated retrieval performance comparable to unfiltered networks that also contain specific concepts. Furthermore, an analysis using individual generic concepts demonstrated that they can effectively support the retrieval of known protein-protein interactions. For instance the concept “binding” is indicative for PPI retrieval and the concept “mutation abnormality” is indicative for gene-disease associations. Conclusion Generic concepts are important for information retrieval and cannot be removed from semantic networks without negative impact on retrieval performance. PMID:24260124
Model simulation and experiments of flow and mass transport through a nano-material gas filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir
2013-11-01
A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing withmore » experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.« less
Filter Tuning Using the Chi-Squared Statistic
NASA Technical Reports Server (NTRS)
Lilly-Salkowski, Tyler B.
2017-01-01
This paper examines the use of the Chi-square statistic as a means of evaluating filter performance. The goal of the process is to characterize the filter performance in the metric of covariance realism. The Chi-squared statistic is the value calculated to determine the realism of a covariance based on the prediction accuracy and the covariance values at a given point in time. Once calculated, it is the distribution of this statistic that provides insight on the accuracy of the covariance. The process of tuning an Extended Kalman Filter (EKF) for Aqua and Aura support is described, including examination of the measurement errors of available observation types, and methods of dealing with potentially volatile atmospheric drag modeling. Predictive accuracy and the distribution of the Chi-squared statistic, calculated from EKF solutions, are assessed.
Kalman filter estimation of human pilot-model parameters
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Roland, V. R.
1975-01-01
The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.
Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R
2008-07-01
Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.
Local feature saliency classifier for real-time intrusion monitoring
NASA Astrophysics Data System (ADS)
Buch, Norbert; Velastin, Sergio A.
2014-07-01
We propose a texture saliency classifier to detect people in a video frame by identifying salient texture regions. The image is classified into foreground and background in real time. No temporal image information is used during the classification. The system is used for the task of detecting people entering a sterile zone, which is a common scenario for visual surveillance. Testing is performed on the Imagery Library for Intelligent Detection Systems sterile zone benchmark dataset of the United Kingdom's Home Office. The basic classifier is extended by fusing its output with simple motion information, which significantly outperforms standard motion tracking. A lower detection time can be achieved by combining texture classification with Kalman filtering. The fusion approach running at 10 fps gives the highest result of F1=0.92 for the 24-h test dataset. The paper concludes with a detailed analysis of the computation time required for the different parts of the algorithm.
Distributed Monte Carlo Information Fusion and Distributed Particle Filtering
2014-08-24
Distributed Monte Carlo Information Fusion and Distributed Particle Filtering Isaac L. Manuel and Adrian N. Bishop Australian National University and...2 20 + vit , (21) where vit is Gaussian white noise with a random variance. We initialised the filters with the state xi0 = 0.1 for all i ∈ V . This
Clustering analysis of proteins from microbial genomes at multiple levels of resolution.
Zaslavsky, Leonid; Ciufo, Stacy; Fedorov, Boris; Tatusova, Tatiana
2016-08-31
Microbial genomes at the National Center for Biotechnology Information (NCBI) represent a large collection of more than 35,000 assemblies. There are several complexities associated with the data: a great variation in sampling density since human pathogens are densely sampled while other bacteria are less represented; different protein families occur in annotations with different frequencies; and the quality of genome annotation varies greatly. In order to extract useful information from these sophisticated data, the analysis needs to be performed at multiple levels of phylogenomic resolution and protein similarity, with an adequate sampling strategy. Protein clustering is used to construct meaningful and stable groups of similar proteins to be used for analysis and functional annotation. Our approach is to create protein clusters at three levels. First, tight clusters in groups of closely-related genomes (species-level clades) are constructed using a combined approach that takes into account both sequence similarity and genome context. Second, clustroids of conservative in-clade clusters are organized into seed global clusters. Finally, global protein clusters are built around the the seed clusters. We propose filtering strategies that allow limiting the protein set included in global clustering. The in-clade clustering procedure, subsequent selection of clustroids and organization into seed global clusters provides a robust representation and high rate of compression. Seed protein clusters are further extended by adding related proteins. Extended seed clusters include a significant part of the data and represent all major known cell machinery. The remaining part, coming from either non-conservative (unique) or rapidly evolving proteins, from rare genomes, or resulting from low-quality annotation, does not group together well. Processing these proteins requires significant computational resources and results in a large number of questionable clusters. The developed filtering strategies allow to identify and exclude such peripheral proteins limiting the protein dataset in global clustering. Overall, the proposed methodology allows the relevant data at different levels of details to be obtained and data redundancy eliminated while keeping biologically interesting variations.
Arbitrary-step randomly delayed robust filter with application to boost phase tracking
NASA Astrophysics Data System (ADS)
Qin, Wutao; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang
2018-04-01
The conventional filters such as extended Kalman filter, unscented Kalman filter and cubature Kalman filter assume that the measurement is available in real-time and the measurement noise is Gaussian white noise. But in practice, both two assumptions are invalid. To solve this problem, a novel algorithm is proposed by taking the following four steps. At first, the measurement model is modified by the Bernoulli random variables to describe the random delay. Then, the expression of predicted measurement and covariance are reformulated, which could get rid of the restriction that the maximum number of delay must be one or two and the assumption that probabilities of Bernoulli random variables taking the value one are equal. Next, the arbitrary-step randomly delayed high-degree cubature Kalman filter is derived based on the 5th-degree spherical-radial rule and the reformulated expressions. Finally, the arbitrary-step randomly delayed high-degree cubature Kalman filter is modified to the arbitrary-step randomly delayed high-degree cubature Huber-based filter based on the Huber technique, which is essentially an M-estimator. Therefore, the proposed filter is not only robust to the randomly delayed measurements, but robust to the glint noise. The application to the boost phase tracking example demonstrate the superiority of the proposed algorithms.
CRISM Hyperspectral Data Filtering with Application to MSL Landing Site Selection
NASA Astrophysics Data System (ADS)
Seelos, F. P.; Parente, M.; Clark, T.; Morgan, F.; Barnouin-Jha, O. S.; McGovern, A.; Murchie, S. L.; Taylor, H.
2009-12-01
We report on the development and implementation of a custom filtering procedure for Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) IR hyperspectral data that is suitable for incorporation into the CRISM Reduced Data Record (RDR) calibration pipeline. Over the course of the Mars Reconnaissance Orbiter (MRO) Primary Science Phase (PSP) and the ongoing Extended Science Phase (ESP) CRISM has operated with an IR detector temperature between ~107 K and ~127 K. This ~20 K range in operational temperature has resulted in variable data quality, with observations acquired at higher detector temperatures exhibiting a marked increase in both systematic and stochastic noise. The CRISM filtering procedure consists of two main data processing capabilities. The primary systematic noise component in CRISM IR data appears as along track or column oriented striping. This is addressed by the robust derivation and application of an inter-column ratio correction frame. The correction frame is developed through the serial evaluation of band specific column ratio statistics and so does not compromise the spectral fidelity of the image cube. The dominant CRISM IR stochastic noise components appear as isolated data spikes or column oriented segments of variable length with erroneous data values. The non-systematic noise is identified and corrected through the application of an iterative-recursive kernel modeling procedure which employs a formal statistical outlier test as the iteration control and recursion termination criterion. This allows the filtering procedure to make a statistically supported determination between high frequency (spatial/spectral) signal and high frequency noise based on the information content of a given multidimensional data kernel. The governing statistical test also allows the kernel filtering procedure to be self regulating and adaptive to the intrinsic noise level in the data. The CRISM IR filtering procedure is scheduled to be incorporated into the next augmentation of the CRISM IR calibration (version 3). The filtering algorithm will be applied to the I/F data (IF) delivered to the Planetary Data System (PDS), but the radiance on sensor data (RA) will remain unfiltered. The development of CRISM hyperspectral analysis products in support of the Mars Science Laboratory (MSL) landing site selection process has motivated the advance of CRISM-specific data processing techniques. The quantitative results of the CRISM IR filtering procedure as applied to CRISM observations acquired in support of MSL landing site selection will be presented.
Extended Decentralized Linear-Quadratic-Gaussian Control
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
2000-01-01
A straightforward extension of a solution to the decentralized linear-Quadratic-Gaussian problem is proposed that allows its use for commonly encountered classes of problems that are currently solved with the extended Kalman filter. This extension allows the system to be partitioned in such a way as to exclude the nonlinearities from the essential algebraic relationships that allow the estimation and control to be optimally decentralized.
Quantification of blood volume by electrical impedance tomography using a tissue-equivalent phantom.
Sadleir, R; Fox, R
1998-11-01
An in vivo electrical impedance tomography (EIT) system was designed to accurately estimate quantities of intra-peritoneal blood in the abdominal cavity. For this it is essential that the response is relatively independent of the position of the high conductivity anomaly (blood) in the body. The sensitivity of the system to the introduction of blood-equivalent resistivity anomalies was assessed by using a cylindrical tissue-equivalent phantom. It was found that a satisfactorily uniform response of the system in both radial (transverse) and axial (longitudinal) directions in the phantom could be achieved by filtering resistivity profile images obtained by EIT measurement, and by using extended electrodes to collect data. Post-processing of single impedance images gave rise to a quantity denoted the resistivity index. A filter was then used to remove the remaining radial variation of the resistivity index. It was calculated by evaluating the resistivity index of a number of theoretically calculated images, and constructing a correction filter similar to those used to remove lens imperfections, such as coma, in optical components. The 30% increase in the resistivity index observed when an anomaly was moved to the maximum extent allowed by the filter calculation (0.75 of the phantom radius) was reduced by the filter to 6%. A study of the axial dependence observed in the resistivity index using electrodes extended in the axial direction by +/-5 cm found that the variation in resistivity index with axial position was about half of that observed using small circular electrodes similar to those used in the Sheffield mark I system.
An information theoretic approach of designing sparse kernel adaptive filters.
Liu, Weifeng; Park, Il; Principe, José C
2009-12-01
This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented.
2007-01-01
Intelligent Robots and Systems, vol- ume 1, pp. 123–128, September 2002. [2] R. G. Brown and P. Y. Hwang . Introduction to Ran- dom Signals and Applied... Kalman Filter-based) method for calculat- ing a trajectory by tracking features at an unknown location on the Earth’s surface, provided the topography...Extended Kalman Filter (EKF) and an automatic target tracking algorithm. In the following section, the integration architecture is presented, which in
Improved hybrid information filtering based on limited time window
NASA Astrophysics Data System (ADS)
Song, Wen-Jun; Guo, Qiang; Liu, Jian-Guo
2014-12-01
Adopting the entire collecting information of users, the hybrid information filtering of heat conduction and mass diffusion (HHM) (Zhou et al., 2010) was successfully proposed to solve the apparent diversity-accuracy dilemma. Since the recent behaviors are more effective to capture the users' potential interests, we present an improved hybrid information filtering of adopting the partial recent information. We expand the time window to generate a series of training sets, each of which is treated as known information to predict the future links proven by the testing set. The experimental results on one benchmark dataset Netflix indicate that by only using approximately 31% recent rating records, the accuracy could be improved by an average of 4.22% and the diversity could be improved by 13.74%. In addition, the performance on the dataset MovieLens could be preserved by considering approximately 60% recent records. Furthermore, we find that the improved algorithm is effective to solve the cold-start problem. This work could improve the information filtering performance and shorten the computational time.
Information theoretic methods for image processing algorithm optimization
NASA Astrophysics Data System (ADS)
Prokushkin, Sergey F.; Galil, Erez
2015-01-01
Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).
A Continuous Square Root in Formation Filter-Swoother with Discrete Data Update
NASA Technical Reports Server (NTRS)
Miller, J. K.
1994-01-01
A differential equation for the square root information matrix is derived and adapted to the problems of filtering and smoothing. The resulting continuous square root information filter (SRIF) performs the mapping of state and process noise by numerical integration of the SRIF matrix and admits data via a discrete least square update.
Hildebrand, Ainslie M; Iansavichus, Arthur V; Haynes, R Brian; Wilczynski, Nancy L; Mehta, Ravindra L; Parikh, Chirag R; Garg, Amit X
2014-04-01
We frequently fail to identify articles relevant to the subject of acute kidney injury (AKI) when searching the large bibliographic databases such as PubMed, Ovid Medline or Embase. To address this issue, we used computer automation to create information search filters to better identify articles relevant to AKI in these databases. We first manually reviewed a sample of 22 992 full-text articles and used prespecified criteria to determine whether each article contained AKI content or not. In the development phase (two-thirds of the sample), we developed and tested the performance of >1.3-million unique filters. Filters with high sensitivity and high specificity for the identification of AKI articles were then retested in the validation phase (remaining third of the sample). We succeeded in developing and validating high-performance AKI search filters for each bibliographic database with sensitivities and specificities in excess of 90%. Filters optimized for sensitivity reached at least 97.2% sensitivity, and filters optimized for specificity reached at least 99.5% specificity. The filters were complex; for example one PubMed filter included >140 terms used in combination, including 'acute kidney injury', 'tubular necrosis', 'azotemia' and 'ischemic injury'. In proof-of-concept searches, physicians found more articles relevant to topics in AKI with the use of the filters. PubMed, Ovid Medline and Embase can be filtered for articles relevant to AKI in a reliable manner. These high-performance information filters are now available online and can be used to better identify AKI content in large bibliographic databases.
Turon, Clàudia; Comas, Joaquim; Torrens, Antonina; Molle, Pascal; Poch, Manel
2008-01-01
With the aim of improving effluent quality of waste stabilization ponds, different designs of vertical flow constructed wetlands and intermittent sand filters were tested on an experimental full-scale plant within the framework of a European project. The information extracted from this study was completed and updated with heuristic and bibliographic knowledge. The data and knowledge acquired were difficult to integrate into mathematical models because they involve qualitative information and expert reasoning. Therefore, it was decided to develop an environmental decision support system (EDSS-Filter-Design) as a tool to integrate mathematical models and knowledge-based techniques. This paper describes the development of this support tool, emphasizing the collection of data and knowledge and representation of this information by means of mathematical equations and a rule-based system. The developed support tool provides the main design characteristics of filters: (i) required surface, (ii) media type, and (iii) media depth. These design recommendations are based on wastewater characteristics, applied load, and required treatment level data provided by the user. The results of the EDSS-Filter-Design provide appropriate and useful information and guidelines on how to design filters, according to the expert criteria. The encapsulation of the information into a decision support system reduces the design period and provides a feasible, reasoned, and positively evaluated proposal.
Particle Filter with State Permutations for Solving Image Jigsaw Puzzles
Yang, Xingwei; Adluru, Nagesh; Latecki, Longin Jan
2016-01-01
We deal with an image jigsaw puzzle problem, which is defined as reconstructing an image from a set of square and non-overlapping image patches. It is known that a general instance of this problem is NP-complete, and it is also challenging for humans, since in the considered setting the original image is not given. Recently a graphical model has been proposed to solve this and related problems. The target label probability function is then maximized using loopy belief propagation. We also formulate the problem as maximizing a label probability function and use exactly the same pairwise potentials. Our main contribution is a novel inference approach in the sampling framework of Particle Filter (PF). Usually in the PF framework it is assumed that the observations arrive sequentially, e.g., the observations are naturally ordered by their time stamps in the tracking scenario. Based on this assumption, the posterior density over the corresponding hidden states is estimated. In the jigsaw puzzle problem all observations (puzzle pieces) are given at once without any particular order. Therefore, we relax the assumption of having ordered observations and extend the PF framework to estimate the posterior density by exploring different orders of observations and selecting the most informative permutations of observations. This significantly broadens the scope of applications of the PF inference. Our experimental results demonstrate that the proposed inference framework significantly outperforms the loopy belief propagation in solving the image jigsaw puzzle problem. In particular, the extended PF inference triples the accuracy of the label assignment compared to that using loopy belief propagation. PMID:27795660
Development of the NHM-LETKF regional reanalysis system assimilating conventional observations only
NASA Astrophysics Data System (ADS)
Fukui, S.; Iwasaki, T.; Saito, K. K.; Seko, H.; Kunii, M.
2016-12-01
The information about long-term high-resolution atmospheric fields is very useful for studying meso-scale responses to climate change or analyzing extreme events. We are developing a NHM-LETKF (the local ensemble transform Kalman filter with the nonhydrostatic model of the Japan Meteorological Agency (JMA)) regional reanalysis system assimilating only conventional observations that are available over about 60 years such as surface observations at observatories and upper air observations with radiosondes. The domain covers Japan and its surroundings. Before the long-term reanalysis is performed, an experiment using the system was conducted over August in 2014 in order to identify effectiveness and problems of the regional reanalysis system. In this study, we investigated the six-hour accumulated precipitations obtained by integration from the analysis fields. The reproduced precipitation was compared with the JMA's Radar/Rain-gauge Analyzed Precipitation data over Japan islands and the precipitation of JRA-55, which is used as lateral boundary conditions. The comparisons reveal the underestimation of the precipitation in the regional reanalysis. The underestimation is improved by extending the forecast time. In the regional reanalysis system, the analysis fields are derived using the ensemble mean fields, where the conflicting components among ensemble members are filtered out. Therefore, it is important to tune the inflation factor and lateral boundary perturbations not to smooth the analysis fields excessively and to consider more time to spin-up the fields. In the extended run, the underestimation still remains. This implies that the underestimation is attributed to the forecast model itself as well as the analysis scheme.
A tool for filtering information in complex systems
Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R. N.
2005-01-01
We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties. PMID:16027373
A tool for filtering information in complex systems.
Tumminello, M; Aste, T; Di Matteo, T; Mantegna, R N
2005-07-26
We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties.
Science-Filters Study of Martian Rock Sees Hematite
2017-11-01
This false-color image demonstrates how use of special filters available on the Mast Camera (Mastcam) of NASA's Curiosity Mars rover can reveal the presence of certain minerals in target rocks. It is a composite of images taken through three "science" filters chosen for making hematite, an iron-oxide mineral, stand out as exaggerated purple. This target rock, called "Christmas Cove," lies in an area on Mars' "Vera Rubin Ridge" where Mastcam reconnaissance imaging (see PIA22065) with science filters suggested a patchy distribution of exposed hematite. Bright lines within the rocks are fractures filled with calcium sulfate minerals. Christmas Cove did not appear to contain much hematite until the rover team conducted an experiment on this target: Curiosity's wire-bristled brush, the Dust Removal Tool, scrubbed the rock, and a close-up with the Mars Hand Lens Imager (MAHLI) confirmed the brushing. The brushed area is about is about 2.5 inches (6 centimeters) across. The next day -- Sept. 17, 2017, on the mission's Sol 1819 -- this observation with Mastcam and others with the Chemistry and Camera (ChemCam showed a strong hematite presence that had been subdued beneath the dust. The team is continuing to explore whether the patchiness in the reconnaissance imaging may result more from variations in the amount of dust cover rather than from variations in hematite content. Curiosity's Mastcam combines two cameras: one with a telephoto lens and the other with a wider-angle lens. Each camera has a filter wheel that can be rotated in front of the lens for a choice of eight different filters. One filter for each camera is clear to all visible light, for regular full-color photos, and another is specifically for viewing the Sun. Some of the other filters were selected to admit wavelengths of light that are useful for identifying iron minerals. Each of the filters used for this image admits light from a narrow band of wavelengths, extending to only about 5 nanometers longer or shorter than the filter's central wavelength. Three observations are combined for this image, each through one of the filters centered at 751 nanometers (in the near-infrared part of the spectrum just beyond red light), 527 nanometers (green) and 445 nanometers (blue). Usual color photographs from digital cameras -- such as a Mastcam one of this same place (see PIA22067) -- also combine information from red, green and blue filtering, but the filters are in a microscopic grid in a "Bayer" filter array situated directly over the detector behind the lens, with wider bands of wavelengths. Mastcam's narrow-band filters used for this view help to increase spectral contrast, making blues bluer and reds redder, particularly with the processing used to boost contrast in each of the component images of this composite. Fine-grained hematite preferentially absorbs sunlight around in the green portion of the spectrum around 527 nanometers. That gives it the purple look from a combination of red and blue light reflected by the hematite and reaching the camera through the other two filters. https://photojournal.jpl.nasa.gov/catalog/PIA22066
An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors
Li, Jian; Wei, Xinguo; Zhang, Guangjun
2017-01-01
Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method. PMID:28825684
An Extended Kalman Filter-Based Attitude Tracking Algorithm for Star Sensors.
Li, Jian; Wei, Xinguo; Zhang, Guangjun
2017-08-21
Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method.
GNSS Ephemeris with Graceful Degradation and Measurement Fusion
NASA Technical Reports Server (NTRS)
Garrison, James Levi (Inventor); Walker, Michael Allen (Inventor)
2015-01-01
A method for providing an extended propagation ephemeris model for a satellite in Earth orbit, the method includes obtaining a satellite's orbital position over a first period of time, applying a least square estimation filter to determine coefficients defining osculating Keplarian orbital elements and harmonic perturbation parameters associated with a coordinate system defining an extended propagation ephemeris model that can be used to estimate the satellite's position during the first period, wherein the osculating Keplarian orbital elements include semi-major axis of the satellite (a), eccentricity of the satellite (e), inclination of the satellite (i), right ascension of ascending node of the satellite (.OMEGA.), true anomaly (.theta.*), and argument of periapsis (.omega.), applying the least square estimation filter to determine a dominant frequency of the true anomaly, and applying a Fourier transform to determine dominant frequencies of the harmonic perturbation parameters.
NASA Astrophysics Data System (ADS)
Kiani-B, Arman; Fallahi, Kia; Pariz, Naser; Leung, Henry
2009-03-01
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.
Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.
Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong
2015-09-15
We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.
Switching non-local vector median filter
NASA Astrophysics Data System (ADS)
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2016-04-01
This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.
A Compositional Relevance Model for Adaptive Information Retrieval
NASA Technical Reports Server (NTRS)
Mathe, Nathalie; Chen, James; Lu, Henry, Jr. (Technical Monitor)
1994-01-01
There is a growing need for rapid and effective access to information in large electronic documentation systems. Access can be facilitated if information relevant in the current problem solving context can be automatically supplied to the user. This includes information relevant to particular user profiles, tasks being performed, and problems being solved. However most of this knowledge on contextual relevance is not found within the contents of documents, and current hypermedia tools do not provide any easy mechanism to let users add this knowledge to their documents. We propose a compositional relevance network to automatically acquire the context in which previous information was found relevant. The model records information on the relevance of references based on user feedback for specific queries and contexts. It also generalizes such information to derive relevant references for similar queries and contexts. This model lets users filter information by context of relevance, build personalized views of documents over time, and share their views with other users. It also applies to any type of multimedia information. Compared to other approaches, it is less costly and doesn't require any a priori statistical computation, nor an extended training period. It is currently being implemented into the Computer Integrated Documentation system which enables integration of various technical documents in a hypertext framework.
Numerical modeling of two-photon focal modulation microscopy with a sinusoidal phase filter.
Chen, Rui; Shen, Shuhao; Chen, Nanguang
2018-05-01
A spatiotemporal phase modulator (STPM) is theoretically investigated using the vectorial diffraction theory. The STPM is equivalent to a time-dependent phase-only pupil filter that alternates between a homogeneous filter and a stripe-shaped filter with a sinusoidal phase distribution. It is found that two-photon focal modulation microscopy (TPFMM) using this STPM can significantly suppress the background contribution from out-of-focus ballistic excitation and achieve almost the same resolution as two-photon microscopy. The modulation depth is also evaluated and a compromise exists between the signal-to-background ratio and signal-to-noise ratio. The theoretical investigations provide important insights into future implementations of TPFMM and its potential to further extend the penetration depth of nonlinear microscopy in imaging multiple-scattering biological tissues. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst
2016-05-01
Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Rotscholl, Ingo; Trampert, Klaus; Krüger, Udo; Perner, Martin; Schmidt, Franz; Neumann, Cornelius
2015-11-16
To simulate and optimize optical designs regarding perceived color and homogeneity in commercial ray tracing software, realistic light source models are needed. Spectral rayfiles provide angular and spatial varying spectral information. We propose a spectral reconstruction method with a minimum of time consuming goniophotometric near field measurements with optical filters for the purpose of creating spectral rayfiles. Our discussion focuses on the selection of the ideal optical filter combination for any arbitrary spectrum out of a given filter set by considering measurement uncertainties with Monte Carlo simulations. We minimize the simulation time by a preselection of all filter combinations, which bases on factorial design.
Extended spectrum SWIR camera with user-accessible Dewar
NASA Astrophysics Data System (ADS)
Benapfl, Brendan; Miller, John Lester; Vemuri, Hari; Grein, Christoph; Sivananthan, Siva
2017-02-01
Episensors has developed a series of extended short wavelength infrared (eSWIR) cameras based on high-Cd concentration Hg1-xCdxTe absorbers. The cameras have a bandpass extending to 3 microns cutoff wavelength, opening new applications relative to traditional InGaAs-based cameras. Applications and uses are discussed and examples given. A liquid nitrogen pour-filled version was initially developed. This was followed by a compact Stirling-cooled version with detectors operating at 200 K. Each camera has unique sensitivity and performance characteristics. The cameras' size, weight and power specifications are presented along with images captured with band pass filters and eSWIR sources to demonstrate spectral response beyond 1.7 microns. The soft seal Dewars of the cameras are designed for accessibility, and can be opened and modified in a standard laboratory environment. This modular approach allows user flexibility for swapping internal components such as cold filters and cold stops. The core electronics of the Stirlingcooled camera are based on a single commercial field programmable gate array (FPGA) that also performs on-board non-uniformity corrections, bad pixel replacement, and directly drives any standard HDMI display.
Linear variable narrow bandpass optical filters in the far infrared (Conference Presentation)
NASA Astrophysics Data System (ADS)
Rahmlow, Thomas D.
2017-06-01
We are currently developing linear variable filters (LVF) with very high wavelength gradients. In the visible, these filters have a wavelength gradient of 50 to 100 nm/mm. In the infrared, the wavelength gradient covers the range of 500 to 900 microns/mm. Filter designs include band pass, long pass and ulta-high performance anti-reflection coatings. The active area of the filters is on the order of 5 to 30 mm along the wavelength gradient and up to 30 mm in the orthogonal, constant wavelength direction. Variation in performance along the constant direction is less than 1%. Repeatable performance from filter to filter, absolute placement of the filter relative to a substrate fiducial and, high in-band transmission across the full spectral band is demonstrated. Applications include order sorting filters, direct replacement of the spectrometer and hyper-spectral imaging. Off-band rejection with an optical density of greater than 3 allows use of the filter as an order sorting filter. The linear variable order sorting filters replaces other filter types such as block filters. The disadvantage of block filters is the loss of pixels due to the transition between filter blocks. The LVF is a continuous gradient without a discrete transition between filter wavelength regions. If the LVF is designed as a narrow band pass filter, it can be used in place of a spectrometer thus reducing overall sensor weight and cost while improving the robustness of the sensor. By controlling the orthogonal performance (smile) the LVF can be sized to the dimensions of the detector. When imaging on to a 2 dimensional array and operating the sensor in a push broom configuration, the LVF spectrometer performs as a hyper-spectral imager. This paper presents performance of LVF fabricated in the far infrared on substrates sized to available detectors. The impact of spot size, F-number and filter characterization are presented. Results are also compared to extended visible LVF filters.
2007-11-01
information into awareness. Broadbent’s (1958) " Filter " model of attention (see Figure 1) maps the flow of information from the senses through a number of...benefits of an attentional cueing paradigm can be explained within these models . For example, the selective filter is augmented by the information...capacity filter ’, while Wickens’ model represents this with a limited amount of ’attentional resources’ available to perception, decision making
Staged fluidized-bed combustion and filter system
Mei, Joseph S.; Halow, John S.
1994-01-01
A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.
Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar
Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le
2016-01-01
Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar’s estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method. PMID:27618058
State estimation and prediction using clustered particle filters.
Lee, Yoonsang; Majda, Andrew J
2016-12-20
Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors.
State estimation and prediction using clustered particle filters
Lee, Yoonsang; Majda, Andrew J.
2016-01-01
Particle filtering is an essential tool to improve uncertain model predictions by incorporating noisy observational data from complex systems including non-Gaussian features. A class of particle filters, clustered particle filters, is introduced for high-dimensional nonlinear systems, which uses relatively few particles compared with the standard particle filter. The clustered particle filter captures non-Gaussian features of the true signal, which are typical in complex nonlinear dynamical systems such as geophysical systems. The method is also robust in the difficult regime of high-quality sparse and infrequent observations. The key features of the clustered particle filtering are coarse-grained localization through the clustering of the state variables and particle adjustment to stabilize the method; each observation affects only neighbor state variables through clustering and particles are adjusted to prevent particle collapse due to high-quality observations. The clustered particle filter is tested for the 40-dimensional Lorenz 96 model with several dynamical regimes including strongly non-Gaussian statistics. The clustered particle filter shows robust skill in both achieving accurate filter results and capturing non-Gaussian statistics of the true signal. It is further extended to multiscale data assimilation, which provides the large-scale estimation by combining a cheap reduced-order forecast model and mixed observations of the large- and small-scale variables. This approach enables the use of a larger number of particles due to the computational savings in the forecast model. The multiscale clustered particle filter is tested for one-dimensional dispersive wave turbulence using a forecast model with model errors. PMID:27930332
Extending the impulse response in order to reduce errors due to impulse noise and signal fading
NASA Technical Reports Server (NTRS)
Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.
1988-01-01
A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.
Room air monitor for radioactive aerosols
Balmer, D.K.; Tyree, W.H.
1987-03-23
A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.
Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V
2015-01-01
Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.
NASA Astrophysics Data System (ADS)
Kiani, Maryam; Pourtakdoust, Seid H.
2014-12-01
A novel algorithm is presented in this study for estimation of spacecraft's attitudes and angular rates from vector observations. In this regard, a new cubature-quadrature particle filter (CQPF) is initially developed that uses the Square-Root Cubature-Quadrature Kalman Filter (SR-CQKF) to generate the importance proposal distribution. The developed CQPF scheme avoids the basic limitation of particle filter (PF) with regards to counting the new measurements. Subsequently, CQPF is enhanced to adjust the sample size at every time step utilizing the idea of confidence intervals, thus improving the efficiency and accuracy of the newly proposed adaptive CQPF (ACQPF). In addition, application of the q-method for filter initialization has intensified the computation burden as well. The current study also applies ACQPF to the problem of attitude estimation of a low Earth orbit (LEO) satellite. For this purpose, the undertaken satellite is equipped with a three-axis magnetometer (TAM) as well as a sun sensor pack that provide noisy geomagnetic field data and Sun direction measurements, respectively. The results and performance of the proposed filter are investigated and compared with those of the extended Kalman filter (EKF) and the standard particle filter (PF) utilizing a Monte Carlo simulation. The comparison demonstrates the viability and the accuracy of the proposed nonlinear estimator.
Filtering in Hybrid Dynamic Bayesian Networks
NASA Technical Reports Server (NTRS)
Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin
2000-01-01
We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).
Effectiveness of adverse effects search filters: drugs versus medical devices.
Farrah, Kelly; Mierzwinski-Urban, Monika; Cimon, Karen
2016-07-01
The study tested the performance of adverse effects search filters when searching for safety information on medical devices, procedures, and diagnostic tests in MEDLINE and Embase. The sensitivity of 3 filters was determined using a sample of 631 references from 131 rapid reviews related to the safety of health technologies. The references were divided into 2 sets by type of intervention: drugs and nondrug health technologies. Keyword and indexing analysis were performed on references from the nondrug testing set that 1 or more of the filters did not retrieve. For all 3 filters, sensitivity was lower for nondrug health technologies (ranging from 53%-87%) than for drugs (88%-93%) in both databases. When tested on the nondrug health technologies set, sensitivity was lower in Embase (ranging from 53%-81%) than in MEDLINE (67%-87%) for all filters. Of the nondrug records that 1 or more of the filters missed, 39% of the missed MEDLINE records and 18% of the missed Embase records did not contain any indexing terms related to adverse events. Analyzing the titles and abstracts of nondrug records that were missed by any 1 filter, the most commonly used keywords related to adverse effects were: risk, complications, mortality, contamination, hemorrhage, and failure. In this study, adverse effects filters were less effective at finding information about the safety of medical devices, procedures, and tests compared to information about the safety of drugs.
NASA Astrophysics Data System (ADS)
Menzione, Francesco; Renga, Alfredo; Grassi, Michele
2017-09-01
In the framework of the novel navigation scenario offered by the next generation satellite low thrust autonomous LEO-to-MEO orbit transfer, this study proposes and tests a GNSS based navigation system aimed at providing on-board precise and robust orbit determination strategy to override rising criticalities. The analysis introduces the challenging design issues to simultaneously deal with the variable orbit regime, the electric thrust control and the high orbit GNSS visibility conditions. The Consider Kalman Filtering approach is here proposed as the filtering scheme to process the GNSS raw data provided by a multi-antenna/multi-constellation receiver in presence of uncertain parameters affecting measurements, actuation and spacecraft physical properties. Filter robustness and achievable navigation accuracy are verified using a high fidelity simulation of the low-thrust rising scenario and performance are compared with the one of a standard Extended Kalman Filtering approach to highlight the advantages of the proposed solution. Performance assessment of the developed navigation solution is accomplished for different transfer phases.
SME filter approach to multiple target tracking with false and missing measurements
NASA Astrophysics Data System (ADS)
Lee, Yong J.; Kamen, Edward W.
1993-10-01
The symmetric measurement equation (SME) filter for track maintenance in multiple target tracking is extended to the general case when there are an arbitrary unknown number of false and missing position measurements in the measurement set at any time point. It is assumed that the number N of targets is known a priori and that the target motions consist of random perturbations of constant-velocity trajectories. The key idea in the paper is to generate a new measurement vector from sums-of-products of the elements of 'feasible' N-element data vectors that pass a thresholding operation in the sums-of-products framework. Via this construction, the data association problem is completely avoided, and in addition, there is no need to identify which target measurements may correspond to false returns or which target measurements may be missing. A computer simulation of SME filter performance is given, including a comparison with the associated filter (a benchmark) and the joint probabilistic data association (JPDA) filter.
Modal analysis on resonant excitation of two-dimensional waveguide grating filters
NASA Astrophysics Data System (ADS)
Zhou, Jianyu; Sang, Tian; Li, Junlang; Wang, Rui; Wang, La; Wang, Benxin; Wang, Yueke
2017-12-01
Modal analysis on resonant excitation of two-dimensional (2-D) waveguide grating filters (WGFs) is proposed. It is shown that the 2-D WGFs can support the excitation of a resonant pair, and the locations of the resonant pair arising from the TE and TM guided-mode resonances (GMRs) can be estimated accurately based on the modal analysis. Multichannel filtering using the resonant pair is investigated, and the antireflection (AR) design of the 2-D WGFs is also studied. It is shown that the reflection sideband can be reduced by placing an AR layer on the bottom of the homogeneous layer, and the well-shaped reflection spectrum with near-zero sideband reflection can be achieved by using the double-faced AR design. By merely increasing the thickness of the homogeneous layer with other parameters maintained, the spectrally dense comb-like filters with good unpolarized filtering features can be achieved. The proposed modal analysis can be extended to study the resonant excitation of 2-D periodic nanoarrays with diverse surface profiles.
Applications of the magneto-optical filter to stellar pulsation measurements
NASA Technical Reports Server (NTRS)
Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.
1984-01-01
A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the Earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series.
Applications of the magneto-optical filter to stellar pulsation measurements
NASA Technical Reports Server (NTRS)
Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven
1986-01-01
A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series.
NASA Astrophysics Data System (ADS)
Belyaev, B. A.; Serzhantov, A. M.; Bal'va, Ya. F.; Leksikov, An. A.; Galeev, R. G.
2015-05-01
A microstrip bandpass filter of new design based on original resonators with an interdigital structure of conductors has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and much smaller size than analogs. It is established that a broad stop band, extending up to a sixfold central bandpass frequency, is determined by low unloaded Q of higher resonance mode and weak coupling of resonators in the pass band. It is shown for the first time that, as the spacing of interdigital stripe conductors decreases, the Q of higher resonance mode monotonically drops, while the Q value for the first operating mode remains high. A prototype fourth-order filter with a central frequency of 0.9 GHz manufactured on a ceramic substrate with dielectric permittivity ɛ = 80 has microstrip topology dimensions of 9.5 × 4.6 × 1 mm3. The electrodynamic 3D model simulations of the filter characteristics agree well with the results of measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RF Kristensen; JF Beausang; DM DePoy
Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1 mm to 100 mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.
Robust Battery Fuel Gauge Algorithm Development, Part 3: State of Charge Tracking
2014-10-19
X. Zhang, F. Sun, and J. Fan, “State-of-charge estimation of the lithium - ion battery using an adaptive extended kalman filter based on an improved...framework with ex- tended kalman filter for lithium - ion battery soc and capacity estimation,” Applied Energy, vol. 92, pp. 694–704, 2012. [16] X. Hu, F...Sun, and Y. Zou, “Estimation of state of charge of a lithium - ion battery pack for electric vehicles using an adaptive luenberger observer,” Energies
Sparsening Filter Design for Iterative Soft-Input Soft-Output Detectors
2012-02-29
filter/detector structure. Since the BP detector itself is unaltered from [1], it can accommodate a system employing channel codes such as LDPC encoding...considered in [1], or can readily be extended to the MIMO case with, for example, space-time coding as in [2,8]. Since our focus is on the design of...simplex method of [15], since it was already available in Matlab , via the “fminsearch” function. 6 Cost surfaces To visualize the cost surfaces, consider
Chiral filtration-induced spin/valley polarization in silicene line defects
NASA Astrophysics Data System (ADS)
Ren, Chongdan; Zhou, Benhu; Sun, Minglei; Wang, Sake; Li, Yunfang; Tian, Hongyu; Lu, Weitao
2018-06-01
The spin/valley polarization in silicene with extended line defects is investigated according to the chiral filtration mechanism. It is shown that the inner-built quantum Hall pseudo-edge states with identical chirality can serve as a chiral filter with a weak magnetic field and that the transmission process is restrained/strengthened for chiral states with reversed/identical chirality. With two parallel line defects, which act as natural chiral filtration, the filter effect is greatly enhanced, and 100% spin/valley polarization can be achieved.
Privacy-Preserving Distributed Information Sharing
2006-07-01
80 B.2.4 Analysis for Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 B.3 Details of One...be chosen by slightly adjusting the analysis given in the proof of Theorem 26. 59 Using Bloom Filters. Bloom filters provide a compact probabilistic...representation of set membership [6]. Instead of using T filters, we can use a combined Bloom filter. This achieves the same asymptotic communication
A tool for filtering information in complex systems
NASA Astrophysics Data System (ADS)
Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R. N.
2005-07-01
We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties. This paper was submitted directly (Track II) to the PNAS office.Abbreviations: MST, minimum spanning tree; PMFG, Planar Maximally Filtered Graph; r-clique, clique of r elements.
Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2
NASA Technical Reports Server (NTRS)
Balas, Mark J.; Frost, Susan
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1992-01-01
Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.
Binocular contrast-gain control for natural scenes: Image structure and phase alignment.
Huang, Pi-Chun; Dai, Yu-Ming
2018-05-01
In the context of natural scenes, we applied the pattern-masking paradigm to investigate how image structure and phase alignment affect contrast-gain control in binocular vision. We measured the discrimination thresholds of bandpass-filtered natural-scene images (targets) under various types of pedestals. Our first experiment had four pedestal types: bandpass-filtered pedestals, unfiltered pedestals, notch-filtered pedestals (which enabled removal of the spatial frequency), and misaligned pedestals (which involved rotation of unfiltered pedestals). Our second experiment featured six types of pedestals: bandpass-filtered, unfiltered, and notch-filtered pedestals, and the corresponding phase-scrambled pedestals. The thresholds were compared for monocular, binocular, and dichoptic viewing configurations. The bandpass-filtered pedestal and unfiltered pedestals showed classic dipper shapes; the dipper shapes of the notch-filtered, misaligned, and phase-scrambled pedestals were weak. We adopted a two-stage binocular contrast-gain control model to describe our results. We deduced that the phase-alignment information influenced the contrast-gain control mechanism before the binocular summation stage and that the phase-alignment information and structural misalignment information caused relatively strong divisive inhibition in the monocular and interocular suppression stages. When the pedestals were phase-scrambled, the elimination of the interocular suppression processing was the most convincing explanation of the results. Thus, our results indicated that both phase-alignment information and similar image structures cause strong interocular suppression. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua
2017-05-01
With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Vijayakumar, R.
2017-01-01
The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Development of an adaptive bilateral filter for evaluating color image difference
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Hardeberg, Jon Yngve
2012-04-01
Spatial filtering, which aims to mimic the contrast sensitivity function (CSF) of the human visual system (HVS), has previously been combined with color difference formulae for measuring color image reproduction errors. These spatial filters attenuate imperceptible information in images, unfortunately including high frequency edges, which are believed to be crucial in the process of scene analysis by the HVS. The adaptive bilateral filter represents a novel approach, which avoids the undesirable loss of edge information introduced by CSF-based filtering. The bilateral filter employs two Gaussian smoothing filters in different domains, i.e., spatial domain and intensity domain. We propose a method to decide the parameters, which are designed to be adaptive to the corresponding viewing conditions, and the quantity and homogeneity of information contained in an image. Experiments and discussions are given to support the proposal. A series of perceptual experiments were conducted to evaluate the performance of our approach. The experimental sample images were reproduced with variations in six image attributes: lightness, chroma, hue, compression, noise, and sharpness/blurriness. The Pearson's correlation values between the model-predicted image difference and the observed difference were employed to evaluate the performance, and compare it with that of spatial CIELAB and image appearance model.
ERIC Educational Resources Information Center
Orenstein, David I.
2009-01-01
Hardware and software filters, which sift through keywords placed in Internet search engines and online databases, work to limit the return of information from these sources. By their very purpose, filters exist to decrease the amount of information researchers can access. The purpose of this study is to gain insight into the perceptions key…
Optical security system for the protection of personal identification information.
Doh, Yang-Hoi; Yoon, Jong-Soo; Choi, Kyung-Hyun; Alam, Mohammad S
2005-02-10
A new optical security system for the protection of personal identification information is proposed. First, authentication of the encrypted personal information is carried out by primary recognition of a personal identification number (PIN) with the proposed multiplexed minimum average correlation energy phase-encrypted (MMACE_p) filter. The MMACE_p filter, synthesized with phase-encrypted training images, can increase the discrimination capability and prevent the leak of personal identification information. After the PIN is recognized, speedy authentication of personal information can be achieved through one-to-one optical correlation by means of the optical wavelet filter. The possibility of information counterfeiting can be significantly decreased with the double-identification process. Simulation results demonstrate the effectiveness of the proposed technique.
NASA Astrophysics Data System (ADS)
Tang, Jingshi; Wang, Haihong; Chen, Qiuli; Chen, Zhonggui; Zheng, Jinjun; Cheng, Haowen; Liu, Lin
2018-07-01
Onboard orbit determination (OD) is often used in space missions, with which mission support can be partially accomplished autonomously, with less dependency on ground stations. In major Global Navigation Satellite Systems (GNSS), inter-satellite link is also an essential upgrade in the future generations. To serve for autonomous operation, sequential OD method is crucial to provide real-time or near real-time solutions. The Extended Kalman Filter (EKF) is an effective and convenient sequential estimator that is widely used in onboard application. The filter requires the solutions of state transition matrix (STM) and the process noise transition matrix, which are always obtained by numerical integration. However, numerically integrating the differential equations is a CPU intensive process and consumes a large portion of the time in EKF procedures. In this paper, we present an implementation that uses the analytical solutions of these transition matrices to replace the numerical calculations. This analytical implementation is demonstrated and verified using a fictitious constellation based on selected medium Earth orbit (MEO) and inclined Geosynchronous orbit (IGSO) satellites. We show that this implementation performs effectively and converges quickly, steadily and accurately in the presence of considerable errors in the initial values, measurements and force models. The filter is able to converge within 2-4 h of flight time in our simulation. The observation residual is consistent with simulated measurement error, which is about a few centimeters in our scenarios. Compared to results implemented with numerically integrated STM, the analytical implementation shows results with consistent accuracy, while it takes only about half the CPU time to filter a 10-day measurement series. The future possible extensions are also discussed to fit in various missions.
Context-Based Tourism Information Filtering with a Semantic Rule Engine
Lamsfus, Carlos; Martin, David; Alzua-Sorzabal, Aurkene; López-de-Ipiña, Diego; Torres-Manzanera, Emilio
2012-01-01
This paper presents the CONCERT framework, a push/filter information consumption paradigm, based on a rule-based semantic contextual information system for tourism. CONCERT suggests a specific insight of the notion of context from a human mobility perspective. It focuses on the particular characteristics and requirements of travellers and addresses the drawbacks found in other approaches. Additionally, CONCERT suggests the use of digital broadcasting as push communication technology, whereby tourism information is disseminated to mobile devices. This information is then automatically filtered by a network of ontologies and offered to tourists on the screen. The results obtained in the experiments carried out show evidence that the information disseminated through digital broadcasting can be manipulated by the network of ontologies, providing contextualized information that produces user satisfaction. PMID:22778584
Context-based tourism information filtering with a semantic rule engine.
Lamsfus, Carlos; Martin, David; Alzua-Sorzabal, Aurkene; López-de-Ipiña, Diego; Torres-Manzanera, Emilio
2012-01-01
This paper presents the CONCERT framework, a push/filter information consumption paradigm, based on a rule-based semantic contextual information system for tourism. CONCERT suggests a specific insight of the notion of context from a human mobility perspective. It focuses on the particular characteristics and requirements of travellers and addresses the drawbacks found in other approaches. Additionally, CONCERT suggests the use of digital broadcasting as push communication technology, whereby tourism information is disseminated to mobile devices. This information is then automatically filtered by a network of ontologies and offered to tourists on the screen. The results obtained in the experiments carried out show evidence that the information disseminated through digital broadcasting can be manipulated by the network of ontologies, providing contextualized information that produces user satisfaction.
NASA Astrophysics Data System (ADS)
Rocadenbosch, Francesc; Comeron, Adolfo; Vazquez, Gregori; Rodriguez-Gomez, Alejandro; Soriano, Cecilia; Baldasano, Jose M.
1998-12-01
Up to now, retrieval of the atmospheric extinction and backscatter has mainly relied on standard straightforward non-memory procedures such as slope-method, exponential- curve fitting and Klett's method. Yet, their performance becomes ultimately limited by the inherent lack of adaptability as they only work with present returns and neither past estimations, nor the statistics of the signals or a prior uncertainties are taken into account. In this work, a first inversion of the backscatter and extinction- to-backscatter ratio from pulsed elastic-backscatter lidar returns is tackled by means of an extended Kalman filter (EKF), which overcomes these limitations. Thus, as long as different return signals income,the filter updates itself weighted by the unbalance between the a priori estimates of the optical parameters and the new ones based on a minimum variance criterion. Calibration errors or initialization uncertainties can be assimilated also. The study begins with the formulation of the inversion problem and an appropriate stochastic model. Based on extensive simulation and realistic conditions, it is shown that the EKF approach enables to retrieve the sought-after optical parameters as time-range-dependent functions and hence, to track the atmospheric evolution, its performance being only limited by the quality and availability of the 'a priori' information and the accuracy of the atmospheric model assumed. The study ends with an encouraging practical inversion of a live-scene measured with the Nd:YAG elastic-backscatter lidar station at our premises in Barcelona.
Spectral analysis and filtering techniques in digital spatial data processing
Pan, Jeng-Jong
1989-01-01
A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author
Suprasegmental information affects processing of talking faces at birth.
Guellai, Bahia; Mersad, Karima; Streri, Arlette
2015-02-01
From birth, newborns show a preference for faces talking a native language compared to silent faces. The present study addresses two questions that remained unanswered by previous research: (a) Does the familiarity with the language play a role in this process and (b) Are all the linguistic and paralinguistic cues necessary in this case? Experiment 1 extended newborns' preference for native speakers to non-native ones. Given that fetuses and newborns are sensitive to the prosodic characteristics of speech, Experiments 2 and 3 presented faces talking native and nonnative languages with the speech stream being low-pass filtered. Results showed that newborns preferred looking at a person who talked to them even when only the prosodic cues were provided for both languages. Nonetheless, a familiarity preference for the previously talking face is observed in the "normal speech" condition (i.e., Experiment 1) and a novelty preference in the "filtered speech" condition (Experiments 2 and 3). This asymmetry reveals that newborns process these two types of stimuli differently and that they may already be sensitive to a mismatch between the articulatory movements of the face and the corresponding speech sounds. Copyright © 2014 Elsevier Inc. All rights reserved.
Multimodal gain control at the hippocampal Schaffer collateral-CA1 synapse.
Lange-Asschenfeldt, Christian; Schipke, Carola G; Riepe, Matthias W
2007-04-06
Information processing at central nervous system synapses is shaped by long-lasting modifications, such as long-term potentiation and short-lived and putatively synapse-specific modifications by various forms of short-term plasticity, such as facilitation, potentiation, and depression. Using an extracellular paired-pulse facilitation (PPF) protocol at the Schaffer collateral-CA1 (SC) connection in acute hippocampal slices in mice, we extend previous reports of optimal signal gain at intermediate interpulse intervals obtained at single SC synapses to the network level. Moreover, maximum signal gain changed when the input intensity was altered. We found further that facilitation decreased with increasing stimulus amplitude and duration in an exact exponential fashion when varied at a fixed interpulse interval. Variation of these intensity parameters accounted for significant changes in PPF adding a spatial dimension to time-based synaptic filter characteristics. Thus, this synapse functions as an amplitude window discriminator with a low-level aperture in combination with a band-pass frequency filter. By providing mathematical functions for the characteristic presynaptic parameters frequency, stimulus amplitude, and pulse duration at the network level our results lay ground for future studies on pharmacologically, genetically, or otherwise altered animal models.
NASA Technical Reports Server (NTRS)
1976-01-01
Wide field measurements, namely, measurements of relative angular separations between stars over a relatively wide field for parallax and proper motion determinations, were made with the third fine guidance sensor. Narrow field measurements, i.e., double star measurements, are accomplished primarily with the area photometer or faint object camera at f/96. The wavelength range required can be met by the fine guidance sensor which has a spectral coverage from 3000 to 7500 A. The field of view of the fine guidance sensor also exceeds that required for the wide field astrometric instrument. Requirements require a filter wheel for the wide field astrometer, and so one was incorporated into the design of the fine guidance sensor. The filter wheel probably would contain two neutral density filters to extend the dynamic range of the sensor and three spectral filters for narrowing effective double star magnitude difference.
Frequency-selective surfaces for infrared imaging
NASA Astrophysics Data System (ADS)
Lesmanne, Emeline; Boulard, François; Espiau Delamaestre, Roch; Bisotto, Sylvette; Badano, Giacomo
2017-09-01
Bayer filter arrays are commonly added to visible detectors to achieve multicolor sensitivity. To extend this approach to the infrared range, we present frequency selective surfaces that work in the mid-infrared range (MWIR). They are easily integrated in the device fabrication process and are based on a simple operating principle. They consist of a thin metallic sheet perforated with apertures filled with a high-index dielectric material. Each aperture behaves as a separate resonator. Its size determines the transmission wavelength λ. Using an original approach based on the temporal coupled mode theory, we show that metallic loss is negligible in the infrared range, as long as the filter bandwidth is large enough (typically <λ/10). We develop closed-form expressions for the radiative and dissipative loss rates and show that the transmission of the filter depends solely on their ratio. We present a prototype infrared detector functionalized with one such array of filters and characterize it by electro-optical measurements.
Three-axis attitude determination via Kalman filtering of magnetometer data
NASA Technical Reports Server (NTRS)
Martel, Francois; Pal, Parimal K.; Psiaki, Mark L.
1988-01-01
A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for an attitude determination system. The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the International Geomagnetic Reference Field model is achieved. Covariance computation and simulation testing demonstrate the filter's accuracy. One test case, a gravity-gradient stabilized spacecraft with a pitch momentum wheel and a magnetically-anchored damper, is a real satellite on which this attitude determination system will be used. The application to a nadir pointing satellite and the estimation of disturbance torques represent the significant extensions contributed by this paper. Beyond its usefulness purely for attitude determination, this system could be used as part of a low-cost three-axis attitude stabilization system.
Kalman Filters for Time Delay of Arrival-Based Source Localization
NASA Astrophysics Data System (ADS)
Klee, Ulrich; Gehrig, Tobias; McDonough, John
2006-12-01
In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.
Cooled optical filters for Q-band infrared astronomy (15-40 μm)
NASA Astrophysics Data System (ADS)
Hawkins, Gary J.; Sherwood, Richard E.; Djotni, Karim; Threadgold, Timothy M.
2016-07-01
With a growing interest in mid- and far-infrared astronomy using cooled imaging and spectrometer instruments in highaltitude observatories and spaceflight telescopes, it is becoming increasingly important to characterise and assess the spectral performance of cooled multilayer filters across the Q-band atmospheric window. This region contains spectral features emitted by many astrophysical phenomena and objects fundamental to circumstellar and planetary formation theories. However extending interference filtering to isolate radiation at progressively longer wavelengths and improve photometric accuracy is an area of ongoing and challenging thin-film research. We have successfully fabricated cooled bandpass and edge filters with high durability for operation across the 15-30 μm Q-band region. In this paper we describe the rationale for selection of optical materials and properties of fabricated thin-film coatings for this region, together with FTIR spectral measurements and assessment of environmental durability.
Large-Eddy Simulation of Aeroacoustic Applications
NASA Technical Reports Server (NTRS)
Pruett, C. David; Sochacki, James S.
1999-01-01
This report summarizes work accomplished under a one-year NASA grant from NASA Langley Research Center (LaRC). The effort culminates three years of NASA-supported research under three consecutive one-year grants. The period of support was April 6, 1998, through April 5, 1999. By request, the grant period was extended at no-cost until October 6, 1999. Its predecessors have been directed toward adapting the numerical tool of large-eddy simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of subgrid-scale (SGS) models that incorporate time-domain filters.
Nonlinear Symplectic Attitude Estimation for Small Satellites
2006-08-01
Vol. 45, No. 3, 2000, pp. 477-482. 7 Gelb, A., editor, Applied Optimal Estimation, The M.I.T. Press, Cambridge, MA, 1974. ’ Brown , R. G. and Hwang , P. Y...demonstrate orders of magnitude improvement in state and constants of motion estimation when compared to extended and iterative Kalman methods...satellites have fallen into the former category, including the ubiquitous Extended Kalman Filter (EKF).2 - 9 While this approach has been used
NASA Astrophysics Data System (ADS)
Shu, Tong; Li, Yan; Yu, Miao; Zhang, Yifan; Zhou, Honghang; Qiu, Jifang; Guo, Hongxiang; Hong, Xiaobin; Wu, Jian
2018-02-01
Performance of Extended Kalman Filter combined with the Viterbi-Viterbi phase estimation (VVPE-EKF) for joint phase noise mitigation and amplitude noise equalization is experimental demonstrated. Experimental results show that, for 11.2 Gbaud SP-16-QAM, the proposed VVPE-EKF achieves 0.9 dB required OSNR reduction at bit error ratio (BER) of 3.8e-3 compared to the VVPE. The result of maximum likelihood combined with VVPE (VVPE-ML) is only 0.3 dB. For 28 GBaud SP-16-QAM signal, VVPE-EKF achieves 3 dB required OSNR reduction at BER=3.8e-3 (7% HD-FEC threshold) compared to VVPE. And VVPE-ML can reduce the required OSNR for 1.7 dB compared to the VVPE. VVPE-EKF outperforms DD-EKF 3.7 dB and 0.7 dB for 11.2 GBaud and 28 GBaud system, respectively.
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
First stage of LISA data processing. II. Alternative filtering dynamic models for LISA
NASA Astrophysics Data System (ADS)
Wang, Yan; Heinzel, Gerhard; Danzmann, Karsten
2015-08-01
Space-borne gravitational wave detectors, such as (e)LISA, are designed to operate in the low-frequency band (mHz to Hz), where there is a variety of gravitational wave sources of great scientific value [arXiv:1305.5720 and S. Babak et al., Classical Quantum Gravity 28, 114001 (2011)]. To achieve the extraordinary sensitivity of these detectors, the precise synchronization of the clocks on the separate spacecraft and the accurate determination of the interspacecraft distances are important ingredients. In our previous paper [Y. Wang et al., Phys. Rev. D 90, 064016 (2014)], we have described a hybrid-extend Kalman filter with a full state vector to do this job. In this paper, we explore several different state vectors and their corresponding (phenomenological) dynamic models to reduce the redundancy in the full state vector, to accelerate the algorithm, and to make the algorithm easily extendable to more complicated scenarios.
Attitude Estimation for Large Field-of-View Sensors
NASA Technical Reports Server (NTRS)
Cheng, Yang; Crassidis, John L.; Markley, F. Landis
2005-01-01
The QUEST measurement noise model for unit vector observations has been widely used in spacecraft attitude estimation for more than twenty years. It was derived under the approximation that the noise lies in the tangent plane of the respective unit vector and is axially symmetrically distributed about the vector. For large field-of-view sensors, however, this approximation may be poor, especially when the measurement falls near the edge of the field of view. In this paper a new measurement noise model is derived based on a realistic noise distribution in the focal-plane of a large field-of-view sensor, which shows significant differences from the QUEST model for unit vector observations far away from the sensor boresight. An extended Kalman filter for attitude estimation is then designed with the new measurement noise model. Simulation results show that with the new measurement model the extended Kalman filter achieves better estimation performance using large field-of-view sensor observations.
Arrays of Carbon Nanotubes as RF Filters in Waveguides
NASA Technical Reports Server (NTRS)
Hoppe, Daniel; Hunt, Brian; Hoenk, Michael; Noca, Flavio; Xu, Jimmy
2003-01-01
Brushlike arrays of carbon nanotubes embedded in microstrip waveguides provide highly efficient (high-Q) mechanical resonators that will enable ultraminiature radio-frequency (RF) integrated circuits. In its basic form, this invention is an RF filter based on a carbon nanotube array embedded in a microstrip (or coplanar) waveguide, as shown in Figure 1. In addition, arrays of these nanotube-based RF filters can be used as an RF filter bank. Applications of this new nanotube array device include a variety of communications and signal-processing technologies. High-Q resonators are essential for stable, low-noise communications, and radar applications. Mechanical oscillators can exhibit orders of magnitude higher Qs than electronic resonant circuits, which are limited by resistive losses. This has motivated the development of a variety of mechanical resonators, including bulk acoustic wave (BAW) resonators, surface acoustic wave (SAW) resonators, and Si and SiC micromachined resonators (known as microelectromechanical systems or MEMS). There is also a strong push to extend the resonant frequencies of these oscillators into the GHz regime of state-of-the-art electronics. Unfortunately, the BAW and SAW devices tend to be large and are not easily integrated into electronic circuits. MEMS structures have been integrated into circuits, but efforts to extend MEMS resonant frequencies into the GHz regime have been difficult because of scaling problems with the capacitively-coupled drive and readout. In contrast, the proposed devices would be much smaller and hence could be more readily incorporated into advanced RF (more specifically, microwave) integrated circuits.
Distributed and decentralized state estimation in gas networks as distributed parameter systems.
Ahmadian Behrooz, Hesam; Boozarjomehry, R Bozorgmehry
2015-09-01
In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline networks. In the construction of local models, due to the existence of common states and interconnections among the subsystems, the assimilation and prediction steps of the Kalman filter are modified to take the overlapping and external states into account. However, dynamic Riccati equation for each subsystem is constructed based on the local model, which introduces a maximum error of 5% in the estimated standard deviation of the states in the benchmarks studied in this paper. The performance of the proposed methodology has been shown based on the comparison of its accuracy and computational demands against their counterparts in centralized Kalman filter for two viable benchmarks. In a real life network, it is shown that while the accuracy is not significantly decreased, the real-time factor of the state estimation is increased by a factor of 10. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Tracking and Data Relay Satellite (TDRS) Orbit Estimation Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Ward, Douglas T.; Dang, Ket D.; Slojkowski, Steve; Blizzard, Mike; Jenkins, Greg
2007-01-01
Alternatives to the Tracking and Data Relay Satellite (TDRS) orbit estimation procedure were studied to develop a technique that both produces more reliable results and is more amenable to automation than the prior procedure. The Earth Observing System (EOS) Terra mission has TDRS ephemeris prediction 3(sigma) requirements of 75 meters in position and 5.5 millimeters per second in velocity over a 1.5-day prediction span. Meeting these requirements sometimes required reruns of the prior orbit determination (OD) process, with manual editing of tracking data to get an acceptable solution. After a study of the available alternatives, the Flight Dynamics Facility (FDF) began using the Real-Time Orbit Determination (RTOD(Registered TradeMark)) Kalman filter program for operational support of TDRSs in February 2007. This extended Kalman filter (EKF) is used for daily support, including within hours after most thrusting, to estimate the spacecraft position, velocity, and solar radiation coefficient of reflectivity (C(sub R)). The tracking data used are from the Bilateration Ranging Transponder System (BRTS), selected TDRS System (TDRSS) User satellite tracking data, and Telemetry, Tracking, and Command (TT&C) data. Degraded filter results right after maneuvers and some momentum unloads provided incentive for a hybrid OD technique. The results of combining EKF strengths with the Goddard Trajectory Determination System (GTDS) Differential Correction (DC) program batch-least-squares solutions, as recommended in a 2005 paper on the chain-bias technique, are also presented.
The discrete prolate spheroidal filter as a digital signal processing tool
NASA Technical Reports Server (NTRS)
Mathews, J. D.; Breakall, J. K.; Karawas, G. K.
1983-01-01
The discrete prolate spheriodall (DPS) filter is one of the glass of nonrecursive finite impulse response (FIR) filters. The DPS filter is superior to other filters in this class in that it has maximum energy concentration in the frequency passband and minimum ringing in the time domain. A mathematical development of the DPS filter properties is given, along with information required to construct the filter. The properties of this filter were compared with those of the more commonly used filters of the same class. Use of the DPS filter allows for particularly meaningful statements of data time/frequency resolution cell values. The filter forms an especially useful tool for digital signal processing.
Filter replacement lifetime prediction
Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.
2017-10-25
Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.
Haffert, S Y
2016-08-22
Current wavefront sensors for high resolution imaging have either a large dynamic range or a high sensitivity. A new kind of wavefront sensor is developed which can have both: the Generalised Optical Differentiation wavefront sensor. This new wavefront sensor is based on the principles of optical differentiation by amplitude filters. We have extended the theory behind linear optical differentiation and generalised it to nonlinear filters. We used numerical simulations and laboratory experiments to investigate the properties of the generalised wavefront sensor. With this we created a new filter that can decouple the dynamic range from the sensitivity. These properties make it suitable for adaptive optic systems where a large range of phase aberrations have to be measured with high precision.
Airborne radar technology for windshear detection
NASA Technical Reports Server (NTRS)
Hibey, Joseph L.; Khalaf, Camille S.
1988-01-01
The objectives and accomplishments of the two-and-a-half year effort to describe how returns from on-board Doppler radar are to be used to detect the presence of a wind shear are reported. The problem is modeled as one of first passage in terms of state variables, the state estimates are generated by a bank of extended Kalman filters working in parallel, and the decision strategy involves the use of a voting algorithm for a series of likelihood ratio tests. The performance issue for filtering is addressed in terms of error-covariance reduction and filter divergence, and the performance issue for detection is addressed in terms of using a probability measure transformation to derive theoretical expressions for the error probabilities of a false alarm and a miss.
Polarized 3He Neutron Spin Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sno, William Michael
The goal of this grant to Indiana University and subcontractors at Hamilton College and Wisconsin and the associated Interagency Agreement with NIST was to extend the technique of polarized neutron scattering by the development and application of polarized 3He-based neutron spin filters. This effort was blessed with long-term support from the DOE Office of Science, which started in 2003 and continued until the end of a final no-cost extension of the last 3-year period of support in 2013. The steady support from the DOE Office of Science for this long-term development project was essential to its eventual success. Further 3Hemore » neutron spin filter development is now sited at NIST and ORNL.« less
Deconvolution of time series in the laboratory
NASA Astrophysics Data System (ADS)
John, Thomas; Pietschmann, Dirk; Becker, Volker; Wagner, Christian
2016-10-01
In this study, we present two practical applications of the deconvolution of time series in Fourier space. First, we reconstruct a filtered input signal of sound cards that has been heavily distorted by a built-in high-pass filter using a software approach. Using deconvolution, we can partially bypass the filter and extend the dynamic frequency range by two orders of magnitude. Second, we construct required input signals for a mechanical shaker in order to obtain arbitrary acceleration waveforms, referred to as feedforward control. For both situations, experimental and theoretical approaches are discussed to determine the system-dependent frequency response. Moreover, for the shaker, we propose a simple feedback loop as an extension to the feedforward control in order to handle nonlinearities of the system.
Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.
2015-01-01
Background Multiple types of neural signals are available for controlling assistive devices through brain–computer interfaces (BCIs). Intracortically recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. PMID:25681017
Vision and dual IMU integrated attitude measurement system
NASA Astrophysics Data System (ADS)
Guo, Xiaoting; Sun, Changku; Wang, Peng; Lu, Huang
2018-01-01
To determination relative attitude between two space objects on a rocking base, an integrated system based on vision and dual IMU (inertial determination unit) is built up. The determination system fuses the attitude information of vision with the angular determinations of dual IMU by extended Kalman filter (EKF) to obtain the relative attitude. One IMU (master) is attached to the measured motion object and the other (slave) to the rocking base. As the determination output of inertial sensor is relative to inertial frame, thus angular rate of the master IMU includes not only motion of the measured object relative to inertial frame but also the rocking base relative to inertial frame, where the latter can be seen as redundant harmful movement information for relative attitude determination between the measured object and the rocking base. The slave IMU here assists to remove the motion information of rocking base relative to inertial frame from the master IMU. The proposed integrated attitude determination system is tested on practical experimental platform. And experiment results with superior precision and reliability show the feasibility and effectiveness of the proposed attitude determination system.
Log-polar mapping-based scale space tracking with adaptive target response
NASA Astrophysics Data System (ADS)
Li, Dongdong; Wen, Gongjian; Kuai, Yangliu; Zhang, Ximing
2017-05-01
Correlation filter-based tracking has exhibited impressive robustness and accuracy in recent years. Standard correlation filter-based trackers are restricted to translation estimation and equipped with fixed target response. These trackers produce an inferior performance when encountered with a significant scale variation or appearance change. We propose a log-polar mapping-based scale space tracker with an adaptive target response. This tracker transforms the scale variation of the target in the Cartesian space into a shift along the logarithmic axis in the log-polar space. A one-dimensional scale correlation filter is learned online to estimate the shift along the logarithmic axis. With the log-polar representation, scale estimation is achieved accurately without a multiresolution pyramid. To achieve an adaptive target response, a variance of the Gaussian function is computed from the response map and updated online with a learning rate parameter. Our log-polar mapping-based scale correlation filter and adaptive target response can be combined with any correlation filter-based trackers. In addition, the scale correlation filter can be extended to a two-dimensional correlation filter to achieve joint estimation of the scale variation and in-plane rotation. Experiments performed on an OTB50 benchmark demonstrate that our tracker achieves superior performance against state-of-the-art trackers.
Traffic Surveillance Data Processing in Urban Freeway Corridors Using Kalman Filter Techniques
DOT National Transportation Integrated Search
1978-11-01
Real-time surveillance of traffic conditions on urban freeway corridors using spatially discrete presence detectors is addressed. Using a finite-dimensional (macroscopic) fluid-analog model for freeway vehicular traffic flow, an extended Kalman filte...
40 CFR 141.700 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium General... drinking water regulations. The regulations in this subpart establish or extend treatment technique... requirements of this subpart for filtered systems apply to systems required by National Primary Drinking Water...
A Review of System Identification Methods Applied to Aircraft
NASA Technical Reports Server (NTRS)
Klein, V.
1983-01-01
Airplane identification, equation error method, maximum likelihood method, parameter estimation in frequency domain, extended Kalman filter, aircraft equations of motion, aerodynamic model equations, criteria for the selection of a parsimonious model, and online aircraft identification are addressed.
A survey of simultaneous localization and mapping on unstructured lunar complex environment
NASA Astrophysics Data System (ADS)
Wang, Yiqiao; Zhang, Wei; An, Pei
2017-10-01
Simultaneous localization and mapping (SLAM) technology is the key to realizing lunar rover's intelligent perception and autonomous navigation. It embodies the autonomous ability of mobile robot, and has attracted plenty of concerns of researchers in the past thirty years. Visual sensors are meaningful to SLAM research because they can provide a wealth of information. Visual SLAM uses merely images as external information to estimate the location of the robot and construct the environment map. Nowadays, SLAM technology still has problems when applied in large-scale, unstructured and complex environment. Based on the latest technology in the field of visual SLAM, this paper investigates and summarizes the SLAM technology using in the unstructured complex environment of lunar surface. In particular, we focus on summarizing and comparing the detection and matching of features of SIFT, SURF and ORB, in the meanwhile discussing their advantages and disadvantages. We have analyzed the three main methods: SLAM Based on Extended Kalman Filter, SLAM Based on Particle Filter and SLAM Based on Graph Optimization (EKF-SLAM, PF-SLAM and Graph-based SLAM). Finally, this article summarizes and discusses the key scientific and technical difficulties in the lunar context that Visual SLAM faces. At the same time, we have explored the frontier issues such as multi-sensor fusion SLAM and multi-robot cooperative SLAM technology. We also predict and prospect the development trend of lunar rover SLAM technology, and put forward some ideas of further research.
New tools for discovery from old databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.P.
1990-05-01
Very large quantities of information have been accumulated as a result of petroleum exploration and the practice of petroleum geology. New and more powerful methods to build and analyze databases have been developed. The new tools must be tested, and, as quickly as possible, combined with traditional methods to the full advantage of currently limited funds in the search for new and extended hydrocarbon reserves. A recommended combined sequence is (1) database validating, (2) category separating, (3) machine learning, (4) graphic modeling, (5) database filtering, and (6) regression for predicting. To illustrate this procedure, a database from the Railroad Commissionmore » of Texas has been analyzed. Clusters of information have been identified to prevent apples and oranges problems from obscuring the conclusions. Artificial intelligence has checked the database for potentially invalid entries and has identified rules governing the relationship between factors, which can be numeric or nonnumeric (words), or both. Graphic 3-Dimensional modeling has clarified relationships. Database filtering has physically separated the integral parts of the database, which can then be run through the sequence again, increasing the precision. Finally, regressions have been run on separated clusters giving equations, which can be used with confidence in making predictions. Advances in computer systems encourage the learning of much more from past records, and reduce the danger of prejudiced decisions. Soon there will be giant strides beyond current capabilities to the advantage of those who are ready for them.« less
NASA Astrophysics Data System (ADS)
Zeng, Ziyi; Yang, Aiying; Guo, Peng; Feng, Lihui
2018-01-01
Time-domain CD equalization using finite impulse response (FIR) filter is now a common approach for coherent optical fiber communication systems. The complex weights of FIR taps are calculated from a truncated impulse response of the CD transfer function, and the modulus of the complex weights is constant. In our work, we take the limited bandwidth of a single channel signal into account and propose weighted FIRs to improve the performance of CD equalization. The key in weighted FIR filters is the selection and optimization of weighted functions. In order to present the performance of different types of weighted FIR filters, a square-root raised cosine FIR (SRRC-FIR) and a Gaussian FIR (GS-FIR) are investigated. The optimization of square-root raised cosine FIR and Gaussian FIR are made in term of the bit rate error (BER) of QPSK and 16QAM coherent detection signal. The results demonstrate that the optimized parameters of the weighted filters are independent of the modulation format, symbol rate and the length of transmission fiber. With the optimized weighted FIRs, the BER of CD equalization signal is decreased significantly. Although this paper has investigated two types of weighted FIR filters, i.e. SRRC-FIR filter and GS-FIR filter, the principle of weighted FIR can also be extended to other symmetric functions super Gaussian function, hyperbolic secant function and etc.
Fisher, Edward M.; Shaffer, Ronald E.
2015-01-01
Public health organizations, such as the Centers for Disease Control and Prevention (CDC), are increasingly recommending the use of N95 filtering facepiece respirators (FFRs) in health care settings. For infection control purposes, the usual practice is to discard FFRs after close contact with a patient (“single use”). However, in some situations, such as during contact with tuberculosis patients, limited FFR reuse (i.e., repeated donning and doffing of the same FFR by the same person) is practiced. A related practice, extended use, involves wearing the same FFR for multiple patient encounters without doffing. Extended use and limited FFR reuse have been recommended during infectious disease outbreaks and pandemics to conserve FFR supplies. This commentary examines CDC recommendations related to FFR extended use and limited reuse and analyzes available data from the literature to provide a relative estimate of the risks of these practices compared to single use. Analysis of the available data and the use of disease transmission models indicate that decisions regarding whether FFR extended use or reuse should be recommended should continue to be pathogen- and event-specific. Factors to be included in developing the recommendations are the potential for the pathogen to spread via contact transmission, the potential that the event could result in or is currently causing a FFR shortage, the protection provided by FFR use, human factors, potential for self-inoculation, the potential for secondary exposures, and government policies and regulations. While recent findings largely support the previous recommendations for extended use and limited reuse in certain situations, some new cautions and limitations should be considered before issuing recommendations in the future. In general, extended use of FFRs is preferred over limited FFR reuse. Limited FFR reuse would allow the user a brief respite from extended wear times, but increases the risk of self-inoculation and preliminary data from one study suggest that some FFR models may begin to lose effectiveness after multiple donnings. PMID:24628658
Semimajor Axis Estimation Strategies
NASA Technical Reports Server (NTRS)
How, Jonathan P.; Alfriend, Kyle T.; Breger, Louis; Mitchell, Megan
2004-01-01
This paper extends previous analysis on the impact of sensing noise for the navigation and control aspects of formation flying spacecraft. We analyze the use of Carrier-phase Differential GPS (CDGPS) in relative navigation filters, with a particular focus on the filter correlation coefficient. This work was motivated by previous publications which suggested that a "good" navigation filter would have a strong correlation (i.e., coefficient near -1) to reduce the semimajor axis (SMA) error, and therefore, the overall fuel use. However, practical experience with CDGPS-based filters has shown this strong correlation seldom occurs (typical correlations approx. -0.1), even when the estimation accuracies are very good. We derive an analytic estimate of the filter correlation coefficient and demonstrate that, for the process and sensor noises levels expected with CDGPS, the expected value will be very low. It is also demonstrated that this correlation can be improved by increasing the time step of the discrete Kalman filter, but since the balance condition is not satisfied, the SMA error also increases. These observations are verified with several linear simulations. The combination of these simulations and analysis provide new insights on the crucial role of the process noise in determining the semimajor axis knowledge.
NASA Technical Reports Server (NTRS)
Kilbourne, C. A.; Adams, J. S.; Arsenovic, P.; Ayers, T.; Chiao, M. P.; DiPirro, M. J.; Eckart, M. E.; Fujimoto, R.; Kazeva, J. D.; Kelley, R. L.;
2016-01-01
The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that make the SXS a powerful x-ray spectrometer also make it sensitive to the entire electromagnetic band. If characterized as a bolometer, it would have a noise equivalent power (NEP) of < 4x10(exp -18) W/(Hz)0.5. Thus it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. Additionally, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs are addressed by a series of five thin-film radiation blocking filters that block long-wavelength radiation while minimizing x-ray attenuation. The SXS aperture assembly is a system of barriers, baffles, filter carriers, and filter mounts that supports the filters and inhibits their potential contamination. The three warmer filters also were equipped with thermometers and heaters for decontamination.
Iteration of ultrasound aberration correction methods
NASA Astrophysics Data System (ADS)
Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond
2004-05-01
Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.
NASA Technical Reports Server (NTRS)
1987-01-01
A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.
NASA Astrophysics Data System (ADS)
He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang
2017-03-01
Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.
Artifact removal from EEG signals using adaptive filters in cascade
NASA Astrophysics Data System (ADS)
Garcés Correa, A.; Laciar, E.; Patiño, H. D.; Valentinuzzi, M. E.
2007-11-01
Artifacts in EEG (electroencephalogram) records are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). These noise sources increase the difficulty in analyzing the EEG and to obtaining clinical information. For this reason, it is necessary to design specific filters to decrease such artifacts in EEG records. In this paper, a cascade of three adaptive filters based on a least mean squares (LMS) algorithm is proposed. The first one eliminates line interference, the second adaptive filter removes the ECG artifacts and the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR) filter, which adjusts its coefficients to produce an output similar to the artifacts present in the EEG. The proposed cascade adaptive filter was tested in five real EEG records acquired in polysomnographic studies. In all cases, line-frequency, ECG and EOG artifacts were attenuated. It is concluded that the proposed filter reduces the common artifacts present in EEG signals without removing significant information embedded in these records.
The role of low-spatial frequencies in lexical decision and masked priming.
Boden, C; Giaschi, D
2009-04-01
Spatial frequency filtering was used to test the hypotheses that low-spatial frequency information in printed text can: (1) lead to a rapid lexical decision or (2) facilitate word recognition. Adult proficient readers made lexical decisions in unprimed and masked repetition priming experiments with unfiltered, low-pass, high-pass and notch filtered letter strings. In the unprimed experiments, a filtered target was presented for 105 or 400 ms followed by a pattern mask. Sensitivity (d') was lowest for the low-pass filtered targets at both durations with a bias towards a 'non-word' response. Sensitivity was higher in the high-pass and notch filter conditions. In the priming experiments, a forward mask was followed by a filtered prime then an unfiltered target. Primed words, but not non-words, were identified faster than unprimed words in both the low-pass and high-pass filtered conditions. These results do not support a unique role for low-spatial frequency information in either facilitating or making rapid lexical decisions.
Stereovision-based pose and inertia estimation of unknown and uncooperative space objects
NASA Astrophysics Data System (ADS)
Pesce, Vincenzo; Lavagna, Michèle; Bevilacqua, Riccardo
2017-01-01
Autonomous close proximity operations are an arduous and attractive problem in space mission design. In particular, the estimation of pose, motion and inertia properties of an uncooperative object is a challenging task because of the lack of available a priori information. This paper develops a novel method to estimate the relative position, velocity, angular velocity, attitude and the ratios of the components of the inertia matrix of an uncooperative space object using only stereo-vision measurements. The classical Extended Kalman Filter (EKF) and an Iterated Extended Kalman Filter (IEKF) are used and compared for the estimation procedure. In addition, in order to compute the inertia properties, the ratios of the inertia components are added to the state and a pseudo-measurement equation is considered in the observation model. The relative simplicity of the proposed algorithm could be suitable for an online implementation for real applications. The developed algorithm is validated by numerical simulations in MATLAB using different initial conditions and uncertainty levels. The goal of the simulations is to verify the accuracy and robustness of the proposed estimation algorithm. The obtained results show satisfactory convergence of estimation errors for all the considered quantities. The obtained results, in several simulations, shows some improvements with respect to similar works, which deal with the same problem, present in literature. In addition, a video processing procedure is presented to reconstruct the geometrical properties of a body using cameras. This inertia reconstruction algorithm has been experimentally validated at the ADAMUS (ADvanced Autonomous MUltiple Spacecraft) Lab at the University of Florida. In the future, this different method could be integrated to the inertia ratios estimator to have a complete tool for mass properties recognition.
Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.
High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikesmore » and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)« less
A Dynamic Compressive Gammachirp Auditory Filterbank
Irino, Toshio; Patterson, Roy D.
2008-01-01
It is now common to use knowledge about human auditory processing in the development of audio signal processors. Until recently, however, such systems were limited by their linearity. The auditory filter system is known to be level-dependent as evidenced by psychophysical data on masking, compression, and two-tone suppression. However, there were no analysis/synthesis schemes with nonlinear filterbanks. This paper describe18300060s such a scheme based on the compressive gammachirp (cGC) auditory filter. It was developed to extend the gammatone filter concept to accommodate the changes in psychophysical filter shape that are observed to occur with changes in stimulus level in simultaneous, tone-in-noise masking. In models of simultaneous noise masking, the temporal dynamics of the filtering can be ignored. Analysis/synthesis systems, however, are intended for use with speech sounds where the glottal cycle can be long with respect to auditory time constants, and so they require specification of the temporal dynamics of auditory filter. In this paper, we describe a fast-acting level control circuit for the cGC filter and show how psychophysical data involving two-tone suppression and compression can be used to estimate the parameter values for this dynamic version of the cGC filter (referred to as the “dcGC” filter). One important advantage of analysis/synthesis systems with a dcGC filterbank is that they can inherit previously refined signal processing algorithms developed with conventional short-time Fourier transforms (STFTs) and linear filterbanks. PMID:19330044
Non-causal spike filtering improves decoding of movement intention for intracortical BCIs
Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.
2014-01-01
Background Multiple types of neural signals are available for controlling assistive devices through brain-computer interfaces (BCIs). Intracortically-recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. Conclusions Non-causally filtering neural signals prior to extracting threshold crossing events may be a simple yet effective way to condition intracortically recorded neural activity for direct control of external devices through BCIs. PMID:25128256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looby, S.; Given, M.F.; Geoghegan, T.
Purpose. We evaluated the Gunther Tulip (GT) retrievable inferior vena cava (IVC) filter with regard to indications, filtration efficacy, complications, retrieval window, and use of anticoagulation. Method. A retrospective study was performed of 147 patients (64 men, 83 women; mean age 58.8 years) who underwent retrievable GT filter insertion between 2001 and 2005. The indications for placement included a diagnosis of pulmonary embolism or deep venous thrombosis with a contraindication to anticoagulation (n = 68), pulmonary embolism or deep venous thrombosis while on anticoagulation (n = 49), prophylactic filter placement for high-risk surgical patients with a past history of pulmonarymore » embolism or deep venous thrombosis (n = 20), and a high risk of pulmonary embolism or deep venous thrombosis (n = 10). Forty-nine of the 147 patients did not receive anticoagulation (33.7%) while 96 of 147 patients did, 82 of these receiving warfarin (56.5%), 11 receiving low-molecular weight heparins (7.58%), and 3 receiving antiplatelet agents alone (2.06%). Results. Filter placement was successful in 147 patients (100%). Two patients had two filters inserted. Of the 147 patients, filter deployment was on a permanent basis in 102 and with an intention to retrieve in 45 patients. There were 36 (80%) successful retrievals and 9 (20%) failed retrievals. The mean time to retrieval was 33.6 days. The reasons for failed retrieval included filter struts tightly adherent to the IVC wall (5/9), extreme filter tilt (2/9), and extensive filter thrombus (2/9). Complications included pneumothorax (n = 4), failure of filter expansion (n = 1), and breakthrough pulmonary embolism (n = 1). No IVC thrombotic episodes were recorded. Discussion. The Gunther Tulip retrievable filter can be used as a permanent or a retrievable filter. It is safe and efficacious. GT filters can be safely retrieved at a mean time interval of 33.6 days. The newly developed Celect filter may extend the retrieval interval.« less
Asymptotic Cramer-Rao bounds for Morlet wavelet filter bank transforms of FM signals
NASA Astrophysics Data System (ADS)
Scheper, Richard
2002-03-01
Wavelet filter banks are potentially useful tools for analyzing and extracting information from frequency modulated (FM) signals in noise. Chief among the advantages of such filter banks is the tendency of wavelet transforms to concentrate signal energy while simultaneously dispersing noise energy over the time-frequency plane, thus raising the effective signal to noise ratio of filtered signals. Over the past decade, much effort has gone into devising new algorithms to extract the relevant information from transformed signals while identifying and discarding the transformed noise. Therefore, estimates of the ultimate performance bounds on such algorithms would serve as valuable benchmarks in the process of choosing optimal algorithms for given signal classes. Discussed here is the specific case of FM signals analyzed by Morlet wavelet filter banks. By making use of the stationary phase approximation of the Morlet transform, and assuming that the measured signals are well resolved digitally, the asymptotic form of the Fisher Information Matrix is derived. From this, Cramer-Rao bounds are analytically derived for simple cases.
Hale, C.J.
1983-11-15
An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.
On Markov parameters in system identification
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.
Flat-topped broadband rugate filters.
Imenes, Anne G; McKenzie, David R
2006-10-20
A method of creating rugate interference filters that have flat-topped reflectance across an extended spectral region is presented. The method applies known relations from the classical coupled wave theory to develop a set of equations that gives the spatial frequency distribution of rugate cycles to achieve constant reflectance across a given spectral region. Two examples of the application of this method are discussed: a highly reflective coating for eye protection against harmful laser radiation incident from normal to 45 degrees , and a spectral beam splitter for efficient solar power conversion.
2010-12-01
3)+m*l^2); fncC.m %# eml function y = fncC(x) Bo=0.5; alf=30*pi/180; y=Bo*sin(x(1,1)+alf); 75 Unscented Kalman Filter – Embedded...Matlab Block %# eml function [x_k1,Pxx_k1] = UKF(x_k,Pxx_k,Y_meas,ts,Q,R,kappa) % This block supports the Embedded MATLAB subset. % See the...torque2omegadot.m EML function Wdot = torque2omegadot(T, J, W) % This function takes input of applied torque (T) in component % elements, current angular
Hale, Charles J.
1983-01-01
An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.
1988-01-28
EXAFS is the inverse transform of the two peaks in the RSF using a filtering a12 function to isolate the range between I and 4A. Both the frequency...backscattering of different neighbors. This inverse transform contains only one frequency and its envelope of intensity is the backscattering amplitude function...and the inverse transform of the RSF using a fourier filter between 1 and 4A (Solid line). Insert: Radial Structure Function (RSF) analyzed between
Deterministic filtering of breakdown flashing at telecom wavelengths
NASA Astrophysics Data System (ADS)
Marini, Loris; Camphausen, Robin; Eggleton, Benjamin J.; Palomba, Stefano
2017-11-01
Breakdown flashes are undesired photo-emissions from the active area of single-photon avalanche photo-diodes. They arise from radiative recombinations of hot carriers generated during an avalanche and can induce crosstalk, compromise the measurement of optical quantum states, and hinder the security of quantum communications. Although the spectrum of this emission extends over hundreds of nanometers, active quenching may lead to a smaller uncertainty in the time of emission, thus enabling deterministic filtering. Our results pave the way to broadband interference mitigation in time-correlated single-photon applications.
Introduction of Total Variation Regularization into Filtered Backprojection Algorithm
NASA Astrophysics Data System (ADS)
Raczyński, L.; Wiślicki, W.; Klimaszewski, K.; Krzemień, W.; Kowalski, P.; Shopa, R. Y.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kisielewska-Kamińska, D.; Korcyl, G.; Kozik, T.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
In this paper we extend the state-of-the-art filtered backprojection (FBP) method with application of the concept of Total Variation regularization. We compare the performance of the new algorithm with the most common form of regularizing in the FBP image reconstruction via apodizing functions. The methods are validated in terms of cross-correlation coefficient between reconstructed and real image of radioactive tracer distribution using standard Derenzo-type phantom. We demonstrate that the proposed approach results in higher cross-correlation values with respect to the standard FBP method.
On-board multicarrier demodulator for mobile applications using DSP implementation
NASA Astrophysics Data System (ADS)
Yim, W. H.; Kwan, C. C. D.; Coakley, F. P.; Evans, B. G.
1990-11-01
This paper describes the design and implementation of an on-board multicarrier demodulator using commercial digital signal processors. This is for use in a mobile satellite communication system employing an up-link SCPC/FDMA scheme. Channels are separated by a flexible multistage digital filter bank followed by a channel multiplexed digital demodulator array. The cross/dot product design approach of error detector leads to a new QPSK frequency control algorithm that allows fast acquisition without special preamble pattern. Timing correction is performed digitally using an extended stack of polyphase sub-filters.
Apparatus and methods for filtering granular solid material
NASA Technical Reports Server (NTRS)
Backes, Douglas J. (Inventor); Poulter, Clay B. (Inventor); Godfrey, Max R. (Inventor); Tolman, Dennis K. (Inventor); Dutton, Melinda S. (Inventor)
2011-01-01
Apparatuses for screening granular solid particulate material include a generally planar first screen and a second screen. A plurality of apertures extends through the first screen. At least a portion of the second screen is oriented at an angle to the first screen, and apertures extend through a perforated region of the second screen. The second screen includes at least one region configured to prevent at least some particles of solid material from passing through the second screen.
A decentralized square root information filter/smoother
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Belzer, M. R.
1985-01-01
A number of developments has recently led to a considerable interest in the decentralization of linear least squares estimators. The developments are partly related to the impending emergence of VLSI technology, the realization of parallel processing, and the need for algorithmic ways to speed the solution of dynamically decoupled, high dimensional estimation problems. A new method is presented for combining Square Root Information Filters (SRIF) estimates obtained from independent data sets. The new method involves an orthogonal transformation, and an information matrix filter 'homework' problem discussed by Schweppe (1973) is generalized. The employed SRIF orthogonal transformation methodology has been described by Bierman (1977).
Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones
Chen, Jing; Cao, Ruochen; Wang, Yongtian
2015-01-01
Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters. PMID:26690439
Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones.
Chen, Jing; Cao, Ruochen; Wang, Yongtian
2015-12-10
Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters.
Distributed estimation for adaptive sensor selection in wireless sensor networks
NASA Astrophysics Data System (ADS)
Mahmoud, Magdi S.; Hassan Hamid, Matasm M.
2014-05-01
Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.
[The interpreter in an intercultural clinical milieu].
Vissandjée, B; Ntetu, A L; Courville, F; Breton, E R; Bourdeau, M
1998-05-01
The public's diversified language profile means that nursing practice must adjust to provide the same quality of care to all clients, no matter what language they speak. To improve quality and quantity of information exchanged in the nurse-client-interpreter triangle, the authors have investigated the type of information likely to be filtered and studied the various factors underlying the interpreter's choice to filter information. The authors also analyzed the values interpreters assign to information and the factors that form the background for filtering, including mistrust. The authors suggest adequately preparing interpreters; using interpreters' expertise; and developing an appropriate training program for intercultural interpreters to enable them to better function within health care institutions.
Downdating a time-varying square root information filter
NASA Technical Reports Server (NTRS)
Muellerschoen, Ronald J.
1990-01-01
A new method to efficiently downdate an estimate and covariance generated by a discrete time Square Root Information Filter (SRIF) is presented. The method combines the QR factor downdating algorithm of Gill and the decentralized SRIF algorithm of Bierman. Efficient removal of either measurements or a priori information is possible without loss of numerical integrity. Moreover, the method includes features for detecting potential numerical degradation. Performance on a 300 parameter system with 5800 data points shows that the method can be used in real time and hence is a promising tool for interactive data analysis. Additionally, updating a time-varying SRIF filter with either additional measurements or a priori information proceeds analogously.
A generalized model via random walks for information filtering
NASA Astrophysics Data System (ADS)
Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng
2016-08-01
There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Ho, Hsuan-Wei; Nguyen, Xuan-Loc
2010-02-01
This article presents a novel band-pass filter for Fourier transform profilometry (FTP) for accurate 3-D surface reconstruction. FTP can be employed to obtain 3-D surface profiles by one-shot images to achieve high-speed measurement. However, its measurement accuracy has been significantly influenced by the spectrum filtering process required to extract the phase information representing various surface heights. Using the commonly applied 2-D Hanning filter, the measurement errors could be up to 5-10% of the overall measuring height and it is unacceptable to various industrial application. To resolve this issue, the article proposes an elliptical band-pass filter for extracting the spectral region possessing essential phase information for reconstructing accurate 3-D surface profiles. The elliptical band-pass filter was developed and optimized to reconstruct 3-D surface models with improved measurement accuracy. Some experimental results verify that the accuracy can be effectively enhanced by using the elliptical filter. The accuracy improvement of 44.1% and 30.4% can be achieved in 3-D and sphericity measurement, respectively, when the elliptical filter replaces the traditional filter as the band-pass filtering method. Employing the developed method, the maximum measured error can be kept within 3.3% of the overall measuring range.
Maximising information recovery from rank-order codes
NASA Astrophysics Data System (ADS)
Sen, B.; Furber, S.
2007-04-01
The central nervous system encodes information in sequences of asynchronously generated voltage spikes, but the precise details of this encoding are not well understood. Thorpe proposed rank-order codes as an explanation of the observed speed of information processing in the human visual system. The work described in this paper is inspired by the performance of SpikeNET, a biologically inspired neural architecture using rank-order codes for information processing, and is based on the retinal model developed by VanRullen and Thorpe. This model mimics retinal information processing by passing an input image through a bank of Difference of Gaussian (DoG) filters and then encoding the resulting coefficients in rank-order. To test the effectiveness of this encoding in capturing the information content of an image, the rank-order representation is decoded to reconstruct an image that can be compared with the original. The reconstruction uses a look-up table to infer the filter coefficients from their rank in the encoded image. Since the DoG filters are approximately orthogonal functions, they are treated as their own inverses in the reconstruction process. We obtained a quantitative measure of the perceptually important information retained in the reconstructed image relative to the original using a slightly modified version of an objective metric proposed by Petrovic. It is observed that around 75% of the perceptually important information is retained in the reconstruction. In the present work we reconstruct the input using a pseudo-inverse of the DoG filter-bank with the aim of improving the reconstruction and thereby extracting more information from the rank-order encoded stimulus. We observe that there is an increase of 10 - 15% in the information retrieved from a reconstructed stimulus as a result of inverting the filter-bank.
Andersson, A; Laurent, P; Kihn, A; Prévost, M; Servais, P
2001-08-01
The impact of temperature on nitrification in biological granular activated carbon (GAC) filters was evaluated in order to improve the understanding of the nitrification process in drinking water treatment. The study was conducted in a northern climate where very cold water temperatures (below 2 degrees C) prevail for extended periods and rapid shifts of temperature are frequent in the spring and fall. Ammonia removals were monitored and the fixed nitrifying biomass was measured using a method of potential nitrifying activity. The impact of temperature was evaluated on two different filter media: an opened superstructure wood-based activated carbon and a closed superstructure activated carbon-based on bituminous coal. The study was conducted at two levels: pilot scale (first-stage filters) and full-scale (second-stage filters) and the results indicate a strong temperature impact on nitrification activity. Ammonia removal capacities ranged from 40 to 90% in pilot filters, at temperatures above 10 degrees C, while more than 90% ammonia was removed in the full-scale filters for the same temperature range. At moderate temperatures (4-10 degrees C), the first stage pilot filters removed 10-40% of incoming ammonia for both media (opened and closed superstructure). In the full-scale filters, a difference between the two media in nitrification performances was observed at moderate temperatures: the ammonia removal rate in the opened superstructure support (more than 90%) was higher than in the closed superstructure support (45%). At low temperatures (below 4 degrees C) both media performed poorly. Ammonia removal capacities were below 30% in both pilot- and full-scale filters.
NASA Astrophysics Data System (ADS)
Zhou, Dapeng; Guo, Lei
2018-01-01
This study aims to address the rapid transfer alignment (RTA) issue of an inertial navigation system with large misalignment angles. The strong nonlinearity and high dimensionality of the system model pose a significant challenge to the estimation of the misalignment angles. In this paper, a 15-dimensional nonlinear model for RTA has been exploited, and it is shown that the functions for the model description exhibit a conditionally linear substructure. Then, a modified stochastic integration filter (SIF) called marginal SIF (MSIF) is developed to incorporate into the nonlinear model, where the number of sample points is significantly reduced but the estimation accuracy of SIF is retained. Comparisons between the MSIF-based RTA and the previously well-known methodologies are carried out through numerical simulations and a van test. The results demonstrate that the newly proposed method has an obvious accuracy advantage over the extended Kalman filter, the unscented Kalman filter and the marginal unscented Kalman filter. Further, the MSIF achieves a comparable performance to SIF, but with a significantly lower computation load.
Three-Axis Attitude Estimation Using Rate-Integrating Gyroscopes
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Markley, F. Landis
2016-01-01
Traditionally, attitude estimation has been performed using a combination of external attitude sensors and internal three-axis gyroscopes. There are many studies of three-axis attitude estimation using gyros that read angular rates. Rate-integrating gyros measure integrated rates or angular displacements, but three-axis attitude estimation using these types of gyros has not been as fully investigated. This paper derives a Kalman filtering framework for attitude estimation using attitude sensors coupled with rate- integrating gyroscopes. In order to account for correlations introduced by using these gyros, the state vector must be augmented, compared with filters using traditional gyros that read angular rates. Two filters are derived in this paper. The first uses an augmented state-vector form that estimates attitude, gyro biases, and gyro angular displacements. The second ignores correlations, leading to a filter that estimates attitude and gyro biases only. Simulation comparisons are shown for both filters. The work presented in this paper focuses only on attitude estimation using rate-integrating gyros, but it can easily be extended to other applications such as inertial navigation, which estimates attitude and position.
Earth Science Datacasting v2.0
NASA Technical Reports Server (NTRS)
Bingham, Andrew W.; Deen, Robert G.; Hussey, Kevin J.; Stough, Timothy M.; McCleese, Sean W.; Toole, Nicholas T.
2012-01-01
The Datacasting software, which consists of a server and a client, has been developed as part of the Earth Science (ES) Datacasting project. The goal of ES Datacasting is to provide scientists the ability to automatically and continuously download Earth science data that meets a precise, predefined need, and then to instantaneously visualize it on a local computer. This is achieved by applying the concept of podcasting to deliver science data over the Internet using RSS (Really Simple Syndication) XML feeds. By extending the RSS specification, scientists can filter a feed and only download the files that are required for a particular application (for example, only files that contain information about a particular event, such as a hurricane or flood). The extension also provides the ability for the client to understand the format of the data and visualize the information locally. The server part enables a data provider to create and serve basic Datacasting (RSS-based) feeds. The user can subscribe to any number of feeds, view the information related to each item contained within a feed (including browse pre-made images), manually download files associated with items, and place these files in a local store. The client-server architecture enables users to: a) Subscribe and interpret multiple Datacasting feeds (same look and feel as a typical mail client), b) Maintain a list of all items within each feed, c) Enable filtering on the lists based on different metadata attributes contained within the feed (list will reference only data files of interest), d) Visualize the reference data and associated metadata, e) Download files referenced within the list, and f) Automatically download files as new items become available.
Infrared image background modeling based on improved Susan filtering
NASA Astrophysics Data System (ADS)
Yuehua, Xia
2018-02-01
When SUSAN filter is used to model the infrared image, the Gaussian filter lacks the ability of direction filtering. After filtering, the edge information of the image cannot be preserved well, so that there are a lot of edge singular points in the difference graph, increase the difficulties of target detection. To solve the above problems, the anisotropy algorithm is introduced in this paper, and the anisotropic Gauss filter is used instead of the Gauss filter in the SUSAN filter operator. Firstly, using anisotropic gradient operator to calculate a point of image's horizontal and vertical gradient, to determine the long axis direction of the filter; Secondly, use the local area of the point and the neighborhood smoothness to calculate the filter length and short axis variance; And then calculate the first-order norm of the difference between the local area of the point's gray-scale and mean, to determine the threshold of the SUSAN filter; Finally, the built SUSAN filter is used to convolution the image to obtain the background image, at the same time, the difference between the background image and the original image is obtained. The experimental results show that the background modeling effect of infrared image is evaluated by Mean Squared Error (MSE), Structural Similarity (SSIM) and local Signal-to-noise Ratio Gain (GSNR). Compared with the traditional filtering algorithm, the improved SUSAN filter has achieved better background modeling effect, which can effectively preserve the edge information in the image, and the dim small target is effectively enhanced in the difference graph, which greatly reduces the false alarm rate of the image.
ERIC Educational Resources Information Center
Ward, John; And Others
1992-01-01
Describes inexpensive science materials for doing science activities using the steps in the learning cycle: engage, explore, explain, extend, and evaluate. The hands-on activities help students construct knowledge of dissolving and filtering, chemical reactions, conductivity of metals, heat absorption, motion (frictionless puck), sound production…
VisGets: coordinated visualizations for web-based information exploration and discovery.
Dörk, Marian; Carpendale, Sheelagh; Collins, Christopher; Williamson, Carey
2008-01-01
In common Web-based search interfaces, it can be difficult to formulate queries that simultaneously combine temporal, spatial, and topical data filters. We investigate how coordinated visualizations can enhance search and exploration of information on the World Wide Web by easing the formulation of these types of queries. Drawing from visual information seeking and exploratory search, we introduce VisGets--interactive query visualizations of Web-based information that operate with online information within a Web browser. VisGets provide the information seeker with visual overviews of Web resources and offer a way to visually filter the data. Our goal is to facilitate the construction of dynamic search queries that combine filters from more than one data dimension. We present a prototype information exploration system featuring three linked VisGets (temporal, spatial, and topical), and used it to visually explore news items from online RSS feeds.
Optimal beamforming in ultrasound using the ideal observer.
Abbey, Craig K; Nguyen, Nghia Q; Insana, Michael F
2010-08-01
Beamforming of received pulse-echo data generally involves the compression of signals from multiple channels within an aperture. This compression is irreversible, and therefore allows the possibility that information relevant for performing a diagnostic task is irretrievably lost. The purpose of this study was to evaluate information transfer in beamforming using a previously developed ideal observer model to quantify diagnostic information relevant to performing a task. We describe an elaborated statistical model of image formation for fixed-focus transmission and single-channel reception within a moving aperture, and we use this model on a panel of tasks related to breast sonography to evaluate receive-beamforming approaches that optimize the transfer of information. Under the assumption that acquisition noise is well described as an additive wide-band Gaussian white-noise process, we show that signal compression across receive-aperture channels after a 2-D matched-filtering operation results in no loss of diagnostic information. Across tasks, the matched-filter beamformer results in more information than standard delay-and-sum beamforming in the subsequent radio-frequency signal by a factor of two. We also show that for this matched filter, 68% of the information gain can be attributed to the phase of the matched-filter and 21% can be attributed to the amplitude. A 1-D matched filtering along axial lines shows no advantage over delay-andsum, suggesting an important role for incorporating correlations across different aperture windows in beamforming. We also show that a post-compression processing before the computation of an envelope is necessary to pass the diagnostic information in the beamformed radio-frequency signal to the final envelope image.