Sample records for extended marine oxygen

  1. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes.

    PubMed

    Hofmann, Matthias; Schellnhuber, Hans-Joachim

    2009-03-03

    Rising atmospheric CO(2) levels will not only drive future global mean temperatures toward values unprecedented during the whole Quaternary but will also lead to massive acidification of sea water. This constitutes by itself an anthropogenic planetary-scale perturbation that could significantly modify oceanic biogeochemical fluxes and severely damage marine biota. As a step toward the quantification of such potential impacts, we present here a simulation-model-based assessment of the respective consequences of a business-as-usual fossil-fuel-burning scenario where a total of 4,075 Petagrams of carbon is released into the atmosphere during the current millennium. In our scenario, the atmospheric pCO(2) level peaks at approximately 1,750 microatm in the year 2200 while the sea-surface pH value drops by >0.7 units on global average, inhibiting the growth of marine calcifying organisms. The study focuses on quantifying 3 major concomitant effects. The first one is a significant (climate-stabilizing) negative feedback on rising pCO(2) levels as caused by the attenuation of biogenic calcification. The second one is related to the biological carbon pump. Because mineral ballast, notably CaCO(3), is found to play a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a third effect with severe consequences: Because organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans in our model world--with potentially harmful impacts on a variety of marine ecosystems.

  2. Oxygen Minimum Zones in Miniature: Microbial Community Diversity, Activity, and Assembly Across Oxygen Gradients in Meromictic Marine Lakes, Palau

    NASA Astrophysics Data System (ADS)

    Beman, J. M.

    2016-02-01

    Oxygen minimum zones (OMZs) play a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet our understanding of these changes is limited by a lack of systematic analyses of low-oxygen ecosystems. In particular, forecasting biogeochemical feedbacks to deoxygenation requires detailed knowledge of microbial community assembly and activity as oxygen declines. Marine `lakes'—isolated bodies of seawater surrounded by land—are an ideal comparative system, as they provide a pronounced oxygen gradient extending from well-mixed, holomictic lakes to stratified, meromictic lakes that vary in their extent of anoxia. We examined 13 marine lakes using pyrosequencing of 16S rRNA genes, quantitative PCR for nitrogen (N)- and sulfur (S)-cycling functional genes and groups, and N- and carbon (C)-cycling rate measurements. All lakes were inhabited by well-known marine bacteria, demonstrating the broad relevance of this study system. Microbial diversity was typically highest in the anoxic monimolimnion of meromictic lakes, with marine cyanobacteria, SAR11, and other common bacteria replaced by anoxygenic phototrophs, sulfate-reducing bacteria (SRBs), and SAR406 in the monimolimnion. Denitrifier nitrite reductase (nirS) genes were also detected alongside high abundances (>106 ml-1) of dissimilatory sulfite reductase (dsrA) genes from SRBs in the monimolimnion. Sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis=76%) and deterministic processes dominated community assembly at all depths (nearest taxon index values >4). These results indicate that oxygen is a strong, deterministic driver of microbial community assembly. We also observed enhanced N- and C-cycling rates along the transition from hypoxic to anoxic to sulfidic conditions, suggesting that microbial communities form a positive feedback loop that may accelerate deoxygenation and OMZ expansion.

  3. Identification of an Archean marine oxygen oasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riding, Dr Robert E; Fralick, Dr Philip; Liang, Liyuan

    2014-01-01

    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insolublemore » Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.« less

  4. Cryptic oxygen cycling in anoxic marine zones

    PubMed Central

    Padilla, Cory C.; Stewart, Frank J.; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter

    2017-01-01

    Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30–50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling. PMID:28716941

  5. Cryptic oxygen cycling in anoxic marine zones.

    PubMed

    Garcia-Robledo, Emilio; Padilla, Cory C; Aldunate, Montserrat; Stewart, Frank J; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter

    2017-08-01

    Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30-50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O 2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O 2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O 2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O 2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling.

  6. Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions.

    PubMed

    Lagos, Marcelo E; Barneche, Diego R; White, Craig R; Marshall, Dustin J

    2017-06-01

    Biological invasions are one of the biggest threats to global biodiversity. Marine artificial structures are proliferating worldwide and provide a haven for marine invasive species. Such structures disrupt local hydrodynamics, which can lead to the formation of oxygen-depleted microsites. The extent to which native fauna can cope with such low oxygen conditions, and whether invasive species, long associated with artificial structures in flow-restricted habitats, have adapted to these conditions remains unclear. We measured water flow and oxygen availability in marinas and piers at the scales relevant to sessile marine invertebrates (mm). We then measured the capacity of invasive and native marine invertebrates to maintain metabolic rates under decreasing levels of oxygen using standard laboratory assays. We found that marinas reduce water flow relative to piers, and that local oxygen levels can be zero in low flow conditions. We also found that for species with erect growth forms, invasive species can tolerate much lower levels of oxygen relative to native species. Integrating the field and laboratory data showed that up to 30% of available microhabitats within low flow environments are physiologically stressful for native species, while only 18% of the same habitat is physiologically stressful for invasive species. These results suggest that invasive species have adapted to low oxygen habitats associated with manmade habitats, and artificial structures may be creating niche opportunities for invasive species. © 2017 John Wiley & Sons Ltd.

  7. Low head oxygenator performance characterization for marine recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the effect of temperature (20 and 25 ºC), salinity (10, 15, and 20 ppt), and dissolved oxygen levels within low head oxygenator (LHO) outlet water on oxygen transfer efficiency (OTE) of LHOs for a planned marine recirculating aquaculture system (RAS). Test results indicated tha...

  8. Tracking Early Jurassic marine (de)oxygenation

    NASA Astrophysics Data System (ADS)

    Them, T. R., II; Caruthers, A. H.; Gill, B. C.; Gröcke, D. R.; Marroquín, S. M.; Owens, J. D.

    2017-12-01

    widespread marine deoxygenation was prevalent before and after the carbon isotope-defined T-OAE, which suggests significant oxygen consumption through carbon remineralization pre- and post-OAE. Thus, the OAE actually represents the interval of minimum oceanic oxygen and maximum euxinia, which primes the system for maximum organic carbon burial.

  9. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  10. Microbial community diversity, structure and assembly across oxygen gradients in meromictic marine lakes, Palau.

    PubMed

    Meyerhof, Matthew S; Wilson, Jesse M; Dawson, Michael N; Michael Beman, J

    2016-12-01

    Microbial communities consume oxygen, alter biogeochemistry and compress habitat in aquatic ecosystems, yet our understanding of these microbial-biogeochemical-ecological interactions is limited by a lack of systematic analyses of low-oxygen ecosystems. Marine lakes provide an ideal comparative system, as they range from well-mixed holomictic lakes to stratified, anoxic, meromictic lakes that vary in their vertical extent of anoxia. We examined microbial communities inhabiting six marine lakes and one ocean site using pyrosequencing of 16S rRNA genes. Microbial richness and evenness was typically highest in the anoxic monimolimnion of meromictic lakes, with common marine bacteria present in mixolimnion communities replaced by anoxygenic phototrophs, sulfate-reducing bacteria and SAR406 in the monimolimnion. These sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis = 68%-76%) - particularly oxygen and pH. However, in those lakes with the steepest oxygen gradients, salinity and dissolved nutrients were important secondary constraining variables, indicating that subtle but substantive differences in microbial communities occur within similar low-oxygen habitats. Deterministic processes were a dominant influence on whole community assembly (all nearest taxon index values >4), demonstrating that the strong environmental gradients present in meromictic marine lakes drive microbial community assembly. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    NASA Astrophysics Data System (ADS)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  12. Evaluating the Impact of Changes in Oceanic Dissolved Oxygen on Marine Nitrous Oxide

    NASA Astrophysics Data System (ADS)

    Suntharalingam, Parvadha; Buitenhuis, Erik; Schmidtko, Sunke; Andrews, Oliver; LeQuere, Corinne

    2013-04-01

    Emissions of the greenhouse gas nitrous-oxide (N2O) from oceanic oxygen minimum zones (OMZs) in the Equatorial Pacific and Northwest Indian Ocean are believed to provide a significant portion of the global oceanic flux to the atmosphere. Mechanisms of marine N2O production and consumption in these regions display significant sensitivity to ambient oxygen, with high yields at low oxygen levels (O2 < 50 micromol/L), and N2O depletion via denitrification in anoxic zones. These OMZ regions display large gradients in sub-surface N2O, and high rates of N2O turnover that far exceed those observed in the open ocean. Recent studies have suggested that possible expansion of oceanic OMZs in a warming climate, could lead to significant changes in N2O emissions from these zones. In this analysis we employ a global ocean biogeochemistry model (NEMO-PlankTOM), which includes representation of the marine N2O cycle, to explore the impact of changes in dissolved oxygen on the ocean-atmosphere N2O flux. We focus on the period 1960-2000, and evaluate the impact of estimated changes in ocean oxygen from two alternative sources : (a) the observationally-based upper-ocean oxygen distributions and trends of Stramma et al. [2012]; (b) simulated oxygen distributions and temporal variations from a set of CMIP5 Earth System models. We will inter-compare the oceanic N2O estimates derived from these alternative scenarios of ocean de-oxygenation. We will also discuss the implications of our results for the ability to reliably predict changes in N2O emissions under potential expansion of oceanic OMZs, particularly in view of the recently noted discrepancies between observed and modeled trends in oceanic oxygen by Stramma et al. [2012].

  13. Microbial metatranscriptomics in a permanent marine oxygen minimum zone.

    PubMed

    Stewart, Frank J; Ulloa, Osvaldo; DeLong, Edward F

    2012-01-01

    Simultaneous characterization of taxonomic composition, metabolic gene content and gene expression in marine oxygen minimum zones (OMZs) has potential to broaden perspectives on the microbial and biogeochemical dynamics in these environments. Here, we present a metatranscriptomic survey of microbial community metabolism in the Eastern Tropical South Pacific OMZ off northern Chile. Community RNA was sampled in late austral autumn from four depths (50, 85, 110, 200 m) extending across the oxycline and into the upper OMZ. Shotgun pyrosequencing of cDNA yielded 180,000 to 550,000 transcript sequences per depth. Based on functional gene representation, transcriptome samples clustered apart from corresponding metagenome samples from the same depth, highlighting the discrepancies between metabolic potential and actual transcription. BLAST-based characterizations of non-ribosomal RNA sequences revealed a dominance of genes involved with both oxidative (nitrification) and reductive (anammox, denitrification) components of the marine nitrogen cycle. Using annotations of protein-coding genes as proxies for taxonomic affiliation, we observed depth-specific changes in gene expression by key functional taxonomic groups. Notably, transcripts most closely matching the genome of the ammonia-oxidizing archaeon Nitrosopumilus maritimus dominated the transcriptome in the upper three depths, representing one in five protein-coding transcripts at 85 m. In contrast, transcripts matching the anammox bacterium Kuenenia stuttgartiensis dominated at the core of the OMZ (200 m; 1 in 12 protein-coding transcripts). The distribution of N. maritimus-like transcripts paralleled that of transcripts matching ammonia monooxygenase genes, which, despite being represented by both bacterial and archaeal sequences in the community DNA, were dominated (> 99%) by archaeal sequences in the RNA, suggesting a substantial role for archaeal nitrification in the upper OMZ. These data, as well as those

  14. Climate change affects marine fishes through the oxygen limitation of thermal tolerance.

    PubMed

    Pörtner, Hans O; Knust, Rainer

    2007-01-05

    A cause-and-effect understanding of climate influences on ecosystems requires evaluation of thermal limits of member species and of their ability to cope with changing temperatures. Laboratory data available for marine fish and invertebrates from various climatic regions led to the hypothesis that, as a unifying principle, a mismatch between the demand for oxygen and the capacity of oxygen supply to tissues is the first mechanism to restrict whole-animal tolerance to thermal extremes. We show in the eelpout, Zoarces viviparus, a bioindicator fish species for environmental monitoring from North and Baltic Seas (Helcom), that thermally limited oxygen delivery closely matches environmental temperatures beyond which growth performance and abundance decrease. Decrements in aerobic performance in warming seas will thus be the first process to cause extinction or relocation to cooler waters.

  15. The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools.

    PubMed

    Rees, J F; de Wergifosse, B; Noiset, O; Dubuisson, M; Janssens, B; Thompson, E M

    1998-04-01

    Bioluminescence, the emission of ecologically functional light by living organisms, emerged independently on several occasions, yet the evolutionary origins of most bioluminescent systems remain obscure. We propose that the luminescent substrates of the luminous reactions (luciferins) are the evolutionary core of most systems, while luciferases, the enzymes catalysing the photogenic oxidation of the luciferin, serve to optimise the expression of the endogenous chemiluminescent properties of the luciferin. Coelenterazine, a luciferin occurring in many marine bioluminescent groups, has strong antioxidative properties as it is highly reactive with reactive oxygen species such as the superoxide anion or peroxides. We suggest that the primary function of coelenterazine was originally the detoxification of the deleterious oxygen derivatives. The functional shift from its antioxidative to its light-emitting function might have occurred when the strength of selection for antioxidative defence mechanisms decreased. This might have been made possible when marine organisms began colonising deeper layers of the oceans, where exposure to oxidative stress is considerably reduced because of reduced light irradiance and lower oxygen levels. A reduction in metabolic activity with increasing depth would also have decreased the endogenous production of reactive oxygen species. Therefore, in these organisms, mechanisms for harnessing the chemiluminescence of coelenterazine in specialised organs could have developed, while the beneficial antioxidative properties were maintained in other tissues. The full range of graded irradiance in the mesopelagic zone, where the majority of organisms are bioluminescent, would have provided a continuum for the selection and improvement of proto-bioluminescence. Although the requirement for oxygen or reactive oxygen species observed in bioluminescent systems reflects the high energy required to produce visible light, it may suggest that oxygen

  16. Swarming Unmanned Aerial Vehicles (UAVS): Extending Marine Aviation Ground Task Force Communications Using UAVS

    DTIC Science & Technology

    2015-03-02

    balloons , large UAVs, and satellite communications are all employed to mitigate LOS and OTH communication on the battlefield. The Marine Corps’ fleets...Phang, N. S. (2006). Tethered operation of autonomous aerial vehicles to provide extended fields of view for autonomous ground vehicles (Master’s

  17. NC10 Bacteria in a Marine Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Padilla, C. C.; Bristow, L. A.; Benson, C. R.; Sarode, N. D.; Girguis, P. R.; Glass, J. B.; DiChristina, T. J.; Thamdrup, B.; Stewart, F. J.

    2014-12-01

    Marine oxygen minimum zones (OMZs) are key regions of nitrogen cycling and nitrogen loss as N2. The potential for methane cycling to influence OMZ nitrogen budgets remains largely unknown. The anaerobic oxidation of methane (AOM) coupled to nitrite or nitrate reduction has been shown to be a potential source of methane consumption, N loss, and oxygen production in freshwater sediments, but has not been described for marine pelagic environments. Nitrite-dependent AOM is performed by bacteria of the candidate division NC10 through an intra-aerobic pathway involving the dismutation of nitric oxide to O2 and N2. We explored the potential that NC10-like bacteria are present and active in the anoxic, nitrite-rich OMZ of the Eastern Tropical North Pacific. Community transcriptome sequencing confirmed the expression of genes with top matches to the NC10 bacterium 'Candidatus Methylomirabilis oxyfera.' NC10-like transcripts increased in relative abundance with depth into the anoxic OMZ core and included genes of aerobic methanotrophy and denitrification, as well as high numbers of transcripts matching norZ nitric oxide reductase, hypothesized to play a role in the O2-yielding dismutation reaction. Phylogenetic analysis of OMZ particulate methane monooxygenase (pmoA) and 16S rRNA gene sequences recovered by PCR revealed multiple clades of NC10 phylotypes in the OMZ. Preliminary data from OMZ enrichments revealed methane-dependent nitrite consumption, but further characterization is required to identify the pathways and organisms mediating this process. These findings expand the known environmental range of NC10 and suggest the possibility of previously uncharacterized linkages between OMZ nitrogen and methane cycles.

  18. Measurement in a marine environment using low cost sensors of temperature and dissolved oxygen

    USGS Publications Warehouse

    Godshall, F.A.; Cory, R.L.; Phinney, D.E.

    1974-01-01

    Continuous records of physical parameters of the marine environment are difficult as well as expensive to obtain. This paper describes preliminary results of an investigative program with the purpose of developing low cost time integrating measurement and averaging devices for water temperature and dissolved oxygen. Measurements were made in an estuarine area of the Chesapeake Bay over two week periods. With chemical thermometers average water temperature for the two week period was found to be equal to average water temperature measured with thermocouples plus or minus 1.0 C. The slow diffusion of oxygen through the semipermiable sides of plastic bottles permitted the use of water filled bottles to obtain averaged oxygen measurements. Oxygen measurements for two week averaging times using 500 ml polyethylene bottles were found to vary from conventionally measured and averaged dissolved oxygen by about 1.8 mg/l. ?? 1974 Estuarine Research Federation.

  19. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota

    PubMed Central

    Qin, Wei; Carlson, Laura T.; Armbrust, E. Virginia; Devol, Allan H.; Moffett, James W.; Stahl, David A.; Ingalls, Anitra E.

    2015-01-01

    Marine ammonia-oxidizing archaea (AOA) are among the most abundant of marine microorganisms, spanning nearly the entire water column of diverse oceanic provinces. Historical patterns of abundance are preserved in sediments in the form of their distinctive glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids. The correlation between the composition of GDGTs in surface sediment and the overlying annual average sea surface temperature forms the basis for a paleotemperature proxy (TEX86) that is used to reconstruct surface ocean temperature as far back as the Middle Jurassic. However, mounting evidence suggests that factors other than temperature could also play an important role in determining GDGT distributions. We here use a study set of four marine AOA isolates to demonstrate that these closely related strains generate different TEX86–temperature relationships and that oxygen (O2) concentration is at least as important as temperature in controlling TEX86 values in culture. All of the four strains characterized showed a unique membrane compositional response to temperature, with TEX86-inferred temperatures varying as much as 12 °C from the incubation temperatures. In addition, both linear and nonlinear TEX86–temperature relationships were characteristic of individual strains. Increasing relative abundance of GDGT-2 and GDGT-3 with increasing O2 limitation, at the expense of GDGT-1, led to significant elevations in TEX86-derived temperature. Although the adaptive significance of GDGT compositional changes in response to both temperature and O2 is unclear, this observation necessitates a reassessment of archaeal lipid-based paleotemperature proxies, particularly in records that span low-oxygen events or underlie oxygen minimum zones. PMID:26283385

  20. Mariner Venus-Mercury 1973 project. Volume 2: Extended mission-Mercury 2 and 3 encounters

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Mariner Venus/Mercury 1973 mission operations Extended Mission is described. The activities are summarized from shortly after Mercury I through the end of mission. The operational activities are reported by Mission Operations Systems functions providing a brief summary from each discipline. Based on these experiences recommendations for future projects are made.

  1. Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones.

    PubMed

    Glass, Jennifer B; Kretz, Cecilia B; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L; Buck, Kristen N; Landing, William M; Morton, Peter L; Moffett, James W; Giovannoni, Stephen J; Vergin, Kevin L; Stewart, Frank J

    2015-01-01

    Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO[Formula: see text], NO[Formula: see text], Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.

  2. Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones

    PubMed Central

    Glass, Jennifer B.; Kretz, Cecilia B.; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L.; Buck, Kristen N.; Landing, William M.; Morton, Peter L.; Moffett, James W.; Giovannoni, Stephen J.; Vergin, Kevin L.; Stewart, Frank J.

    2015-01-01

    Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3−, NO2−, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu. PMID:26441925

  3. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems

    PubMed Central

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems’ health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour. PMID:26200780

  4. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    PubMed

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  5. Planktonic Marine Iron-Oxidizers Drive Iron(III) Mineralization Under Low Oxygen Conditions

    NASA Astrophysics Data System (ADS)

    Luther, G. W., III; Field, E.; Findlay, A.; MacDonald, D. J.; Chan, C. S. Y.; Kato, S.

    2016-02-01

    Observations of modern microbes have led to several hypotheses on how microbes precipitated the extensive banded iron formations in the geologic record, but we have yet to resolve the exact microbial contributions. An initial hypotheses was that cyanobacteria produced oxygen that oxidized iron(II) abiotically; however, in modern environments such as microbial mats, where Fe(II) and O2 coexist, we commonly find microaerophilic chemolithotrophic iron(II)-oxidizing bacteria producing Fe(III) oxyhydroxides. This suggests that such iron-oxidizers could have inhabited niches in ancient coastal oceans where Fe(II) and O2 coexisted, and therefore contributed to iron deposits, but there is currently little evidence for planktonic marine iron-oxidizers in modern analogs. Here, we demonstrate successful cultivation of planktonic microaerophilic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay during seasonal stratification. Iron-oxidizers were associated with low oxygen concentrations and active iron redox cycling in the oxic-anoxic transition zone (<3 µM O2, <0.2 µM H2S). While cyanobacteria were also detected in this transition zone, oxygen concentrations were too low to support significant rates of abiotic iron oxidation. Instead, cyanobacteria may be providing oxygen for microaerophilic iron(II) oxidation through a symbiotic relationship that promotes oxygen consumption rather than build-up. Our results suggest that once oxygenic photosynthesis evolved, microaerophilic chemolithotrophic iron(II)-oxidizers were likely important drivers of iron(III) mineralization in ancient oceans.

  6. DETERMINATION OF LETHAL DISSOLVED OXYGEN LEVELS FOR SELECTED MARINE AND ESTUARINE FISHES, CRUSTACEANS AND A BIVALVE

    EPA Science Inventory

    The objective of this study was to provide a database of the incipient lethal concentrations for reduced dissolved oxygen (DO) for selected marine and estuarine species including 12 species of fish, 9 crustaceans, and 1 bivalve. All species occur in the Virginian Province, USA, w...

  7. Calibration-free technique for the measurement of oxygen saturation changes in muscles of marine mammals and its proof of concept

    NASA Astrophysics Data System (ADS)

    Ortega-Martinez, Antonio; Goenka, Chhavi; Booker, Marloes; Grange, Robert M. H.; Hindle, Allyson G.; Franco, Walfre

    2018-02-01

    Marine mammals possess impressive breath-holding capabilities made possible by physiological adjustments during dives. Studying marine mammals in their natural environment unravels vital information about these physiological adjustments particularly when we can monitor altered dive behavior in response to stressful situations such as human-induced oceanic disturbances, presence of predators and altered prey distributions. An important indicator of physiological status during submergence is the change in oxygen saturation in the muscles and blood of these mammals. In this work, we aim to investigate oxygen storage and consumption in the muscles of free-diving elephant seals when exposed to disturbances such as sonar or predator sounds while they are at sea. Optical oxygen sensors are a mature technology with multiple medical applications that provide a way to measure oxygenation changes in biological tissues in a minimally invasive manner. While these sensors are well calibrated and readily available for humans, they are still inadequate for marine mammals primarily due to a very small number of test candidates and therefore little data is available for validation and calibration. We propose a probe geometry and associated mathematical model for measuring muscle oxygenation in seals based on near infrared diffuse transport with no need for calibration. A prototype based on this concept has been designed and tested on humans and rats. We use the test results to discuss the advantages and limitations of the approach. We also detail the constraints on size, sensor location, electronics, light source properties and detector characteristics posed by the unique biology of seals.

  8. Extending the Marine Microcosm Laboratory

    ERIC Educational Resources Information Center

    Ryswyk, Hal Van; Hall, Eric W.; Petesch, Steven J.; Wiedeman, Alice E.

    2007-01-01

    The traditional range of marine microcosm laboratory experiments is presented as an ideal environment to teach the entire analysis process. The microcosm lab provides student-centered approach with opportunities for collaborative learning and to develop critical communication skills.

  9. The impact of physiological oxygen during culture, and vitrification for cryopreservation, on the outcome of extended culture in human IVF.

    PubMed

    Gardner, David K

    2016-02-01

    Extended culture has facilitated the move to single blastocyst transfer, resulting in significant increases in implantation and live birth rate, while concomitantly reducing fetal loss during pregnancy. However, concerns have been raised regarding subsequent neo-natal outcomes following extended culture. Analysis of the literature reveals differences in outcomes according to geographical region and between individual clinics. A common factor amongst reports of potentially adverse outcomes following blastocyst transfer appears to be that atmospheric (~20%) oxygen was typically employed for embryo culture. Clinics and countries utilizing physiological concentrations of oxygen (~5%) have not reported adverse perinatal outcomes with blastocyst transfer. Atmospheric oxygen imposes significant negative effects upon the embryo's molecular and cellular physiology, and further it increases the sensitivity of the preimplantation embryo to other stressors in the laboratory. With the recent adoption of vitrification for blastocyst cryopreservation, cumulative pregnancy rates per cycle with extended culture will increase significantly. Consequently, rather than perceiving extended culture as a potentially negative procedure, it is concluded that neo-natal data need to be interpreted in light of the conditions used to culture and cryopreserve blastocysts, and that furthermore a policy of embryo culture using 20% oxygen can no longer be justified. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Oxygen K edge scattering from bulk comb diblock copolymer reveals extended, ordered backbones above lamellar order-disorder transition

    DOE PAGES

    Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; ...

    2016-12-14

    The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc 12-b-pNte 21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODTmore » corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less

  11. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    NASA Astrophysics Data System (ADS)

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-06-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  12. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer.

    PubMed

    Mungall, Emma L; Abbatt, Jonathan P D; Wentzell, Jeremy J B; Lee, Alex K Y; Thomas, Jennie L; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A; Papakyriakou, Tim; Willis, Megan D; Liggio, John

    2017-06-13

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  13. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    PubMed Central

    Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Miller, Lisa A.; Papakyriakou, Tim; Liggio, John

    2017-01-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate. PMID:28559340

  14. Molecular tools for investigating microbial community structure and function in oxygen-deficient marine waters.

    PubMed

    Hawley, Alyse K; Kheirandish, Sam; Mueller, Andreas; Leung, Hilary T C; Norbeck, Angela D; Brewer, Heather M; Pasa-Tolic, Ljiljana; Hallam, Steven J

    2013-01-01

    Water column oxygen (O2)-deficiency shapes food-web structure by progressively directing nutrients and energy away from higher trophic levels into microbial community metabolism resulting in fixed nitrogen loss and greenhouse gas production. Although respiratory O2 consumption during organic matter degradation is a natural outcome of a productive surface ocean, global-warming-induced stratification intensifies this process leading to oxygen minimum zone (OMZ) expansion. Here, we describe useful tools for detection and quantification of potential key microbial players and processes in OMZ community metabolism including quantitative polymerase chain reaction primers targeting Marine Group I Thaumarchaeota, SUP05, Arctic96BD-19, and SAR324 small-subunit ribosomal RNA genes and protein extraction methods from OMZ waters compatible with high-resolution mass spectrometry for profiling microbial community structure and functional dynamics. © 2013 Elsevier Inc. All rights reserved.

  15. Extended time observations of California marine stratocumulus clouds from GOES for July 1983-1987

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Harrison, Edwin F.; Young, David F.

    1990-01-01

    One of the goals of the First ISCCP Regional Experiment (FIRE) is to relate the relatively small scale (spatial and temporal) Intensive Field Observations (IFO) to larger time and space domains embodied in the Extended Time Observations (ETO) phase of the experiment. The data analyzed as part of the ETO are to be used to determine some climatological features of the limited area which encompasses the Marine Stratocumulus IFO which took place between 29 June and 19 July 1987 off the coast of southern California.

  16. Triple oxygen isotope composition of photosynthetic oxygen

    NASA Astrophysics Data System (ADS)

    van der Meer, Anne; Kaiser, Jan

    2013-04-01

    The measurement of biological production rates is essential for our understanding how marine ecosystems are sustained and how much CO2 is taken up through aquatic photosynthesis. Traditional techniques to measure marine production are laborious and subject to systematic errors. A biogeochemical approach based on triple oxygen isotope measurements in dissolved oxygen (O2) has been developed over the last few years, which allows the derivation of gross productivity integrated over the depth of the mixed layer and the time-scale of O2 gas exchange (Luz and Barkan, 2000). This approach exploits the relative 17O/16O and 18O/16O isotope ratio differences of dissolved O2 compared to atmospheric O2 to work out the rate of biological production. Two parameters are key for this calculation: the isotopic composition of dissolved O2 in equilibrium with air and the isotopic composition of photosynthetic oxygen. Recently, a controversy has emerged in the literature over these parameters (Kaiser, 2011) and one of the goals of this research is to provide additional data to resolve this controversy. In order to obtain more information on the isotopic signature of biological oxygen, laboratory experiments have been conducted to determine the isotopic composition of oxygen produced by different phytoplankton cultures.

  17. Putting oxygen and temperature thresholds of marine animals in context of environmental change in coastal seas: a regional perspective for the Scotian Shelf and Gulf of St. Lawrence

    NASA Astrophysics Data System (ADS)

    Brennan, Catherine E.; Blanchard, Hannah; Fennel, Katja

    2014-05-01

    We surveyed the literature in order to compile reported oxygen, temperature, salinity and depth preferences and thresholds of important marine species found in the Gulf of St. Lawrence and the Scotian Shelf regions of the northwest North Atlantic. We determined species importance based on the existence of a commercial fishery, a threatened or at risk status, or by meeting the following criteria: bycatch, baitfish, invasive, vagrant, important for ecosystem energy transfer, and predators and prey of the above species. Using the dataset compiled for the 53 regional fishes and macroinvertebrates, we rank species (including for different lifestages) by their maximum thermal limit, as well as by the lowest oxygen concentration tolerated before negative impacts (e.g. physiological stress), 50% mortality or 100% mortality are experienced. Additionally, we compare these thresholds to observed marine deoxygenation trends at multiple sites, and observed surface warming trends. This results in an assessment of which regional species are most vulnerable to future warming and oxygen depletion, and a first-order estimate of the consequences of thermal and oxygen stress on a highly productive marine shelf. If regional multi-decadal oxygen and temperature trends continue through the 21st century, many species will lose favorable oxygen conditions, experience oxygen-stress, or disappear due to insufficient oxygen. Future warming can additionally displace vulnerable species, though we note that large natural variability in environmental conditions may amplify or dampen the effects of anthropogenic surface warming trends. This dataset may be combined with regional ocean model predictions to map future species distributions.

  18. Oxygen isotopes of marine mollusc shells record Eocene elevation change in the Pyrenees

    NASA Astrophysics Data System (ADS)

    Huyghe, Damien; Mouthereau, Frédéric; Emmanuel, Laurent

    2012-09-01

    Constraining paleoaltimetry of collisional orogens is critical to understand the dynamics of topographic evolution and climate/tectonics retroactions. Here, we use oxygen stable-isotope record on oyster shells, preserved in marine foreland deposits, to examine the past elevation of the Pyrenees during the Eocene. Our approach is based on the comparison with the Paris basin, an intracratonic basin not influenced by orogenic growth. The finding of a shift of 1.5‰ between 49 and 41 Ma, indicating more negative δ18Oc in the south Pyrenean foreland, is interpreted to reflect the inflow of river water sourced from higher elevation in the Pyrenees. To test this and provide paleoelevation estimate, we adopt a morphologic-hydrological model accounting for the hypsometry of drainage basin. Our best fitting model shows that the Pyrenees rose up to 2000 m. This indicates that the Pyrenees reached high elevation in the Eocene, thus providing new critical constraints on their long-term orogenic development. δ18O of marine mollusc shells are proved potentially attractive for paleoelevation studies, especially for mountain belts where elevated continental surfaces have not been preserved.

  19. Marine biogeochemistry: Methylmercury manufacture

    NASA Astrophysics Data System (ADS)

    Cossa, Daniel

    2013-10-01

    The neurotoxin methylmercury can accumulate in marine food webs, contaminating seafood. An analysis of the isotopic composition of fish in the North Pacific suggests that much of the mercury that enters the marine food web originates from low-oxygen subsurface waters.

  20. 46 CFR 197.452 - Oxygen cleaning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Oxygen cleaning. 197.452 Section 197.452 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS....452 Oxygen cleaning. The diving supervisor shall ensure that equipment used with oxygen or oxygen...

  1. 46 CFR 197.452 - Oxygen cleaning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Oxygen cleaning. 197.452 Section 197.452 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS....452 Oxygen cleaning. The diving supervisor shall ensure that equipment used with oxygen or oxygen...

  2. 46 CFR 197.452 - Oxygen cleaning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Oxygen cleaning. 197.452 Section 197.452 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS....452 Oxygen cleaning. The diving supervisor shall ensure that equipment used with oxygen or oxygen...

  3. 46 CFR 197.452 - Oxygen cleaning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Oxygen cleaning. 197.452 Section 197.452 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS....452 Oxygen cleaning. The diving supervisor shall ensure that equipment used with oxygen or oxygen...

  4. 46 CFR 197.452 - Oxygen cleaning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Oxygen cleaning. 197.452 Section 197.452 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS....452 Oxygen cleaning. The diving supervisor shall ensure that equipment used with oxygen or oxygen...

  5. 2-Methylhopanoids: Biomarkers for Cyanobacteria and for Oxygenic Photosynthesis

    NASA Technical Reports Server (NTRS)

    Summons, R. E.; Jahnke, L. L.; Hope, J. M.; Logan, G. A.

    1999-01-01

    This paper reports new biomarker and carbon isotopic data for cultured cyanobacteria, cyano-bacterially- dominated ecosystems and ancient sedi-ments and petroleum. We found that cyanobacteria are the predominant source of a distinctive membrane lipid biomarker, namely 2- methylbacteriohopanepolyol (2-Me-BHP). We then sought evidence for a geochemical record of the fossil hydrocarbon analogues of these compounds (2- methylhopanes) and found a trend toward their in-creased relative abundance in marine sediments going back through geological time to 2500 Ma. We conclude that cyanobacteria were the dominant form of phytoplankton and source of molecular oxygen in the Proterozoic ocean. Extending the geological record of cyanobacteria further to Archean times is now a matter of finding a suitably preserved rock record. Additional information is contained in the original extended abstract.

  6. Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system?

    PubMed

    Morin, Scott J

    2017-03-01

    There has been much debate regarding the optimal oxygen tension in clinical embryo culture. The majority of the literature to date has compared 5% oxygen to atmospheric levels (20-21%). While the majority of modern IVF labs have accepted the superiority of 5% oxygen tension, a new debate has emerged regarding whether a further reduction after day 3 of development represents the most physiologic system. This new avenue of research is based on the premise that oxygen tension is in fact lower in the uterus than in the oviduct and that the embryo crosses the uterotubal junction sometime on day 3. While data are currently limited, recent experience with ultra-low oxygen (2%) after day 3 of development suggests that the optimal oxygen tension in embryo culture may depend on the stage of development. This review article will consider the current state of the literature and discuss ongoing efforts at studying ultra-low oxygen tension in extended culture.

  7. Marine species in ambient low-oxygen regions subject to double jeopardy impacts of climate change.

    PubMed

    Stortini, Christine H; Chabot, Denis; Shackell, Nancy L

    2017-06-01

    We have learned much about the impacts of warming on the productivity and distribution of marine organisms, but less about the impact of warming combined with other environmental stressors, including oxygen depletion. Also, the combined impact of multiple environmental stressors requires evaluation at the scales most relevant to resource managers. We use the Gulf of St. Lawrence, Canada, characterized by a large permanently hypoxic zone, as a case study. Species distribution models were used to predict the impact of multiple scenarios of warming and oxygen depletion on the local density of three commercially and ecologically important species. Substantial changes are projected within 20-40 years. A eurythermal depleted species already limited to shallow, oxygen-rich refuge habitat (Atlantic cod) may be relatively uninfluenced by oxygen depletion but increase in density within refuge areas with warming. A more stenothermal, deep-dwelling species (Greenland halibut) is projected to lose ~55% of its high-density areas under the combined impacts of warming and oxygen depletion. Another deep-dwelling, more eurythermal species (Northern shrimp) would lose ~4% of its high-density areas due to oxygen depletion alone, but these impacts may be buffered by warming, which may increase density by 8% in less hypoxic areas, but decrease density by ~20% in the warmest parts of the region. Due to local climate variability and extreme events, and that our models cannot project changes in species sensitivity to hypoxia with warming, our results should be considered conservative. We present an approach to effectively evaluate the individual and cumulative impacts of multiple environmental stressors on a species-by-species basis at the scales most relevant to managers. Our study may provide a basis for work in other low-oxygen regions and should contribute to a growing literature base in climate science, which will continue to be of support for resource managers as climate change

  8. Extended period of K/T boundary mass extinction in the marine realm

    NASA Technical Reports Server (NTRS)

    Keller, G.

    1988-01-01

    The Cretaceous/Tertiary (K/T) boundary mass extinction has been widely recognized as a nearly instantaneous catastrophy among marine plankton such as foraminifera. However, the suddenness of this extinction event may have been overemphasized because most pelagic K/T boundary sequences are stratigraphically incomplete and generally lack the earliest Tertiary (Zones P0 and P1a) either due to carbonate dissolution and/or non-deposition. Stratigraphically complete sections appear to be restricted to continental shelf regions with high sedimentation rates and deposition well above the CCD. Such sections have been recovered from El Kef, Tunisia (1) and Brazos River, Texas. Quantitative foraminiferal analysis of these sections indicate an extinction pattern beginning below the K/T boundary and ending above the boundary. These data imply that the mass extinction event was not geologically instantaneous, but occurred over an extended period of time. Evidence supporting this conclusion is discussed.

  9. Extracellular Production of Reactive Oxygen Species by Marine Microbiota

    NASA Astrophysics Data System (ADS)

    Schneider, R. J.; Roe, K. L.; Voelker, B. M.; Hansel, C. M.

    2016-02-01

    The reactive oxygen species (ROS) superoxide (O2-) and hydrogen peroxide (H2O2) are important to the cycling of trace metals and carbon in marine systems. Previous studies have shown that biological ROS production in the ocean may be significant. We examined the ability of five common species of diatoms to produce and break down ROS in the presence and absence of light by suspending cells on filters and measuring downstream ROS concentrations using chemiluminescence probes. Results show a wide range of rates (undetectable to 7.3 x 10-16 mol cell-1 hr-1) and suggest that extracellular ROS production occurs through a variety of pathways. H2O2 decay appears to be mediated primarily by active cell processes, while O2- appears to occur through a combination of active and passive cell processes. Extracellular H2O2 production and decay were also determined for twelve species of heterotrophic bacteria using two different methodologies. Measured decay rates were consistent despite methodological differences. By contrast, large variability of production rates was observed could vary significantly even among between replicates of the same species measured using the same methodology. Although production rates cannot be stated with certainty, it is likely that extracellular H2O2 production occurs in most bacterial species.

  10. Low-Oxygen Culture Conditions Extend the Multipotent Properties of Human Retinal Progenitor Cells

    PubMed Central

    Tucker, Budd A.; Young, Michael J.

    2014-01-01

    Purpose: Development of an effective cell-based therapy is highly dependent upon having a reproducible cell source suitable for transplantation. One potential source, isolated from the developing fetal neural retina, is the human retinal progenitor cell (hRPC). One limiting factor for the use of hRPCs is their in vitro expansion limit. As such, the aim of this study was to determine whether culturing hRPCs under 3% O2 would support their proliferative capacity while maintaining multipotency. Methods: To determine the effect of low oxygen on the ability of hRPCs to self-renew, rates of proliferation and apoptosis, telomerase activity, and expression of proliferative, stemness, and differentiation markers were assessed for hRPCs cultured in 3% and 20% oxygen conditions. Results: Culture under 3% oxygen increases the proliferation rate and shifts the proliferation limit of hRPCs to greater 40 divisions. This increased capacity for proliferation is correlated with an upregulation of Ki67, CyclinD1, and telomerase activity and a decrease in p53 expression and apoptosis. Increased expression of cMyc, Klf4, Oct4, and Sox2 in 3% O2 is correlated with stabilization of both HIF1α and HIF2α. The eye field development markers Pax6, Sox2, and Otx2 are present in hRPCs up to passage 16 in 3% O2. Following in vitro differentiation hRPCs expanded in the 3% O2 were able to generate specialized retinal cells, including rods and cones. Conclusions: Low-oxygen culture conditions act to maintain both multipotency and self-renewal properties of hRPCs in vitro. The extended expansion limits permit the development of a clinical-grade reagent for transplantation. PMID:24320879

  11. Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets

    NASA Astrophysics Data System (ADS)

    Battaglia, Gianna; Joos, Fortunat

    2018-06-01

    Ocean deoxygenation is recognized as key ecosystem stressor of the future ocean and associated climate-related ocean risks are relevant for current policy decisions. In particular, benefits of reaching the ambitious 1.5 °C warming target mentioned by the Paris Agreement compared to higher temperature targets are of high interest. Here, we model oceanic oxygen, warming and their compound hazard in terms of metabolic conditions on multi-millennial timescales for a range of equilibrium temperature targets. Scenarios where radiative forcing is stabilized by 2300 are used in ensemble simulations with the Bern3D Earth System Model of Intermediate Complexity. Transiently, the global mean ocean oxygen concentration decreases by a few percent under low forcing and by 40 % under high forcing. Deoxygenation peaks about a thousand years after stabilization of radiative forcing and new steady-state conditions are established after AD 8000 in our model. Hypoxic waters expand over the next millennium and recovery is slow and remains incomplete under high forcing. Largest transient decreases in oxygen are projected for the deep sea. Distinct and near-linear relationships between the equilibrium temperature response and marine O2 loss emerge. These point to the effectiveness of the Paris climate target in reducing marine hazards and risks. Mitigation measures are projected to reduce peak decreases in oceanic oxygen inventory by 4.4 % °C-1 of avoided equilibrium warming. In the upper ocean, the decline of a metabolic index, quantified by the ratio of O2 supply to an organism's O2 demand, is reduced by 6.2 % °C-1 of avoided equilibrium warming. Definitions of peak hypoxia demonstrate strong sensitivity to additional warming. Volumes of water with less than 50 mmol O2 m-3, for instance, increase between 36 % and 76 % °C-1 of equilibrium temperature response. Our results show that millennial-scale responses should be considered in assessments of ocean deoxygenation and associated

  12. Palynology of oxygen isotope stage 6 and substage 5e from the cover beds of a marine terrace, Taranaki, New Zealand

    NASA Astrophysics Data System (ADS)

    Bussell, M. Royd

    1990-07-01

    Cover beds on uplifted Quaternary marine terraces in the Taranaki-Wanganui area of New Zealand include organic deposits which yield abundant pollen. In the west at Ohawe, marine shore platform deposits are overlain by laterally extensive lignites and laharic breccia, interbedded with alluvium and capped by tephra-rich loess. Following a time of presumably interglacial marine deposition on the platform, a long period of glacial climate is suggested by pollen floras dominated by grass and shrubland taxa. Trees were sparse, but the abundance of podocarps, Nothofagus, and tree ferns increased during at least one interval, suggesting minor climatic amelioration. Near the top of the section, a major change in regional vegetation is recorded by a dominance of pollen derived from podocarp-hardwood forest taxa, including Ascarina, interpreted as indicating a fully interglacial climate. The marine platform, previously assigned to oxygen isotope substage 5e, is now placed in stage 7. The overlying deposits were deposited during glacial stage 6, while interglacial substage 5e is recorded by sediment and pollen assemblages near the top of the section.

  13. Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone.

    PubMed

    Bryant, Jessica A; Stewart, Frank J; Eppley, John M; DeLong, Edward F

    2012-07-01

    Oxygen minimum zones (OMZs) are natural physical features of the world's oceans. They create steep physiochemical gradients in the water column, which most notably include a dramatic draw down in oxygen concentrations over small vertical distances (<100 m). Microbial communities within OMZs play central roles in ocean and global biogeochemical cycles, yet we still lack a fundamental understanding of how microbial biodiversity is distributed across OMZs. Here, we used metagenomic sequencing to investigate microbial diversity across a vertical gradient in the water column during three seasons in the Eastern Tropical South Pacific (ETSP) OMZ. Based on analysis of small subunit ribosomal RNA (SSU rRNA) gene fragments, we found that both taxonomic and phylogenetic diversity declined steeply along the transition from oxygen-rich surface water to the permanent OMZ. We observed similar declines in the diversity of protein-coding gene categories, suggesting a decrease in functional (trait) diversity with depth. Metrics of functional and trait dispersion indicated that microbial communities are phylogenetically and functionally more overdispersed in oxic waters, but clustered within the OMZ. These dispersion patterns suggest that community assembly drivers (e.g., competition, environmental filtering) vary strikingly across the oxygen gradient. To understand the generality of our findings, we compared OMZ results to two marine depth gradients in subtropical oligotrophic sites and found that the oligotrophic sites did not display similar patterns, likely reflecting unique features found in the OMZ. Finally, we discuss how our results may relate to niche theory, diversity-energy relationships and stress gradients.

  14. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water

    PubMed Central

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-01-01

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism’s photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO2. No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs. PMID:20133799

  16. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water.

    PubMed

    Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan

    2010-02-09

    Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism's photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO(2). No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.

  17. Think laterally: horizontal gene transfer from symbiotic microbes may extend the phenotype of marine sessile hosts

    PubMed Central

    Degnan, Sandie M.

    2014-01-01

    Since the origin of the animal kingdom, marine animals have lived in association with viruses, prokaryotes and unicellular eukaryotes, often as symbionts. This long and continuous interaction has provided ample opportunity not only for the evolution of intimate interactions such as sharing of metabolic pathways, but also for horizontal gene transfer (HGT) of non-metazoan genes into metazoan genomes. The number of demonstrated cases of inter-kingdom HGT is currently small, such that it is not yet widely appreciated as a significant player in animal evolution. Sessile marine invertebrates that vertically inherit bacterial symbionts, that have no dedicated germ line, or that bud or excise pluripotent somatic cells during their life history may be particularly receptive to HGT from their symbionts. Closer scrutiny of the growing number of genomes being accrued for these animals may thus reveal HGT as a regular source of novel variation that can function to extend the host phenotype metabolically, morphologically, or even behaviorally. Taxonomic identification of symbionts will help to address the intriguing question of whether past HGT events may constrain contemporary symbioses. PMID:25477875

  18. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms

    NASA Astrophysics Data System (ADS)

    McCormick, Lillian R.; Levin, Lisa A.

    2017-08-01

    Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with `fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  19. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms.

    PubMed

    McCormick, Lillian R; Levin, Lisa A

    2017-09-13

    Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with 'fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  20. Activity and diversity of aerobic methanotrophs in a coastal marine oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Padilla, C. C.; Bristow, L. A.; Sarode, N. D.; Garcia-Robledo, E.; Girguis, P. R.; Thamdrup, B.; Stewart, F. J.

    2016-02-01

    The pelagic ocean is a sink for the potent greenhouse gas methane, with methane consumption regulated primarily by aerobic methane-oxidizing bacteria (MOB). Marine oxygen minimum zones (OMZs) contain the largest pool of pelagic methane in the oceans but remain largely unexplored for their potential to harbor MOB communities and contribute to methane cycling. Here, we present meta-omic and geochemical evidence that aerobic MOB are present and active in a coastal OMZ, in Golfo Dulce, Costa Rica. Oxygen concentrations were < 50 nM below 85 m, and sulfide accumulated below 140 m, with methane concentrations ranging from trace levels above the oxycline to 78 nM at 180 m. The upper OMZ (90 m) was characterized by an abundant MOB and methylotroph community representing diverse lineages of the Methylophilaceae, Methylophaga, and Methylococcales. Of these, Type I methanotrophs of the Order Methylococcales dominated , representing >5% of total 16S rRNA genes and >19% of 16S rRNA transcripts. This peak in ribosomal abundance and activity was affiliated with methane oxidation rates of 2.6 ± 0.7 nM d-1, measured in seawater incubations with estimated O2 concentrations of 50 nM. Rates fell to zero with the addition of acetylene, an inhibitor of aerobic methanotrophy. In contrast, methane oxidation was below detection at lower depths in the OMZ (100 m and 120 m). Metatranscriptome sequencing indicated a peak at 90 m in the expression of pathways essential to Methylococcales, including aerobic methanotrophy and the RuMP pathway of carbon assimilation, as well as the serine pathway of Type II methanotrophs. Preliminary analysis of single-cell genomes suggests distinct adaptations by Methylococcales from the Golfo Dulce, helping explain the persistence of putative aerobic methanotrophs under very low oxygen in this OMZ. Taken together, these data suggest the boundary layers of OMZs, despite extreme oxygen depletion, are a niche for aerobic MOBs and therefore potentially important

  1. A Threshold in Phanerozoic Oxygen Concentrations: Evidence from Carbonate Sediment Color and Physiological Requirements of Marine Fauna

    NASA Astrophysics Data System (ADS)

    Sugla, R.; Norris, R. D.; Lyakov, J.

    2017-12-01

    In his book The Nature of the Stratigraphical Record, Derek Ager made the remarkable observation that the geologic eras of the Phanerozoic could be identified by coloration patterns of carbonate sediments in outcrops. This observation, however, was never quantified nor explained by Ager. Here, we present a record of spectral reflectance of carbonate sediments collected from sections worldwide. While sediment color is governed by many factors, global and abrupt shifts in sediment color across depositional envrionments observed here may represent a shift towards rising oxygen concentrations. Such a shift would explain changes in redox state of iron or organic matter concentrations, both factors which influence sediment color. This record is combined with a simple model of physiological requirements of marine fauna in order to infer a minimum pO2 in the atmosphere to support life. Results indicate a strong threshold change in the Earth system near the Triassic-Jurassic boundary, potentially reflecting rising atmospheric oxygen concentrations not previously recorded.

  2. Can oxygen set thermal limits in an insect and drive gigantism?

    PubMed

    Verberk, Wilco C E P; Bilton, David T

    2011-01-01

    Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods.

  3. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone

    PubMed Central

    Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2–1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms. PMID:24030599

  4. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone.

    PubMed

    Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.

  5. Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties

    NASA Astrophysics Data System (ADS)

    Richardson, Mark; Stephens, Graeme L.

    2018-03-01

    Information content analysis is used to select channels for a marine liquid cloud retrieval using the high-spectral-resolution oxygen A-band instrument on NASA's Orbiting Carbon Observatory-2 (OCO-2). Desired retrieval properties are cloud optical depth, cloud-top pressure and cloud pressure thickness, which is the geometric thickness expressed in hectopascals. Based on information content criteria we select a micro-window of 75 of the 853 functioning OCO-2 channels spanning 763.5-764.6 nm and perform a series of synthetic retrievals with perturbed initial conditions. We estimate posterior errors from the sample standard deviations and obtain ±0.75 in optical depth and ±12.9 hPa in both cloud-top pressure and cloud pressure thickness, although removing the 10 % of samples with the highest χ2 reduces posterior error in cloud-top pressure to ±2.9 hPa and cloud pressure thickness to ±2.5 hPa. The application of this retrieval to real OCO-2 measurements is briefly discussed, along with limitations and the greatest caution is urged regarding the assumption of a single homogeneous cloud layer, which is often, but not always, a reasonable approximation for marine boundary layer clouds.

  6. Seasonality of bottom water temperature in the northern North Sea reconstructed from the oxygen isotope composition of the bivalve Arctica islandica

    NASA Astrophysics Data System (ADS)

    Trofimova, Tamara; Andersson, Carin; Bonitz, Fabian

    2017-04-01

    The seasonality of temperature changes is an important characteristic of climate. However, observational data for the ocean are only available for the last 150 year from a limited number of locations. Prior to 18th century information is only available from proxy reconstructions. The vast majority of such reconstructions depend on land-based archives, primarily from dendrochronology. Established marine proxy records for the ocean, especially at high latitudes, are both sparsely distributed and poorly resolved in time. Therefore, the identification and development of proxies for studying key ocean processes at sub-annual resolution that can extend the marine instrumental record is a clear priority in marine climate science. In this study, we have developed a record of early Holocene seasonal variability of bottom water temperature from the Viking Bank in the northern most North Sea. This area is of a particular interest since the hydrography is controlled by the inflow of Atlantic water. The reconstruction is based on the oxygen isotope composition of the growth increments in two sub-fossil shells of Arctica islandica (Bivalvia), dated to 9600-9335 cal. yr BP. By combining radiocarbon dating and sclerochronological techniques a floating chronology spanning over 200 years was constructed. Using the chronology as an age model, oxygen isotope measurements from 2 shells were combined into a 22-years long record. The results from this oxygen isotope record are compared with stable oxygen isotope profiles from modern shells to estimate changes in the mean state and seasonality between present and early Holocene. Shell-derived oxygen isotope values together with ice-volume corrected oxygen isotope values for the seawater were used to calculate bottom-water temperatures on a sub-annual time-scale. Preliminary results of the reconstructed early Holocene bottom water temperature indicate higher seasonality and lower minimum temperature compared to the present.

  7. A novel Multi-Fiber Optode sensor system (MuFO) for monitoring oxygen

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, K.; Fischer, J.; Wenzhöfer, F.

    2012-04-01

    In the marine environment, dissolved oxygen concentrations often vary significantly spatially as well as temporally. Monitoring these variations is essential for our understanding of the biological and chemical processes controlling the oxygen dynamics in water columns and sediments. Such investigations require a high number of measuring points and a high temporal resolution. A Multi-Fiber Optode sensor system (MuFO) was designed to assess these requirements. The MuFO system simultaneously controls 100 fiber optodes enabling continuous monitoring of oxygen in 100 positions within a 5-10m radius. The measurements are based on quenching of an oxygen sensitive luminophore, which is immobilised at the end of each fiber optode. The optical oxygen measurements are based on lifetime-imaging, which are converted into oxygen concentrations using a multipoint calibration. At a constant temperature of 21C, the system overall had a mean accuracy of 1.3%, a precision of 0.2% air saturation, the average 90% response time was 16 seconds and the detection limit was 0.1% air saturation. The MuFO set-up was build into a waterproof titanium casing for marine field applications. The system is battery-powered and has a maximum operational capacity of 15 hours for continuous measurements. The MuFO system was recently used for various research tasks in the marine environment: Mounted on a lander, the in situ MuFO system was used for investigations of oxygen dynamics in marine water columns placing the fiber optodes in a vertical line on a 7m high pole. For studies of oxygen dynamics in marine wetland rhizospheres, the sensing ends of the fiber optodes were covered with a 50cm protective sleeve made from stainless steel tubing, and the sensors were manually pushed into the rhizosphere. For laboratory measurements of sediment oxygen demand, the MuFO system was used to simultaneously monitor the oxygen consumption in multiple sediment slurry incubations. The MuFO system proved to be a

  8. A Novel Anoxic Pathway for Urea and Cyanate in Marine Oxygen Deficient Zones Revealed by Combined Microbiological and Biogeochemical Tools

    NASA Astrophysics Data System (ADS)

    Widner, B.; Fuchsman, C. A.; Babbin, A. R.; Ji, Q.; Mulholland, M. R.

    2016-02-01

    Urea and cyanate are reduced nitrogen compounds that can serve as nitrogen and carbon sources for marine microbes, and cyanate forms from decomposition of urea. Some marine bacteria, including cyanobacteria, possess genes encoding an ABC-type cyanate transporter and an intracellular cyanate hydratase, and genes for urea uptake and assimilation are widespread. To investigate cyanate distribution and availability in the ocean, we recently developed a nanomolar cyanate assay specific to seawater. In an oxygenated water column, urea and cyanate concentrations are generally low in surface waters and exhibit a concentration maximum near the base of the euphotic zone likely due to production from organic matter degradation. Below the euphotic zone, urea and cyanate concentrations decrease, likely due to oxidation reactions. It has been suggested that simple organic nitrogen compounds may support anaerobic ammonium oxidation (anammox) in oxygen deficient zones (ODZs). We mapped urea and cyanate distributions and used stable isotope-labeled urea and cyanate to measure their potential support of anammox and their uptake within the Eastern Tropical North and South Pacific ODZs. We also employed metagenomic techniques to determine the abundance and distribution of genes for the uptake and assimilation of urea and cyanate. The combined data indicate that, in ODZs, urea is used primarily as a nitrogen source while cyanate is used as both a nitrogen source and to generate energy.

  9. Oxygen as a driver of early arthropod micro-benthos evolution.

    PubMed

    Williams, Mark; Vannier, Jean; Corbari, Laure; Massabuau, Jean-Charles

    2011-01-01

    We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. The PO(2) of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2) of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2). Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2) levels. The PO(2) of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2). Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO(2) gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2). Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. Our work

  10. Oxygen as a Driver of Early Arthropod Micro-Benthos Evolution

    PubMed Central

    Williams, Mark; Vannier, Jean; Corbari, Laure; Massabuau, Jean-Charles

    2011-01-01

    Background We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. Methodology/Principal Findings The PO2 of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO2 of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O2. Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O2 levels. The PO2 of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O2. Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO2 gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O2. Ostracods became the numerically dominant arthropod micro-benthos of

  11. Can Oxygen Set Thermal Limits in an Insect and Drive Gigantism?

    PubMed Central

    Verberk, Wilco C. E. P.; Bilton, David T.

    2011-01-01

    Background Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. Methodology/Principal Findings Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. Conclusions/Significance These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods. PMID:21818347

  12. Emergence of modern marine ecosystems.

    PubMed

    Hull, Pincelli M

    2017-06-05

    The structure and function of marine ecosystems are not fixed. Instead, major innovations - from the origin of oxygenic photosynthesis, to the evolution of reefs or of deep bioturbation, to the rise of pelagic calcifiers - have changed biogeochemical cycles and ecosystem dynamics. As a result, modern marine ecosystems are fundamentally different from those in the distant past. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Partial deoxygenation of extender improves sperm quality, reduces lipid peroxidation and reactive oxygen species during cryopreservation of buffalo (Bubalus bubalis) semen.

    PubMed

    Balamurugan, B; Ghosh, S K; Lone, S A; Prasad, J K; Das, G K; Katiyar, R; Mustapha, Abdul Rahman; Kumar, Ajay; Verma, M R

    2018-02-01

    The present study was designed to investigate the effect of partial deoxygenation of extender on sperm quality, lipid peroxidation (LPO) and reactive oxygen species (ROS) in buffalo (Bubalus bubalis) during cryopreservation of semen. Semen extender was prepared freshly and split into three sub-extenders [Extender I: control (non-deoxygenated), Extender II (partially deoxygenated by using LN 2 flushing) and Extender III (partially deoxygenated mechanically by vacuum pump)]. Amounts of dissolved oxygen (DO) were determined in all the three extenders and also in post-thaw semen. Ejaculates with mass motility of  ≥3+ and individual progressive motility of 70% or greater were collected from Murrah buffalo bulls and utilized in the study. Each semen sample was divided into Groups I (diluted with Extender I), II (diluted with Extender II) and III (diluted Extender III) with a maximum of 60 × 10 6 sperm/mL. French mini straws (0.25 mL) were filled with the extended semen samples, sealed with polyvinyl alcohol powder, kept for 3 h at 5 °C for equilibration and then stored in an automatic programmable freezer until the temperature of straws reached -145 °C followed by plunging the straws into liquid nitrogen (-196 °C). Semen samples were evaluated at pre-freeze and post-thaw stages for various variables [sperm motility, live sperm count, acrosomal integrity, hypo-osmotic swelling (HOS) response, LPO and ROS concentrations]. The mean DO was less (P < 0.05) in Extender II as compared to I and III. The DO was less (P < 0.05) in Group II (semen extended with Extender II) as compared with III (semen extended with Extender III) and I (semen extended with Extender I). The percentages for sperm motility, viability and intact acrosomes (PIA) were greater (P < 0.05) in Groups II and III as compared to the control group at the pre-freeze stage, while at the post-thaw stage, percentages of sperm motility, viability, PIA and HOS response were greater (P

  14. Global Compilation of Marine Varve Records

    NASA Astrophysics Data System (ADS)

    Schimmelmann, A.; Lange, C.; Schieber, J.; Francus, P.; Ojala, A.; Zolitschka, B.

    2016-02-01

    Marine varves contain highly resolved records of geochemical and other paleoceanographic and paleoenvironmental proxies with annual to seasonal resolution. We present a global compilation of marine varved sedimentary records throughout the Holocene and Quaternary covering more than 50 sites worldwide. Marine varve deposition and preservation typically depend on environmental and sedimentological principles, such as a sufficiently high sedimentation rate, severe depletion of dissolved oxygen in bottom water to exclude bioturbation by macrobenthos, and a seasonally varying sedimentary input to yield a recognizable rhythmic varve pattern. Additional oceanographic factors may include the strength and depth range of the Oxygen Minimum Zone (OMZ) and regional anthropogenic eutrophication. Modern to Quaternary marine varves are not only found in those parts of the open ocean that comply with these principles, but also in fjords, embayments and estuaries with thermohaline density stratification, and nearshore `saline lakes' with strong hydrologic connections to ocean water. Marine varves have also been postulated in pre-Quaternary rocks. In the case of non-evaporitic laminations in fine-grained ancient marine rocks, laminations may not be varves but instead may have multiple alternative origins such as event beds or formation via bottom currents that transported and sorted silt-sized particles, clay floccules, and organic-mineral aggregates in the form of migrating bedload ripples. Modern marine ecosystems on continental shelves and slopes, in coastal zones and in estuaries are susceptible to stress by various factors that may result in oxygen-depletion in bottom waters. Sensitive laminated sites may play the important role of a `canary in the coal mine' where monitoring the character and geographical extent of laminations/varves serves as a diagnostic tool to judge environmental trends. Analyses of modern varve records will gain importance for simultaneously providing

  15. A First Look at Oxygen and Silicon Isotope Variations in Diatom Silica from a Pliocene Antarctic Marine Sediment Core

    NASA Astrophysics Data System (ADS)

    Abbott, T.; Dodd, J. P.; Hackett, H.; Scherer, R. P.

    2016-02-01

    Coupled oxygen (δ18O) and silicon (δ30Si) isotope variations in diatom silica (opal-A) are increasingly used as a proxy to reconstruct paleoenvironmental conditions (water temperatures, water mass mixing, nutrient cycling) in marine environments. Diatom silica is a particularly significant paleoenvironmental proxy in high latitude environments, such as the Southern Ocean, where diatom blooms are abundant and diatom frustules are well preserved in the sediment. The Andrill-1B (AND-1B) sediment core from the Ross Sea (Antarctica) preserves several Pliocene ( 4.5 Ma) age diatomite units. Here we present preliminary δ18O and δ30Si values for a diatomite subunit in the AND-1B sediment core. Initial isotope values for the AND-1B diatoms silica record relatively high variability (range δ18O: 36.3‰ to 39.9‰) that could be interpreted as large-scale changes in the water temperature and/or freshwater mixing in the Ross Sea; however, a significant concern with marine sediment of this age is isotope fractionation during diagenesis and the potential formation of opal-CT lepispheres. The effects of clay contamination on the diatom silica δ18O values have been addressed through sample purification and quantified through chemical and physical analyses of the diatom silica. The isotopic effects of opal-CT are not as clearly understood and more difficult to physically separate from the primary diatom silica. In order to better understand the isotope variations in the AND-1B diatoms, we also evaluated silicon and oxygen isotope fractionation during the transition from opal-A to opal-CT in a controlled laboratory experiment. Opal-A from cultured marine diatoms (Thalassiosira weissflogii) was subjected to elevated temperatures (150°C) in acid digestion vessels for 4 weeks to initiate opal-CT precipitation. Quantifying the effects of opal-CT formation on δ18O and δ30Si variations in biogenic silica improves our understanding of the use of diatom silica isotope values a

  16. Metabolic versatility of a novel N2 -fixing Alphaproteobacterium isolated from a marine oxygen minimum zone.

    PubMed

    Martínez-Pérez, Clara; Mohr, Wiebke; Schwedt, Anne; Dürschlag, Julia; Callbeck, Cameron M; Schunck, Harald; Dekaezemacker, Julien; Buckner, Caroline R T; Lavik, Gaute; Fuchs, Bernhard M; Kuypers, Marcel M M

    2018-02-01

    The N 2 -fixing (diazotrophic) community in marine ecosystems is dominated by non-cyanobacterial microorganisms. Yet, very little is known about their identity, function and ecological relevance due to a lack of cultured representatives. Here we report a novel heterotrophic diazotroph isolated from the oxygen minimum zone (OMZ) off Peru. The new species belongs to the genus Sagittula (Rhodobacteraceae, Alphaproteobacteria) and its capability to fix N 2 was confirmed in laboratory experiments. Genome sequencing revealed that it is a strict heterotroph with a high versatility in substrate utilization and energy acquisition mechanisms. Pathways for sulfide oxidation and nitrite reduction to nitrous oxide are encoded in the genome and might explain the presence throughout the Peruvian OMZ. The genome further indicates that this novel organism could be in direct interaction with other microbes or particles. NanoSIMS analyses were used to compare the metabolic potential of S. castanea with single-cell activity in situ; however, N 2 fixation by this diazotroph could not be detected at the isolation site. While the biogeochemical impact of S. castanea is yet to be resolved, its abundance and widespread distribution suggests that its potential to contribute to the marine N input could be significant at a larger geographical scale. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. First Autonomous Recording of in situ Dissolved Oxygen from Free-ranging Fish

    NASA Astrophysics Data System (ADS)

    Coffey, D.; Holland, K.

    2016-02-01

    Biologging technology has enhanced our understanding of the ecology of marine animals and has been central to identifying how oceanographic conditions drive patterns in their distribution and behavior. Among these environmental influences, there is increasing recognition of the impact of dissolved oxygen on the distribution of marine animals. Understanding of the impact of oxygen on vertical and horizontal movements would be advanced by contemporaneous in situ measurements of dissolved oxygen from animal-borne sensors instead of relying on environmental data that may not have appropriate spatial or temporal resolution. Here we demonstrate the capabilities of dissolved oxygen pop-up satellite archival tags (DO-PATs) by presenting the results from calibration experiments and trial deployments of two prototype tags on bluntnose sixgill sharks (Hexanchus griseus). The DO-PATs provided fast, accurate, and stable measurements in calibration trials and demonstrated high correlation with vertical profiles obtained via traditional ship-borne oceanographic instruments. Deployments on bluntnose sixgill sharks recorded oxygen saturations as low as 9.4% and effectively captured the oceanography of the region when compared with World Ocean Atlas 2013 values. This is the first study to use an animal-borne device to autonomously measure and record in situ dissolved oxygen saturation from non-air-breathing marine animals. The DO-PATs maintained consistency over time and yielded measurements equivalent to industry standards for environmental sampling. Acquiring contemporaneous in situ measurements of dissolved oxygen saturation alongside temperature and depth data will greatly improve our ability to investigate the spatial ecology of marine animals and make informed predictions of the impacts of global climate change. The information returned from DO-PATs is relevant not only to the study of the ecology of marine animals but will also become a useful new tool for investigating the

  18. Global compilation of marine varve records

    NASA Astrophysics Data System (ADS)

    Schimmelmann, Arndt; Lange, Carina B.; Schieber, Juergen; Francus, Pierre; Ojala, Antti E. K.; Zolitschka, Bernd

    2017-04-01

    Marine varves contain highly resolved records of geochemical and other paleoceanographic and paleoenvironmental proxies with annual to seasonal resolution. We present a global compilation of marine varved sedimentary records throughout the Holocene and Quaternary covering more than 50 sites worldwide. Marine varve deposition and preservation typically depend on environmental and sedimentological conditions, such as a sufficiently high sedimentation rate, severe depletion of dissolved oxygen in bottom water to exclude bioturbation by macrobenthos, and a seasonally varying sedimentary input to yield a recognizable rhythmic varve pattern. Additional oceanographic factors may include the strength and depth range of the Oxygen Minimum Zone (OMZ) and regional anthropogenic eutrophication. Modern to Quaternary marine varves are not only found in those parts of the open ocean that comply with these conditions, but also in fjords, embayments and estuaries with thermohaline density stratification, and nearshore 'marine lakes' with strong hydrologic connections to ocean water. Marine varves have also been postulated in pre-Quaternary rocks. In the case of non-evaporitic laminations in fine-grained ancient marine rocks, such as banded iron formations and black shales, laminations may not be varves but instead may have multiple alternative origins such as event beds or formation via bottom currents that transported and sorted silt-sized particles, clay floccules, and organic-mineral aggregates in the form of migrating bedload ripples. Modern marine ecosystems on continental shelves and slopes, in coastal zones and in estuaries are susceptible to stress by anthropogenic pressures, for example in the form of eutrophication, enhanced OMZs, and expanding ranges of oxygen-depletion in bottom waters. Sensitive laminated sites may play the important role of a 'canary in the coal mine' where monitoring the character and geographical extent of laminations/varves serves as a diagnostic

  19. Quantifying seascape structure: Extending terrestrial spatial pattern metrics to the marine realm

    USGS Publications Warehouse

    Wedding, L.M.; Christopher, L.A.; Pittman, S.J.; Friedlander, A.M.; Jorgensen, S.

    2011-01-01

    Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change. ?? Inter-Research 2011.

  20. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  1. Oxygen Delivery from Hyperbarically Loaded Microtanks Extends Cell Viability in Anoxic Environments

    PubMed Central

    Cook, Colin A.; Hahn, Kathryn C.; Morrissette-McAlmon, Justin B.F.; Grayson, Warren L.

    2016-01-01

    Oxygen diffusion limitations within nascent tissue engineered (TE) grafts lead to the development of hypoxic regions, cell death, and graft failure. Previous efforts have been made to deliver oxygen within TE scaffolds, including peroxide-doping, perfluorocarbons, and hyperbaric oxygen therapy, to mitigate these effects and help maintain post transplantation cell viability, but these have suffered from significant drawbacks. Here we present a novel approach utilizing polymeric hollow-core microspheres that can be hyperbarically loaded with oxygen and subsequently provide prolonged oxygen delivery. These oxygen carriers are termed, microtanks. With an interest in orthopedic applications, we combined microtanks within polycaprolactone to form solid phase constructs with oxygen delivery capabilities. The mathematical laws governing oxygen delivery from microtank-loaded constructs are developed along with empirical validation. Constructs achieved periods of oxygen delivery out to 6 days, which was shown to prolong the survival of human adipose derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs) as well as to enhance their cellular morphology under anoxic conditions. The results of this study suggest the microtank approach may be a feasible means of maintaining cell viability in TE scaffolds during the critical period of vascularization in vivo. PMID:25818444

  2. New Optical Sensing Materials for Application in Marine Research

    NASA Astrophysics Data System (ADS)

    Borisov, S.; Klimant, I.

    2012-04-01

    Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes

  3. Environmental and functional limits to muscular exercise and body size in marine invertebrate athletes.

    PubMed

    Pörtner, Hans O

    2002-10-01

    Many similarities exist between the key characteristics of muscular metabolism in marine invertebrates and those found in vertebrate striated muscle, even though there are important phosphagens and glycolytic end products that differ between groups. Lifestyles and modes of locomotion also vary extremely among invertebrates thereby shaping the pattern of exercise metabolism. In accordance with the limited availability of integrated ecological and physiological information the present paper reports recent progress in the exercise physiology of cephalopods, which are characterized by high rates of aerobic and anaerobic energy turnover during high velocity hunts or escapes in their pelagic environment, and a sipunculid worm, which mostly uses anaerobic resources during extended marathon-like digging excursions in the hypoxic marine sediment. Particular attention is paid to how lifestyle and oxygen availability in various marine environments shapes the use and rates of aerobic and anaerobic metabolism and acidosis as they depend on activity levels and energy saving strategies. Whereas aerobic scope and, accordingly, use of ambient oxygen by blood oxygen transport and skin respiration is maximized in some squids, aerobic scope is very small in the worm and anaerobic metabolism readily used upon muscular activity. Until recently, it was widely accepted that the glycolytic end product octopine, produced in the musculature of these invertebrates, acted as a weak acid and so did not compromise acid-base balance. However, it has now been demonstrated that octopine does cause acidosis. Concomitant study of tissue energy and acid-base status allows to evaluate the contribution of glycolysis, pH and free ADP accumulation to the use of the phosphagen and to the delayed drop in the Gibb's free energy change of ATP hydrolysis. The analysis reveals species specific capacities of these mechanisms to support exercise beyond the anaerobic threshold. During high intensity anaerobic

  4. Putting Temperature and Oxygen Thresholds of Marine Animals in Context of Environmental Change: A Regional Perspective for the Scotian Shelf and Gulf of St. Lawrence

    PubMed Central

    2016-01-01

    We conducted a literature review of reported temperature, salinity, pH, depth and oxygen preferences and thresholds of important marine species found in the Gulf of St. Lawrence and Scotian Shelf region. We classified 54 identified fishes and macroinvertebrates as important either because they support a commercial fishery, have threatened or at risk status, or meet one of the following criteria: bycatch, baitfish, invasive, vagrant, important for ecosystem energy transfer, or predators or prey of the above species. The compiled data allow an assessment of species-level impacts including physiological stress and mortality given predictions of future ocean physical and biogeochemical conditions. If an observed, multi-decadal oxygen trend on the central Scotian Shelf continues, a number of species will lose favorable oxygen conditions, experience oxygen-stress, or disappear due to insufficient oxygen in the coming half-century. Projected regional trends and natural variability are both large, and natural variability will act to alternately amplify and dampen anthropogenic changes. When estimates of variability are included with the trend, species encounter unfavourable oxygen conditions decades sooner. Finally, temperature and oxygen thresholds of adult Atlantic wolffish (Anarhichas lupus) and adult Atlantic cod (Gadus morhua) are assessed in the context of a potential future scenario derived from high-resolution ocean models for the central Scotian Shelf. PMID:27997536

  5. Putting Temperature and Oxygen Thresholds of Marine Animals in Context of Environmental Change: A Regional Perspective for the Scotian Shelf and Gulf of St. Lawrence.

    PubMed

    Brennan, Catherine E; Blanchard, Hannah; Fennel, Katja

    2016-01-01

    We conducted a literature review of reported temperature, salinity, pH, depth and oxygen preferences and thresholds of important marine species found in the Gulf of St. Lawrence and Scotian Shelf region. We classified 54 identified fishes and macroinvertebrates as important either because they support a commercial fishery, have threatened or at risk status, or meet one of the following criteria: bycatch, baitfish, invasive, vagrant, important for ecosystem energy transfer, or predators or prey of the above species. The compiled data allow an assessment of species-level impacts including physiological stress and mortality given predictions of future ocean physical and biogeochemical conditions. If an observed, multi-decadal oxygen trend on the central Scotian Shelf continues, a number of species will lose favorable oxygen conditions, experience oxygen-stress, or disappear due to insufficient oxygen in the coming half-century. Projected regional trends and natural variability are both large, and natural variability will act to alternately amplify and dampen anthropogenic changes. When estimates of variability are included with the trend, species encounter unfavourable oxygen conditions decades sooner. Finally, temperature and oxygen thresholds of adult Atlantic wolffish (Anarhichas lupus) and adult Atlantic cod (Gadus morhua) are assessed in the context of a potential future scenario derived from high-resolution ocean models for the central Scotian Shelf.

  6. Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughen, K; Baille, M; Bard, E

    2004-11-01

    New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration datasets extend an additional 2000 years, from 0-26 ka cal BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically dated tree-ring samples, converted with a box-diffusion model to marine mixed-layer ages, cover the period from 0-10.5 ka cal BP. Beyond 10.5 ka cal BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals.more » The marine records are corrected with site-specific {sup 14}C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 ka cal BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the radiocarbon age to calculate the underlying calibration curve. The marine datasets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring datasets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al.« less

  7. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation

    USGS Publications Warehouse

    Claypool, George E.; Holser, William T.; Kaplan, Isaac R.; Sakai, Hitoshi; Zak, Israel

    1980-01-01

    Three hundred new samples of marine evaporite sulfate, of world-wide distribution, were analyzed for δ34S, and 60 of these also for δ18O in the sulfate ion. Detailed δ34S age curves for Tertiary—Cretaceous, Permian—Pennsylvanian, Devonian, Cambrian and Proterozoic times document large variations in δ34S. A summary curve forδ18O also shows definite variations, some at different times than δ34S, and always smaller. The measured δ34S and δ18O correspond to variations in these isotopes in sulfate of the world ocean surface. The variations of δ18O are controlled by input and output fluxes of sulfur in the ocean, three of which are the same that control δ34S: deposition and erosion of sulfate, and deposition of sulfide. Erosion of sulfide differs in its effect on the S and O systems. δ18O in the sulfate does not seem to be measurably affected by equilibration with either seawater or with subsurface waters after crystallization. In principle, the simultaneous application of both δ34S and δ18O age curves should help reduce the number of assumptions in calculations of the cycles of sulfur and oxygen through geological time, and a new model involving symmetrical fluxes is introduced here to take advantage of the oxygen data. However, all previously published models as well as this one lead to anomalies, such as unreasonable calcium or oxygen depletions in the ocean—atmosphere system. In addition, most models are incapable of reproducing the sharp rises of the δ34S curve in the late Proterozoic, the Devonian and the Triassic which would be the result of unreasonably fast net sulfide deposition. This fast depletion could result from an ocean that has not always been mixed (as previously assumed in all model calculations).

  8. Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes.

    PubMed

    Militon, Cécile; Jézéquel, Ronan; Gilbert, Franck; Corsellis, Yannick; Sylvi, Léa; Cravo-Laureau, Cristiana; Duran, Robert; Cuny, Philippe

    2015-10-01

    To study the impact of oxygen regimes on the removal of polycylic aromatic hydrocarbons (PAHs) in oil-spill-affected coastal marine sediments, we used a thin-layer incubation method to ensure that the incubated sediment was fully oxic, anoxic, or was influenced by oxic-anoxic switches without sediment stirring. Hydrocarbon content and microbial assemblages were followed during 60 days to determine PAH degradation kinetics and microbial community dynamics according to the oxygenation regimes. The highest PAH removal, with 69 % reduction, was obtained at the end of the experiment under oxic conditions, whereas weaker removals were obtained under oscillating and anoxic conditions (18 and 12 %, respectively). Bacterial community structure during the experiment was determined using a dual 16S rRNA genes/16S rRNA transcripts approach, allowing the characterization of metabolically active bacteria responsible for the functioning of the bacterial community in the contaminated sediment. The shift of the metabolically active bacterial communities showed that the selection of first responders belonged to Pseudomonas spp. and Labrenzia sp. and included an unidentified Deltaproteobacteria-irrespective of the oxygen regime-followed by the selection of late responders adapted to the oxygen regime. A novel unaffiliated phylotype (B38) was highly active during the last stage of the experiment, at which time, the low-molecular-weight (LMW) PAH biodegradation rates were significant for permanent oxic- and oxygen-oscillating conditions, suggesting that this novel phylotype plays an active role during the restoration phase of the studied ecosystem.

  9. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants

    NASA Astrophysics Data System (ADS)

    Wallace, Malcolm W.; Hood, Ashleigh vS.; Shuster, Alice; Greig, Alan; Planavsky, Noah J.; Reed, Christopher P.

    2017-05-01

    There has been extensive debate about the history of Earth's oxygenation and the role that land plant evolution played in shaping Earth's ocean-atmosphere system. Here we use the rare earth element patterns in marine carbonates to monitor the structure of the marine redox landscape through the rise and diversification of animals and early land plants. In particular, we use the relative abundance of cerium (Ceanom), the only redox-sensitive rare earth element, in well-preserved marine cements and other marine precipitates to track seawater oxygen levels. Our results indicate that there was only a moderate increase in oceanic oxygenation during the Ediacaran (average Cryogenian Ceanom = 1.1, average Ediacaran Ceanom = 0.62), followed by a decrease in oxygen levels during the early Cambrian (average Cryogenian Ceanom = 0.90), with significant ocean anoxia persisting through the early and mid Paleozoic (average Early Cambrian-Early Devonian Ceanom = 0.84). It was not until the Late Devonian that oxygenation levels are comparable to the modern (average of all post-middle Devonian Ceanom = 0.55). Therefore, this work confirms growing evidence that the oxygenation of the Earth was neither unidirectional nor a simple two-stage process. Further, we provide evidence that it was not until the Late Devonian, when large land plants and forests first evolved, that oxygen levels reached those comparable to the modern world. This is recorded with the first modern-like negative Ceanom (values <0.6) occurring at around 380 Ma (Frasnian). This suggests that land plants, rather than animals, are the 'engineers' responsible for the modern fully oxygenated Earth system.

  10. Efficient management of marine resources in conflict: an empirical study of marine sand mining, Korea.

    PubMed

    Kim, Tae-Goun

    2009-10-01

    This article develops a dynamic model of efficient use of exhaustible marine sand resources in the context of marine mining externalities. The classical Hotelling extraction model is applied to sand mining in Ongjin, Korea and extended to include the estimated marginal external costs that mining imposes on marine fisheries. The socially efficient sand extraction plan is compared with the extraction paths suggested by scientific research. If marginal environmental costs are correctly estimated, the developed efficient extraction plan considering the resource rent may increase the social welfare and reduce the conflicts among the marine sand resource users. The empirical results are interpreted with an emphasis on guidelines for coastal resource management policy.

  11. Geochemistry of Upper Cretaceous non-marine - marine cycles (Gosau Group, Austria)

    NASA Astrophysics Data System (ADS)

    Hofer, G.; Wagreich, M.; Draganits, E.; Neuhuber, S.; Grundtner, M. L.; Bottig, M.

    2012-04-01

    Early Campanian non-marine - marine cycles of the Grünbach Formation (Gosau Group, Northern Calcareous Alps, Austria) within the Grünbach Syncline have been investigated geochemically. The succession of the Grünbach Formation comprises clay, marl, siltstone, sandstone as well as rare conglomerate and coal deposited in a marginal marine to terrestrial environment. We sampled a 45 m section of an artificial trench at Maiersdorf, Lower Austria. Additionally, cored sections of equivalent boreholes of the Glinzendorf and Gießhübl Syncline and Slovakia have been investigated for their stable isotopic composition. Based on geochemical proxies (whole rock geochemistry and bulk carbon and oxygen isotopy) as well as microfossil data, five marine to non-marine cycles are reconstructed for the profile of the Grünbach Formation. Marine intervals were identified basically by the presence of nannofossils and by higher mean δ13C ratios (-4.5 ‰ VPDB), boron contents (165.8 ppm) and B/Al* ratios (167.2) compared to non-marine interpreted sections (mean δ13C: -6.3 ‰, B: 139.0 ppm, B/Al*: 149.4). A statistically significant differentiation between marine and non-marine samples is possible using the aluminium-normalized boron ratio and, to a lower degree, the absolute boron values. Generally non-marine samples of the various Gosau synclines have significantly lower mean δ13C values (-5.3 ‰ ) compared to the mean (-1.4 ‰ ) of marine samples. The discrimination between a marine and non-marine group using δ18O is also statistically highly significant. A duration of a few 100 kyrs is estimated for single non-marine - marine cycle of the Grünbach Formation. Both eustatic sea-level changes due to climate cycles and tectonically induced subsidence may have controlled the depositional cyclicity. Low subsidence rates and uniform provenance data argue against a purely tectonic origin of the cycles and are in favor for a mainly climatic control of these transgressive

  12. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  13. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  14. Hypoxia in the changing marine environment

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Cowie, G.; Naqvi, S. W. A.

    2013-03-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926-9, Stramma et al 2008 Science 320 655-8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1-24).

  15. Effects of Southern Hemispheric Wind Changes on Global Oxygen and the Pacific Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Getzlaff, J.; Dietze, H.; Oschlies, A.

    2016-02-01

    We use a coupled ocean biogeochemistry-circulation model to compare the impact of changes in southern hemispheric winds with that of warming induced buoyancy fluxes on dissolved oxygen. Changes in the southern hemispheric wind fields, which are in line with an observed shift of the southern annual mode, are a combination of a strengthening and poleward shift of the southern westerlies. We differentiate between effects caused by a strengthening of the westerlies and effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our results confirm that the Southern Ocean plays an important role for the marine oxygen supply: a strengthening of the southern westerlies, that leads to an increase of the water formation rates of the oxygen rich deep and intermediate water masses, can counteract part of the warming-induced decline in marine oxygen levels. The wind driven intensification of the Southern Ocean meridional overturning circulation drives an increase of the global oxygen supply. Furthermore the results show that the shift of the boundary between westerlies and trades results in an increase of subantarctic mode water and an anti-correlated decrease of deep water formation and reduces the oceanic oxygen supply. In addition we find that the increased meridional extension of the southern trade winds, results in a strengthening and southward shift of the subtropical wind stress curl. This alters the subtropical gyre circulation (intensification and southward shift) and with it decreases the water mass transport into the oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-to-westerlies boundary is as important for the future evolution of the suboxic volume as direct warming-induced changes.

  16. 76 FR 6368 - Olympic Coast National Marine Sanctuary Regulations Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    .... 100827401-0619-01] RIN 0648-BA20 Olympic Coast National Marine Sanctuary Regulations Revisions AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National Oceanic and... revise the regulations for the Olympic Coast National Marine Sanctuary (76 FR 2611). This notice extends...

  17. Marine Occupations in the Texas Coastal Zone.

    ERIC Educational Resources Information Center

    McKinnerney, Beryl; Clark, Donald L.

    Marine career information is provided, intended for use by high school students, counselors, teachers, and curriculum developers. Material was gathered from a review of occupational publications, including extended use of the "Dictionary of Occupational Titles" (D.O.T.), and from interviews of persons employed in marine occupations in…

  18. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment.

    PubMed

    Casciotti, Karen L; Buchwald, Carolyn; Santoro, Alyson E; Frame, Caitlin

    2011-01-01

    Nitrification is a microbially-catalyzed process whereby ammonia (NH(3)) is oxidized to nitrite (NO(2)(-)) and subsequently to nitrate (NO(3)(-)). It is also responsible for production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Because the microbes responsible for nitrification are primarily autotrophic, nitrification provides a unique link between the carbon and nitrogen cycles. Nitrogen and oxygen stable isotope ratios have provided insights into where nitrification contributes to the availability of NO(2)(-) and NO(3)(-), and where it constitutes a significant source of N(2)O. This chapter describes methods for determining kinetic isotope effects involved with ammonia oxidation and nitrite oxidation, the two independent steps in the nitrification process, and their expression in the marine environment. It also outlines some remaining questions and issues related to isotopic fractionation during nitrification. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Marine methane paradox explained by bacterial degradation of dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Ferrón, Sara; Sosa, Oscar A.; Johnson, Carl G.; Repeta, Lucas D.; Acker, Marianne; Delong, Edward F.; Karl, David M.

    2016-12-01

    Biogenic methane is widely thought to be a product of archaeal methanogenesis, an anaerobic process that is inhibited or outcompeted by the presence of oxygen and sulfate. Yet a large fraction of marine methane delivered to the atmosphere is produced in high-sulfate, fully oxygenated surface waters that have methane concentrations above atmospheric equilibrium values, an unexplained phenomenon referred to as the marine methane paradox. Here we use nuclear magnetic resonance spectroscopy to show that polysaccharide esters of three phosphonic acids are important constituents of dissolved organic matter in seawater from the North Pacific. In seawater and pure culture incubations, bacterial degradation of these dissolved organic matter phosphonates in the presence of oxygen releases methane, ethylene and propylene gas. Moreover, we found that in mutants of a methane-producing marine bacterium, Pseudomonas stutzeri, disrupted in the C-P lyase phosphonate degradation pathway, methanogenesis was also disabled, indicating that the C-P lyase pathway can catalyse methane production from marine dissolved organic matter. Finally, the carbon stable isotope ratio of methane emitted during our incubations agrees well with anomalous isotopic characteristics of seawater methane. We estimate that daily cycling of only about 0.25% of the organic matter phosphonate inventory would support the entire atmospheric methane flux at our study site. We conclude that aerobic bacterial degradation of phosphonate esters in dissolved organic matter may explain the marine methane paradox.

  20. 33 CFR 334.235 - Potomac River, Marine Corps Base Quantico (MCB Quantico) in vicinity of Marine Corps Air Facility...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Potomac River, Marine Corps Base... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.235 Potomac River, Marine Corps Base Quantico... the navigable waters of the Potomac River extending approximately 500 meters from the high-water mark...

  1. 33 CFR 334.235 - Potomac River, Marine Corps Base Quantico (MCB Quantico) in vicinity of Marine Corps Air Facility...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Marine Corps Base... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.235 Potomac River, Marine Corps Base Quantico... the navigable waters of the Potomac River extending approximately 500 meters from the high-water mark...

  2. 33 CFR 334.235 - Potomac River, Marine Corps Base Quantico (MCB Quantico) in vicinity of Marine Corps Air Facility...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Potomac River, Marine Corps Base... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.235 Potomac River, Marine Corps Base Quantico... the navigable waters of the Potomac River extending approximately 500 meters from the high-water mark...

  3. 33 CFR 334.235 - Potomac River, Marine Corps Base Quantico (MCB Quantico) in vicinity of Marine Corps Air Facility...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Potomac River, Marine Corps Base... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.235 Potomac River, Marine Corps Base Quantico... the navigable waters of the Potomac River extending approximately 500 meters from the high-water mark...

  4. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    PubMed Central

    Galasso, Christian; Corinaldesi, Cinzia; Sansone, Clementina

    2017-01-01

    As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene) that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein), which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i) the biological functions of carotenoids and their benefits for human health, (ii) the most common carotenoids from marine organisms and (iii) carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production. PMID:29168774

  5. Reduced oxygen at high altitude limits maximum size.

    PubMed

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  6. Reduced oxygen at high altitude limits maximum size.

    PubMed Central

    Peck, L S; Chapelle, G

    2003-01-01

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal). PMID:14667371

  7. Laboratory Experiences in Marine Biology for Upper Elementary and Secondary School Grades, Teachers Edition.

    ERIC Educational Resources Information Center

    Raimist, Roger J.

    Designed to assist the teacher who wishes to use marine organisms for biological laboratory investigations, this manual includes general information on maintaining marine aquaria and collecting marine organisms as well as five tested laboratory exercises. The exercises deal with the measurement of oxygen consumption (giving techniques for…

  8. Pulverized fuel-oxygen burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through themore » solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.« less

  9. Influence of strong monsoon winds on the water quality around a marine cage-culture zone in a shallow and semi-enclosed bay in Taiwan.

    PubMed

    Huang, Yuan-Chao Angelo; Huang, Shou-Chung; Meng, Pei-Jie; Hsieh, Hernyi Justin; Chen, Chaolun Allen

    2012-04-01

    Influences of marine cage culture and monsoonal disturbances, northeasterly (NE) and southwesterly (SW) monsoons on the proximal marine environment were investigated across a gradient of sites in a semi-enclosed bay, Magong Bay (Penghu Islands, Taiwan). Elevated levels of ammonia produced by the cages were the main pollutant and distinguished the cage-culture and intermediary zones (1000 m away from the cages) from the reference zone in the NE monsoon, indicating currents produced by the strong monsoon may have extended the spread of nutrient-enriched waters without necessarily flushing such effluents outside Magong Bay. Moreover, the levels of chlorophyll-a, dissolved oxygen, and turbidity were distinguishable between two seasons, suggesting that resuspension caused by the NE monsoon winds may also influence the water quality across this bay. It indicated that the impacts of marine cage culture vary as a function of distance, and also in response to seasonal movements of water driven by local climatic occurrences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Bioprospecting Marine Plankton

    PubMed Central

    Abida, Heni; Ruchaud, Sandrine; Rios, Laurent; Humeau, Anne; Probert, Ian; De Vargas, Colomban; Bach, Stéphane; Bowler, Chris

    2013-01-01

    The ocean dominates the surface of our planet and plays a major role in regulating the biosphere. For example, the microscopic photosynthetic organisms living within provide 50% of the oxygen we breathe, and much of our food and mineral resources are extracted from the ocean. In a time of ecological crisis and major changes in our society, it is essential to turn our attention towards the sea to find additional solutions for a sustainable future. Remarkably, while we are overexploiting many marine resources, particularly the fisheries, the planktonic compartment composed of zooplankton, phytoplankton, bacteria and viruses, represents 95% of marine biomass and yet the extent of its diversity remains largely unknown and underexploited. Consequently, the potential of plankton as a bioresource for humanity is largely untapped. Due to their diverse evolutionary backgrounds, planktonic organisms offer immense opportunities: new resources for medicine, cosmetics and food, renewable energy, and long-term solutions to mitigate climate change. Research programs aiming to exploit culture collections of marine micro-organisms as well as to prospect the huge resources of marine planktonic biodiversity in the oceans are now underway, and several bioactive extracts and purified compounds have already been identified. This review will survey and assess the current state-of-the-art and will propose methodologies to better exploit the potential of marine plankton for drug discovery and for dermocosmetics. PMID:24240981

  11. Antimycobacterial Metabolites from Marine Invertebrates.

    PubMed

    Daletos, Georgios; Ancheeva, Elena; Chaidir, Chaidir; Kalscheuer, Rainer; Proksch, Peter

    2016-10-01

    Marine organisms play an important role in natural product-based drug research due to accumulation of structurally unique and bioactive metabolites. The exploration of marine-derived compounds may significantly extend the scientific knowledge of potential scaffolds for antibiotic drug discovery. Development of novel antitubercular agents is especially significant as the emergence of drug-resistant Mycobacterium tuberculosis strains remains threateningly high. Marine invertebrates (i.e., sponges, corals, gorgonians) as a source of new chemical entities are the center of research for several scientific groups, and the wide spectrum of biological activities of marine-derived compounds encourages scientists to carry out investigations in the field of antibiotic research, including tuberculosis treatment. The present review covers published data on antitubercular natural products from marine invertebrates grouped according to their biogenetic origin. Studies on the structure-activity relationships of these important leads are highlighted as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Origin of marine planktonic cyanobacteria.

    PubMed

    Sánchez-Baracaldo, Patricia

    2015-12-01

    Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600-2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500-542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600-1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000-542 Mya).

  13. The Extended Oxygen Window Concept for Programming Saturation Decompressions Using Air and Nitrox

    PubMed Central

    Kot, Jacek; Sicko, Zdzislaw

    2015-01-01

    Saturation decompression is a physiological process of transition from one steady state, full saturation with inert gas at pressure, to another one: standard conditions at surface. It is defined by the borderline condition for time spent at a particular depth (pressure) and inert gas in the breathing mixture (nitrogen, helium). It is a delicate and long lasting process during which single milliliters of inert gas are eliminated every minute, and any disturbance can lead to the creation of gas bubbles leading to decompression sickness (DCS). Most operational procedures rely on experimentally found parameters describing a continuous slow decompression rate. In Poland, the system for programming of continuous decompression after saturation with compressed air and nitrox has been developed as based on the concept of the Extended Oxygen Window (EOW). EOW mainly depends on the physiology of the metabolic oxygen window—also called inherent unsaturation or partial pressure vacancy—but also on metabolism of carbon dioxide, the existence of water vapor, as well as tissue tension. Initially, ambient pressure can be reduced at a higher rate allowing the elimination of inert gas from faster compartments using the EOW concept, and maximum outflow of nitrogen. Then, keeping a driving force for long decompression not exceeding the EOW allows optimal elimination of nitrogen from the limiting compartment with half-time of 360 min. The model has been theoretically verified through its application for estimation of risk of decompression sickness in published systems of air and nitrox saturation decompressions, where DCS cases were observed. Clear dose-reaction relation exists, and this confirms that any supersaturation over the EOW creates a risk for DCS. Using the concept of the EOW, 76 man-decompressions were conducted after air and nitrox saturations in depth range between 18 and 45 meters with no single case of DCS. In summary, the EOW concept describes physiology of

  14. Operation of the computer model for microenvironment atomic oxygen exposure

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.; Gruenbaum, P. E.

    1995-01-01

    A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.

  15. Imaging oxygen distribution in marine sediments. The importance of bioturbation and sediment heterogeneity.

    PubMed

    Pischedda, L; Poggiale, J C; Cuny, P; Gilbert, F

    2008-06-01

    The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns: the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment-water interface.

  16. Influence of oxygen availability on the activities of ammonia-oxidizing archaea.

    PubMed

    Qin, Wei; Meinhardt, Kelley A; Moffett, James W; Devol, Allan H; Virginia Armbrust, E; Ingalls, Anitra E; Stahl, David A

    2017-06-01

    Recent studies point to the importance of oxygen (O 2 ) in controlling the distribution and activity of marine ammonia-oxidizing archaea (AOA), one of the most abundant prokaryotes in the ocean. The AOA are associated with regions of low O 2 tension in oceanic oxygen minimum zones (OMZs), and O 2 availability is suggested to influence their production of the ozone-depleting greenhouse gas nitrous oxide (N 2 O). We show that marine AOA available in pure culture sustain high ammonia oxidation activity at low μM O 2 concentrations, characteristic of suboxic regions of OMZs (<10 µM O 2 ), and that atmospheric concentrations of O 2 may inhibit the growth of some environmental populations. We quantify the increasing N 2 O production by marine AOA with decreasing O 2 tensions, consistent with the plausibility of an AOA contribution to the accumulation of N 2 O at the oxic-anoxic redox boundaries of OMZs. Variable sensitivity to peroxide also suggests that endogenous or exogenous reactive oxygen species are of importance in determining the environmental distribution of some populations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Bacterial sulfur disproportionation constrains timing of neoproterozoic oxygenation

    USGS Publications Warehouse

    Kunzmann, Marcus; Bui, Thi Hao; Crockford, Peter W.; Halverson, Galen P.; Scott, Clinton T.; Lyons, Timothy W.; Wing, Boswell A.

    2017-01-01

    Various geochemical records suggest that atmospheric O2 increased in the Ediacaran (635–541 Ma), broadly coincident with the emergence and diversification of large animals and increasing marine ecosystem complexity. Furthermore, geochemical proxies indicate that seawater sulfate levels rose at this time too, which has been hypothesized to reflect increased sulfide oxidation in marine sediments caused by sediment mixing of the newly evolved macrofauna. However, the exact timing of oxygenation is not yet understood, and there are claims for significant oxygenation prior to the Ediacaran. Furthermore, recent evidence suggests that physical mixing of sediments did not become important until the late Silurian. Here we report a multiple sulfur isotope record from a ca. 835–630 Ma succession from Svalbard, further supported by data from Proterozoic strata in Canada, Australia, Russia, and the United States, in order to investigate the timing of oxygenation. We present isotopic evidence for onset of globally significant bacterial sulfur disproportionation and reoxidative sulfur cycling following the 635 Ma Marinoan glaciation. Widespread sulfide oxidation helps to explain the observed first-order increase in seawater sulfate concentration from the earliest Ediacaran to the Precambrian-Cambrian boundary by reducing the amount of sulfur buried as pyrite. Expansion of reoxidative sulfur cycling to a global scale also indicates increasing environmental O2 levels. Thus, our data suggest that increasing atmospheric O2 levels may have played a role in the emergence of the Ediacaran macrofauna and increasing marine ecosystem complexity.

  18. Early Cambrian oxygen minimum zone-like conditions at Chengjiang

    NASA Astrophysics Data System (ADS)

    Hammarlund, Emma U.; Gaines, Robert R.; Prokopenko, Maria G.; Qi, Changshi; Hou, Xian-Guang; Canfield, Donald E.

    2017-10-01

    The early Cambrian succession at Chengjiang contains the most diverse Cambrian fossil assemblage yet described, and contributes significantly to our understanding of the diversification of metazoans in the Cambrian ;explosion;. The Cambrian Period occupies a transitional episode of global ocean chemistry, following the oxygenation of the surface ocean and of shallow marine environments during the Ediacaran Period, but prior to the establishment of a predominantly oxygenated deep ocean in the mid-Paleozoic. Despite recent attention, a detailed understanding of the chemical conditions that prevailed in early Cambrian marine settings and the relationship of those conditions to early metazoan ecosystems is still emerging. Here, we report multi-proxy geochemical data from two drill cores through the early Cambrian (Series 2) Yu'anshan Formation of Yunnan, China. Results reveal dynamic water-column chemistry within the succession, which progressively shifted from euxinic to oxic conditions during deposition of the Yu'anshan Formation. The Chengjiang biota occurs in strata that appear to have been deposited under an oxygen-depleted water column that may have supported denitrification, as in modern oxygen-minimum zones. The oxygenated benthic environments in which the Chengjiang biota thrived were proximal to, but sharply separated from, the open ocean by a persistent anoxic water mass that occupied a portion of the outer shelf. Oxygen depletion in the lower water column developed dynamically in response to nutrient availability and possibly at lower thresholds of productivity due to lower atmospheric oxygen concentrations in Cambrian. These findings suggest that the frequent development of oxygen-limiting conditions in continental margin settings provided an environmental barrier that may have affected biogeographic, ecological and evolutionary development of early metazoan communities.

  19. Marine radiocarbon reservoir age variation in Donax obesulus shells from northern Peru: late Holocene evidence for extended El Niño

    USGS Publications Warehouse

    Etayo-Cadavid, Miguel F.; Andrus, C. Fred T.; Jones, Kevin B.; Hodgins, Gregory W. L.; Sandweiss, Daniel H.; Uceda-Castillo, Sandiago; Quilter, Jeffrey

    2013-01-01

    For at least 6 m.y., El Niño events have posed the greatest environmental risk on the Peruvian coast. A better understanding of El Niño is essential for predicting future risk and growth in this tropical desert. To achieve this we analyzed archaeological and modern pre-bomb shells from the surf clam Donax for the radiocarbon reservoir effect (ΔR) to characterize late Holocene coastal upwelling conditions in northern Peru (8°14′S). Mean ΔR values from these shells suggest that modern upwelling conditions in this region were likely established between A.D. 539 and A.D. 1578. Our radiocarbon data suggest that upwelling conditions ca. A.D. 539 were less intense than those in modern times. The observed coastal water enrichment in 14C may be consequence of frequent strong El Niño events or extended El Niño–like conditions. These ΔR-inferred marine conditions are in agreement with proposed extended El Niño activity in proxy and archaeological records of ca. A.D. 475–530. Extended El Niño conditions have been linked to political destabilization, societal transformation, and collapse of the Moche civilization in northern Peru. A return to such conditions would have significant impacts on the dense population of this region today and in the near future.

  20. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Cheung, William W. L.; Sarmiento, Jorge L.; Dunne, John; Frölicher, Thomas L.; Lam, Vicky W. Y.; Deng Palomares, M. L.; Watson, Reg; Pauly, Daniel

    2013-03-01

    Changes in temperature, oxygen content and other ocean biogeochemical properties directly affect the ecophysiology of marine water-breathing organisms. Previous studies suggest that the most prominent biological responses are changes in distribution, phenology and productivity. Both theory and empirical observations also support the hypothesis that warming and reduced oxygen will reduce body size of marine fishes. However, the extent to which such changes would exacerbate the impacts of climate and ocean changes on global marine ecosystems remains unexplored. Here, we employ a model to examine the integrated biological responses of over 600 species of marine fishes due to changes in distribution, abundance and body size. The model has an explicit representation of ecophysiology, dispersal, distribution, and population dynamics. We show that assemblage-averaged maximum body weight is expected to shrink by 14-24% globally from 2000 to 2050 under a high-emission scenario. About half of this shrinkage is due to change in distribution and abundance, the remainder to changes in physiology. The tropical and intermediate latitudinal areas will be heavily impacted, with an average reduction of more than 20%. Our results provide a new dimension to understanding the integrated impacts of climate change on marine ecosystems.

  1. Induction of reactive oxygen species in marine phytoplankton under crude oil exposure.

    PubMed

    Ozhan, Koray; Zahraeifard, Sara; Smith, Aaron P; Bargu, Sibel

    2015-12-01

    Exposure of phytoplankton to the water-accommodated fraction of crude oil can elicit a number of stress responses, but the mechanisms that drive these responses are unclear. South Louisiana crude oil was selected to investigate its effects on population growth, chlorophyll a (Chl a) content, antioxidative defense, and lipid peroxidation, for the marine diatom, Ditylum brightwellii, and the dinoflagellate, Heterocapsa triquetra, in laboratory-based microcosm experiments. The transcript levels of several possible stress-responsive genes in D. brightwellii were also measured. The microalgae were exposed to crude oil for up to 96 h, and Chl a content, superoxide dismutase (SOD), the glutathione pool (GSH and GSSG), and lipid peroxidation content were analyzed. The cell growth of both phytoplankton species was inhibited with increasing crude oil concentrations. Crude oil exposure did not affect Chl a content significantly in cells. SOD activities showed similar responses in both species, being enhanced at 4- and 8-mg/L crude oil exposure. Only H. triquetra demonstrated enhanced activity in GSSG pool and lipid peroxidation at 8-mg/L crude oil exposure, suggesting that phytoplankton species have distinct physiological responses and tolerance levels to crude oil exposure. This study indicated the activation of reactive oxygen species (ROS) in phytoplankton under crude oil exposure; however, the progressive damage in cells is still unknown. Thus, ROS-related damage in nucleic acid, lipids, proteins, and DNA, due to crude oil exposure could be a worthwhile subject of study to better understand crude oil toxicity at the base of the food web.

  2. Origin of marine planktonic cyanobacteria

    PubMed Central

    Sánchez-Baracaldo, Patricia

    2015-01-01

    Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600–2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500–542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600–1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000–542 Mya). PMID:26621203

  3. The Hoiamides, Structurally Intriguing Neurotoxic Lipopeptides from Papua New Guinea Marine Cyanobacteria

    PubMed Central

    Choi, Hyukjae; Pereira, Alban R.; Cao, Zhengyu; Shuman, Cynthia F.; Engene, Niclas; Byrum, Tara; Matainaho, Teatulohi; Murray, Thomas F.; Mangoni, Alfonso; Gerwick, William H.

    2011-01-01

    Two related peptide metabolites, one a cyclic depsipeptide, hoiamide B (2), and the other a linear lipopeptide, hoiamide C (3), were isolated from two different collections of marine cyanobacteria obtained in Papua New Guinea. Their structures were elucidated by combining various techniques in spectroscopy, chromatography and synthetic chemistry. Both metabolites belong to the unique hoiamide structural class, characterized by possessing an acetate extended and S-adenosyl methionine modified isoleucine unit, a central triheterocyclic system comprised of two α-methylated thiazolines and one thiazole, as well as a highly oxygenated and methylated C-15 polyketide unit. In neocortical neurons, the cyclic depsipeptide 2 stimulated sodium influx and suppressed spontaneous Ca2+ oscillations with EC50 values of 3.9 μM and 79.8 nM, respectively, while 3 had no significant effects in these assays. PMID:20687534

  4. Chasing Neoproterozoic Atmospheric Oxygen Ghosts

    NASA Astrophysics Data System (ADS)

    Bjerrum, C. J.; Canfield, D. E.; Dahl, T. W.

    2016-12-01

    Increasing atmospheric oxygen has been considered a necessary condition for the evolution of animal life for over half a century. While direct proxies for atmospheric oxygen are difficult to obtain, a number of indirect proxies have been giving us a ghost image of rising atmospheric oxygen at the close of the Precambrian. In this context, redox sensitive elements and isotopes represent the hallmark for a significant reduction in anoxic areas of the world ocean, implicating a significant rise of atmospheric oxygen during the Neoproterozoic. Here, we test to what degree redox sensitive elements in ancient marine sediments are proxies of atmospheric oxygen. We model the redox-chemical evolution of the shelf seas and ocean using a combination of 3D high resolution shelf sea models and a simpler global ocean biogeochemical model including climate weathering feedbacks, a free sea level and parameterized icecaps. We find that ecosystem evolution would have resulted in reorganization of the nutrient and redox balance of the shelf-ocean system causing a significant increase in oxygenated areas that permitted a boosting of trace metal concentrations in the remaining anoxic areas. While this reorganization takes place there is limited net change in the modelled atmospheric oxygen, warning us against interpreting changing trace metal concentrations and isotopes as reflecting a rise in atmospheric oxygen.

  5. Construction and screening of marine metagenomic libraries.

    PubMed

    Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth

    2010-01-01

    Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.

  6. NC10 bacteria in marine oxygen minimum zones

    PubMed Central

    Padilla, Cory C; Bristow, Laura A; Sarode, Neha; Garcia-Robledo, Emilio; Gómez Ramírez, Eddy; Benson, Catherine R; Bourbonnais, Annie; Altabet, Mark A; Girguis, Peter R; Thamdrup, Bo; Stewart, Frank J

    2016-01-01

    Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic oxygen minimum zones (OMZs) off northern Mexico and Costa Rica. NC10 16S rRNA genes were detected at all sites, peaking in abundance in the anoxic zone with elevated nitrite and methane concentrations. Phylogenetic analysis of particulate methane monooxygenase genes further confirmed the presence of NC10. rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized to participate in O2-producing NO dismutation. These findings confirm pelagic OMZs as a niche for NC10, suggesting a role for this group in OMZ nitrogen, methane and oxygen cycling. PMID:26918666

  7. Marine Carotenoids against Oxidative Stress: Effects on Human Health.

    PubMed

    Gammone, Maria Alessandra; Riccioni, Graziano; D'Orazio, Nicolantonio

    2015-09-30

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  8. Marine Carotenoids against Oxidative Stress: Effects on Human Health

    PubMed Central

    Gammone, Maria Alessandra; Riccioni, Graziano; D’Orazio, Nicolantonio

    2015-01-01

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases. PMID:26437420

  9. The effects of intermittent exposure to low pH and oxygen conditions on survival and growth of juvenile red abalone

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Barry, J. P.; Micheli, F.

    2013-02-01

    Exposure of nearshore animals to hypoxic, low pH waters upwelled from below the continental shelf and advected near the coast may be stressful to marine organisms and lead to impaired physiological performance. We mimicked upwelling conditions in the laboratory and tested the effect of fluctuating exposure to water with low pH and/or low oxygen levels on the mortality and growth of juvenile red abalone (Haliotis rufescens, shell length 5-10 mm). Mortality rates of juvenile abalone exposed to low pH (7.5, total scale) and low O2 (40% saturation, 5 mg L-1) conditions for periods of 3 to 6 h every 3-5 days over 2 weeks did not differ from those exposed to control conditions (O2: 100% saturation, 12 mg L-1; pH 8.0). However, when exposure was extended to 24 h repeated twice over a 15 day period, juveniles experienced higher mortality in the low oxygen treatments compared to control conditions, regardless of pH levels (pH 7.5 vs. 8.0). Growth rates were reduced significantly when juveniles were exposed to low pH or low oxygen treatments and the growth was lowest when low pH exposure was combined with low O2. Furthermore, individual variation of growth rate increased when they were exposed to low pH and low O2 conditions. These results indicate that prolonged exposure to low oxygen levels is detrimental for the survival of red abalone, whereas both pH and oxygen is a crucial factor for their growth. However, given the higher individual variation in growth rate, they may have an ability to adapt to extended exposure to upwelling conditions.

  10. Oxygen and Temperature Effects on Vertically Migrating Animals in Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Seibel, B.

    2016-02-01

    Large populations of oceanic nekton and zooplankton undergo daily migrations from shallow water at night to depths greater than 200 m during the daytime. In some regions, these migrations cross extreme gradients of temperature, oxygen and carbon dioxide. Oxygen minimum zones (OMZs) are extensive and characterized by deep-water (100-800 m) oxygen partial pressures that would be lethal to most marine organisms, yet are tolerated by vertical migrators. Climate change is predicted to further deplete oxygen, and measurable reductions in oxygen have already been documented in some regions. Increases in shallow water temperature and carbon dioxide are occurring simultaneously. Oxygen levels and temperature are important drivers of biodiversity and distribution, and documented changes in community structure and function are reportedly associated with OMZ expansion and warming. Here I answer fundamental questions concerning zooplankton distributions, adaptations, and functions in oxygen minimum zones. In particular I report that metabolic suppression is a common strategy that facilitates diel occupancy of extreme hypoxia in many oceanic taxa. Anaerobic metabolic pathways play a minimal role in compensating for reduced aerobic ATP production. Numerous epigenetic mechanisms lead to reductions in energetically costly cellular processes, such as transcription and translation. Total metabolism is reduced by 50% or more during exposure to levels of hypoxia that characterize the daytime habitat for most vertically-migrating zooplankton. I further show that many migrators approach their upper thermal maximum in shallow water at night. Thus expanding OMZs and global warming may together compress the habitable depth range for many species.

  11. Declining oxygen in the global ocean and coastal waters.

    PubMed

    Breitburg, Denise; Levin, Lisa A; Oschlies, Andreas; Grégoire, Marilaure; Chavez, Francisco P; Conley, Daniel J; Garçon, Véronique; Gilbert, Denis; Gutiérrez, Dimitri; Isensee, Kirsten; Jacinto, Gil S; Limburg, Karin E; Montes, Ivonne; Naqvi, S W A; Pitcher, Grant C; Rabalais, Nancy N; Roman, Michael R; Rose, Kenneth A; Seibel, Brad A; Telszewski, Maciej; Yasuhara, Moriaki; Zhang, Jing

    2018-01-05

    Oxygen is fundamental to life. Not only is it essential for the survival of individual animals, but it regulates global cycles of major nutrients and carbon. The oxygen content of the open ocean and coastal waters has been declining for at least the past half-century, largely because of human activities that have increased global temperatures and nutrients discharged to coastal waters. These changes have accelerated consumption of oxygen by microbial respiration, reduced solubility of oxygen in water, and reduced the rate of oxygen resupply from the atmosphere to the ocean interior, with a wide range of biological and ecological consequences. Further research is needed to understand and predict long-term, global- and regional-scale oxygen changes and their effects on marine and estuarine fisheries and ecosystems. Copyright © 2018, American Association for the Advancement of Science.

  12. Interpreting benthic oxygen levels in mudrocks: A new approach

    NASA Astrophysics Data System (ADS)

    Wignall, Paul B.; Myers, Keith J.

    1988-05-01

    Quantified paleoecology and gamma-ray spectrometry have been applied in the analysis of the Kimmeridge Clay, a highly organic-rich British Jurassic mudrock. Decreasing benthic oxygen trends are reflected in decreasing species richness and dominance-diversity values. Similarly, the degree of fragmentation of the benthos reflects the benthic energy levels and covaries with benthic oxygen. The calculation of authigenic uranium values from data gathered by gamma-ray spectrometry shows enrichment in more oxygen-deficient environments. The good correlation between the independently derived paleoecological and authigenic U data indicates the importance of these techniques in environmental analysis of marine petroleum source rocks.

  13. Protist communities in a marine oxygen minimum zone off Costa Rica by 454 pyrosequencing

    NASA Astrophysics Data System (ADS)

    Jing, H.; Rocke, E.; Kong, L.; Xia, X.; Liu, H.; Landry, M. R.

    2015-08-01

    Marine planktonic protists, including microalgae and protistan grazers, are an important contributor to global primary production and carbon and mineral cycles, however, little is known about their population shifts along the oxic-anoxic gradient in the water column. We used 454 pyrosequencing of the 18S rRNA gene and gene transcripts to study the community composition of whole and active protists throughout a water column in the Costa Rica Dome, where a stable oxygen minimum zone (OMZ) exists at a depth of 400~700 m. A clear shift of protist composition from photosynthetic Dinoflagellates in the surface to potential parasitic Dinoflagellates and Ciliates in the deeper water was revealed along the vertical profile at both rRNA and rDNA levels. Those protist groups recovered only at the rDNA level represent either lysed aggregates sinking from the upper waters or potential hosts for parasitic groups. UPGMA clustering demonstrated that total and active protists in the anoxic core of OMZ (550 m) were distinct from those in other water depths. The reduced community diversity and presence of a parasitic/symbiotic trophic lifestyle in the OMZ, especially the anoxic core, suggests that OMZs can exert a selective pressure on protist communities. Such changes in community structure and a shift in trophic lifestyle could result in a modulation of the microbial loop and associated biogeochemical cycling.

  14. Extending cassava root shelf life via reduction of reactive oxygen species production.

    PubMed

    Zidenga, Tawanda; Leyva-Guerrero, Elisa; Moon, Hangsik; Siritunga, Dimuth; Sayre, Richard

    2012-08-01

    One of the major constraints facing the large-scale production of cassava (Manihot esculenta) roots is the rapid postharvest physiological deterioration (PPD) that occurs within 72 h following harvest. One of the earliest recognized biochemical events during the initiation of PPD is a rapid burst of reactive oxygen species (ROS) accumulation. We have investigated the source of this oxidative burst to identify possible strategies to limit its extent and to extend cassava root shelf life. We provide evidence for a causal link between cyanogenesis and the onset of the oxidative burst that triggers PPD. By measuring ROS accumulation in transgenic low-cyanogen plants with and without cyanide complementation, we show that PPD is cyanide dependent, presumably resulting from a cyanide-dependent inhibition of respiration. To reduce cyanide-dependent ROS production in cassava root mitochondria, we generated transgenic plants expressing a codon-optimized Arabidopsis (Arabidopsis thaliana) mitochondrial alternative oxidase gene (AOX1A). Unlike cytochrome c oxidase, AOX is cyanide insensitive. Transgenic plants overexpressing AOX exhibited over a 10-fold reduction in ROS accumulation compared with wild-type plants. The reduction in ROS accumulation was associated with a delayed onset of PPD by 14 to 21 d after harvest of greenhouse-grown plants. The delay in PPD in transgenic plants was also observed under field conditions, but with a root biomass yield loss in the highest AOX-expressing lines. These data reveal a mechanism for PPD in cassava based on cyanide-induced oxidative stress as well as PPD control strategies involving inhibition of ROS production or its sequestration.

  15. Biosynthesis of polyhydroxyalkanaotes by a novel facultatively anaerobic Vibrio sp. under marine conditions.

    PubMed

    Numata, Keiji; Doi, Yoshiharu

    2012-06-01

    Marine bacteria have recently attracted attention as potentially useful candidates for the production of practical materials from marine ecosystems, including the oceanic carbon dioxide cycle. The advantages of using marine bacteria for the biosynthesis of poly(hydroxyalkanoate) (PHA), one of the eco-friendly bioplastics, include avoiding contamination with bacteria that lack salt-water resistance, ability to use filtered seawater as a culture medium, and the potential for extracellular production of PHA, all of which would contribute to large-scale industrial production of PHA. A novel marine bacterium, Vibrio sp. strain KN01, was isolated and characterized in PHA productivity using various carbon sources under aerobic and aerobic-anaerobic marine conditions. The PHA contents of all the samples under the aerobic-anaerobic condition, especially when using soybean oil as the sole carbon source, were enhanced by limiting the amount of dissolved oxygen. The PHA accumulated using soybean oil as a sole carbon source under the aerobic-anaerobic condition contained 14% 3-hydroxypropionate (3HP) and 3% 5-hydroxyvalerate (5HV) units in addition to (R)-3-hydroxybutyrate (3HB) units and had a molecular weight of 42 × 10³ g/mol. The present result indicates that the activity of the beta-oxidation pathway under the aerobic-anaerobic condition is reduced due to a reduction in the amount of dissolved oxygen. These findings have potential for use in controlling the biosynthesis of long main-chain PHA by regulating the activity of the beta-oxidation pathway, which also could be regulated by varying the dissolved oxygen concentration.

  16. Construction and Screening of Marine Metagenomic Large Insert Libraries.

    PubMed

    Weiland-Bräuer, Nancy; Langfeldt, Daniela; Schmitz, Ruth A

    2017-01-01

    The marine environment covers more than 70 % of the world's surface. Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. In the past, marine microbes, mostly bacteria of microbial consortia attached to marine tissues of multicellular organisms, have proven to be a rich source of highly potent bioactive compounds, which represent a considerable number of drug candidates. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. This chapter describes sampling in the marine environment, construction of metagenomic large insert libraries from marine habitats, and exemplarily one function based screen of metagenomic clones for identification of quorum quenching activities.

  17. Organelles Contribute Differentially to Reactive Oxygen Species-Related Events during Extended Darkness1[C][W][OA

    PubMed Central

    Rosenwasser, Shilo; Rot, Ilona; Sollner, Evelyn; Meyer, Andreas J.; Smith, Yoav; Leviatan, Noam; Fluhr, Robert; Friedman, Haya

    2011-01-01

    Treatment of Arabidopsis (Arabidopsis thaliana) leaves by extended darkness generates a genetically activated senescence program that culminates in cell death. The transcriptome of leaves subjected to extended darkness was found to contain a variety of reactive oxygen species (ROS)-specific signatures. The levels of transcripts constituting the transcriptome footprints of chloroplasts and cytoplasm ROS stresses decreased in leaves, as early as the second day of darkness. In contrast, an increase was detected in transcripts associated with mitochondrial and peroxisomal ROS stresses. The sequential changes in the redox state of the organelles during darkness were examined by redox-sensitive green fluorescent protein probes (roGFP) that were targeted to specific organelles. In plastids, roGFP showed a decreased level of oxidation as early as the first day of darkness, followed by a gradual increase to starting levels. However, in mitochondria, the level of oxidation of roGFP rapidly increased as early as the first day of darkness, followed by an increase in the peroxisomal level of oxidation of roGFP on the second day. No changes in the probe oxidation were observed in the cytoplasm until the third day. The increase in mitochondrial roGFP degree of oxidation was abolished by sucrose treatment, implying that oxidation is caused by energy deprivation. The dynamic redox state visualized by roGFP probes and the analysis of microarray results are consistent with a scenario in which ROS stresses emanating from the mitochondria and peroxisomes occur early during darkness at a presymptomatic stage and jointly contribute to the senescence program. PMID:21372201

  18. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones

    PubMed Central

    Janssen, David J.; Conway, Tim M.; John, Seth G.; Christian, James R.; Kramer, Dennis I.; Pedersen, Tom F.; Cullen, Jay T.

    2014-01-01

    Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals. PMID:24778239

  19. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones.

    PubMed

    Janssen, David J; Conway, Tim M; John, Seth G; Christian, James R; Kramer, Dennis I; Pedersen, Tom F; Cullen, Jay T

    2014-05-13

    Cadmium (Cd) is a micronutrient and a tracer of biological productivity and circulation in the ocean. The correlation between dissolved Cd and the major algal nutrients in seawater has led to the use of Cd preserved in microfossils to constrain past ocean nutrient distributions. However, linking Cd to marine biological processes requires constraints on marine sources and sinks of Cd. Here, we show a decoupling between Cd and major nutrients within oxygen-deficient zones (ODZs) in both the Northeast Pacific and North Atlantic Oceans, which we attribute to Cd sulfide (CdS) precipitation in euxinic microenvironments around sinking biological particles. We find that dissolved Cd correlates well with dissolved phosphate in oxygenated waters, but is depleted compared with phosphate in ODZs. Additionally, suspended particles from the North Atlantic show high Cd content and light Cd stable isotope ratios within the ODZ, indicative of CdS precipitation. Globally, we calculate that CdS precipitation in ODZs is an important, and to our knowledge a previously undocumented marine sink of Cd. Our results suggest that water column oxygen depletion has a substantial impact on Cd biogeochemical cycling, impacting the global relationship between Cd and major nutrients and suggesting that Cd may be a previously unidentified tracer for water column oxygen deficiency on geological timescales. Similar depletions of copper and zinc in the Northeast Pacific indicate that sulfide precipitation in ODZs may also have an influence on the global distribution of other trace metals.

  20. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Och, Lawrence M.; Shields-Zhou, Graham A.

    2012-01-01

    transition from dominantly pyrite burial to sulfate burial after the Neoproterozoic. Strong evidence for the oxygenation of the deep marine environment has emerged through elemental approaches over the past few years which were able to show significant increases in redox-sensitive trace-metal (notably Mo) enrichment in marine sediments not only during the GOE but even more pronounced during the inferred NOE. In addition to past studies involving Mo enrichment, which has been extended and further substantiated in the current review, we present new compilations of V and U concentrations in black shales throughout Earth history that confirm such a rise and further support the NOE. With regard to ocean ventilation, we also review other sedimentary redox indicators, such as iron speciation, molybdenum isotopes and the more ambiguous REE patterns. Although the timing and extent of the NOE remain the subjects of debate and speculation, we consider the record of redox-sensitive trace-metals and C and S contents in black shales to indicate delayed ocean ventilation later in the Cambrian on a global scale with regard to rising oxygen levels in the atmosphere which likely rose during the Late Neoproterozoic.

  1. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen.

    PubMed

    Luz, B; Barkan, E

    2000-06-16

    Plant production in the sea is a primary mechanism of global oxygen formation and carbon fixation. For this reason, and also because the ocean is a major sink for fossil fuel carbon dioxide, much attention has been given to estimating marine primary production. Here, we describe an approach for estimating production of photosynthetic oxygen, based on the isotopic composition of dissolved oxygen of seawater. This method allows the estimation of integrated oceanic productivity on a time scale of weeks.

  2. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less

  3. Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms

    NASA Astrophysics Data System (ADS)

    Strom, Matthew James

    Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled

  4. Triple Oxygen Isotope Constraints on Seawater δ18O and Temperature

    NASA Astrophysics Data System (ADS)

    Hayles, J.; Shen, B.; Homann, M.; Yeung, L.

    2017-12-01

    One point of contention among geoscientists is whether the 18O/16O ratio of seawater is roughly constant, or if it varies considerably throughout geologic time. On one hand, the oxygen isotope composition of the ocean is thought to be well buffered by high- and low-temperature interactions between seawater and seafloor rocks. If these interactions do not vary on billion-year timescales, the oxygen-isotope compositions of marine sedimentary rocks mostly relate to changes in seawater temperature and global ice volume. On the other hand, long-term cooling of the planetary interior would alter these water-rock interactions leading to a secular change in the oxygen isotope composition of seawater. Models suggest that this secular change would enrich seawater with heavy oxygen isotopes over time. In this study, we present new, high precision, triple-oxygen-isotope (18O/16O, 17O/16O) analyses of marine chert samples from 3.45 Ga to 460Ma. The results of these analyses are paired with a new theoretical quartz-water equilibrium curve and a simplified seawater model to provide possible pairings of δ'18O and Δ'17O for the water which these samples could have formed in equilibrium with. Analysis of the new sample data, in addition to published chert triple oxygen isotope compositions, shows a general trend of older chert samples being progressively incompatible with waters possessing a modern-like seawater triple oxygen isotope composition. Implications on constraining the secular evolution of seawater δ18O and temperature will be discussed.

  5. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions.

    PubMed

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-09-10

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu₂O film increased gradually. Its corrosion product was Cu₂(OH)₃Cl, which increased in quantity over time. Cl - was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e. , dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  6. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    PubMed Central

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-01-01

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH)3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet. PMID:28793549

  7. Marine bioactives and potential application in sports.

    PubMed

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  8. Marine Bioactives and Potential Application in Sports

    PubMed Central

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D’Orazio, Nicolantonio

    2014-01-01

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports. PMID:24796298

  9. Research on rechargeable oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Giner, J.; Malachesky, P. A.; Holleck, G.

    1971-01-01

    Studies were carried out on a number of factors which may influence the behavior of the platinum electrocatalyst of oxygen electrodes for use in rechargeable metal-oxygen batteries or hydrogen-oxygen fuel cells. The effects of pretreatments for various potentials and added ionic species, which could be present in such systems, were studied with reguard to: (1) the state of surface oxidation, (2) platinum dissolution, (3) the kinetics of oxygen evolution and reduction (including the role of hydrogen peroxide), and (4) changes in porous electrode structure. These studies were carried out on smooth platinum, platinized platinum, and Teflon-bonded platinum black electrodes in carefully purified electrolyte solutions. The main factors which appear to affect rechargeable oxygen electrode performance and life are: (1) the buildup of a refractory anodic layer on extended cycling, and (2) the dissolution of platinum.

  10. Oxygen permeability of hydrogel contact lenses with organosilicon moieties.

    PubMed

    Compañ, V; Andrio, A; López-Alemany, A; Riande, E; Refojo, M F

    2002-07-01

    Oxygen transport through two extended wear (day and night) hydrogel contact lenses that contain organosilicon moieties (balafilcon A and lotrafilcon A) was studied in the hydrate (hydrogel) and dry (xerogel) states. The water uptake increased the oxygen permeability [(Dk)app] and transmissibility [Dk/L(av)] coefficients of the dry materials by about 70%. The (Dk)app for the hydrated lenses was determined following the so-called stack procedure. The values obtained were 107 +/- 4 barrer for balafilcon A and 141 +/- 5 barrer for lotrafilcon A, about 5-10 times larger than those previously reported for conventional (without organosilicon moieties) extended wear hydrogels contact lenses. The Dk/L(av) for -3.00 diopter lenses (harmonic average thickness, L(av) = 75 +/- 2 microm for lotrafilcon, and 85 +/- 2 microm for balafilcon) was 123 +/- 6 barrer/cm for balafilcon A and 183 +/- 8 barrer/cm for lotralicon A. The minimum oxygen transmissibility 87 barrer/cm stipulated by Holden and Mertz to avoid corneal edema with extended wear contact can be easily achieved with lotrafilcon and balafilcon lenses of diverse dioptric powers if the central and peripheral thickness of the lenses are kept below the critical level of oxygen transmissibility.

  11. Analyzing Benefits of Extending the PCS Tempo in the Marine Corps

    DTIC Science & Technology

    2011-12-01

    voice the general consensus about the PCS process in the Marine Corps.  Heartfelt thanks to my mother , brothers, and sisters. I would not be who I am...stress at home, and if so, how do they feel about the PCS process and its effect on the following aspects of family life ? a. Spouse higher education...between team effectiveness and the satisfaction level and well-being of team members. Third, a relation also exists between the team survivability

  12. Sediment Sulfur Isotopes Reflect Seawater Oxygen Rise in Neoarchean

    NASA Astrophysics Data System (ADS)

    Fakhraee, M.; Crowe, S.; Katsev, S.

    2017-12-01

    The oxygenation of the ocean-atmosphere system is recorded in S isotopes preserved in sedimentary pyrites. Disappearance of mass independent fractionation of S (S-MIF) around 2.45 Ga signals the first large-scale oxygenation of the atmosphere (the GOE), while a narrow range of pyritic δ34S during the Archean eon suggests limited oxidative cycling of S. Both δ34S and S-MIF ranges, however, undergo a clear and unexplained expansion in the Neoarchean between 2.7 and 2.45 Ga, indicating a change in global S-cycling. By analyzing the preservation patterns of isotopic signals with a 1D reaction-transport model, we show that the rock record points to the rise of oxygen in shallow marine environments around 2.7 billion years ago. The model tracks d34S and Δ33S isotopic transformations during early diagenesis in a reaction-transport framework. The results indicate that δ34S and MIF signatures in >2.7Ga sulfides require deposition from anoxic or minimally oxygenated seawater, whereas the 2.7-2.4 Ga expansion in both δ34S and D33S ranges points to at least localized accumulation oxygen to low μM levels, accompanied by a moderate rise in sulfate from low μM concentrations to up to 200 μM. In contrast to the role of oxygen in the atmosphere where it suppresses the production of MIF, oxygen in seawater at levels below 25 μM does not necessarily suppress the MIF preservation, which instead depends on the availability of reactive organic matter, sulfate, and electron acceptors for sulfide re-oxidation. The S-isotopes in Neoarchean sulfides thus paint a picture of gradual oxygenation of shallow marine environments under a nearly anoxic atmosphere where the atmospherically produced S isotopic signals are overprinted by increasingly oxidative diagenesis, rising sulfate levels, and increasing organic sedimentation.

  13. In vivo biodistribution and oxygenation potential of a new generation of oxygen carrier.

    PubMed

    Le Gall, Tony; Polard, Valérie; Rousselot, Morgane; Lotte, Auréline; Raouane, Mouna; Lehn, Pierre; Opolon, Paule; Leize, Elisabeth; Deutsch, Eric; Zal, Franck; Montier, Tristan

    2014-10-10

    Natural giant extracellular hemoglobins (Hbs) from polychaete annelids are currently actively investigated as promising oxygen carriers. Their powerful oxygenating ability and their safety have been demonstrated in preclinical studies, motivating their development for therapeutic and industrial applications. HEMARINA-M101 (M101) is derived from the marine invertebrate Arenicola marina. It is formulated as a manufactured product designated HEMOXYCarrier(®) (HEMARINA SA, France). The aim of the present study was to unveil the fate of M101 after a single intravenous (i.v.) injection in mice. For this purpose, M101 was tagged with a far-red fluorescent dye. Repeated non-invasive fluorescent imaging revealed a rapid diffusion of M101 in the whole body of animals, reaching all the examined organs such as brain, liver, lungs and ovaries. Functional M101 was circulating in bloodstream for several hours, without inducing any obvious side-effects. Last, a single i.v. injection of M101 in mice bearing human-derived subcutaneous tumors demonstrated the ability of this Hb to reduce hypoxia in poorly vascularized tissues, thus supporting the biological relevance of M101 oxygen release to vertebrate tissues. Altogether, these results further encourage the development of M101 as an oxygen carrying therapeutic. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. LIGHT UTILIZATION AND PHOTOINHIBITION OF PHOTOSYNTHESIS IN MARINE PHYTOPLANKTON

    EPA Science Inventory

    Based on the record of the oldest identifiable fossils, the first oxygenic photosynthetic organisms appeared about 2 x 10 9 years ago in the form of marine single-celled, planktonic prokaryotes (Riding, 1992; Sarmiento and Bender, 1994) (planktonic was derived from the Greek plan...

  15. Oxygen isotopes of phosphatic compounds - Application for marine particulate matter, sediments and soils

    USGS Publications Warehouse

    McLaughlin, K.; Paytan, A.; Kendall, C.; Silva, S.

    2006-01-01

    The phosphate oxygen isotopic composition in naturally occurring particulate phosphatic compounds (??18Op) can be used as a tracer for phosphate sources and to evaluate the cycling of phosphorus (P) in the environment. However, phosphatic compounds must be converted to silver phosphate prior to isotopic analysis, a process that involves digestion of particulate matter in acid. This digestion will hydrolyze some of the phosphatic compounds such that oxygen from the acid solution will be incorporated into the sample as these phosphatic compounds are converted to orthophosphate (PO 43-). To determine the extent of incorporation of reagent oxygen into the sample, we digested various phosphatic compounds in both acid amended with H218O (spiked) and unspiked acid and then converted the samples to silver phosphate for ??18Op analysis. Our results indicate that there is no isotopic fractionation associated with acid digestion at 50??C. Furthermore, we found that reagent oxygen incorporation is a function of the oxygen to phosphorus ratio (O:P) of the digested compound whereby the percentage of reagent oxygen incorporated into the sample is the same as that which is required to convert all of the P-compounds into orthophosphate. Based on these results, we developed a correction for reagent oxygen incorporation using simple mass balance, a procedure that allows for the determination of the ??18O p of samples containing a mixture of phosphatic compounds. We analyzed a variety of environmental samples for ??18O p to demonstrate the utility of this approach for understanding sources and cycling of P. ?? 2005 Elsevier B.V. All rights reserved.

  16. Arsenic in marine mammals, seabirds, and sea turtles.

    PubMed

    Kunito, Takashi; Kubota, Reiji; Fujihara, Junko; Agusa, Tetsuro; Tanabe, Shinsuke

    2008-01-01

    Although there have been numerous studies on arsenic in low-trophic-level marine organisms, few studies exist on arsenic in marine mammals, seabirds, and sea turtles. Studies on arsenic species and their concentrations in these animals are needed to evaluate their possible health effects and to deepen our understanding of how arsenic behaves and cycles in marine ecosystems. Most arsenic in the livers of marine mammals, seabirds, and sea turtles is AB, but this form is absent or occurs at surprisingly low levels in the dugong. Although arsenic levels were low in marine mammals, some seabirds, and some sea turtles, the black-footed albatross and hawksbill and loggerhead turtles showed high concentrations, comparable to those in marine organisms at low trophic levels. Hence, these animals may have a specific mechanism for accumulating arsenic. Osmoregulation in these animals may play a role in the high accumulation of AB. Highly toxic inorganic arsenic is found in some seabirds and sea turtles, and some evidence suggests it may act as an endocrine disruptor, requiring new and more detailed studies for confirmation. Furthermore, DMA(V) and arsenosugars, which are commonly found in marine animals and marine algae, respectively, might pose risks to highly exposed animals because of their tendency to form reactive oxygen species. In marine mammals, arsenic is thought to be mainly stored in blubber as lipid-soluble arsenicals. Because marine mammals occupy the top levels of their food chain, work to characterize the lipid-soluble arsenicals and how they cycle in marine ecosystems is needed. These lipid-soluble arsenicals have DMA precursors, the exact structures of which remain to be determined. Because many more arsenicals are assumed to be present in the marine environment, further advances in analytical capabilities can and will provide useful future information on the transformation and cycling of arsenic in the marine environment.

  17. Quaternary magnetic excursions recorded in marine sediments.

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.

    2017-12-01

    This year is the golden (50th) anniversary of the first documentation of a magnetic excursion, the Laschamp excursion in volcanics from the Chaine des Puys (Bonhommet and Babkine, 1967). The first recording of an excursion in sediments was from the Blake Outer Ridge (Smith and Foster, 1969). Magnetic excursions are directional aberrations of the geomagnetic field apparently involving short-lived reversal of the main dipole field. They have durations of a few kyrs, and are therefore rarely recorded in sediments with mean sedimentation rates <10 cm/kyr. Certain Brunhes-aged excursions are now well documented having been recorded in both marine sediments and in lavas (Laschamp excursion, 41 ka). Other excursions have not been adequately recorded in lavas, but have been widely recorded in marine and lake sediments (Iceland Basin excursion, 190 ka). The recording of excursions is fortuitous both in lava sequences and in marine sediments due to their millennial/centennial-scale duration, however, the global recording of the Laschamp and Iceland Basin excursions imply that excursions involve the main dipole field, are recorded synchronously over the globe, and are therefore important in stratigraphic correlation. The marine sediment record includes magnetic excursions at 26 ka (Rockall), 32 ka (Mono Lake), 41 ka (Laschamp), 115 ka (Blake), 190 ka (Iceland Basin), 238 ka (Pringle Falls?), 286 ka (Portuguese Orphan), 495 ka (Bermuda), 540 ka (Big Lost), 590 ka (La Palma), and 670 ka (Osaka Bay), implying at least 11 excursions in the Brunhes Chron. For the Matuyama Chron, excursions have been recorded in marine sediments at 868 ka (Kamikatsura?), 932 ka (Santa Rosa), 1051 ka (Intra-Jaramillo), 1115 ka (Punaruu), 1255 ka (Bjorn), 1476 ka (Gardar), 1580 ka (Gilsa), and 2737 ka (Porcupine). Excursions coincide with minima in relative paleointensity (RPI) records. Ages are from correlation of excursion records to oxygen isotope records in the same cores, and ice

  18. Effect of oxygen impurities on properties of the ternary superconductor SnMo/sub 6/S/sub 8/: Extended x-ray-absorption fine-structure determination of bond distances and local-density cluster calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenzburger, D.; Ellis, D.E.; Montano, P.A.

    1985-10-01

    Electronic structure calculations were performed for clusters representing the Chevrel-phase SnMo/sub 6/S/sub 8/, with and without oxygen doping. In order to obtain the local structure around the Sn atom, extended x-ray-absorption fine-structure (EXAFS) measurements were made with synchro- tron radiation. The interatomic distances obtained experimentally were used in the calculations. The effect of oxygen doping on the Moessbauer isomer shift and quadrupole splitting values of /sup 119/Sn was investigated theoretically and compared with reported experimental values. The effect of oxygen substitution on the density of states at the Fermi energy of the (Mo/sub 6/S/sub 8/)/sup 2 -/ cluster was alsomore » studied. The results suggest that oxygen doping does not alter significantly the electronic structure of SnMo/sub 6/S/sub 8/.« less

  19. Nitrous oxide production in the eastern tropical South Pacific oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Ji, Qixing; Altabet, Mark; Arevalo-Martinez, Damian; Bange, Hermann; Ma, Xiao; Marandino, Christa; Sun, Mingshuang; Grundle, Damian

    2017-04-01

    Nitrous oxide (N2O) is an important climate active trace gas that contributes to both atmospheric warming and ozone destruction, and the ocean is an important source of N2O to the atmosphere. Dissolved oxygen concentrations play an important role in regulating N2O production in the ocean, such that under low oxygen conditions major shifts in the predominant production pathways (i.e. nitrification vs. denitrification) can occur and the magnitude of production may increase substantially. To this end, major oceanic oxygen minimum zones (OMZs) are responsible for a disproportionately high amount of marine N2O production. During the October 2015 ASTRA-OMZ cruise to the eastern tropical South Pacific (ETSP), one of the three major oceanic OMZs, we measured a suite of N2O parameters which included N2O concentrations, N2O production, and natural abundance N2O isotope (i.e. del 15N and del 18O) and isotopomer (i.e. 15N site-preference) signatures. Based on the results from these measurements, our presentation will demonstrate how N2O production and the different production pathways change along the oxygen concentration gradients from the oxygenated surface waters through the oxygen minimum layer. Our data could better constrain the importance of the ETSP-OMZ as source of marine N2O. Results from this work will provide insights into how N2O cycling responds to ocean deoxygenation as a result of climate change.

  20. Distribution and Abundance of Hopanoid Producers in Low-Oxygen Environments of the Eastern Pacific Ocean.

    PubMed

    Kharbush, Jenan J; Kejriwal, Kanchi; Aluwihare, Lihini I

    2016-02-01

    Hopanoids are bacterial membrane lipid biomarker molecules that feature prominently in the molecular fossil record. In the modern marine water column, recent reports implicate bacteria inhabiting low-oxygen environments as important sources of hopanoids to marine sediments. However, the preliminary biogeography reported by recent studies and the environmental conditions governing such distributions can only be confirmed when the numerical abundance of these organisms is known with more certainty. In this study, we employ two different approaches to examine the quantitative significance of phylogenetically distinct hopanoid producers in low-oxygen environments. First, we develop a novel quantitative PCR (qPCR) assay for the squalene hopene cyclase (sqhC) gene, targeting a subset of hopanoid producers previously identified to be important in the eastern North Pacific Ocean. The results represent the first quantitative gene abundance data of any kind for hopanoid producers in the marine water column and show that these putative alphaproteobacterial hopanoid producers are rare, comprising at most 0.2 % of the total bacterial community in our samples. Second, a complementary analysis of existing low-oxygen metagenomic datasets further examined the generality of the qPCR observation. We find that the dominant sqhC sequences in these metagenomic datasets are associated with phyla such as Nitrospinae rather than Proteobacteria, consistent with the qPCR finding that alphaproteobacterial hopanoid producers are not very abundant in low-oxygen environments. In fact, positive correlations between sqhC gene abundance and environmental parameters in these samples identify nitrite availability as a potentially important factor in the ecology of hopanoid producers that dominate low-oxygen environments.

  1. Patterns of mortality among South Florida Manatees: Evidence from oxygen, sulfur and deuterium stable isotopes

    NASA Astrophysics Data System (ADS)

    MacAvoy, S. E.; Bacalan, V.; Kazantseva, M.; Rhodes, J.; Kim, K.

    2012-12-01

    The Florida manatee (Trichechus manatus latirostris) is an endangered marine mammal whose coastal habitat has been heavily altered by human development. Sources of mortality include anthropogenic and environmental causes. Necropsies were completed on 75 deceased individuals, and tissues, including bone samples, were collected for later analysis. This study investigates the utility of manatee bone stable oxygen (δ18O), sulfur (δ34S) and deuterium (δD) for determining where the animals lived (which may not be where they where their bodies were recovered), and the relative importance of marine versus freshwater for the individual animals. The isotopes can provide a "geochemical map" showing the distribution of mortality, aiding in the evaluation of geographical patterns in mortality. The δ18O signatures of the bones ranged from 14 to 18.5‰, with no significant difference between male and female mean values. δ18O significantly decreased with increasing latitude (p=.0016), a trend positively correlated with coastal Florida seawater δ18O literature values obtained from the NASA Global Seawater Oxygen-18 Database (http://data.giss.nasa.gov/o18data/) and the EAIA stable isotope database (http://www.univie.ac.at/cartography/project/wiser/). Bone δ34S indicated the influence of marine versus coastal freshwater dietary sources on the animals. Most individuals showed 34S-depleted signatures, which indicated a non-marine sulfur source; however some individuals clearly had taken up marine sulfate (mean 4.9 ± 3.7‰, range 0.8 to 13.8‰). Deuterium values were not available at the time this abstract was written, however we hypothesize that those values will co-vary with δ18O. We conclude that manatee diets are based on both marine and freshwater sources, but freshwater sources exert more influence. Marine water and manatee δ18O co-vary with latitude, suggesting that stable oxygen isotopes may be useful indicators of the latitude where manatees lived.

  2. Effect of oxygen minimum zone formation on communities of marine protists

    PubMed Central

    Orsi, William; Song, Young C; Hallam, Steven; Edgcomb, Virginia

    2012-01-01

    Changes in ocean temperature and circulation patterns compounded by human activities are leading to oxygen minimum zone (OMZ) expansion with concomitant alteration in nutrient and climate active trace gas cycling. Here, we report the response of microbial eukaryote populations to seasonal changes in water column oxygen-deficiency using Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island British Columbia, as a model ecosystem. We combine small subunit ribosomal RNA gene sequencing approaches with multivariate statistical methods to reveal shifts in operational taxonomic units during successive stages of seasonal stratification and renewal. A meta-analysis is used to identify common and unique patterns of community composition between Saanich Inlet and the anoxic/sulfidic Cariaco Basin (Venezuela) and Framvaren Fjord (Norway) to show shared and unique responses of microbial eukaryotes to oxygen and sulfide in these three environments. Our analyses also reveal temporal fluctuations in rare populations of microbial eukaryotes, particularly anaerobic ciliates, that may be of significant importance to the biogeochemical cycling of methane in OMZs. PMID:22402396

  3. Nitrogen and phosphorus treatment of marine wastewater by a laboratory-scale sequencing batch reactor with eco-friendly marine high-efficiency sediment.

    PubMed

    Cho, Seonghyeon; Kim, Jinsoo; Kim, Sungchul; Lee, Sang-Seob

    2017-06-22

    We screened and identified a NH 3 -N-removing bacterial strain, Bacillus sp. KGN1, and a [Formula: see text] removing strain, Vibrio sp. KGP1, from 960 indigenous marine isolates from seawater and marine sediment from Tongyeong, South Korea. We developed eco-friendly high-efficiency marine sludge (eco-HEMS), and inoculated these marine bacterial strains into the marine sediment. A laboratory-scale sequencing batch reactor (SBR) system using the eco-HEMS for marine wastewater from land-based fish farms improved the treatment performance as indicated by 88.2% removal efficiency (RE) of total nitrogen (initial: 5.6 mg/L) and 90.6% RE of total phosphorus (initial: 1.2 mg/L) under the optimal operation conditions (food and microorganism (F/M) ratio, 0.35 g SCOD Cr /g mixed liquor volatile suspended solids (MLVSS)·d; dissolved oxygen (DO) 1.0 ± 0.2 mg/L; hydraulic retention time (HRT), 6.6 h; solids retention time (SRT), 12 d). The following kinetic parameters were obtained: cell yield (Y), 0.29 g MLVSS/g SCOD Cr ; specific growth rate (µ), 0.06 d -1 ; specific nitrification rate (SNR), 0.49 mg NH 3 -N/g MLVSS·h; specific denitrification rate (SDNR), 0.005 mg [Formula: see text]/g MLVSS·h; specific phosphorus uptake rate (SPUR), 0.12 mg [Formula: see text]/g MLVSS·h. The nitrogen- and phosphorus-removing bacterial strains comprised 18.4% of distribution rate in the microbial community of eco-HEMS under the optimal operation conditions. Therefore, eco-HEMS effectively removed nitrogen and phosphorus from highly saline marine wastewater from land-based fish farms with improving SNR, SDNR, and SPUR values in more diverse microbial communities. DO: dissolved oxygen; Eco-HEMS: eco-friendly high efficiency marine sludge; F/M: food and microorganism ratio; HRT: hydraulic retention time; ML(V)SS: mixed liquor (volatile) suspended solids; NCBI: National Center for Biotechnology Information; ND: not determined; qPCR: quantitative real-time polymerase

  4. Inhibition of nitrogenase by oxygen in marine cyanobacteria controls the global nitrogen and oxygen cycles

    NASA Astrophysics Data System (ADS)

    Berman-Frank, I.; Chen, Y.-B.; Gerchman, Y.; Dismukes, G. C.; Falkowski, P. G.

    2005-03-01

    Cyanobacterial N2-fixation supplies the vast majority of biologically accessible inorganic nitrogen to nutrient-poor aquatic ecosystems. The process, catalyzed by the heterodimeric protein complex, nitrogenase, is thought to predate that of oxygenic photosynthesis. Remarkably, while the enzyme plays such a critical role in Earth's biogeochemical cycles, the activity of nitrogenase in cyanobacteria is markedly inhibited in vivo at a post-translational level by the concentration of O2 in the contemporary atmosphere leading to metabolic and biogeochemical inefficiency in N2 fixation. We illustrate this crippling effect with data from Trichodesmium spp. an important contributor of "new nitrogen" to the world's subtropical and tropical oceans. The enzymatic inefficiency of nitrogenase imposes a major elemental taxation on diazotrophic cyanobacteria both in the costs of protein synthesis and for scarce trace elements, such as iron. This restriction has, in turn, led to a global limitation of fixed nitrogen in the contemporary oceans and provides a strong biological control on the upper bound of oxygen concentration in Earth's atmosphere.

  5. Benthic foraminiferal trace metal uptake: a field calibration from the Arabia Sea Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Koho, K. A.; Reichart, G.-J.

    2012-04-01

    The Arabian Sea Oxygen Minimum Zone (OMZ) is sustained by high surface water productivity and relatively weak mid-depth water column ventilation. High primary productivity drives high respiration rates in the water column, causing severe oxygen depletion between ±150-1400 m water depths, with the oxygen concentrations falling below 2 μM in the core of the OMZ. Living (rose Bengal stained) benthic foraminifera were collected at 10-stations, covering a large bottom water oxygen concentration gradient from the Murray Ridge. This sub-marine ridge is located in the open marine environment of the Arabian Sea and thus not affected by large gradients in surface water productivity such as encountered at the continental margins. Since these sites thus receive similar organic fluxes, but are bathed in bottom waters with contrasting oxygen concentrations, pore water profiles mainly reflect bottom water oxygenation. The study sites represent a natural laboratory to investigate the impact of bottom water chemistry on trace metal incorporation in benthic foraminifera. Trace metal analyses by laser ablation ICP-MS allows detailed single chamber measurements of trace metal content, which can be related to in situ pore water geochemistry. Focus of this study is on redox sensitive trace metal (e.g. Mn, U) incorporation into foraminiferal test calcite in relation to pore water oxygen and carbonate chemistry.

  6. Strengthening of the Eastern Tropical North Pacific Oxygen Minimum Zone during Marine Isotope Stage 3 despite the intensification of Dansgaard-Oeschger and Heinrich events

    NASA Astrophysics Data System (ADS)

    Choumiline, K.; Lyons, T. W.; Carriquiry, J. D.; Perez-Cruz, L. L.; Raiswell, R.; Beaufort, L.; Rafter, P. A.

    2017-12-01

    The Eastern Tropical North Pacific (ETNP) is sensitive to climatic changes that either strengthen or weaken the Oxygen Minimum Zone (OMZ). Paleoproxy and model evidence indicate that the shifts from cold stadials (LGM, MIS4) to warm interstadials are often accompanied by sudden sea level rise, intensification of marine productivity and enhanced oceanic anoxia. These intermediate states remain enigmatic, especially with overimposed Dansgaard-Oeschger (DO) oscillations and Heinrich events. We present a high-resolution reconstruction of productivity (Corg, P, Cd, Ni, Ba) and redox (Fe/Al, FeHR/FeT, Mo, V, U) of the ETNP over the last glacial period with special emphasis on the MIS3 transition (roughly 30-60 kyr BP). We found that the OMZ was profoundly anoxic throughout that interval, based on marine sedimentary paleoproxy records. Our spatiotemporal reconstruction shows that the geographic extent of enhanced deoxygenation during the MIS3 not only encompassed the Gulf of California (Alfonso, La Paz and Guaymas Basin), Pacific margin off Mazatlan and Baja California (Soledad Basin), but also California (Santa Barbara Basin) and western Canadian margins. The OMZ achieved its peak strength during 45-60 kyr BP exposed by the highest Mo (35 mg/kg), V (120 mg/kg) and U (13 mg/kg) values, and then commenced weakening and contracting onto the LGM. Marine productivity was also reportedly high during the MIS3, mostly mirroring the redox signals. In contrast, MIS4 and LGM were well-oxygenated and depleted in redox proxies (as low as 4 mg/kg of Mo, 60 mg/kg of V and 4 mg/kg of U). Despite of enhanced anoxia or even euxinia during the MIS3, the effect of cold D-O and Heinrich events was unmistakable. Most of these perturbations corresponded to low export production (low Corg, P, Cd/Al, Ni/Al and Ba/Al) and good ventilation of the ETNP. The recoveries after these events were relatively quick and anoxic conditions were re-established within hundreds of years. As of now, there is no

  7. Harvesting energy from the marine sediment--water interface.

    PubMed

    Reimers, C E; Tender, L M; Fertig, S; Wang, W

    2001-01-01

    Pairs of platinum mesh or graphite fiber-based electrodes, one embedded in marine sediment (anode), the other in proximal seawater (cathode), have been used to harvest low-level power from natural, microbe established, voltage gradients at marine sediment-seawater interfaces in laboratory aquaria. The sustained power harvested thus far has been on the order of 0.01 W/m2 of electrode geometric area but is dependent on electrode design, sediment composition, and temperature. It is proposed that the sediment/anode-seawater/cathode configuration constitutes a microbial fuel cell in which power results from the net oxidation of sediment organic matter by dissolved seawater oxygen. Considering typical sediment organic carbon contents, typical fluxes of additional reduced carbon by sedimentation to sea floors < 1,000 m deep, and the proven viability of dissolved seawater oxygen as an oxidant for power generation by seawater batteries, it is calculated that optimized power supplies based on the phenomenon demonstrated here could power oceanographic instruments deployed for routine long-term monitoring operations in the coastal ocean.

  8. Flourishing ocean drives the end-Permian marine mass extinction

    PubMed Central

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2015-01-01

    The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian−Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth’s history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness. PMID:26240323

  9. Flourishing ocean drives the end-Permian marine mass extinction.

    PubMed

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2015-08-18

    The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian-Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth's history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness.

  10. Devils Hole, Nevada, δ18O record extended to the mid-Holocene

    USGS Publications Warehouse

    Winograd, Isaac J.; Landwehr, Jurate M.; Coplen, Tyler B.; Sharp, Warren D.; Riggs, Alan C.; Ludwig, Kenneth R.; Kolesar, Peter T.

    2006-01-01

    The mid-to-late Pleistocene Devils Hole δ18O record has been extended from 60,000 to 4500 yr ago. The new δ18O time series, in conjunction with the one previously published, is shown to be a proxy of Pacific Ocean sea surface temperature (SST) off the coast of California. During marine oxygen isotope stages (MIS) 2 and 6, the Devil Hole and SST time series exhibit a steady warming that began 5000 to > 10,000 yr prior to the last and penultimate deglaciations. Several possible proximate causes for this early warming are evaluated. The magnitude of the peak δ18O or SST during the last interglacial (LIG) is significantly greater (1 per mill and 2 to 3°C, respectively) than the peak value of these parameters for the Holocene; in contrast, benthic δ18O records of ice volume show only a few tenths per mill difference in the peak value for these interglacials. Statistical analysis provides an estimate of the large shared information (variation) between the Devils Hole and Eastern Pacific SST time series from ∼ 41 to ∼ 2°N and enforces the concept of a common forcing among all of these records. The extended Devils Hole record adds to evidence of the importance of uplands bordering the eastern Pacific as a source of archives for reconstructing Pacific climate variability.

  11. DDS, 4,4′-diaminodiphenylsulfone, extends organismic lifespan

    PubMed Central

    Keam, Bhumsuk; Choi, Jung Min; Cho, Yunje; Hyun, Soonsil; Park, Sang Chul; Lee, Junho

    2010-01-01

    DDS, 4,4′-diaminodiphenylsulfone, is the most common drug prescribed to treat Hansen disease patients. In addition to its antibacterial activity, DDS has been reported to be involved in other cellular processes that occur in eukaryotic cells. Because DDS treatment significantly enhances the antioxidant activity in humans, we examined its effect on lifespan extension. Here we show that DDS extends organismic lifespan using Caenorhabditis elegans as a model system. DDS treatment caused a delay in aging and decreased the levels of a mitochondrial complex. The oxygen consumption rate was also significantly lowered. Consistent with these data, paraquat treatment evoked less reactive oxygen species in DDS-treated worms, and these worms were less sensitive to paraquat. Interestingly enough, all of the molecular events caused by DDS treatment were consistently reproduced in mice treated with DDS for 3 mo and in the C2C12 muscle cell line. Structural prediction identified pyruvate kinase (PK) as a protein target of DDS. Indeed, DDS bound and inhibited PK in vitro and inhibited it in vivo, and a PK mutation conferred extended lifespan of C. elegans. Supplement of pyruvate to the media protected C2C12 cells from apoptosis caused by paraquat. Our findings establish the significance of DDS in lowering reactive oxygen species generation and extending the lifespan, which renders the rationale to examining the possible effect of DDS on human lifespan extension. PMID:20974969

  12. Ligand Based-Pharmacophore Modeling and Extended Bi oactivity Prediction for Salinosporamide A, B and C from Marine Actino mycetes Salinispora tropica.

    PubMed

    Dineshkumar, Kesavan; Vasudevan, Aparna; Hopper, Waheeta

    2017-01-01

    Actinomycetes produce structurally unique secondary metabolites with pharmaceutically essential bioactivities. Salinispora, an obligate marine actinomycete, produces structurally varied and unique secondary metabolites. There is plenty of scope for development of drugs from the novel compounds isolated from Salinispora. Anticancer, antibacterial and anti-protozoa activities have been shown for Salinosporamides A, B and C, the secondary metabolites identified from Salinispora, which make them interesting subjects for further extended biological activity prediction. An in silico ligand based-pharmacophore approach was used for the prediction of extended biological targets for salinosporamide A, B and C. Pharmacophore models of salinosporamide A, B and C were generated individually and screened against known drug databases. The drugs with best fitness score were shortlisted, and their respective targets pertaining to their bioactivity were retrieved. The predicted biological drug targets were docked with salinosporamide A, B and C for validation. The glucocorticoid receptor and methionine aminopeptidase 2 showed good docking score and binding energy with salinosporamide A, B and C. Molecular dynamics studies of the protein-ligand complexes showed stable interactions suggesting that the predicted new targets for salinosporamides might be promising. The glucocorticoid receptor and methionine aminopeptidase 2 could be possible new drug targets of bioactivity of salinosporamides. These proteins could be the druggable targets for antiinflammatory and anticancer activity of salinosporamides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Effect of oxygen minimum zone formation on communities of marine protists.

    PubMed

    Orsi, William; Song, Young C; Hallam, Steven; Edgcomb, Virginia

    2012-08-01

    Changes in ocean temperature and circulation patterns compounded by human activities are leading to oxygen minimum zone (OMZ) expansion with concomitant alteration in nutrient and climate active trace gas cycling. Here, we report the response of microbial eukaryote populations to seasonal changes in water column oxygen-deficiency using Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island British Columbia, as a model ecosystem. We combine small subunit ribosomal RNA gene sequencing approaches with multivariate statistical methods to reveal shifts in operational taxonomic units during successive stages of seasonal stratification and renewal. A meta-analysis is used to identify common and unique patterns of community composition between Saanich Inlet and the anoxic/sulfidic Cariaco Basin (Venezuela) and Framvaren Fjord (Norway) to show shared and unique responses of microbial eukaryotes to oxygen and sulfide in these three environments. Our analyses also reveal temporal fluctuations in rare populations of microbial eukaryotes, particularly anaerobic ciliates, that may be of significant importance to the biogeochemical cycling of methane in OMZs. Eukaryotic 18S rRNA gene sequences recovered from the Saanich Inlet water column on were deposited in Genbank under accession numbers HQ864863–HQ871151.

  14. A buried marine depositional sequence (Presumpscot FM. ) N. of the marine limit, Waterboro, Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morency, R.E.

    Subsurface investigations conducted in Waterboro, ME (York Co.) in connection with studies of two hazardous waste sites and a municipal water supply exploration project, have demonstrated that a laterally extensive sequence of marine deposits underlies surficial sediments mapped as non-esker ice contact glacio-fluvial deposits. The marine deposits consist of a fining-downwards sequence of grey, micaceous sands (fine to medium, grading down to a silty-fine sand), which grade downward into a thick ([plus minus] 30 feet) grey silt/clay unit, which itself shows a fining-downward trend. The stratigraphy is likely correlative to the Presumpscot Formation, as described by Bloom (1963). The bottommore » of the regressive marine sequence is marked at several locations by a thin layer of sand-sized biotite mica. Lodgement till was encountered only at scattered localities (in boreholes) at each site. The bedrock surface is of considerable relief, with changes of 200--300 feet over short distances detected. The sequence appears to be the record of a rapidly transgressing sea which inundated a valley where outwash had been deposited by meltwater ahead of retreating ice. As the sea retreated, up to 70 feet of sediment was deposited in a continuous, coarsening-upwards sequence. Subsequent to the marine regression, the sediments were reworked in a subaerial (braided stream) environment. The Surficial Geologic Map of Maine shows that the inland limit of late-glacial marine submergence is located approximately 8 miles southwest of Waterboro, in Alfred, Maine. The marine limit in Alfred takes the form of a NNE trending, blunt-ended embayment. The results of this study suggest that the marine embayment once extended northward from Alfred, and is now a buried feature, possibly representing a preglacial valley, which hosted an estuary in late Wisconsonian time.« less

  15. Oxygen no longer plays a major role in Body Size Evolution

    NASA Astrophysics Data System (ADS)

    Datta, H.; Sachson, W.; Heim, N. A.; Payne, J.

    2015-12-01

    When observing the long-term relationship between atmospheric oxygen and the maximum size in organisms across the Geozoic (~3.8 Ga - present), it appears that as oxygen increases, organism size grows. However, during the Phanerozoic (541 Ma - Present) oxygen levels varied, so we set out to test the hypothesis that oxygen levels drive patterns marine animal body size evolution. Expected decreases in maximum size due to a lack of oxygen do not occur, and instead, body size continues to increase regardless. In the oxygen data, a relatively low atmospheric oxygen percentage can support increasing body size, so our research tries to determine whether lifestyle affects body size in marine organisms. The genera in the data set were organized based on their tiering, motility, and feeding, such as a pelagic, fully-motile, predator. When organisms fill a certain ecological niche to take advantage of resources, they will have certain life modes, rather than randomly selected traits. For example, even in terrestrial environments, large animals have to constantly feed themselves to support their expensive terrestrial lifestyle which involves fairly consistent movement, and the structural support necessary for that movement. Only organisms with access to high energy food sources or large amounts of food can support themselves, and that is before they expend energy elsewhere. Organisms that expend energy frugally when active or have slower metabolisms in comparison to body size have a more efficient lifestyle and are generally able to grow larger, while those who have higher energy demands like predators are limited to comparatively smaller sizes. Therefore, in respect to the fossil record and modern measurements of animals, the metabolism and lifestyle of an organism dictate its body size in general. With this further clarification on the patterns of evolution, it will be easier to observe and understand the reasons for the ecological traits of organisms today.

  16. Characterisation of North American Brucella isolates from marine mammals.

    PubMed

    Whatmore, Adrian M; Dawson, Claire; Muchowski, Jakub; Perrett, Lorraine L; Stubberfield, Emma; Koylass, Mark; Foster, Geoffrey; Davison, Nicholas J; Quance, Christine; Sidor, Inga F; Field, Cara L; St Leger, Judy

    2017-01-01

    Extension of known ecological niches of Brucella has included the description of two novel species from marine mammals. Brucella pinnipedialis is associated predominantly with seals, while two major Brucella ceti clades, most commonly associated with porpoises or dolphins respectively, have been identified. To date there has been limited characterisation of Brucella isolates obtained from marine mammals outside Northern European waters, including North American waters. To address this gap, and extend knowledge of the global population structure and host associations of these Brucella species, 61 isolates from marine mammals inhabiting North American waters were subject to molecular and phenotypic characterisation enabling comparison with existing European isolates. The majority of isolates represent genotypes previously described in Europe although novel genotypes were identified in both B. ceti clades. Harp seals were found to carry B. pinnipedialis genotypes previously confined to hooded seals among a diverse repertoire of sequence types (STs) associated with this species. For the first time Brucella isolates were characterised from beluga whales and found to represent a number of distinct B. pinnipedialis genotypes. In addition the known host range of ST27 was extended with the identification of this ST from California sea lion samples. Finally the performance of the frequently used diagnostic tool Bruce-ladder, in differentiating B. ceti and B. pinnipedialis, was critically assessed based on improved knowledge of the global population structure of Brucella associated with marine mammals.

  17. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    USDA-ARS?s Scientific Manuscript database

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  18. Limb-use by foraging marine turtles, an evolutionary perspective

    PubMed Central

    McLeish, Don; Brooks, Andrew J.; Gaskell, John; Van Houtan, Kyle S.

    2018-01-01

    The use of limbs for foraging is documented in both marine and terrestrial tetrapods. These behaviors were once believed to be less likely in marine tetrapods due to the physical constraints of body plans adapted to locomotion in a fluid environment. Despite these obstacles, ten distinct types of limb-use while foraging have been previously reported in nine marine tetrapod families. Here, we expand the types of limb-use documented in marine turtles and put it in context with the diversity of marine tetrapods currently known to use limbs for foraging. Additionally, we suggest that such behaviors could have occurred in ancestral turtles, and thus, possibly extend the evolutionary timeline of limb-use behavior in marine tetrapods back approximately 70 million years. Through direct observation in situ and crowd-sourcing, we document the range of behaviors across habitats and prey types, suggesting its widespread occurrence. We argue the presence of these behaviors among marine tetrapods may be limited by limb mobility and evolutionary history, rather than foraging ecology or social learning. These behaviors may also be remnant of ancestral forelimb-use that have been maintained due to a semi-aquatic life history. PMID:29610708

  19. Limb-use by foraging marine turtles, an evolutionary perspective.

    PubMed

    Fujii, Jessica A; McLeish, Don; Brooks, Andrew J; Gaskell, John; Van Houtan, Kyle S

    2018-01-01

    The use of limbs for foraging is documented in both marine and terrestrial tetrapods. These behaviors were once believed to be less likely in marine tetrapods due to the physical constraints of body plans adapted to locomotion in a fluid environment. Despite these obstacles, ten distinct types of limb-use while foraging have been previously reported in nine marine tetrapod families. Here, we expand the types of limb-use documented in marine turtles and put it in context with the diversity of marine tetrapods currently known to use limbs for foraging. Additionally, we suggest that such behaviors could have occurred in ancestral turtles, and thus, possibly extend the evolutionary timeline of limb-use behavior in marine tetrapods back approximately 70 million years. Through direct observation in situ and crowd-sourcing, we document the range of behaviors across habitats and prey types, suggesting its widespread occurrence. We argue the presence of these behaviors among marine tetrapods may be limited by limb mobility and evolutionary history, rather than foraging ecology or social learning. These behaviors may also be remnant of ancestral forelimb-use that have been maintained due to a semi-aquatic life history.

  20. Marine Biodiversity, Biogeography, Deep-Sea Gradients, and Conservation.

    PubMed

    Costello, Mark J; Chaudhary, Chhaya

    2017-06-05

    The oceans appear ideal for biodiversity - they have unlimited water, a large area, are well connected, have less extreme temperatures than on land, and contain more phyla and classes than land and fresh waters. Yet only 16% of all named species on Earth are marine. Species richness decreases with depth in the ocean, reflecting wider geographic ranges of deep sea than coastal species. Here, we assess how many marine species are named and estimated to exist, paying particular regard to whether discoveries of deep-sea organisms, microbes and parasites will change the proportion of terrestrial to marine species. We then review what factors have led to species diversification, and how this knowledge informs conservation priorities. The implications of this understanding for marine conservation are that the species most vulnerable to extinction will be large and endemic. Unfortunately, these species are also the most threatened by human impacts. Such threats now extend globally, and thus the only refuges for these species will be large, permanent, fully protected marine reserves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. 77 FR 841 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to U.S. Navy Operations of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... threats is decreasing, and at the same time, improvements in torpedo design are extending the effective... relatively short period of time. It is likely that any marine mammal would be able to avoid the surveillance... duration of any continuous frequency sound transmission is no longer than 10 sec and the time between pings...

  2. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile.

    PubMed

    Parris, Darren J; Ganesh, Sangita; Edgcomb, Virginia P; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2-1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2-1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40-70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2-1.6 μm fraction was dominated (11-99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion.

  3. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile

    PubMed Central

    Parris, Darren J.; Ganesh, Sangita; Edgcomb, Virginia P.; DeLong, Edward F.; Stewart, Frank J.

    2014-01-01

    Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2–1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2–1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40–70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2–1.6 μm fraction was dominated (11–99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion. PMID:25389417

  4. Atomic oxygen reactor having at least one sidearm conduit

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    An apparatus for treating a microporous structure with atomic oxygen is presented. The apparatus includes a main gas chamber for flowing gas in an axial direction and a source of gas, containing atomic oxygen, connected for introducing the gas into the main gas chamber. The apparatus employs at least one side arm extending from the main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  5. Hyperbaric Oxygen Therapy and Oxygen Compatibility of Skin and Wound Care Products

    PubMed Central

    Bernatchez, Stéphanie F.; Tucker, Joseph; Chiffoleau, Gwenael

    2017-01-01

    Objective: Use test methods to assess the oxygen compatibility of various wound care products. Approach: There are currently no standard test methods specifically for evaluating the oxygen compatibility and safety of materials under hyperbaric oxygen (HBO) conditions. However, tests such as the oxygen index (OI), oxygen exposure (OE), and autogenous ignition temperature (AIT) can provide useful information. Results: The OI test measures the minimum oxygen concentration that will support candle-like burning, and it was used to test 44 materials. All but two exhibited an OI equal to or greater (safer) than a control material commonly used in HBO. The OE test exposes each material to an oxygen-enriched atmosphere (>99.5% oxygen) to monitor temperature and pressure for an extended duration. The results of the OE testing indicated that none of the 44 articles tested with this method self-ignited within the 60°C, 3 atm pressurized oxygen atmosphere. The AIT test exposes materials to a rapid ramp up in temperature in HBO conditions at 3 atm until ignition occurs. Ten wound care materials and seven materials usually avoided in HBO chambers were tested. The AIT ranged from 138°C to 384°C for wound care products and from 146°C to 420°C for the other materials. Innovation: This work provides useful data and recommendations to help develop a new standard approach for evaluating the HBO compatibility of wound care products to ensure safety for patients and clinicians. Conclusion: The development of an additional test to measure the risk of electrostatic discharge of materials in HBO conditions is needed. PMID:29098113

  6. Extending Molecular Signatures of Climatic and Environmental Change to the Mesozoic

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.

    2007-12-01

    The distributions, abundances and isotopic compositions of molecular constituents in sediments depend on their source organisms and the combination of environmental and climatic parameters that constrain or control their biosynthesis. Many such relationships are well documented and understood, thereby providing proxies of proven utility in paleoclimatic reconstructions. Thus, the temperature dependence in the extent of unsaturation in alkenones derived from prymnesiophyte algae, and in the proportion of ring structures in glycerol dibiphytanyl glycerol tetraethers (GDGTs) synthesized by crenarchaeota enables determination of sea surface paleotemperatures from sedimentary records. This molecular approach presumes temporal uniformity in the controlling factors on biosynthesis of these lipids, and their survival in the geological record, notwithstanding the challenge of establishing ancient calibrations for such proxies. Thus, alkenone records from marine sediments document cooling at the Eocene/Oligocene boundary but cannot assess changes in ocean temperatures during the Cretaceous, unlike GDGTs, which record fluctuations in ocean temperatures during the Early Cretaceous, and even survive in Jurassic strata. Other molecular measures offer less precise, yet informative, indications of climate. For example, the occurrence of sterol ethers in Valanginian sediments from the mid-Pacific suggests some cooling at that time, since these compounds are only known to occur elsewhere in cold waters or upwelling systems. Molecular compositions can also attest to levels of oxygenation in marine systems. In particular, the occurrence of 13C-depleted isorenieratane indicates the presence of photosynthetic green sulfur bacteria, and therefore anoxic conditions, albeit perhaps short-lived. Intermittent occurrences of isorenieratane often alternate with the appearance of 2-methylhopanoids, which provide separate distinct evidence for variations in oxygenation, linked to circumstances

  7. The effects of capillary transit time heterogeneity (CTH) on brain oxygenation

    PubMed Central

    Angleys, Hugo; Østergaard, Leif; Jespersen, Sune N

    2015-01-01

    We recently extended the classic flow–diffusion equation, which relates blood flow to tissue oxygenation, to take capillary transit time heterogeneity (CTH) into account. Realizing that cerebral oxygen availability depends on both cerebral blood flow (CBF) and capillary flow patterns, we have speculated that CTH may be actively regulated and that changes in the capillary morphology and function, as well as in blood rheology, may be involved in the pathogenesis of conditions such as dementia and ischemia-reperfusion injury. The first extended flow–diffusion equation involved simplifying assumptions which may not hold in tissue. Here, we explicitly incorporate the effects of oxygen metabolism on tissue oxygen tension and extraction efficacy, and assess the extent to which the type of capillary transit time distribution affects the overall effects of CTH on flow–metabolism coupling reported earlier. After incorporating tissue oxygen metabolism, our model predicts changes in oxygen consumption and tissue oxygen tension during functional activation in accordance with literature reports. We find that, for large CTH values, a blood flow increase fails to cause significant improvements in oxygen delivery, and can even decrease it; a condition of malignant CTH. These results are found to be largely insensitive to the choice of the transit time distribution. PMID:25669911

  8. Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system

    PubMed Central

    Yan, Jia; Haaijer, Suzanne C M; Op den Camp, Huub J M; Niftrik, Laura; Stahl, David A; Könneke, Martin; Rush, Darci; Sinninghe Damsté, Jaap S; Hu, Yong Y; Jetten, Mike S M

    2012-01-01

    In marine oxygen minimum zones (OMZs), ammonia-oxidizing archaea (AOA) rather than marine ammonia-oxidizing bacteria (AOB) may provide nitrite to anaerobic ammonium-oxidizing (anammox) bacteria. Here we demonstrate the cooperation between marine anammox bacteria and nitrifiers in a laboratory-scale model system under oxygen limitation. A bioreactor containing ‘Candidatus Scalindua profunda’ marine anammox bacteria was supplemented with AOA (Nitrosopumilus maritimus strain SCM1) cells and limited amounts of oxygen. In this way a stable mixed culture of AOA, and anammox bacteria was established within 200 days while also a substantial amount of endogenous AOB were enriched. ‘Ca. Scalindua profunda’ and putative AOB and AOA morphologies were visualized by transmission electron microscopy and a C18 anammox [3]-ladderane fatty acid was highly abundant in the oxygen-limited culture. The rapid oxygen consumption by AOA and AOB ensured that anammox activity was not affected. High expression of AOA, AOB and anammox genes encoding for ammonium transport proteins was observed, likely caused by the increased competition for ammonium. The competition between AOA and AOB was found to be strongly related to the residual ammonium concentration based on amoA gene copy numbers. The abundance of archaeal amoA copy numbers increased markedly when the ammonium concentration was below 30 μM finally resulting in almost equal abundance of AOA and AOB amoA copy numbers. Massive parallel sequencing of mRNA and activity analyses further corroborated equal abundance of AOA and AOB. PTIO addition, inhibiting AOA activity, was employed to determine the relative contribution of AOB versus AOA to ammonium oxidation. The present study provides the first direct evidence for cooperation of archaeal ammonia oxidation with anammox bacteria by provision of nitrite and consumption of oxygen. PMID:23057688

  9. Global distribution of naturally occurring marine hypoxia on continental margins

    NASA Astrophysics Data System (ADS)

    Helly, John J.; Levin, Lisa A.

    2004-09-01

    Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of marine species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of naturally hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km 2 of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5 ml l -1; over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable marine resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions.

  10. Variation of Oxygenation Conditions on a Hydrocarbonoclastic Microbial Community Reveals Alcanivorax and Cycloclasticus Ecotypes

    PubMed Central

    Terrisse, Fanny; Cravo-Laureau, Cristiana; Noël, Cyril; Cagnon, Christine; Dumbrell, Alex J.; McGenity, Terry J.; Duran, Robert

    2017-01-01

    Deciphering the ecology of marine obligate hydrocarbonoclastic bacteria (MOHCB) is of crucial importance for understanding their success in occupying distinct niches in hydrocarbon-contaminated marine environments after oil spills. In marine coastal sediments, MOHCB are particularly subjected to extreme fluctuating conditions due to redox oscillations several times a day as a result of mechanical (tide, waves and currents) and biological (bioturbation) reworking of the sediment. The adaptation of MOHCB to the redox oscillations was investigated by an experimental ecology approach, subjecting a hydrocarbon-degrading microbial community to contrasting oxygenation regimes including permanent anoxic conditions, anoxic/oxic oscillations and permanent oxic conditions. The most ubiquitous MOHCB, Alcanivorax and Cycloclasticus, showed different behaviors, especially under anoxic/oxic oscillation conditions, which were more favorable for Alcanivorax than for Cycloclasticus. The micro-diversity of 16S rRNA gene transcripts from these genera revealed specific ecotypes for different oxygenation conditions and their dynamics. It is likely that such ecotypes allow the colonization of distinct ecological niches that may explain the success of Alcanivorax and Cycloclasticus in hydrocarbon-contaminated coastal sediments during oil-spills. PMID:28861063

  11. Effects of ecological engineered oxygenation on the bacterial community structure in an anoxic fjord in western Sweden

    PubMed Central

    Forth, Michael; Liljebladh, Bengt; Stigebrandt, Anders; Hall, Per O J; Treusch, Alexander H

    2015-01-01

    Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l−1.We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event. PMID:25238400

  12. Effects of ecological engineered oxygenation on the bacterial community structure in an anoxic fjord in western Sweden.

    PubMed

    Forth, Michael; Liljebladh, Bengt; Stigebrandt, Anders; Hall, Per O J; Treusch, Alexander H

    2015-03-01

    Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l(-1).We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event.

  13. Characterisation of North American Brucella isolates from marine mammals

    PubMed Central

    Dawson, Claire; Muchowski, Jakub; Perrett, Lorraine L.; Stubberfield, Emma; Koylass, Mark; Foster, Geoffrey; Davison, Nicholas J.; Quance, Christine; Sidor, Inga F.; Field, Cara L.; St. Leger, Judy

    2017-01-01

    Extension of known ecological niches of Brucella has included the description of two novel species from marine mammals. Brucella pinnipedialis is associated predominantly with seals, while two major Brucella ceti clades, most commonly associated with porpoises or dolphins respectively, have been identified. To date there has been limited characterisation of Brucella isolates obtained from marine mammals outside Northern European waters, including North American waters. To address this gap, and extend knowledge of the global population structure and host associations of these Brucella species, 61 isolates from marine mammals inhabiting North American waters were subject to molecular and phenotypic characterisation enabling comparison with existing European isolates. The majority of isolates represent genotypes previously described in Europe although novel genotypes were identified in both B. ceti clades. Harp seals were found to carry B. pinnipedialis genotypes previously confined to hooded seals among a diverse repertoire of sequence types (STs) associated with this species. For the first time Brucella isolates were characterised from beluga whales and found to represent a number of distinct B. pinnipedialis genotypes. In addition the known host range of ST27 was extended with the identification of this ST from California sea lion samples. Finally the performance of the frequently used diagnostic tool Bruce-ladder, in differentiating B. ceti and B. pinnipedialis, was critically assessed based on improved knowledge of the global population structure of Brucella associated with marine mammals. PMID:28934239

  14. Active fungi amidst a marine subsurface RNA paleome

    NASA Astrophysics Data System (ADS)

    Orsi, W.; Biddle, J.; Edgcomb, V.

    2012-12-01

    The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Since extracellular DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA signatures by amplicon pyrosequencing, metazoan, plant, and diatom rRNA signatures were recovered from marine sediments up to 2.7 million years old, suggesting that rRNA may be much more stable than previously considered in the marine subsurface. This finding confirms the concept of a paleome, extending it to include rRNA. Within the same dataset, unique profiles of fungi were found across a range of marine subsurface provinces exhibiting statistically significant correlations with total organic carbon (TOC), sulfide, and dissolved inorganic carbon (DIC). Sequences from metazoans, plants and diatoms showed different correlation patterns, consistent with a depth-controlled paleome. The fungal correlations with geochemistry allow the inference that some fungi are active and adapted for survival in the marine subsurface. A metatranscriptomic analysis of fungal derived mRNA confirms that fungi are metabolically active and utilize a range of organic and inorganic substrates in the marine subsurface.

  15. Role of Endogenous and Exogenous Tocopherols in the Lipid Stability of Marine Oil Systems: A Review

    PubMed Central

    Suárez-Jiménez, Guadalupe Miroslava; López-Saiz, Carmen María; Ramírez-Guerra, Hugo Enrique; Ezquerra-Brauer, Josafat Marina; Ruiz-Cruz, Saul; Torres-Arreola, Wilfrido

    2016-01-01

    In marine organisms primarily intended for human consumption, the quality of the muscle and the extracted oils may be affected by lipid oxidation during storage, even at low temperatures. This has led to a search for alternatives to maintain quality. In this sense, antioxidant compounds have been used to prevent such lipid deterioration. Among the most used compounds are tocopherols, which, due to their natural origin, have become an excellent alternative to prevent or retard lipid oxidation and maintain the quality of marine products. Tocopherols as antioxidants have been studied both exogenously and endogenously. Exogenous tocopherols are often used by incorporating them into plastic packaging films or adding them directly to fish oil. It has been observed that exogenous tocopherols incorporated in low concentrations maintain the quality of both muscle and the extracted oils during food storage. However, it has been reported that tocopherols applied at higher concentrations act as a prooxidant molecule, probably because their reactions with singlet oxygen may generate free radicals and cause the oxidation of polyunsaturated fatty acids in fish oils. However, when tocopherols are included in a fish diet (endogenous tocopherols), the antioxidant effect on the muscle lipids is more effective due to their incorporation into the membrane lipids, which can help extend the shelf life of seafood by reducing the lipid deterioration that occurs due to antioxidant synergy with other phenolic compounds used supplements in fish muscle. This review focuses on the most important studies in this field and highlights the potential of using tocopherols as antioxidants in marine oils. PMID:27886145

  16. Role of Endogenous and Exogenous Tocopherols in the Lipid Stability of Marine Oil Systems: A Review.

    PubMed

    Suárez-Jiménez, Guadalupe Miroslava; López-Saiz, Carmen María; Ramírez-Guerra, Hugo Enrique; Ezquerra-Brauer, Josafat Marina; Ruiz-Cruz, Saul; Torres-Arreola, Wilfrido

    2016-11-24

    In marine organisms primarily intended for human consumption, the quality of the muscle and the extracted oils may be affected by lipid oxidation during storage, even at low temperatures. This has led to a search for alternatives to maintain quality. In this sense, antioxidant compounds have been used to prevent such lipid deterioration. Among the most used compounds are tocopherols, which, due to their natural origin, have become an excellent alternative to prevent or retard lipid oxidation and maintain the quality of marine products. Tocopherols as antioxidants have been studied both exogenously and endogenously. Exogenous tocopherols are often used by incorporating them into plastic packaging films or adding them directly to fish oil. It has been observed that exogenous tocopherols incorporated in low concentrations maintain the quality of both muscle and the extracted oils during food storage. However, it has been reported that tocopherols applied at higher concentrations act as a prooxidant molecule, probably because their reactions with singlet oxygen may generate free radicals and cause the oxidation of polyunsaturated fatty acids in fish oils. However, when tocopherols are included in a fish diet (endogenous tocopherols), the antioxidant effect on the muscle lipids is more effective due to their incorporation into the membrane lipids, which can help extend the shelf life of seafood by reducing the lipid deterioration that occurs due to antioxidant synergy with other phenolic compounds used supplements in fish muscle. This review focuses on the most important studies in this field and highlights the potential of using tocopherols as antioxidants in marine oils.

  17. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; O'Connor, Alison E.; Kuzyk, Zou Zou; Yunker, Mark B.; Gobeil, Charles; Macdonald, Robie W.

    2013-09-01

    As part of the International Polar Year research program, we conducted a survey of surface marine sediments from box cores along a section extending from the Bering Sea to Davis Strait via the Canadian Archipelago. We used bulk elemental and isotopic compositions, together with biomarkers and principal components analysis, to elucidate the distribution of marine and terrestrial organic matter in different regions of the North American Arctic margin. Marked regional contrasts were observed in organic carbon loadings, with the highest values (≥1 mg C m-2 sediment) found in sites along Barrow Canyon and the Chukchi and Bering shelves, all of which were characterized by sediments with low oxygen exposure, as inferred from thin layers (<2 cm) of Mn oxihydroxides. We found strong regional differences in inorganic carbon concentrations, with sites from the Canadian Archipelago and Lancaster Sound displaying elevated values (2-7 wt %) and highly depleted 14C compositions consistent with inputs from bedrock carbonates. Organic carbon:nitrogen ratios, stable carbon isotopes, and terrigenous organic biomarkers (lignin phenols and cutin acids) all indicate marked regional differences in the proportions of marine and terrigenous organic matter present in surface sediments. Regions such as Barrow Canyon and the Mackenzie River shelf were characterized by the highest contributions of land-derived organic matter, with compositional characteristics that suggested distinct sources and provenance. In contrast, sediments from the Canadian Archipelago and Davis Strait had the smallest contributions of terrigenous organic matter and the lowest organic carbon loadings indicative of a high degree of post-depositional oxidation.

  18. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Barry, J. P.; Micheli, F.

    2013-11-01

    Exposure of nearshore animals to hypoxic, low-pH waters upwelled from below the continental shelf and advected near the coast may be stressful to marine organisms and lead to impaired physiological performance. We mimicked upwelling conditions in the laboratory and tested the effect of fluctuating exposure to water with low-pH and/or low-oxygen levels on the mortality and growth of juvenile red abalone (Haliotis rufescens, shell length 5-10 mm). Mortality rates of juvenile abalone exposed to low-pH (7.5, total scale) and low-O2 (40% saturation, mg L-1) conditions for periods of 3 to 6 h every 3-5 days over 2 weeks did not differ from those exposed to control conditions (O2: 100% saturation, 12 mg L-1; pH 8.0). However, when exposure was extended to 24 h, twice over a 15-day period, juveniles experienced 5-20% higher mortality in the low-oxygen treatments compared to control conditions. Growth rates were reduced significantly when juveniles were exposed to low-oxygen and low-pH treatments. Furthermore, individual variation of growth rate increased when juveniles were exposed simultaneously to low-pH and low-O2 conditions. These results indicate that prolonged exposure to low-oxygen levels is detrimental for the survival of red abalone, whereas pH is a crucial factor for their growth. However, the high individual variation in growth rate under low levels of both pH and oxygen suggests that cryptic phenotypic plasticity may promote resistance to prolonged upwelling conditions by a portion of the population.

  19. Evidence that marine reserves enhance resilience to climatic impacts.

    PubMed

    Micheli, Fiorenza; Saenz-Arroyo, Andrea; Greenley, Ashley; Vazquez, Leonardo; Espinoza Montes, Jose Antonio; Rossetto, Marisa; De Leo, Giulio A

    2012-01-01

    Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection.

  20. Atmospheric Oxygen Photoabsorption

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.

    1996-01-01

    The work conducted on this grant was devoted to various aspects of the photophysics and photochemistry of the oxygen molecule. Predissociation linewidths were measured for several vibrational levels in the O2(B3 Sigma(sub u)(sup -)) state, providing good agreement with other groups working on this important problem. Extensive measurements were made on the loss kinetics of vibrationally excited oxygen, where levels between v = 5 and v = 22 were investigated. Cavity ring-down spectroscopy was used to measure oscillator strengths in the oxygen Herzberg bands. The great sensitivity of this technique made it possible to extend the known absorption bands to the dissociation limit as well as providing many new absorption lines that seem to be associated with new O2 transitions. The literature concerning the Herzberg band strengths was evaluated in light of our new measurements, and we made recommendations for the appropriate Herzberg continuum cross sections to be used in stratospheric chemistry. The transition probabilities for all three Herzberg band systems were re-evaluated, and we are recommending a new set of values.

  1. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential.

    PubMed

    Ruocco, Nadia; Costantini, Susan; Guariniello, Stefano; Costantini, Maria

    2016-04-27

    Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate) also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.

  2. Planktonic foraminiferal abnormalities in coastal and open marine eastern Mediterranean environments: A natural stress monitoring approach in recent and early Holocene marine systems

    NASA Astrophysics Data System (ADS)

    Antonarakou, A.; Kontakiotis, G.; Zarkogiannis, S.; Mortyn, P. G.; Drinia, H.; Koskeridou, E.; Anastasakis, G.

    2018-05-01

    Marine environmental status can be assessed through the study of bio-indicator species. Here, we monitor natural environmental stress by the occurrence of morphologically abnormal planktonic foraminiferal specimens from a suite of surface sediments in the eastern Mediterranean Sea. We also compare Scanning Electron Microscopy (SEM) abnormality observations from sapropel S1-derived sediments in the Aegean, Libyan and Levantine basins, since they provide a direct record of a natural stress experiment that took place over past time scales. At initial sapropel deposition levels, we observe increased growth asymmetry in Globigerinoides ruber twinned and twisted individuals, possibly associated with eutrophication and anoxia. In modern material, a range of malformations and aberrant morphologies from slight deformity with smaller or overdeveloped chambers to more severe deformity with abnormally protruding or misplaced chambers, distorted spirals, and double tests is also observed, as a result of the hypersaline, oligotrophic and oxygen-depleted nature of the Mediterranean Sea water column. Overall, we highlight the current use of the relative abundance of abnormal tests as a bio-indicator for monitoring natural stress, especially the occurrence of twin specimens as indicative of high-salinity stress conditions, and further illustrate the necessity to map both their spatial and temporal distribution for accurate paleoenvironmental reconstructions. Such an approach presents the advantage to rapidly provide information over wide spatial and temporal scales, extending our ability to monitor a wide variety of environments (from coastal to the open-sea). However, further investigations should extend this approach to test the robustness of our findings in a number of similar oceanic settings.

  3. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    PubMed

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world. Copyright © 2014. Published by Elsevier B.V.

  4. Design manual: Oxygen Thermal Test Article (OTTA)

    NASA Technical Reports Server (NTRS)

    Chronic, W. L.; Baese, C. L.; Conder, R. L.

    1974-01-01

    The characteristics of a cryogenic tank for storing liquid hydrogen, nitrogen, oxygen, methane, or helium for an extended period of time with minimum losses are discussed. A description of the tank and control module, assembly drawings and details of major subassemblies, specific requirements controlling development of the system, thermal concept considerations, thermal analysis methods, and a record of test results are provided. The oxygen thermal test article thermal protection system has proven that the insulation system for cryogenic vessels is effective.

  5. Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin).

    PubMed

    Lannig, Gisela; Cherkasov, Anton S; Pörtner, Hans-O; Bock, Christian; Sokolova, Inna M

    2008-04-01

    Marine ectotherms, including oysters are exposed to variable environmental conditions in coastal shallow waters and estuaries. In the light of global climate change, additional stressors like pollution might pose higher risk to populations. On the basis of the concept of oxygen- and capacity-limited thermal tolerance in aquatic ectotherms (40), we show that a persistent pollutant, cadmium, can have detrimental effects on oysters (Crassostrea virginica). During acute warming from 20 to 28 degrees C (4 degrees C/48 h) standard metabolic rate (SMR) rose in control and cadmium-exposed (50 microg Cd2+/l) animals, with a consistently higher SMR in Cd-exposed oysters. Additionally, Cd-exposed oysters showed a stronger temperature-dependent decrease in hemolymph oxygen partial pressures. This observation indicates that the effect of temperature on aerobic metabolism was exacerbated due to the additional Cd stress. The oxygen delivery systems could not provide enough oxygen to cover Cd-induced elevated metabolic demands at high temperatures. Interestingly, cardiac performance (measured as the heart rate and hemolymph supply to tissues) rose to a similar extent in control and Cd-exposed oysters with warming indicating that cardiac output was unable to compensate for elevated energy demand in Cd-exposed oysters. Together with the literature data on metal-induced reduction of ventilatory capacity, these findings suggest that synergistic effects of elevated temperatures and cadmium exposure led to oxygen limitation by impaired performance in oxygen supply through ventilation and circulation. Overall, cadmium exposure resulted in progressive hypoxemia in oysters at high temperatures, suggesting that the thermal tolerance window is narrowed in marine ectotherms inhabiting polluted areas compared with pristine environments.

  6. Evidence of enzymatic catalysis of oxygen reduction on stainless steels under marine biofilm.

    PubMed

    Faimali, Marco; Benedetti, Alessandro; Pavanello, Giovanni; Chelossi, Elisabetta; Wrubl, Federico; Mollica, Alfonso

    2011-04-01

    Cathodic current trends on stainless steel samples with different surface percentages covered by biofilm and potentiostatically polarized in natural seawater were studied under oxygen concentration changes, temperature increases, and additions of enzymic inhibitors to the solution. The results showed that on each surface fraction covered by biofilm the oxygen reduction kinetics resembled a reaction catalyzed by an immobilised enzyme with high oxygen affinity (apparent Michaelis-Menten dissociation constant close to K(O(2))(M)  ≈ 10 μM) and low activation energy (W ≈ 20 KJ mole(-1)). The proposed enzyme rapidly degraded when the temperature was increased above the ambient (half-life time of ∼1 day at 25°C, and of a few minutes at 50°C). Furthermore, when reversible enzymic inhibitors (eg sodium azide and cyanide) were added, the cathodic current induced by biofilm growth was inhibited.

  7. Microbial oceanography of anoxic oxygen minimum zones.

    PubMed

    Ulloa, Osvaldo; Canfield, Donald E; DeLong, Edward F; Letelier, Ricardo M; Stewart, Frank J

    2012-10-02

    Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N(2)) and nitrous oxide (N(2)O) gases. Anaerobic microbial processes, including the two pathways of N(2) production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two "end points" represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future.

  8. Microbial oceanography of anoxic oxygen minimum zones

    PubMed Central

    Ulloa, Osvaldo; Canfield, Donald E.; DeLong, Edward F.; Letelier, Ricardo M.; Stewart, Frank J.

    2012-01-01

    Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N2) and nitrous oxide (N2O) gases. Anaerobic microbial processes, including the two pathways of N2 production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two “end points” represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future. PMID:22967509

  9. Microbial diversity and stratification of South Pacific abyssal marine sediments.

    PubMed

    Durbin, Alan M; Teske, Andreas

    2011-12-01

    Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Sufficient oxygen for animal respiration 1,400 million years ago

    PubMed Central

    Zhang, Shuichang; Wang, Xiaomei; Wang, Huajian; Bjerrum, Christian J.; Hammarlund, Emma U.; Costa, M. Mafalda; Connelly, James N.; Zhang, Baomin; Su, Jin; Canfield, Donald E.

    2016-01-01

    The Mesoproterozoic Eon [1,600–1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon−oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves. PMID:26729865

  11. Evidence That Marine Reserves Enhance Resilience to Climatic Impacts

    PubMed Central

    Micheli, Fiorenza; Saenz-Arroyo, Andrea; Greenley, Ashley; Vazquez, Leonardo; Espinoza Montes, Jose Antonio; Rossetto, Marisa; De Leo, Giulio A.

    2012-01-01

    Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection. PMID:22855690

  12. Isotopic Composition of Oxygen in Lunar Zircons

    NASA Technical Reports Server (NTRS)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.

    2005-01-01

    The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.

  13. Integrating parasitology and marine ecology: Seven challenges towards greater synergy

    NASA Astrophysics Data System (ADS)

    Poulin, Robert; Blasco-Costa, Isabel; Randhawa, Haseeb S.

    2016-07-01

    Despite their very different historical origins as scientific disciplines, parasitology and marine ecology have already combined successfully to make important contributions to our understanding of the functioning of natural ecosystems. For example, robust assessments of the contribution of parasites to ecosystem biomass and energetics, and of their impact on community-wide biodiversity and food web structure, have all been made for the first time in marine systems. Nevertheless, for the marriage between parasitology and marine ecology to remain fruitful, several challenges must first be overcome. We discuss seven such challenges on the road to a greater synergy between these disciplines: (1) Raising awareness of parasitism as an ecological force by increasing the proportion of articles about parasites and diseases in marine ecology journals; (2) Making greater use of theory and conceptual frameworks from marine ecology to guide parasitological research; (3) Speeding up or at least maintaining the current rate at which marine parasites are found and described; (4) Elucidating a greater proportion of life cycles in all major groups of marine parasites; (5) Increasing the number of host-parasite model systems on which our knowledge is based; (6) Extending parasitological research offshore and into ocean depths; and (7) Developing, as needed, new epidemiological theory and transmission models for the marine environment. None of these challenges is insurmountable, and addressing just a few of them should guarantee that parasitology and marine ecology will continue to join forces and make further substantial contributions.

  14. Invasive Estuarine and Marine Animals of the North Atlantic

    DTIC Science & Technology

    2005-08-01

    may never be realized at all depending on the characteristics of the individual species and the conditions into which it is introduced. Figure 1...industrial development, and urbanization. Species are introduced by a variety of different mechanisms ; however, most estuarine and marine species...including the native species Bankia gouldii, are tolerant of a wide range of salinities and temperatures and low oxygen conditions. Shipworms are a

  15. Air-breathing adaptation in a marine Devonian lungfish.

    PubMed

    Clement, Alice M; Long, John A

    2010-08-23

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43-48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.

  16. Air-breathing adaptation in a marine Devonian lungfish

    PubMed Central

    Clement, Alice M.; Long, John A.

    2010-01-01

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310

  17. A Theoretical Basis for the Transition to Denitrification at Nanomolar Oxygen Concentrations

    NASA Astrophysics Data System (ADS)

    Zakem, E.; Follows, M. J.

    2016-02-01

    Current climate change is likely to expand the size and intensity of marine oxygen minimum zones. How will this affect denitrification rates? Current global biogeochemical models typically prescribe a critical oxygen concentration below which anaerobic activity occurs, rather than resolve the underlying microbial processes. Here, we explore the dynamics of an idealized, simulated anoxic zone in which multiple prokaryotic metabolisms are resolved mechanistically, defined by redox chemistry and biophysical constraints. We first ask, what controls the critical oxygen concentration governing the favorability of aerobic or anaerobic respiration? The predicted threshold oxygen concentration varies as a function of the environment as well as of cell physiology, and lies within the nanomolar range. The model thus provides a theoretical underpinning for the recent observations of nanomolar oxygen concentrations in oxygen minimum zones. In the context of an idealized, two-dimensional intensified upwelling simulation, we also predict denitrification at oxygen concentrations orders of magnitude higher due to physical mixing, reconciling observations of denitrification over a similar range and demonstrating a decoupling of denitrification from the local oxygen concentration. In a sensitivity study with the idealized ocean model, we comment upon the relationship between the volume of anoxic waters and total denitrification.

  18. Oxygen dependence of upper thermal limits in fishes.

    PubMed

    Ern, Rasmus; Norin, Tommy; Gamperl, A Kurt; Esbaugh, Andrew J

    2016-11-01

    Temperature-induced limitations on the capacity of the cardiorespiratory system to transport oxygen from the environment to the tissues, manifested as a reduced aerobic scope (maximum minus standard metabolic rate), have been proposed as the principal determinant of the upper thermal limits of fishes and other water-breathing ectotherms. Consequently, the upper thermal niche boundaries of these animals are expected to be highly sensitive to aquatic hypoxia and other environmental stressors that constrain their cardiorespiratory performance. However, the generality of this dogma has recently been questioned, as some species have been shown to maintain aerobic scope at thermal extremes. Here, we experimentally tested whether reduced oxygen availability due to aquatic hypoxia would decrease the upper thermal limits (i.e. the critical thermal maximum, CT max ) of the estuarine red drum (Sciaenops ocellatus) and the marine lumpfish (Cyclopterus lumpus). In both species, CT max was independent of oxygen availability over a wide range of oxygen levels despite substantial (>72%) reductions in aerobic scope. These data show that the upper thermal limits of water-breathing ectotherms are not always linked to the capacity for oxygen transport. Consequently, we propose a novel metric for classifying the oxygen dependence of thermal tolerance; the oxygen limit for thermal tolerance (P CT max ), which is the water oxygen tension (Pw O 2 ) where an organism's CT max starts to decline. We suggest that this metric can be used for assessing the oxygen sensitivity of upper thermal limits in water-breathing ectotherms, and the susceptibility of their upper thermal niche boundaries to environmental hypoxia. © 2016. Published by The Company of Biologists Ltd.

  19. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later

  20. Extended atmospheres of outer planet satellites and comets

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Combi, M. R.

    1985-01-01

    Model analysis of the extended atmospheres of outer planet satellites and comets are discussed. Understanding the neutral hydrogen distribution in the Saturn system concentrated on assessing the spatial dependence of the lifetime of hydrogen atoms and on obtaining appropriately sorted Lyman ALPHA data from the Voyager 1 UVS instrument. Progress in the area of the extended cometary atmospheres included analysis of Pioneer Venus Layman alpha observations of Comet P/Encke with the fully refined hydrogen cloud model, development of the basic carbon and oxygen models, and planning for the Pioneer Venus UVS observations of Comets P/Giacobini-Zinner and P/Halley.

  1. Dynamic modeling of environmental risk associated with drilling discharges to marine sediments.

    PubMed

    Durgut, İsmail; Rye, Henrik; Reed, Mark; Smit, Mathijs G D; Ditlevsen, May Kristin

    2015-10-15

    Drilling discharges are complex mixtures of base-fluids, chemicals and particulates, and may, after discharge to the marine environment, result in adverse effects on benthic communities. A numerical model was developed to estimate the fate of drilling discharges in the marine environment, and associated environmental risks. Environmental risk from deposited drilling waste in marine sediments is generally caused by four types of stressors: oxygen depletion, toxicity, burial and change of grain size. In order to properly model these stressors, natural burial, biodegradation and bioturbation processes were also included. Diagenetic equations provide the basis for quantifying environmental risk. These equations are solved numerically by an implicit-central differencing scheme. The sediment model described here is, together with a fate and risk model focusing on the water column, implemented in the DREAM and OSCAR models, both available within the Marine Environmental Modeling Workbench (MEMW) at SINTEF in Trondheim, Norway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Reconstructing Past Seasonal to Multicentennial-Scale Variability in the NE Atlantic Ocean Using the Long-Lived Marine Bivalve Mollusk Glycymeris glycymeris

    NASA Astrophysics Data System (ADS)

    Reynolds, D. J.; Hall, I. R.; Slater, S. M.; Scourse, J. D.; Halloran, P. R.; Sayer, M. D. J.

    2017-11-01

    The lack of long-term, highly resolved (annual to subannual) and absolutely dated baseline records of marine variability extending beyond the instrumental period (last 50-100 years) hinders our ability to develop a comprehensive understanding of the role the ocean plays in the climate system. Specifically, without such records, it remains difficult to fully quantify the range of natural climate variability mediated by the ocean and to robustly attribute recent changes to anthropogenic or natural drivers. Here we present a 211 year (1799-2010 C.E.; all dates hereafter are Common Era) seawater temperature (SWT) reconstruction from the northeast Atlantic Ocean derived from absolutely dated, annually resolved, oxygen isotope ratios recorded in the shell carbonate (δ18Oshell) of the long-lived marine bivalve mollusk Glycymeris glycymeris. The annual record was calibrated using subannually resolved δ18Oshell values drilled from multiple shells covering the instrumental period. Calibration verification statistics and spatial correlation analyses indicate that the δ18Oshell record contains significant skill at reconstructing Northeast Atlantic Ocean mean summer SWT variability associated with changes in subpolar gyre dynamics and the North Atlantic Current. Reconciling differences between the δ18Oshell data and corresponding growth increment width chronology demonstrates that 68% of the variability in G. glycymeris shell growth can be explained by the combined influence of biological productivity and SWT variability. These data suggest that G. glycymeris can provide seasonal to multicentennial absolutely dated baseline records of past marine variability that will lead to the development of a quantitative understanding of the role the marine environment plays in the global climate system.

  3. Computer image processing in marine resource exploration

    NASA Technical Reports Server (NTRS)

    Paluzzi, P. R.; Normark, W. R.; Hess, G. R.; Hess, H. D.; Cruickshank, M. J.

    1976-01-01

    Pictographic data or imagery is commonly used in marine exploration. Pre-existing image processing techniques (software) similar to those used on imagery obtained from unmanned planetary exploration were used to improve marine photography and side-scan sonar imagery. Features and details not visible by conventional photo processing methods were enhanced by filtering and noise removal on selected deep-sea photographs. Information gained near the periphery of photographs allows improved interpretation and facilitates construction of bottom mosaics where overlapping frames are available. Similar processing techniques were applied to side-scan sonar imagery, including corrections for slant range distortion, and along-track scale changes. The use of digital data processing and storage techniques greatly extends the quantity of information that can be handled, stored, and processed.

  4. Isotopic evidence for oxygenated Mesoarchaean shallow oceans

    NASA Astrophysics Data System (ADS)

    Eickmann, Benjamin; Hofmann, Axel; Wille, Martin; Bui, Thi Hao; Wing, Boswell A.; Schoenberg, Ronny

    2018-02-01

    Mass-independent fractionation of sulfur isotopes (MIF-S) in Archaean sediments results from photochemical processing of atmospheric sulfur species in an oxygen-depleted atmosphere. Geological preservation of MIF-S provides evidence for microbial sulfate reduction (MSR) in low-sulfate Paleoarchaean (3.8-3.2 billion years ago (Ga)) and Neoarchaean (2.8-2.5 Ga) oceans, but the significance of MSR in Mesoarchaean (3.2-2.8 Ga) oceans is less clear. Here we present multiple sulfur and iron isotope data of early diagenetic pyrites from 2.97-Gyr-old stromatolitic dolomites deposited in a tidal flat environment of the Nsuze Group, Pongola Supergroup, South Africa. We identified consistently negative Δ33S values in pyrite, which indicates photochemical reactions under anoxic atmospheric conditions, but large mass-dependent sulfur isotope fractionations of 30‰ in δ34S, identifying active MSR. Negative pyrite δ56Fe values (-1.31 to -0.88‰) record Fe oxidation in oxygen-bearing shallow oceans coupled with biogenic Fe reduction during diagenesis, consistent with the onset of local Fe cycling in oxygen oases 3.0 Ga. We therefore suggest the presence of oxygenated near-shore shallow-marine environments with ≥5 μM sulfate at this time, in spite of the clear presence of an overall reduced Mesoarchaean atmosphere.

  5. Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California Current.

    PubMed

    Kharbush, Jenan J; Ugalde, Juan A; Hogle, Shane L; Allen, Eric E; Aluwihare, Lihini I

    2013-12-01

    Hopanoids are pentacyclic triterpenoid lipids produced by many prokaryotes as cell membrane components. The structural variations of composite hopanoids, or bacteriohopanepolyols (BHPs), produced by various bacterial genera make them potentially useful molecular biomarkers of bacterial communities and metabolic processes in both modern and ancient environments. Building on previous work suggesting that organisms in low-oxygen environments are important contributors to BHP production in the marine water column and that there may be physiological roles for BHPs specific to these environments, this study investigated the relationship between trends in BHP structural diversity and abundance and the genetic diversity of BHP producers for the first time in a low-oxygen environment of the Eastern Tropical North Pacific. Amplification of the hopanoid biosynthesis gene for squalene hopene cyclase (sqhC) indicated far greater genetic diversity than would be predicted by examining BHP structural diversity alone and that greater sqhC genetic diversity exists in the marine environment than is represented by cultured representatives and most marine metagenomes. In addition, the genetic relationships in this data set suggest microaerophilic environments as potential "hot spots" of BHP production. Finally, structural analysis of BHPs showed that an isomer of the commonly observed BHP bacteriohopanetetrol may be linked to a producer that is more abundant in low-oxygen environments. Results of this study increase the known diversity of BHP producers and provide a detailed phylogeny with implications for the role of hopanoids in modern bacteria, as well as the evolutionary history of hopanoid biosynthesis, both of which are important considerations for future interpretations of the marine sedimentary record.

  6. Finite Gyroradius Effects Observed in Pickup Oxygen Ions at Venus

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Intriligator, Devrie; Grebowsky, Joseph M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On the dayside of Venus, the hot oxygen corona extending above the ionopause is the principal source of pickup oxygen ions. The ions are born here and picked up by the ionosheath plasma as it is deflected around the planet. These pickup ions have been observed by the Orbiter Plasma Analyzer (OPA) throughout the Pioneer Venus Orbiter (PVO) mission. They were observed over a region extending from their dayside source to great distances downstream (about 10 Venus radii), in the solar wind wake, as PVO passed through apoapsis. Finite gyroradius effects in the velocity distribution of the oxygen pickup ions are expected in the source region because the gyroradius is several times larger than the scale height of the hot oxygen source. Such effects are also expected in those regions of the ionosheath where the scale lengths of the magnetic field and the ambient plasma velocity field are less than the pickup ion gyroradius. While explicitly accounting for the spatial distribution of the hot oxygen source, an analytic expression for the pickup oxygen ion velocity distribution is developed to study how it is affected by finite gyroradii. The analysis demonstrates that as the gyroradius increases by factors of three to six above the hot oxygen scale height, the peak of the pickup oxygen ion flux distribution decreases 25 to 50% below the maximum allowed speed, which is twice the speed of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. The pickup oxygen ion flux distribution observed by OPA is shown to follow this behavior in the source region. It is also shown that this result is consistent with the pickup ion distributions observed in the wake, downstream of the source, where the flux peaks are usually well below the maximum allowed speed.

  7. Rapid mitochondrial adjustments in response to short-term hypoxia and re-oxygenation in the Pacific oyster, Crassostrea gigas.

    PubMed

    Sussarellu, Rossana; Dudognon, Tony; Fabioux, Caroline; Soudant, Philippe; Moraga, Dario; Kraffe, Edouard

    2013-05-01

    As oxygen concentrations in marine coastal habitats can fluctuate rapidly and drastically, sessile marine organisms such as the oyster Crassostrea gigas can experience marked and rapid oxygen variations. In this study, we investigated the responses of oyster gill mitochondria to short-term hypoxia (3 and 12 h, at 1.7 mg O2 l(-1)) and subsequent re-oxygenation. Mitochondrial respiratory rates (states 3 and 4 stimulated by glutamate) and phosphorylation efficiency [respiratory control ratio (RCR) and the relationship between ADP and oxygen consumption (ADP/O)] were measured. Cytochrome c oxidase (CCO) activity and cytochrome concentrations (a, b, c1 and c) were measured to investigate the rearrangements of respiratory chain subunits. The potential implication of an alternative oxidase (AOX) was investigated using an inhibitor of the respiratory chain (antimycin A) and through gene expression analysis in gills and digestive gland. Results indicate a downregulation of mitochondrial capacity, with 60% inhibition of respiratory rates after 12 h of hypoxia. RCR remained stable, while ADP/O increased after 12 h of hypoxia and 1 h of re-oxygenation, suggesting increased phosphorylation efficiency. CCO showed a fast and remarkable increase of its catalytic activity only after 3 h of hypoxia. AOX mRNA levels showed similar patterns in gills and digestive gland, and were upregulated after 12 and 24 h of hypoxia and during re-oxygenation. Results suggest a set of controls regulating mitochondrial functions in response to oxygen fluctuations, and demonstrate the fast and extreme plasticity of oyster mitochondria in response to oxygen variations.

  8. The development and evaluation of a non-pressurised, chemical oxygen reaction generation vessel and breathing system providing emergency oxygen for an extended duration.

    PubMed

    Dingley, J; Williams, D; Douglas, P; Douglas, M; Douglas, J O

    2016-12-01

    The objective was to develop a sodium percarbonate/water/catalyst chemical oxygen generator that did not require compressed gas. Existing devices utilising this reaction have a very short duration of action. Preliminary experiments with a glass reaction vessel, water bath and electronic flowmeter indicated that many factors affected oxygen production rate including reagent formulation, temperature, water volume and agitation frequency. Having undertaken full-scale experiments using a stainless steel vessel, an optimum combination of reagents was found to be 1 litre water, 0.75 g manganese dioxide catalyst, 60 g sodium percarbonate granules and 800 g of custom pressed 7.21 (0.28) g sodium percarbonate tablets. This combination of granules and slower dissolution tablets produced a rapid initial oxygen flow to 'purge' an attached low-flow breathing system allowing immediate use, followed by a constant flow meeting metabolic requirements for a minimum of 1 h duration. © 2016 The Association of Anaesthetists of Great Britain and Ireland.

  9. Allometric scaling of lung volume and its consequences for marine turtle diving performance.

    PubMed

    Hochscheid, Sandra; McMahon, Clive R; Bradshaw, Corey J A; Maffucci, Fulvio; Bentivegna, Flegra; Hays, Graeme C

    2007-10-01

    Marine turtle lungs have multiple functions including respiration, oxygen storage and buoyancy regulation, so lung size is an important indicator of dive performance. We determined maximum lung volumes (V(L)) for 30 individuals from three species (Caretta caretta n=13; Eretmochelys imbricata n=12; Natator depressus n=5) across a range of body masses (M(b)): 0.9 to 46 kg. V(L) was 114 ml kg(-1) and increased with M(b) with a scaling factor of 0.92. Based on these values for V(L) we demonstrated that diving capacities (assessed via aerobic dive limits) of marine turtles were potentially over-estimated when the V(L)-body mass effect was not considered (by 10 to 20% for 5 to 25 kg turtles and by >20% for turtles > or =25 kg). While aerobic dive limits scale with an exponent of 0.6, an analysis of average dive durations in free-ranging chelonian marine turtles revealed that dive duration increases with a mass exponent of 0.51, although there was considerable scatter around the regression line. While this highlights the need to determine more parameters that affect the duration-body mass relationship, our results provide a reference point for calculating oxygen storage capacities and air volumes available for buoyancy control.

  10. Oxygen production on Mars and the Moon

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Vaniman, B.; Miller, S.

    1992-01-01

    Significant progress was made in the area of in-situ oxygen production in the last year. In order to reduce sealing problems due to thermal expansion mismatch in the disk configuration, several all-Zirconia cells were constructed and are being tested. Two of these cells were run successfully for extended periods of time. One was run for over 200 hours and the other for over 800 hours. These extended runs, along with gas sample analysis, showed that the oxygen being produced is definitely from CO2 and not from air leaks or from the disk material. A new tube system is being constructed that is more rugged, portable, durable, and energy efficient. The important operating parameters of this system will be better controlled compared to previous systems. An electrochemical compressor will also be constructed with a similar configuration. The electrochemical compressor will use less energy since the feed stock is already heated in the separation unit. In addition, it does not have moving parts.

  11. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  12. Oceanographic and biological effects of shoaling of the oxygen minimum zone.

    PubMed

    Gilly, William F; Beman, J Michael; Litvin, Steven Y; Robison, Bruce H

    2013-01-01

    Long-term declines in oxygen concentrations are evident throughout much of the ocean interior and are particularly acute in midwater oxygen minimum zones (OMZs). These regions are defined by extremely low oxygen concentrations (<20-45 μmol kg(-1)), cover wide expanses of the ocean, and are associated with productive oceanic and coastal regions. OMZs have expanded over the past 50 years, and this expansion is predicted to continue as the climate warms worldwide. Shoaling of the upper boundaries of the OMZs accompanies OMZ expansion, and decreased oxygen at shallower depths can affect all marine organisms through multiple direct and indirect mechanisms. Effects include altered microbial processes that produce and consume key nutrients and gases, changes in predator-prey dynamics, and shifts in the abundance and accessibility of commercially fished species. Although many species will be negatively affected by these effects, others may expand their range or exploit new niches. OMZ shoaling is thus likely to have major and far-reaching consequences.

  13. Pollutant content in marine debris and characterization by thermal decomposition.

    PubMed

    Iñiguez, M E; Conesa, J A; Fullana, A

    2017-04-15

    Marine debris (MDs) produces a wide variety of negative environmental, economic, safety, health and cultural impacts. Most marine litter has a very low decomposition rate (plastics), leading to a gradual accumulation in the coastal and marine environment. Characterization of the MDs has been done in terms of their pollutant content: PAHs, ClBzs, ClPhs, BrPhs, PCDD/Fs and PCBs. The results show that MDs is not a very contaminated waste. Also, thermal decomposition of MDs materials has been studied in a thermobalance at different atmospheres and heating rates. Below 400-500K, the atmosphere does not affect the thermal degradation of the mentioned waste. However, at temperatures between 500 and 800K the presence of oxygen accelerates the decomposition. Also, a kinetic model is proposed for the combustion of the MDs, and the decomposition is compared with that of their main constituents, i.e., polyethylene (PE), polystyrene (PS), polypropylene (PP), nylon and polyethylene-terephthalate (PET). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Oxygen isotope constraints on the sulfur cycle over the past 10 million years.

    PubMed

    Turchyn, Alexandra V; Schrag, Daniel P

    2004-03-26

    Oxygen isotopes in marine sulfate (delta18O(SO4)) measured in marine barite show variability over the past 10 million years, including a 5 per mil decrease during the Plio-Pleistocene, with near-constant values during the Miocene that are slightly enriched over the modern ocean. A numerical model suggests that sea level fluctuations during Plio-Pleistocene glacial cycles affected the sulfur cycle by reducing the area of continental shelves and increasing the oxidative weathering of pyrite. The data also require that sulfate concentrations were 10 to 20% lower in the late Miocene than today.

  15. Anti-Melanogenic Activity of Gagunin D, a Highly Oxygenated Diterpenoid from the Marine Sponge Phorbas sp., via Modulating Tyrosinase Expression and Degradation

    PubMed Central

    Lee, Ho Yeon; Jang, Eun Jeong; Bae, Song Yi; Jeon, Ju-eun; Park, Hyen Joo; Shin, Jongheon; Lee, Sang Kook

    2016-01-01

    Tyrosinase is the rate-limiting enzyme critical for melanin synthesis and controls pigmentation in the skin. The inhibition of tyrosinase is currently the most common approach for the development of skin-whitening cosmetics. Gagunin D (GD), a highly oxygenated diterpenoid isolated from the marine sponge Phorbas sp., has exhibited cytotoxicity toward human leukemia cells. However, the effect of GD on normal cells and the molecular mechanisms remain to be elucidated. In the present study, we identified for the first time the anti-melanogenic activity of GD and its precise underlying mechanisms in mouse melan-a cells. GD significantly inhibited melanin synthesis in the melan-a cells and a reconstructed human skin model. Further analysis revealed that GD suppressed the expression of tyrosinase and increased the rate of tyrosinase degradation. GD also inhibited tyrosinase enzymatic activity. In addition, GD effectively suppressed the expression of proteins associated with melanosome transfer. These findings suggest that GD is a potential candidate for cosmetic formulations due to its multi-functional properties. PMID:27869664

  16. Applicability of Performance Assessment Tools to Marine Corps Air Ground Task Force C4 System of Systems Performance Assessment

    DTIC Science & Technology

    2010-09-01

    application of existing assessment tools that may be applicable to Marine Air Ground Task Force (MAGTF) Command, Control, Communications and...of existing assessment tools that may be applicable to Marine Air Ground Task Force (MAGTF) Command, Control, Communications and Computers (C4...assessment tools and analysis concepts that may be extended to the Marine Corps’ C4 System of Systems assessment methodology as a means to obtain a

  17. Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations

    NASA Astrophysics Data System (ADS)

    Battaglia, G.; Joos, F.

    2018-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas (GHG) and ozone destructing agent; yet global estimates of N2O emissions are uncertain. Marine N2O stems from nitrification and denitrification processes which depend on organic matter cycling and dissolved oxygen (O2). We introduce N2O as an obligate intermediate product of denitrification and as an O2-dependent by-product from nitrification in the Bern3D ocean model. A large model ensemble is used to probabilistically constrain modern and to project marine N2O production for a low (Representative Concentration Pathway (RCP)2.6) and high GHG (RCP8.5) scenario extended to A.D. 10,000. Water column N2O and surface ocean partial pressure N2O data serve as constraints in this Bayesian framework. The constrained median for modern N2O production is 4.5 (±1σ range: 3.0 to 6.1) Tg N yr-1, where 4.5% stems from denitrification. Modeled denitrification is 65.1 (40.9 to 91.6) Tg N yr-1, well within current estimates. For high GHG forcing, N2O production decreases by 7.7% over this century due to decreasing organic matter export and remineralization. Thereafter, production increases slowly by 21% due to widespread deoxygenation and high remineralization. Deoxygenation peaks in two millennia, and the global O2 inventory is reduced by a factor of 2 compared to today. Net denitrification is responsible for 7.8% of the long-term increase in N2O production. On millennial timescales, marine N2O emissions constitute a small, positive feedback to climate change. Our simulations reveal tight coupling between the marine carbon cycle, O2, N2O, and climate.

  18. Climate change threatens the world's marine protected areas

    NASA Astrophysics Data System (ADS)

    Bruno, John F.; Bates, Amanda E.; Cacciapaglia, Chris; Pike, Elizabeth P.; Amstrup, Steven C.; van Hooidonk, Ruben; Henson, Stephanie A.; Aronson, Richard B.

    2018-06-01

    Marine protected areas (MPAs) are a primary management tool for mitigating threats to marine biodiversity1,2. MPAs and the species they protect, however, are increasingly being impacted by climate change. Here we show that, despite local protections, the warming associated with continued business-as-usual emissions (RCP8.5)3 will likely result in further habitat and species losses throughout low-latitude and tropical MPAs4,5. With continued business-as-usual emissions, mean sea-surface temperatures within MPAs are projected to increase 0.035 °C per year and warm an additional 2.8 °C by 2100. Under these conditions, the time of emergence (the year when sea-surface temperature and oxygen concentration exceed natural variability) is mid-century in 42% of 309 no-take marine reserves. Moreover, projected warming rates and the existing `community thermal safety margin' (the inherent buffer against warming based on the thermal sensitivity of constituent species) both vary among ecoregions and with latitude. The community thermal safety margin will be exceeded by 2050 in the tropics and by 2150 for many higher latitude MPAs. Importantly, the spatial distribution of emergence is stressor-specific. Hence, rearranging MPAs to minimize exposure to one stressor could well increase exposure to another. Continued business-as-usual emissions will likely disrupt many marine ecosystems, reducing the benefits of MPAs.

  19. Placing an upper limit on cryptic marine sulphur cycling.

    PubMed

    Johnston, D T; Gill, B C; Masterson, A; Beirne, E; Casciotti, K L; Knapp, A N; Berelson, W

    2014-09-25

    A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, 'cryptic' sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.

  20. The oxygen minimum zone of the eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Ulloa, Osvaldo; Pantoja, Silvio

    2009-07-01

    In spite of the fact that oxygen-deficient waters with ⩽20 μM of dissolved oxygen—known as oxygen minimum zones (OMZs)—occupy only ˜1% of the volume of the global ocean, they disproportionately affect global biogeochemical cycles, particularly the nitrogen cycle. The macrobiota diversity in OMZs is low, but the fauna that do inhabit these regions present special adaptations to the low-oxygen conditions. Conversely, microbial communities in the OMZ water column and sediments are abundant and phylogenetically and metabolically very diverse, and microbial processes occurring therein (e.g., denitrification, anammox, and organic matter degradation) are important for global marine biogeochemical cycles. In this introductory article, we present the collection of papers for the special volume on the OMZ of the eastern South Pacific, one of the three main open-ocean oxygen-deficient regions of the global ocean. These papers deal with aspects of regional oceanography, inorganic and organic geochemistry, ecology, and the biochemistry of micro and macro organisms—both in the plankton and in the sediments—and past changes in the fish scales preserved in the sediments bathed by OMZ waters.

  1. The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments

    PubMed Central

    Vargas, Sergio; Larsen, Morten; Elemans, Coen PH; Canfield, Donald E

    2018-01-01

    Animals have a carefully orchestrated relationship with oxygen. When exposed to low environmental oxygen concentrations, and during periods of increased energy expenditure, animals maintain cellular oxygen homeostasis by enhancing internal oxygen delivery, and by enabling the anaerobic production of ATP. These low-oxygen responses are thought to be controlled universally across animals by the hypoxia-inducible factor (HIF). We find, however, that sponge and ctenophore genomes lack key components of the HIF pathway. Since sponges and ctenophores are likely sister to all remaining animal phyla, the last common ancestor of extant animals likely lacked the HIF pathway as well. Laboratory experiments show that the marine sponge Tethya wilhelma maintains normal transcription under oxygen levels down to 0.25% of modern atmospheric saturation, the lowest levels we investigated, consistent with the predicted absence of HIF or any other HIF-like pathway. Thus, the last common ancestor of all living animals could have metabolized aerobically under very low environmental oxygen concentrations. PMID:29402379

  2. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream

    PubMed Central

    Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-01-01

    ABSTRACT Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ15NNO2− and δ18ONO2−, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of “Candidatus Nitrosocaldus.” The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ18O value of nitrite produced from ammonia oxidation varied with the δ18O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ18ONO2− in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying

  3. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.

    PubMed

    Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-08-01

    Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of

  4. Extending Cassava Root Shelf Life via Reduction of Reactive Oxygen Species Production1[C][W][OA

    PubMed Central

    Zidenga, Tawanda; Leyva-Guerrero, Elisa; Moon, Hangsik; Siritunga, Dimuth; Sayre, Richard

    2012-01-01

    One of the major constraints facing the large-scale production of cassava (Manihot esculenta) roots is the rapid postharvest physiological deterioration (PPD) that occurs within 72 h following harvest. One of the earliest recognized biochemical events during the initiation of PPD is a rapid burst of reactive oxygen species (ROS) accumulation. We have investigated the source of this oxidative burst to identify possible strategies to limit its extent and to extend cassava root shelf life. We provide evidence for a causal link between cyanogenesis and the onset of the oxidative burst that triggers PPD. By measuring ROS accumulation in transgenic low-cyanogen plants with and without cyanide complementation, we show that PPD is cyanide dependent, presumably resulting from a cyanide-dependent inhibition of respiration. To reduce cyanide-dependent ROS production in cassava root mitochondria, we generated transgenic plants expressing a codon-optimized Arabidopsis (Arabidopsis thaliana) mitochondrial alternative oxidase gene (AOX1A). Unlike cytochrome c oxidase, AOX is cyanide insensitive. Transgenic plants overexpressing AOX exhibited over a 10-fold reduction in ROS accumulation compared with wild-type plants. The reduction in ROS accumulation was associated with a delayed onset of PPD by 14 to 21 d after harvest of greenhouse-grown plants. The delay in PPD in transgenic plants was also observed under field conditions, but with a root biomass yield loss in the highest AOX-expressing lines. These data reveal a mechanism for PPD in cassava based on cyanide-induced oxidative stress as well as PPD control strategies involving inhibition of ROS production or its sequestration. PMID:22711743

  5. RESEARCH AT THE GULF ECOLOGY DIVISION ON THE EFFECTS OF LOW DISSOLVED OXYGEN ON ESTUARINE ANIMALS

    EPA Science Inventory

    Concerns about hypoxia and its effects on saltwater organisms are increasing as environmental conditions in the inshore and nearshore marine environments are better understood. Along the Gulf of Mexico coast, periods of very low dissolved oxygen (D.O.) concentrations have been re...

  6. Development and testing of the ultraviolet spectrometer for the Mariner Mars 1971 spacecraft

    NASA Technical Reports Server (NTRS)

    Farrar, J. W.

    1972-01-01

    The Mariner Mars 1971 ultraviolet spectrometer is an Ebert-Fastie type of the same basic design as the Mariner Mars 1969 instrument. Light enters the instrument and is split into component wavelengths by a scanning reflection diffraction grating. Two monochrometer exit slits allow the use of two independent photomultiplier tube sensors. Channel 1 has a spectral range of 1100 to 1692 A with a fixed gain, while Channel 2 has a spectral range of 1450 to 3528 A with an automatic step gain control, providing a dynamic range over the expected atmosphere and surface brightness of Mars. The scientific objectives, basic operation, design, testing, and calibration for the Mariner Mars 1971 ultraviolet spectrometer are described. The design discussion includes those modifications that were necessary to extend the lifetime of the instrument in order to accomplish the Mariner Mars 1971 mission objectives.

  7. Zooplankton Distribution and Species Composition Along an Oxygen Gradient in Puget Sound, WA

    NASA Astrophysics Data System (ADS)

    Keister, J. E.; Essington, T.; Li, L.; Horne, J. K.; Sato, M.; Parker-Stetter, S. L.; Moriarty, P.

    2016-02-01

    Low dissolved oxygen (hypoxia) is one of the most pronounced, pervasive, and significant disturbances in marine ecosystems, yet our understanding of its effects is incomplete, particularly with respect to impacts on lower trophic levels. As part of a study of how hypoxia affects predator-prey relationships and energy flow through marine food webs, we are studying relationships between ocean chemistry and zooplankton in Puget Sound, Washington—a deep, seasonally hypoxic fjord in the Pacific Northwest that supports a productive and diverse pelagic community. From summer through fall in two years that differed in the timing and intensity of hypoxia, we conducted multi-frequency bioacoustic surveys, CTD casts, and depth-stratified zooplankton sampling to examine changes in distribution and species composition of animals in relation to oxygen concentrations. We exploited a natural gradient in oxygen along the axis of the fjord by sampling at moderately hypoxic and normoxic sites with otherwise similar hydrography and species composition to disentangle the effects of oxygen from changes in other environmental factors. Our results support the hypothesis that zooplankton species composition and vertical distributions are altered by hypoxia, but only when examined at the species and life-stage level. Relatively few taxa showed clear responses to hypoxia, and bioacoustic backscatter data (which was dominated by adult euphausiids and amphipods) indicated that those taxa were not affected by the levels of hypoxia we observed. Examination of net tow data revealed more subtle changes, including behavioral avoidance of low oxygen by some copepods and young euphausiid life stages. Overall, the high species diversity and relatively low susceptibility of many zooplankton to hypoxia in Puget Sound may confer ecosystem resilience to near-future projected changes in this region.

  8. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals.

    PubMed

    Chen, Xi; Ling, Hong-Fei; Vance, Derek; Shields-Zhou, Graham A; Zhu, Maoyan; Poulton, Simon W; Och, Lawrence M; Jiang, Shao-Yong; Li, Da; Cremonese, Lorenzo; Archer, Corey

    2015-05-18

    The early diversification of animals (∼ 630 Ma), and their development into both motile and macroscopic forms (∼ 575-565 Ma), has been linked to stepwise increases in the oxygenation of Earth's surface environment. However, establishing such a linkage between oxygen and evolution for the later Cambrian 'explosion' (540-520 Ma) of new, energy-sapping body plans and behaviours has proved more elusive. Here we present new molybdenum isotope data, which demonstrate that the areal extent of oxygenated bottom waters increased in step with the early Cambrian bioradiation of animals and eukaryotic phytoplankton. Modern-like oxygen levels characterized the ocean at ∼ 521 Ma for the first time in Earth history. This marks the first establishment of a key environmental factor in modern-like ecosystems, where animals benefit from, and also contribute to, the 'homeostasis' of marine redox conditions.

  9. Two new Beggiatoa species inhabiting marine mangrove sediments in the Caribbean.

    PubMed

    Jean, Maïtena R N; Gonzalez-Rizzo, Silvina; Gauffre-Autelin, Pauline; Lengger, Sabine K; Schouten, Stefan; Gros, Olivier

    2015-01-01

    Beggiatoaceae, giant sulphur-oxidizing bacteria, are well known to occur in cold and temperate waters, as well as hydrothermal vents, where they form dense mats on the floor. However, they have never been described in tropical marine mangroves. Here, we describe two new species of benthic Beggiatoaceae colonizing a marine mangrove adjacent to mangrove roots. We combined phylogenetic and lipid analysis with electron microscopy in order to describe these organisms. Furthermore, oxygen and sulphide measurements in and ex situ were performed in a mesocosm to characterize their environment. Based on this, two new species, Candidatus Maribeggiatoa sp. and Candidatus Isobeggiatoa sp. inhabiting tropical marine mangroves in Guadeloupe were identified. The species identified as Candidatus Maribeggiatoa group suggests that this genus could harbour a third cluster with organisms ranging from 60 to 120 μm in diameter. This is also the first description of an Isobeggiatoa species outside of Arctic and temperate waters. The multiphasic approach also gives information about the environment and indications for the metabolism of these bacteria. Our study shows the widespread occurrence of members of Beggiatoaceae family and provides new insight in their potential role in shallow-water marine sulphide-rich environments such as mangroves.

  10. How Marine Conditions Affect Severity of MIC of Steels

    DTIC Science & Technology

    2007-07-11

    to organometallic catalysis, acidification of the electrode surface, the combined effects of elevated H202 and decreased pH and the production of...various parts of I the world ocean . At least 4000 different species Splash zone 0.1 mmtiy of organisms are recorded as marine fouling "Steeli/ nuisances...limiting dissolved oxygen at the metal surface. A layer of hard- shelled organisms, such as barnacles or mussels, on steel in the splash zone (just above

  11. Coping with cyclic oxygen availability: evolutionary aspects.

    PubMed

    Flück, Martin; Webster, Keith A; Graham, Jeffrey; Giomi, Folco; Gerlach, Frank; Schmitz, Anke

    2007-10-01

    Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell biology and set the stage for the appearance of multicelluar life forms in the Vendian (Ediacaran) Period of the Neoproterozoic Era. Over much of the Paleozoic, the level of oxygen in the atmosphere was near the present atmospheric level (21%). In the Late Paleozoic, however, there were extended times during which the level of atmospheric oxygen was either markedly lower or markedly higher than 21%. That these Paleozoic shifts in atmospheric oxygen affected the biota is suggested by the correlations between: (1) Reduced oxygen and the occurrences of extinctions, a lowered biodiversity and shifts in phyletic succession, and (2) During hyperoxia, the corresponding occurrence of phenomena such as arthropod gigantism, the origin of insect flight, and the evolution of vertebrate terrestriality. Basic similarities in features of adaptation to hyopoxia, manifest in living organisms at levels ranging from genetic and cellular to physiological and behavioral, suggest the common and early origin of a suite of adaptive mechanisms responsive to fluctuations in ambient oxygen. Comparative integrative approaches addressing the molecular bases of phenotypic adjustments to cyclic oxygen fluctuation provide broad insight into the incremental steps leading to the early evolution of homeostatic respiratory mechanisms and to the specialization of organismic respiratory function.

  12. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Planavsky, Noah J.; Asael, Dan; Hofmann, Axel; Reinhard, Christopher T.; Lalonde, Stefan V.; Knudsen, Andrew; Wang, Xiangli; Ossa Ossa, Frantz; Pecoits, Ernesto; Smith, Albertus J. B.; Beukes, Nicolas J.; Bekker, Andrey; Johnson, Thomas M.; Konhauser, Kurt O.; Lyons, Timothy W.; Rouxel, Olivier J.

    2014-04-01

    The early Earth was characterized by the absence of oxygen in the ocean-atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5-2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen.

  13. Improved Quaternary North Atlantic stratigraphy using relative paleointensity (RPI), oxygen isotopes, and magnetic excursions (Invited)

    NASA Astrophysics Data System (ADS)

    Channell, J. E.

    2013-12-01

    Improving the resolution of Quaternary marine stratigraphy is one of the major challenges in paleoceanography. IODP Expedition 303/306, and ODP Legs 162 and 172, have yielded multiple high-resolution records (mean sedimentation rates in the 7-20 cm/kyr range) of relative paleointensity (RPI) that are accompanied by oxygen isotope data and extend through much of the Quaternary. Tandem fit of RPI and oxygen isotope data to calibrated templates (LR04 and PISO), using the Match protocol, yields largely consistent stratigraphies, implying that both RPI and oxygen isotope data are dominated by regional/global signals. Based on the recent geomagnetic field, RPI can be expected to be a global signal (i.e. dominated by the axial dipole field) when recorded at sedimentation rates less than several decimeters/kyr. Magnetic susceptibility, on the other hand, is a local/regional lithologic signal, and therefore less useful for long-distance correlation. Magnetic excursions are directional phenomena and, when adequately recorded, are manifest as paired reversals in which the virtual geomagnetic poles (VGPs) reach high latitudes in the opposite hemisphere, and they occupy minima in RPI records. Reversed VGPs imply that excursions are attributable to the main axial dipole, and therefore provide global stratigraphy. The so-called Iceland Basin excursion is recorded at many IODP/ODP sites and lies at the MIS 6/7 boundary at ~188 ka, with a duration of 2-3 kyr. Other excursions in the Brunhes chron are less commonly recorded because their duration (perhaps <~1 kyr) requires sedimentation rates >20 cm/kyr to be adequately recorded. On the other hand, several excursions within the Matuyama Chron are more commonly recorded in North Atlantic drift sediments due to relatively elevated durations. With some notable exceptions (e.g. Iberian Margin), high quality RPI records from North Atlantic sediments, together with magnetic excursions, can be used in tandem with oxygen isotope data to

  14. Crayfish respiration as a function of water oxygenation.

    PubMed

    Dejours, P; Beekenkamp, H

    1977-06-01

    Crayfish, Astacus leptodactylus, for several hours breathed water equilibrated either with a hypoxic gas mixture, or air, or oxygen. The hydrostatic pressure in the right epibranchial cavity was recorded and the left epibranchial water sempled from time to time. The higher the water oxygenation, the less the duration of ventilation, the frequency of the scaphognathite beats which ensure water convection, the negative of the water hydrostatic pressure relative to ambient water pressure, and the respired water flow. The water convection per unit quantity of oxygen consumed decreased by a factor of about 20 when the animal passed from hypoxic water at PO2 of 72 torr to hyperoxic water at PO2 of 697 torr. Prolonged hyperoxia, up to 100 days, results in a hypercapnic acidosis of the prebranchial blood. pH decreased about 0.2 unit, PCO2 increased from 2.5 torr to a value of 6 torr, and [HCO-3] from 6 to a value of 9 meq-L-1. This hypercapnic acidosis remained uncompensated during several weeks exposure to hyperoxia. Observations on the fresh water crayfish, a marine crab, and several species of fish, suggest that in aquatic animals (1) the ventilatory activity depends greatly on the degree of water oxygenation: the higher the water oxygenation, the lower the ventilation; (2) the change of ventilation may be accompanied by a new equilibrium of the blood acid-base status, quite different from that observed in normoxia.

  15. Jellyfish (Cyanea nozakii) decomposition and its potential influence on marine environments studied via simulation experiments.

    PubMed

    Qu, Chang-Feng; Song, Jin-Ming; Li, Ning; Li, Xue-Gang; Yuan, Hua-Mao; Duan, Li-Qin; Ma, Qing-Xia

    2015-08-15

    A growing body of evidence suggests that the jellyfish population in Chinese seas is increasing, and decomposition of jellyfish strongly influences the marine ecosystem. This study investigated the change in water quality during Cyanea nozakii decomposition using simulation experiments. The results demonstrated that the amount of dissolved nutrients released by jellyfish was greater than the amount of particulate nutrients. NH4(+) was predominant in the dissolved matter, whereas the particulate matter was dominated by organic nitrogen and inorganic phosphorus. The high N/P ratios demonstrated that jellyfish decomposition may result in high nitrogen loads. The inorganic nutrients released by C. nozakii decomposition were important for primary production. Jellyfish decomposition caused decreases in the pH and oxygen consumption associated with acidification and hypoxia or anoxia; however, sediments partially mitigated the changes in the pH and oxygen. These results imply that jellyfish decomposition can result in potentially detrimental effects on marine environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Extending The Shelf Life Of Blood Platelets

    NASA Technical Reports Server (NTRS)

    Surgenor, Douglas M.

    1988-01-01

    New method of storing human blood platelets extends vitality for transfusions. Packaged as suspension in sterile liquid in plastic blood bags. Each bag placed between pair of plastic grids, and rubberbands placed around sandwich thus formed to hold together. Stored upright in open air or in container through which air pumped at rate of at least 45 L/min. Ensures that platelets receive ample oxygen and expiratory carbon dioxide form platelets removed before pH drops to harmful levels.

  17. Regulation of body temperature by some Mesozoic marine reptiles.

    PubMed

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  18. Marine reserves can mitigate and promote adaptation to climate change

    PubMed Central

    Roberts, Callum M.; O’Leary, Bethan C.; McCauley, Douglas J.; Cury, Philippe Maurice; Duarte, Carlos M.; Lubchenco, Jane; Pauly, Daniel; Sáenz-Arroyo, Andrea; Sumaila, Ussif Rashid; Wilson, Rod W.; Worm, Boris; Castilla, Juan Carlos

    2017-01-01

    Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future. PMID:28584096

  19. Marine reserves can mitigate and promote adaptation to climate change.

    PubMed

    Roberts, Callum M; O'Leary, Bethan C; McCauley, Douglas J; Cury, Philippe Maurice; Duarte, Carlos M; Lubchenco, Jane; Pauly, Daniel; Sáenz-Arroyo, Andrea; Sumaila, Ussif Rashid; Wilson, Rod W; Worm, Boris; Castilla, Juan Carlos

    2017-06-13

    Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future.

  20. Tracing the origin of the oxygen-consuming organic matter in the hypoxic zone in a large eutrophic estuary: the lower reach of the Pearl River Estuary, China

    NASA Astrophysics Data System (ADS)

    Su, Jianzhong; Dai, Minhan; He, Biyan; Wang, Lifang; Gan, Jianping; Guo, Xianghui; Zhao, Huade; Yu, Fengling

    2017-09-01

    We assess the relative contributions of different sources of organic matter, marine vs. terrestrial, to oxygen consumption in an emerging hypoxic zone in the lower Pearl River Estuary (PRE), a large eutrophic estuary located in Southern China. Our cruise, conducted in July 2014, consisted of two legs before and after the passing of Typhoon Rammasun, which completely de-stratified the water column. The stratification recovered rapidly, within 1 day after the typhoon. We observed algal blooms in the upper layer of the water column and hypoxia underneath in bottom water during both legs. Repeat sampling at the initial hypoxic station showed severe oxygen depletion down to 30 µmol kg-1 before the typhoon and a clear drawdown of dissolved oxygen after the typhoon. Based on a three endmember mixing model and the mass balance of dissolved inorganic carbon and its isotopic composition, the δ13C of organic carbon remineralized in the hypoxic zone was -23.2 ± 1.1 ‰. We estimated that 65 ± 16 % of the oxygen-consuming organic matter was derived from marine sources, and the rest (35 ± 16 %) was derived from the continent. In contrast to a recently studied hypoxic zone in the East China Sea off the Changjiang Estuary where marine organic matter dominated oxygen consumption, here terrestrial organic matter significantly contributed to the formation and maintenance of hypoxia. How varying amounts of these organic matter sources drive oxygen consumption has important implications for better understanding hypoxia and its mitigation in bottom waters.

  1. Climate and marine biogeochemistry during the Holocene from transient model simulations

    NASA Astrophysics Data System (ADS)

    Segschneider, Joachim; Schneider, Birgit; Khon, Vyacheslav

    2018-06-01

    Climate and marine biogeochemistry changes over the Holocene are investigated based on transient global climate and biogeochemistry model simulations over the last 9500 years. The simulations are forced by accelerated and non-accelerated orbital parameters, respectively, and atmospheric pCO2, CH4, and N2O. The analysis focusses on key climatic parameters of relevance to the marine biogeochemistry, and on the physical and biogeochemical processes that drive atmosphere-ocean carbon fluxes and changes in the oxygen minimum zones (OMZs). The simulated global mean ocean temperature is characterized by a mid-Holocene cooling and a late Holocene warming, a common feature among Holocene climate simulations which, however, contradicts a proxy-derived mid-Holocene climate optimum. As the most significant result, and only in the non-accelerated simulation, we find a substantial increase in volume of the OMZ in the eastern equatorial Pacific (EEP) continuing into the late Holocene. The concurrent increase in apparent oxygen utilization (AOU) and age of the water mass within the EEP OMZ can be attributed to a weakening of the deep northward inflow into the Pacific. This results in a large-scale mid-to-late Holocene increase in AOU in most of the Pacific and hence the source regions of the EEP OMZ waters. The simulated expansion of the EEP OMZ raises the question of whether the deoxygenation that has been observed over the last 5 decades could be a - perhaps accelerated - continuation of an orbitally driven decline in oxygen. Changes in global mean biological production and export of detritus remain of the order of 10 %, with generally lower values in the mid-Holocene. The simulated atmosphere-ocean CO2 flux would result in atmospheric pCO2 changes of similar magnitudes to those observed for the Holocene, but with different timing. More technically, as the increase in EEP OMZ volume can only be simulated with the non-accelerated model simulation, non-accelerated model

  2. Effect of bottom water oxygenation on oxygen consumption and benthic biogeochemical processes at the Crimean Shelf (Black Sea)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.

    2012-04-01

    Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen

  3. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  4. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  5. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  6. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  7. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  8. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone.

    PubMed

    Ganesh, Sangita; Bristow, Laura A; Larsen, Morten; Sarode, Neha; Thamdrup, Bo; Stewart, Frank J

    2015-12-01

    The genetic composition of marine microbial communities varies at the microscale between particle-associated (PA; >1.6 μm) and free-living (FL; 0.2-1.6 μm) niches. It remains unclear, however, how metabolic activities differ between PA and FL fractions. We combined rate measurements with metatranscriptomics to quantify PA and FL microbial activity in the oxygen minimum zone (OMZ) of the Eastern Tropical North Pacific, focusing on dissimilatory processes of the nitrogen (N) cycle. Bacterial gene counts were 8- to 15-fold higher in the FL compared with the PA fraction. However, rates of all measured N cycle processes, excluding ammonia oxidation, declined significantly following particle (>1.6 μm) removal. Without particles, rates of nitrate reduction to nitrite (1.5-9.4nMNd(-1)) fell to zero and N2 production by denitrification (0.5-1.7nMNd(-1)) and anammox (0.3-1.9nMNd(-1)) declined by 53-85%. The proportional representation of major microbial taxa and N cycle gene transcripts in metatranscriptomes followed fraction-specific trends. Transcripts encoding nitrate reductase were uniform among PA and FL fractions, whereas anammox-associated transcripts were proportionately enriched up to 15-fold in the FL fraction. In contrast, transcripts encoding enzymes for N2O and N2 production by denitrification were enriched up to 28-fold in PA samples. These patterns suggest that the majority of N cycle activity, excluding N2O and N2 production by denitrification, is confined to a FL majority that is critically dependent on access to particles, likely as a source of organic carbon and inorganic N. Variable particle distributions may drive heterogeneity in N cycle activity and gene expression in OMZs.

  9. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone

    PubMed Central

    Ganesh, Sangita; Bristow, Laura A; Larsen, Morten; Sarode, Neha; Thamdrup, Bo; Stewart, Frank J

    2015-01-01

    The genetic composition of marine microbial communities varies at the microscale between particle-associated (PA; >1.6 μm) and free-living (FL; 0.2–1.6 μm) niches. It remains unclear, however, how metabolic activities differ between PA and FL fractions. We combined rate measurements with metatranscriptomics to quantify PA and FL microbial activity in the oxygen minimum zone (OMZ) of the Eastern Tropical North Pacific, focusing on dissimilatory processes of the nitrogen (N) cycle. Bacterial gene counts were 8- to 15-fold higher in the FL compared with the PA fraction. However, rates of all measured N cycle processes, excluding ammonia oxidation, declined significantly following particle (>1.6 μm) removal. Without particles, rates of nitrate reduction to nitrite (1.5–9.4nMNd−1) fell to zero and N2 production by denitrification (0.5–1.7nMNd−1) and anammox (0.3–1.9nMNd−1) declined by 53–85%. The proportional representation of major microbial taxa and N cycle gene transcripts in metatranscriptomes followed fraction-specific trends. Transcripts encoding nitrate reductase were uniform among PA and FL fractions, whereas anammox-associated transcripts were proportionately enriched up to 15-fold in the FL fraction. In contrast, transcripts encoding enzymes for N2O and N2 production by denitrification were enriched up to 28-fold in PA samples. These patterns suggest that the majority of N cycle activity, excluding N2O and N2 production by denitrification, is confined to a FL majority that is critically dependent on access to particles, likely as a source of organic carbon and inorganic N. Variable particle distributions may drive heterogeneity in N cycle activity and gene expression in OMZs. PMID:25848875

  10. Utilization of oxygen difluoride for syntheses of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Toy, M. S. (Inventor)

    1976-01-01

    The reaction oxygen difluoride, OF2, with ethylenically unsaturated fluorocarbon compounds is examined. Depending upon the fluorocarbon material and reaction conditions, OF2 can chain extend fluoropolyenes, convert functional perfluorovinyl groups to acyl fluoride and/or epoxide groups, and act as a monomer for an addition type copolymerization with diolefins.

  11. Field evaluations of marine oil spill bioremediation.

    PubMed Central

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  12. Simulated effects of southern hemispheric wind changes on the Pacific oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Getzlaff, Julia; Dietze, Heiner; Oschlies, Andreas

    2016-01-01

    A coupled ocean biogeochemistry-circulation model is used to investigate the impact of observed past and anticipated future wind changes in the Southern Hemisphere on the oxygen minimum zone in the tropical Pacific. We consider the industrial period until the end of the 21st century and distinguish effects due to a strengthening of the westerlies from effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our model results show that a strengthening of the westerlies counteracts part of the warming-induced decline in the global marine oxygen inventory. A poleward shift of the trade-westerlies boundary, however, triggers a significant decrease of oxygen in the tropical oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-westerlies boundary and warming-induced increase in stratification contribute equally to the expansion of suboxic waters in the tropical Pacific.

  13. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals

    PubMed Central

    Chen, Xi; Ling, Hong-Fei; Vance, Derek; Shields-Zhou, Graham A.; Zhu, Maoyan; Poulton, Simon W.; Och, Lawrence M.; Jiang, Shao-Yong; Li, Da; Cremonese, Lorenzo; Archer, Corey

    2015-01-01

    The early diversification of animals (∼630 Ma), and their development into both motile and macroscopic forms (∼575–565 Ma), has been linked to stepwise increases in the oxygenation of Earth's surface environment. However, establishing such a linkage between oxygen and evolution for the later Cambrian ‘explosion' (540–520 Ma) of new, energy-sapping body plans and behaviours has proved more elusive. Here we present new molybdenum isotope data, which demonstrate that the areal extent of oxygenated bottom waters increased in step with the early Cambrian bioradiation of animals and eukaryotic phytoplankton. Modern-like oxygen levels characterized the ocean at ∼521 Ma for the first time in Earth history. This marks the first establishment of a key environmental factor in modern-like ecosystems, where animals benefit from, and also contribute to, the ‘homeostasis' of marine redox conditions. PMID:25980960

  14. A Critical Look at the Combined Use of Sulfur and Oxygen Isotopes to Study Microbial Metabolisms in Methane-Rich Environments

    PubMed Central

    Antler, Gilad; Pellerin, André

    2018-01-01

    Separating the contributions of anaerobic oxidation of methane and organoclastic sulfate reduction in the overall sedimentary sulfur cycle of marine sediments has benefited from advances in isotope biogeochemistry. Particularly, the coupling of sulfur and oxygen isotopes measured in the residual sulfate pool (δ18OSO4 vs. δ34SSO4). Yet, some important questions remain. Recent works have observed patterns that are inconsistent with previous interpretations. We differentiate the contributions of oxygen and sulfur isotopes to separating the anaerobic oxidation of methane and organoclastic sulfate reduction into three phases; first evidence from conventional high methane vs. low methane sites suggests a clear relationship between oxygen and sulfur isotopes in porewater and the metabolic process taking place. Second, evidence from pure cultures and organic matter rich sites with low levels of methane suggest the signatures of both processes overlap and cannot be differentiated. Third, we take a critical look at the use of oxygen and sulfur isotopes to differentiate metabolic processes (anaerobic oxidation of methane vs. organoclastic sulfate reduction). We identify that it is essential to develop a better understanding of the oxygen kinetic isotope effect, the degree of isotope exchange with sulfur intermediates as well as establishing their relationships with the cell-specific metabolic rates if we are to develop this proxy into a reliable tool to study the sulfur cycle in marine sediments and the geological record. PMID:29681890

  15. Marine pelagic ecosystems: the West Antarctic Peninsula

    PubMed Central

    Ducklow, Hugh W; Baker, Karen; Martinson, Douglas G; Quetin, Langdon B; Ross, Robin M; Smith, Raymond C; Stammerjohn, Sharon E; Vernet, Maria; Fraser, William

    2006-01-01

    The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 2°C increase in the annual mean temperature and a 6°C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.6°C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in ice-dependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients

  16. Oxygen production by pyrolysis of lunar regolith

    NASA Technical Reports Server (NTRS)

    Senior, Constance L.

    1991-01-01

    Oxygen was identified as the most important product of initial lunar materials processing efforts. A source of oxygen on the Moon provides an alternative to the costly transport of propellant to the Moon or to low earth orbit. Pyrolysis, or vapor-phase reduction, involves heating a feedstock to temperatures sufficient to decompose the constituent metal oxides and release oxygen. The process relies on the vaporization of metal oxides in the form of reduced suboxides or atomic species. The reduced species must then be condensed without re-oxidizing, yielding oxygen in the gas phase. The feasibility of obtaining oxygen from common lunar minerals was demonstrated using solar furnace experiments. These results are discussed together with chemical equilibrium models which were extended to include the multicomponent oxides used in experiments. For the first time, both experiments and theoretical models dealt with the complex oxides that make up potential lunar feedstocks. Two major conclusions are drawn from this preliminary work. First, unbeneficiated regolith is a suitable feedstock for pyrolysis. Second, the process can operate at moderate temperatures, circa 2000 K, which could be supplied by direct solar or electrical energy. In addition to these advantages in choice of feedstock and energy source, the pyrolysis process requires no chemicals or reagents, making it an attractive process for lunar oxygen production.

  17. Computation of the unsteady facilitated transport of oxygen in hemoglobin

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1990-01-01

    The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.

  18. Statistical modelling of variability in sediment-water nutrient and oxygen fluxes

    NASA Astrophysics Data System (ADS)

    Serpetti, Natalia; Witte, Ursula; Heath, Michael

    2016-06-01

    Organic detritus entering, or produced, in the marine environment is re-mineralised to inorganic nutrient in the seafloor sediments. The flux of dissolved inorganic nutrient between the sediment and overlying water column is a key process in the marine ecosystem, which binds the biogeochemical sub-system to the living food web. These fluxes are potentially affected by a wide range of physical and biological factors and disentangling these is a significant challenge. Here we develop a set of General Additive Models (GAM) of nitrate, nitrite, ammonia, phosphate, silicate and oxygen fluxes, based on a year-long campaign of field measurements off the north-east coast of Scotland. We show that sediment grain size, turbidity due to sediment re-suspension, temperature, and biogenic matter content were the key factors affecting oxygen consumption, ammonia and silicate fluxes. However, phosphate fluxes were only related to suspended sediment concentrations, whilst nitrate fluxes showed no clear relationship to any of the expected drivers of change, probably due to the effects of denitrification. Our analyses show that the stoichiometry of nutrient regeneration in the ecosystem is not necessarily constant and may be affected by combinations of processes. We anticipate that our statistical modelling results will form the basis for testing the functionality of process-based mathematical models of whole-sediment biogeochemistry.

  19. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below.

    PubMed

    Edgcomb, V P

    2016-06-01

    Marine protists are integral to marine food webs and exhibit complex relationships with other microbial taxa. Phagotrophic protists contribute significantly to carbon turnover in the sunlit ocean and evidence suggests grazing in the dark ocean can be significant as well. New in situ sampling technologies hold great promise for more accurately accessing these impacts. The molecular signatures of parasitic protists comprise significant fractions of many high-throughput sequencing datasets, suggesting a major role in controlling populations of their host(s). The prokaryotic symbionts of free-living protists can be numerous, and, particularly in low-oxygen to anoxic marine habitats, their collective metabolisms may contribute significantly to biogeochemical cycling. This short review addresses principally planktonic communities in the mesopelagic and bathypelagic dark ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond

    PubMed Central

    Chang, Thomas M. S.

    2013-01-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymermembrane. Extensions in to oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics. PMID:22409281

  1. Oxygen hypothesis of polar gigantism not supported by performance of Antarctic pycnogonids in hypoxia

    PubMed Central

    Woods, H. Arthur; Moran, Amy L.; Arango, Claudia P.; Mullen, Lindy; Shields, Chris

    2008-01-01

    Compared to temperate and tropical relatives, some high-latitude marine species are large-bodied, a phenomenon known as polar gigantism. A leading hypothesis on the physiological basis of gigantism posits that, in polar water, high oxygen availability coupled to low metabolic rates relieves constraints on oxygen transport and allows the evolution of large body size. Here, we test the oxygen hypothesis using Antarctic pycnogonids, which have been evolving in very cold conditions (−1.8–0°C) for several million years and contain spectacular examples of gigantism. Pycnogonids from 12 species, spanning three orders of magnitude in body mass, were collected from McMurdo Sound, Antarctica. Individual sea spiders were forced into activity and their performance was measured at different experimental levels of dissolved oxygen (DO). The oxygen hypothesis predicts that, all else being equal, large pycnogonids should perform disproportionately poorly in hypoxia, an outcome that would appear as a statistically significant interaction between body size and oxygen level. In fact, although we found large effects of DO on performance, and substantial interspecific variability in oxygen sensitivity, there was no evidence for size×DO interactions. These data do not support the oxygen hypothesis of Antarctic pycnogonid gigantism and suggest that explanations must be sought in other ecological or evolutionary processes. PMID:19129117

  2. Oxygen hypothesis of polar gigantism not supported by performance of Antarctic pycnogonids in hypoxia.

    PubMed

    Woods, H Arthur; Moran, Amy L; Arango, Claudia P; Mullen, Lindy; Shields, Chris

    2009-03-22

    Compared to temperate and tropical relatives, some high-latitude marine species are large-bodied, a phenomenon known as polar gigantism. A leading hypothesis on the physiological basis of gigantism posits that, in polar water, high oxygen availability coupled to low metabolic rates relieves constraints on oxygen transport and allows the evolution of large body size. Here, we test the oxygen hypothesis using Antarctic pycnogonids, which have been evolving in very cold conditions (-1.8-0 degrees C) for several million years and contain spectacular examples of gigantism. Pycnogonids from 12 species, spanning three orders of magnitude in body mass, were collected from McMurdo Sound, Antarctica. Individual sea spiders were forced into activity and their performance was measured at different experimental levels of dissolved oxygen (DO). The oxygen hypothesis predicts that, all else being equal, large pycnogonids should perform disproportionately poorly in hypoxia, an outcome that would appear as a statistically significant interaction between body size and oxygen level. In fact, although we found large effects of DO on performance, and substantial interspecific variability in oxygen sensitivity, there was no evidence for sizexDO interactions. These data do not support the oxygen hypothesis of Antarctic pycnogonid gigantism and suggest that explanations must be sought in other ecological or evolutionary processes.

  3. Facets of diazotrophy in the oxygen minimum zone waters off Peru

    PubMed Central

    Loescher, Carolin R; Großkopf, Tobias; Desai, Falguni D; Gill, Diana; Schunck, Harald; Croot, Peter L; Schlosser, Christian; Neulinger, Sven C; Pinnow, Nicole; Lavik, Gaute; Kuypers, Marcel M M; LaRoche, Julie; Schmitz, Ruth A

    2014-01-01

    Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2− and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future. PMID:24813564

  4. Facets of diazotrophy in the oxygen minimum zone waters off Peru.

    PubMed

    Loescher, Carolin R; Großkopf, Tobias; Desai, Falguni D; Gill, Diana; Schunck, Harald; Croot, Peter L; Schlosser, Christian; Neulinger, Sven C; Pinnow, Nicole; Lavik, Gaute; Kuypers, Marcel M M; LaRoche, Julie; Schmitz, Ruth A

    2014-11-01

    Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4(+)), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2(-) and PO4(3-) are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.

  5. The role of marine reserves in achieving sustainable fisheries

    PubMed Central

    Roberts, Callum M.; Hawkins, Julie P.; Gell, Fiona R.

    2005-01-01

    Many fishery management tools currently in use have conservation value. They are designed to maintain stocks of commercially important species above target levels. However, their limitations are evident from continuing declines in fish stocks throughout the world. We make the case that to reverse fishery declines, safeguard marine life and sustain ecosystem processes, extensive marine reserves that are off limits to fishing must become part of the management strategy. Marine reserves should be incorporated into modern fishery management because they can achieve many things that conventional tools cannot. Only complete and permanent protection from fishing can protect the most sensitive habitats and vulnerable species. Only reserves will allow the development of natural, extended age structures of target species, maintain their genetic variability and prevent deleterious evolutionary change from the effects of fishing. Species with natural age structures will sustain higher rates of reproduction and will be more resilient to environmental variability. Higher stock levels maintained by reserves will provide insurance against management failure, including risk-prone quota setting, provided the broader conservation role of reserves is firmly established and legislatively protected. Fishery management measures outside protected areas are necessary to complement the protection offered by marine reserves, but cannot substitute for it. PMID:15713592

  6. Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming

    NASA Astrophysics Data System (ADS)

    Fu, Weiwei; Primeau, Francois; Keith Moore, J.; Lindsay, Keith; Randerson, James T.

    2018-04-01

    Dissolved oxygen (O2) is essential for the survival of marine animals. Climate change impacts on future oxygen distributions could modify species biogeography, trophic interactions, biodiversity, and biogeochemistry. The Coupled Model Intercomparison Project Phase 5 models predict a decreasing trend in marine O2 over the 21st century. Here we show that this increasing hypoxia trend reverses in the tropics after 2100 in the Community Earth System Model forced by atmospheric CO2 from the Representative Concentration Pathway 8.5 and Extended Concentration Pathway 8.5. In tropical intermediate waters between 200 and 1,000 m, the model predicts a steady decline of O2 and an expansion of oxygen minimum zones (OMZs) during the 21st century. By 2150, however, the trend reverses with oxygen concentration increasing and OMZ volume shrinking through 2300. A novel five-box model approach in conjunction with output from the full Earth system model is used to separate the contributions of biological and physical processes to the trends in tropical oxygen. The tropical O2 recovery is caused mainly by reductions in tropical biological export, coupled with a modest increase in ventilation after 2200. The time-evolving oxygen distribution impacts marine nitrogen cycling, with potentially important climate feedbacks.

  7. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems

    PubMed Central

    Tomašových, Adam; Kennedy, Jonathan D.; Betzner, Tristan J.; Kuehnle, Nicole Bitler; Edie, Stewart; Kim, Sora; Supriya, K.; White, Alexander E.; Rahbek, Carsten; Huang, Shan; Price, Trevor D.; Jablonski, David

    2016-01-01

    Many marine and terrestrial clades show similar latitudinal gradients in species richness, but opposite gradients in range size—on land, ranges are the smallest in the tropics, whereas in the sea, ranges are the largest in the tropics. Therefore, richness gradients in marine and terrestrial systems do not arise from a shared latitudinal arrangement of species range sizes. Comparing terrestrial birds and marine bivalves, we find that gradients in range size are concordant at the level of genera. Here, both groups show a nested pattern in which narrow-ranging genera are confined to the tropics and broad-ranging genera extend across much of the gradient. We find that (i) genus range size and its variation with latitude is closely associated with per-genus species richness and (ii) broad-ranging genera contain more species both within and outside of the tropics when compared with tropical- or temperate-only genera. Within-genus species diversification thus promotes genus expansion to novel latitudes. Despite underlying differences in the species range-size gradients, species-rich genera are more likely to produce a descendant that extends its range relative to the ancestor's range. These results unify species richness gradients with those of genera, implying that birds and bivalves share similar latitudinal dynamics in net species diversification. PMID:27147094

  8. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations

    PubMed Central

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E.; Geelhoed, Jeanine S.; Strous, Marc

    2017-01-01

    Summary For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate‐reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate‐ and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24‐12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ‘USabulitectum silens’ and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate‐reducing microbial communities and their adaptation to a dynamic environment. PMID:28836729

  9. Oxygenation state and twilight vision at 2438 m.

    PubMed

    Connolly, Desmond M

    2011-01-01

    Under twilight viewing conditions, hypoxia, equivalent to breathing air at 3048 m (10,000 ft), compromises low contrast acuity, dynamic contrast sensitivity, and chromatic sensitivity. Selected past experiments have been repeated under milder hypoxia, equivalent to altitude exposure below 2438 m (8000 ft), to further define the influence of oxygenation state on mesopic vision. To assess photopic and mesopic visual function, 12 subjects each undertook three experiments using the Contrast Acuity Assessment test, the Frequency Doubling Perimeter, and the Color Assessment and Diagnosis (CAD) test. Experiments were conducted near sea level breathing 15.2% oxygen (balance nitrogen) and 100% oxygen, representing mild hypobaric hypoxia at 2438 m (8000 ft) and the benefit of supplementary oxygen, respectively. Oxygenation state was a statistically significant determinant of visual performance on all three visual parameters at mesopic, but not photopic, luminance. Mesopic sensitivity was greater with supplementary oxygen, but the magnitude of each hypoxic decrement was slight. Hypoxia elevated mesopic contrast acuity thresholds by approximately 4%; decreased mesopic dynamic contrast sensitivity by approximately 2 dB; and extended mean color ellipse axis length by approximately one CAD unit at mesopic luminance (that is, hypoxia decreased chromatic sensitivity). The results indicate that twilight vision may be susceptible to conditions of altered oxygenation at upper-to-mid mesopic luminance with relevance to contemporary night flying, including using night vision devices. Supplementary oxygen should be considered when optimal visual performance is mission-critical during flight above 2438 m (8000 ft) in dim light.

  10. Biological oxygen apparent transmissibility of hydrogel contact lenses with and without organosilicon moieties.

    PubMed

    Compañ, V; López-Alemany, A; Riande, E; Refojo, M F

    2004-01-01

    The instrument oxygen transmissibility (IOT) of organosilicon hydrogels, measured by electrochemical procedures, is 5-10 times larger than that of conventional hydrogels. A method is described that allows the estimation of the oxygen tension at the lens-cornea interface for closed- and open-eyelids situations by combining the IOT of the hydrogels and corneal parameters such as corneal thickness, corneal permeability and oxygen flux across the cornea. From these results the biological oxygen apparent transmissibility (BOAT) is obtained, an important parameter which an multiplication with the pressure of oxygen on the external part of the lens gives the oxygen flux onto the cornea. Contact lenses with oxygen transmissibility higher than 100 Dk/t units [1 Dk/t unit=10(-9) [cm(3) O(2) (STp) cm(-2)s(-1)(mmHg)(-1)] posses a large oxygen tension at the lens-cornea interface that substantially reduces the oxygen flux onto the cornea. Lenses whose oxygen transmissibility is lower than 50 Dk/t units allow a rather small oxygen flux onto the cornea under closed eyelids condition that prevent their use for extended wear.

  11. Two New Beggiatoa Species Inhabiting Marine Mangrove Sediments in the Caribbean

    PubMed Central

    Jean, Maïtena R. N.; Gonzalez-Rizzo, Silvina; Gauffre-Autelin, Pauline; Lengger, Sabine K.; Schouten, Stefan; Gros, Olivier

    2015-01-01

    Beggiatoaceae, giant sulphur-oxidizing bacteria, are well known to occur in cold and temperate waters, as well as hydrothermal vents, where they form dense mats on the floor. However, they have never been described in tropical marine mangroves. Here, we describe two new species of benthic Beggiatoaceae colonizing a marine mangrove adjacent to mangrove roots. We combined phylogenetic and lipid analysis with electron microscopy in order to describe these organisms. Furthermore, oxygen and sulphide measurements in and ex situ were performed in a mesocosm to characterize their environment. Based on this, two new species, Candidatus Maribeggiatoa sp. and Candidatus Isobeggiatoa sp. inhabiting tropical marine mangroves in Guadeloupe were identified. The species identified as Candidatus Maribeggiatoa group suggests that this genus could harbour a third cluster with organisms ranging from 60 to 120 μm in diameter. This is also the first description of an Isobeggiatoa species outside of Arctic and temperate waters. The multiphasic approach also gives information about the environment and indications for the metabolism of these bacteria. Our study shows the widespread occurrence of members of Beggiatoaceae family and provides new insight in their potential role in shallow-water marine sulphide-rich environments such as mangroves. PMID:25689402

  12. THE TIME INTERVAL AFTER PULSED IRRADIATION WITHIN WHICH INJURY TO BACTERIA CAN BE MODIFIED BY DISSOLVED OXYGEN. I. A SEARCH FOR AN EFFECT OF OXYGEN 0.02 SECOND AFTER PULSED IRRADIATION. II. THE HYPOTHESIS THAT THE OXYGEN EFFECT INVOLVES A CARBON RADICAL: AND THE TIME TAKEN BY OXYGEN TO DIFFUSE TO AND REACT WITH SUCH A RADICAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard-Flanders, P.; Moore, D.

    1958-10-01

    An investigation was made of the radiosensitivity of the dysentery bacillus Shigella flexneri to a shcrt pulsed irradiation with 1.2-Mev electrons delivered either before or after a sudden change in oxygen pressure. Results show that the stage in the development of the radiation injury at which oxygen may intervene does not extend for as long as 0.01 second after irradiation. The nature of this stage was investigated and an hypothesis is presented for the mechanism of radiation injury. (C.H.)

  13. Radial and azimuthal distribution of Io's oxygen neutral cloud observed by Hisaki/EXCEED

    NASA Astrophysics Data System (ADS)

    Koga, R.; Tsuchiya, F.; Kagitani, M.; Sakanoi, T.; Yoneda, M.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kimura, T.; Smith, H. T.

    2017-12-01

    We report the spatial distributions of oxygen neural cloud surrounding Jupiter's moon Io and along Io's orbit observed by the HISAKI satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exobase and move to corona (< 5.8 Io radii, the boundary where Jupiter's gravity begins to dominate) and neutral clouds (> 5.8 Io radii) mainly due to atmospheric sputtering. Io plasma torus is formed by ionization of these atoms by electron impact and charge exchange processes. It is essential to examine the dominant source of Io plasma torus, particularly in the vicinity of Io (<5.8 Io radii; atmosphere and corona) or the region away from Io (>5.8 Io radii; extended neutral clouds). The spatial distribution of oxygen and sulfur neutral clouds is important to understand the source. The extreme ultraviolet spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Hisaki satellite observed Io plasma torus continuously in 2014-2015, and we carried out the monitoring of the distribution of atomic oxygen emission at 130.4 nm. The emission averaged over the distance range of 4.5-6.5 Jovian radii on the dawn and dusk sides strongly depends on the Io phase angle (IPA), and has a emission peak between IPA of 60-90 degrees on the dawn side, and between 240-270 degrees on the dusk side, respectively. It also shows the asymmetry with respect to Io's position: the intensity averaged for IPA 60-90 degrees (13.3 Rayleighs (R)) is 1.2 times greater than that for IPA 90-120 degrees (11.1 R) on the dawn side. The similar tendency is found on the dusk side. Weak atomic oxygen emission (4 R) uniformly distributes in every IPA. We also examined the radial distribution of the oxygen neutral cloud during the same period and found the emission peak near Io's orbit with decreasing the intensity toward 8.0 Jupiter radii. The results show the high density component of the oxygen neutral cloud is concentrated around Io and extends mainly toward

  14. Software for marine ecological environment comprehensive monitoring system based on MCGS

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.

    2017-08-01

    The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.

  15. Surface Nitrification: A Major Uncertainty in Marine N2O Emissions

    NASA Technical Reports Server (NTRS)

    Zamora, Lauren M.; Oschlies, Andreas

    2014-01-01

    The ocean is responsible for up to a third of total global nitrous oxide (N2O) emissions, but uncertainties in emission rates of this potent greenhouse gas are high (approaching 100%). Here we use a marine biogeochemical model to assess six major uncertainties in estimates of N2O production, thereby providing guidance in how future studies may most effectively reduce uncertainties in current and future marine N2O emissions. Potential surface N2O production from nitrification causes the largest uncertainty in N2O emissions (estimated up to approximately 1.6 Tg N/yr (sup -1) or 48% of modeled values), followed by the unknown oxygen concentration at which N2O production switches to N2O consumption (0.8 Tg N/yr (sup -1)or 24% of modeled values). Other uncertainties are minor, cumulatively changing regional emissions by less than 15%. If production of N2O by surface nitrification could be ruled out in future studies, uncertainties in marine N2O emissions would be halved.

  16. Shared Physiological and Molecular Responses in Marine Fish and Invertebrates to Environmental Hypoxia: Potential Biomarkers of Adverse Impacts on Marine Communities

    NASA Astrophysics Data System (ADS)

    Thomas, P.; Rahman, S.

    2016-02-01

    Knowledge of the effects of environmental exposure to hypoxia (dissolved oxygen: <2 mg/L) on critical physiological functions such as reproduction, growth and metabolism in both fish and invertebrates is essential for accurate predictions of its chronic impacts on marine communities. Marked disruption of reproduction and its endocrine control was observed in Atlantic croaker collected from the hypoxic region in the northern Gulf of Mexico. Recent research has shown that growth and its physiological upregulation is also impaired in hypoxia-exposed marine fish. Expression of insulin-like growth factor (IGF) binding protein (IGFBP), which inhibits growth, was increased in croaker livers, whereas plasma levels of IGF, the primary regulator of growth, were decreased in snapper after hypoxia exposure. In addition, hypoxia inducible factor-1 (HIF-1), which regulates changes in metabolism during adaptation to hypoxia, was upregulated in croaker collected from hypoxic environments. Interestingly, similar changes in the expression of IGFBP and HIF-1 have been found in marine crustaceans after hypoxia exposure, suggesting these responses to hypoxia are common to marine fish and invertebrates. Preliminary field studies indicate that hypoxia exposure also causes epigenetic modifications, including increases in global DNA methylation, and that these epigenetic changes can influence reproduction and growth in croaker. Epigenetic modifications can be passed to offspring and persist in future generations no longer exposed to an environmental stressor further aggravating its long-term adverse impacts on population abundance and delaying recovery. The growing availability of complete invertebrate genomes and high-throughput DNA sequencing indicates similar epigenetic studies can now be conducted with marine invertebrates. Collectively, the results indicate that environmental hypoxia exposure disrupts major physiological functions in fish and invertebrates critical for maintenance of

  17. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary.

    PubMed

    Spietz, Rachel L; Williams, Cheryl M; Rocap, Gabrielle; Horner-Devine, M Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA-a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L(-1). This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L(-1)), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.

  18. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary

    PubMed Central

    Spietz, Rachel L.; Williams, Cheryl M.; Rocap, Gabrielle; Horner-Devine, M. Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems. PMID:26270047

  19. Marine biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the naturemore » of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.« less

  20. Extending Marine Species Distribution Maps Using Non-Traditional Sources

    PubMed Central

    Moretzsohn, Fabio; Gibeaut, James

    2015-01-01

    Abstract Background Traditional sources of species occurrence data such as peer-reviewed journal articles and museum-curated collections are included in species databases after rigorous review by species experts and evaluators. The distribution maps created in this process are an important component of species survival evaluations, and are used to adapt, extend and sometimes contract polygons used in the distribution mapping process. New information During an IUCN Red List Gulf of Mexico Fishes Assessment Workshop held at The Harte Research Institute for Gulf of Mexico Studies, a session included an open discussion on the topic of including other sources of species occurrence data. During the last decade, advances in portable electronic devices and applications enable 'citizen scientists' to record images, location and data about species sightings, and submit that data to larger species databases. These applications typically generate point data. Attendees of the workshop expressed an interest in how that data could be incorporated into existing datasets, how best to ascertain the quality and value of that data, and what other alternate data sources are available. This paper addresses those issues, and provides recommendations to ensure quality data use. PMID:25941453

  1. The Ecological Marine Units Project as a Framework for Collaborative Data Exploration, Distribution, and Knowledge Building

    NASA Astrophysics Data System (ADS)

    Wright, Dawn; Sayre, Roger; Breyer, Sean; Butler, Kevin; VanGraafeiland, Keith; Goodin, Kathy; Kavanaugh, Maria; Costello, Mark; Cressie, Noel; Basher, Zeenatul; Harris, Peter; Guinotte, John

    2017-04-01

    A data-derived, ecological stratification-based ecosystem mapping approach was recently demonstrated by Sayre et al. for terrestrial ecosystems, resulting in a standardized map of nearly 4000 global ecological land units (ELUs) at a base spatial resolution of 250 m. The map was commissioned by the Group on Earth Observations for eventual use by the Global Earth Observation System of Systems (GEOSS), and was also a contribution to the Climate Data Initiative of US President Barack Obama. We now present a similar environmental stratification approach for extending a global ecosystems map into the oceans through the delineation of analog global ecological marine units (EMUs). EMUs are comprised of a global point mesh framework, created from over 52 million points from NOAA's World Ocean Atlas with a spatial resolution of ¼ by ¼ degree ( 27 x 27 km at the equator) at varying depths and a temporal resolution that is currently decadal. Each point carries attributes of chemical and physical oceanographic structure (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate) that are likely drivers of many marine ecosystem responses. We used a k-means statistical clustering algorithm to identify physically distinct, relatively homogenous, volumetric regions within the water column (the EMUs). Backwards stepwise discriminant analysis determined if all of six variables contributed significantly to the clustering, and a pseudo F-statistic gave us an optimum number of clusters worldwide at 37. Canonical discriminant analysis verified that all 37 clusters were significantly different from one another. A major intent of the EMUs is to support marine biodiversity conservation assessments, economic valuation studies of marine ecosystem goods and services, and studies of ocean acidification and other impacts (e.g., pollution, resource exploitation, etc.). As such, they represent a rich geospatial accounting framework for these types of studies, as well as for

  2. Large-eddy simulation of oxygen transport and depletion in waterbodies

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Piomelli, Ugo; Boegman, Leon

    2010-11-01

    Dissolved oxygen (DO) in water plays an important role in lake and marine ecosystems. Agricultural runoff may spur excessive plant growth on the water surface; when the plants die they sink to the bottom of the water bodies and decompose, consuming oxygen. Significant environmental (and economic) damage may result from the loss of aquatic life caused by the oxygen depletion. The study of DO transport and depletion dynamics in water bodies has, therefore, become increasingly important. We study this phenomenon by large-eddy simulations performed at laboratory scale. The equations governing the transport of momentum and of a scalar (the DO) in the fluid are coupled to a biochemical model for DO depletion in the permeable sediment bed [Higashino et al., Water Res. (38) 1, 2004)], and to an equation for the fluid transpiration in the porous medium. The simulations are in good agreement with previous calculations and experiments. We show that the results are sensitive to the biochemical and fluid dynamical properties of the sediment, which are very difficult to determine experimentally.

  3. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marine broadcast notice to... SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to... mines. Radio stations broadcasting marine information are listed in “Radio Navigational Aids” (National...

  4. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marine broadcast notice to... SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to... mines. Radio stations broadcasting marine information are listed in “Radio Navigational Aids” (National...

  5. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marine broadcast notice to... SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to... mines. Radio stations broadcasting marine information are listed in “Radio Navigational Aids” (National...

  6. Australian developments in marine science

    NASA Astrophysics Data System (ADS)

    Coffin, Millard F.

    2012-07-01

    Australia is an island nation with about two thirds of its jurisdiction underwater. On 25 May 2012, Australia instituted the Seas and Submerged Lands (Limits of Continental Shelf) Proclamation 2012, confirming areas of seabed where Australia has exclusive rights to explore and exploit marine resources. This proclamation follows recommendations by the Commission on the Limits of the Continental Shelf, a body established under the United Nations Convention on the Law of the Sea, confirming Australia's entitlement to extended continental shelf, i.e., that beyond 200 nautical miles from the coastline, of some 2.56 million square kilometers, excluding Australian Antarctic Territory [Symonds et al., 2009] (Figure 1a).

  7. Effects of excess oxygen on the 4.5-6.3 eV absorption spectra of oxygen-rich high purity silica

    NASA Astrophysics Data System (ADS)

    Magruder, R. H.; Robinson, S. J.

    2016-05-01

    Type III silica samples were implanted with O using a multi-energy process that produced a layer of constant concentration to within ±5% beginning ∼80 nm from the surface and extending to ∼640 nm below the surfaces of the samples. The concentrations of excess oxygen in the layer ranged from 0.035 to ∼2.1at.%. In these samples we show that E‧ centers and NBOHCs, as well as the normal cadre of ODC (II) centers, were suppressed, and the optical absorption from 4.7 to 6.4 eV was primarily due to oxygen excess defects. Using Gaussian fitting techniques to examine the optical difference spectra, we have been able to identify four defect centers that are related to excess oxygen defect bands at 4.76 eV, 5.42 eV, 5.75 eV and 6.25 eV.

  8. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marine broadcast notice to mariners. 72.01-25 Section 72.01-25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to...

  9. Decline in global oceanic oxygen content during the past five decades.

    PubMed

    Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin

    2017-02-15

    Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12  mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15  mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.

  10. Oxygen Vacancy Linear Clustering in a Perovskite Oxide

    DOE PAGES

    Eom, Kitae; Choi, Euiyoung; Choi, Minsu; ...

    2017-07-14

    Oxygen vacancies have been implicitly assumed isolated ones, and understanding oxide materials possibly containing oxygen vacancies remains elusive within the scheme of the isolated vacancies, although the oxygen vacancies have been playing a decisive role in oxide materials. We report the presence of oxygen vacancy linear clusters and their orientation along a specific crystallographic direction in SrTiO 3, a representative of a perovskite oxide. The presence of the linear clusters and associated electron localization was revealed by an electronic structure represented in the increase in the Ti 2+ valence state or corresponding Ti 3d 2 electronic configuration along with divacancymore » cluster model analysis and transport measurement. The orientation of the linear clusters along the [001] direction in perovskite SrTiO 3 was verified by further X-ray diffuse scattering analysis. And because SrTiO 3 is an archetypical perovskite oxide, the vacancy linear clustering with the specific aligned direction and electron localization can be extended to a wide variety of the perovskite oxides.« less

  11. Oxygen Vacancy Linear Clustering in a Perovskite Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Kitae; Choi, Euiyoung; Choi, Minsu

    Oxygen vacancies have been implicitly assumed isolated ones, and understanding oxide materials possibly containing oxygen vacancies remains elusive within the scheme of the isolated vacancies, although the oxygen vacancies have been playing a decisive role in oxide materials. We report the presence of oxygen vacancy linear clusters and their orientation along a specific crystallographic direction in SrTiO 3, a representative of a perovskite oxide. The presence of the linear clusters and associated electron localization was revealed by an electronic structure represented in the increase in the Ti 2+ valence state or corresponding Ti 3d 2 electronic configuration along with divacancymore » cluster model analysis and transport measurement. The orientation of the linear clusters along the [001] direction in perovskite SrTiO 3 was verified by further X-ray diffuse scattering analysis. And because SrTiO 3 is an archetypical perovskite oxide, the vacancy linear clustering with the specific aligned direction and electron localization can be extended to a wide variety of the perovskite oxides.« less

  12. The Paradox of Mitochondrial Dysfunction and Extended Longevity

    PubMed Central

    Munkácsy, Erin; Rea, Shane L.

    2014-01-01

    Mitochondria play numerous, essential roles in the life of eukaryotes. Disruption of mitochondrial function in humans is often pathological or even lethal. Surprisingly, in some organisms mitochondrial dysfunction can result in life extension. This paradox has been studied most extensively in the long-lived Mit mutants of the nematode Caenorhabditis elegans. In this review, we explore the major responses that are activated following mitochondrial dysfunction in these animals and how these responses potentially act to extend their life. We focus our attention on five broad areas of current research – reactive oxygen species signaling, the mitochondrial unfolded protein response, autophagy, metabolic adaptation, and the roles played by various transcription factors. Lastly, we also examine why disruption of complexes I and II differ in their ability to induce the Mit phenotype and extend lifespan. PMID:24699406

  13. Oxygen-Free Welding Contact Tips

    NASA Technical Reports Server (NTRS)

    Pike, James F.

    1993-01-01

    Contact tips for gas/metal arc welding (GMAW) fabricated from oxygen-free copper. Prototype tips tested in robotic welding, for which application intended. Reduces electrical erosion, increases electrical conductivity, and reduces mechanical wear. Productivity of robotic welding increases while time during welding interrupted for removal and replacement of contact tips minimal. Improves alignment of joints and filler metal, reducing rate of rejection and repair of unacceptable weldments. Utility extends beyond aerospace industry to mass production of various types of hardware, including heavy off-highway construction equipment.

  14. Atomic oxygen effects on metals

    NASA Technical Reports Server (NTRS)

    Fromhold, Albert T.

    1987-01-01

    The effect of specimen geometry on the attack of metals by atomic oxygen is addressed. This is done by extending the coupled-currents approach in metal oxidation to spherical and cylindrical geometries. Kinetic laws are derived for the rates of oxidation of samples having these geometries. It is found that the burn-up time for spherical particles of a given diameter can be as much as a factor of 3 shorter than the time required to completely oxidize a planar sample of the same thickness.

  15. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events

    PubMed Central

    Algeo, T. J.

    1998-01-01

    The Devonian Period was characterized by major changes in both the terrestrial biosphere, e.g. the evolution of trees and seed plants and the appearance of multi-storied forests, and in the marine biosphere, e.g. an extended biotic crisis that decimated tropical marine benthos, especially the stromatoporoid-tabulate coral reef community. Teleconnections between these terrestrial and marine events are poorly understood, but a key may lie in the role of soils as a geochemical interface between the lithosphere and atmosphere/hydrosphere, and the role of land plants in mediating weathering processes at this interface. The effectiveness of terrestrial floras in weathering was significantly enhanced as a consequence of increases in the size and geographic extent of vascular land plants during the Devonian. In this regard, the most important palaeobotanical innovations were (1) arborescence (tree stature), which increased maximum depths of root penetration and rhizoturbation, and (2) the seed habit, which freed land plants from reproductive dependence on moist lowland habitats and allowed colonization of drier upland and primary successional areas. These developments resulted in a transient intensification of pedogenesis (soil formation) and to large increases in the thickness and areal extent of soils. Enhanced chemical weathering may have led to increased riverine nutrient fluxes that promoted development of eutrophic conditions in epicontinental seaways, resulting in algal blooms, widespread bottomwater anoxia, and high sedimentary organic carbon fluxes. Long-term effects included drawdown of atmospheric pCO2 and global cooling, leading to a brief Late Devonian glaciation, which set the stage for icehouse conditions during the Permo-Carboniferous. This model provides a framework for understanding links between early land plant evolution and coeval marine anoxic and biotic events, but further testing of Devonian terrestrial-marine teleconnections is needed.

  16. Status of marine biodiversity of the China seas.

    PubMed

    Liu, J Y

    2013-01-01

    China's seas cover nearly 5 million square kilometers extending from the tropical to the temperate climate zones and bordering on 32,000 km of coastline, including islands. Comprehensive systematic study of the marine biodiversity within this region began in the early 1950s with the establishment of the Qingdao Marine Biological Laboratory of the Chinese Academy of Sciences. Since that time scientists have carried out intensive multidisciplinary research on marine life in the China seas and have recorded 22,629 species belonging to 46 phyla. The marine flora and fauna of the China seas are characterized by high biodiversity, including tropical and subtropical elements of the Indo-West Pacific warm-water fauna in the South and East China seas, and temperate elements of North Pacific temperate fauna mainly in the Yellow Sea. The southern South China Sea fauna is characterized by typical tropical elements paralleled with the Philippine-New Guinea-Indonesia Coral triangle typical tropical faunal center. This paper summarizes advances in studies of marine biodiversity in China's seas and discusses current research mainly on characteristics and changes in marine biodiversity, including the monitoring, assessment, and conservation of endangered species and particularly the strengthening of effective management. Studies of (1) a tidal flat in a semi-enclosed embayment, (2) the impact of global climate change on a cold-water ecosystem, (3) coral reefs of Hainan Island and Xisha-Nansha atolls, (4) mangrove forests of the South China Sea, (5) a threatened seagrass field, and (6) an example of stock enhancement practices of the Chinese shrimp fishery are briefly introduced. Besides the overexploitation of living resources (more than 12.4 million tons yielded in 2007), the major threat to the biodiversity of the China seas is environmental deterioration (pollution, coastal construction), particularly in the brackish waters of estuarine environments, which are characterized by

  17. Status of Marine Biodiversity of the China Seas

    PubMed Central

    2013-01-01

    China's seas cover nearly 5 million square kilometers extending from the tropical to the temperate climate zones and bordering on 32,000 km of coastline, including islands. Comprehensive systematic study of the marine biodiversity within this region began in the early 1950s with the establishment of the Qingdao Marine Biological Laboratory of the Chinese Academy of Sciences. Since that time scientists have carried out intensive multidisciplinary research on marine life in the China seas and have recorded 22,629 species belonging to 46 phyla. The marine flora and fauna of the China seas are characterized by high biodiversity, including tropical and subtropical elements of the Indo-West Pacific warm-water fauna in the South and East China seas, and temperate elements of North Pacific temperate fauna mainly in the Yellow Sea. The southern South China Sea fauna is characterized by typical tropical elements paralleled with the Philippine-New Guinea-Indonesia Coral triangle typical tropical faunal center. This paper summarizes advances in studies of marine biodiversity in China's seas and discusses current research mainly on characteristics and changes in marine biodiversity, including the monitoring, assessment, and conservation of endangered species and particularly the strengthening of effective management. Studies of (1) a tidal flat in a semi-enclosed embayment, (2) the impact of global climate change on a cold-water ecosystem, (3) coral reefs of Hainan Island and Xisha-Nansha atolls, (4) mangrove forests of the South China Sea, (5) a threatened seagrass field, and (6) an example of stock enhancement practices of the Chinese shrimp fishery are briefly introduced. Besides the overexploitation of living resources (more than 12.4 million tons yielded in 2007), the major threat to the biodiversity of the China seas is environmental deterioration (pollution, coastal construction), particularly in the brackish waters of estuarine environments, which are characterized by

  18. Oxygen and the spatial structure of microbial communities.

    PubMed

    Fenchel, Tom; Finlay, Bland

    2008-11-01

    Oxygen has two faces. On one side it is the terminal electron acceptor of aerobic respiration - the most efficient engine of energy metabolism. On the other hand, oxygen is toxic because the reduction of molecular O2 creates reactive oxygen species such as the superoxide anion, peroxide, and the hydroxyl radical. Probably most prokaryotes, and virtually all eukaryotes, depend on oxygen respiration, and we show that the ambiguous relation to oxygen is both an evolutionary force and a dominating factor driving functional interactions and the spatial structure of microbial communities.We focus on microbial communities that are specialised for life in concentration gradients of oxygen, where they acquire the full panoply of specific requirements from limited ranges of PO2, which also support the spatial organisation of microbial communities. Marine and lake sediments provide examples of steep O2 gradients, which arise because consumption or production of oxygen exceeds transport rates of molecular diffusion. Deep lakes undergo thermal stratification in warm waters, resulting in seasonal anaerobiosis below the thermocline, and lakes with a permanent pycnocline often have permanent anoxic deep water. The oxycline is here biologically similar to sediments, and it harbours similar microbial biota, the main difference being the spatial scale. In sediments, transport is dominated by molecular diffusion, and in the water column, turbulent mixing dominates vertical transport. Cell size determines the minimum requirement of aerobic organisms. For bacteria (and mitochondria), the half-saturation constant for oxygen uptake ranges within 0.05-0.1% atmospheric saturation; for the amoeba Acanthamoeba castellanii it is 0.2%, and for two ciliate species measuring around 150 microm, it is 1-2 % atmospheric saturation. Protection against O2 toxicity has an energetic cost that increases with increasing ambient O2 tension. Oxygen sensing seems universal in aquatic organisms. Many aspects

  19. Observations at venus encounter by the plasma science experiment on mariner 10.

    PubMed

    Bridge, H S; Lazarus, A J; Scudder, J D; Ogilvie, K W; Hartle, R E; Asbridge, J R; Bame, S J; Feldman, W C; Siscoe, G L

    1974-03-29

    Preliminary results from the rearward-looking electrostatic analyzer of the plasma science experiment during the Mariner 10 encounter with Venus are described. They show that the solar-wind interaction with the planet probably involves a bow shock rather than an extended exosphere, but that this is not a thin boundary at the point where it was crossed by Mariner 10. An observed reduction in the flux of electrons with energies greater than 100 electron volts is interpreted as evidence for somne direct interaction with the exosphere. Unusual intermittent features observed downstream of the planet indicate the presence of a comet-like tail hundreds of scale lengths in length.

  20. Observations at Venus encounter by the plasma science experiment on Mariner 10

    NASA Technical Reports Server (NTRS)

    Bridge, H. S.; Lazarus, A. J.; Scudder, J. D.; Ogilvie, K. W.; Hartle, R. E.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Siscoe, G. L.

    1974-01-01

    Preliminary results from the rearward-looking electrostatic analyzer of the plasma science experiment during the Mariner 10 encounter with Venus are described. They show that the solar-wind interaction with the planet probably involves a bow shock rather than an extended exosphere, but that this is not a thin boundary at the point where it was crossed by Mariner 10. An observed reduction in the flux of electrons with energies greater than 100 electron volts is interpreted as evidence for some direct interaction with the exosphere. Unusual intermittent features observed downstream of the planet indicate the presence of a comet-like tail hundreds of scale lengths in length.

  1. Development of modified poly(perfluoropropyleneoxide) urethane systems for use in liquid oxygen and in enriched 100 percent oxygen atmosphere

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.

    1973-01-01

    This program consisted of two separate though related phases. The initial phase was directed toward improving the mechanical and adhesive properties of the very highly fluorinated-polyurethane resin system derived from the hydroxyl-terminated polyperfluoropropylene oxide and 6-chloro-2,4,5-trifluoro-m-phenylene diisocyanate. Various new curing agents for this system were investigated, with the goal of providing a more thermally stable crosslink (cure) mechanism to provide wider applicability and fuller utilization of the outstanding oxygen resistance of the PFPO system. Complete resistance to liquid- and gaseous-oxygen impact at presures as high as 1035 N/sq cm were attained with the use of the PFPO resin castings. The second corollary phase was directed toward investigating the feasibility and optimization of the allophanate cured, urethane extended polymer derived from hydroxyl-terminated polyperfluoropropyleneoxide and 6-chloro-2,4,5-trifluoro-m-phenylene diisocyanate, as the adhesive system for use in a weld-bond configuration for liquid oxygen tankage. The synthesis and application procedures of the adhesive system to insure liquid oxygen compatibility (under 10 kg-m loading), and the development of procedures and techniques to provide high quality weld-bonded joint configurations were studied.

  2. Solar-panel and parasol strategies shape the proteorhodopsin distribution pattern in marine Flavobacteriia.

    PubMed

    Kumagai, Yohei; Yoshizawa, Susumu; Nakajima, Yu; Watanabe, Mai; Fukunaga, Tsukasa; Ogura, Yoshitoshi; Hayashi, Tetsuya; Oshima, Kenshiro; Hattori, Masahira; Ikeuchi, Masahiko; Kogure, Kazuhiro; DeLong, Edward F; Iwasaki, Wataru

    2018-05-01

    Proteorhodopsin (PR) is a light-driven proton pump that is found in diverse bacteria and archaea species, and is widespread in marine microbial ecosystems. To date, many studies have suggested the advantage of PR for microorganisms in sunlit environments. The ecophysiological significance of PR is still not fully understood however, including the drivers of PR gene gain, retention, and loss in different marine microbial species. To explore this question we sequenced 21 marine Flavobacteriia genomes of polyphyletic origin, which encompassed both PR-possessing as well as PR-lacking strains. Here, we show that the possession or alternatively the lack of PR genes reflects one of two fundamental adaptive strategies in marine bacteria. Specifically, while PR-possessing bacteria utilize light energy ("solar-panel strategy"), PR-lacking bacteria exclusively possess UV-screening pigment synthesis genes to avoid UV damage and would adapt to microaerobic environment ("parasol strategy"), which also helps explain why PR-possessing bacteria have smaller genomes than those of PR-lacking bacteria. Collectively, our results highlight the different strategies of dealing with light, DNA repair, and oxygen availability that relate to the presence or absence of PR phototrophy.

  3. Earliest land plants created modern levels of atmospheric oxygen.

    PubMed

    Lenton, Timothy M; Dahl, Tais W; Daines, Stuart J; Mills, Benjamin J W; Ozaki, Kazumi; Saltzman, Matthew R; Porada, Philipp

    2016-08-30

    The progressive oxygenation of the Earth's atmosphere was pivotal to the evolution of life, but the puzzle of when and how atmospheric oxygen (O2) first approached modern levels (∼21%) remains unresolved. Redox proxy data indicate the deep oceans were oxygenated during 435-392 Ma, and the appearance of fossil charcoal indicates O2 >15-17% by 420-400 Ma. However, existing models have failed to predict oxygenation at this time. Here we show that the earliest plants, which colonized the land surface from ∼470 Ma onward, were responsible for this mid-Paleozoic oxygenation event, through greatly increasing global organic carbon burial-the net long-term source of O2 We use a trait-based ecophysiological model to predict that cryptogamic vegetation cover could have achieved ∼30% of today's global terrestrial net primary productivity by ∼445 Ma. Data from modern bryophytes suggests this plentiful early plant material had a much higher molar C:P ratio (∼2,000) than marine biomass (∼100), such that a given weathering flux of phosphorus could support more organic carbon burial. Furthermore, recent experiments suggest that early plants selectively increased the flux of phosphorus (relative to alkalinity) weathered from rocks. Combining these effects in a model of long-term biogeochemical cycling, we reproduce a sustained +2‰ increase in the carbonate carbon isotope (δ(13)C) record by ∼445 Ma, and predict a corresponding rise in O2 to present levels by 420-400 Ma, consistent with geochemical data. This oxygen rise represents a permanent shift in regulatory regime to one where fire-mediated negative feedbacks stabilize high O2 levels.

  4. Earliest land plants created modern levels of atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.; Dahl, Tais W.; Daines, Stuart J.; Mills, Benjamin J. W.; Ozaki, Kazumi; Saltzman, Matthew R.; Porada, Philipp

    2016-08-01

    The progressive oxygenation of the Earth’s atmosphere was pivotal to the evolution of life, but the puzzle of when and how atmospheric oxygen (O2) first approached modern levels (˜21%) remains unresolved. Redox proxy data indicate the deep oceans were oxygenated during 435-392 Ma, and the appearance of fossil charcoal indicates O2 >15-17% by 420-400 Ma. However, existing models have failed to predict oxygenation at this time. Here we show that the earliest plants, which colonized the land surface from ˜470 Ma onward, were responsible for this mid-Paleozoic oxygenation event, through greatly increasing global organic carbon burial—the net long-term source of O2. We use a trait-based ecophysiological model to predict that cryptogamic vegetation cover could have achieved ˜30% of today’s global terrestrial net primary productivity by ˜445 Ma. Data from modern bryophytes suggests this plentiful early plant material had a much higher molar C:P ratio (˜2,000) than marine biomass (˜100), such that a given weathering flux of phosphorus could support more organic carbon burial. Furthermore, recent experiments suggest that early plants selectively increased the flux of phosphorus (relative to alkalinity) weathered from rocks. Combining these effects in a model of long-term biogeochemical cycling, we reproduce a sustained +2‰ increase in the carbonate carbon isotope (δ13C) record by ˜445 Ma, and predict a corresponding rise in O2 to present levels by 420-400 Ma, consistent with geochemical data. This oxygen rise represents a permanent shift in regulatory regime to one where fire-mediated negative feedbacks stabilize high O2 levels.

  5. Atomic oxygen in the Martian thermosphere

    NASA Technical Reports Server (NTRS)

    Stewart, A. I. F.; Alexander, M. J.; Meier, R. R.; Paxton, L. J.; Bougher, S. W.; Fesen, C. G.

    1992-01-01

    The Mariner 9 Ultraviolet Spectrometer (UVS) made extensive observations of air-glow emissions from the thermosphere of Mars throughout the nominal mission (November 1971 - February 1972), during late summer in the southern hemisphere. Limb and disc measurements of the 130 nm triplet emission from thermospheric atomic oxygen were modelled by Strickland et al. Recently, the thermospheric general circulation models (TGCMs) developed for the Earth and Venus have been applied to Mars; we refer to it as the MTGCM. Our analysis shows that the oxygen mixing ratio is the fundamental unknown controlling the 130 nm brightness. Our radiative transport calculation shows that the emergent intensity at 130 nm is not very sensitive to variations in thermospheric temperature. The pattern of diurnal variation derived from our analysis is roughly the same as Strickland et al. although with somewhat lower values for the O mixing ratio. The main reasons for this difference are the more important role played by the photoelectron source in our model, and the somewhat larger 130 nm solar flux; thus, we require less oxygen to match the observed brightnesses. Strickland et al. also found that the OI 130 nm emission on Mars is correlated with solar activity. We find that the correlation is virtually non-existent during the early orbits when the planet was covered with a thick global dust storm, but later orbits, during the clearing of the storm, show a persistent correlation.

  6. Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude

    NASA Astrophysics Data System (ADS)

    Ridder, Nina N.; England, Matthew H.

    2014-09-01

    Ocean oxygenation has been observed to have changed over the past few decades and is projected to change further under global climate change due to an interplay of several mechanisms. In this study we isolate the effect of modified tropical surface wind stress conditions on the evolution of ocean oxygenation in a numerical climate model. We find that ocean oxygenation varies inversely with low-latitude surface wind stress. Approximately one third of this response is driven by sea surface temperature anomalies; the remaining two thirds result from changes in ocean circulation and marine biology. Global mean O2 concentration changes reach maximum values of +4 μM and -3.6 μM in the two most extreme perturbation cases of -30% and +30% wind change, respectively. Localized changes lie between +92 μM under 30% reduced winds and -56 μM for 30% increased winds. Overall, we find that the extent of the global low-oxygen volume varies with the same sign as the wind perturbation; namely, weaker winds reduce the low-oxygen volume on the global scale and vice versa for increased trade winds. We identify two regions, one in the Pacific Ocean off Chile and the other in the Indian Ocean off Somalia, that are of particular importance for the evolution of oxygen minimum zones in the global ocean.

  7. Effect of a traditional marinating on properties of rainbow trout fillet during chilled storage.

    PubMed

    Maktabi, Siavash; Zarei, Mehdi; Chadorbaf, Milad

    2016-01-01

    In recent years, there has been an increasing interest in using food additives from natural sources to improve taste and also extend the shelf-life of semi-preserved foodstuffs. The aim of this study was to examine the chemical and microbiological changes promoted by a local marinating process in rainbow trout fillets during chilled storage. Fish fillets were immersed in marinades and stored at 4 ˚C for 10 days and were analyzed for total volatile basic nitrogen (TVN), thiobarbitoric acid (TBA), water holding capacity (WHC), pH, mesophilic and psychrophilic bacterial count every two days. Variations in TBA and WHC were not statistically significant between marinated and control groups. The values of TVN, pH, total psychrophilic bacteria count (TPC) and total mesophilic bacteria count (TMC) in marinated samples were significantly lower than controls. The most obvious finding of this study was that traditional marinated rainbow trout fillet stored in 4 ˚C had no undesirable changes at least for eight days.

  8. Effect of a traditional marinating on properties of rainbow trout fillet during chilled storage

    PubMed Central

    Maktabi, Siavash; Zarei, Mehdi; Chadorbaf, Milad

    2016-01-01

    In recent years, there has been an increasing interest in using food additives from natural sources to improve taste and also extend the shelf-life of semi-preserved foodstuffs. The aim of this study was to examine the chemical and microbiological changes promoted by a local marinating process in rainbow trout fillets during chilled storage. Fish fillets were immersed in marinades and stored at 4 ˚C for 10 days and were analyzed for total volatile basic nitrogen (TVN), thiobarbitoric acid (TBA), water holding capacity (WHC), pH, mesophilic and psychrophilic bacterial count every two days. Variations in TBA and WHC were not statistically significant between marinated and control groups. The values of TVN, pH, total psychrophilic bacteria count (TPC) and total mesophilic bacteria count (TMC) in marinated samples were significantly lower than controls. The most obvious finding of this study was that traditional marinated rainbow trout fillet stored in 4 ˚C had no undesirable changes at least for eight days. PMID:28144420

  9. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes

    NASA Astrophysics Data System (ADS)

    Stramma, Lothar; Prince, Eric D.; Schmidtko, Sunke; Luo, Jiangang; Hoolihan, John P.; Visbeck, Martin; Wallace, Douglas W. R.; Brandt, Peter; Körtzinger, Arne

    2012-01-01

    Climate model predictions and observations reveal regional declines in oceanic dissolved oxygen, which are probably influenced by global warming. Studies indicate ongoing dissolved oxygen depletion and vertical expansion of the oxygen minimum zone (OMZ) in the tropical northeast Atlantic Ocean. OMZ shoaling may restrict the usable habitat of billfishes and tunas to a narrow surface layer. We report a decrease in the upper ocean layer exceeding 3.5mll-1 dissolved oxygen at a rate of <=1myr-1 in the tropical northeast Atlantic (0-25°N, 12-30°W), amounting to an annual habitat loss of ~5.95×1013m3, or 15% for the period 1960-2010. Habitat compression and associated potential habitat loss was validated using electronic tagging data from 47 blue marlin. This phenomenon increases vulnerability to surface fishing gear for billfishes and tunas, and may be associated with a 10-50% worldwide decline of pelagic predator diversity. Further expansion of the Atlantic OMZ along with overfishing may threaten the sustainability of these valuable pelagic fisheries and marine ecosystems.

  10. Nitrogen fixation sustained productivity in the wake of the Palaeoproterozoic Great Oxygenation Event.

    PubMed

    Luo, Genming; Junium, Christopher K; Izon, Gareth; Ono, Shuhei; Beukes, Nicolas J; Algeo, Thomas J; Cui, Ying; Xie, Shucheng; Summons, Roger E

    2018-03-07

    The marine nitrogen cycle is dominated by redox-controlled biogeochemical processes and, therefore, is likely to have been revolutionised in response to Earth-surface oxygenation. The details, timing, and trajectory of nitrogen cycle evolution, however, remain elusive. Here we couple nitrogen and carbon isotope records from multiple drillcores through the Rooihoogte-Timeball Hill Formations from across the Carletonville area of the Kaapvaal Craton where the Great Oxygenation Event (GOE) and its aftermath are recorded. Our data reveal that aerobic nitrogen cycling, featuring metabolisms involving nitrogen oxyanions, was well established prior to the GOE and that ammonium may have dominated the dissolved nitrogen inventory. Pronounced signals of diazotrophy imply a stepwise evolution, with a temporary intermediate stage where both ammonium and nitrate may have been scarce. We suggest that the emergence of the modern nitrogen cycle, with metabolic processes that approximate their contemporary balance, was retarded by low environmental oxygen availability.

  11. MERCHANT MARINE SHIP REACTOR

    DOEpatents

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  12. Merchant Marine Ship Reactor

    DOEpatents

    Sankovich, M. F.; Mumm, J. F.; North, Jr, D. C.; Rock, H. R.; Gestson, D. K.

    1961-05-01

    A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)

  13. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation

    NASA Astrophysics Data System (ADS)

    Sperling, Erik A.; Wolock, Charles J.; Morgan, Alex S.; Gill, Benjamin C.; Kunzmann, Marcus; Halverson, Galen P.; MacDonald, Francis A.; Knoll, Andrew H.; Johnston, David T.

    2015-07-01

    Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.

  14. Response of Benthic Foraminiferal Size to Oxygen Concentration in Antarctic Sediment Cores

    NASA Astrophysics Data System (ADS)

    Guo, D.; Keating-Bitonti, C.; Payne, J.

    2014-12-01

    Oxygen availability is important for biological reactions and the demand of oxygen is determined by the size of the organism. Few marine organisms can tolerate low oxygen conditions, but benthic foraminifera, a group of amoeboid protists that are highly sensitive to environmental factors, are known to live in these conditions. Benthic foraminifera may be able to live in oxygen stressed environments by changing the size and shape of their test. Low oxygen concentrations should favor smaller, thinner-shelled, flattened test morphologies. We hypothesize that the volume-to-surface area ratio of benthic foraminifera will decrease with decreasing dissolved oxygen concentrations. To test this hypothesis, we picked two calcareous species (Epistominella exigua and Cassulinoides porrectus) and one agglutinated species (Portatrochammina antarctica) from three sediment cores collected from Explorer's Cove, Antarctica. Starting at the sediment-water interface, each core spans approximately 5-8 cm of depth. Profiles of dissolved oxygen concentrations were measured at the time of collection. At specific depths within the cores, we measured the three dimensions of picked foraminiferal tests using NIS-Elements. We calculated the volume and surface area of the tests assuming the shape of the foraminifers was an ellipsoid. The size trends of E. exigua confirm our hypothesis that the test volume-to-surface area ratios correlate positively with dissolved oxygen concentrations (p-value < 0.001). However, the size trends of the other species refute our hypothesis: P. antarctica shows no correlation and C. porrectus shows a negative correlation (p-value < 0.001) to dissolved oxygen concentrations. Thus, our results show that the change in size in response to variations in dissolved oxygen concentrations is species dependent. Moreover, we find that calcareous species are more sensitive to oxygen fluctuations than agglutinated species.

  15. Oxygen vacancies: The origin of n -type conductivity in ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong

    2016-06-01

    Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.

  16. Two-photon absorbing porphyrins for oxygen microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Esipova, Tatiana V.; Vinogradov, Sergei A.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is invaluable for many areas of the biomedical science, including ophthalmology, neuroscience, cancer and stem biology. An optical method based on oxygen-dependent quenching of phosphorescence is being developed, that allows quantitative minimally invasive real-time imaging of partial pressure of oxygen (pO2) in tissue. In the past, dendritically protected phosphorescent oxygen probes with controllable quenching parameters and defined bio-distributions have been developed. More recently our probe strategy has extended to encompass two-photon excitable oxygen probes, which brought about first demonstrations of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new valuable information for neuroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as low brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. Here we present an approach to new bright phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to novel proves for 2PLM. In addition to substantial increase in performance, the new probes can be synthesized by much more efficient methods, thereby greatly reducing the cost of the synthesis and making the technique accessible to a broader range of researchers across different fields.

  17. Early oxygenation of the terrestrial environment during the Mesoproterozoic.

    PubMed

    Parnell, John; Boyce, Adrian J; Mark, Darren; Bowden, Stephen; Spinks, Sam

    2010-11-11

    Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (∼2.3 billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8 Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S < 25‰ before 1 Gyr to ≥50‰ after 0.64 Gyr. This change in Δ(34)S has been interpreted to represent the evolution from single-step bacterial sulphate reduction to a combination of bacterial sulphate reduction and sulphide oxidation, largely bacterially mediated. This evolution is seen as marking the rise in atmospheric oxygen concentrations and the evolution of non-photosynthetic sulphide-oxidizing bacteria. Here we report Δ(34)S values exceeding 50‰ from a terrestrial Mesoproterozoic (1.18 Gyr old) succession in Scotland, a time period that is at present poorly characterized. This level of fractionation implies disproportionation in the sulphur cycle, probably involving sulphide-oxidizing bacteria, that is not evident from Δ(34)S data in the marine record. Disproportionation in both red beds and lacustrine black shales at our study site suggests that the Mesoproterozoic terrestrial environment was sufficiently oxygenated to support a biota that was adapted to an oxygen-rich atmosphere, but had also penetrated into subsurface sediment.

  18. A model study of warming-induced phosphorus-oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales

    NASA Astrophysics Data System (ADS)

    Niemeyer, Daniela; Kemena, Tronje P.; Meissner, Katrin J.; Oschlies, Andreas

    2017-05-01

    Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a release of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity fluxes into the ocean and therefore raise the ocean's phosphorus inventory even further. A higher availability of phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to weathering-induced alkalinity input. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here, we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the University of Victoria (UVic) Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively (> 80 %) from the input via terrestrial weathering and causes a 4- to 5-fold expansion of the suboxic water volume in the model.

  19. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations.

    PubMed

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E; Geelhoed, Jeanine S; Strous, Marc; Ruff, S Emil

    2017-12-01

    For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ' U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Impact of urban and industrial effluents on the coastal marine environment in Oran, Algeria.

    PubMed

    Tayeb, A; Chellali, M R; Hamou, A; Debbah, S

    2015-09-15

    In Algeria most of the urban waste water is dumped without treatment into the Sea. It is tremendously important to assess the consequences of organic matter rich sewage on marine ecosystem. In this study we investigated the effects of industrial and urban sewage on the dissolved oxygen (O2), chemical oxygen demand (COD), biochemical oxygen demands (BOD5), pH, salinity, electrical conductivity (EC), Metal element (Hg, Pb, Cu, Ni, Cr, Cd), petroleum hydrocarbons (HC), oil and grease (OG) in Bay of Oran, Algeria. A ten-year follow-up research showed that the concentrations of oil and grease released into the bionetwork are of higher ecological impact and this needs to be given the desired consideration. Information on bathing water quality revealed that the most beaches in Oran are under the national environmental standard limit. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabera, Marco E.

    2000-01-01

    An acute reduction in oxygen delivery to a tissue is associated with metabolic changes aimed at maintaining ATP homeostasis. However, given the complexity of the human bio-energetic system, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). In particular, we are interested in determining mechanisms relating cellular oxygen concentration to observed metabolic responses at the cellular, tissue, organ, and whole body levels and in quantifying how changes in tissue oxygen availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study; we extend a previously developed mathematical model of human bioenergetics, to provide a physicochemical framework that permits quantitative understanding of oxygen as a metabolic regulator. Specifically, the enhancement - sensitivity analysis - permits studying the effects of variations in tissue oxygenation and parameters controlling cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The analysis can distinguish between parameters that must be determined accurately and those that require less precision, based on their effects on model predictions. This capability may prove to be important in optimizing experimental design, thus reducing use of animals.

  2. Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems

    PubMed Central

    Li, Chao; Planavsky, Noah J.; Shi, Wei; Zhang, Zihu; Zhou, Chuanming; Cheng, Meng; Tarhan, Lidya G.; Luo, Genming; Xie, Shucheng

    2015-01-01

    Oxygenation has widely been viewed as a major factor driving the emergence and diversification of animals. However, links between early animal evolution and shifts in surface oxygen levels have largely been limited to extrapolation of paleoredox conditions reconstructed from unfossiliferous strata to settings in which contemporaneous fossils were preserved. Herein, we present a multi-proxy paleoredox study of late Ediacaran (ca. 560-551 Ma) shales hosting the Miaohe Konservat-Lagerstätte of South China and, for comparison, equivalent non-fossil-bearing shales at adjacent sections. For the fossiliferous strata at Miaohe there is geochemical evidence for anoxic conditions, but paleontological evidence for at least episodically oxic conditions. An oxygen-stressed environment is consistent with the low diversity and simple morphology of Miaohe Biota macrofossils. However, there is no evidence for euxinic (anoxic and sulphidic) conditions for the fossiliferous strata at Miaohe, in contrast to adjacent unfossiliferous sections. Our results indicate that Ediacaran marine redox chemistry was highly heterogeneous, even at the kilometre-scale. Therefore, our study provides direct—rather than inferred—evidence that anoxia played a role in shaping a landmark Ediacaran ecosystem. If the anoxic conditions characteristic of the studied sections were widespread in the late Neoproterozoic, environmental stress would have hindered the development of complex ecosystems. PMID:26597559

  3. Predicting Biological Information Flow in a Model Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Louca, S.; Hawley, A. K.; Katsev, S.; Beltran, M. T.; Bhatia, M. P.; Michiels, C.; Capelle, D.; Lavik, G.; Doebeli, M.; Crowe, S.; Hallam, S. J.

    2016-02-01

    Microbial activity drives marine biochemical fluxes and nutrient cycling at global scales. Geochemical measurements as well as molecular techniques such as metagenomics, metatranscriptomics and metaproteomics provide great insight into microbial activity. However, an integration of molecular and geochemical data into mechanistic biogeochemical models is still lacking. Recent work suggests that microbial metabolic pathways are, at the ecosystem level, strongly shaped by stoichiometric and energetic constraints. Hence, models rooted in fluxes of matter and energy may yield a holistic understanding of biogeochemistry. Furthermore, such pathway-centric models would allow a direct consolidation with meta'omic data. Here we present a pathway-centric biogeochemical model for the seasonal oxygen minimum zone in Saanich Inlet, a fjord off the coast of Vancouver Island. The model considers key dissimilatory nitrogen and sulfur fluxes, as well as the population dynamics of the genes that mediate them. By assuming a direct translation of biocatalyzed energy fluxes to biosynthesis rates, we make predictions about the distribution and activity of the corresponding genes. A comparison of the model to molecular measurements indicates that the model explains observed DNA, RNA, protein and cell depth profiles. This suggests that microbial activity in marine ecosystems such as oxygen minimum zones is well described by DNA abundance, which, in conjunction with geochemical constraints, determines pathway expression and process rates. Our work further demonstrates how meta'omic data can be mechanistically linked to environmental redox conditions and biogeochemical processes.

  4. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    NASA Astrophysics Data System (ADS)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on

  5. Cysteine protects rabbit spermatozoa against reactive oxygen species-induced damages

    PubMed Central

    Fan, Xiaoteng; Pan, Yang; Lv, Shan; Pan, Chuanying; Lei, Anmin

    2017-01-01

    The process of cryopreservation results in over-production of reactive oxygen species, which is extremely detrimental to spermatozoa. The aim of this study was to investigate whether addition of cysteine to freezing extender would facilitate the cryosurvival of rabbit spermatozoa, and if so, how cysteine protects spermatozoa from cryodamages. Freshly ejaculated semen was diluted with Tris-citrate-glucose extender supplemented with different concentrations of cysteine. The motility, intact acrosomes, membrane integrity, mitochondrial potentials, 8-hydroxyguanosine level and sperm-zona pellucida binding capacity were examined. Furthermore, glutathione peroxidase (GPx) activity, glutathione content (GSH), and level of reactive oxygen species (ROS) and hydrogen peroxide of spermatozoa were analyzed. The values of motility, intact acrosomes, membrane integrity, mitochondrial potentials and sperm-zona pellucida binding capacity of the frozen-thawed spermatozoa in the treatment of cysteine were significantly higher than those of the control. Addition of cysteine to extenders improved the GPx activity and GSH content of spermatozoa, while lowered the ROS, DNA oxidative alterations and lipid peroxidation level, which makes spermatozoa avoid ROS to attack DNA, the plasma membrane and mitochondria. In conclusion, cysteine protects spermatozoa against ROS-induced damages during cryopreservation and post-thaw incubation. Addition of cysteine is recommended to facilitate the improvement of semen preservation for the rabbit breeding industry. PMID:28700739

  6. Extended rhodamine photosensitizers for photodynamic therapy of cancer cells.

    PubMed

    Davies, Kellie S; Linder, Michelle K; Kryman, Mark W; Detty, Michael R

    2016-09-01

    Extended thio- and selenorhodamines with a linear or angular fused benzo group were prepared. The absorption maxima for these compounds fell between 640 and 700nm. The extended rhodamines were evaluated for their potential as photosensitizers for photodynamic therapy in Colo-26 cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their dark and phototoxicity toward Colo-26 cells, and for their co-localization with mitochondrial-specific agents in Colo-26 and HUT-78 cells. The angular extended rhodamines were effective photosensitizers toward Colo-26 cells with 1.0Jcm(-2) laser light delivered at λmax±2nm with values of EC50 of (2.8±0.4)×10(-7)M for sulfur-containing analogue 6-S and (6.4±0.4)×10(-8)M for selenium-containing analogue 6-Se. The linear extended rhodamines were effective photosensitizers toward Colo-26 cells with 5 and 10Jcm(-2) of broad-band light (EC50's⩽2.4×10(-7)M). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Environmental Genomic Analysis of Stratified Microbial Communities and Climate Active Gases in the Subarctic Pacific Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Wright, J.; Hallam, S.; Merzouk, A.; Tortell, P.

    2008-12-01

    Oxygen minimum zones (OMZs) are areas of low dissolved oxygen concentrations that play a major role in biogeochemical cycling within the world's oceans. They are major sinks for nitrogen and sources for the greenhouse gases carbon dioxide and nitrous oxide. Therefore, microbial mediated biological activity associated with these systems directly impacts ocean productivity and global climate balance. There is increasing evidence that ocean warming trends will decrease dissolved oxygen concentrations within the coastal and interior regions of the subarctic Pacific, causing an expansion of the hypoxic boundary layer. This expansion will have a direct effect on coastal benthic ecosystems and the productivity of marine fisheries due to habitat loss and changes in nutrient cycling. In order to understand the potential implications of these transitions, we are performing environmental genomic analyses of indigenous microbial communities found in coastal and open ocean OMZs in the subarctic Pacific Ocean in relation to dissolved gas and nutrient concentrations. In addition to identifying and describing the key microbial players and biochemical pathways contributing to carbon, nitrogen and sulfur metabolism within the subarctic Pacific Ocean, this work provides a solid comparative genomic foundation for understanding the biogeochemical processes at work in marine OMZs around the globe.

  8. Global patterns of extinction risk in marine and non-marine systems.

    PubMed

    Webb, Thomas J; Mindel, Beth L

    2015-02-16

    Despite increasing concern over the effects of human activities on marine ecosystems, extinction in the sea remains scarce: 19-24 out of a total of >850 recorded extinctions implies a 9-fold lower marine extinction rate compared to non-marine systems. The extent of threats faced by marine systems, and their resilience to them, receive considerable attention, but the detectability of marine extinctions is less well understood. Before its extinction or threat status is recorded, a species must be both taxonomically described and then formally assessed; lower rates of either process for marine species could thus impact patterns of extinction risk, especially as species missing from taxonomic inventories may often be more vulnerable than described species. We combine data on taxonomic description with conservation assessments from the International Union for Conservation of Nature (IUCN) to test these possibilities across almost all marine and non-marine eukaryotes. We find that the 9-fold lower rate of recorded extinctions and 4-fold lower rate of ongoing extinction risk across marine species can be explained in part by differences in the proportion of species assessed by the IUCN (3% cf. 4% of non-marine species). Furthermore, once taxonomic knowledge and conservation assessments pass a threshold level, differences in extinction risk between marine and non-marine groups largely disappear. Indeed, across the best-studied taxonomic groups, there is no difference between marine and non-marine systems, with on average between 20% and 25% of species being threatened with extinction, regardless of realm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Umbilical cannulation optimizes circuit flows in premature lambs supported by the EXTra-uterine Environment for Neonatal Development (EXTEND).

    PubMed

    Hornick, Matthew A; Davey, Marcus G; Partridge, Emily A; Mejaddam, Ali Y; McGovern, Patrick E; Olive, Aliza M; Hwang, Grace; Kim, Jenny; Castillo, Orlando; Young, Kathleen; Han, Jiancheng; Zhao, Sheng; Connelly, James T; Dysart, Kevin C; Rychik, Jack; Peranteau, William H; Flake, Alan W

    2018-05-01

    Bronchopulmonary dysplasia is a disease of extreme prematurity that occurs when the immature lung is exposed to gas ventilation. We designed a novel 'artificial womb' system for supporting extreme premature lambs (called EXTEND) that obviates gas ventilation by providing oxygen via a pumpless arteriovenous circuit with the lamb submerged in sterile artificial amniotic fluid. In the present study, we compare different arteriovenous cannulation strategies on EXTEND, including carotid artery/jugular vein (CA/JV), carotid artery/umbilical vein (CA/UV) and umbilical artery/umbilical vein (UA/UV). Compared to CA/JV and CA/UV cannulation, UA/UV cannulation provided significantly higher, physiological blood flows to the oxygenator, minimized flow interruptions and supported significantly longer circuit runs (up to 4 weeks). Physiological circuit blood flow in UA/UV lambs made possible normal levels of oxygen delivery, which is a critical step toward the clinical application of artificial womb technology. EXTEND (EXTra-uterine Environment for Neonatal Development) is a novel system that promotes physiological development by maintaining the premature lamb in a sterile fluid environment and providing gas exchange via a pumpless arteriovenous oxygenator circuit. During the development of EXTEND, different cannulation strategies evolved with the aim of improving circuit flow. The present study examines how different cannulation strategies affect EXTEND circuit haemodynamics in extreme premature lambs. Seventeen premature lambs were cannulated at gestational ages 105-117 days (term 145-150 days) and supported on EXTEND for up to 4 weeks. Experimental groups were distinguished by cannulation strategy: carotid artery outflow and jugular vein inflow (CA/JV; n = 4), carotid artery outflow and umbilical vein inflow (CA/UV; n = 5) and double umbilical artery outflow and umbilical vein inflow (UA/UV; n = 8). Circuit flows and pressures were measured continuously. As we

  10. Cu isotopes in marine black shales record the Great Oxidation Event

    PubMed Central

    Rodríguez, Nathalie P.; Partin, Camille A.; Andersson, Per; Weiss, Dominik J.; El Albani, Abderrazak; Rodushkin, Ilia; Konhauser, Kurt O.

    2016-01-01

    The oxygenation of the atmosphere ∼2.45–2.32 billion years ago (Ga) is one of the most significant geological events to have affected Earth’s redox history. Our understanding of the timing and processes surrounding this key transition is largely dependent on the development of redox-sensitive proxies, many of which remain unexplored. Here we report a shift from negative to positive copper isotopic compositions (δ65CuERM-AE633) in organic carbon-rich shales spanning the period 2.66–2.08 Ga. We suggest that, before 2.3 Ga, a muted oxidative supply of weathering-derived copper enriched in 65Cu, along with the preferential removal of 65Cu by iron oxides, left seawater and marine biomass depleted in 65Cu but enriched in 63Cu. As banded iron formation deposition waned and continentally sourced Cu became more important, biomass sampled a dissolved Cu reservoir that was progressively less fractionated relative to the continental pool. This evolution toward heavy δ65Cu values coincides with a shift to negative sedimentary δ56Fe values and increased marine sulfate after the Great Oxidation Event (GOE), and is traceable through Phanerozoic shales to modern marine settings, where marine dissolved and sedimentary δ65Cu values are universally positive. Our finding of an important shift in sedimentary Cu isotope compositions across the GOE provides new insights into the Precambrian marine cycling of this critical micronutrient, and demonstrates the proxy potential for sedimentary Cu isotope compositions in the study of biogeochemical cycles and oceanic redox balance in the past. PMID:27091980

  11. Paleoclimatic and paleoceanographic records through Marine Isotope Stage 19 at the Chiba composite section, central Japan: A key reference for the Early-Middle Pleistocene Subseries boundary

    NASA Astrophysics Data System (ADS)

    Suganuma, Yusuke; Haneda, Yuki; Kameo, Koji; Kubota, Yoshimi; Hayashi, Hiroki; Itaki, Takuya; Okuda, Masaaki; Head, Martin, J.; Sugaya, Manami; Nakazato, Hiroomi; Igarashi, Atsuo; Shikoku, Kizuku; Hongo, Misao; Watanabe, Masami; Satoguchi, Yasufumi; Takeshita, Yoshihiro; Nishida, Naohisa; Izumi, Kentaro; Kawamura, Kenji; Kawamata, Moto; Okuno, Jun'ichi; Yoshida, Takeshi; Ogitsu, Itaru; Yabusaki, Hisashi; Okada, Makoto

    2018-07-01

    Marine Isotope Stage (MIS) 19 is an important analogue for the present interglacial because of its similar orbital configuration, especially the phasing of the obliquity maximum to precession minimum. However, sedimentary records suitable for capturing both terrestrial and marine environmental changes are limited, and thus the climatic forcing mechanisms for MIS 19 are still largely unknown. The Chiba composite section, east-central Japanese archipelago, is a continuous and expanded marine sedimentary succession well suited to capture terrestrial and marine environmental changes through MIS 19. In this study, a detailed oxygen isotope chronology is established from late MIS 20 to early MIS 18, supported by a U-Pb zircon age and the presence of the Matuyama-Brunhes boundary. New pollen, marine microfossil, and planktonic foraminiferal δ18O and Mg/Ca paleotemperature records reveal the complex interplay of climatic influences. Our pollen data suggest that the duration of full interglacial conditions during MIS 19 extends from 785.0 to 775.1 ka (9.9 kyr), which offers an important natural baseline in predicting the duration of the present interglacial. A Younger Dryas-type cooling event is present during Termination IX, suggesting that such events are linked to this orbital configuration. Millennial- to multi-millennial-scale variations in our δ18O and Mg/Ca records imply that the Subarctic Front fluctuated in the northwestern Pacific Ocean during late MIS 19, probably in response to East Asian winter monsoon variability. The climatic setting at this time appears to be related to less severe summer insolation minima at 65˚N and/or high winter insolation at 50˚N. Our records do not support a recently hypothesized direct coupling between variations in the geomagnetic field intensity and global/regional climate change. Our highly resolved paleoclimatic and paleoceanographic records, coupled with a well-defined Matuyama-Brunhes boundary (772.9 ka; duration 1.9 kyr

  12. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, R.; Hauss, H.; Buchholz, F.; Melzner, F.

    2015-10-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2 and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply considerably fuels bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a downregulation of ammonium excretion. Here we show that exposure to OMZ conditions can result in strong depression of respiration and ammonium excretion in calanoid copepods and euphausiids from the Eastern Tropical North Atlantic and the Eastern Tropical South Pacific. These physiological responses need to be taken into account when estimating DVM-mediated fluxes of carbon and nitrogen into OMZs.

  13. Influence of marine engine simulator training to marine engineer's competence

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai

    2011-12-01

    Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.

  14. Influence of marine engine simulator training to marine engineer's competence

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai

    2012-01-01

    Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.

  15. Did the Laurentide ice sheet survive through Marine Isotope Stage 9?

    NASA Astrophysics Data System (ADS)

    Carlson, A. E.; Tarasov, L.; Ullman, D. J.

    2016-12-01

    Looking at the global benthic oxygen isotope stack, only marine oxygen isotope stage (MIS) 7 stands out as an anomalous interglaciation with a higher oxygen isotope value than other interglaciations of the last half million years. However, benthic oxygen isotopes are an integrator of global ice volume plus temperature, and records of local ice-sheet change are needed to partition the sources of the global signal. Here we use the Laurentide ice-sheet (LIS) proximal record of IODP Site U1302/1303 off of Orphan Knoll to test LIS presence/absence on the eastern Canadian shield. Ice-sheet model calibrated Si relative to Sr is low in most interglaciations of the last 500 ka reflecting the removal of the LIS and its erosive power from the Canadian Shield. However, like MIS 7, MIS 9 has continued elevated inputs of Si. Furthermore, planktic oxygen isotopes do not decrease to full interglacial levels like in MIS 1, 5e and 11. MIS 9 had a similar orbital forcing as MIS 5e, but a much shorter period of elevated interglacial carbon dioxide concentration. Based on climate model simulations of LIS stability, we suggest that the reduced period of elevated atmospheric carbon dioxide allowed the LIS to survive through MIS 9 (like MIS 7), providing important constraints for the climatic thresholds necessary for a full interglaciation.

  16. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    PubMed Central

    Sun, Xin; Jayakumar, Amal; Ward, Bess B.

    2017-01-01

    The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase (nosZ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water. PMID:28702012

  17. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific.

    PubMed

    Sun, Xin; Jayakumar, Amal; Ward, Bess B

    2017-01-01

    The ozone-depleting and greenhouse gas, nitrous oxide (N 2 O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N 2 O consumption is the last step in canonical denitrification, and is also the least O 2 tolerant step. Community composition of total and active N 2 O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase ( nosZ ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N 2 O concentration but not O 2 . Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N 2 O consumption even in the oxygenated surface water.

  18. Economic evaluation and randomised controlled trial of extracorporeal membrane oxygenation: UK collaborative trial

    PubMed Central

    Roberts, Tracy E

    1998-01-01

    Objective: To compare the resource implications and short term outcomes of extracorporeal membrane oxygenation and conventional management for term babies with severe respiratory failure. Design: Cost effectiveness evaluation alongside a randomised controlled trial. Setting: 55 approved recruiting hospitals in the United Kingdom. These hospitals provided conventional management, but infants randomised to extracorporeal membrane oxygenation were transferred to one of five specialist centres. Subjects: 185 mature newborn infants (gestational age at birth >35 weeks, birth weight >2 kg) with severe respiratory failure (oxygenation index >40) recruited between 1993 and 1995. The commonest diagnoses were persistent pulmonary hypertension due to meconium aspiration, congenital diaphragmatic hernia, isolated persistent fetal circulation, sepsis, and idiopathic respiratory distress syndrome. Main outcome measure: Cost effectiveness based on survival at 1 year of age without severe disability. Results: 63 (68%) of the 93 infants randomised to extracorporeal membrane oxygenation survived to 1 year compared with 38 (41%) of the 92 infants who received conventional management. Of those that survived, one infant in each arm was lost to follow up and the proportion with disability at 1 year was similar in the two arms of the trial. One child in each arm had severe disability. The estimated additional cost of extracorporeal membrane oxygenation per additional surviving infant without severe disability was £51 222 and the cost per surviving infant with no disability was £75 327. Conclusions: Extracorporeal membrane oxygenation for term neonates with severe respiratory failure would increase overall survival without disability. Although the policy will increase costs of neonatal health care, it is likely to be as cost effective as other life extending technologies. Key messagesExtracorporeal membrane oxygenation increases survival for term neonates in respiratory failure

  19. Age and depositional conditions of the marine vertebrate concentration Lagerstätte at Gomez Farías, southern Coahuila, Mexico

    NASA Astrophysics Data System (ADS)

    Zell, Patrick; Beckmann, Seija; Stinnesbeck, Wolfgang

    2014-12-01

    A 1.5 m thick coquinite discovered in the Upper Jurassic La Casita Formation of the Sierra El Jabalà near Gomez Farías, Coahuila, northeastern Mexico qualifies as a concentration Lagerstâtte owing to its richness in marine vertebrates. Ichthyosaurs, pliosaurs and crocodilians were described to some detail, but other taxa remained unstudied and the precise biostratigraphical age, as well as paleoecological conditions that led to the formation of the fossil deposit, are not known in detail. Here we describe ammonites, aptychi, bivalves and radiolarians, which allow for a stratigraphic assignation of the deposit to the uppermost Kimmeridgian Beckeri Zone. The unit under consideration accumulated in a hemipelagic mud bottom environment during a period of time characterized by low oxygen conditions, while a short term benthic colonization phase near the top of the coquinite corresponds to increased oxygen availability. A combination of upwelling, bottom currents, winnowing, offshore winds, storm events, circulatory nutrient traps, low oxygenated bottom waters, and a transgressional regime with reduced net sedimentation was crucial factors for the subsequent concentration of fossils, as well as for marine phosphate generation and phosphorus migration.

  20. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

    PubMed Central

    Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Paša-Tolić, Ljiljana; Hallam, Steven J.

    2014-01-01

    Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand. PMID:25053816

  1. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes.

    PubMed

    Hawley, Alyse K; Brewer, Heather M; Norbeck, Angela D; Paša-Tolić, Ljiljana; Hallam, Steven J

    2014-08-05

    Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand.

  2. [Causes of jellyfish blooms and their influence on marine environment].

    PubMed

    Qu, Chang-feng; Song, Jin-ming; Li, Ning

    2014-12-01

    Jellyfish blooms have damaged the normal composition and function of marine ecosystem and ecological environments, which have been one of the new marine ecological disasters. In this study, we summarized the possible inducements of jellyfish blooms, and the influences of jellyfish blooms on biogenic elements, dissolved oxygen, seawater acidity and biological community were discussed emphatically. The results showed that jellyfish blooms had a close contact with its physiological structure and life history, which had favorable characteristics including simple body struc- ture, rapid growth, thriving reproduction and short generation interval to tolerate harsh environment better. Jellyfish abundance increased rapidly when it encountered suitable conditions. The temperature variations of seawater might be the major inducing factor which could result in jellyfish blooms. Jellyfish blooms may benefit from warmer temperature that could increase the food availability of jellyfish and promote jellyfish reproduction, especially for warm temperate jellyfish species. Eutrophication, climate change, overfishing, alien invasions and habitat modification were all possible important contributory factors of jellyfish blooms. Jellyfish could significantly influence the form distribution and biogeochemical cycling of biogenic elements. Jellyfish excreted NH4+ and P04(3-) at a rate of 59.1-91.5 micromol N x kg(-1) x h(-1) and 1.1-1.8 micromol P x kg(-1) x h(-1), which could meet about 8%-10% and 21.6% of the phytoplankton primary production requirement of N and P, respectively. Live jellyfish released dissolved organic carbon (DOC) at a rate of 1.0 micromol C x g(-1) x d(-1). As jellyfish decomposing, the effluxes of total N and total P were 4000 micromol N x kg(-1) x d(-1) and 120 micromol P x kg(-1) x d(-1), respectively, while the efflux of DOC reached 30 micromol C x g(-1) x d(-1). Jellyfish decomposition could cause seawater acidification and lowered level of dissolved oxygen

  3. Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracino-Brown, Jocelyn; Smith, Courtney; Gilman, Patrick

    The Wind Program hosted a two-day workshop on July 24-25, 2012 with scientists and regulators engaged in marine ecological survey, modeling, and database efforts pertaining to the waters of the Mid-Atlantic region. The workshop was planned by Federal agency, academic, and private partners to promote collaboration between ongoing offshore ecological survey efforts, and to promote the collaborative development of complementary predictive models and compatible databases. The meeting primarily focused on efforts to establish and predict marine mammal, seabird, and sea turtle abundance, density, and distributions extending from the shoreline to the edge of the Exclusive Economic Zone between Nantucket Sound,more » Massachusetts and Cape Hatteras, North Carolina.« less

  4. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park.

    PubMed

    Sim, Vivian X Y; Dafforn, Katherine A; Simpson, Stuart L; Kelaher, Brendan P; Johnston, Emma L

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management.

  5. Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park

    PubMed Central

    Sim, Vivian X. Y.; Dafforn, Katherine A.; Simpson, Stuart L.; Kelaher, Brendan P.; Johnston, Emma L.

    2015-01-01

    Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects. We assessed sediment communities and contaminants adjacent to boating infrastructure (boat ramps, jetties and a marina) in a SPZ from the Clyde Estuary in Batemans Marine Park. Metal concentrations and fines content were elevated at boating structures compared to reference sites. Species richness was higher at sites with boating structures, where capitellid polychaetes and nematodes dominated the communities. Changes associated with boating structures were localised and did not extend beyond breakwalls or to reference sites outside the SPZ. The study highlights the benefits of appropriate zoning in a multi-use marine park and the potential to minimise stress on pristine areas through the application of spatial management. PMID:26086427

  6. Trace gas emissions from the marine biosphere.

    PubMed

    Liss, Peter S

    2007-07-15

    A wide variety of trace gases (e.g. dimethyl sulphide, organohalogens, ammonia, non-methane and oxygenated hydrocarbons, volatile oxygenated organics and nitrous oxide) are formed in marine waters by biological and photochemical processes. This leads in many, but not all, cases to supersaturation of the water relative to marine air concentrations and a net flux of trace gas to the atmosphere. Since the gases are often in their reduced forms in the water, once in the atmosphere they are subject to oxidation by photolysis or radical attack to form chemically reactive species that can affect the oxidizing capacity of the air. They can also lead to the formation of new particles or the growth of existing ones that can then contribute to both direct and indirect (via the formation of cloud condensation nuclei) aerosol effects on climate. These cycles are discussed with respect to their impacts on the chemistry of the atmosphere, climate and human health. This whole topic was the subject of an extensive review (Nightingale & Liss 2003 In Treatise in geochemistry (eds H. D. Holland & K. K. Turekian), pp. 49-81) and what will be attempted here is a brief update of the earlier paper. There is no attempt to be comprehensive either in terms of gases covered or to give a complete review of all the recent literature. It is a personal view of recent advances both from my own research group as well as significant work from others. Questions raised at the meeting 'Trace gas biogeochemistry and global change' are dealt with at appropriate places in the text (rather than at the end of the piece). Discussion of each of the gases or group of gases is given in the following separate sections.

  7. Late Paleocene Arctic Ocean shallow-marine temperatures from mollusc stable isotopes

    USGS Publications Warehouse

    Bice, Karen L.; Arthur, Michael A.; Marincovich, Louie

    1996-01-01

    Late Paleocene high-latitude (80°N) Arctic Ocean shallow-marine temperatures are estimated from molluscan δ18O time series. Sampling of individual growth increments of two specimens of the bivalve Camptochlamys alaskensis provides a high-resolution record of shell stable isotope composition. The heavy carbon isotopic values of the specimens support a late Paleocene age for the youngest marine beds of the Prince Creek Formation exposed near Ocean Point, Alaska. The oxygen isotopic composition of regional freshwater runoff is estimated from the mean δ18O value of two freshwater bivalves collected from approximately coeval fluviatile beds. Over a 30 – 34‰ range of salinity, values assumed to represent the tolerance of C. alaskensis, the mean annual shallow-marine temperature recorded by these individuals is between 11° and 22°C. These values could represent maximum estimates of the mean annual temperature because of a possible warm-month bias imposed on the average δ18O value by slowing or cessation of growth in winter months. The amplitude of the molluscan δ18O time series probably records most of the seasonality in shallow-marine temperature. The annual temperature range indicated is approximately 6°C, suggesting very moderate high-latitude marine temperature seasonality during the late Paleocene. On the basis of analogy with modern Chlamys species, C. alaskensis probably inhabited water depths of 30–50 m. The seasonal temperature range derived from δ18O is therefore likely to be damped relative to the full range of annual sea surface temperatures. High-resolution sampling of molluscan shell material across inferred growth bands represents an important proxy record of seasonality of marine and freshwater conditions applicable at any latitude. If applied to other regions and time periods, the approach used here would contribute substantially to the paleoclimate record of seasonality.

  8. The UK Earth System Models Marine Biogeochemical Evaluation Toolkit, BGC-val

    NASA Astrophysics Data System (ADS)

    de Mora, Lee

    2017-04-01

    The Biogeochemical Validation toolkit, BGC-val, is a model and grid independent python-based marine model evaluation framework that automates much of the validation of the marine component of an Earth System Model. BGC-val was initially developed to be a flexible and extensible system to evaluate the spin up of the marine UK Earth System Model (UKESM). However, the grid-independence and flexibility means that it is straightforward to adapt the BGC-val framework to evaluate other marine models. In addition to the marine component of the UKESM, this toolkit has been adapted to compare multiple models, including models from the CMIP5 and iMarNet inter-comparison projects. The BGC-val toolkit produces multiple levels of analysis which are presented in a simple to use interactive html5 document. Level 1 contains time series analyses, showing the development over time of many important biogeochemical and physical ocean metrics, such as the Global primary production or the Drake passage current. The second level of BGC-val is an in-depth spatial analyses of a single point in time. This is a series of point to point comparison of model and data in various regions, such as a comparison of Surface Nitrate in the model vs data from the world ocean atlas. The third level analyses are specialised ad-hoc packages to go in-depth on a specific question, such as the development of Oxygen minimum zones in the Equatorial Pacific. In additional to the three levels, the html5 document opens with a Level 0 table showing a summary of the status of the model run. The beta version of this toolkit is available via the Plymouth Marine Laboratory Gitlab server and uses the BSD 3 clause license.

  9. Earliest land plants created modern levels of atmospheric oxygen

    PubMed Central

    Lenton, Timothy M.; Dahl, Tais W.; Daines, Stuart J.; Mills, Benjamin J. W.; Ozaki, Kazumi; Saltzman, Matthew R.; Porada, Philipp

    2016-01-01

    The progressive oxygenation of the Earth’s atmosphere was pivotal to the evolution of life, but the puzzle of when and how atmospheric oxygen (O2) first approached modern levels (∼21%) remains unresolved. Redox proxy data indicate the deep oceans were oxygenated during 435–392 Ma, and the appearance of fossil charcoal indicates O2 >15–17% by 420–400 Ma. However, existing models have failed to predict oxygenation at this time. Here we show that the earliest plants, which colonized the land surface from ∼470 Ma onward, were responsible for this mid-Paleozoic oxygenation event, through greatly increasing global organic carbon burial—the net long-term source of O2. We use a trait-based ecophysiological model to predict that cryptogamic vegetation cover could have achieved ∼30% of today’s global terrestrial net primary productivity by ∼445 Ma. Data from modern bryophytes suggests this plentiful early plant material had a much higher molar C:P ratio (∼2,000) than marine biomass (∼100), such that a given weathering flux of phosphorus could support more organic carbon burial. Furthermore, recent experiments suggest that early plants selectively increased the flux of phosphorus (relative to alkalinity) weathered from rocks. Combining these effects in a model of long-term biogeochemical cycling, we reproduce a sustained +2‰ increase in the carbonate carbon isotope (δ13C) record by ∼445 Ma, and predict a corresponding rise in O2 to present levels by 420–400 Ma, consistent with geochemical data. This oxygen rise represents a permanent shift in regulatory regime to one where fire-mediated negative feedbacks stabilize high O2 levels. PMID:27528678

  10. Design and application of new low-cost instruments for marine environmental research.

    PubMed

    Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto

    2014-12-05

    The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea.

  11. Geo-Seas - building a unified e-infrastructure for marine geoscientific data management in Europe

    NASA Astrophysics Data System (ADS)

    Glaves, H.; Schaap, D.

    2012-04-01

    A significant barrier to marine geoscientific research in Europe is the lack of standardised marine geological and geophysical data and data products which could potentially facilitate multidisciplinary marine research extending across national and international boundaries. Although there are large volumes of geological and geophysical data available for the marine environment it is currently very difficult to use these datasets in an integrated way due to different nomenclatures, formats, scales and coordinate systems being used within different organisations as well as between countries. This makes the direct use of primary data very difficult and also hampers use of the data to produce integrated multidisciplinary data products and services. The Geo-Seas project, an EU Framework 7 funded initiative, is developing a unified e-infrastructure to facilitate the sharing of marine geoscientific data within Europe. This e-infrastructure is providing on-line access to both discovery metadata and the associated federated data sets from 26 European data centres via a dedicated portal. The implementation of the Geo-Seas portal is allowing a range of end users to locate, assess and access standardised geoscientific data from multiple sources which is interoperable with other marine data types. Geo-Seas is building on the work already done by the existing SeaDataNet project which currently provides a data management e-infrastructure for oceanographic data which allows users to locate and access federated oceanographic data sets. By adopting and adapting the SeaDataNet methodologies and technologies the Geo-Seas project has not only avoid unnecessary duplication of effort by reusing existing and proven technologies but also contributed to the development of a multidisciplinary approach to ocean science across Europe through the creation of a joint infrastructure for both marine geoscientific and oceanographic data. This approach is also leading to the development of

  12. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2.

    PubMed

    Miner, Elise M; Fukushima, Tomohiro; Sheberla, Dennis; Sun, Lei; Surendranath, Yogesh; Dincă, Mircea

    2016-03-08

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.

  13. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2

    PubMed Central

    Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis; Sun, Lei; Surendranath, Yogesh; Dincă, Mircea

    2016-01-01

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications. PMID:26952523

  14. Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth's carbon cycle

    NASA Astrophysics Data System (ADS)

    Owens, Jeremy D.; Reinhard, Christopher T.; Rohrssen, Megan; Love, Gordon D.; Lyons, Timothy W.

    2016-09-01

    Understanding the global redox state of the oceans and its cause-and-effect relationship with periods of widespread organic-carbon deposition is vital to interpretations of Earth's climatic and biotic feedbacks during periods of expanded oceanic oxygen deficiency. Here, we present a compilation of new and published data from an organic-rich locality within the proto-North Atlantic Ocean during the Cenomanian-Turonian boundary event that shows a dramatic drawdown of redox-sensitive trace elements. Iron geochemistry independently suggests euxinic deposition (i.e., anoxic and sulfidic bottom waters) for the entire section, thus confirming its potential as an archive of global marine metal inventories. In particular, depleted molybdenum (Mo) and vanadium (V) concentrations effectively record the global expansion of euxinic and oxygen-deficient but non-sulfidic waters, respectively. The V drawdown precedes the OAE, fingerprinting an expansion of oxygen deficiency prior to an expansion of euxinia. Molybdenum drawdown, in contrast, is delayed with respect to V and coincides with the onset of OAE2. Parallel lipid biomarker analyses provide evidence for significant and progressive reorganization of marine microbial ecology during the OAE in this region of the proto-North Atlantic, with the smallest relative eukaryotic contributions to total primary production occurring during metal-depleted intervals. This relationship may be related to decreasing supplies of enzymatically important trace elements. Similarly, box modeling suggests that oceanic drawdown of Mo may have approached levels capable of affecting marine nitrogen fixation. Predictions of possible nitrogen stress on eukaryotic production, locally and globally, are consistent with the low observed levels of Mo and a rise in 2-methylhopane index values during the peak of the OAE. At the same time, the environmental challenge presented by low dissolved oxygen and euxinia coincides with increased turnover rates of

  15. Marine radioecology and waste management in the Adriatic.

    PubMed

    Franić, Zdenko; Petrinec, Branko

    2006-09-01

    This paper gives a review of marine radioecology research in the Adriatic area carried out by the Radiation Protection Unit of the Institute for Medical Research and Occupational Health. Measurements of radioactivity in the Adriatic started in 1963 as a part of an extended monitoring programme of radioactivity in Croatian environment. The main sources of radioactive contamination of the Adriatic Sea are the fallout from past nuclear weapon testing conducted in the atmosphere and the Chernobyl accident. In 2005, the activity concentrations of fission radionuclides were detectable at very low levels in all environmental samples collected on the Adriatic. The 90Sr data obtained from long-term monitoring were used to estimate the upper limit of the Adriatic seawater turnover time, which turned out to be (3.4 +/- 0.4) years. Detailed knowledge about seawater circulation, including the turnover time is essential for planning an overall communal and other wastewater management on the Adriatic coast. The paper concludes with the prospects for future marine radioecological investigations.

  16. Geohydrology and water quality of Marine Corps Logistics Base, Nebo and Yermo annexes, near Barstow, California

    USGS Publications Warehouse

    Densmore, Jill N.; Cox, Brett F.; Crawford, Steven M.

    1997-01-01

    Because ground water is the only dependable source of water in the Barstow area, a thorough understanding of the relationship between the geology and hydrology of this area is needed to make informed ground-water management andremediation decisions. This report summarizes geologic and hydrologic studies done during 1992-95 at the Marine Corps Logistics Base, Nebo and Yermo Annexes, near Barstow, California. The geologic investigation dealt with the stratigraphy and geologic history of the area and determined the location of faults that cross the Marine Corps Logistics Base, Nebo Annex. Two of these faultscoincide with significant ground-water barriers. Geologic and hydrologic data collected for this study were used to define two main aquifer systems in this area. The Mojave River aquifer is contained within the sand and gravel of the Mojave River alluvium, and the regional aquifer lies in the bordering alluvial-fan deposits and older alluvium. Water-level data showed that recharge occurs exten sively in the Mojave River aquifer but occurs only in small areas of the regional aquifer. Dissolved- solids concentrations showed that ground-water degradation exists in the Mojave River aquifer near the Nebo Annex and extends at least 1 mile downgradient of the Nebo golf course in the younger Mojave River alluvium. Nitrogen concentrations show that more than one source is causing the observed degradation in the Mojave River aquifer. Oxygen-18, deuterium, tritium, andcarbon-14 data indicate that the Mojave River and regional aquifers have different sources of recharge and that recent recharge occurs in the Mojave River aquifer but is more limited in the regional aquifer.

  17. Bio-logging of physiological parameters in higher marine vertebrates

    NASA Astrophysics Data System (ADS)

    Ponganis, Paul J.

    2007-02-01

    Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.

  18. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and

  19. The marine mammal dive response is exercise modulated to maximize aerobic dive duration.

    PubMed

    Davis, Randall W; Williams, Terrie M

    2012-08-01

    When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR = 1.48SF - 8.87) and bottlenose dolphins (HR = 0.99SF + 2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.

  20. Annually resolved North Atlantic marine climate over the last millennium

    NASA Astrophysics Data System (ADS)

    Reynolds, D. J.; Scourse, J. D.; Halloran, P. R.; Nederbragt, A. J.; Wanamaker, A. D.; Butler, P. G.; Richardson, C. A.; Heinemeier, J.; Eiríksson, J.; Knudsen, K. L.; Hall, I. R.

    2016-12-01

    Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ18O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ18O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.

  1. The Effects of Oxygen Therapy on Myocardial Salvage in ST Elevation Myocardial Infarction Treated with Acute Percutaneous Coronary Intervention: The Supplemental Oxygen in Catheterized Coronary Emergency Reperfusion (SOCCER) Study.

    PubMed

    Khoshnood, Ardavan; Carlsson, Marcus; Akbarzadeh, Mahin; Bhiladvala, Pallonji; Roijer, Anders; Bodetoft, Stefan; Höglund, Peter; Zughaft, David; Todorova, Lizbet; Erlinge, David; Ekelund, Ulf

    2015-01-01

    Despite a lack of scientific evidence, oxygen has long been a part of standard treatment for patients with acute myocardial infarction (AMI). However, several studies suggest that oxygen therapy may have negative cardiovascular effects. We here describe a randomized controlled trial, i.e. Supplemental Oxygen in Catheterized Coronary Emergency Reperfusion (SOCCER), aiming to evaluate the effect of oxygen therapy on myocardial salvage and infarct size in patients with ST elevation myocardial infarction (STEMI) treated with a primary percutaneous coronary intervention (PCI). One hundred normoxic STEMI patients accepted for a primary PCI are randomized in the ambulance to either standard oxygen therapy or no supplemental oxygen. All patients undergo cardiovascular magnetic resonance imaging (CMR) 2-6 days after the primary PCI, and a subgroup of 50 patients undergo an extended echocardiography during admission and at 6 months. All patients are followed for 6 months for hospital admission for heart failure and subjective perception of health. The primary endpoint is the myocardial salvage index on CMR. Even though oxygen therapy is a part of standard care, oxygen may not be beneficial for patients with AMI and is possibly even harmful. The results of the present and concurrent oxygen trials may change international treatment guidelines for patients with AMI or ischemia.

  2. Uranium-series ages of marine terraces, La Paz Peninsula, Baja California Sur, Mexico

    USGS Publications Warehouse

    Sirkin, L.; Szabo, B. J.; Padilla, G.A.; Pedrin, S.A.; Diaz, E.R.

    1990-01-01

    Uranium-series dating of coral samples from raised marine terrace deposits between 1.5 and 10 m above sea level in the La Paz Peninsula area, Baja California Sur, yielded ages between 123 ka and 138 ka that are in agreement with previously reported results. The stratigraphy and ages of marine units near the El Coyote Arroyo indicate the presence of two high stands of the sea during the last interglacial or oxygen isotope substage 5e at about 140 ka and 123 ka. Accepting 5 m for the sea level during the last interglacial transgression, we calculate average uplift rates for the marine terraces of about ???70 mm/ka and 40 mm/ka. These slow rates of uplift indicate a relative stability of the La Paz peninsula area for the past 140 000 years. In contrast, areas of Baja California affected by major faultf experienced higher rates of uplift. Rockwell et al. (1987) reported vertical uplift rates of 180 to 300 mm/ka at Punta Banda within the Aqua Blanea fault zone in northern Baja California. ?? 1990 Springer-Verlag.

  3. Osmotic phenomena in application for hyperbaric oxygen treatment.

    PubMed

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  4. Tephrochronology and the extended intimate (integration of ice-core, marine and terrestrial records) event stratigraphy 8-128 ka b2k

    NASA Astrophysics Data System (ADS)

    Blockley, Simon P. E.; Bourne, Anna J.; Brauer, Achim; Davies, Siwan M.; Hardiman, Mark; Harding, Poppy R.; Lane, Christine S.; MacLeod, Alison; Matthews, Ian P.; Pyne-O'Donnell, Sean D. F.; Rasmussen, Sune O.; Wulf, Sabine; Zanchetta, Giovanni

    2014-12-01

    The comparison of palaeoclimate records on their own independent timescales is central to the work of the INTIMATE (INTegrating Ice core, MArine and TErrestrial records) network. For the North Atlantic region, an event stratigraphy has been established from the high-precision Greenland ice-core records and the integrated GICC05 chronology. This stratotype provides a palaeoclimate signal to which the timing and nature of palaeoenvironmental change recorded in marine and terrestrial archives can be compared. To facilitate this wider comparison, without assuming synchroneity of climatic change/proxy response, INTIMATE has also focussed on the development of tools to achieve this. In particular the use of time-parallel marker horizons e.g. tephra layers (volcanic ash). Coupled with the recent temporal extension of the Greenland stratotype, as part of this special issue, we present an updated INTIMATE event stratigraphy highlighting key tephra horizons used for correlation across Europe and the North Atlantic. We discuss the advantages of such an approach, and the key challenges for the further integration of terrestrial palaeoenvironmental records with those from ice cores and the marine realm.

  5. New approach to modulate retinal cellular toxic effects of high glucose using marine epa and dha.

    PubMed

    Dutot, Mélody; de la Tourrette, Violaine; Fagon, Roxane; Rat, Patrice

    2011-06-16

    Protective effects of omega-3 fatty acids against cellular damages of high glucose were studied on retinal pigmented epithelial (RPE) cells. Retinal epithelial cells were incubated with omega-3 marine oils rich in EPA and DHA and then with high glucose (25 mM) for 48 hours. Cellular responses were compared to normal glucose (5 mM): intracellular redox status, reactive oxygen species (ROS), mitochondrial succinate deshydrogenase activity, inflammatory cytokines release and caveolin-1 expression were evaluated using microplate cytometry, ELISA and flow cytometry techniques. Fatty acids incorporation in retinal cell membranes was analysed using chromatography. Preincubation of the cells with fish oil decreased ROS overproduction, mitochondrial alterations and TNFα release. These protective effects could be attributed to an increase in caveolin-1 expression induced by marine oil. Marine formulations rich in omega-3 fatty acids represent a promising therapeutic approach for diabetic retinopathy.

  6. Fundamental understanding of distracted oxygen delignification efficiency by dissolved lignin during biorefinery process of eucalyptus.

    PubMed

    Zhao, Huifang; Li, Jing; Zhang, Xuejin

    2018-06-01

    In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event.

    PubMed

    Planavsky, Noah J; Bekker, Andrey; Hofmann, Axel; Owens, Jeremy D; Lyons, Timothy W

    2012-11-06

    Carbonates from approximately 2.3-2.1 billion years ago show markedly positive δ(13)C values commonly reaching and sometimes exceeding +10‰. Traditional interpretation of these positive δ(13)C values favors greatly enhanced organic carbon burial on a global scale, although other researchers have invoked widespread methanogenesis within the sediments. To resolve between these competing models and, more generally, among the mechanisms behind Earth's most dramatic carbon isotope event, we obtained coupled stable isotope data for carbonate carbon and carbonate-associated sulfate (CAS). CAS from the Lomagundi interval shows a narrow range of δ(34)S values and concentrations much like those of Phanerozoic and modern marine carbonate rocks. The δ(34)S values are a close match to those of coeval sulfate evaporites and likely reflect seawater composition. These observations are inconsistent with the idea of diagenetic carbonate formation in the methanic zone. Toward the end of the carbon isotope excursion there is an increase in the δ(34)S values of CAS. We propose that these trends in C and S isotope values track the isotopic evolution of seawater sulfate and reflect an increase in pyrite burial and a crash in the marine sulfate reservoir during ocean deoxygenation in the waning stages of the positive carbon isotope excursion.

  8. 50 CFR 216.25 - Exempted marine mammals and marine mammal products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Exempted marine mammals and marine mammal products. 216.25 Section 216.25 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING...

  9. 50 CFR 216.25 - Exempted marine mammals and marine mammal products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Exempted marine mammals and marine mammal products. 216.25 Section 216.25 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING...

  10. 50 CFR 216.25 - Exempted marine mammals and marine mammal products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Exempted marine mammals and marine mammal products. 216.25 Section 216.25 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING...

  11. 50 CFR 216.25 - Exempted marine mammals and marine mammal products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Exempted marine mammals and marine mammal products. 216.25 Section 216.25 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING...

  12. 50 CFR 216.25 - Exempted marine mammals and marine mammal products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Exempted marine mammals and marine mammal products. 216.25 Section 216.25 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING...

  13. Marine cosmeceuticals.

    PubMed

    Kim, Se-Kwon

    2014-03-01

    Recently, a great deal of interest has been expressed in the cosmetic industry regarding marine-derived cosmetic active ingredients due to their numerous beneficial effects on human skin health. Bioactive substances derived from marine resources have diverse functional roles as natural skin care agents, and these properties can be applied to the development of novel cosmetics as well as nutricosmetics (from edible seaweeds and edible marine animals). This contribution focuses on marine-derived cosmeceutical active ingredients and presents an overview of their health beneficial effects on human skin. © 2014 Wiley Periodicals, Inc.

  14. Marine water quality under climate change conditions/scenarios

    NASA Astrophysics Data System (ADS)

    Rizzi, Jonathan; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Brigolin, Daniele; Carniel, Sandro; Pastres, Roberto; Marcomini, Antonio

    2016-04-01

    The increase of sea temperature and the changes in marine currents are generating impacts on coastal waters such as changes in water biogeochemical and physical parameters (e.g. primary production, pH, salinity) leading to progressive degradation of the marine environment. With the main aim of analysing the potential impacts of climate change on coastal water quality, a Regional Risk Assessment (RRA) methodology was developed and applied to coastal marine waters of the North Adriatic (i.e. coastal water bodies of the Veneto and Friuli Venezia Giulia regions, Italy). RRA integrates the outputs of regional models providing information on macronutrients (i.e. dissolved inorganic nitrogen e reactive phosphorus), dissolved oxygen, pH, salinity and temperature, etc., under future climate change scenarios with site-specific environmental and socio-economic indicators (e.g. biotic index, presence and extension of seagrasses, presence of aquaculture). The presented approach uses Geographic Information Systems to manage, analyse, and visualize data and employs Multi-Criteria Decision Analysis for the integration of stakeholders preferences and experts judgments into the evaluation process. RRA outputs are hazard, exposure, vulnerability, risk and damage maps useful for the identification and prioritization of hot-spot areas and vulnerable targets in the considered region. Therefore, the main aim of this contribution is to apply the RRA methodology to integrate, visualize, and rank according to spatial distribution, physical and chemical data concerning the coastal waters of the North Adriatic Sea in order to predict possible changes of the actual water quality.

  15. Oxygen Isotope Signatures of Biogenic Manganese(III/IV) Oxides

    NASA Astrophysics Data System (ADS)

    Sutherland, K. M.; Hansel, C. M.; Wankel, S. D.

    2015-12-01

    Manganese (Mn) oxide minerals are pervasive throughout a number of surface earth environments as rock varnishes, ferromanganese nodules, crusts around deep-sea vents, and cave deposits among many other marine, freshwater, and terrestrial deposits. Mn(III,IV) oxides are also among the strongest sorbents and oxidants in surface earth environments and are crucial to understanding the fate of organic matter in sedimentary environments. The precipitation of Mn oxide minerals proceeds via both abiotic and biotic oxidation pathways, the latter due to the indirect or direct activity of Mn(II)- oxidizing microorganisms, including bacteria and fungi. Although the precipitation of Mn oxides is believed to be primarily controlled by Mn(II)-oxidizing organisms in most surface earth environments, confirmation of this generally held notion has remained illusive and limits our understanding of their formation on Earth and beyond (e.g., Mars). Previous work provided evidence that O atom incorporation by specific Mn oxidation pathways may exhibit unique and predictable isotopic fractionation. In this study, we expand upon this evidence by measuring the oxygen isotope signature of several biogenic and abiogenic Mn oxide minerals synthesized under a range of oxygen-18 labeled water. These results allow us to determine the relative amount oxygen atoms derived from water and molecular oxygen that are incorporated in the oxide and shed light on corresponding isotope fractionation factors. Additionally, we show that, once precipitated, Mn oxide isotope signatures are robust with respect to aqueous oxygen isotope exchange. The study provides a foundation on which to study and interpret Mn oxides in natural environments and determine which environmental controls may govern Mn(II) oxidation.

  16. Marine Publications

    Science.gov Websites

    ) - Free Marine Service Charts (MSC) list frequencies, schedules and locations of stations disseminating ) (Page 2) Free6 NWS Observing Handbook NO.1 (05/10) Free 6 Marine Report User Guide Worldwide Marine ) Tsunami Safety Brochure TSUNAMI The Great Waves - Free 11 NOAA SEA GRANT PUBLICATIONS Hawaii Boater's

  17. New Waves in Marine Science Symposium: Marine Animal Communication.

    ERIC Educational Resources Information Center

    Allen, Betty, Comp.

    1989-01-01

    Presented are the abstracts from three research projects on marine social systems which were a part of a marine science symposium. Five sets of activities on marine animal communication are included, one each for grades K-2, 3-5, 6-8 and 9-12, and informal education. (CW)

  18. Marine anoxia and delayed Earth system recovery after the end-Permian extinction.

    PubMed

    Lau, Kimberly V; Maher, Kate; Altiner, Demir; Kelley, Brian M; Kump, Lee R; Lehrmann, Daniel J; Silva-Tamayo, Juan Carlos; Weaver, Karrie L; Yu, Meiyi; Payne, Jonathan L

    2016-03-01

    Delayed Earth system recovery following the end-Permian mass extinction is often attributed to severe ocean anoxia. However, the extent and duration of Early Triassic anoxia remains poorly constrained. Here we use paired records of uranium concentrations ([U]) and (238)U/(235)U isotopic compositions (δ(238)U) of Upper Permian-Upper Triassic marine limestones from China and Turkey to quantify variations in global seafloor redox conditions. We observe abrupt decreases in [U] and δ(238)U across the end-Permian extinction horizon, from ∼3 ppm and -0.15‰ to ∼0.3 ppm and -0.77‰, followed by a gradual return to preextinction values over the subsequent 5 million years. These trends imply a factor of 100 increase in the extent of seafloor anoxia and suggest the presence of a shallow oxygen minimum zone (OMZ) that inhibited the recovery of benthic animal diversity and marine ecosystem function. We hypothesize that in the Early Triassic oceans-characterized by prolonged shallow anoxia that may have impinged onto continental shelves-global biogeochemical cycles and marine ecosystem structure became more sensitive to variation in the position of the OMZ. Under this hypothesis, the Middle Triassic decline in bottom water anoxia, stabilization of biogeochemical cycles, and diversification of marine animals together reflect the development of a deeper and less extensive OMZ, which regulated Earth system recovery following the end-Permian catastrophe.

  19. 18. Marine Railway #1, location in foreground; Marine Railway #2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Marine Railway #1, location in foreground; Marine Railway #2 (broken cradle) center; cradle for Marine Railway #3 on right. - Thames Tow Boat Company, Foot of Farnsworth Street, New London, New London County, CT

  20. Multimillennium changes in dissolved oxygen under global warming: results from an AOGCM and offline ocean biogeochemical model

    NASA Astrophysics Data System (ADS)

    Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.

    2016-12-01

    Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.

  1. Pressures on the marine environment and the changing climate of ocean biogeochemistry.

    PubMed

    Rees, Andrew P

    2012-12-13

    The oceans are under pressure from human activities. Following 250 years of industrial activity, effects are being seen at the cellular through to regional and global scales. The change in atmospheric CO(2) from 280 ppm in pre-industrial times to 392 ppm in 2011 has contributed to the warming of the upper 700 m of the ocean by approximately 0.1°C between 1961 and 2003, to changes in sea water chemistry, which include a pH decrease of approximately 0.1, and to significant decreases in the sea water oxygen content. In parallel with these changes, the human population has been introducing an ever-increasing level of nutrients into coastal waters, which leads to eutrophication, and by 2008 had resulted in 245,000 km(2) of severely oxygen-depleted waters throughout the world. These changes are set to continue for the foreseeable future, with atmospheric CO(2) predicted to reach 430 ppm by 2030 and 750 ppm by 2100. The cycling of biogeochemical elements has proved sensitive to each of these effects, and it is proposed that synergy between stressors may compound this further. The challenge, within the next few decades, for the marine science community, is to elucidate the scope and extent that biological processes can adapt or acclimatize to a changing chemical and physical marine environment.

  2. Marine envenomations.

    PubMed

    Berling, Ingrid; Isbister, Geoffrey

    2015-01-01

    Marine stings are common but most are minor and do not require medical intervention. Severe and systemic marine envenoming is uncommon, but includes box jellyfish stings, Irukandji syndrome, major stingray trauma and blue-ringed octopus envenoming. Almost all marine injuries are caused by jellyfish stings, and penetrating injuries from spiny fish, stingrays or sea urchins. This article describes the presentation and management of marine envenomations and injuries that may occur in Australia. First aid for jellyfish includes tentacle removal, application of vinegar for box jellyfish, and hot water immersion (45°C for 20 min) for bluebottle jellyfish stings. Basic life support is essential for severe marine envenomings that result in cardiac collapse or paralysis. Irukandji syndrome causes severe generalised pain, autonomic excess and minimal local pain, which may require large amounts of analgesia, and, uncommonly, myocardial depression and pulmonary oedema occur. Penetrating marine injuries can cause significant trauma depending on location of the injury. Large and unclean wounds may have delayed healing and secondary infection if not adequately irrigated, debrided and observed.

  3. Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA

    USGS Publications Warehouse

    Self-Trail, Jean; Robinson, Marci M.; Bralower, Timothy J.; Sessa, Jocelyn A.; Hajek, Elizabeth A.; Kump, Lee R.; Trampush, Sheila M.; Willard, Debra A.; Edwards, Lucy E.; Powars, David S.; Wandless, Gregory A.

    2017-01-01

    The Paleocene-Eocene Thermal Maximum (PETM) was an interval of extreme warmth that caused disruption of marine and terrestrial ecosystems on a global scale. Here we examine the sediments, flora, and fauna from an expanded section at Mattawoman Creek-Billingsley Road (MCBR) in Maryland and explore the impact of warming at a nearshore shallow marine (30–100 m water depth) site in the Salisbury Embayment. Observations indicate that at the onset of the PETM, the site abruptly shifted from an open marine to prodelta setting with increased terrestrial and fresh water input. Changes in microfossil biota suggest stratification of the water column and low-oxygen bottom water conditions in the earliest Eocene. Formation of authigenic carbonate through microbial diagenesis produced an unusually large bulk carbon isotope shift, while the magnitude of the corresponding signal from benthic foraminifera is similar to that at other marine sites. This proves that the landward increase in the magnitude of the carbon isotope excursion measured in bulk sediment is not due to a near instantaneous release of 12C-enriched CO2. We conclude that the MCBR site records nearshore marine response to global climate change that can be used as an analog for modern coastal response to global warming.

  4. Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA

    NASA Astrophysics Data System (ADS)

    Self-Trail, Jean M.; Robinson, Marci M.; Bralower, Timothy J.; Sessa, Jocelyn A.; Hajek, Elizabeth A.; Kump, Lee R.; Trampush, Sheila M.; Willard, Debra A.; Edwards, Lucy E.; Powars, David S.; Wandless, Gregory A.

    2017-07-01

    The Paleocene-Eocene Thermal Maximum (PETM) was an interval of extreme warmth that caused disruption of marine and terrestrial ecosystems on a global scale. Here we examine the sediments, flora, and fauna from an expanded section at Mattawoman Creek-Billingsley Road (MCBR) in Maryland and explore the impact of warming at a nearshore shallow marine (30-100 m water depth) site in the Salisbury Embayment. Observations indicate that at the onset of the PETM, the site abruptly shifted from an open marine to prodelta setting with increased terrestrial and fresh water input. Changes in microfossil biota suggest stratification of the water column and low-oxygen bottom water conditions in the earliest Eocene. Formation of authigenic carbonate through microbial diagenesis produced an unusually large bulk carbon isotope shift, while the magnitude of the corresponding signal from benthic foraminifera is similar to that at other marine sites. This proves that the landward increase in the magnitude of the carbon isotope excursion measured in bulk sediment is not due to a near instantaneous release of 12C-enriched CO2. We conclude that the MCBR site records nearshore marine response to global climate change that can be used as an analog for modern coastal response to global warming.

  5. Evaluation of Venturi Oxygen Stripping (trademark) as a Ballast Water Treatment to Prevent Aquatic Invasions and Ship Corrosion

    DTIC Science & Technology

    2003-01-01

    that can withstand low oxygen levels (e.g., resistant cysts of dinoflagellates, Hallegraeff 1998). Marine bacteria, in particular, will have...Chesapeake Bay zooplankton (copepods, barnacle larvae, polychaete larvae, cladocerans, crustacean nauplii, bivalve larvae, and nematodes ) in less than...zooplankton (copepods, barnacle larvae, polychaete larvae, cladocerans, crustacean nauplii, bivalve larvae, and nematodes ) in control and treated

  6. Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2011-12-01

    Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption

  7. Spatial Distribution of Io's Neutral Oxygen Cloud Observed by Hisaki

    NASA Astrophysics Data System (ADS)

    Koga, Ryoichi; Tsuchiya, Fuminori; Kagitani, Masato; Sakanoi, Takeshi; Yoneda, Mizuki; Yoshioka, Kazuo; Yoshikawa, Ichiro; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Smith, H. Todd; Bagenal, Fran

    2018-05-01

    We report on the spatial distribution of a neutral oxygen cloud surrounding Jupiter's moon Io and along Io's orbit observed by the Hisaki satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exosphere mainly through atmospheric sputtering. Some of the neutral atoms escape from Io's gravitational sphere and form neutral clouds around Jupiter. The extreme ultraviolet spectrograph called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Japan Aerospace Exploration Agency's Hisaki satellite observed the Io plasma torus continuously in 2014-2015, and we derived the spatial distribution of atomic oxygen emissions at 130.4 nm. The results show that Io's oxygen cloud is composed of two regions, namely, a dense region near Io and a diffuse region with a longitudinally homogeneous distribution along Io's orbit. The dense region mainly extends on the leading side of Io and inside of Io's orbit. The emissions spread out to 7.6 Jupiter radii (RJ). Based on Hisaki observations, we estimated the radial distribution of the atomic oxygen number density and oxygen ion source rate. The peak atomic oxygen number density is 80 cm-3, which is spread 1.2 RJ in the north-south direction. We found more oxygen atoms inside Io's orbit than a previous study. We estimated the total oxygen ion source rate to be 410 kg/s, which is consistent with the value derived from a previous study that used a physical chemistry model based on Hisaki observations of ultraviolet emission ions in the Io plasma torus.

  8. {Carbon and oxygen isotope signals from marine ostracod calcite - results from present and past oceans}

    NASA Astrophysics Data System (ADS)

    Bornemann, A.; Speijer, R. P.

    2009-04-01

    Systematic stable isotope studies on ostracod calcite are generally rare, in particular for marine taxa only the work of DIDIÉ & BAUCH (2002) provides first clues towards an improved understanding of ostracod stable isotope data in paleoceanography. Here we present analyses from recent near surface sediments from the Gulf of Taranto, the Levantine Basin (15 ka, both Mediterranean Sea) and the Paleocene of Tunisia (southern Tethyan margin). Data are compared to those from selected benthic foraminiferal taxa from which the living habitat and the isotopic disequilibria from ambient sea-water are well known. In addition, size fractions of monospecific samples have been studied in order to test whether a size/mass dependent change exists with respect to the isotopic composition of the carapace calcite. Calcification of ostracod carapaces is a very rapid process, which often takes place within a few hours and the obtained signal provides only a snap-shot of the prevailing paleoceanographic conditions. Multiple mono-specific measurements show therefore a much higher variability than benthic foraminifera, but may give a more complete picture of the seasonal changes. Our study confirms the findings of DIDIÉ & BAUCH (2002) and others (for non-marine taxa) that ostracod calcite displays a positive species-specific deviation from the sea-water ^18O composition between 0.5 and 1.5 per mil with an intra-specific variability of less than 0.5 per mil. In contrast ^13C values cover a huge range with an off-set from sea-water of up to -5 per mil and show a high intra-specific variability of up to 2 per mil. Size-fraction data show no systematic change, although a statistically significant positive covariance between ^18O and ^13C has been observed. This covariance consists of a slope similar to a kinetic controlled fractionation as has been described from asymbiotic planktic foraminifera (Globigerina bulloides) and corals (MCCONNAUGHEY, 1989; SPERO & LEA, 1996). This suggests that

  9. Marine habitat mapping at Labuan Marine Park, Federal Territory of Labuan, Malaysia

    NASA Astrophysics Data System (ADS)

    Mustajap, Fazliana; Saleh, Ejria; Madin, John; Hamid, Shahimah Abdul

    2015-06-01

    Marine habitat mapping has recently become essential in coastal marine science research. It is one of the efforts to understand marine ecosystems, and thus to protect them. Habitat mapping is integral to marine-related industries such as fisheries, aquaculture, forestry and tourism. An assessment of marine habitat mapping was conducted at Labuan Marine Park (LMP), a marine protected area in the Federal Territory of Labuan. It is surrounded by shallow water within its islands (Kuraman, Rusukan Kecil and Rusukan Besar) with an area of 39.7 km2. The objectives of the study are to identify the substrate and types of marine habitat present within the park. Side scan sonar (SSS) (Aquascan TM) was used to determine the substrates and habitat while ground truthings were done through field observation and SCUBA diving survey. Seabed classification and marine habitat was based on NOAA's biogeography program. Three substrate types (sand, rock, silt) were identified in this area. The major marine habitats identified are corals, macro algae and small patches of sea grass. The study area is an important refuge for spawning and juvenile fish and supports the livelihood of the coastal communities on Labuan Island. Therefore, proper management is crucial in order to better maintain the marine protected area. The findings are significant and provide detailed baseline information on marine habitat for conservation, protection and future management in LMP.

  10. BENTHIC-PELAGIC PROCESSES IN PENSACOLA BAY, FL: EFFECTS OF LIGHT ON OXYGEN FLUXES

    EPA Science Inventory

    Eutrophication caused by excess nutrients can exacerbate hypoxia by increasing bottom water and sediment respiration. However, in shallow sub-tropical estuaries, the euphotic zone often extends below the pycnocline allowing oxygen fluxes in Pensacola Bay, FL, USA. Measurements we...

  11. Potential impact of an exceptional bloom of Karenia mikimotoi on dissolved oxygen levels in waters off western Ireland.

    PubMed

    O'Boyle, Shane; McDermott, Georgina; Silke, Joe; Cusack, Caroline

    2016-03-01

    In the summer of 2005 an exceptional bloom of the dinoflagellate Karenia mikimotoi occurred along Ireland's Atlantic seaboard and was associated with the mass mortality of both benthic and pelagic marine life. Oxygen depletion, cellular toxicity and physical smothering, are considered to be the main factors involved in mortality. In this paper we use a theoretical approach based on stoichiometry (the Anderson ratio) and an average K. mikimotoi cellular carbon content of 329pgCcell -1 (n=20) to calculate the carbonaceous and nitrogenous oxygen demand following bloom collapse. The method was validated against measurements of biochemical oxygen demand and K. mikimotoi cell concentration. The estimated potential oxygen utilisation (POU) was in good agreement with field observations across a range of cell concentrations. The magnitude of POU following bloom collapse, with the exception of three coastal areas, was considered insufficient to cause harm to most marine organisms. This indicates that the widespread occurrence of mortality was primarily due to other factors such as cellular toxicity and/or mucilage production, and not oxygen depletion or related phenomena. In Donegal Bay, Kilkieran Bay and inner Dingle Bay, where cell densities were in the order of 10 6 cellsL -1 , estimated POU was sufficient to cause hypoxia. Of the three areas, Donegal Bay is considered to be the most vulnerable due to its hydrographic characteristics (seasonally stratified, weak residual flow) and hypoxic conditions (2.2mgL -1 O 2 ) were directly observed in the Bay post bloom collapse. Here, depending on the time of bloom collapse, depressed DO levels could persist for weeks and continue to have a potentially chronic impact on the Bay. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.

  13. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.

  14. NEXAFS and XPS characterization of molecular oxygen adsorbed on Ni(100) at 80 K

    NASA Astrophysics Data System (ADS)

    Kim, C. M.; Jeong, H. S.; Kim, E. H.

    2000-07-01

    X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS) and near edge extended X-ray absorption fine structure (NEXAFS) have been combined to investigate the adsorption of oxygen on Ni(100) at 80 K. Three O(1s) XPS features were observed at 530.0, 531.1 and 534.7 eV when the Ni(100) surface was exposed to 600 L of oxygen at 80 K. They are assigned as O 2-, O 1- and molecular oxygen species, respectively. The presence of molecular oxygen has been confirmed by TDS and NEXAFS. Molecular O 2 on Ni(100) is oriented perpendicular to the surface, and the OO bond length is estimated to be 1.24 Å, based on the NEXAFS σ ∗ resonance energy.

  15. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats

    PubMed Central

    Simon, Meinhard; Scheuner, Carmen; Meier-Kolthoff, Jan P; Brinkhoff, Thorsten; Wagner-Döbler, Irene; Ulbrich, Marcus; Klenk, Hans-Peter; Schomburg, Dietmar; Petersen, Jörn; Göker, Markus

    2017-01-01

    Marine Rhodobacteraceae (Alphaproteobacteria) are key players of biogeochemical cycling, comprise up to 30% of bacterial communities in pelagic environments and are often mutualists of eukaryotes. As ‘Roseobacter clade', these ‘roseobacters' are assumed to be monophyletic, but non-marine Rhodobacteraceae have not yet been included in phylogenomic analyses. Therefore, we analysed 106 genome sequences, particularly emphasizing gene sampling and its effect on phylogenetic stability, and investigated relationships between marine versus non-marine habitat, evolutionary origin and genomic adaptations. Our analyses, providing no unequivocal evidence for the monophyly of roseobacters, indicate several shifts between marine and non-marine habitats that occurred independently and were accompanied by characteristic changes in genomic content of orthologs, enzymes and metabolic pathways. Non-marine Rhodobacteraceae gained high-affinity transporters to cope with much lower sulphate concentrations and lost genes related to the reduced sodium chloride and organohalogen concentrations in their habitats. Marine Rhodobacteraceae gained genes required for fucoidan desulphonation and synthesis of the plant hormone indole 3-acetic acid and the compatible solutes ectoin and carnitin. However, neither plasmid composition, even though typical for the family, nor the degree of oligotrophy shows a systematic difference between marine and non-marine Rhodobacteraceae. We suggest the operational term ‘Roseobacter group' for the marine Rhodobacteraceae strains. PMID:28106881

  16. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats.

    PubMed

    Simon, Meinhard; Scheuner, Carmen; Meier-Kolthoff, Jan P; Brinkhoff, Thorsten; Wagner-Döbler, Irene; Ulbrich, Marcus; Klenk, Hans-Peter; Schomburg, Dietmar; Petersen, Jörn; Göker, Markus

    2017-06-01

    Marine Rhodobacteraceae (Alphaproteobacteria) are key players of biogeochemical cycling, comprise up to 30% of bacterial communities in pelagic environments and are often mutualists of eukaryotes. As 'Roseobacter clade', these 'roseobacters' are assumed to be monophyletic, but non-marine Rhodobacteraceae have not yet been included in phylogenomic analyses. Therefore, we analysed 106 genome sequences, particularly emphasizing gene sampling and its effect on phylogenetic stability, and investigated relationships between marine versus non-marine habitat, evolutionary origin and genomic adaptations. Our analyses, providing no unequivocal evidence for the monophyly of roseobacters, indicate several shifts between marine and non-marine habitats that occurred independently and were accompanied by characteristic changes in genomic content of orthologs, enzymes and metabolic pathways. Non-marine Rhodobacteraceae gained high-affinity transporters to cope with much lower sulphate concentrations and lost genes related to the reduced sodium chloride and organohalogen concentrations in their habitats. Marine Rhodobacteraceae gained genes required for fucoidan desulphonation and synthesis of the plant hormone indole 3-acetic acid and the compatible solutes ectoin and carnitin. However, neither plasmid composition, even though typical for the family, nor the degree of oligotrophy shows a systematic difference between marine and non-marine Rhodobacteraceae. We suggest the operational term 'Roseobacter group' for the marine Rhodobacteraceae strains.

  17. Assessing the fidelity of marine vertebrate microfossil δ18O signatures and their potential for palaeo-ecological and -climatic reconstructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roelofs, Brett; Barham, Milo; Cliff, John

    Conodont biogenic apatite has become a preferred analytical target for oxygen isotope studies investigating ocean temperature and palaeoclimate change in the Palaeozoic. Despite the growing application in geochemical based palaeoenvironmental reconstructions, the paucity or absence of conodont fossils in certain facies necessitates greater flexibility in selection of robust oxygen bearing compounds for analysis. Microvertebrates offer a potential substitute for conodonts from the middle Palaeozoic. Microvertebrate bioapatite is particularly advantageous given a fossil record extending to the present with representatives across freshwater to fully marine environments, thus widening the scope of oxygen isotope studies on bioapatite. However, significant tissue heterogeneity withinmore » vertebrates and differential susceptibility of these tissues to diagenetic alteration have been raised as potential problems affecting the reliability of the oxygen isotope ratios as palaeoclimate proxies. Pristine microvertebrate and co-occurring conodont fossils from the Late Devonian and Early Carboniferous of the Lennard Shelf, Canning Basin, Western Australia, were analysed using bulk (gas isotope ratio mass spectrometry) and in-situ (secondary ion mass spectrometry) methodologies, with the latter technique allowing investigation of specific tissues within vertebrate elements. The δ18Oconodont results may be interpreted in terms of palaeolatitudinally and environmentally sensible palaeotemperatures and provide a baseline standard for comparison against δ18Omicrovertebrate values. Despite an absence of obvious diagenetic influences, GIRMS of microvertebrate denticles yielded δ18O values depleted by 2-4 ‰ relative to co-occurring conodonts. SIMS analysis of hypermineralised tissues in both scales and teeth produced δ18O values comparable with those of associated conodonts. The susceptibility of porous phosphatic fossil tissues to microbial activity, fluid interaction and

  18. View west along Marine Barracks Way at rear of Marine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View west along Marine Barracks Way at rear of Marine Corps Officers' Housing, with carports on left and duplex on right - U.S. Naval Base, Pearl Harbor, Marine Corps Officers' Duplex Quarters, Salvor Street & Russell Avenue, Pearl City, Honolulu County, HI

  19. Mn cycling in marine biofilms: effect on the rate of localized corrosion.

    PubMed

    Dexter, S C; Xu, K; Luther, G L

    2003-04-01

    Microelectrodes of the Au-Hg amalgam type have been used together with square wave voltammetry to measure profiles of oxygen, peroxide, Fe, Mn and sulfur chemical species through the thickness of natural assemblage marine biofilms grown on stainless steel alloy Nitronic 50 (UNS S20910). The data show Mn+2 and peroxide together at locations where the dissolved oxygen concentration was low. Oxidized species of Fe were also found at some locations. Sulfur species (predominantly S-2) was often found at locations where the dissolved oxygen concentration was below the detectable limit. Confocal scanning laser microscopy was used to image the microbial assemblage at the locations of the chemical profile data. Organisms with a filamentous morphology were found in consortia with rod and coccoidal shaped microbes at locations where dissolved Mn and peroxide were measured. The filamentous forms were usually absent at locations where Mn was not detected. It is suggested that the filamentous organisms may be Mn metabolizers, and that peroxidatic Mn re-oxidation may be taking place within the biofilm.

  20. Oxygen migration during resistance switching and failure of hafnium oxide memristors

    DOE PAGES

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; ...

    2017-03-06

    While the recent establishment of the role of thermophoresis/diffusion-driven oxygen migration during resistance switching in metal oxide memristors provided critical insights required for memristor modeling, extended investigations of the role of oxygen migration during ageing and failure remain to be detailed. Such detailing will enable failure-tolerant design, which can lead to enhanced performance of memristor-based next-generation storage-class memory. Furthermore, we directly observed lateral oxygen migration using in-situ synchrotron x-ray absorption spectromicroscopy of HfO x memristors during initial resistance switching, wear over millions of switching cycles, and eventual failure, through which we determined potential physical causes of failure. Using this information,more » we reengineered devices to mitigate three failure mechanisms and demonstrated an improvement in endurance of about three orders of magnitude.« less

  1. Oxygen transfer in a full-depth biological aerated filter.

    PubMed

    Stenstrom, Michael K; Rosso, Diego; Melcer, Henryk; Appleton, Ron; Occiano, Victor; Langworthy, Alan; Wong, Pete

    2008-07-01

    The City of San Diego, California, evaluated the performance capabilities of biological aerated filters (BAFs) at the Point Loma Wastewater Treatment Plant. The City conducted a 1-year pilot-plant evaluation of BAF technology supplied by two BAF manufacturers. This paper reports on the first independent oxygen-transfer test of BAFs at full depth using the offgas method. The tests showed process-water oxygen-transfer efficiencies of 1.6 to 5.8%/m (0.5 to 1.8%/ft) and 3.9 to 7.9%/m (1.2 to 2.4%/ft) for the two different pilot plants, at their nominal design conditions. Mass balances using chemical oxygen demand and dissolved organic carbon corroborated the transfer rates. Rates are higher than expected from fine-pore diffusers for similar process conditions and depths and clean-water conditions for the same column and are mostly attributed to extended bubble retention time resulting from interactions with the media and biofilm.

  2. 50 CFR 18.25 - Exempted marine mammals or marine mammal products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... effective date of the foreign law making the taking or sale, as the case may be, of such marine mammals or... mammals or marine mammal products. (a) The provisions of the Act and these regulations shall not apply: (1... marine mammal portion of such product consists solely of a marine mammal taken before such date. (b) The...

  3. 50 CFR 18.25 - Exempted marine mammals or marine mammal products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... effective date of the foreign law making the taking or sale, as the case may be, of such marine mammals or... mammals or marine mammal products. (a) The provisions of the Act and these regulations shall not apply: (1... marine mammal portion of such product consists solely of a marine mammal taken before such date. (b) The...

  4. 50 CFR 18.25 - Exempted marine mammals or marine mammal products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... effective date of the foreign law making the taking or sale, as the case may be, of such marine mammals or... mammals or marine mammal products. (a) The provisions of the Act and these regulations shall not apply: (1... marine mammal portion of such product consists solely of a marine mammal taken before such date. (b) The...

  5. 50 CFR 18.25 - Exempted marine mammals or marine mammal products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... effective date of the foreign law making the taking or sale, as the case may be, of such marine mammals or... mammals or marine mammal products. (a) The provisions of the Act and these regulations shall not apply: (1... marine mammal portion of such product consists solely of a marine mammal taken before such date. (b) The...

  6. 50 CFR 18.25 - Exempted marine mammals or marine mammal products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... effective date of the foreign law making the taking or sale, as the case may be, of such marine mammals or... mammals or marine mammal products. (a) The provisions of the Act and these regulations shall not apply: (1... marine mammal portion of such product consists solely of a marine mammal taken before such date. (b) The...

  7. Acoustic Observation of Living Organisms Reveals the Upper Limit of the Oxygen Minimum Zone

    PubMed Central

    Bertrand, Arnaud; Ballón, Michael; Chaigneau, Alexis

    2010-01-01

    Background Oxygen minimum zones (OMZs) are expanding in the World Ocean as a result of climate change and direct anthropogenic influence. OMZ expansion greatly affects biogeochemical processes and marine life, especially by constraining the vertical habitat of most marine organisms. Currently, monitoring the variability of the upper limit of the OMZs relies on time intensive sampling protocols, causing poor spatial resolution. Methodology/Principal Findings Using routine underwater acoustic observations of the vertical distribution of marine organisms, we propose a new method that allows determination of the upper limit of the OMZ with a high precision. Applied in the eastern South-Pacific, this original sampling technique provides high-resolution information on the depth of the upper OMZ allowing documentation of mesoscale and submesoscale features (e.g., eddies and filaments) that structure the upper ocean and the marine ecosystems. We also use this information to estimate the habitable volume for the world's most exploited fish, the Peruvian anchovy (Engraulis ringens). Conclusions/Significance This opportunistic method could be implemented on any vessel geared with multi-frequency echosounders to perform comprehensive high-resolution monitoring of the upper limit of the OMZ. Our approach is a novel way of studying the impact of physical processes on marine life and extracting valid information about the pelagic habitat and its spatial structure, a crucial aspect of Ecosystem-based Fisheries Management in the current context of climate change. PMID:20442791

  8. The influence of riverine nitrogen on the dynamics of the North Sea oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Große, Fabian; Kreus, Markus; Lenhart, Hermann; Pätsch, Johannes

    2016-04-01

    The mitigation of eutrophication and its concomitants, like oxygen deficiency in bottom waters, is one of the major aspects of the ecological management of coastal marine ecosystems. In the past, biogeochemical models helped to significantly improve the understanding of the interaction of the physical and biological processes driving eutrophication. Anthropogenic river input of nitrogen (N) and phosphorus (P) is the main driver for eutrophication. Nevertheless, the quantification of their influence in a specific region remains an important issue, since it is as crucial for an efficient management as it is difficult to obtain. During the past decade, a quantitative method applicable to biogeochemical models - often referred to as `trans-boundary nutrient transports' (TBNT) - became more and more popular in the context of marine ecosystem management. This method allows for the tracing of elements from various sources, e.g., nitrogen (N) from different rivers, throughout the whole process chain of the applied model. By this, it provides valuable information about the contributions from different sources to the overall amount and turnover of an element in different areas of the model domain. This information constitutes the basis for the quantification, evaluation and optimisation of river input reduction targets for the tributaries, which are defined in relation to their ecological consequences in the marine environment. In existing studies, the TBNT method has been applied to a variety of biogeochemical models, e.g. to quantify the atmospheric contribution to total N in the North Sea (Troost et al., 2013). This study presents a novel approach to link the TBNT method applied to N to the biological processes driving the oxygen dynamics in the bottom layer of the North Sea. For this purpose, simulations from the biogeochemical model ECOHAM (ECOlogical model HAMburg) are analysed for the years 2002 and 2010, with the focus on the southern central North Sea, the region of

  9. ALASKA MARINE VHF VOICE

    Science.gov Websites

    Tsunamis 406 EPIRB's National Weather Service Marine Forecasts ALASKA MARINE VHF VOICE Marine Forecast greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE PRODUCTS VIA ALASKA MARINE VHF VOICE NOAA broadcasts offshore forecasts, nearshore forecasts and storm warnings on marine VHF channels

  10. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment, Prosthetic and Orthotic Devices, and Surgical Dressings § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made...

  11. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event

    PubMed Central

    Planavsky, Noah J.; Bekker, Andrey; Hofmann, Axel; Owens, Jeremy D.; Lyons, Timothy W.

    2012-01-01

    Carbonates from approximately 2.3–2.1 billion years ago show markedly positive δ13C values commonly reaching and sometimes exceeding +10‰. Traditional interpretation of these positive δ13C values favors greatly enhanced organic carbon burial on a global scale, although other researchers have invoked widespread methanogenesis within the sediments. To resolve between these competing models and, more generally, among the mechanisms behind Earth’s most dramatic carbon isotope event, we obtained coupled stable isotope data for carbonate carbon and carbonate-associated sulfate (CAS). CAS from the Lomagundi interval shows a narrow range of δ34S values and concentrations much like those of Phanerozoic and modern marine carbonate rocks. The δ34S values are a close match to those of coeval sulfate evaporites and likely reflect seawater composition. These observations are inconsistent with the idea of diagenetic carbonate formation in the methanic zone. Toward the end of the carbon isotope excursion there is an increase in the δ34S values of CAS. We propose that these trends in C and S isotope values track the isotopic evolution of seawater sulfate and reflect an increase in pyrite burial and a crash in the marine sulfate reservoir during ocean deoxygenation in the waning stages of the positive carbon isotope excursion. PMID:23090989

  12. Implications of a More Comprehensive Nitrogen Cycle in a Global Biogeochemical Ocean Model

    NASA Astrophysics Data System (ADS)

    Six, K. D.; Ilyina, T.

    2016-02-01

    Nitrogen plays a crucial role for nearly all living organisms in the Earth system. Changes in the marine nitrogen cycle not only alter the marine biota, but will also have an impact on the marine carbon cycle and, in turn, on climate due to the close coupling of the carbon-nitrogen cycle. The understanding of processes and controls of the marine nitrogen cycle is therefore a prerequisite to reduce uncertainties in the prediction of future climate. Nevertheless, most ocean biogeochemical components of modern Earth system models have a rather simplistic representation of marine N-cycle mainly focusing on nitrate. Here we present results of the HAMburg Ocean Carbon Cycle model (HAMOCC) as part of the MPI-ESM which was extended by a prognostic representation of ammonium and nitrite to resolve important processes of the marine N-cycle such as nitrification and anaerobic ammonium oxidation (anammox). Additionally, we updated the production of nitrous oxide, an important greenhouse gas, allowing for two sources from oxidation of ammonium (nitrification) and from reduction of nitrite (nitrifier-denitrification) at low oxygen concentrations. Besides an extended model data comparison we discuss the following aspects of the N-cycle by model means: (1) contribution of anammox to the loss of fixed nitrogen, and (2) production and emission of marine nitrous oxide.

  13. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule amount...

  14. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule amount...

  15. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  16. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  17. Electrochemical oxygen reduction catalysed by Ni 3(hexaiminotriphenylene) 2

    DOE PAGES

    Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis; ...

    2016-03-08

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni 3(HITP) 2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni 3(HITP) 2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N 4 sites are structurally reminiscent of the highly active and widely studied non-platinum groupmore » metal electrocatalysts containing M-N 4 units. Ni 3(HITP) 2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. As a result, such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.« less

  18. Fisheries, low oxygen and climate change: how much do we really know?

    PubMed

    Townhill, B L; Pinnegar, J K; Righton, D A; Metcalfe, J D

    2017-03-01

    As a result of long-term climate change, regions of the ocean with low oxygen concentrations are predicted to occur more frequently and persist for longer periods of time in the future. When low levels of oxygen are present, this places additional pressure on marine organisms to meet their metabolic requirements, with implications for growth, feeding and reproduction. Extensive research has been carried out on the effects of acute hypoxia, but far less on long-term chronic effects of low oxygen zones, especially with regard to commercially important fishes and shellfishes. To provide further understanding on how commercial species could be affected, the results of relevant experiments must support population and ecosystem models. This is not easy because individual effects are wide-ranging; for example, studies to date have shown that low oxygen zones can affect predator-prey relationships as some species are able to tolerate low oxygen more than others. Some fishes may move away from areas until oxygen levels return to acceptable levels, while others take advantage of a reduced start response in prey fishes and remain in the area to feed. Sessile or less mobile species such as shellfishes are unable to move out of depleted oxygen zones. Some species can tolerate low oxygen levels for only short periods of time, while others are able to acclimatize. To advance the knowledge-base further, a number of promising technological and modelling-based developments and the role of physiological data within these, are proposed. These include advances in remote telemetry (tagging) and sensor technologies, trait-based analyses to provide insight into how whole assemblages might respond in the future, research into long-term adaptability of species, population and ecosystem modelling techniques and quantification of economic effects. In addition, more detailed oxygen monitoring and projections are required to better understand the likely temporal and local-scale changes in

  19. Correlation Between Foraminifera Phanerozoic Body Size Record versus Carbon Dioxide and Oxygen

    NASA Astrophysics Data System (ADS)

    Vo, N.; Seixas, G.; Payne, J.

    2012-12-01

    Body sizes are crucial in determining organisms' niches and their survival in the environment. Whether body sizes are affected by environmental and/or biological variables has been an intriguing question to many paleobiology researchers for decades. The environment of an ecosystem can greatly impact its organisms; therefore, in this study, I attempt to identify possible factors that affect the body sizes of foraminifera by comparing their test volumes with oxygen and carbon dioxide concentrations through time. To obtain data for my graphs, I measured the body sizes of foraminifera recorded in the Ellis and Messina catalogue of foraminifera. Visual analysis of my graphs indicates that there is a positive correlation between their body sizes and oxygen concentrations from 400 to 200 mya. From 200 mya onward, mean body size remains relatively constant while maximum body size increases with increases in oxygen concentration. Previous work has shown that benthic foraminifera require little oxygen to survive. My results support this discovery, and add to it by indicating that benthic foraminifera may survive with little oxygen, but flourish most when there are high concentrations of oxygen. My results also show that there is a complicated relationship between the body sizes of foraminifera and carbon dioxide. Oxygen is required for respiration, and high concentrations of oxygen create a better living environment for foraminifera. The effect of oxygen concentrations on foraminifera can be extended to other organisms that need oxygen for respiration.

  20. The Influence of Marine Microfouling on the Corrosion Behaviour of Passive Materials and Copper Alloys

    DTIC Science & Technology

    2008-01-02

    to organometallic catalysis, acidification of the electrode surface, the combined effects of elevated H20 2 and decreased pH and the production of...Ennoblement in marine waters has been ascribed to depolarization of the oxygen reduction reaction due to organometallic catalysis, acidification of the...organometallic catalysis, acidification of the electrode surface, the combined effects of elevated hydrogen peroxide (H202) and decreased pH and the production

  1. UHMS position statement: topical oxygen for chronic wounds.

    PubMed

    Feldmeier, J J; Hopf, H W; Warriner, R A; Fife, C E; Gesell, L B; Bennett, M

    2005-01-01

    A small body of literature has been published reporting the application of topical oxygen for chronic non-healing wounds . Frequently, and erroneously, this form of oxygen administration has been referred to as "topical hyperbaric oxygen therapy" or even more erroneously "hyperbaric oxygen therapy." The advocates of topical oxygen claim several advantages over systemic hyperbaric oxygen including decreased cost, increased safety, decreased complications and putative physiologic effects including decreased free radical formation and more efficient delivery of oxygen to the wound surface. With topical oxygen an airtight chamber or polyethylene bag is sealed around a limb or the trunk by either a constriction/tourniquet device or by tape and high flow (usually 10 liters per minute) oxygen is introduced into the bag and over the wound. Pressures just over 1.0 atmospheres absolute (atm abs) (typically 1.004 to 1.013 atm abs) are recommended because higher pressures could decrease arterial/capillary inflow. The premise for topical oxygen, the diffusion of oxygen into the wound adequate to enhance healing, is attractive (though not proven) and its delivery is certainly less complex and expensive than hyperbaric oxygen. When discussing the physiology of topical oxygen, its proponents frequently reference studies of systemic hyperbaric oxygen suggesting that mechanisms are equally applicable to both topical and systemic high pressure oxygen delivery. In fact, however, the two are very different. To date, mechanisms of action whereby topical oxygen might be effective have not been defined or substantiated. Conversely, cellular toxicities due to extended courses of topical oxygen have been reported, although, again these data are not conclusive, and no mechanism for toxicity has been examined scientifically. Generally, collagen production and fibroblast proliferation are considered evidence of improved healing, and these are both enhanced by hyperbaric oxygen therapy

  2. Deglacial changes in oxygen minimum zones - the roles of physics, phytoplankton and ... fish? (Invited)

    NASA Astrophysics Data System (ADS)

    Galbraith, E. D.; bianchi, D.

    2013-12-01

    A global network of marine multi-proxy sediment records has shown that during the last deglaciation, hypoxic waters of the northern Indo-Pacific expanded, the oxygen minimum zones intensified, and denitrification within the oxygen minima accelerated. These changes would have impacted the fish and zooplankton that migrate on a daily basis down to the upper margins of hypoxic, or even suboxic waters, presumably in order to hide from predators. But the reasons behind these observed changes remain uncertain. Physical circulation changes could have altered the supply rate of oxygen to the subsurface, simultaneously modifying the resupply of nutrients to the ocean surface, while changes in dust deposition could have changed the iron nutrition of phytoplankton, further modifying export fluxes. Changes in respiration patterns could also have played an important part, either by altering the sinking depth of organic particles, or - perhaps - through changes in the respiration patterns of migrating animals, which could have acted as a strong feedback on any of the other changes. We show model simulations that explore the possible roles of these different mechanisms in natural oceanic oxygenation changes of the Quaternary.

  3. An innovative coupling between column leaching and oxygen consumption tests to assess behavior of contaminated marine dredged sediments.

    PubMed

    Couvidat, Julien; Benzaazoua, Mostafa; Chatain, Vincent; Zhang, Fan; Bouzahzah, Hassan

    2015-07-01

    Contaminated dredged sediments are often considered hazardous wastes, so they have to be adequately managed to avoid leaching of pollutants. The mobility of inorganic contaminants is a major concern. Metal sulfides (mainly framboïdal pyrite, copper, and zinc sulfides) have been investigated in this study as an important reactive metal-bearing phase sensitive to atmospheric oxygen action. An oxygen consumption test (OC-Test) has been adapted to assess the reactivity of dredged sediments when exposed to atmospheric oxygen. An experimental column set-up has been developed allowing the coupling between leaching and oxygen consumption test to investigate the reactivity of the sediment. This reactivity, which consisted of sulfide oxidation, was found to occur for saturation degree between 60 and 90 % and until the 20th testing week, through significant sulfates releases. These latter were assumed to come from sulfide oxidation in the first step of the test, then probably from gypsum dissolution. Confrontation results of OC-Test and leachate quality shows that Cu was well correlated to sulfates releases, which in turn, leads to Ca and Mg dissolution (buffer effect). Cu, and mostly Zn, was associated to organic matter, phyllosilicates, and other minerals through organo-clay complexes. This research confirmed that the OC-Test, originally developed for mine tailings, could be a useful tool in the dredged sediment field which can allow for intrinsic characterization of reactivity of a material suspected to readily reacting with oxygen and for better understanding of geochemical processes that affect pollutants behavior, conversion, and transfer in the environment.

  4. Design and Application of New Low-Cost Instruments for Marine Environmental Research

    PubMed Central

    Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto

    2014-01-01

    The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea. PMID:25490594

  5. Short Term INT-Formazan Production as a Proxy for Marine Prokaryote Respiration

    NASA Astrophysics Data System (ADS)

    Cajal-Medrano, R.; Villegas-Mendoza, J.; Maske, H.

    2016-02-01

    Prokaryotes are poisoned by the tetrazolium electron transport probe INT on time scales of less than one hour, invalidating the interpretation of the rate of in vivo INT reduction to formazan as a proxy for oxygen consumption rates (Villegas-Mendoza et al. 2015). We measured oxygen consumption rate (R; µM O2 hour-1) and electron transport activity with in vivo INT formazan production (IFP, mM formazan) at 0.5 mM INT during 1 hour exposure time of natural communities and cultures of the marine bacteria Vibrio harveyi growing in batch and continuous cultures. A strong exponential relationship R = 0.20 IFP2.15 (p<0.05) with oxygen consumption and total formazan production was found over a wide range of growth rates under aerobic condition. We find that IFP and oxygen consumption increase with bacterial specific growth rates and temperature as expected from basic principles of physiology and biochemistry. Oxygen and nitrogen saturated batch cultures of V. harveyi showed that both, IFP and oxygen consumption increased for 0.8 hours but then stopped similar to natural bacterial communities supporting the above relationship of IFP to prokaryote respiration. Our method implies adding 0.5 mM INT to a plankton sample and incubating for less than 1 hour. After prokaryote separation by size filtration (0.8 mm), the formazan crystals are collected by filtration (0.2 mm) and dissolved in propanol. The absorbance at 485 nm per sample volume yields the formazan potential that is related to prokaryote respiration in the sample.

  6. Modelling the effects of cerebral microvasculature morphology on oxygen transport.

    PubMed

    Park, Chang Sub; Payne, Stephen J

    2016-01-01

    The cerebral microvasculature plays a vital role in adequately supplying blood to the brain. Determining the health of the cerebral microvasculature is important during pathological conditions, such as stroke and dementia. Recent studies have shown the complex relationship between cerebral metabolic rate and transit time distribution, the transit times of all the possible pathways available dependent on network topology. In this paper, we extend a recently developed technique to solve for residue function, the amount of tracer left in the vasculature at any time, and transit time distribution in an existing model of the cerebral microvasculature to calculate cerebral metabolism. We present the mathematical theory needed to solve for oxygen concentration followed by results of the simulations. It is found that oxygen extraction fraction, the fraction of oxygen removed from the blood in the capillary network by the tissue, and cerebral metabolic rate are dependent on both mean and heterogeneity of the transit time distribution. For changes in cerebral blood flow, a positive correlation can be observed between mean transit time and oxygen extraction fraction, and a negative correlation between mean transit time and metabolic rate of oxygen. A negative correlation can also be observed between transit time heterogeneity and the metabolic rate of oxygen for a constant cerebral blood flow. A sensitivity analysis on the mean and heterogeneity of the transit time distribution was able to quantify their respective contributions to oxygen extraction fraction and metabolic rate of oxygen. Mean transit time has a greater contribution than the heterogeneity for oxygen extraction fraction. This is found to be opposite for metabolic rate of oxygen. These results provide information on the role of the cerebral microvasculature and its effects on flow and metabolism. They thus open up the possibility of obtaining additional valuable clinical information for diagnosing and treating

  7. Production of NO2/-/ and N2O by nitrifying bacteria at reduced concentrations of oxygen

    NASA Technical Reports Server (NTRS)

    Goreau, T. J.; Kaplan, W. A.; Wofsy, S. C.; Mcelroy, M. B.; Valois, F. W.; Watson, S. W.

    1980-01-01

    The influence of oxygen concentration on the production of NO2(-) and N2O by nitrifying marine bacteria of the genus Nitrosomonas is investigated. Pure cultures of the ammonium-oxiding bacteria isolated from the Western Tropical Atlantic Ocean were grown at oxygen partial pressures from 0.005 to 0.2 atm, and concentrations of N2O in the air above the growth medium and dissolved NO2(-) were determined. Decreasing oxygen concentrations are observed to induce a marked decrease in NO2(-) production rates and increase in N2O evolution, leading to an increase of the relative yield of N2O with respect to NO2(-) from 0.3% to nearly 10%. Similar yields of N2O at atmospheric oxygen levels are found for nitrifying bacteria of the genera Nitrosomonas, Nitrosolobus, Nitrosospira and Nitrosococcus, while nitrite-oxydizing bacteria and a dinoflagellate did not produce detectable quantities of N2O. Results support the view that nitrification is a major source of N2O in the environment.

  8. 78 FR 41299 - Regattas and Marine Parades; Great Lakes Annual Marine Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... and Marine Parades; Great Lakes Annual Marine Events AGENCY: Coast Guard, DHS. ACTION: Notice of... regattas and marine parades in the Captain of the Port Detroit zone from 9:00 a.m. on June 21, 2013 through... navigable waters immediately prior to, during, and immediately after regattas or marine parades. Enforcement...

  9. Evaluation of I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone as proxy for redox conditions in the ambient water masses

    NASA Astrophysics Data System (ADS)

    Glock, N.; Liebetrau, V.; Eisenhauer, A.

    2014-12-01

    Tropical oxygen minimum zones (OMZs) are most important areas of oxygen depletion in today´s oceans and nutrient cycling in these regions has a large socio-economic impact because they account for about 17% of the global commercial fish catches(1). Possibly increasing magnitude and area of oxygen depletion in these regions, might endanger rich pelagic fish habitats in the future threatening the global marine food supply. By the use of a quantitative redox proxy in OMZs, reconstruction of the temporal variation in OMZ extension eventually providing information about past and future changes in oxygenation and the anthropogenic role in the recent trend of expanding OMZs(2). Recent work has shown that iodine/calcium (I/Ca) ratios in marine carbonates are a promising proxy for ambient oxygen concentration(3). Our study explores the correlation of I/Ca ratios in four benthic foraminiferal species (three calcitic, one aragonitic) from the Peruvian OMZ to bottom water oxygen concentrations ([O2]BW) and evaluates foraminiferal I/Ca ratios as a possible redox proxy for the ambient water masses. Our results show that all species have a positive trend in the I/Ca ratios as a function of [O2]BW. Only for the aragonitic species Hoeglundina elegans this trend is not significant. The highest significance has been found for Uvigerina striata (I/Ca = 0.032(±0.004).[O2]BW + 0.29(±0.03), R² = 0.61, F = 75, P < 0.0001). Although I/Ca ratios in benthic foraminifera appear to be a robust redox proxy there are some methodical issues which have to be considered. These "pitfalls" include: (i) the volatility of iodine in acidic solutions, (ii) a species dependency of the I/Ca-[O2]BW relationship which is either related to a strong vital effect or toa species dependency on the calcification depth within sediment, and (iii) the inter-test variability of I/Ca between different specimens from the same species and habitat. (1): FAO FishStat: Fisheries and aquaculture software. In: FAO

  10. Oxygen Generator System Mars In-Situ Propellant Production Precursor Flight

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, M.; Baird, R. S.

    1999-01-01

    The 2001 Lander to Mars will carry the first ever ISRU payload to Mars. This payload, the Mars In-situ Propellant production Precursor (MIP), will demonstrate a variety of technologies that will be required for future ISRU Mars indigenous material processing plant designs. One of those technologies is that of extracting oxygen from the predominantly carbon dioxide atmosphere of Mars, a prerequisite for future sample return and human missions to Mars. The Oxygen Generator Subsystem (OGS) portion of the MIP will demonstrate this and is the focus of this paper. The primary objective of the OGS is to demonstrate the production of oxygen from Mars atmospheric gases. Secondary objectives are to measure the performance and reliability of oxygen generation hardware in actual mission environments over an extended time. Major constraints on the OGS design came from several sources. The Lander provides power to the system from solar power that is harnessed by photovoltaic arrays. This limited OGS to daytime only operations (six to eight hours) and a maximum power of 15W. The reliance on solar power necessitated thermal cycling of the OGS between Mars ambient and OGS operating temperatures. The Lander also limited the total mass of the MIP payload to 7.5 kg with a correspondingly small volume, and the OGS was one of six experiments in the MIP. Mass and volume were to be minimized. Another constraint was cost. Mission funding, as always, was tight. Cost was to be minimized. In short the OGS design had to be low power (<15 Watts), low mass (1 kg), low volume, low cost, and be capable of cyclical operations for an extended stay on Mars. After extensive research, a zirconia based solid oxide electrolyzer design was selected.

  11. Oxygen Generator System Mars In-Situ Propellant Production Precursor Flight

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, M.; Baird, R. S.

    1999-01-01

    The 2001 Lander to Mars will carry the first ever In situ Resource Utilization (ISRU) payload to Mars. This payload, the Mars In-situ Propellant production Precursor (MIP), will demonstrate a variety of technologies that will be required for future ISRU Mars indigenous material processing plant designs. One of those technologies is that of extracting oxygen from the predominantly carbon dioxide atmosphere of Mars, a prerequisite for future sample return and human missions to Mars. The Oxygen Generator Subsystem (OGS) portion of the MIP will demonstrate this and is the focus of this paper. The primary objective of the OGS is to demonstrate the production of oxygen from Mars atmospheric gases. Secondary objectives are to measure the performance and reliability of oxygen generation hardware in actual mission environments over an extended time. Major constraints on the OGS design came from several sources. The Lander provides power to the system from solar power that is harnessed by photovoltaic arrays. This limited OGS to daytime only operations (six to eight hours) and a maximum power of 15W. The reliance on solar power necessitated thermal cycling of the OGS between Mars ambient and OGS operating temperatures. The Lander also limited the total mass of the MIP payload to 7.5 kg with a correspondingly small volume, and the OGS was one of six experiments in the MIP Mass and volume were to be minimized. Another constraint was cost. Mission funding, as always, was tight. Cost was to be minimized. In short the OGS design had to be low power (<15 Watts), low mass (1 kg), low volume, low cost, and be capable of cyclical operations for an extended stay on Mars. After extensive research, a zirconia based solid oxide electrolyzer design was selected.

  12. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes.

    PubMed

    He, W-H; Shi, G R; Twitchett, R J; Zhang, Y; Zhang, K-X; Song, H-J; Yue, M-L; Wu, S-B; Wu, H-T; Yang, T-L; Xiao, Y-F

    2015-03-01

    Analysis of Permian-Triassic brachiopod diversity and body size changes from different water depths spanning the continental shelf to basinal facies in South China provides insights into the process of environmental deterioration. Comparison of the temporal changes of brachiopod diversity between deepwater and shallow-water facies demonstrates that deepwater brachiopods disappeared earlier than shallow-water brachiopods. This indicates that high environmental stress commenced first in deepwater settings and later extended to shallow waters. This environmental stress is attributed to major volcanic eruptions, which first led to formation of a stratified ocean and a chemocline in the outer shelf and deeper water environments, causing the disappearance of deep marine benthos including brachiopods. The chemocline then rapidly migrated upward and extended to shallow waters, causing widespread mass extinction of shallow marine benthos. We predict that the spatial and temporal patterns of earlier onset of disappearance/extinction and ecological crisis in deeper water ecosystems will be recorded during other episodes of rapid global warming. © 2014 John Wiley & Sons Ltd.

  13. Marine anoxia and delayed Earth system recovery after the end-Permian extinction

    PubMed Central

    Lau, Kimberly V.; Maher, Kate; Altiner, Demir; Kelley, Brian M.; Kump, Lee R.; Lehrmann, Daniel J.; Silva-Tamayo, Juan Carlos; Weaver, Karrie L.; Yu, Meiyi; Payne, Jonathan L.

    2016-01-01

    Delayed Earth system recovery following the end-Permian mass extinction is often attributed to severe ocean anoxia. However, the extent and duration of Early Triassic anoxia remains poorly constrained. Here we use paired records of uranium concentrations ([U]) and 238U/235U isotopic compositions (δ238U) of Upper Permian−Upper Triassic marine limestones from China and Turkey to quantify variations in global seafloor redox conditions. We observe abrupt decreases in [U] and δ238U across the end-Permian extinction horizon, from ∼3 ppm and −0.15‰ to ∼0.3 ppm and −0.77‰, followed by a gradual return to preextinction values over the subsequent 5 million years. These trends imply a factor of 100 increase in the extent of seafloor anoxia and suggest the presence of a shallow oxygen minimum zone (OMZ) that inhibited the recovery of benthic animal diversity and marine ecosystem function. We hypothesize that in the Early Triassic oceans—characterized by prolonged shallow anoxia that may have impinged onto continental shelves—global biogeochemical cycles and marine ecosystem structure became more sensitive to variation in the position of the OMZ. Under this hypothesis, the Middle Triassic decline in bottom water anoxia, stabilization of biogeochemical cycles, and diversification of marine animals together reflect the development of a deeper and less extensive OMZ, which regulated Earth system recovery following the end-Permian catastrophe. PMID:26884155

  14. Nitrite oxidation in the Namibian oxygen minimum zone

    PubMed Central

    Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel MM

    2012-01-01

    Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2− d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3− was re-oxidized back to NO3− via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways. PMID:22170426

  15. Nitrite oxidation in the Namibian oxygen minimum zone.

    PubMed

    Füssel, Jessika; Lam, Phyllis; Lavik, Gaute; Jensen, Marlene M; Holtappels, Moritz; Günter, Marcel; Kuypers, Marcel M M

    2012-06-01

    Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in (15)N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (≤372 nM NO(2)(-) d(-1)) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ~9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO(3)(-) was re-oxidized back to NO(3)(-) via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.

  16. Electrolysis-driven bioremediation of crude oil-contaminated marine sediments.

    PubMed

    Bellagamba, Marco; Cruz Viggi, Carolina; Ademollo, Nicoletta; Rossetti, Simona; Aulenta, Federico

    2017-09-25

    Bioremediation is an effective technology to tackle crude oil spill disasters, which takes advantage of the capacity of naturally occurring microorganisms to degrade petroleum hydrocarbons under a range of environmental conditions. The enzymatic process of breaking down oil is usually more rapid in the presence of oxygen. However, in contaminated sediments, oxygen levels are typically too low to sustain the rapid and complete biodegradation of buried hydrocarbons. Here, we explored the possibility to electrochemically manipulate the redox potential of a crude oil-contaminated marine sediment in order to establish, in situ, conditions that are conducive to contaminants biodegradation by autochthonous microbial communities. The proposed approach is based on the exploitation of low-voltage (2V) seawater electrolysis to drive oxygen generation (while minimizing chlorine evolution) on Dimensionally Stable Anodes (DSA) placed within the contaminated sediment. Results, based on a laboratory scale setup with chronically polluted sediments spiked with crude oil, showed an increased redox potential and a decreased pH in the vicinity of the anode of 'electrified' treatments, consistent with the occurrence of oxygen generation. Accordingly, hydrocarbons biodegradation was substantially accelerated (up to 3-times) compared to 'non-electrified' controls, while sulfate reduction was severely inhibited. Intermittent application of electrolysis proved to be an effective strategy to minimize the energy requirements of the process, without adversely affecting degradation performance. Taken as a whole, this study suggests that electrolysis-driven bioremediation could be a sustainable technology for the management of contaminated sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes

    NASA Astrophysics Data System (ADS)

    Lovejoy, Nathan R.; Albert, James S.; Crampton, William G. R.

    2006-03-01

    Amazonian rivers contain a remarkable fauna of endemic species derived from taxa that generally occur in oceans and seas. Several hypotheses have been proposed to explain the origin of marine-derived lineages, including opportunistic invasions via estuaries, vicariance related to uplift of the Andes, and vicariance related to Miocene marine incursions and connections. Here, we examine available data for marine-derived lineages of four groups: stingrays (Myliobatiformes), drums (Sciaenidae), anchovies (Engraulididae), and needlefish (Belonidae). Geographic distributions, age estimates (determined using fossils, biogeography, and molecular data sets), and phylogenies for these taxa are most compatible with origination during the Miocene from marine sister groups distributed along the northern coast of South America. We speculate that unique ecological and biogeographic aspects of the Miocene upper Amazonian wetland system, most notably long-term connections with marine systems, facilitated the evolutionary transition from marine to freshwater habitats.

  18. The challenges of marine spatial planning in the Arctic: Results from the ACCESS programme.

    PubMed

    Edwards, Rosemary; Evans, Alan

    2017-12-01

    Marine spatial planning is increasingly used to manage the demands on marine areas, both spatially and temporally, where several different users may compete for resources or space, to ensure that development is as sustainable as possible. Diminishing sea-ice coverage in the Arctic will allow for potential increases in economic exploitation, and failure to plan for cross-sectoral management could have negative economic and environmental results. During the ACCESS programme, a marine spatial planning tool was developed for the Arctic, enabling the integrated study of human activities related to hydrocarbon exploitation, shipping and fisheries, and the possible environmental impacts, within the context of the next 30 years of climate change. In addition to areas under national jurisdiction, the Arctic Ocean contains a large area of high seas. Resources and ecosystems extend across political boundaries. We use three examples to highlight the need for transboundary planning and governance to be developed at a regional level.

  19. Convergence of marine megafauna movement patterns in coastal and open oceans.

    PubMed

    Sequeira, A M M; Rodríguez, J P; Eguíluz, V M; Harcourt, R; Hindell, M; Sims, D W; Duarte, C M; Costa, D P; Fernández-Gracia, J; Ferreira, L C; Hays, G C; Heupel, M R; Meekan, M G; Aven, A; Bailleul, F; Baylis, A M M; Berumen, M L; Braun, C D; Burns, J; Caley, M J; Campbell, R; Carmichael, R H; Clua, E; Einoder, L D; Friedlaender, Ari; Goebel, M E; Goldsworthy, S D; Guinet, C; Gunn, J; Hamer, D; Hammerschlag, N; Hammill, M; Hückstädt, L A; Humphries, N E; Lea, M-A; Lowther, A; Mackay, A; McHuron, E; McKenzie, J; McLeay, L; McMahon, C R; Mengersen, K; Muelbert, M M C; Pagano, A M; Page, B; Queiroz, N; Robinson, P W; Shaffer, S A; Shivji, M; Skomal, G B; Thorrold, S R; Villegas-Amtmann, S; Weise, M; Wells, R; Wetherbee, B; Wiebkin, A; Wienecke, B; Thums, M

    2018-03-20

    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.

  20. Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen

    NASA Technical Reports Server (NTRS)

    Swett, K.; Knoll, A. H.

    1989-01-01

    Upper Proterozoic carbonate successions from central East Greenland (the Limestone-Dolomite 'Series' of the Eleonore Bay Group) and Svalbard (the Backlundtoppen Formation of the Akademikerbreen) Group, Spitsbergen, and the Upper Russo Formation of the Raoldtoppen Group, Nordaustlandet) contain thick sequences dominated by pisolites. These rocks were generated in shallow marine environments, and the pisoids are essentially oversized ooids. A marine environment is supported by the thickness and lateral extent of the carbonates; by a sedimentary association of pisolites with stromatolites, flake-conglomerates, calcarenites, calcilutites, microphytolites, and ooids similar to that found in numerous other Proterozoic carbonate successions; by sedimentary structures, including cross-beds and megaripples that characterize the pisolitic beds; and by microorganisms that inhabit modern marine ooids of the Bahama Banks. Petrographic features and strontium abundances suggest that the pisoids were originally aragonitic, but neomorphism, silicification, calcitization, and dolomitization have extensively modified original mineralogies and fabrics. The East Greenland and Svalbard pisolitic carbonates reflect similar depositional environments and diagenetic histories, reinforcing previous bio-, litho-, and chemostratigraphic interpretations that the two sequences accumulated contiguously in a coastal zone of pisoid genesis which extended for at least 600, and probably 1000 or more, kilometres.

  1. Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen.

    PubMed

    Swett, K; Knoll, A H

    1989-01-01

    Upper Proterozoic carbonate successions from central East Greenland (the Limestone-Dolomite 'Series' of the Eleonore Bay Group) and Svalbard (the Backlundtoppen Formation of the Akademikerbreen) Group, Spitsbergen, and the Upper Russo Formation of the Raoldtoppen Group, Nordaustlandet) contain thick sequences dominated by pisolites. These rocks were generated in shallow marine environments, and the pisoids are essentially oversized ooids. A marine environment is supported by the thickness and lateral extent of the carbonates; by a sedimentary association of pisolites with stromatolites, flake-conglomerates, calcarenites, calcilutites, microphytolites, and ooids similar to that found in numerous other Proterozoic carbonate successions; by sedimentary structures, including cross-beds and megaripples that characterize the pisolitic beds; and by microorganisms that inhabit modern marine ooids of the Bahama Banks. Petrographic features and strontium abundances suggest that the pisoids were originally aragonitic, but neomorphism, silicification, calcitization, and dolomitization have extensively modified original mineralogies and fabrics. The East Greenland and Svalbard pisolitic carbonates reflect similar depositional environments and diagenetic histories, reinforcing previous bio-, litho-, and chemostratigraphic interpretations that the two sequences accumulated contiguously in a coastal zone of pisoid genesis which extended for at least 600, and probably 1000 or more, kilometres.

  2. Iron isotope biogeochemistry of Neoproterozoic marine shales

    NASA Astrophysics Data System (ADS)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by < 1 ‰ , suggesting that water column processes, namely the degree of oxidation of the ferrous seawater iron reservoir, control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a

  3. Life History Traits of an Extended Longevity Phenotype of Drosophila melanogaster.

    PubMed

    Deepashree, S; Shivanandappa, T; Ramesh, S R

    2017-01-01

    Aging or senescence is a complex biological phenomenon. Artificially selected Drosophila for extended longevity is one of the experimental models used to understand the mechanisms involved in aging and to test various theories. To examine the life history traits and biochemical defenses in relation to aging in an extended longevity phenotype of Drosophila melanogaster. Life history traits viz., survivability, fecundity, development time, dry weight, wing size, lipid content, starvation, desiccation and cold resistances, locomotory ability, antioxidant enzyme activities and reactive oxygen species level between control and selected lines of D. melanogaster were investigated. In our model of Drosophila, extended longevity is associated with no trade-off in fecundity and shows variable resistance to environmental stress such as starvation, cold and desiccation. Enhanced biochemical defense involving the antioxidant enzymes was positively correlated with longevity. Extended longevity phenotypes of Drosophila represent genomic plasticity associated with variable life history traits attributed to the genetic background of the progenitor population and the environment of selection. Oxidative stress resistance seems to be a significant factor in longevity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Molecular dynamics simulations of oxygen vacancy diffusion in SrTiO3.

    PubMed

    Schie, Marcel; Marchewka, Astrid; Müller, Thomas; De Souza, Roger A; Waser, Rainer

    2012-12-05

    A classical force-field model with partial ionic charges was applied to study the behaviour of oxygen vacancies in the perovskite oxide strontium titanate (SrTiO(3)). The dynamical behaviour of these point defects was investigated as a function of temperature and defect concentration by means of molecular dynamics (MD) simulations. The interaction between oxygen vacancies and an extended defect, here a Σ3(111) grain boundary, was also examined by means of MD simulations. Analysis of the vacancy distribution revealed considerable accumulation of vacancies in the envelope of the grain boundary. The possible clustering of oxygen vacancies in bulk SrTiO(3) was studied by means of static lattice calculations within the Mott-Littleton approach. All binary vacancy-vacancy configurations were found to be energetically unfavourable.

  5. Using latent effects to determine the ecological importance of dissolved organic matter to marine invertebrates.

    PubMed

    Wendt, Dean E; Johnson, Collin H

    2006-10-01

    The uptake and utilization of dissolved organic matter (DOM) by marine invertebrates is a field that has received significant attention over the past 100 years. Although it is well established that DOM is taken up by marine invertebrates, the extent to which it contributes to an animal's survival, growth, and reproduction (that is, the ecological benefits) remains largely unknown. Previous work seeking to demonstrate the putative ecological benefits of DOM uptake have examined them within a single life stage of an animal. Moreover, most of the benefits are demonstrated through indirect approaches by examining (1) mass balance, or (2) making comparisons of oxyenthalpic conversions of transport rates to metabolic rate as judged by oxygen consumption. We suggest that directly examining delayed metamorphosis or the latent effects associated with nutritional stress of larvae is a better model for investigating the ecological importance of DOM to marine invertebrates. We also provide direct evidence that availability of DOM enhances survival and growth of the bryozoan Bugula neritina. That DOM offsets latent effects in B. neritina suggests that the underlying mechanisms are at least in part energetic.

  6. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  7. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.

    PubMed

    Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico

    2008-10-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.

  8. Interannual variability of Dissolved Oxygen values around the Balearic Islands

    NASA Astrophysics Data System (ADS)

    Balbín, R.; Aparicio, A.; López-Jurado, J. L.; Flexas, M. M.

    2012-04-01

    Periodic movements of the trawl fishing fleet at Mallorca Island suggest a seasonal variability of the demersal resources, associated with hydrodynamic variability. The area where these commercial fisheries operate extends from the north to the southeast of Mallorca channel, between Mallorca and Ibiza Islands. It is thus affected by the different hydrodynamic conditions of the two sub-basins of the western Mediterranean (the Balearic and the Algerian sub-basins), with different geomorphologic and hydrodynamic characteristics. To characterize this hydrodynamic variability, hydrographic data collected around the Balearic Islands since 2001 with CTDs were analized [1]. Hydrographic parameters were processed according to the standard protocols. Dissolved oxygen (DO) was calibrated onboard using the winkler method. Temperature and salinity were used to characterize the different water masses. At the Western Mediterranean, the maximum values of DO in the water column are observed in the sur- face waters during winter (> 6.0 ml /l), when these water in contact with the atmosphere absorb large amount of oxygen, favored by low winter temperatures and notable turbulence. Later in the spring, the gradual increase of temperature, and the beginning of stratification and biological activity, lead to a decrease of oxygen concentration mainly in surface waters. During summer, these values continue to reduce in the surface mixed layer. Below it, and due to the biological activity, an increase is observed, giving rise to the absolute maximum of this parameter (> 6.5 ml /l). During autumn, the atmospheric forcing breaks the stratification producing a homogenization of surface water. At this moment, DO shows intermediate values. Below the surface waters, about 200 m, a relative maximum corresponding to the seasonal Winter Intermediate Waters (WIW) can be observed. Intermediate waters, between 400 and 600 m, reveal an oxygen minimum (4.0 ml /l) associated to the Levantine Intermediate

  9. Seasonal Oxygen Isotopic Variations in Marine Waters from the Caribbean and Pacific Coasts of Panama

    NASA Astrophysics Data System (ADS)

    Robbins, J. A.; Grossman, E. L.; Morales, J.; Thompson, R.; O'Dea, A.

    2012-12-01

    Stable isotopic studies of ancient tropical marine environments require a much more thorough understanding of the relative influences of freshening and upwelling on isotopic records than currently exists. To this aim we conducted twice-weekly δ18O and salinity measurements on waters collected from marine laboratories on opposite sides of the Isthmus of Panama; Naos in the Gulf of Panama (Tropical Eastern Pacific) and Galeta in the southwestern Caribbean (SWC). Data reveal the strong transition from dry to rainy season in the Gulf of Panama where upwelling in the dry-season increases coastal salinity (up to 34.4 psu) and δ18O values (-1.0 to 0.0‰), whilst the rainy season lowers marine δ18O values (as low as -1.6‰) due to the 2-3 fold increase in rainfall. In contrast, the SWC experiences no upwelling, but does reveal a significant amount of freshening caused by increasing rainfall at the transition from boreal spring to summer. Despite the greater disparity in the average rainfall between dry and wet seasons near Galeta (SWC) compared with the Gulf of Panama, a decrease in marine δ18O of only ~0.5‰ on average was found between seasons for SWC waters. The higher salinity and higher δ18O values in the coastal waters of the SWC are due in part to large scale climatic differences principally that the Caribbean experiences higher evaporation than rainfall. The relationship between salinity and δ18O in the Gulf of Panama is strong (R2=0.87; p<0.001), but is much less pronounced in the SWC (R2=0.38; p<0.001). Regression lines for these data describe the local relationship between salinity and δ18O. The slope and intercept (freshwater end-member) derived for the SWC (0.15±0.02‰/psu; -4.56±0.77‰) are similar to those from Fairbanks et al. [1] for the Atlantic as a whole (0.19‰/psu; -5.97‰) and essentially identical to those from Legrande and Schmidt [2] for the "Tropical Atlantic" (0.15±0.01‰/psu; -4.61±0.30‰). Gulf of Panama samples share a

  10. Oxygen Pickup Ions Measured by MAVEN Outside the Martian Bow Shock

    NASA Astrophysics Data System (ADS)

    Rahmati, A.; Cravens, T.; Larson, D. E.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.; Jakosky, B. M.

    2015-12-01

    The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars on September 21, 2014 and has since been detecting energetic oxygen pickup ions by its SEP (Solar Energetic Particles) and SWIA (Solar Wind Ion Analyzer) instruments. The oxygen pickup ions detected outside the Martian bowshock and in the upstream solar wind are associated with the extended hot oxygen exosphere of Mars, which is created mainly by the dissociative recombination of molecular oxygen ions with electrons in the ionosphere. We use analytic solutions to the equations of motion of pickup ions moving in the undisturbed upstream solar wind magnetic and motional electric fields and calculate the flux of oxygen pickup ions at the location of MAVEN. Our model calculates the ionization rate of oxygen atoms in the exosphere based on the hot oxygen densities predicted by Rahmati et al. (2014), and the sources of ionization include photo-ionization, charge exchange, and electron impact ionization. The photo-ionization frequency is calculated using the FISM (Flare Irradiance Spectral Model) solar flux model, based on MAVEN EUVM (Extreme Ultra-Violet Monitor) measurements. The frequency of charge exchange between a solar wind proton and an oxygen atom is calculated using MAVEN SWIA solar wind proton flux measurements, and the electron impact ionization frequency is calculated based on MAVEN SWEA (Solar Wind Electron Analyzer) solar wind electron flux measurements. The solar wind magnetic field used in the model is from the measurements taken by MAVEN MAG (magnetometer) in the upstream solar wind. The good agreement between our predicted pickup oxygen fluxes and the MAVEN SEP and SWIA measured ones confirms detection of oxygen pickup ions and these model-data comparisons can be used to constrain models of hot oxygen densities and photochemical escape flux.

  11. Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion.

    PubMed

    Villegas-Amtmann, Stella; Atkinson, Shannon; Paras-Garcia, Alberto; Costa, Daniel P

    2012-08-01

    Survival depends on an animal's ability to find and acquire prey. In diving vertebrates, this ability is directly related to their physiological capability (e.g. oxygen stores). We studied the seasonal variation in oxygen stores, body temperature and body condition in California sea lions (Zalophus californianus) (CSL) as a function of seasonal variation in temperature, primary productivity, diving behavior and reproductive stage. During summer, blood oxygen stores were significantly greater and muscle oxygen stores were significantly lower than in winter. Total oxygen stores, body condition and body temperature did not change between seasons but variations in body temperature were greater during summer. Changes in oxygen stores are partly attributed to diving behavior, temperature and pregnancy that could increase oxygen consumption. Blood and muscle oxygen stores appear to be influenced by reproductive state. Blood oxygen stores are more likely influenced by diving behavior and temperature than muscle oxygen stores. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Routine low-dose continuous or nocturnal oxygen for people with acute stroke: three-arm Stroke Oxygen Supplementation RCT.

    PubMed

    Roffe, Christine; Nevatte, Tracy; Bishop, Jon; Sim, Julius; Penaloza, Cristina; Jowett, Susan; Ives, Natalie; Gray, Richard; Ferdinand, Phillip; Muddegowda, Girish

    2018-03-01

    Stroke is a major cause of death and disability worldwide. Hypoxia is common after stroke and is associated with worse outcomes. Oxygen supplementation could prevent hypoxia and secondary brain damage. (1) To assess whether or not routine low-dose oxygen supplementation in patients with acute stroke improves outcome compared with no oxygen; and (2) to assess whether or not oxygen given at night only, when oxygen saturation is most likely to be low, is more effective than continuous supplementation. Multicentre, prospective, randomised, open, blinded-end point trial. Secondary care hospitals with acute stroke wards. Adult stroke patients within 24 hours of hospital admission and 48 hours of stroke onset, without definite indications for or contraindications to oxygen or a life-threatening condition other than stroke. Allocated by web-based minimised randomisation to: (1) continuous oxygen: oxygen via nasal cannula continuously (day and night) for 72 hours after randomisation at a flow rate of 3 l/minute if baseline oxygen saturation was ≤ 93% or 2 l/minute if > 93%; (2) nocturnal oxygen: oxygen via nasal cannula overnight (21:00-07:00) for three consecutive nights. The flow rate was the same as the continuous oxygen group; and (3) control: no routine oxygen supplementation unless required for reasons other than stroke. Primary outcome: disability assessed by the modified Rankin Scale (mRS) at 3 months by postal questionnaire (participant aware, assessor blinded). Secondary outcomes at 7 days: neurological improvement, National Institutes of Health Stroke Scale (NIHSS), mortality, and the highest and lowest oxygen saturations within the first 72 hours. Secondary outcomes at 3, 6, and 12 months: mortality, independence, current living arrangements, Barthel Index, quality of life (European Quality of Life-5 Dimensions, three levels) and Nottingham Extended Activities of Daily Living scale by postal questionnaire. In total, 8003 patients were recruited between

  13. Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.

    2017-12-01

    Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit

  14. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    PubMed

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Use of multiple functional traits of protozoa for bioassessment of marine pollution.

    PubMed

    Zhong, Xiaoxiao; Xu, Guangjian; Xu, Henglong

    2017-06-30

    Ecological parameters based on multiply functional traits have many advantages for monitoring programs by reducing "signal to noise" ratios of observed species data. To identify potential indicators for bioassessment of marine pollution in function space, the functional patterns of protozoan communities and relationships with environmental changes were studied in coastal waters of the Yellow Sea during a 1-year period. The results showed that: (1) the spatial variability in functional trait distributions of the protozoa was significantly associated with changes in environmental variables, especially chemical oxygen demand (COD) and nutrients on spatial scale; (2) the functional traits, especially food resources and feeding type, were significantly correlated with COD and nutrients; and (3) the functional diversity indices were generally related to nutrients or COD. Based on the results, we suggest that the functional traits and diversity indices of protozoan communities may be used as more effective indicators for bioassessment of marine pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High phosphate availability as a possible cause for massive cyanobacterial production of oxygen in the Paleoproterozoic atmosphere

    NASA Astrophysics Data System (ADS)

    Papineau, Dominic; Purohit, Ritesh; Fogel, Marilyn L.; Shields-Zhou, Graham A.

    2013-01-01

    The deposition of major Precambrian phosphorites was restricted to times of global change and atmospheric oxygenation at both ends of the Proterozoic. Phosphorites formed after highly positive carbon isotope excursions in carbonates deposited during the Paleoproterozoic Lomagundi-Jatuli event and the Neoproterozoic Cryogenian and Ediacaran periods. The correlative step-wise rise in atmospheric oxygen over the Proterozoic has been linked to changes in the carbon cycle. However, the postulated relations between carbon isotope events, phosphorites, and atmospheric oxygenation remain unexplained. Paleoproterozoic carbonates of the Aravalli Supergroup, India, preserve evidence for cyanobacterial blooms in the form of tightly packed stromatolitic columns in the world's oldest significant sedimentary phosphate deposit. Restricted basins of the Lower Aravalli Group with stromatolitic phosphorites in Jhamarkotra, Udaipur, Jhabua, and Sallopat exhibit near-zero δ13Ccarb values and large ranges of δ13Corg values between -33.3‰ and -10.1‰, indicative of a complex carbon cycle. Because phosphate accumulates primarily in oxic sediments, these eutrophic microbial ecosystems likely developed within the photic zone of the shallow, oxygenated marine realm. This is consistent with deposition during the time of increasingly more oxidizing conditions, after the Great Oxidation Event (GOE). Approximately contemporaneous basins without phosphate deposits from Ghasiar, Karouli, Negadia, Umra, and Babarmal exhibit a range of positive δ13Ccarb excursions, some with values up to +11.2‰, that suggest high rates of organic carbon burial, and others with moderately high δ13Ccarb values around +6‰ or +3‰, that suggest smaller carbon cycle perturbations. The δ15N values of all these rocks vary between -0.7‰ and +3.4‰, and are consistent with the predominance of nitrogen fixation during cyanobacterial blooms in all basin types. Such low nitrogen isotope values are interpreted to

  17. Fingerprinting Bacterial and Fungal Manganese Oxidation via Stable Oxygen Isotopes of Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Sutherland, K. M.; Wankel, S. D.; Hansel, C. M.

    2016-12-01

    Manganese (Mn) oxides are a ubiquitous mineralogical component of surface Earth and Mars. Mn(III/IV) oxides are potent environmental sorbents and oxidants that play a crucial role in the fate of organic matter. The processes by which Mn(II) oxidation occurs in natural systems are poorly understood, but a number of studies have implicated microogranisms as the primary agents of Mn(II) oxidation in terrestrial and marine environments. The ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides transcends the boundaries of biological domain, with an abundance of well-characterized prokaryotes as well as eukaryotic fungi with the ability to oxidize Mn(II) to Mn(III/IV) oxides. Biological Mn(II) oxidation proceeds directly through enzymatic activity or indirectly through the production of reactive oxygen species. Building upon earlier research suggesting that stable oxygen isotope fractionation could be used to fingerprint unique Mn(II)-oxidizing organisms or distinct oxidation pathways, here we use culture-based studies of Mn(II)-oxidizing bacteria and fungi to determine the kinetic oxygen isotope effects associated with Mn(II) oxidation. Since the oxygen molecules in Mn(III/IV) oxides are comprised of oxygen from both precursor water and molecular oxygen, we used a two-fold approach to constrain isotope fractionation with respect to each oxygen source. We used open system oxidation experiments using oxygen-18 labeled water in parallel with closed system Rayleigh distillation oxidation experiments to fully constrain isotope fractionation associated with oxygen atom incorporation during Mn(II) oxidation. Our results suggest commonalities among fractionation factors from groups of Mn(II)-oxidizing organisms that have similar oxidation mechanisms. These results suggest that stable oxygen isotopes of Mn(III/IV) oxides have the potential to distinguish between Mn(II) oxidation pathways in nature, providing a way to determine which groups of Mn(II) oxidizers may be

  18. Atomic oxygen in the lower thermosphere

    NASA Technical Reports Server (NTRS)

    Lin, Florence J.; Chance, Kelly V.; Traub, Wesley A.

    1987-01-01

    The 63-micron line due to thermospheric atomic oxygen O(P-3), using a far-infrared spectrometer on a balloon platform at 37 km altitude over Palestine, TX, on June 20, 1983. From measurements of the equivalent width of this line at two elevation angles, a weak angular dependence is found: the equivalent width increases by a factor of 1.5 + or - 0.3 as the angle decreases from +30 deg to +1 deg. Since the optical depth of the O(P-3) line is large, the measured line intensity cannot be directly converted to a column abundance. Instead, the measurements are interpreted in terms of radiative transfer through a 16-layer atmosphere extending to 200 km. A model atmosphere for summer at 30 deg N, with an exospheric temperature of 1300 K, including an assumed daytime atomic oxygen abundance profile constructed from recent chemical and dynamical models and a water vapor abundance profile constructed from recent experimental and model results is used. For this assumed O(P-3) vertical profile shape a multiplicative scaling factor of 0.8, with an altitude-dependent uncertainty is determined. In the best-determined layer the uncertainty in the multiplier is + or - 0.2 at 119 km. The model-dependent peak atomic oxygen density is 3.6 (+ or - 1.9) x 10 to the 11th/cu cm at an altitude of about 101 km.

  19. 76 FR 80331 - Foreign-Trade Subzone 41H Application for Expansion; Mercury Marine (Marine Propulsion Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Application for Expansion; Mercury Marine (Marine Propulsion Products), Fond du Lac and Oshkosh, WI An... of FTZ 41, on behalf of Mercury Marine, operator of Subzone 41H at Mercury Marine's marine propulsion... manufacturing of marine propulsion products at Mercury Marine's facilities located in Fond du Lac and Oshkosh...

  20. 33 CFR 334.430 - Neuse River and tributaries at Marine Corps Air Station Cherry Point, North Carolina; restricted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Marine Corps Air Station Cherry Point, North Carolina; restricted area and danger zone. 334.430 Section... Air Station Cherry Point, North Carolina; restricted area and danger zone. (a) The restricted area... Station, Cherry Point, North Carolina, extending from the mouth of Hancock Creek to a point approximately...

  1. Tracing marine cryptotephras in the North Atlantic during the last glacial period: Improving the North Atlantic marine tephrostratigraphic framework

    NASA Astrophysics Data System (ADS)

    Abbott, Peter M.; Griggs, Adam J.; Bourne, Anna J.; Chapman, Mark R.; Davies, Siwan M.

    2018-06-01

    Tephrochronology is increasingly being recognised as a key tool for the correlation of disparate palaeoclimatic archives, underpinning chronological models and facilitating climatically independent comparisons of climate proxies. Tephra frameworks integrating both distal and proximal tephra occurrences are essential to these investigations providing key details on their spatial distributions, geochemical signatures, eruptive sources as well as any available chronological and/or stratigraphic information. Frameworks also help to avoid mis-correlation of horizons and provide important information on volcanic history. Here we present a comprehensive chronostratigraphic framework of 14 tephra horizons from North Atlantic marine sequences spanning 60-25 cal ka BP. Horizons previously discovered as visible or coarse-grained deposits have been combined with 11 newly recognised volcanic deposits, identified through the application of cryptotephra identification and characterisation methods to a wide network of marine sequences. Their isochronous integrity has been assessed using their physical characteristics. All horizons originated from Iceland with the vast majority having a basaltic composition sourced from the Grímsvötn, Kverkfjöll, Hekla/Vatnafjöll and Katla volcanic systems. New occurrences, improved stratigraphic placements and a refinement of the geochemical signature of the NAAZ II are reported and the range of the FMAZ IV has been extended. In addition, several significant geochemical populations that further investigations could show to be isochronous are reported. This tephra framework provides the foundation for the correlation and synchronisation of these marine records to the Greenland ice-cores and European terrestrial records to investigate the phasing, rate, timing and mechanisms controlling rapid climate changes that characterised the last glacial period.

  2. An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi.

    PubMed

    Overy, David P; Bayman, Paul; Kerr, Russell G; Bills, Gerald F

    2014-07-03

    The natural products community has been investigating secondary metabolites from marine fungi for several decades, but when one attempts to search for validated reports of new natural products from marine fungi, one encounters a literature saturated with reports from 'marine-derived' fungi. Of the 1000+ metabolites that have been characterized to date, only approximately 80 of these have been isolated from species from exclusively marine lineages. These metabolites are summarized here along with the lifestyle and habitats of their producing organisms. Furthermore, we address some of the reasons for the apparent disconnect between the stated objectives of discovering new chemistry from marine organisms and the apparent neglect of the truly exceptional obligate marine fungi. We also offer suggestions on how to reinvigorate enthusiasm for marine natural products discovery from fungi from exclusive marine lineages and highlight the need for critically assessing the role of apparently terrestrial fungi in the marine environment.

  3. Long-distance electron transport occurs globally in marine sediments

    NASA Astrophysics Data System (ADS)

    Burdorf, Laurine D. W.; Tramper, Anton; Seitaj, Dorina; Meire, Lorenz; Hidalgo-Martinez, Silvia; Zetsche, Eva-Maria; Boschker, Henricus T. S.; Meysman, Filip J. R.

    2017-02-01

    Recently, long filamentous bacteria have been reported conducting electrons over centimetre distances in marine sediments. These so-called cable bacteria perform an electrogenic form of sulfur oxidation, whereby long-distance electron transport links sulfide oxidation in deeper sediment horizons to oxygen reduction in the upper millimetres of the sediment. Electrogenic sulfur oxidation exerts a strong impact on the local sediment biogeochemistry, but it is currently unknown how prevalent the process is within the seafloor. Here we provide a state-of-the-art assessment of its global distribution by combining new field observations with previous reports from the literature. This synthesis demonstrates that electrogenic sulfur oxidation, and hence microbial long-distance electron transport, is a widespread phenomenon in the present-day seafloor. The process is found in coastal sediments within different climate zones (off the Netherlands, Greenland, the USA, Australia) and thrives on a range of different coastal habitats (estuaries, salt marshes, mangroves, coastal hypoxic basins, intertidal flats). The combination of a widespread occurrence and a strong local geochemical imprint suggests that electrogenic sulfur oxidation could be an important, and hitherto overlooked, component of the marine cycle of carbon, sulfur and other elements.

  4. Evidence for a novel marine harmful algal bloom: Cyanotoxin (Microcystin) transfer from land to sea otters

    USGS Publications Warehouse

    Miller, Melissa A.; Kudela, Raphael M.; Mekebri, Abdu; Crane, Dave; Oates, Stori C.; Tinker, M. Timothy; Staedler, Michelle; Miller, Woutrina A.; Toy-Choutka, Sharon; Dominik, Clare; Hardin, Dane; Langlois, Gregg; Murray, Michael; Ward, Kim; Jessup, David A.

    2010-01-01

    "Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine "harmful algal

  5. Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters

    PubMed Central

    Miller, Melissa A.; Kudela, Raphael M.; Mekebri, Abdu; Crane, Dave; Oates, Stori C.; Tinker, M. Timothy; Staedler, Michelle; Miller, Woutrina A.; Toy-Choutka, Sharon; Dominik, Clare; Hardin, Dane; Langlois, Gregg; Murray, Michael; Ward, Kim; Jessup, David A.

    2010-01-01

    “Super-blooms” of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine

  6. Marine Mammals :: NOAA Fisheries

    Science.gov Websites

    Education Grants Scholarships and Fellowships Teacher at Sea Climate Stewards Get Involved Dolphin Smart » Sign up for FishNews GO OPR Home Species Marine Mammals Sea Turtles Marine & Anadromous Fish Marine Marine Mammal Database National Tissue Bank Prescott Grants Sea Turtles Unusual Mortality Events Permits

  7. Hydrogen Peroxide-Dependent Uptake of Iodine by Marine Flavobacteriaceae Bacterium Strain C-21▿

    PubMed Central

    Amachi, Seigo; Kimura, Koh; Muramatsu, Yasuyuki; Shinoyama, Hirofumi; Fujii, Takaaki

    2007-01-01

    The cells of the marine bacterium strain C-21, which is phylogenetically closely related to Arenibacter troitsensis, accumulate iodine in the presence of glucose and iodide (I−). In this study, the detailed mechanism of iodine uptake by C-21 was determined using a radioactive iodide tracer, 125I−. In addition to glucose, oxygen and calcium ions were also required for the uptake of iodine. The uptake was not inhibited or was only partially inhibited by various metabolic inhibitors, whereas reducing agents and catalase strongly inhibited the uptake. When exogenous glucose oxidase was added to the cell suspension, enhanced uptake of iodine was observed. The uptake occurred even in the absence of glucose and oxygen if hydrogen peroxide was added to the cell suspension. Significant activity of glucose oxidase was found in the crude extracts of C-21, and it was located mainly in the membrane fraction. These findings indicate that hydrogen peroxide produced by glucose oxidase plays a key role in the uptake of iodine. Furthermore, enzymatic oxidation of iodide strongly stimulated iodine uptake in the absence of glucose. Based on these results, the mechanism was considered to consist of oxidation of iodide to hypoiodous acid by hydrogen peroxide, followed by passive translocation of this uncharged iodine species across the cell membrane. Interestingly, such a mechanism of iodine uptake is similar to that observed in iodine-accumulating marine algae. PMID:17933915

  8. The variability of California summertime marine stratus: impacts on surface air temperatures

    USGS Publications Warehouse

    Iacobellis, Sam F.; Cayan, Daniel R.

    2013-01-01

    This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.

  9. Oxygen intrusion into anoxic fjords leads to increased methylmercury availability

    NASA Astrophysics Data System (ADS)

    Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy

    2013-04-01

    Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the

  10. Marine’ Character of the United States Marine Band

    DTIC Science & Technology

    2008-04-01

    Classical Music Hall ofFame on May 24, 1998.14 In celebration of 200 years of service to our country and the Corps, the Marine Band was received as the guest...Saxophones LJ Cellos iH Guitar i Y Bassoons H Harp y Vocalists 1 31 AppendixE Current U.S. Marine Band Fitness Report « z o t3 ill en U.S. Marine Band FITNESS

  11. Bosch Reactor Development for High Percentage Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Howard, David; Abney, Morgan

    2015-01-01

    This next Generation Life Support Project entails the development and demonstration of Bosch reaction technologies to improve oxygen recovery from metabolically generated oxygen and/or space environments. A primary focus was placed on alternate carbon formation reactor concepts to improve useful catalyst life for space vehicle applications, and make use of in situ catalyst resources for non-terrestrial surface missions. Current state-of-the-art oxygen recovery systems onboard the International Space Station are able to effectively recover approximately 45 percent of the oxygen consumed by humans and exhausted in the form of carbon dioxide (CO2). Excess CO2 is vented overboard and the oxygen contained in the molecules is lost. For long-duration missions beyond the reaches of Earth for resupply, it will be necessary to recover greater amounts of constituents such as oxygen that are necessary for sustaining life. Bosch technologies theoretically recover 100 percent of the oxygen from CO2, producing pure carbon as the sole waste product. Challenges with this technology revolve around the carbon product fouling catalyst materials, drastically limiting catalyst life. This project successfully demonstrated techniques to extend catalyst surface area exposure times to improve catalyst life for vehicle applications, and demonstrated the use of Martian and lunar regolith as viable catalyst Bosch Reactor Development for High Percentage Oxygen Recovery From Carbon Dioxide materials for surface missions. The Bosch process generates carbon nanotube formation within the regolith, which has been shown to improve mechanical properties of building materials. Production of bricks from post reaction regolith for building and radiation shielding applications were also explored.

  12. The role of "inert" surface chemistry in marine biofouling prevention.

    PubMed

    Rosenhahn, Axel; Schilp, Sören; Kreuzer, Hans Jürgen; Grunze, Michael

    2010-05-07

    The settlement and colonization of marine organisms on submerged man-made surfaces is a major economic problem for many marine industries. The most apparent detrimental effects of biofouling are increased fuel consumption of ships, clogging of membranes and heat exchangers, disabled underwater sensors, and growth of biofoulers in aquaculture systems. The presently common-but environmentally very problematic-way to deal with marine biofouling is to incorporate biocides, which use biocidal products in the surface coatings to kill the colonizing organisms, into the surface coatings. Since the implementation of the International Maritime Organization Treaty on biocides in 2008, the use of tributyltin (TBT) is restricted and thus environmentally benign but effective surface coatings are required. In this short review, we summarize the different strategies which are pursued in academia and industry to better understand the mechanisms of biofouling and to develop strategies which can be used for industrial products. Our focus will be on chemically "inert" model surface coatings, in particular oligo- and poly(ethylene glycol) (OEG and PEG) functionalized surface films. The reasons for choosing this class of chemistry as an example are three-fold: Firstly, experiments on spore settlement on OEG and PEG coatings help to understand the mechanism of non-fouling of highly hydrated interfaces; secondly, these studies defy the common assumption that surface hydrophilicity-as measured by water contact angles-is an unambiguous and predictive tool to determine the fouling behavior on the surface; and thirdly, choosing this system is a good example for "interfacial systems chemistry": it connects the behavior of unicellular marine organisms with the antifouling properties of a hydrated surface coating with structural and electronic properties as derived from ab initio quantum mechanical calculations using the electronic wave functions of oxygen, hydrogen, and carbon. This short

  13. Marin Tsunami (video)

    USGS Publications Warehouse

    Filmed and edited by: Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. The Marin coast could be struck by a tsunami. Whether you live in Marin County, visit the beaches, or rent or own a home near the coast, it is vital to understand the tsunami threat and take preparation seriously. Marin Tsunami tells the story of what several West Marin communities are doing to be prepared. This video was produced by the US Geological Survey (USGS) in cooperation with the Marin Office of Emergency Services.

  14. Origin of epigenetic calcite in coal from Antarctica and Ohio based on isotope compositions of oxygen, carbon and strontium

    USGS Publications Warehouse

    Faure, G.; Botoman, G.

    1984-01-01

    Isotopic compositions of oxygen, carbon and strontium of calcite cleats in coal seams of southern Victoria Land, Antarctica, and Tuscarawas County, Ohio, contain a record of the conditions a the time of their formation. The Antarctic calcites (?? 18O(SMOW) = +9.14 to +11.82%0) were deposited from waters enriched in 16O whose isotopic composition was consistent with that of meteoric precipitation at low temperature and high latitude. The carbon of the calcite cleats (?? 13C(PDB) = -15.6 to -16.9%0) was derived in part from the coal (?? 13C(PDB) = -23.5 to -26.7%0) as carbon dioxide and by oxidation of methane or other hydrocarbon gases. The strontium ( 87Sr 86Sr = 0.71318-0.72392) originated primarily from altered feldspar grains in the sandstones of the Beacon Supergroup. Calcite cleats in the Kittaning No. 6 coal seam of Ohio (?? 18O(SMOW) = +26.04 to +27.79%0) were deposited from waters that had previously exchanged oxygen, possibly with marine carbonate at depth. The carbon (?? 13C(PDB) = 0.9 to +2.4%0) is enriched in 13C even though that cleats were deposited in coal that is highly enriched in 12C and apparently originated from marine carbonates. Strontium in the cleats ( Sr 87 0.71182-0.71260) is not of marine origin but contains varying amounts of radiogenic 87Sr presumably derived from detrital Rb-bearing minerals in the adjacent sedimentary rocks. The results of this study suggest that calcite cleats in coal of southern Victoria Land, Antarctica, were deposited after the start of glaciation in Cenozoic time and that those in Ohio precipitated from formation waters derived from the underlying marine carbonate rocks, probably in the recent geologic past. ?? 1984.

  15. Mariner-C Spacecraft Model

    NASA Image and Video Library

    1964-06-21

    A model of the Mariner-C spacecraft at the National Aeronautics and Space Administration (NASA) Lewis Research Center for a June 1964 Conference on New Technology. Mariner-C and Mariner-D were identical spacecraft designed by the Jet Propulsion Laboratory to flyby Mars and photograph the Martian surface. Mariner-C was launched on November 4, 1964, but the payload shroud did not jettison properly and the spacecraft’s battery power did not function. The mission ended unsuccessfully two days later. Mariner-D was launched as designed on November 28, 1964 and became the first successful mission to Mars. It was the first time a planet was photographed from space. Mariner-D’s 21 photographs revealed an inhospitable and barren landscape. The two Mariner spacecraft were launched by Atlas-Agena-D rockets. Lewis had taken over management of the Agena Program in October 1962. There had been five failures and two partial failures in the 17 Agena launches before being taken over by NASA Lewis. Lewis, however, oversaw 28 successful Agena missions between 1962 and 1968, including several Rangers and the Mariner Venus '67.

  16. Broad Phylogenetic Occurrence of the Oxygen-Binding Hemerythrins in Bilaterians

    PubMed Central

    Schrago, Carlos G.; Halanych, Kenneth M.

    2017-01-01

    Abstract Animal tissues need to be properly oxygenated for carrying out catabolic respiration and, as such, natural selection has presumably favored special molecules that can reversibly bind and transport oxygen. Hemoglobins, hemocyanins, and hemerythrins (Hrs) fulfill this role, with Hrs being the least studied. Knowledge of oxygen-binding proteins is crucial for understanding animal physiology. Hr genes are present in the three domains of life, Archaea, Bacteria, and Eukaryota; however, within Animalia, Hrs has been reported only in marine species in six phyla (Annelida, Brachiopoda, Priapulida, Bryozoa, Cnidaria, and Arthropoda). Given this observed Hr distribution, whether all metazoan Hrs share a common origin is circumspect. We investigated Hr diversity and evolution in metazoans, by employing in silico approaches to survey for Hrs from of 120 metazoan transcriptomes and genomes. We found 58 candidate Hr genes actively transcribed in 36 species distributed in 11 animal phyla, with new records in Echinodermata, Hemichordata, Mollusca, Nemertea, Phoronida, and Platyhelminthes. Moreover, we found that “Hrs” reported from Cnidaria and Arthropoda were not consistent with that of other metazoan Hrs. Contrary to previous suggestions that Hr genes were absent in deuterostomes, we find Hr genes present in deuterostomes and were likely present in early bilaterians, but not in nonbilaterian animal lineages. As expected, the Hr gene tree did not mirror metazoan phylogeny, suggesting that Hrs evolutionary history was complex and besides the oxygen carrying capacity, the drivers of Hr evolution may also consist of secondary functional specializations of the proteins, like immunological functions. PMID:29016798

  17. An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi

    PubMed Central

    Overy, David P.; Bayman, Paul; Kerr, Russell G.; Bills, Gerald F.

    2014-01-01

    The natural products community has been investigating secondary metabolites from marine fungi for several decades, but when one attempts to search for validated reports of new natural products from marine fungi, one encounters a literature saturated with reports from ‘marine-derived’ fungi. Of the 1000+ metabolites that have been characterized to date, only approximately 80 of these have been isolated from species from exclusively marine lineages. These metabolites are summarized here along with the lifestyle and habitats of their producing organisms. Furthermore, we address some of the reasons for the apparent disconnect between the stated objectives of discovering new chemistry from marine organisms and the apparent neglect of the truly exceptional obligate marine fungi. We also offer suggestions on how to reinvigorate enthusiasm for marine natural products discovery from fungi from exclusive marine lineages and highlight the need for critically assessing the role of apparently terrestrial fungi in the marine environment. PMID:25379338

  18. Inequalities of extended beta and extended hypergeometric functions.

    PubMed

    Mondal, Saiful R

    2017-01-01

    We study the log-convexity of the extended beta functions. As a consequence, we establish Turán-type inequalities. The monotonicity, log-convexity, log-concavity of extended hypergeometric functions are deduced by using the inequalities on extended beta functions. The particular cases of those results also give the Turán-type inequalities for extended confluent and extended Gaussian hypergeometric functions. Some reverses of Turán-type inequalities are also derived.

  19. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.

    2014-08-05

    Oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified marine waters. Currently OMZs are expanding due to global climate change. This expansion alters marine ecosystem function and the productivity of fisheries due to habitat compression and changes in biogeochemical cycling leading to fixed nitrogen loss and greenhouse gas production. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally anoxic fjord, Saanich Inlet to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components formore » nitrification, anaerobic ammonium oxidation (anammox), denitrification and inorganic carbon fixation predominantly co-varied with abundance and distribution patterns of Thaumarchaeota, Nitrospira, Planctomycetes and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Within these groups, pathways mediating inorganic carbon fixation and nitrogen and sulfur transformations were differentially expressed across the redoxcline. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters and denitrification, sulfur-oxidation and inorganic carbon fixation pathways affiliated with SUP05 dominated suboxic and anoxic waters. Nitrite-oxidation and anammox pathways affiliated with Nitrospina and Planctomycetes respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The differential expression of these pathways under changing water column redox conditions has quantitative implications for coupled biogeochemical cycling linking different modes of inorganic carbon fixation with distributed nitrogen and sulfur-based energy metabolism extensible to coastal and open ocean OMZs.« less

  20. Parasites and marine invasions

    USGS Publications Warehouse

    Torchin, M.E.; Lafferty, K.D.; Kuris, A.M.

    2002-01-01

    Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.