Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong; Kim, Ju Han
2014-01-01
Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models.
Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong
2014-01-01
Objectives Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Methods Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. Results In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. Conclusions A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models. PMID:24627817
DOE Office of Scientific and Technical Information (OSTI.GOV)
2006-10-25
The purpose of the eXtended MetaData Registry (XMDR) prototype is to demonstrate the feasibility and utility of constructing an extended metadata registry, i.e., one which encompasses richer classification support, facilities for including terminologies, and better support for formal specification of semantics. The prototype registry will also serve as a reference implementation for the revised versions of ISO 11179, Parts 2 and 3 to help guide production implementations.
An asynchronous traversal engine for graph-based rich metadata management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Dong; Carns, Philip; Ross, Robert B.
Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less
An asynchronous traversal engine for graph-based rich metadata management
Dai, Dong; Carns, Philip; Ross, Robert B.; ...
2016-06-23
Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less
The PDS4 Metadata Management System
NASA Astrophysics Data System (ADS)
Raugh, A. C.; Hughes, J. S.
2018-04-01
We present the key features of the Planetary Data System (PDS) PDS4 Information Model as an extendable metadata management system for planetary metadata related to data structure, analysis/interpretation, and provenance.
Metadata and Service at the GFZ ISDC Portal
NASA Astrophysics Data System (ADS)
Ritschel, B.
2008-05-01
The online service portal of the GFZ Potsdam Information System and Data Center (ISDC) is an access point for all manner of geoscientific geodata, its corresponding metadata, scientific documentation and software tools. At present almost 2000 national and international users and user groups have the opportunity to request Earth science data from a portfolio of 275 different products types and more than 20 Million single data files with an added volume of approximately 12 TByte. The majority of the data and information, the portal currently offers to the public, are global geomonitoring products such as satellite orbit and Earth gravity field data as well as geomagnetic and atmospheric data for the exploration. These products for Earths changing system are provided via state-of-the art retrieval techniques. The data product catalog system behind these techniques is based on the extensive usage of standardized metadata, which are describing the different geoscientific product types and data products in an uniform way. Where as all ISDC product types are specified by NASA's Directory Interchange Format (DIF), Version 9.0 Parent XML DIF metadata files, the individual data files are described by extended DIF metadata documents. Depending on the beginning of the scientific project, one part of data files are described by extended DIF, Version 6 metadata documents and the other part are specified by data Child XML DIF metadata documents. Both, the product type dependent parent DIF metadata documents and the data file dependent child DIF metadata documents are derived from a base-DIF.xsd xml schema file. The ISDC metadata philosophy defines a geoscientific product as a package consisting of mostly one or sometimes more than one data file plus one extended DIF metadata file. Because NASA's DIF metadata standard has been developed in order to specify a collection of data only, the extension of the DIF standard consists of new and specific attributes, which are necessary for an explicit identification of single data files and the set-up of a comprehensive Earth science data catalog. The huge ISDC data catalog is realized by product type dependent tables filled with data file related metadata, which have relations to corresponding metadata tables. The product type describing parent DIF XML metadata documents are stored and managed in ORACLE's XML storage structures. In order to improve the interoperability of the ISDC service portal, the existing proprietary catalog system will be extended by an ISO 19115 based web catalog service. In addition to this development there is ISDC related concerning semantic network of different kind of metadata resources, like different kind of standardized and not-standardized metadata documents and literature as well as Web 2.0 user generated information derived from tagging activities and social navigation data.
Metadata Sets for e-Government Resources: The Extended e-Government Metadata Schema (eGMS+)
NASA Astrophysics Data System (ADS)
Charalabidis, Yannis; Lampathaki, Fenareti; Askounis, Dimitris
In the dawn of the Semantic Web era, metadata appear as a key enabler that assists management of the e-Government resources related to the provision of personalized, efficient and proactive services oriented towards the real citizens’ needs. As different authorities typically use different terms to describe their resources and publish them in various e-Government Registries that may enhance the access to and delivery of governmental knowledge, but also need to communicate seamlessly at a national and pan-European level, the need for a unified e-Government metadata standard emerges. This paper presents the creation of an ontology-based extended metadata set for e-Government Resources that embraces services, documents, XML Schemas, code lists, public bodies and information systems. Such a metadata set formalizes the exchange of information between portals and registries and assists the service transformation and simplification efforts, while it can be further taken into consideration when applying Web 2.0 techniques in e-Government.
NASA Astrophysics Data System (ADS)
Do, Hong; Gudmundsson, Lukas; Leonard, Michael; Westra, Seth; Senerivatne, Sonia
2017-04-01
In-situ observations of daily streamflow with global coverage are a crucial asset for understanding large-scale freshwater resources which are an essential component of the Earth system and a prerequisite for societal development. Here we present the Global Streamflow Indices and Metadata archive (G-SIM), a collection indices derived from more than 20,000 daily streamflow time series across the globe. These indices are designed to support global assessments of change in wet and dry extremes, and have been compiled from 12 free-to-access online databases (seven national databases and five international collections). The G-SIM archive also includes significant metadata to help support detailed understanding of streamflow dynamics, with the inclusion of drainage area shapefile and many essential catchment properties such as land cover type, soil and topographic characteristics. The automated procedure in data handling and quality control of the project makes G-SIM a reproducible, extendible archive and can be utilised for many purposes in large-scale hydrology. Some potential applications include the identification of observational trends in hydrological extremes, the assessment of climate change impacts on streamflow regimes, and the validation of global hydrological models.
Evaluating the privacy properties of telephone metadata.
Mayer, Jonathan; Mutchler, Patrick; Mitchell, John C
2016-05-17
Since 2013, a stream of disclosures has prompted reconsideration of surveillance law and policy. One of the most controversial principles, both in the United States and abroad, is that communications metadata receives substantially less protection than communications content. Several nations currently collect telephone metadata in bulk, including on their own citizens. In this paper, we attempt to shed light on the privacy properties of telephone metadata. Using a crowdsourcing methodology, we demonstrate that telephone metadata is densely interconnected, can trivially be reidentified, and can be used to draw sensitive inferences.
Evaluating the privacy properties of telephone metadata
Mayer, Jonathan; Mutchler, Patrick; Mitchell, John C.
2016-01-01
Since 2013, a stream of disclosures has prompted reconsideration of surveillance law and policy. One of the most controversial principles, both in the United States and abroad, is that communications metadata receives substantially less protection than communications content. Several nations currently collect telephone metadata in bulk, including on their own citizens. In this paper, we attempt to shed light on the privacy properties of telephone metadata. Using a crowdsourcing methodology, we demonstrate that telephone metadata is densely interconnected, can trivially be reidentified, and can be used to draw sensitive inferences. PMID:27185922
Metadata Design in the New PDS4 Standards - Something for Everybody
NASA Astrophysics Data System (ADS)
Raugh, Anne C.; Hughes, John S.
2015-11-01
The Planetary Data System (PDS) archives, supports, and distributes data of diverse targets, from diverse sources, to diverse users. One of the core problems addressed by the PDS4 data standard redesign was that of metadata - how to accommodate the increasingly sophisticated demands of search interfaces, analytical software, and observational documentation into label standards without imposing limits and constraints that would impinge on the quality or quantity of metadata that any particular observer or team could supply. And yet, as an archive, PDS must have detailed documentation for the metadata in the labels it supports, or the institutional knowledge encoded into those attributes will be lost - putting the data at risk.The PDS4 metadata solution is based on a three-step approach. First, it is built on two key ISO standards: ISO 11179 "Information Technology - Metadata Registries", which provides a common framework and vocabulary for defining metadata attributes; and ISO 14721 "Space Data and Information Transfer Systems - Open Archival Information System (OAIS) Reference Model", which provides the framework for the information architecture that enforces the object-oriented paradigm for metadata modeling. Second, PDS has defined a hierarchical system that allows it to divide its metadata universe into namespaces ("data dictionaries", conceptually), and more importantly to delegate stewardship for a single namespace to a local authority. This means that a mission can develop its own data model with a high degree of autonomy and effectively extend the PDS model to accommodate its own metadata needs within the common ISO 11179 framework. Finally, within a single namespace - even the core PDS namespace - existing metadata structures can be extended and new structures added to the model as new needs are identifiedThis poster illustrates the PDS4 approach to metadata management and highlights the expected return on the development investment for PDS, users and data preparers.
Improving Metadata Compliance for Earth Science Data Records
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Chang, O.; Foster, D.
2014-12-01
One of the recurring challenges of creating earth science data records is to ensure a consistent level of metadata compliance at the granule level where important details of contents, provenance, producer, and data references are necessary to obtain a sufficient level of understanding. These details are important not just for individual data consumers but also for autonomous software systems. Two of the most popular metadata standards at the granule level are the Climate and Forecast (CF) Metadata Conventions and the Attribute Conventions for Dataset Discovery (ACDD). Many data producers have implemented one or both of these models including the Group for High Resolution Sea Surface Temperature (GHRSST) for their global SST products and the Ocean Biology Processing Group for NASA ocean color and SST products. While both the CF and ACDD models contain various level of metadata richness, the actual "required" attributes are quite small in number. Metadata at the granule level becomes much more useful when recommended or optional attributes are implemented that document spatial and temporal ranges, lineage and provenance, sources, keywords, and references etc. In this presentation we report on a new open source tool to check the compliance of netCDF and HDF5 granules to the CF and ACCD metadata models. The tool, written in Python, was originally implemented to support metadata compliance for netCDF records as part of the NOAA's Integrated Ocean Observing System. It outputs standardized scoring for metadata compliance for both CF and ACDD, produces an objective summary weight, and can be implemented for remote records via OPeNDAP calls. Originally a command-line tool, we have extended it to provide a user-friendly web interface. Reports on metadata testing are grouped in hierarchies that make it easier to track flaws and inconsistencies in the record. We have also extended it to support explicit metadata structures and semantic syntax for the GHRSST project that can be easily adapted to other satellite missions as well. Overall, we hope this tool will provide the community with a useful mechanism to improve metadata quality and consistency at the granule level by providing objective scoring and assessment, as well as encourage data producers to improve metadata quality and quantity.
Achieving interoperability for metadata registries using comparative object modeling.
Park, Yu Rang; Kim, Ju Han
2010-01-01
Achieving data interoperability between organizations relies upon agreed meaning and representation (metadata) of data. For managing and registering metadata, many organizations have built metadata registries (MDRs) in various domains based on international standard for MDR framework, ISO/IEC 11179. Following this trend, two pubic MDRs in biomedical domain have been created, United States Health Information Knowledgebase (USHIK) and cancer Data Standards Registry and Repository (caDSR), from U.S. Department of Health & Human Services and National Cancer Institute (NCI), respectively. Most MDRs are implemented with indiscriminate extending for satisfying organization-specific needs and solving semantic and structural limitation of ISO/IEC 11179. As a result it is difficult to address interoperability among multiple MDRs. In this paper, we propose an integrated metadata object model for achieving interoperability among multiple MDRs. To evaluate this model, we developed an XML Schema Definition (XSD)-based metadata exchange format. We created an XSD-based metadata exporter, supporting both the integrated metadata object model and organization-specific MDR formats.
Prediction of Solar Eruptions Using Filament Metadata
NASA Astrophysics Data System (ADS)
Aggarwal, Ashna; Schanche, Nicole; Reeves, Katharine K.; Kempton, Dustin; Angryk, Rafal
2018-05-01
We perform a statistical analysis of erupting and non-erupting solar filaments to determine the properties related to the eruption potential. In order to perform this study, we correlate filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a spatiotemporal tracking algorithm. The HEK provides metadata about each filament instance, including values for length, area, tilt, and chirality. We add additional metadata properties such as the distance from the nearest active region and the magnetic field decay index. We compare trends in the metadata from erupting and non-erupting filament tracks to discover which properties present signs of an eruption. We find that a change in filament length over time is the most important factor in discriminating between erupting and non-erupting filament tracks, with erupting tracks being more likely to have decreasing length. We attempt to find an ensemble of predictive filament metadata using a Random Forest Classifier approach, but find the probability of correctly predicting an eruption with the current metadata is only slightly better than chance.
FRAMES Metadata Reporting Templates for Ecohydrological Observations, version 1.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christianson, Danielle; Varadharajan, Charuleka; Christoffersen, Brad
FRAMES is a a set of Excel metadata files and package-level descriptive metadata that are designed to facilitate and improve capture of desired metadata for ecohydrological observations. The metadata are bundled with data files into a data package and submitted to a data repository (e.g. the NGEE Tropics Data Repository) via a web form. FRAMES standardizes reporting of diverse ecohydrological and biogeochemical data for synthesis across a range of spatiotemporal scales and incorporates many best data science practices. This version of FRAMES supports observations for primarily automated measurements collected by permanently located sensors, including sap flow (tree water use), leafmore » surface temperature, soil water content, dendrometry (stem diameter growth increment), and solar radiation. Version 1.1 extend the controlled vocabulary and incorporates functionality to facilitate programmatic use of data and FRAMES metadata (R code available at NGEE Tropics Data Repository).« less
Semantic Networks and Social Networks
ERIC Educational Resources Information Center
Downes, Stephen
2005-01-01
Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…
Park, Yu Rang; Yoon, Young Jo; Kim, Hye Hyeon; Kim, Ju Han
2013-01-01
Achieving semantic interoperability is critical for biomedical data sharing between individuals, organizations and systems. The ISO/IEC 11179 MetaData Registry (MDR) standard has been recognized as one of the solutions for this purpose. The standard model, however, is limited. Representing concepts consist of two or more values, for instance, are not allowed including blood pressure with systolic and diastolic values. We addressed the structural limitations of ISO/IEC 11179 by an integrated metadata object model in our previous research. In the present study, we introduce semantic extensions for the model by defining three new types of semantic relationships; dependency, composite and variable relationships. To evaluate our extensions in a real world setting, we measured the efficiency of metadata reduction by means of mapping to existing others. We extracted metadata from the College of American Pathologist Cancer Protocols and then evaluated our extensions. With no semantic loss, one third of the extracted metadata could be successfully eliminated, suggesting better strategy for implementing clinical MDRs with improved efficiency and utility.
Design and Implementation of a Metadata-rich File System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, S; Gokhale, M B; Maltzahn, C
2010-01-19
Despite continual improvements in the performance and reliability of large scale file systems, the management of user-defined file system metadata has changed little in the past decade. The mismatch between the size and complexity of large scale data stores and their ability to organize and query their metadata has led to a de facto standard in which raw data is stored in traditional file systems, while related, application-specific metadata is stored in relational databases. This separation of data and semantic metadata requires considerable effort to maintain consistency and can result in complex, slow, and inflexible system operation. To address thesemore » problems, we have developed the Quasar File System (QFS), a metadata-rich file system in which files, user-defined attributes, and file relationships are all first class objects. In contrast to hierarchical file systems and relational databases, QFS defines a graph data model composed of files and their relationships. QFS incorporates Quasar, an XPATH-extended query language for searching the file system. Results from our QFS prototype show the effectiveness of this approach. Compared to the de facto standard, the QFS prototype shows superior ingest performance and comparable query performance on user metadata-intensive operations and superior performance on normal file metadata operations.« less
A case for user-generated sensor metadata
NASA Astrophysics Data System (ADS)
Nüst, Daniel
2015-04-01
Cheap and easy to use sensing technology and new developments in ICT towards a global network of sensors and actuators promise previously unthought of changes for our understanding of the environment. Large professional as well as amateur sensor networks exist, and they are used for specific yet diverse applications across domains such as hydrology, meteorology or early warning systems. However the impact this "abundance of sensors" had so far is somewhat disappointing. There is a gap between (community-driven) sensor networks that could provide very useful data and the users of the data. In our presentation, we argue this is due to a lack of metadata which allows determining the fitness of use of a dataset. Syntactic or semantic interoperability for sensor webs have made great progress and continue to be an active field of research, yet they often are quite complex, which is of course due to the complexity of the problem at hand. But still, we see the most generic information to determine fitness for use is a dataset's provenance, because it allows users to make up their own minds independently from existing classification schemes for data quality. In this work we will make the case how curated user-contributed metadata has the potential to improve this situation. This especially applies for scenarios in which an observed property is applicable in different domains, and for set-ups where the understanding about metadata concepts and (meta-)data quality differs between data provider and user. On the one hand a citizen does not understand the ISO provenance metadata. On the other hand a researcher might find issues in publicly accessible time series published by citizens, which the latter might not be aware of or care about. Because users will have to determine fitness for use for each application on their own anyway, we suggest an online collaboration platform for user-generated metadata based on an extremely simplified data model. In the most basic fashion, metadata generated by users can be boiled down to a basic property of the world wide web: many information items, such as news or blog posts, allow users to create comments and rate the content. Therefore we argue to focus a core data model on one text field for a textual comment, one optional numerical field for a rating, and a resolvable identifier for the dataset that is commented on. We present a conceptual framework that integrates user comments in existing standards and relevant applications of online sensor networks and discuss possible approaches, such as linked data, brokering, or standalone metadata portals. We relate this framework to existing work in user generated content, such as proprietary rating systems on commercial websites, microformats, the GeoViQua User Quality Model, the CHARMe annotations, or W3C Open Annotation. These systems are also explored for commonalities and based on their very useful concepts and ideas; we present an outline for future extensions of the minimal model. Building on this framework we present a concept how a simplistic comment-rating-system can be extended to capture provenance information for spatio-temporal observations in the sensor web, and how this framework can be evaluated.
A Semantically Enabled Metadata Repository for Solar Irradiance Data Products
NASA Astrophysics Data System (ADS)
Wilson, A.; Cox, M.; Lindholm, D. M.; Nadiadi, I.; Traver, T.
2014-12-01
The Laboratory for Atmospheric and Space Physics, LASP, has been conducting research in Atmospheric and Space science for over 60 years, and providing the associated data products to the public. LASP has a long history, in particular, of making space-based measurements of the solar irradiance, which serves as crucial input to several areas of scientific research, including solar-terrestrial interactions, atmospheric, and climate. LISIRD, the LASP Interactive Solar Irradiance Data Center, serves these datasets to the public, including solar spectral irradiance (SSI) and total solar irradiance (TSI) data. The LASP extended metadata repository, LEMR, is a database of information about the datasets served by LASP, such as parameters, uncertainties, temporal and spectral ranges, current version, alerts, etc. It serves as the definitive, single source of truth for that information. The database is populated with information garnered via web forms and automated processes. Dataset owners keep the information current and verified for datasets under their purview. This information can be pulled dynamically for many purposes. Web sites such as LISIRD can include this information in web page content as it is rendered, ensuring users get current, accurate information. It can also be pulled to create metadata records in various metadata formats, such as SPASE (for heliophysics) and ISO 19115. Once these records are be made available to the appropriate registries, our data will be discoverable by users coming in via those organizations. The database is implemented as a RDF triplestore, a collection of instances of subject-object-predicate data entities identifiable with a URI. This capability coupled with SPARQL over HTTP read access enables semantic queries over the repository contents. To create the repository we leveraged VIVO, an open source semantic web application, to manage and create new ontologies and populate repository content. A variety of ontologies were used in creating the triplestore, including ontologies that came with VIVO such as FOAF. Also, the W3C DCAT ontology was integrated and extended to describe properties of our data products that we needed to capture, such as spectral range. The presentation will describe the architecture, ontology issues, and tools used to create LEMR and plans for its evolution.
A New Look at Data Usage by Using Metadata Attributes as Indicators of Data Quality
NASA Technical Reports Server (NTRS)
Won, Young-In; Wanchoo, Lalit; Behnke, Jeanne
2016-01-01
This study reviews the key metrics (users, distributed volume, and files) in multiple ways to gain an understanding of the significance of the metadata. Characterizing the usability of data by key metadata elements, such as discipline and study area, will assist in understanding how the user needs have evolved over time. The data usage pattern based on product level provides insight into the level of data quality. In addition, the data metrics by various services, such as the Open-source Project for a Network Data Access Protocol (OPeNDAP) and subsets, address how these services have extended the usage of data. Over-all, this study presents the usage of data and metadata by metrics analyses, which may assist data centers in better supporting the needs of the users.
OpenFlow arbitrated programmable network channels for managing quantum metadata
Dasari, Venkat R.; Humble, Travis S.
2016-10-10
Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less
OpenFlow arbitrated programmable network channels for managing quantum metadata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasari, Venkat R.; Humble, Travis S.
Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less
CellML metadata standards, associated tools and repositories
Beard, Daniel A.; Britten, Randall; Cooling, Mike T.; Garny, Alan; Halstead, Matt D.B.; Hunter, Peter J.; Lawson, James; Lloyd, Catherine M.; Marsh, Justin; Miller, Andrew; Nickerson, David P.; Nielsen, Poul M.F.; Nomura, Taishin; Subramanium, Shankar; Wimalaratne, Sarala M.; Yu, Tommy
2009-01-01
The development of standards for encoding mathematical models is an important component of model building and model sharing among scientists interested in understanding multi-scale physiological processes. CellML provides such a standard, particularly for models based on biophysical mechanisms, and a substantial number of models are now available in the CellML Model Repository. However, there is an urgent need to extend the current CellML metadata standard to provide biological and biophysical annotation of the models in order to facilitate model sharing, automated model reduction and connection to biological databases. This paper gives a broad overview of a number of new developments on CellML metadata and provides links to further methodological details available from the CellML website. PMID:19380315
Liu, Z; Sun, J; Smith, M; Smith, L; Warr, R
2013-11-01
Computer-assisted diagnosis (CAD) of malignant melanoma (MM) has been advocated to help clinicians to achieve a more objective and reliable assessment. However, conventional CAD systems examine only the features extracted from digital photographs of lesions. Failure to incorporate patients' personal information constrains the applicability in clinical settings. To develop a new CAD system to improve the performance of automatic diagnosis of melanoma, which, for the first time, incorporates digital features of lesions with important patient metadata into a learning process. Thirty-two features were extracted from digital photographs to characterize skin lesions. Patients' personal information, such as age, gender and, lesion site, and their combinations, was quantified as metadata. The integration of digital features and metadata was realized through an extended Laplacian eigenmap, a dimensionality-reduction method grouping lesions with similar digital features and metadata into the same classes. The diagnosis reached 82.1% sensitivity and 86.1% specificity when only multidimensional digital features were used, but improved to 95.2% sensitivity and 91.0% specificity after metadata were incorporated appropriately. The proposed system achieves a level of sensitivity comparable with experienced dermatologists aided by conventional dermoscopes. This demonstrates the potential of our method for assisting clinicians in diagnosing melanoma, and the benefit it could provide to patients and hospitals by greatly reducing unnecessary excisions of benign naevi. This paper proposes an enhanced CAD system incorporating clinical metadata into the learning process for automatic classification of melanoma. Results demonstrate that the additional metadata and the mechanism to incorporate them are useful for improving CAD of melanoma. © 2013 British Association of Dermatologists.
Spachos, Dimitris; Mylläri, Jarkko; Giordano, Daniela; Dafli, Eleni; Mitsopoulou, Evangelia; Schizas, Christos N; Pattichis, Constantinos; Nikolaidou, Maria
2015-01-01
Background The mEducator Best Practice Network (BPN) implemented and extended standards and reference models in e-learning to develop innovative frameworks as well as solutions that enable specialized state-of-the-art medical educational content to be discovered, retrieved, shared, and re-purposed across European Institutions, targeting medical students, doctors, educators and health care professionals. Scenario-based evaluation for usability testing, complemented with data from online questionnaires and field notes of users’ performance, was designed and utilized for the evaluation of these solutions. Objective The objective of this work is twofold: (1) to describe one instantiation of the mEducator BPN solutions (mEducator3.0 - “MEdical Education LINnked Arena” MELINA+) with a focus on the metadata schema used, as well as on other aspects of the system that pertain to usability and acceptance, and (2) to present evaluation results on the suitability of the proposed metadata schema for searching, retrieving, and sharing of medical content and with respect to the overall usability and acceptance of the system from the target users. Methods A comprehensive evaluation methodology framework was developed and applied to four case studies, which were conducted in four different countries (ie, Greece, Cyprus, Bulgaria and Romania), with a total of 126 participants. In these case studies, scenarios referring to creating, sharing, and retrieving medical educational content using mEducator3.0 were used. The data were collected through two online questionnaires, consisting of 36 closed-ended questions and two open-ended questions that referred to mEducator 3.0 and through the use of field notes during scenario-based evaluations. Results The main findings of the study showed that even though the informational needs of the mEducator target groups were addressed to a satisfactory extent and the metadata schema supported content creation, sharing, and retrieval from an end-user perspective, users faced difficulties in achieving a shared understanding of the meaning of some metadata fields and in correctly managing the intellectual property rights of repurposed content. Conclusions The results of this evaluation impact researchers, medical professionals, and designers interested in using similar systems for educational content sharing in medical and other domains. Recommendations on how to improve the search, retrieval, identification, and obtaining of medical resources are provided, by addressing issues of content description metadata, content description procedures, and intellectual property rights for re-purposed content. PMID:26453250
The XML Metadata Editor of GFZ Data Services
NASA Astrophysics Data System (ADS)
Ulbricht, Damian; Elger, Kirsten; Tesei, Telemaco; Trippanera, Daniele
2017-04-01
Following the FAIR data principles, research data should be Findable, Accessible, Interoperable and Reuseable. Publishing data under these principles requires to assign persistent identifiers to the data and to generate rich machine-actionable metadata. To increase the interoperability, metadata should include shared vocabularies and crosslink the newly published (meta)data and related material. However, structured metadata formats tend to be complex and are not intended to be generated by individual scientists. Software solutions are needed that support scientists in providing metadata describing their data. To facilitate data publication activities of 'GFZ Data Services', we programmed an XML metadata editor that assists scientists to create metadata in different schemata popular in the earth sciences (ISO19115, DIF, DataCite), while being at the same time usable by and understandable for scientists. Emphasis is placed on removing barriers, in particular the editor is publicly available on the internet without registration [1] and the scientists are not requested to provide information that may be generated automatically (e.g. the URL of a specific licence or the contact information of the metadata distributor). Metadata are stored in browser cookies and a copy can be saved to the local hard disk. To improve usability, form fields are translated into the scientific language, e.g. 'creators' of the DataCite schema are called 'authors'. To assist filling in the form, we make use of drop down menus for small vocabulary lists and offer a search facility for large thesauri. Explanations to form fields and definitions of vocabulary terms are provided in pop-up windows and a full documentation is available for download via the help menu. In addition, multiple geospatial references can be entered via an interactive mapping tool, which helps to minimize problems with different conventions to provide latitudes and longitudes. Currently, we are extending the metadata editor to be reused to generate metadata for data discovery and contextual metadata developed by the 'Multi-scale Laboratories' Thematic Core Service of the European Plate Observing System (EPOS-IP). The Editor will be used to build a common repository of a large variety of geological and geophysical datasets produced by multidisciplinary laboratories throughout Europe, thus contributing to a significant step toward the integration and accessibility of earth science data. This presentation will introduce the metadata editor and show the adjustments made for EPOS-IP. [1] http://dataservices.gfz-potsdam.de/panmetaworks/metaedit
R classes and methods for SNP array data.
Scharpf, Robert B; Ruczinski, Ingo
2010-01-01
The Bioconductor project is an "open source and open development software project for the analysis and comprehension of genomic data" (1), primarily based on the R programming language. Infrastructure packages, such as Biobase, are maintained by Bioconductor core developers and serve several key roles to the broader community of Bioconductor software developers and users. In particular, Biobase introduces an S4 class, the eSet, for high-dimensional assay data. Encapsulating the assay data as well as meta-data on the samples, features, and experiment in the eSet class definition ensures propagation of the relevant sample and feature meta-data throughout an analysis. Extending the eSet class promotes code reuse through inheritance as well as interoperability with other R packages and is less error-prone. Recently proposed class definitions for high-throughput SNP arrays extend the eSet class. This chapter highlights the advantages of adopting and extending Biobase class definitions through a working example of one implementation of classes for the analysis of high-throughput SNP arrays.
NASA Astrophysics Data System (ADS)
Car, Nicholas; Cox, Simon; Fitch, Peter
2015-04-01
With earth-science datasets increasingly being published to enable re-use in projects disassociated from the original data acquisition or generation, there is an urgent need for associated metadata to be connected, in order to guide their application. In particular, provenance traces should support the evaluation of data quality and reliability. However, while standards for describing provenance are emerging (e.g. PROV-O), these do not include the necessary statistical descriptors and confidence assessments. UncertML has a mature conceptual model that may be used to record uncertainty metadata. However, by itself UncertML does not support the representation of uncertainty of multi-part datasets, and provides no direct way of associating the uncertainty information - metadata in relation to a dataset - with dataset objects.We present a method to address both these issues by combining UncertML with PROV-O, and delivering resulting uncertainty-enriched provenance traces through the Linked Data API. UncertProv extends the PROV-O provenance ontology with an RDF formulation of the UncertML conceptual model elements, adds further elements to support uncertainty representation without a conceptual model and the integration of UncertML through links to documents. The Linked ID API provides a systematic way of navigating from dataset objects to their UncertProv metadata and back again. The Linked Data API's 'views' capability enables access to UncertML and non-UncertML uncertainty metadata representations for a dataset. With this approach, it is possible to access and navigate the uncertainty metadata associated with a published dataset using standard semantic web tools, such as SPARQL queries. Where the uncertainty data follows the UncertML model it can be automatically interpreted and may also support automatic uncertainty propagation . Repositories wishing to enable uncertainty propagation for all datasets must ensure that all elements that are associated with uncertainty (PROV-O Entity and Activity classes) have UncertML elements recorded. This methodology is intentionally flexible to allow uncertainty metadata in many forms, not limited to UncertML. While the more formal representation of uncertainty metadata is desirable (using UncertProv elements to implement the UncertML conceptual model ), this will not always be possible, and any uncertainty data stored will be better than none. Since the UncertProv ontology contains a superset of UncertML elements to facilitate the representation of non-UncertML uncertainty data, it could easily be extended to include other formal uncertainty conceptual models thus allowing non-UncertML propagation calculations.
NASA Astrophysics Data System (ADS)
Do, Hong Xuan; Gudmundsson, Lukas; Leonard, Michael; Westra, Seth
2018-04-01
This is the first part of a two-paper series presenting the Global Streamflow Indices and Metadata archive (GSIM), a worldwide collection of metadata and indices derived from more than 35 000 daily streamflow time series. This paper focuses on the compilation of the daily streamflow time series based on 12 free-to-access streamflow databases (seven national databases and five international collections). It also describes the development of three metadata products (freely available at https://doi.pangaea.de/10.1594/PANGAEA.887477): (1) a GSIM catalogue collating basic metadata associated with each time series, (2) catchment boundaries for the contributing area of each gauge, and (3) catchment metadata extracted from 12 gridded global data products representing essential properties such as land cover type, soil type, and climate and topographic characteristics. The quality of the delineated catchment boundary is also made available and should be consulted in GSIM application. The second paper in the series then explores production and analysis of streamflow indices. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.
NASA Astrophysics Data System (ADS)
Fazliev, A.
2009-04-01
The information and knowledge layers of information-computational system for water spectroscopy are described. Semantic metadata for all the tasks of domain information model that are the basis of the layers have been studied. The principle of semantic metadata determination and mechanisms of the usage during information systematization in molecular spectroscopy has been revealed. The software developed for the work with semantic metadata is described as well. Formation of domain model in the framework of Semantic Web is based on the use of explicit specification of its conceptualization or, in other words, its ontologies. Formation of conceptualization for molecular spectroscopy was described in Refs. 1, 2. In these works two chains of task are selected for zeroth approximation for knowledge domain description. These are direct tasks chain and inverse tasks chain. Solution schemes of these tasks defined approximation of data layer for knowledge domain conceptualization. Spectroscopy tasks solutions properties lead to a step-by-step extension of molecular spectroscopy conceptualization. Information layer of information system corresponds to this extension. An advantage of molecular spectroscopy model designed in a form of tasks chain is actualized in the fact that one can explicitly define data and metadata at each step of solution of these molecular spectroscopy chain tasks. Metadata structure (tasks solutions properties) in knowledge domain also has form of a chain in which input data and metadata of the previous task become metadata of the following tasks. The term metadata is used in its narrow sense: metadata are the properties of spectroscopy tasks solutions. Semantic metadata represented with the help of OWL 3 are formed automatically and they are individuals of classes (A-box). Unification of T-box and A-box is an ontology that can be processed with the help of inference engine. In this work we analyzed the formation of individuals of molecular spectroscopy applied ontologies as well as the software used for their creation by means of OWL DL language. The results of this work are presented in a form of an information layer and a knowledge layer in W@DIS information system 4. 1 FORMATION OF INDIVIDUALS OF WATER SPECTROSCOPY APPLIED ONTOLOGY Applied tasks ontology contains explicit description of input an output data of physical tasks solved in two chains of molecular spectroscopy tasks. Besides physical concepts, related to spectroscopy tasks solutions, an information source, which is a key concept of knowledge domain information model, is also used. Each solution of knowledge domain task is linked to the information source which contains a reference on published task solution, molecule and task solution properties. Each information source allows us to identify a certain knowledge domain task solution contained in the information system. Water spectroscopy applied ontology classes are formed on the basis of molecular spectroscopy concepts taxonomy. They are defined by constrains on properties of the selected conceptualization. Extension of applied ontology in W@DIS information system is actualized according to two scenarios. Individuals (ontology facts or axioms) formation is actualized during the task solution upload in the information system. Ontology user operation that implies molecular spectroscopy taxonomy and individuals is performed solely by the user. For this purpose Protege ontology editor was used. For the formation, processing and visualization of knowledge domain tasks individuals a software was designed and implemented. Method of individual formation determines the sequence of steps of created ontology individuals' generation. Tasks solutions properties (metadata) have qualitative and quantitative values. Qualitative metadata are regarded as metadata describing qualitative side of a task such as solution method or other information that can be explicitly specified by object properties of OWL DL language. Quantitative metadata are metadata that describe quantitative properties of task solution such as minimal and maximal data value or other information that can be explicitly obtained by programmed algorithmic operations. These metadata are related to DatatypeProperty properties of OWL specification language Quantitative metadata can be obtained automatically during data upload into information system. Since ObjectProperty values are objects, processing of qualitative metadata requires logical constraints. In case of the task solved in W@DIS ICS qualitative metadata can be formed automatically (for example in spectral functions calculation task). The used methods of translation of qualitative metadata into quantitative is characterized as roughened representation of knowledge in knowledge domain. The existence of two ways of data obtainment is a key moment in the formation of applied ontology of molecular spectroscopy task. experimental method (metadata for experimental data contain description of equipment, experiment conditions and so on) on the initial stage and inverse task solution on the following stages; calculation method (metadata for calculation data are closely related to the metadata used for the description of physical and mathematical models of molecular spectroscopy) 2 SOFTWARE FOR ONTOLOGY OPERATION Data collection in water spectroscopy information system is organized in a form of workflow that contains such operations as information source creation, entry of bibliographic data on publications, formation of uploaded data schema an so on. Metadata are generated in information source as well. Two methods are used for their formation: automatic metadata generation and manual metadata generation (performed by user). Software implementation of support of actions related to metadata formation is performed by META+ module. Functions of META+ module can be divided into two groups. The first groups contains the functions necessary to software developer while the second one the functions necessary to a user of the information system. META+ module functions necessary to the developer are: 1. creation of taxonomy (T-boxes) of applied ontology classes of knowledge domain tasks; 2. creation of instances of task classes; 3. creation of data schemes of tasks in a form of an XML-pattern and based on XML-syntax. XML-pattern is developed for instances generator and created according to certain rules imposed on software generator implementation. 4. implementation of metadata values calculation algorithms; 5. creation of a request interface and additional knowledge processing function for the solution of these task; 6. unification of the created functions and interfaces into one information system The following sequence is universal for the generation of task classes' individuals that form chains. Special interfaces for user operations management are designed for software developer in META+ module. There are means for qualitative metadata values updating during data reuploading to information source. The list of functions necessary to end user contains: - data sets visualization and editing, taking into account their metadata, e.g.: display of unique number of bands in transitions for a certain data source; - export of OWL/RDF models from information system to the environment in XML-syntax; - visualization of instances of classes of applied ontology tasks on molecular spectroscopy; - import of OWL/RDF models into the information system and their integration with domain vocabulary; - formation of additional knowledge of knowledge domain for the construction of ontological instances of task classes using GTML-formats and their processing; - formation of additional knowledge in knowledge domain for the construction of instances of task classes, using software algorithm for data sets processing; - function of semantic search implementation using an interface that formulates questions in a form of related triplets in order for getting an adequate answer. 3 STRUCTURE OF META+ MODULE META+ software module that provides the above functions contains the following components: - a knowledge base that stores semantic metadata and taxonomies of information system; - software libraries POWL and RAP 5 created by third-party developer and providing access to ontological storage; - function classes and libraries that form the core of the module and perform the tasks of formation, storage and visualization of classes instances; - configuration files and module patterns that allow one to adjust and organize operation of different functional blocks; META+ module also contains scripts and patterns implemented according to the rules of W@DIS information system development environment. - scripts for interaction with environment by means of the software core of information system. These scripts provide organizing web-oriented interactive communication; - patterns for the formation of functionality visualization realized by the scripts Software core of scientific information-computational system W@DIS is created with the help of MVC (Model - View - Controller) design pattern that allows us to separate logic of application from its representation. It realizes the interaction of three logical components, actualizing interactivity with the environment via Web and performing its preprocessing. Functions of «Controller» logical component are realized with the help of scripts designed according to the rules imposed by software core of the information system. Each script represents a definite object-oriented class with obligatory class method of script initiation called "start". Functions of actualization of domain application operation results representation (i.e. "View" component) are sets of HTML-patterns that allow one to visualize the results of domain applications operation with the help of additional constructions processed by software core of the system. Besides the interaction with the software core of the scientific information system this module also deals with configuration files of software core and its database. Such organization of work provides closer integration with software core and deeper and more adequate connection in operating system support. 4 CONCLUSION In this work the problems of semantic metadata creation in information system oriented on information representation in the area of molecular spectroscopy have been discussed. The described method of semantic metadata and functions formation as well as realization and structure of META+ module have been described. Architecture of META+ module is closely related to the existing software of "Molecular spectroscopy" scientific information system. Realization of the module is performed with the use of modern approaches to Web-oriented applications development. It uses the existing applied interfaces. The developed software allows us to: - perform automatic metadata annotation of calculated tasks solutions directly in the information system; - perform automatic annotation of metadata on the solution of tasks on task solution results uploading outside the information system forming an instance of the solved task on the basis of entry data; - use ontological instances of task solution for identification of data in information tasks of viewing, comparison and search solved by information system; - export applied tasks ontologies for the operation with them by external means; - solve the task of semantic search according to the pattern and using question-answer type interface. 5 ACKNOWLEDGEMENT The authors are grateful to RFBR for the financial support of development of distributed information system for molecular spectroscopy. REFERENCES A.D.Bykov, A.Z. Fazliev, N.N.Filippov, A.V. Kozodoev, A.I.Privezentsev, L.N.Sinitsa, M.V.Tonkov and M.Yu.Tretyakov, Distributed information system on atmospheric spectroscopy // Geophysical Research Abstracts, SRef-ID: 1607-7962/gra/EGU2007-A-01906, 2007, v. 9, p. 01906. A.I.Prevezentsev, A.Z. Fazliev Applied task ontology for molecular spectroscopy information resources systematization. The Proceedings of 9th Russian scientific conference "Electronic libraries: advanced methods and technologies, electronic collections" - RCDL'2007, Pereslavl Zalesskii, 2007, part.1, 2007, P.201-210. OWL Web Ontology Language Semantics and Abstract Syntax, W3C Recommendation 10 February 2004, http://www.w3.org/TR/2004/REC-owl-semantics-20040210/ W@DIS information system, http://wadis.saga.iao.ru RAP library, http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/.
ATLAS Metadata Infrastructure Evolution for Run 2 and Beyond
NASA Astrophysics Data System (ADS)
van Gemmeren, P.; Cranshaw, J.; Malon, D.; Vaniachine, A.
2015-12-01
ATLAS developed and employed for Run 1 of the Large Hadron Collider a sophisticated infrastructure for metadata handling in event processing jobs. This infrastructure profits from a rich feature set provided by the ATLAS execution control framework, including standardized interfaces and invocation mechanisms for tools and services, segregation of transient data stores with concomitant object lifetime management, and mechanisms for handling occurrences asynchronous to the control framework's state machine transitions. This metadata infrastructure is evolving and being extended for Run 2 to allow its use and reuse in downstream physics analyses, analyses that may or may not utilize the ATLAS control framework. At the same time, multiprocessing versions of the control framework and the requirements of future multithreaded frameworks are leading to redesign of components that use an incident-handling approach to asynchrony. The increased use of scatter-gather architectures, both local and distributed, requires further enhancement of metadata infrastructure in order to ensure semantic coherence and robust bookkeeping. This paper describes the evolution of ATLAS metadata infrastructure for Run 2 and beyond, including the transition to dual-use tools—tools that can operate inside or outside the ATLAS control framework—and the implications thereof. It further examines how the design of this infrastructure is changing to accommodate the requirements of future frameworks and emerging event processing architectures.
Integrated Array/Metadata Analytics
NASA Astrophysics Data System (ADS)
Misev, Dimitar; Baumann, Peter
2015-04-01
Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.
Content-aware network storage system supporting metadata retrieval
NASA Astrophysics Data System (ADS)
Liu, Ke; Qin, Leihua; Zhou, Jingli; Nie, Xuejun
2008-12-01
Nowadays, content-based network storage has become the hot research spot of academy and corporation[1]. In order to solve the problem of hit rate decline causing by migration and achieve the content-based query, we exploit a new content-aware storage system which supports metadata retrieval to improve the query performance. Firstly, we extend the SCSI command descriptor block to enable system understand those self-defined query requests. Secondly, the extracted metadata is encoded by extensible markup language to improve the universality. Thirdly, according to the demand of information lifecycle management (ILM), we store those data in different storage level and use corresponding query strategy to retrieval them. Fourthly, as the file content identifier plays an important role in locating data and calculating block correlation, we use it to fetch files and sort query results through friendly user interface. Finally, the experiments indicate that the retrieval strategy and sort algorithm have enhanced the retrieval efficiency and precision.
The PDS4 Data Dictionary Tool - Metadata Design for Data Preparers
NASA Astrophysics Data System (ADS)
Raugh, A.; Hughes, J. S.
2017-12-01
One of the major design goals of the PDS4 development effort was to create an extendable Information Model (IM) for the archive, and to allow mission data designers/preparers to create extensions for metadata definitions specific to their own contexts. This capability is critical for the Planetary Data System - an archive that deals with a data collection that is diverse along virtually every conceivable axis. Amid such diversity in the data itself, it is in the best interests of the PDS archive and its users that all extensions to the IM follow the same design techniques, conventions, and restrictions as the core implementation itself. But it is unrealistic to expect mission data designers to acquire expertise in information modeling, model-driven design, ontology, schema formulation, and PDS4 design conventions and philosophy in order to define their own metadata. To bridge that expertise gap and bring the power of information modeling to the data label designer, the PDS Engineering Node has developed the data dictionary creation tool known as "LDDTool". This tool incorporates the same software used to maintain and extend the core IM, packaged with an interface that enables a developer to create his extension to the IM using the same, standards-based metadata framework PDS itself uses. Through this interface, the novice dictionary developer has immediate access to the common set of data types and unit classes for defining attributes, and a straight-forward method for constructing classes. The more experienced developer, using the same tool, has access to more sophisticated modeling methods like abstraction and extension, and can define context-specific validation rules. We present the key features of the PDS Local Data Dictionary Tool, which both supports the development of extensions to the PDS4 IM, and ensures their compatibility with the IM.
High-performance metadata indexing and search in petascale data storage systems
NASA Astrophysics Data System (ADS)
Leung, A. W.; Shao, M.; Bisson, T.; Pasupathy, S.; Miller, E. L.
2008-07-01
Large-scale storage systems used for scientific applications can store petabytes of data and billions of files, making the organization and management of data in these systems a difficult, time-consuming task. The ability to search file metadata in a storage system can address this problem by allowing scientists to quickly navigate experiment data and code while allowing storage administrators to gather the information they need to properly manage the system. In this paper, we present Spyglass, a file metadata search system that achieves scalability by exploiting storage system properties, providing the scalability that existing file metadata search tools lack. In doing so, Spyglass can achieve search performance up to several thousand times faster than existing database solutions. We show that Spyglass enables important functionality that can aid data management for scientists and storage administrators.
Kuchinke, W; Wiegelmann, S; Verplancke, P; Ohmann, C
2006-01-01
Our objectives were to analyze the possibility of an exchange of an entire clinical study between two different and independent study software solutions. The question addressed was whether a software-independent transfer of study metadata can be performed without programming efforts and with software routinely used for clinical research. Study metadata was transferred with ODM standard (CDISC). Study software systems employed were MACRO (InferMed) and XTrial (XClinical). For the Proof of Concept, a test study was created with MACRO and exported as ODM. For modification and validation of the ODM export file XML-Spy (Altova) and ODM-Checker (XML4Pharma) were used. Through exchange of a complete clinical study between two different study software solutions, a Proof of Concept of the technical feasibility of a system-independent metadata exchange was conducted successfully. The interchange of study metadata between two different systems at different centers was performed with minimal expenditure. A small number of mistakes had to be corrected in order to generate a syntactically correct ODM file and a "vendor extension" had to be inserted. After these modifications, XTrial exhibited the study, including all data fields, correctly. However, the optical appearance of both CRFs (case report forms) was different. ODM can be used as an exchange format for clinical studies between different study software. Thus, new forms of cooperation through exchange of metadata seem possible, for example the joint creation of electronic study protocols or CRFs at different research centers. Although the ODM standard represents a clinical study completely, it contains no information about the representation of data fields in CRFs.
Valdez, Joshua; Rueschman, Michael; Kim, Matthew; Redline, Susan; Sahoo, Satya S
2016-10-01
Extraction of structured information from biomedical literature is a complex and challenging problem due to the complexity of biomedical domain and lack of appropriate natural language processing (NLP) techniques. High quality domain ontologies model both data and metadata information at a fine level of granularity, which can be effectively used to accurately extract structured information from biomedical text. Extraction of provenance metadata, which describes the history or source of information, from published articles is an important task to support scientific reproducibility. Reproducibility of results reported by previous research studies is a foundational component of scientific advancement. This is highlighted by the recent initiative by the US National Institutes of Health called "Principles of Rigor and Reproducibility". In this paper, we describe an effective approach to extract provenance metadata from published biomedical research literature using an ontology-enabled NLP platform as part of the Provenance for Clinical and Healthcare Research (ProvCaRe). The ProvCaRe-NLP tool extends the clinical Text Analysis and Knowledge Extraction System (cTAKES) platform using both provenance and biomedical domain ontologies. We demonstrate the effectiveness of ProvCaRe-NLP tool using a corpus of 20 peer-reviewed publications. The results of our evaluation demonstrate that the ProvCaRe-NLP tool has significantly higher recall in extracting provenance metadata as compared to existing NLP pipelines such as MetaMap.
Huang, Min; Liu, Zhaoqing; Qiao, Liyan
2014-10-10
While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme.
Huang, Min; Liu, Zhaoqing; Qiao, Liyan
2014-01-01
While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme. PMID:25310473
Wang, Yuxin; Lai, Adelene; Latino, Diogo; Fenner, Kathrin; Helbling, Damian E
2018-06-14
Aerobic biodegradation half-lives (half-lives) are key parameters used to evaluate pesticide persistence in soil. However, half-life estimates for individual pesticides often span several orders of magnitude, reflecting the impact that various environmental or experimental parameters have on half-lives in soil. In this work, we collected literature-reported half-lives for eleven pesticides along with associated metadata describing the environmental or experimental conditions under which they were derived. We then developed a multivariable framework to discover relationships between the half-lives and associated metadata. We first compared data for the herbicide atrazine collected from 95 laboratory and 65 field studies. We discovered that atrazine application history and soil texture were the parameters that have the largest influence on the observed half-lives in both types of studies. We then extended the analysis to include ten additional pesticides with data collected exclusively from laboratory studies. We found that, when data were available, pesticide application history and biomass concentrations were always positively associated with half-lives. The relevance of other parameters varied among the pesticides, but in some cases the variability could be explained by the physicochemical properties of the pesticides. For example, we found that the relative significance of the organic carbon content of soil for determining half-lives depends on the relative solubility of the pesticide. Altogether, our analyses highlight the reciprocal influence of both environmental parameters and intrinsic physicochemical properties for determining half-lives in soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Campbell, William J.; Short, Nicholas M., Jr.; Roelofs, Larry H.; Dorfman, Erik
1991-01-01
A methodology for optimizing organization of data obtained by NASA earth and space missions is discussed. The methodology uses a concept based on semantic data modeling techniques implemented in a hierarchical storage model. The modeling is used to organize objects in mass storage devices, relational database systems, and object-oriented databases. The semantic data modeling at the metadata record level is examined, including the simulation of a knowledge base and semantic metadata storage issues. The semantic data model hierarchy and its application for efficient data storage is addressed, as is the mapping of the application structure to the mass storage.
Metadata for data rescue and data at risk
Anderson, William L.; Faundeen, John L.; Greenberg, Jane; Taylor, Fraser
2011-01-01
Scientific data age, become stale, fall into disuse and run tremendous risks of being forgotten and lost. These problems can be addressed by archiving and managing scientific data over time, and establishing practices that facilitate data discovery and reuse. Metadata documentation is integral to this work and essential for measuring and assessing high priority data preservation cases. The International Council for Science: Committee on Data for Science and Technology (CODATA) has a newly appointed Data-at-Risk Task Group (DARTG), participating in the general arena of rescuing data. The DARTG primary objective is building an inventory of scientific data that are at risk of being lost forever. As part of this effort, the DARTG is testing an approach for documenting endangered datasets. The DARTG is developing a minimal and easy to use set of metadata properties for sufficiently describing endangered data, which will aid global data rescue missions. The DARTG metadata framework supports rapid capture, and easy documentation, across an array of scientific domains. This paper reports on the goals and principles supporting the DARTG metadata schema, and provides a description of the preliminary implementation.
Metadata for WIS and WIGOS: GAW Profile of ISO19115 and Draft WIGOS Core Metadata Standard
NASA Astrophysics Data System (ADS)
Klausen, Jörg; Howe, Brian
2014-05-01
The World Meteorological Organization (WMO) Integrated Global Observing System (WIGOS) is a key WMO priority to underpin all WMO Programs and new initiatives such as the Global Framework for Climate Services (GFCS). The development of the WIGOS Operational Information Resource (WIR) is central to the WIGOS Framework Implementation Plan (WIGOS-IP). The WIR shall provide information on WIGOS and its observing components, as well as requirements of WMO application areas. An important aspect is the description of the observational capabilities by way of structured metadata. The Global Atmosphere Watch is the WMO program addressing the chemical composition and selected physical properties of the atmosphere. Observational data are collected and archived by GAW World Data Centres (WDCs) and related data centres. The Task Team on GAW WDCs (ET-WDC) have developed a profile of the ISO19115 metadata standard that is compliant with the WMO Information System (WIS) specification for the WMO Core Metadata Profile v1.3. This profile is intended to harmonize certain aspects of the documentation of observations as well as the interoperability of the WDCs. The Inter-Commission-Group on WIGOS (ICG-WIGOS) has established the Task Team on WIGOS Metadata (TT-WMD) with representation of all WMO Technical Commissions and the objective to define the WIGOS Core Metadata. The result of this effort is a draft semantic standard comprising of a set of metadata classes that are considered to be of critical importance for the interpretation of observations relevant to WIGOS. The purpose of the presentation is to acquaint the audience with the standard and to solicit informal feed-back from experts in the various disciplines of meteorology and climatology. This feed-back will help ET-WDC and TT-WMD to refine the GAW metadata profile and the draft WIGOS metadata standard, thereby increasing their utility and acceptance.
A future Outlook: Web based Simulation of Hydrodynamic models
NASA Astrophysics Data System (ADS)
Islam, A. S.; Piasecki, M.
2003-12-01
Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as Web Archive (WAR) files which is platform and OS independent and can be used by Windows, UNIX, or Linux. Keywords: Apache, ISO 19115, Java Servlet, Jena, JSP, Metadata, MOF, Linux, Ontology, OWL, PostgresSQL, Protégé, RDF, RDQL, RQL, Tomcat, UML, UNIX, Windows, WAR, XML
NASA Astrophysics Data System (ADS)
Schweitzer, R. H.
2001-05-01
The Climate Diagnostics Center maintains a collection of gridded climate data primarily for use by local researchers. Because this data is available on fast digital storage and because it has been converted to netCDF using a standard metadata convention (called COARDS), we recognize that this data collection is also useful to the community at large. At CDC we try to use technology and metadata standards to reduce our costs associated with making these data available to the public. The World Wide Web has been an excellent technology platform for meeting that goal. Specifically we have developed Web-based user interfaces that allow users to search, plot and download subsets from the data collection. We have also been exploring use of the Pacific Marine Environment Laboratory's Live Access Server (LAS) as an engine for this task. This would result in further savings by allowing us to concentrate on customizing the LAS where needed, rather that developing and maintaining our own system. One such customization currently under development is the use of Java Servlets and JavaServer pages in conjunction with a metadata database to produce a hierarchical user interface to LAS. In addition to these Web-based user interfaces all of our data are available via the Distributed Oceanographic Data System (DODS). This allows other sites using LAS and individuals using DODS-enabled clients to use our data as if it were a local file. All of these technology systems are driven by metadata. When we began to create netCDF files, we collaborated with several other agencies to develop a netCDF convention (COARDS) for metadata. At CDC we have extended that convention to incorporate additional metadata elements to make the netCDF files as self-describing as possible. Part of the local metadata is a set of controlled names for the variable, level in the atmosphere and ocean, statistic and data set for each netCDF file. To allow searching and easy reorganization of these metadata, we loaded the metadata from the netCDF files into a mySQL database. The combination of the mySQL database and the controlled names makes it possible to automate the construction of user interfaces and standard format metadata descriptions, like Federal Geographic Data Committee (FGDC) and Directory Interchange Format (DIF). These standard descriptions also include an association between our controlled names and standard keywords such as those developed by the Global Change Master Directory (GCMD). This talk will give an overview of each of these technology and metadata standards as it applies to work at the Climate Diagnostics Center. The talk will also discuss the pros and cons of each approach and discuss areas for future development.
Automated metadata--final project report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schissel, David
This report summarizes the work of the Automated Metadata, Provenance Cataloging, and Navigable Interfaces: Ensuring the Usefulness of Extreme-Scale Data Project (MPO Project) funded by the United States Department of Energy (DOE), Offices of Advanced Scientific Computing Research and Fusion Energy Sciences. Initially funded for three years starting in 2012, it was extended for 6 months with additional funding. The project was a collaboration between scientists at General Atomics, Lawrence Berkley National Laboratory (LBNL), and Massachusetts Institute of Technology (MIT). The group leveraged existing computer science technology where possible, and extended or created new capabilities where required. The MPO projectmore » was able to successfully create a suite of software tools that can be used by a scientific community to automatically document their scientific workflows. These tools were integrated into workflows for fusion energy and climate research illustrating the general applicability of the project’s toolkit. Feedback was very positive on the project’s toolkit and the value of such automatic workflow documentation to the scientific endeavor.« less
Applications of the LBA-ECO Metadata Warehouse
NASA Astrophysics Data System (ADS)
Wilcox, L.; Morrell, A.; Griffith, P. C.
2006-05-01
The LBA-ECO Project Office has developed a system to harvest and warehouse metadata resulting from the Large-Scale Biosphere Atmosphere Experiment in Amazonia. The harvested metadata is used to create dynamically generated reports, available at www.lbaeco.org, which facilitate access to LBA-ECO datasets. The reports are generated for specific controlled vocabulary terms (such as an investigation team or a geospatial region), and are cross-linked with one another via these terms. This approach creates a rich contextual framework enabling researchers to find datasets relevant to their research. It maximizes data discovery by association and provides a greater understanding of the scientific and social context of each dataset. For example, our website provides a profile (e.g. participants, abstract(s), study sites, and publications) for each LBA-ECO investigation. Linked from each profile is a list of associated registered dataset titles, each of which link to a dataset profile that describes the metadata in a user-friendly way. The dataset profiles are generated from the harvested metadata, and are cross-linked with associated reports via controlled vocabulary terms such as geospatial region. The region name appears on the dataset profile as a hyperlinked term. When researchers click on this link, they find a list of reports relevant to that region, including a list of dataset titles associated with that region. Each dataset title in this list is hyperlinked to its corresponding dataset profile. Moreover, each dataset profile contains hyperlinks to each associated data file at its home data repository and to publications that have used the dataset. We also use the harvested metadata in administrative applications to assist quality assurance efforts. These include processes to check for broken hyperlinks to data files, automated emails that inform our administrators when critical metadata fields are updated, dynamically generated reports of metadata records that link to datasets with questionable file formats, and dynamically generated region/site coordinate quality assurance reports. These applications are as important as those that facilitate access to information because they help ensure a high standard of quality for the information. This presentation will discuss reports currently in use, provide a technical overview of the system, and discuss plans to extend this system to harvest metadata resulting from the North American Carbon Program by drawing on datasets in many different formats, residing in many thematic data centers and also distributed among hundreds of investigators.
OSCAR/Surface: Metadata for the WMO Integrated Observing System WIGOS
NASA Astrophysics Data System (ADS)
Klausen, Jörg; Pröscholdt, Timo; Mannes, Jürg; Cappelletti, Lucia; Grüter, Estelle; Calpini, Bertrand; Zhang, Wenjian
2016-04-01
The World Meteorological Organization (WMO) Integrated Global Observing System (WIGOS) is a key WMO priority underpinning all WMO Programs and new initiatives such as the Global Framework for Climate Services (GFCS). It does this by better integrating WMO and co-sponsored observing systems, as well as partner networks. For this, an important aspect is the description of the observational capabilities by way of structured metadata. The 17th Congress of the Word Meteorological Organization (Cg-17) has endorsed the semantic WIGOS metadata standard (WMDS) developed by the Task Team on WIGOS Metadata (TT-WMD). The standard comprises of a set of metadata classes that are considered to be of critical importance for the interpretation of observations and the evolution of observing systems relevant to WIGOS. The WMDS serves all recognized WMO Application Areas, and its use for all internationally exchanged observational data generated by WMO Members is mandatory. The standard will be introduced in three phases between 2016 and 2020. The Observing Systems Capability Analysis and Review (OSCAR) platform operated by MeteoSwiss on behalf of WMO is the official repository of WIGOS metadata and an implementation of the WMDS. OSCAR/Surface deals with all surface-based observations from land, air and oceans, combining metadata managed by a number of complementary, more domain-specific systems (e.g., GAWSIS for the Global Atmosphere Watch, JCOMMOPS for the marine domain, the WMO Radar database). It is a modern, web-based client-server application with extended information search, filtering and mapping capabilities including a fully developed management console to add and edit observational metadata. In addition, a powerful application programming interface (API) is being developed to allow machine-to-machine metadata exchange. The API is based on an ISO/OGC-compliant XML schema for the WMDS using the Observations and Measurements (ISO19156) conceptual model. The purpose of the presentation is to acquaint the audience with OSCAR, the WMDS and the current XML schema; and, to explore the relationship to the INSPIRE XML schema. Feedback from experts in the various disciplines of meteorology, climatology, atmospheric chemistry, hydrology on the utility of the new standard and the XML schema will be solicited and will guide WMO in further evolving the WMDS.
Extended Relation Metadata for SCORM-Based Learning Content Management Systems
ERIC Educational Resources Information Center
Lu, Eric Jui-Lin; Horng, Gwoboa; Yu, Chia-Ssu; Chou, Ling-Ying
2010-01-01
To increase the interoperability and reusability of learning objects, Advanced Distributed Learning Initiative developed a model called Content Aggregation Model (CAM) to describe learning objects and express relationships between learning objects. However, the suggested relations defined in the CAM can only describe structure-oriented…
Sensor metadata blueprints and computer-aided editing for disciplined SensorML
NASA Astrophysics Data System (ADS)
Tagliolato, Paolo; Oggioni, Alessandro; Fugazza, Cristiano; Pepe, Monica; Carrara, Paola
2016-04-01
The need for continuous, accurate, and comprehensive environmental knowledge has led to an increase in sensor observation systems and networks. The Sensor Web Enablement (SWE) initiative has been promoted by the Open Geospatial Consortium (OGC) to foster interoperability among sensor systems. The provision of metadata according to the prescribed SensorML schema is a key component for achieving this and nevertheless availability of correct and exhaustive metadata cannot be taken for granted. On the one hand, it is awkward for users to provide sensor metadata because of the lack in user-oriented, dedicated tools. On the other, the specification of invariant information for a given sensor category or model (e.g., observed properties and units of measurement, manufacturer information, etc.), can be labor- and timeconsuming. Moreover, the provision of these details is error prone and subjective, i.e., may differ greatly across distinct descriptions for the same system. We provide a user-friendly, template-driven metadata authoring tool composed of a backend web service and an HTML5/javascript client. This results in a form-based user interface that conceals the high complexity of the underlying format. This tool also allows for plugging in external data sources providing authoritative definitions for the aforementioned invariant information. Leveraging these functionalities, we compiled a set of SensorML profiles, that is, sensor metadata blueprints allowing end users to focus only on the metadata items that are related to their specific deployment. The natural extension of this scenario is the involvement of end users and sensor manufacturers in the crowd-sourced evolution of this collection of prototypes. We describe the components and workflow of our framework for computer-aided management of sensor metadata.
The Road to Independently Understandable Information
NASA Astrophysics Data System (ADS)
Habermann, T.; Robinson, E.
2017-12-01
The turn of the 21st century was a pivotal time in the Earth and Space Science information ecosystem. The Content Standard for Digital Geospatial Metadata (CSDGM) had existed for nearly a decade and ambitious new standards were just emerging. The U.S. Federal Geospatial Data Committee (FGDC) had extended many of the concepts from CSDGM into the International community with ISO 19115:2003 and the Consultative Committee for Space Data Systems (CCSDS) had migrated their Open Archival Information System (OAIS) Reference Model into an international standard (ISO 14721:2003). The OAIS model outlined the roles and responsibilities of archives with the principle role being preserving information and making it available to users, a "designated community", as a service to the data producer. It was mandatory for the archive to ensure that information is "independently understandable" to the designated community and to maintain that understanding through on-going partnerships between archives and designated communities. Standards can play a role in supporting these partnerships as designated communities expand across disciplinary and geographic boundaries. The ISO metadata standards include many capabilities that might make critical contributions to this goal. These include connections to resources outside of the metadata record (i.e. documentation) and mechanisms for ongoing incorporation of user feedback into the metadata stream. We will demonstrate these capabilities with examples of how they can increase understanding.
An Introduction to the Resource Description Framework.
ERIC Educational Resources Information Center
Miller, Eric
1998-01-01
Explains the Resource Description Framework (RDF), an infrastructure developed under the World Wide Web Consortium that enables the encoding, exchange, and reuse of structured metadata. It is an application of Extended Markup Language (XML), which is a subset of Standard Generalized Markup Language (SGML), and helps with expressing semantics.…
NASA Technical Reports Server (NTRS)
Todd, Nancy S.
2016-01-01
The rock and soil samples returned from the Apollo missions from 1969-72 have supported 46 years of research leading to advances in our understanding of the formation and evolution of the inner Solar System. NASA has been engaged in several initiatives that aim to restore, digitize, and make available to the public existing published and unpublished research data for the Apollo samples. One of these initiatives is a collaboration with IEDA (Interdisciplinary Earth Data Alliance) to develop MoonDB, a lunar geochemical database modeled after PetDB (Petrological Database of the Ocean Floor). In support of this initiative, NASA has adopted the use of IGSN (International Geo Sample Number) to generate persistent, unique identifiers for lunar samples that scientists can use when publishing research data. To facilitate the IGSN registration of the original 2,200 samples and over 120,000 subdivided samples, NASA has developed an application that retrieves sample metadata from the Lunar Curation Database and uses the SESAR API to automate the generation of IGSNs and registration of samples into SESAR (System for Earth Sample Registration). This presentation will describe the work done by NASA to map existing sample metadata to the IGSN metadata and integrate the IGSN registration process into the sample curation workflow, the lessons learned from this effort, and how this work can be extended in the future to help deal with the registration of large numbers of samples.
NASA Astrophysics Data System (ADS)
Todd, N. S.
2016-12-01
The rock and soil samples returned from the Apollo missions from 1969-72 have supported 46 years of research leading to advances in our understanding of the formation and evolution of the inner Solar System. NASA has been engaged in several initiatives that aim to restore, digitize, and make available to the public existing published and unpublished research data for the Apollo samples. One of these initiatives is a collaboration with IEDA (Interdisciplinary Earth Data Alliance) to develop MoonDB, a lunar geochemical database modeled after PetDB. In support of this initiative, NASA has adopted the use of IGSN (International Geo Sample Number) to generate persistent, unique identifiers for lunar samples that scientists can use when publishing research data. To facilitate the IGSN registration of the original 2,200 samples and over 120,000 subdivided samples, NASA has developed an application that retrieves sample metadata from the Lunar Curation Database and uses the SESAR API to automate the generation of IGSNs and registration of samples into SESAR (System for Earth Sample Registration). This presentation will describe the work done by NASA to map existing sample metadata to the IGSN metadata and integrate the IGSN registration process into the sample curation workflow, the lessons learned from this effort, and how this work can be extended in the future to help deal with the registration of large numbers of samples.
CINERGI: Community Inventory of EarthCube Resources for Geoscience Interoperability
NASA Astrophysics Data System (ADS)
Zaslavsky, Ilya; Bermudez, Luis; Grethe, Jeffrey; Gupta, Amarnath; Hsu, Leslie; Lehnert, Kerstin; Malik, Tanu; Richard, Stephen; Valentine, David; Whitenack, Thomas
2014-05-01
Organizing geoscience data resources to support cross-disciplinary data discovery, interpretation, analysis and integration is challenging because of different information models, semantic frameworks, metadata profiles, catalogs, and services used in different geoscience domains, not to mention different research paradigms and methodologies. The central goal of CINERGI, a new project supported by the US National Science Foundation through its EarthCube Building Blocks program, is to create a methodology and assemble a large inventory of high-quality information resources capable of supporting data discovery needs of researchers in a wide range of geoscience domains. The key characteristics of the inventory are: 1) collaboration with and integration of metadata resources from a number of large data facilities; 2) reliance on international metadata and catalog service standards; 3) assessment of resource "interoperability-readiness"; 4) ability to cross-link and navigate data resources, projects, models, researcher directories, publications, usage information, etc.; 5) efficient inclusion of "long-tail" data, which are not appearing in existing domain repositories; 6) data registration at feature level where appropriate, in addition to common dataset-level registration, and 7) integration with parallel EarthCube efforts, in particular focused on EarthCube governance, information brokering, service-oriented architecture design and management of semantic information. We discuss challenges associated with accomplishing CINERGI goals, including defining the inventory scope; managing different granularity levels of resource registration; interaction with search systems of domain repositories; explicating domain semantics; metadata brokering, harvesting and pruning; managing provenance of the harvested metadata; and cross-linking resources based on the linked open data (LOD) approaches. At the higher level of the inventory, we register domain-wide resources such as domain catalogs, vocabularies, information models, data service specifications, identifier systems, and assess their conformance with international standards (such as those adopted by ISO and OGC, and used by INSPIRE) or de facto community standards using, in part, automatic validation techniques. The main level in CINERGI leverages a metadata aggregation platform (currently Geoportal Server) to organize harvested resources from multiple collections and contributed by community members during EarthCube end-user domain workshops or suggested online. The latter mechanism uses the SciCrunch toolkit originally developed within the Neuroscience Information Framework (NIF) project and now being extended to other communities. The inventory is designed to support requests such as "Find resources with theme X in geographic area S", "Find datasets with subject Y using query concept expansion", "Find geographic regions having data of type Z", "Find datasets that contain property P". With the added LOD support, additional types of requests, such as "Find example implementations of specification X", "Find researchers who have worked in Domain X, dataset Y, location L", "Find resources annotated by person X", will be supported. Project's website (http://workspace.earthcube.org/cinergi) provides access to the initial resource inventory, a gallery of EarthCube researchers, collections of geoscience models, metadata entry forms, and other software modules and inventories being integrated into the CINERGI system. Support from the US National Science Foundation under award NSF ICER-1343816 is gratefully acknowledged.
Re-use of standard ontologies in a water quality vocabulary (Invited)
NASA Astrophysics Data System (ADS)
Cox, S. J.; Simons, B.; Yu, J.
2013-12-01
Observations provide the key constraints on environmental and earth science investigations. Where an investigation uses data sourced from multiple providers, data fusion depends on the observation classifications being comparable. Standard models for observation metadata are available (ISO 19156) which provide slots for key classifiers, in particular, the observed property and observation procedure. While universal use of common vocabularies might be desirable in achieving interoperability, this is unlikely in practice. However, semantic web vocabularies provide the means for asserting proximity and other relationships between items in different vocabularies, thus enabling mediation as an interoperability solution. Here we report on the development of a vocabulary for water quality observations in which recording relationships with existing vocabularies was a core strategy. The vocabulary is required to enable combination of a number of groundwater, surface water and marine water quality datasets on an ongoing basis. Our vocabulary model is based on the principle that observations generally report values of specific parameters which are defined by combining a number of facets. We start from Quantities, Units, Dimensions and Data Types (QUDT), which is an OWL ontology developed by NASA and TopQuadrant. We extend this with two additional classes, for Observed Property and Identified Object, and two linking properties, which enable us to create an observed property vocabulary for water quality applications. This ontology is comparable with models for observed properties developed as part of OGC's Observations and Measurements v1.0 standard, the INSPIRE Generic Conceptual Model, and may also be compared with the W3C SSN Ontology, which is based on the DOLCE Ultralite upper-ontology. Water quality observations commonly report concentrations of chemicals, both natural and contaminant, so we tie many of the Identified Objects to items from Chemical Entities of Biological Interest (ChEBI). ChEBI is an OWL-based dictionary of over 70 000 molecular entities, based on existing scientific work and linked through to International Union of Pure and Applied Chemistry (IUPAC) Nomenclature. Within the model the relevant classes, including those from QUDT, are declared to be subclasses of SKOS Concept, so the resulting vocabularies may be directly mapped to other SKOS-based vocabularies, such as from the NERC Vocabulary Service or the Marine Metadata Initiative, using SKOS predicates. Where the external vocabularies are not published with persistent URIs, such as CUAHSI, the mapping may be recorded more informally using annotations, or use proxy URIs for the external vocabulary. The resulting SKOS vocabularies demonstrate a separation of governance of key definitions such as units and quantities and chemical entities, ensuring reuse where possible and extending and adding detail where necessary.
ERIC Educational Resources Information Center
Severiens, Thomas; Hohlfeld, Michael; Zimmermann, Kerstin; Hilf, Eberhard R.; von Ossietzky, Carl; Weibel, Stuart L.; Koch, Traugott; Hughes, Carol Ann; Bearman, David
2000-01-01
Includes four articles that discuss a variety to topics, including a distributed network of physics institutions documents called PhysDocs which harvests information from the local Web-servers of professional physics institutions; the Dublin Core metadata initiative; information services for higher education in a competitive environment; and…
2016-12-01
the goal of refining the requirements and developing a specification for an operational use Metadata Registry (MDR). Simultaneously, the NATO...key role1. Specifically it is stated that: “M&S can be effectively used as a lead investment to enable the advancement and continuous evolution of...and properties that allow data to be quickly and easily understood and used in specific applications. Metadata, or data about data, is the
Implementation of Imaging Technology for Recordkeeping at the World Bank.
ERIC Educational Resources Information Center
Smith, Clive D.
1997-01-01
Describes the evolution of an electronic document management system for the World Bank, including record-keeping components, and how the Pittsburgh requirements for evidence in record keeping were used to evaluate it. Discusses imaging technology for scanning paper records, metadata for retrieval and record keeping, and extending the system to…
Combined use of semantics and metadata to manage Research Data Life Cycle in Environmental Sciences
NASA Astrophysics Data System (ADS)
Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Pertinez, Esther; Palacio, Aida
2017-04-01
The use of metadata to contextualize datasets is quite extended in Earth System Sciences. There are some initiatives and available tools to help data managers to choose the best metadata standard that fit their use cases, like the DCC Metadata Directory (http://www.dcc.ac.uk/resources/metadata-standards). In our use case, we have been gathering physical, chemical and biological data from a water reservoir since 2010. A well metadata definition is crucial not only to contextualize our own data but also to integrate datasets from other sources like satellites or meteorological agencies. That is why we have chosen EML (Ecological Metadata Language), which integrates many different elements to define a dataset, including the project context, instrumentation and parameters definition, and the software used to process, provide quality controls and include the publication details. Those metadata elements can contribute to help both human and machines to understand and process the dataset. However, the use of metadata is not enough to fully support the data life cycle, from the Data Management Plan definition to the Publication and Re-use. To do so, we need to define not only metadata and attributes but also the relationships between them, so semantics are needed. Ontologies, being a knowledge representation, can contribute to define the elements of a research data life cycle, including DMP, datasets, software, etc. They also can define how the different elements are related between them and how they interact. The first advantage of developing an ontology of a knowledge domain is that they provide a common vocabulary hierarchy (i.e. a conceptual schema) that can be used and standardized by all the agents interested in the domain (either humans or machines). This way of using ontologies is one of the basis of the Semantic Web, where ontologies are set to play a key role in establishing a common terminology between agents. To develop an ontology we are using a graphical tool Protégé, which is a graphical ontology-development tool that supports a rich knowledge model and it is open-source and freely available. To process and manage the ontology, we are using Semantic MediaWiki, which is able to process queries. Semantic MediaWiki is an extension of MediaWiki where we can do semantic search and export data in RDF. Our final goal is integrating our data repository portal and semantic processing engine in order to have a complete system to manage the data life cycle stages and their relationships, including machine-actionable DMP solution, datasets and software management, computing resources for processing and analysis and publication features (DOI mint). This way we will be able to reproduce the full data life cycle chain warranting the FAIR+R principles.
Semantic Entity Pairing for Improved Data Validation and Discovery
NASA Astrophysics Data System (ADS)
Shepherd, Adam; Chandler, Cyndy; Arko, Robert; Chen, Yanning; Krisnadhi, Adila; Hitzler, Pascal; Narock, Tom; Groman, Robert; Rauch, Shannon
2014-05-01
One of the central incentives for linked data implementations is the opportunity to leverage the rich logic inherent in structured data. The logic embedded in semantic models can strengthen capabilities for data discovery and data validation when pairing entities from distinct, contextually-related datasets. The creation of links between the two datasets broadens data discovery by using the semantic logic to help machines compare similar entities and properties that exist on different levels of granularity. This semantic capability enables appropriate entity pairing without making inaccurate assertions as to the nature of the relationship. Entity pairing also provides a context to accurately validate the correctness of an entity's property values - an exercise highly valued by data management practices who seek to ensure the quality and correctness of their data. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) semantically models metadata surrounding oceanographic researchcruises, but other sources outside of BCO-DMO exist that also model metadata about these same cruises. For BCO-DMO, the process of successfully pairing its entities to these sources begins by selecting sources that are decidedly trustworthy and authoritative for the modeled concepts. In this case, the Rolling Deck to Repository (R2R) program has a well-respected reputation among the oceanographic research community, presents a data context that is uniquely different and valuable, and semantically models its cruise metadata. Where BCO-DMO exposes the processed, analyzed data products generated by researchers, R2R exposes the raw shipboard data that was collected on the same research cruises. Interlinking these cruise entities expands data discovery capabilities but also allows for validating the contextual correctness of both BCO-DMO's and R2R's cruise metadata. Assessing the potential for a link between two datasets for a similar entity consists of aligning like properties and deciding on the appropriate semantic markup to describe the link. This highlights the desire for research organizations like BCO-DMO and R2R to ensure the complete accuracy of their exposed metadata, as it directly reflects on their reputations as successful and trustworthy source of research data. Therefore, data validation reaches beyond simple syntax of property values into contextual correctness. As a human process, this is a time-intensive task that does not scale well for finite human and funding resources. Therefore, to assess contextual correctness across datasets at different levels of granularity, BCO-DMO is developing a system that employs semantic technologies to aid the human process by organizing potential links and calculating a confidence coefficient as to the correctness of the potential pairing based on the distance between certain entity property values. The system allows humans to quickly scan potential links and their confidence coefficients for asserting persistence and correcting and investigating misaligned entity property values.
Web Services as Building Blocks for an Open Coastal Observing System
NASA Astrophysics Data System (ADS)
Breitbach, G.; Krasemann, H.
2012-04-01
In coastal observing systems it is needed to integrate different observing methods like remote sensing, in-situ measurements, and models into a synoptic view of the state of the observed region. This integration can be based solely on web services combining data and metadata. Such an approach is pursued for COSYNA (Coastal Observing System for Northern and Artic seas). Data from satellite and radar remote sensing, measurements of buoys, stations and Ferryboxes are the observation part of COSYNA. These data are assimilated into models to create pre-operational forecasts. For discovering data an OGC Web Feature Service (WFS) is used by the COSYNA data portal. This Web Feature Service knows the necessary metadata not only for finding data, but in addition the URLs of web services to view and download the data. To make the data from different resources comparable a common vocabulary is needed. For COSYNA the standard names from CF-conventions are stored within the metadata whenever possible. For the metadata an INSPIRE and ISO19115 compatible data format is used. The WFS is fed from the metadata-system using database-views. Actual data are stored in two different formats, in NetCDF-files for gridded data and in an RDBMS for time-series-like data. The web service URLs are mostly standard based the standards are mainly OGC standards. Maps were created from netcdf files with the help of the ncWMS tool whereas a self-developed java servlet is used for maps of moving measurement platforms. In this case download of data is offered via OGC SOS. For NetCDF-files OPeNDAP is used for the data download. The OGC CSW is used for accessing extended metadata. The concept of data management in COSYNA will be presented which is independent of the special services used in COSYNA. This concept is parameter and data centric and might be useful for other observing systems.
NASA Astrophysics Data System (ADS)
Stone, N.; Lafuente, B.; Bristow, T.; Keller, R.; Downs, R. T.; Blake, D. F.; Fonda, M.; Pires, A.
2016-12-01
Working primarily with astrobiology researchers at NASA Ames, the Open Data Repository (ODR) has been conducting a software pilot to meet the varying needs of this multidisciplinary community. Astrobiology researchers often have small communities or operate individually with unique data sets that don't easily fit into existing database structures. The ODR constructed its Data Publisher software to allow researchers to create databases with common metadata structures and subsequently extend them to meet their individual needs and data requirements. The software accomplishes these tasks through a web-based interface that allows collaborative creation and revision of common metadata templates and individual extensions to these templates for custom data sets. This allows researchers to search disparate datasets based on common metadata established through the metadata tools, but still facilitates distinct analyses and data that may be stored alongside the required common metadata. The software produces web pages that can be made publicly available at the researcher's discretion so that users may search and browse the data in an effort to make interoperability and data discovery a human-friendly task while also providing semantic data for machine-based discovery. Once relevant data has been identified, researchers can utilize the built-in application programming interface (API) that exposes the data for machine-based consumption and integration with existing data analysis tools (e.g. R, MATLAB, Project Jupyter - http://jupyter.org). The current evolution of the project has created the Astrobiology Habitable Environments Database (AHED)[1] which provides an interface to databases connected through a common metadata core. In the next project phase, the goal is for small research teams and groups to be self-sufficient in publishing their research data to meet funding mandates and academic requirements as well as fostering increased data discovery and interoperability through human-readable and machine-readable interfaces. This project is supported by the Science-Enabling Research Activity (SERA) and NASA NNX11AP82A, MSL. [1] B. Lafuente et al. (2016) AGU, submitted.
NASA Astrophysics Data System (ADS)
Ulbricht, Damian; Elger, Kirsten; Bertelmann, Roland; Klump, Jens
2016-04-01
With the foundation of DataCite in 2009 and the technical infrastructure installed in the last six years it has become very easy to create citable dataset DOIs. Nowadays, dataset DOIs are increasingly accepted and required by journals in reference lists of manuscripts. In addition, DataCite provides usage statistics [1] of assigned DOIs and offers a public search API to make research data count. By linking related information to the data, they become more useful for future generations of scientists. For this purpose, several identifier systems, as ISBN for books, ISSN for journals, DOI for articles or related data, Orcid for authors, and IGSN for physical samples can be attached to DOIs using the DataCite metadata schema [2]. While these are good preconditions to publish data, free and open solutions that help with the curation of data, the publication of research data, and the assignment of DOIs in one software seem to be rare. At GFZ Potsdam we built a modular software stack that is made of several free and open software solutions and we established 'GFZ Data Services'. 'GFZ Data Services' provides storage, a metadata editor for publication and a facility to moderate minted DOIs. All software solutions are connected through web APIs, which makes it possible to reuse and integrate established software. Core component of 'GFZ Data Services' is an eSciDoc [3] middleware that is used as central storage, and has been designed along the OAIS reference model for digital preservation. Thus, data are stored in self-contained packages that are made of binary file-based data and XML-based metadata. The eSciDoc infrastructure provides access control to data and it is able to handle half-open datasets, which is useful in embargo situations when a subset of the research data are released after an adequate period. The data exchange platform panMetaDocs [4] makes use of eSciDoc's REST API to upload file-based data into eSciDoc and uses a metadata editor [5] to annotate the files with metadata. The metadata editor has a user-friendly interface with nominal lists, extensive explanations, and an interactive mapping tool to provide assistance to scientists describing the data. It is possible to deposit metadata templates to fill certain fields with default values. The metadata editor generates metadata in the schemas ISO19139, NASA GCMD DIF, and DataCite and could be extended for other schemas. panMetaDocs is able to mint dataset DOIs through DOIDB, which is our component to moderate dataset DOIs issued through 'GFZ Data Services'. DOIDB accepts metadata in the schemas ISO19139, DIF, and DataCite. In addition, DOIDB provides an OAI-PMH interface to disseminate all deposited metadata to data portals. The presentation of datasets on DOI landing pages is done though XSLT stylesheet transformation of the XML-based metadata. The landing pages have been designed to meet needs of scientists. We are able to render the metadata to different layouts. Furthermore, additional information about datasets and publications is assembled into the webpage by querying public databases on the internet. The work presented here will focus on technical details of the software stack. [1] http://stats.datacite.org [2] http://www.dlib.org/dlib/january11/starr/01starr.html [3] http://www.escidoc.org [4] http://panmetadocs.sf.net [5] http://github.com/ulbricht
Implementing RDA Data Citation Recommendations: Case Study in South Africa
NASA Astrophysics Data System (ADS)
Hugo, Wim
2016-04-01
SAEON operates a shared research data infrastructure for its own data sets and for clients and end users in the Earth and Environmental Sciences domain. SAEON has a license to issue Digital Object Identifiers via DataCite on behalf of third parties, and have recently concluded development work to make a universal data deposit, description, and DOI minting facility available. This facility will be used to develop a number of end user gateways, including DataCite South Africa (in collaboration with National Research Foundation and addressing all grant-funded research in the country), DIRISA (Data-intensive Research Infrastructure for South Africa - in collaboration with Meraka Institute and Department of Science and Technology), and SASDI (South African Spatial Data Infrastructure). The RDA recently published Data Citation Recommendations [1], and this was used as a basis for specification of Digital Object Identifier implementation, raising two significant challenges: 1. Synchronisation of frequently harvested meta-data sets where version management practice did not align with the RDA recommendations, and 2. Handling sub-sets of and queries on large, continuously updated data sets. In the first case, we have developed a set of tests that determine the logical course of action when discrepancies are found during synchronization, and we have incorporated these into meta-data harvester configurations. Additionally, we have developed a state diagram and attendant workflow for meta-data that includes problem states emanating from DOI management, reporting services for data depositors, and feedback to end users in respect of synchronisation issues. In the second case, in the absence of firm guidelines from DataCite, we are seeking community consensus and feedback on an approach that caches all queries performed and subsets derived from data, and provide these with anchor-style extensions linked to the dataset's original DOI. This allows extended DOIs to resolve to a meta-data page on which the cached data set is available as an anchored download link.All cached datasets are provided with checksum values to verify the contents against such copies as may exist. The paper reviews recent service-driven portal interface developments, both services and graphical user interfaces, including wizard-style, configurable applications for meta-data management and DOI minting, discovery, download, visualization, and reporting. It showcases examples of the two permanent identifier problem areas and how these were addressed. The paper concludes with contributions to open research questions, including (1) determining optimal meta-data granularity and (2) proposing an implementation guideline for extended DOIs. [1] A. Rauber, D. van Uytvanck, A. Asmi, S. Pröll, "Data Citation Recommendations", November 2015, RDA. https://rd-alliance.org/group/data-citation-wg/outcomes/data-citation-recommendation.htm
Integrating Databases with Maps: The Delivery of Cultural Data through TimeMap.
ERIC Educational Resources Information Center
Johnson, Ian
TimeMap is a unique integration of database management, metadata and interactive maps, designed to contextualise and deliver cultural data through maps. TimeMap extends conventional maps with the time dimension, creating and animating maps "on-the-fly"; delivers them as a kiosk application or embedded in Web pages; links flexibly to…
NASA Astrophysics Data System (ADS)
Blower, Jon; Lawrence, Bryan; Kershaw, Philip; Nagni, Maurizio
2014-05-01
The research process can be thought of as an iterative activity, initiated based on prior domain knowledge, as well on a number of external inputs, and producing a range of outputs including datasets, studies and peer reviewed publications. These outputs may describe the problem under study, the methodology used, the results obtained, etc. In any new publication, the author may cite or comment other papers or datasets in order to support their research hypothesis. However, as their work progresses, the researcher may draw from many other latent channels of information. These could include for example, a private conversation following a lecture or during a social dinner; an opinion expressed concerning some significant event such as an earthquake or for example a satellite failure. In addition, other sources of information of grey literature are important public such as informal papers such as the arxiv deposit, reports and studies. The climate science community is not an exception to this pattern; the CHARMe project, funded under the European FP7 framework, is developing an online system for collecting and sharing user feedback on climate datasets. This is to help users judge how suitable such climate data are for an intended application. The user feedback could be comments about assessments, citations, or provenance of the dataset, or other information such as descriptions of uncertainty or data quality. We define this as a distinct category of metadata called Commentary or C-metadata. We link C-metadata with target climate datasets using a Linked Data approach via the Open Annotation data model. In the context of Linked Data, C-metadata plays the role of a resource which, depending on its nature, may be accessed as simple text or as more structured content. The project is implementing a range of software tools to create, search or visualize C-metadata including a JavaScript plugin enabling this functionality to be integrated in situ with data provider portals. Since commentary metadata may originate from a range of sources, moderation of this information will become a crucial issue. If the project is successful, expert human moderation (analogous to peer-review) will become impracticable as annotation numbers increase, and some combination of algorithmic and crowd-sourced evaluation of commentary metadata will be necessary. To that end, future work will need to extend work under development to enable access control and checking of inputs, to deal with scale.
Zen and the Art of Virtual Observatory Maintenance
NASA Astrophysics Data System (ADS)
Bargatze, L. F.
2014-12-01
The NASA Science Mission Directive Science Plan stresses that the primary goals of Heliophysics research focus on the understanding of the Sun's influence on the Earth and other bodies in the solar system. The NASA Heliophysics Division has adopted the Virtual Observatory, or VxO, concept in order to enable scientists to easily discover and access all data products relevant to these goals via web portals that act as clearinghouses. Furthermore, Heliophysics discipline scientists have defined the Space Physics Archive Search and Extract (SPASE) metadata schema in order to describe the contents of such applicable data products with detail extending all the way down to the parameter level. One SPASE metadata description file must be written to describe each data product at the global level. And the collection of such data product metadata description files, stored in repositories, provides the searchable content that the VxO web sites require in order to match the list of products to the unique needs of each researcher. The VxO metadata repository content also allows one to provide links to each unique data file contained in the full complement of files on a per data product basis. These links are contained within SPASE "Granule" description files and permit uniform access, worldwide, regardless of data server location thus permitting the VxO clearinghouse capability. The VxO concept is sound in theory but difficult in practice given that the Heliophysics data environment is diverse, ever expanding, and volatile. Thus, it is imperative to update the VxO metadata repositories in order to provide a complete, accurate, and current portrayal of the data environment. Such attention to detail is not a VxO desire but a necessity in order to support Heliophysics researchers and foster VxO user loyalty. An application of these basic tenets to the construction of a VxO repository dedicated to providing access to the CDF-formatted data collection hosted on the NASA Goddard CDAWeb data server. Note that the CDF format is self-describing and thus it provides a source of information for initiating SPASE metadata description at the data product level. Also, the CDAWeb data server provides high-quality data product tracking down to the individual data file level permitting easy updating of SPASE Granule metadata.
Evolution of the use of relational and NoSQL databases in the ATLAS experiment
NASA Astrophysics Data System (ADS)
Barberis, D.
2016-09-01
The ATLAS experiment used for many years a large database infrastructure based on Oracle to store several different types of non-event data: time-dependent detector configuration and conditions data, calibrations and alignments, configurations of Grid sites, catalogues for data management tools, job records for distributed workload management tools, run and event metadata. The rapid development of "NoSQL" databases (structured storage services) in the last five years allowed an extended and complementary usage of traditional relational databases and new structured storage tools in order to improve the performance of existing applications and to extend their functionalities using the possibilities offered by the modern storage systems. The trend is towards using the best tool for each kind of data, separating for example the intrinsically relational metadata from payload storage, and records that are frequently updated and benefit from transactions from archived information. Access to all components has to be orchestrated by specialised services that run on front-end machines and shield the user from the complexity of data storage infrastructure. This paper describes this technology evolution in the ATLAS database infrastructure and presents a few examples of large database applications that benefit from it.
Automated Database Mediation Using Ontological Metadata Mappings
Marenco, Luis; Wang, Rixin; Nadkarni, Prakash
2009-01-01
Objective To devise an automated approach for integrating federated database information using database ontologies constructed from their extended metadata. Background One challenge of database federation is that the granularity of representation of equivalent data varies across systems. Dealing effectively with this problem is analogous to dealing with precoordinated vs. postcoordinated concepts in biomedical ontologies. Model Description The authors describe an approach based on ontological metadata mapping rules defined with elements of a global vocabulary, which allows a query specified at one granularity level to fetch data, where possible, from databases within the federation that use different granularities. This is implemented in OntoMediator, a newly developed production component of our previously described Query Integrator System. OntoMediator's operation is illustrated with a query that accesses three geographically separate, interoperating databases. An example based on SNOMED also illustrates the applicability of high-level rules to support the enforcement of constraints that can prevent inappropriate curator or power-user actions. Summary A rule-based framework simplifies the design and maintenance of systems where categories of data must be mapped to each other, for the purpose of either cross-database query or for curation of the contents of compositional controlled vocabularies. PMID:19567801
New Version of SeismicHandler (SHX) based on ObsPy
NASA Astrophysics Data System (ADS)
Stammler, Klaus; Walther, Marcus
2016-04-01
The command line version of SeismicHandler (SH), a scientific analysis tool for seismic waveform data developed around 1990, has been redesigned in the recent years, based on a project funded by the Deutsche Forschungsgemeinschaft (DFG). The aim was to address new data access techniques, simplified metadata handling and a modularized software design. As a result the program was rewritten in Python in its main parts, taking advantage of simplicity of this script language and its variety of well developed software libraries, including ObsPy. SHX provides an easy access to waveforms and metadata via arclink and FDSN webservice protocols, also access to event catalogs is implemented. With single commands whole networks or stations within a certain area may be read in, the metadata are retrieved from the servers and stored in a local database. For data processing the large set of SH commands is available, as well as the SH scripting language. Via this SH language scripts or additional Python modules the command set of SHX is easily extendable. The program is open source, tested on Linux operating systems, documentation and download is found at URL "https://www.seismic-handler.org/".
NASA Astrophysics Data System (ADS)
Martens, Petrus C.; Yeates, A. R.; Mackay, D.; Pillai, K. G.
2013-07-01
Using metadata produced by automated solar feature detection modules developed for SDO (Martens et al. 2012) we have discovered some trends in filament chirality and filament-sigmoid relations that are new and in part contradict the current consensus. Automated detection of solar features has the advantage over manual detection of having the detection criteria applied consistently, and in being able to deal with enormous amounts of data, like the 1 Terabyte per day that SDO produces. Here we use the filament detection module developed by Bernasconi, which has metadata from 2000 on, and the sigmoid sniffer, which has been producing metadata from AIA 94 A images since October 2011. The most interesting result we find is that the hemispheric chirality preference for filaments (dextral in the north, and v.v.), studied in detail for a three year period by Pevtsov et al. (2003) seems to disappear during parts of the decline of cycle 23 and during the extended solar minimum that followed. Moreover the hemispheric chirality rule seems to be much less pronounced during the onset of cycle 24. For sigmoids we find the expected correlation between chirality and handedness (S or Z) shape but not as strong as expected.
The Planetary Data System (PDS) Data Dictionary Tool (LDDTool)
NASA Astrophysics Data System (ADS)
Raugh, Anne C.; Hughes, John S.
2017-10-01
One of the major design goals of the PDS4 development effort was to provide an avenue for discipline specialists and large data preparers such as mission archivists to extend the core PDS4 Information Model (IM) to include metadata definitions specific to their own contexts. This capability is critical for the Planetary Data System - an archive that deals with a data collection that is diverse along virtually every conceivable axis. Amid such diversity, it is in the best interests of the PDS archive and its users that all extensions to the core IM follow the same design techniques, conventions, and restrictions as the core implementation itself. Notwithstanding, expecting all mission and discipline archivist seeking to define metadata for a new context to acquire expertise in information modeling, model-driven design, ontology, schema formulation, and PDS4 design conventions and philosophy is unrealistic, to say the least.To bridge that expertise gap, the PDS Engineering Node has developed the data dictionary creation tool known as “LDDTool”. This tool incorporates the same software used to maintain and extend the core IM, packaged with an interface that enables a developer to create his contextual information model using the same, open standards-based metadata framework PDS itself uses. Through this interface, the novice dictionary developer has immediate access to the common set of data types and unit classes for defining attributes, and a straight-forward method for constructing classes. The more experienced developer, using the same tool, has access to more sophisticated modeling methods like abstraction and extension, and can define very sophisticated validation rules.We present the key features of the PDS Local Data Dictionary Tool, which both supports the development of extensions to the PDS4 IM, and ensures their compatibility with the IM.
Chase, Katherine J.; Bock, Andrew R.; Sando, Roy
2017-01-05
This report provides an overview of current (2016) U.S. Geological Survey policies and practices related to publishing data on ScienceBase, and an example interactive mapping application to display those data. ScienceBase is an integrated data sharing platform managed by the U.S. Geological Survey. This report describes resources that U.S. Geological Survey Scientists can use for writing data management plans, formatting data, and creating metadata, as well as for data and metadata review, uploading data and metadata to ScienceBase, and sharing metadata through the U.S. Geological Survey Science Data Catalog. Because data publishing policies and practices are evolving, scientists should consult the resources cited in this paper for definitive policy information.An example is provided where, using the content of a published ScienceBase data release that is associated with an interpretive product, a simple user interface is constructed to demonstrate how the open source capabilities of the R programming language and environment can interact with the properties and objects of the ScienceBase item and be used to generate interactive maps.
Integrating Semantic Information in Metadata Descriptions for a Geoscience-wide Resource Inventory.
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Richard, S. M.; Gupta, A.; Valentine, D.; Whitenack, T.; Ozyurt, I. B.; Grethe, J. S.; Schachne, A.
2016-12-01
Integrating semantic information into legacy metadata catalogs is a challenging issue and so far has been mostly done on a limited scale. We present experience of CINERGI (Community Inventory of Earthcube Resources for Geoscience Interoperability), an NSF Earthcube Building Block project, in creating a large cross-disciplinary catalog of geoscience information resources to enable cross-domain discovery. The project developed a pipeline for automatically augmenting resource metadata, in particular generating keywords that describe metadata documents harvested from multiple geoscience information repositories or contributed by geoscientists through various channels including surveys and domain resource inventories. The pipeline examines available metadata descriptions using text parsing, vocabulary management and semantic annotation and graph navigation services of GeoSciGraph. GeoSciGraph, in turn, relies on a large cross-domain ontology of geoscience terms, which bridges several independently developed ontologies or taxonomies including SWEET, ENVO, YAGO, GeoSciML, GCMD, SWO, and CHEBI. The ontology content enables automatic extraction of keywords reflecting science domains, equipment used, geospatial features, measured properties, methods, processes, etc. We specifically focus on issues of cross-domain geoscience ontology creation, resolving several types of semantic conflicts among component ontologies or vocabularies, and constructing and managing facets for improved data discovery and navigation. The ontology and keyword generation rules are iteratively improved as pipeline results are presented to data managers for selective manual curation via a CINERGI Annotator user interface. We present lessons learned from applying CINERGI metadata augmentation pipeline to a number of federal agency and academic data registries, in the context of several use cases that require data discovery and integration across multiple earth science data catalogs of varying quality and completeness. The inventory is accessible at http://cinergi.sdsc.edu, and the CINERGI project web page is http://earthcube.org/group/cinergi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Pedone, Jr., James M.
A cluster file system is provided having a plurality of distributed metadata servers with shared access to one or more shared low latency persistent key-value metadata stores. A metadata server comprises an abstract storage interface comprising a software interface module that communicates with at least one shared persistent key-value metadata store providing a key-value interface for persistent storage of key-value metadata. The software interface module provides the key-value metadata to the at least one shared persistent key-value metadata store in a key-value format. The shared persistent key-value metadata store is accessed by a plurality of metadata servers. A metadata requestmore » can be processed by a given metadata server independently of other metadata servers in the cluster file system. A distributed metadata storage environment is also disclosed that comprises a plurality of metadata servers having an abstract storage interface to at least one shared persistent key-value metadata store.« less
Lightweight Advertising and Scalable Discovery of Services, Datasets, and Events Using Feedcasts
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Ramachandran, R.; Movva, S.
2010-12-01
Broadcast feeds (Atom or RSS) are a mechanism for advertising the existence of new data objects on the web, with metadata and links to further information. Users then subscribe to the feed to receive updates. This concept has already been used to advertise the new granules of science data as they are produced (datacasting), with browse images and metadata, and to advertise bundles of web services (service casting). Structured metadata is introduced into the XML feed format by embedding new XML tags (in defined namespaces), using typed links, and reusing built-in Atom feed elements. This “infocasting” concept can be extended to include many other science artifacts, including data collections, workflow documents, topical geophysical events (hurricanes, forest fires, etc.), natural hazard warnings, and short articles describing a new science result. The common theme is that each infocast contains machine-readable, structured metadata describing the object and enabling further manipulation. For example, service casts contain type links pointing to the service interface description (e.g., WSDL for SOAP services), service endpoint, and human-readable documentation. Our Infocasting project has three main goals: (1) define and evangelize micro-formats (metadata standards) so that providers can easily advertise their web services, datasets, and topical geophysical events by adding structured information to broadcast feeds; (2) develop authoring tools so that anyone can easily author such service advertisements, data casts, and event descriptions; and (3) provide a one-stop, Google-like search box in the browser that allows discovery of service, data and event casts visible on the web, and services & data registered in the GEOSS repository and other NASA repositories (GCMD & ECHO). To demonstrate the event casting idea, a series of micro-articles—with accompanying event casts containing links to relevant datasets, web services, and science analysis workflows--will be authored for several kinds of geophysical events, such as hurricanes, smoke plume events, tsunamis, etc. The talk will describe our progress so far, and some of the issues with leveraging existing metadata standards to define lightweight micro-formats.
The STP (Solar-Terrestrial Physics) Semantic Web based on the RSS1.0 and the RDF
NASA Astrophysics Data System (ADS)
Kubo, T.; Murata, K. T.; Kimura, E.; Ishikura, S.; Shinohara, I.; Kasaba, Y.; Watari, S.; Matsuoka, D.
2006-12-01
In the Solar-Terrestrial Physics (STP), it is pointed out that circulation and utilization of observation data among researchers are insufficient. To archive interdisciplinary researches, we need to overcome this circulation and utilization problems. Under such a background, authors' group has developed a world-wide database that manages meta-data of satellite and ground-based observation data files. It is noted that retrieving meta-data from the observation data and registering them to database have been carried out by hand so far. Our goal is to establish the STP Semantic Web. The Semantic Web provides a common framework that allows a variety of data shared and reused across applications, enterprises, and communities. We also expect that the secondary information related with observations, such as event information and associated news, are also shared over the networks. The most fundamental issue on the establishment is who generates, manages and provides meta-data in the Semantic Web. We developed an automatic meta-data collection system for the observation data using the RSS (RDF Site Summary) 1.0. The RSS1.0 is one of the XML-based markup languages based on the RDF (Resource Description Framework), which is designed for syndicating news and contents of news-like sites. The RSS1.0 is used to describe the STP meta-data, such as data file name, file server address and observation date. To describe the meta-data of the STP beyond RSS1.0 vocabulary, we defined original vocabularies for the STP resources using the RDF Schema. The RDF describes technical terms on the STP along with the Dublin Core Metadata Element Set, which is standard for cross-domain information resource descriptions. Researchers' information on the STP by FOAF, which is known as an RDF/XML vocabulary, creates a machine-readable metadata describing people. Using the RSS1.0 as a meta-data distribution method, the workflow from retrieving meta-data to registering them into the database is automated. This technique is applied for several database systems, such as the DARTS database system and NICT Space Weather Report Service. The DARTS is a science database managed by ISAS/JAXA in Japan. We succeeded in generating and collecting the meta-data automatically for the CDF (Common data Format) data, such as Reimei satellite data, provided by the DARTS. We also create an RDF service for space weather report and real-time global MHD simulation 3D data provided by the NICT. Our Semantic Web system works as follows: The RSS1.0 documents generated on the data sites (ISAS and NICT) are automatically collected by a meta-data collection agent. The RDF documents are registered and the agent extracts meta-data to store them in the Sesame, which is an open source RDF database with support for RDF Schema inferencing and querying. The RDF database provides advanced retrieval processing that has considered property and relation. Finally, the STP Semantic Web provides automatic processing or high level search for the data which are not only for observation data but for space weather news, physical events, technical terms and researches information related to the STP.
MetaSRA: normalized human sample-specific metadata for the Sequence Read Archive.
Bernstein, Matthew N; Doan, AnHai; Dewey, Colin N
2017-09-15
The NCBI's Sequence Read Archive (SRA) promises great biological insight if one could analyze the data in the aggregate; however, the data remain largely underutilized, in part, due to the poor structure of the metadata associated with each sample. The rules governing submissions to the SRA do not dictate a standardized set of terms that should be used to describe the biological samples from which the sequencing data are derived. As a result, the metadata include many synonyms, spelling variants and references to outside sources of information. Furthermore, manual annotation of the data remains intractable due to the large number of samples in the archive. For these reasons, it has been difficult to perform large-scale analyses that study the relationships between biomolecular processes and phenotype across diverse diseases, tissues and cell types present in the SRA. We present MetaSRA, a database of normalized SRA human sample-specific metadata following a schema inspired by the metadata organization of the ENCODE project. This schema involves mapping samples to terms in biomedical ontologies, labeling each sample with a sample-type category, and extracting real-valued properties. We automated these tasks via a novel computational pipeline. The MetaSRA is available at metasra.biostat.wisc.edu via both a searchable web interface and bulk downloads. Software implementing our computational pipeline is available at http://github.com/deweylab/metasra-pipeline. cdewey@biostat.wisc.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Log-less metadata management on metadata server for parallel file systems.
Liao, Jianwei; Xiao, Guoqiang; Peng, Xiaoning
2014-01-01
This paper presents a novel metadata management mechanism on the metadata server (MDS) for parallel and distributed file systems. In this technique, the client file system backs up the sent metadata requests, which have been handled by the metadata server, so that the MDS does not need to log metadata changes to nonvolatile storage for achieving highly available metadata service, as well as better performance improvement in metadata processing. As the client file system backs up certain sent metadata requests in its memory, the overhead for handling these backup requests is much smaller than that brought by the metadata server, while it adopts logging or journaling to yield highly available metadata service. The experimental results show that this newly proposed mechanism can significantly improve the speed of metadata processing and render a better I/O data throughput, in contrast to conventional metadata management schemes, that is, logging or journaling on MDS. Besides, a complete metadata recovery can be achieved by replaying the backup logs cached by all involved clients, when the metadata server has crashed or gone into nonoperational state exceptionally.
Log-Less Metadata Management on Metadata Server for Parallel File Systems
Xiao, Guoqiang; Peng, Xiaoning
2014-01-01
This paper presents a novel metadata management mechanism on the metadata server (MDS) for parallel and distributed file systems. In this technique, the client file system backs up the sent metadata requests, which have been handled by the metadata server, so that the MDS does not need to log metadata changes to nonvolatile storage for achieving highly available metadata service, as well as better performance improvement in metadata processing. As the client file system backs up certain sent metadata requests in its memory, the overhead for handling these backup requests is much smaller than that brought by the metadata server, while it adopts logging or journaling to yield highly available metadata service. The experimental results show that this newly proposed mechanism can significantly improve the speed of metadata processing and render a better I/O data throughput, in contrast to conventional metadata management schemes, that is, logging or journaling on MDS. Besides, a complete metadata recovery can be achieved by replaying the backup logs cached by all involved clients, when the metadata server has crashed or gone into nonoperational state exceptionally. PMID:24892093
Lessons Learned From 104 Years of Mobile Observatories
NASA Astrophysics Data System (ADS)
Miller, S. P.; Clark, P. D.; Neiswender, C.; Raymond, L.; Rioux, M.; Norton, C.; Detrick, R.; Helly, J.; Sutton, D.; Weatherford, J.
2007-12-01
As the oceanographic community ventures into a new era of integrated observatories, it may be helpful to look back on the era of "mobile observatories" to see what Cyberinfrastructure lessons might be learned. For example, SIO has been operating research vessels for 104 years, supporting a wide range of disciplines: marine geology and geophysics, physical oceanography, geochemistry, biology, seismology, ecology, fisheries, and acoustics. In the last 6 years progress has been made with diverse data types, formats and media, resulting in a fully-searchable online SIOExplorer Digital Library of more than 800 cruises (http://SIOExplorer.ucsd.edu). Public access to SIOExplorer is considerable, with 795,351 files (206 GB) downloaded last year. During the last 3 years the efforts have been extended to WHOI, with a "Multi-Institution Testbed for Scalable Digital Archiving" funded by the Library of Congress and NSF (IIS 0455998). The project has created a prototype digital library of data from both institutions, including cruises, Alvin submersible dives, and ROVs. In the process, the team encountered technical and cultural issues that will be facing the observatory community in the near future. Technological Lessons Learned: Shipboard data from multiple institutions are extraordinarily diverse, and provide a good training ground for observatories. Data are gathered from a wide range of authorities, laboratories, servers and media, with little documentation. Conflicting versions exist, generated by alternative processes. Domain- and institution-specific issues were addressed during initial staging. Data files were categorized and metadata harvested with automated procedures. With our second-generation approach to staging, we achieve higher levels of automation with greater use of controlled vocabularies. Database and XML- based procedures deal with the diversity of raw metadata values and map them to agreed-upon standard values, in collaboration with the Marine Metadata Interoperability (MMI) community. All objects are tagged with an expert level, thus serving an educational audience, as well as research users. After staging, publication into the digital library is completely automated. The technical challenges have been largely overcome, thanks to a scalable, federated digital library architecture from the San Diego Supercomputer Center, implemented at SIO, WHOI and other sites. The metadata design is flexible, supporting modular blocks of metadata tailored to the needs of instruments, samples, documents, derived products, cruises or dives, as appropriate. Controlled metadata vocabularies, with content and definitions negotiated by all parties, are critical. Metadata may be mapped to required external standards and formats, as needed. Cultural Lessons Learned: The cultural challenges have been more formidable than expected. They became most apparent during attempts to categorize and stage digital data objects across two institutions, each with their own naming conventions and practices, generally undocumented, and evolving across decades. Whether the questions concerned data ownership, collection techniques, data diversity or institutional practices, the solution involved a joint discussion with scientists, data managers, technicians and archivists, working together. Because metadata discussions go on endlessly, significant benefit comes from dictionaries with definitions of all community-authorized metadata values.
NASA Astrophysics Data System (ADS)
Budden, A. E.; Arzayus, K. M.; Baker-Yeboah, S.; Casey, K. S.; Dozier, J.; Jones, C. S.; Jones, M. B.; Schildhauer, M.; Walker, L.
2016-12-01
The newly established NSF Arctic Data Center plays a critical support role in archiving and curating the data and software generated by Arctic researchers from diverse disciplines. The Arctic community, comprising Earth science, archaeology, geography, anthropology, and other social science researchers, are supported through data curation services and domain agnostic tools and infrastructure, ensuring data are accessible in the most transparent and usable way possible. This interoperability across diverse disciplines within the Arctic community facilitates collaborative research and is mirrored by interoperability between the Arctic Data Center infrastructure and other large scale cyberinfrastructure initiatives. The Arctic Data Center leverages the DataONE federation to standardize access to and replication of data and metadata to other repositories, specifically the NOAA's National Centers for Environmental Information (NCEI). This approach promotes long-term preservation of the data and metadata, as well as opening the door for other data repositories to leverage this replication infrastructure with NCEI and other DataONE member repositories. The Arctic Data Center uses rich, detailed metadata following widely recognized standards. Particularly, measurement-level and provenance metadata provide scientists the details necessary to integrate datasets across studies and across repositories while enabling a full understanding of the provenance of data used in the system. The Arctic Data Center gains this deep metadata and provenance support by simply adopting DataONE services, which results in significant efficiency gains by eliminating the need to develop systems de novo. Similarly, the advanced search tool developed by the Knowledge Network for Biocomplexity and extended for data submission by the Arctic Data Center, can be used by other DataONE-compliant repositories without further development. By standardizing interfaces and leveraging the DataONE federation, the Arctic Data Center has advanced rapidly and can itself contribute to raising the capabilities of all members of the federation.
Lee, Taein; Cheng, Chun-Huai; Ficklin, Stephen; Yu, Jing; Humann, Jodi; Main, Dorrie
2017-01-01
Abstract Tripal is an open-source database platform primarily used for development of genomic, genetic and breeding databases. We report here on the release of the Chado Loader, Chado Data Display and Chado Search modules to extend the functionality of the core Tripal modules. These new extension modules provide additional tools for (1) data loading, (2) customized visualization and (3) advanced search functions for supported data types such as organism, marker, QTL/Mendelian Trait Loci, germplasm, map, project, phenotype, genotype and their respective metadata. The Chado Loader module provides data collection templates in Excel with defined metadata and data loaders with front end forms. The Chado Data Display module contains tools to visualize each data type and the metadata which can be used as is or customized as desired. The Chado Search module provides search and download functionality for the supported data types. Also included are the tools to visualize map and species summary. The use of materialized views in the Chado Search module enables better performance as well as flexibility of data modeling in Chado, allowing existing Tripal databases with different metadata types to utilize the module. These Tripal Extension modules are implemented in the Genome Database for Rosaceae (rosaceae.org), CottonGen (cottongen.org), Citrus Genome Database (citrusgenomedb.org), Genome Database for Vaccinium (vaccinium.org) and the Cool Season Food Legume Database (coolseasonfoodlegume.org). Database URL: https://www.citrusgenomedb.org/, https://www.coolseasonfoodlegume.org/, https://www.cottongen.org/, https://www.rosaceae.org/, https://www.vaccinium.org/
TR32DB - Management of Research Data in a Collaborative, Interdisciplinary Research Project
NASA Astrophysics Data System (ADS)
Curdt, Constanze; Hoffmeister, Dirk; Waldhoff, Guido; Lang, Ulrich; Bareth, Georg
2015-04-01
The management of research data in a well-structured and documented manner is essential in the context of collaborative, interdisciplinary research environments (e.g. across various institutions). Consequently, set-up and use of a research data management (RDM) system like a data repository or project database is necessary. These systems should accompany and support scientists during the entire research life cycle (e.g. data collection, documentation, storage, archiving, sharing, publishing) and operate cross-disciplinary in interdisciplinary research projects. Challenges and problems of RDM are well-know. Consequently, the set-up of a user-friendly, well-documented, sustainable RDM system is essential, as well as user support and further assistance. In the framework of the Transregio Collaborative Research Centre 32 'Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation' (CRC/TR32), funded by the German Research Foundation (DFG), a RDM system was self-designed and implemented. The CRC/TR32 project database (TR32DB, www.tr32db.de) is operating online since early 2008. The TR32DB handles all data, which are created by the involved project participants from several institutions (e.g. Universities of Cologne, Bonn, Aachen, and the Research Centre Jülich) and research fields (e.g. soil and plant sciences, hydrology, geography, geophysics, meteorology, remote sensing). Very heterogeneous research data are considered, which are resulting from field measurement campaigns, meteorological monitoring, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes like publications, conference contributions, PhD reports and corresponding images are regarded. The TR32DB project database is set-up in cooperation with the Regional Computing Centre of the University of Cologne (RRZK) and also located in this hardware environment. The TR32DB system architecture is composed of three main components: (i) a file-based data storage including backup, (ii) a database-based storage for administrative data and metadata, and (iii) a web-interface for user access. The TR32DB offers common features of RDM systems. These include data storage, entry of corresponding metadata by a user-friendly input wizard, search and download of data depending on user permission, as well as secure internal exchange of data. In addition, a Digital Object Identifier (DOI) can be allocated for specific datasets and several web mapping components are supported (e.g. Web-GIS and map search). The centrepiece of the TR32DB is the self-provided and implemented CRC/TR32 specific metadata schema. This enables the documentation of all involved, heterogeneous data with accurate, interoperable metadata. The TR32DB Metadata Schema is set-up in a multi-level approach and supports several metadata standards and schemes (e.g. Dublin Core, ISO 19115, INSPIRE, DataCite). Furthermore, metadata properties with focus on the CRC/TR32 background (e.g. CRC/TR32 specific keywords) and the supported data types are complemented. Mandatory, optional and automatic metadata properties are specified. Overall, the TR32DB is designed and implemented according to the needs of the CRC/TR32 (e.g. huge amount of heterogeneous data) and demands of the DFG (e.g. cooperation with a computing centre). The application of a self-designed, project-specific, interoperable metadata schema enables the accurate documentation of all CRC/TR32 data. The implementation of the TR32DB in the hardware environment of the RRZK ensures the access to the data after the end of the CRC/TR32 funding in 2018.
An integrated content and metadata based retrieval system for art.
Lewis, Paul H; Martinez, Kirk; Abas, Fazly Salleh; Fauzi, Mohammad Faizal Ahmad; Chan, Stephen C Y; Addis, Matthew J; Boniface, Mike J; Grimwood, Paul; Stevenson, Alison; Lahanier, Christian; Stevenson, James
2004-03-01
A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.
Software for minimalistic data management in large camera trap studies
Krishnappa, Yathin S.; Turner, Wendy C.
2014-01-01
The use of camera traps is now widespread and their importance in wildlife studies well understood. Camera trap studies can produce millions of photographs and there is a need for software to help manage photographs efficiently. In this paper, we describe a software system that was built to successfully manage a large behavioral camera trap study that produced more than a million photographs. We describe the software architecture and the design decisions that shaped the evolution of the program over the study’s three year period. The software system has the ability to automatically extract metadata from images, and add customized metadata to the images in a standardized format. The software system can be installed as a standalone application on popular operating systems. It is minimalistic, scalable and extendable so that it can be used by small teams or individual researchers for a broad variety of camera trap studies. PMID:25110471
The Self-Organized Archive: SPASE, PDS and Archive Cooperatives
NASA Astrophysics Data System (ADS)
King, T. A.; Hughes, J. S.; Roberts, D. A.; Walker, R. J.; Joy, S. P.
2005-05-01
Information systems with high quality metadata enable uses and services which often go beyond the original purpose. There are two types of metadata: annotations which are items that comment on or describe the content of a resource and identification attributes which describe the external properties of the resource itself. For example, annotations may indicate which columns are present in a table of data, whereas an identification attribute would indicate source of the table, such as the observatory, instrument, organization, and data type. When the identification attributes are collected and used as the basis of a search engine, a user can constrain on an attribute, the archive can then self-organize around the constraint, presenting the user with a particular view of the archive. In an archive cooperative where each participating data system or archive may have its own metadata standards, providing a multi-system search engine requires that individual archive metadata be mapped to a broad based standard. To explore how cooperative archives can form a larger self-organized archive we will show how the Space Physics Archive Search and Extract (SPASE) data model will allow different systems to create a cooperative and will use Planetary Data System (PDS) plus existing space physics activities as a demonstration.
The IceBridge Portal - Automated Metadata Generation for Enhanced Data Access
NASA Astrophysics Data System (ADS)
Tanner, S.; Schwab, M.; Beam, K.; Deems, J. S.; Fitzgerrell, A.
2016-12-01
NASA's Operation IceBridge (OIB) mission, initiated in 2009, collects airborne remote sensing measurements over the polar regions to bridge the gap between NASA's Ice, Cloud and Land Elevation satellite (ICESat) mission and the upcoming ICESat-2 mission in 2017. OIB combines an evolving mix of instruments to gather data on topography, ice and snow thickness, high-resolution photography, and other properties that are more difficult or impossible to measure via satellite. Once collected, these data are stored and made available at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. To date, there are nearly 200 terabytes of data available, and with several more campaigns to go. Initially, OIB data could be difficult to discover and access, due to a lack of consistent metadata. However, the Project Office made a decision to revamp the data delivery process. This has led to substantial data reformatting and better adherence to NASA standards as well as the generation of far more metadata associated with each data product. Because of this change, NSIDC has been able to develop a powerful map-based portal for search, discovery and access of these data products. The tools used for automated metadata generation, and the resulting new data portal will be presented.
Geospatial resources for supporting data standards, guidance and best practice in health informatics
2011-01-01
Background The 1980s marked the occasion when Geographical Information System (GIS) technology was broadly introduced into the geo-spatial community through the establishment of a strong GIS industry. This technology quickly disseminated across many countries, and has now become established as an important research, planning and commercial tool for a wider community that includes organisations in the public and private health sectors. The broad acceptance of GIS technology and the nature of its functionality have meant that numerous datasets have been created over the past three decades. Most of these datasets have been created independently, and without any structured documentation systems in place. However, search and retrieval systems can only work if there is a mechanism for datasets existence to be discovered and this is where proper metadata creation and management can greatly help. This situation must be addressed through support mechanisms such as Web-based portal technologies, metadata editor tools, automation, metadata standards and guidelines and collaborative efforts with relevant individuals and organisations. Engagement with data developers or administrators should also include a strategy of identifying the benefits associated with metadata creation and publication. Findings The establishment of numerous Spatial Data Infrastructures (SDIs), and other Internet resources, is a testament to the recognition of the importance of supporting good data management and sharing practices across the geographic information community. These resources extend to health informatics in support of research, public services and teaching and learning. This paper identifies many of these resources available to the UK academic health informatics community. It also reveals the reluctance of many spatial data creators across the wider UK academic community to use these resources to create and publish metadata, or deposit their data in repositories for sharing. The Go-Geo! service is introduced as an SDI developed to provide UK academia with the necessary resources to address the concerns surrounding metadata creation and data sharing. The Go-Geo! portal, Geodoc metadata editor tool, ShareGeo spatial data repository, and a range of other support resources, are described in detail. Conclusions This paper describes a variety of resources available for the health research and public health sector to use for managing and sharing their data. The Go-Geo! service is one resource which offers an SDI for the eclectic range of disciplines using GIS in UK academia, including health informatics. The benefits of data management and sharing are immense, and in these times of cost restraints, these resources can be seen as solutions to find cost savings which can be reinvested in more research. PMID:21269487
Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E.; Ellisman, Mark; Grethe, Jeffrey; Wooley, John
2011-01-01
The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data. PMID:21045053
Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E; Ellisman, Mark; Grethe, Jeffrey; Wooley, John
2011-01-01
The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data.
Metadata for Web Resources: How Metadata Works on the Web.
ERIC Educational Resources Information Center
Dillon, Martin
This paper discusses bibliographic control of knowledge resources on the World Wide Web. The first section sets the context of the inquiry. The second section covers the following topics related to metadata: (1) definitions of metadata, including metadata as tags and as descriptors; (2) metadata on the Web, including general metadata systems,…
Metadata Dictionary Database: A Proposed Tool for Academic Library Metadata Management
ERIC Educational Resources Information Center
Southwick, Silvia B.; Lampert, Cory
2011-01-01
This article proposes a metadata dictionary (MDD) be used as a tool for metadata management. The MDD is a repository of critical data necessary for managing metadata to create "shareable" digital collections. An operational definition of metadata management is provided. The authors explore activities involved in metadata management in…
Fast and Accurate Metadata Authoring Using Ontology-Based Recommendations.
Martínez-Romero, Marcos; O'Connor, Martin J; Shankar, Ravi D; Panahiazar, Maryam; Willrett, Debra; Egyedi, Attila L; Gevaert, Olivier; Graybeal, John; Musen, Mark A
2017-01-01
In biomedicine, high-quality metadata are crucial for finding experimental datasets, for understanding how experiments were performed, and for reproducing those experiments. Despite the recent focus on metadata, the quality of metadata available in public repositories continues to be extremely poor. A key difficulty is that the typical metadata acquisition process is time-consuming and error prone, with weak or nonexistent support for linking metadata to ontologies. There is a pressing need for methods and tools to speed up the metadata acquisition process and to increase the quality of metadata that are entered. In this paper, we describe a methodology and set of associated tools that we developed to address this challenge. A core component of this approach is a value recommendation framework that uses analysis of previously entered metadata and ontology-based metadata specifications to help users rapidly and accurately enter their metadata. We performed an initial evaluation of this approach using metadata from a public metadata repository.
Fast and Accurate Metadata Authoring Using Ontology-Based Recommendations
Martínez-Romero, Marcos; O’Connor, Martin J.; Shankar, Ravi D.; Panahiazar, Maryam; Willrett, Debra; Egyedi, Attila L.; Gevaert, Olivier; Graybeal, John; Musen, Mark A.
2017-01-01
In biomedicine, high-quality metadata are crucial for finding experimental datasets, for understanding how experiments were performed, and for reproducing those experiments. Despite the recent focus on metadata, the quality of metadata available in public repositories continues to be extremely poor. A key difficulty is that the typical metadata acquisition process is time-consuming and error prone, with weak or nonexistent support for linking metadata to ontologies. There is a pressing need for methods and tools to speed up the metadata acquisition process and to increase the quality of metadata that are entered. In this paper, we describe a methodology and set of associated tools that we developed to address this challenge. A core component of this approach is a value recommendation framework that uses analysis of previously entered metadata and ontology-based metadata specifications to help users rapidly and accurately enter their metadata. We performed an initial evaluation of this approach using metadata from a public metadata repository. PMID:29854196
A seamless, high-resolution digital elevation model (DEM) of the north-central California coast
Foxgrover, Amy C.; Barnard, Patrick L.
2012-01-01
A seamless, 2-meter resolution digital elevation model (DEM) of the north-central California coast has been created from the most recent high-resolution bathymetric and topographic datasets available. The DEM extends approximately 150 kilometers along the California coastline, from Half Moon Bay north to Bodega Head. Coverage extends inland to an elevation of +20 meters and offshore to at least the 3 nautical mile limit of state waters. This report describes the procedures of DEM construction, details the input data sources, and provides the DEM for download in both ESRI Arc ASCII and GeoTIFF file formats with accompanying metadata.
Harvesting NASA's Common Metadata Repository (CMR)
NASA Technical Reports Server (NTRS)
Shum, Dana; Durbin, Chris; Norton, James; Mitchell, Andrew
2017-01-01
As part of NASA's Earth Observing System Data and Information System (EOSDIS), the Common Metadata Repository (CMR) stores metadata for over 30,000 datasets from both NASA and international providers along with over 300M granules. This metadata enables sub-second discovery and facilitates data access. While the CMR offers a robust temporal, spatial and keyword search functionality to the general public and international community, it is sometimes more desirable for international partners to harvest the CMR metadata and merge the CMR metadata into a partner's existing metadata repository. This poster will focus on best practices to follow when harvesting CMR metadata to ensure that any changes made to the CMR can also be updated in a partner's own repository. Additionally, since each partner has distinct metadata formats they are able to consume, the best practices will also include guidance on retrieving the metadata in the desired metadata format using CMR's Unified Metadata Model translation software.
Harvesting NASA's Common Metadata Repository
NASA Astrophysics Data System (ADS)
Shum, D.; Mitchell, A. E.; Durbin, C.; Norton, J.
2017-12-01
As part of NASA's Earth Observing System Data and Information System (EOSDIS), the Common Metadata Repository (CMR) stores metadata for over 30,000 datasets from both NASA and international providers along with over 300M granules. This metadata enables sub-second discovery and facilitates data access. While the CMR offers a robust temporal, spatial and keyword search functionality to the general public and international community, it is sometimes more desirable for international partners to harvest the CMR metadata and merge the CMR metadata into a partner's existing metadata repository. This poster will focus on best practices to follow when harvesting CMR metadata to ensure that any changes made to the CMR can also be updated in a partner's own repository. Additionally, since each partner has distinct metadata formats they are able to consume, the best practices will also include guidance on retrieving the metadata in the desired metadata format using CMR's Unified Metadata Model translation software.
International Metadata Standards and Enterprise Data Quality Metadata Systems
NASA Astrophysics Data System (ADS)
Habermann, T.
2016-12-01
Well-documented data quality is critical in situations where scientists and decision-makers need to combine multiple datasets from different disciplines and collection systems to address scientific questions or difficult decisions. Standardized data quality metadata could be very helpful in these situations. Many efforts at developing data quality standards falter because of the diversity of approaches to measuring and reporting data quality. The "one size fits all" paradigm does not generally work well in this situation. The ISO data quality standard (ISO 19157) takes a different approach with the goal of systematically describing how data quality is measured rather than how it should be measured. It introduces the idea of standard data quality measures that can be well documented in a measure repository and used for consistently describing how data quality is measured across an enterprise. The standard includes recommendations for properties of these measures that include unique identifiers, references, illustrations and examples. Metadata records can reference these measures using the unique identifier and reuse them along with details (and references) that describe how the measure was applied to a particular dataset. A second important feature of ISO 19157 is the inclusion of citations to existing papers or reports that describe quality of a dataset. This capability allows users to find this information in a single location, i.e. the dataset metadata, rather than searching the web or other catalogs. I will describe these and other capabilities of ISO 19157 with examples of how they are being used to describe data quality across the NASA EOS Enterprise and also compare these approaches with other standards.
PH5 for integrating and archiving different data types
NASA Astrophysics Data System (ADS)
Azevedo, Steve; Hess, Derick; Beaudoin, Bruce
2016-04-01
PH5 is IRIS PASSCAL's file organization of HDF5 used for seismic data. The extensibility and portability of HDF5 allows the PH5 format to evolve and operate on a variety of platforms and interfaces. To make PH5 even more flexible, the seismic metadata is separated from the time series data in order to achieve gains in performance as well as ease of use and to simplify user interaction. This separation affords easy updates to metadata after the data are archived without having to access waveform data. To date, PH5 is currently used for integrating and archiving active source, passive source, and onshore-offshore seismic data sets with the IRIS Data Management Center (DMC). Active development to make PH5 fully compatible with FDSN web services and deliver StationXML is near completion. We are also exploring the feasibility of utilizing QuakeML for active seismic source representation. The PH5 software suite, PIC KITCHEN, comprises in-field tools that include data ingestion (e.g. RefTek format, SEG-Y, and SEG-D), meta-data management tools including QC, and a waveform review tool. These tools enable building archive ready data in-field during active source experiments greatly decreasing the time to produce research ready data sets. Once archived, our online request page generates a unique web form and pre-populates much of it based on the metadata provided to it from the PH5 file. The data requester then can intuitively select the extraction parameters as well as data subsets they wish to receive (current output formats include SEG-Y, SAC, mseed). The web interface then passes this on to the PH5 processing tools to generate the requested seismic data, and e-mail the requester a link to the data set automatically as soon as the data are ready. PH5 file organization was originally designed to hold seismic time series data and meta-data from controlled source experiments using RefTek data loggers. The flexibility of HDF5 has enabled us to extend the use of PH5 in several areas one of which is using PH5 to handle very large data sets. PH5 is also good at integrating data from various types of seismic experiments such as OBS, onshore-offshore, controlled source, and passive recording. HDF5 is capable of holding practically any type of digital data so integrating GPS data with seismic data is possible. Since PH5 is a common format and data contained in HDF5 is accessible randomly it has been easy to extend to include new input and output data formats as community needs arise.
Simplified Metadata Curation via the Metadata Management Tool
NASA Astrophysics Data System (ADS)
Shum, D.; Pilone, D.
2015-12-01
The Metadata Management Tool (MMT) is the newest capability developed as part of NASA Earth Observing System Data and Information System's (EOSDIS) efforts to simplify metadata creation and improve metadata quality. The MMT was developed via an agile methodology, taking into account inputs from GCMD's science coordinators and other end-users. In its initial release, the MMT uses the Unified Metadata Model for Collections (UMM-C) to allow metadata providers to easily create and update collection records in the ISO-19115 format. Through a simplified UI experience, metadata curators can create and edit collections without full knowledge of the NASA Best Practices implementation of ISO-19115 format, while still generating compliant metadata. More experienced users are also able to access raw metadata to build more complex records as needed. In future releases, the MMT will build upon recent work done in the community to assess metadata quality and compliance with a variety of standards through application of metadata rubrics. The tool will provide users with clear guidance as to how to easily change their metadata in order to improve their quality and compliance. Through these features, the MMT allows data providers to create and maintain compliant and high quality metadata in a short amount of time.
Enriched Video Semantic Metadata: Authorization, Integration, and Presentation.
ERIC Educational Resources Information Center
Mu, Xiangming; Marchionini, Gary
2003-01-01
Presents an enriched video metadata framework including video authorization using the Video Annotation and Summarization Tool (VAST)-a video metadata authorization system that integrates both semantic and visual metadata-- metadata integration, and user level applications. Results demonstrated that the enriched metadata were seamlessly…
NASA Technical Reports Server (NTRS)
Olsen, Lola M.
2006-01-01
The capabilities of the International Directory Network's (IDN) version MD9.5, along with a new version of the metadata authoring tool, "docBUILDER", will be presented during the Technology and Services Subgroup session of the Working Group on Information Systems and Services (WGISS). Feedback provided through the international community has proven instrumental in positively influencing the direction of the IDN s development. The international community was instrumental in encouraging support for using the IS0 international character set that is now available through the directory. Supporting metadata descriptions in additional languages encourages extended use of the IDN. Temporal and spatial attributes often prove pivotal in the search for data. Prior to the new software release, the IDN s geospatial and temporal searches suffered from browser incompatibilities and often resulted in unreliable performance for users attempting to initiate a spatial search using a map based on aging Java applet technology. The IDN now offers an integrated Google map and date search that replaces that technology. In addition, one of the most defining characteristics in the search for data relates to the temporal and spatial resolution of the data. The ability to refine the search for data sets meeting defined resolution requirements is now possible. Data set authors are encouraged to indicate the precise resolution values for their data sets and subsequently bin these into one of the pre-selected resolution ranges. New metadata authoring tools have been well received. In response to requests for a standalone metadata authoring tool, a new shareable software package called "docBUILDER solo" will soon be released to the public. This tool permits researchers to document their data during experiments and observational periods in the field. interoperability has been enhanced through the use of the Open Archives Initiative s (OAI) Protocol for Metadata Harvesting (PMH). Harvesting of XML content through OAI-MPH has been successfully tested with several organizations. The protocol appears to be a prime candidate for sharing metadata throughout the international community. Data services for visualizing and analyzing data have become valuable assets in facilitating the use of data. Data providers are offering many of their data-related services through the directory. The IDN plans to develop a service-based architecture to further promote the use of web services. During the IDN Task Team session, ideas for further enhancements will be discussed.
Assessing Metadata Quality of a Federally Sponsored Health Data Repository.
Marc, David T; Beattie, James; Herasevich, Vitaly; Gatewood, Laël; Zhang, Rui
2016-01-01
The U.S. Federal Government developed HealthData.gov to disseminate healthcare datasets to the public. Metadata is provided for each datasets and is the sole source of information to find and retrieve data. This study employed automated quality assessments of the HealthData.gov metadata published from 2012 to 2014 to measure completeness, accuracy, and consistency of applying standards. The results demonstrated that metadata published in earlier years had lower completeness, accuracy, and consistency. Also, metadata that underwent modifications following their original creation were of higher quality. HealthData.gov did not uniformly apply Dublin Core Metadata Initiative to the metadata, which is a widely accepted metadata standard. These findings suggested that the HealthData.gov metadata suffered from quality issues, particularly related to information that wasn't frequently updated. The results supported the need for policies to standardize metadata and contributed to the development of automated measures of metadata quality.
Assessing Metadata Quality of a Federally Sponsored Health Data Repository
Marc, David T.; Beattie, James; Herasevich, Vitaly; Gatewood, Laël; Zhang, Rui
2016-01-01
The U.S. Federal Government developed HealthData.gov to disseminate healthcare datasets to the public. Metadata is provided for each datasets and is the sole source of information to find and retrieve data. This study employed automated quality assessments of the HealthData.gov metadata published from 2012 to 2014 to measure completeness, accuracy, and consistency of applying standards. The results demonstrated that metadata published in earlier years had lower completeness, accuracy, and consistency. Also, metadata that underwent modifications following their original creation were of higher quality. HealthData.gov did not uniformly apply Dublin Core Metadata Initiative to the metadata, which is a widely accepted metadata standard. These findings suggested that the HealthData.gov metadata suffered from quality issues, particularly related to information that wasn’t frequently updated. The results supported the need for policies to standardize metadata and contributed to the development of automated measures of metadata quality. PMID:28269883
Partnerships To Mine Unexploited Sources of Metadata.
ERIC Educational Resources Information Center
Reynolds, Regina Romano
This paper discusses the metadata created for other purposes as a potential source of bibliographic data. The first section addresses collecting metadata by means of templates, including the Nordic Metadata Project's Dublin Core Metadata Template. The second section considers potential partnerships for re-purposing metadata for bibliographic use,…
A Window to the World: Lessons Learned from NASA's Collaborative Metadata Curation Effort
NASA Astrophysics Data System (ADS)
Bugbee, K.; Dixon, V.; Baynes, K.; Shum, D.; le Roux, J.; Ramachandran, R.
2017-12-01
Well written descriptive metadata adds value to data by making data easier to discover as well as increases the use of data by providing the context or appropriateness of use. While many data centers acknowledge the importance of correct, consistent and complete metadata, allocating resources to curate existing metadata is often difficult. To lower resource costs, many data centers seek guidance on best practices for curating metadata but struggle to identify those recommendations. In order to assist data centers in curating metadata and to also develop best practices for creating and maintaining metadata, NASA has formed a collaborative effort to improve the Earth Observing System Data and Information System (EOSDIS) metadata in the Common Metadata Repository (CMR). This effort has taken significant steps in building consensus around metadata curation best practices. However, this effort has also revealed gaps in EOSDIS enterprise policies and procedures within the core metadata curation task. This presentation will explore the mechanisms used for building consensus on metadata curation, the gaps identified in policies and procedures, the lessons learned from collaborating with both the data centers and metadata curation teams, and the proposed next steps for the future.
EPA Facilities and Regional Boundaries Download Package, US, 2012, US EPA, SEGS
This downloadable package contains the following layers: EPA facility points, EPA region boundary polygons and EPA region boundary polygons extended to the 200nm Exclusive Economic Zone (EEZ). Included in this package are a file geodatabase (v. 10.0), Esri ArcMap map document (v. 10.0) and XML files for this record and the layer level metadata. This SEGS dataset was produced by EPA Office of Environmental Information (OEI).
EPA Facility Locations and Regional Boundaries - National Geospatial Data Asset (NGDA)
This downloadable package contains the following layers: EPA facility points, EPA region boundary polygons and EPA region boundary polygons extended to the 200nm Exclusive Economic Zone (EEZ). Included in this package are a file geodatabase (v. 10.0), Esri ArcMap map document (v. 10.0) and XML files for this record and the layer level metadata. This dataset was produced by EPA Office of Environmental Information (OEI).
Challenges of Digital Preservation for Cultural Heritage Institutions
ERIC Educational Resources Information Center
Evens, Tom; Hauttekeete, Laurence
2011-01-01
This article elaborates four major issues hampering the sustainability of digital preservation within cultural heritage institutions: digitization, metadata indexes, intellectual property rights management and business models. Using a case-study approach, the digitization of audiovisual collections within the performing arts institutions in…
Evaluating and Evolving Metadata in Multiple Dialects
NASA Astrophysics Data System (ADS)
Kozimor, J.; Habermann, T.; Powers, L. A.; Gordon, S.
2016-12-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways. This situation has led to the development of metadata repositories that can ingest and output metadata in multiple dialects. As an operational example, the NASA Common Metadata Repository (CMR) includes three different metadata dialects (DIF, ECHO, and ISO 19115-2). These systems raise a new question for metadata providers: if I have a choice of metadata dialects, which should I use and how do I make that decision? We have developed a collection of metadata evaluation tools that can be used to evaluate metadata records in many dialects for completeness with respect to recommendations from many organizations and communities. We have applied these tools to over 8000 collection and granule metadata records in four different dialects. This large collection of identical content in multiple dialects enables us to address questions about metadata and dialect evolution and to answer those questions quantitatively. We will describe those tools and results from evaluating the NASA CMR metadata collection.
Evaluation and Quality Control for the Copernicus Seasonal Forecast Systems
NASA Astrophysics Data System (ADS)
Manubens, N.; Hunter, A.; Bedia, J.; Bretonnière, P. A.; Bhend, J.; Doblas-Reyes, F. J.
2017-12-01
The EU funded Copernicus Climate Change Service (C3S) will provide authoritative information about past, current and future climate for a wide range of users, from climate scientists to stakeholders from a wide range of sectors including insurance, energy or transport. It has been recognized that providing information about the products' quality and provenance is paramount to establish trust in the service and allow users to make best use of the available information. This presentation outlines the work being conducted within the Quality Assurance for Multi-model Seasonal Forecast Products project (QA4Seas). The aim of QA4Seas is to develop a strategy for the evaluation and quality control (EQC) of the multi-model seasonal forecasts provided by C3S. First, we present the set of guidelines the data providers must comply with, ensuring the data is fully traceable and harmonized across data sets. Second, we discuss the ongoing work on defining a provenance and metadata model that is able to encode such information, and that can be extended to describe the steps followed to obtain the final verification products such as maps and time series of forecast quality measures. The metadata model is based on the Resource Description Framework W3C standard, being thus extensible and reusable. It benefits from widely adopted vocabularies to describe data provenance and workflows, as well as from expert consensus and community-support for the development of the verification and downscaling specific ontologies. Third, we describe the open source software being developed to generate fully reproducible and certifiable seasonal forecast products, which also attaches provenance and metadata information to the verification measures and enables the user to visually inspect the quality of the C3S products. QA4Seas is seeking collaboration with similar initiatives, as well as extending the discussion to interested parties outside the C3S community to share experiences and establish global common guidelines or best practices regarding data provenance.
EOS ODL Metadata On-line Viewer
NASA Astrophysics Data System (ADS)
Yang, J.; Rabi, M.; Bane, B.; Ullman, R.
2002-12-01
We have recently developed and deployed an EOS ODL metadata on-line viewer. The EOS ODL metadata viewer is a web server that takes: 1) an EOS metadata file in Object Description Language (ODL), 2) parameters, such as which metadata to view and what style of display to use, and returns an HTML or XML document displaying the requested metadata in the requested style. This tool is developed to address widespread complaints by science community that the EOS Data and Information System (EOSDIS) metadata files in ODL are difficult to read by allowing users to upload and view an ODL metadata file in different styles using a web browser. Users have the selection to view all the metadata or part of the metadata, such as Collection metadata, Granule metadata, or Unsupported Metadata. Choices of display styles include 1) Web: a mouseable display with tabs and turn-down menus, 2) Outline: Formatted and colored text, suitable for printing, 3) Generic: Simple indented text, a direct representation of the underlying ODL metadata, and 4) None: No stylesheet is applied and the XML generated by the converter is returned directly. Not all display styles are implemented for all the metadata choices. For example, Web style is only implemented for Collection and Granule metadata groups with known attribute fields, but not for Unsupported, Other, and All metadata. The overall strategy of the ODL viewer is to transform an ODL metadata file to a viewable HTML in two steps. The first step is to convert the ODL metadata file to an XML using a Java-based parser/translator called ODL2XML. The second step is to transform the XML to an HTML using stylesheets. Both operations are done on the server side. This allows a lot of flexibility in the final result, and is very portable cross-platform. Perl CGI behind the Apache web server is used to run the Java ODL2XML, and then run the results through an XSLT processor. The EOS ODL viewer can be accessed from either a PC or a Mac using Internet Explorer 5.0+ or Netscape 4.7+.
ISO 19115 Experiences in NASA's Earth Observing System (EOS) ClearingHOuse (ECHO)
NASA Astrophysics Data System (ADS)
Cechini, M. F.; Mitchell, A.
2011-12-01
Metadata is an important entity in the process of cataloging, discovering, and describing earth science data. As science research and the gathered data increases in complexity, so does the complexity and importance of descriptive metadata. To meet these growing needs, the metadata models required utilize richer and more mature metadata attributes. Categorizing, standardizing, and promulgating these metadata models to a politically, geographically, and scientifically diverse community is a difficult process. An integral component of metadata management within NASA's Earth Observing System Data and Information System (EOSDIS) is the Earth Observing System (EOS) ClearingHOuse (ECHO). ECHO is the core metadata repository for the EOSDIS data centers providing a centralized mechanism for metadata and data discovery and retrieval. ECHO has undertaken an internal restructuring to meet the changing needs of scientists, the consistent advancement in technology, and the advent of new standards such as ISO 19115. These improvements were based on the following tenets for data discovery and retrieval: + There exists a set of 'core' metadata fields recommended for data discovery. + There exists a set of users who will require the entire metadata record for advanced analysis. + There exists a set of users who will require a 'core' set metadata fields for discovery only. + There will never be a cessation of new formats or a total retirement of all old formats. + Users should be presented metadata in a consistent format of their choosing. In order to address the previously listed items, ECHO's new metadata processing paradigm utilizes the following approach: + Identify a cross-format set of 'core' metadata fields necessary for discovery. + Implement format-specific indexers to extract the 'core' metadata fields into an optimized query capability. + Archive the original metadata in its entirety for presentation to users requiring the full record. + Provide on-demand translation of 'core' metadata to any supported result format. Lessons learned by the ECHO team while implementing its new metadata approach to support usage of the ISO 19115 standard will be presented. These lessons learned highlight some discovered strengths and weaknesses in the ISO 19115 standard as it is introduced to an existing metadata processing system.
Willoughby, Cerys; Bird, Colin L; Coles, Simon J; Frey, Jeremy G
2014-12-22
The drive toward more transparency in research, the growing willingness to make data openly available, and the reuse of data to maximize the return on research investment all increase the importance of being able to find information and make links to the underlying data. The use of metadata in Electronic Laboratory Notebooks (ELNs) to curate experiment data is an essential ingredient for facilitating discovery. The University of Southampton has developed a Web browser-based ELN that enables users to add their own metadata to notebook entries. A survey of these notebooks was completed to assess user behavior and patterns of metadata usage within ELNs, while user perceptions and expectations were gathered through interviews and user-testing activities within the community. The findings indicate that while some groups are comfortable with metadata and are able to design a metadata structure that works effectively, many users are making little attempts to use it, thereby endangering their ability to recover data in the future. A survey of patterns of metadata use in these notebooks, together with feedback from the user community, indicated that while a few groups are comfortable with metadata and are able to design a metadata structure that works effectively, many users adopt a "minimum required" approach to metadata. To investigate whether the patterns of metadata use in LabTrove were unusual, a series of surveys were undertaken to investigate metadata usage in a variety of platforms supporting user-defined metadata. These surveys also provided the opportunity to investigate whether interface designs in these other environments might inform strategies for encouraging metadata creation and more effective use of metadata in LabTrove.
ASDC Collaborations and Processes to Ensure Quality Metadata and Consistent Data Availability
NASA Astrophysics Data System (ADS)
Trapasso, T. J.
2017-12-01
With the introduction of new tools, faster computing, and less expensive storage, increased volumes of data are expected to be managed with existing or fewer resources. Metadata management is becoming a heightened challenge from the increase in data volume, resulting in more metadata records needed to be curated for each product. To address metadata availability and completeness, NASA ESDIS has taken significant strides with the creation of the United Metadata Model (UMM) and Common Metadata Repository (CMR). These UMM helps address hurdles experienced by the increasing number of metadata dialects and the CMR provides a primary repository for metadata so that required metadata fields can be served through a growing number of tools and services. However, metadata quality remains an issue as metadata is not always inherent to the end-user. In response to these challenges, the NASA Atmospheric Science Data Center (ASDC) created the Collaboratory for quAlity Metadata Preservation (CAMP) and defined the Product Lifecycle Process (PLP) to work congruently. CAMP is unique in that it provides science team members a UI to directly supply metadata that is complete, compliant, and accurate for their data products. This replaces back-and-forth communication that often results in misinterpreted metadata. Upon review by ASDC staff, metadata is submitted to CMR for broader distribution through Earthdata. Further, approval of science team metadata in CAMP automatically triggers the ASDC PLP workflow to ensure appropriate services are applied throughout the product lifecycle. This presentation will review the design elements of CAMP and PLP as well as demonstrate interfaces to each. It will show the benefits that CAMP and PLP provide to the ASDC that could potentially benefit additional NASA Earth Science Data and Information System (ESDIS) Distributed Active Archive Centers (DAACs).
NASA Astrophysics Data System (ADS)
Mencin, David; Hodgkinson, Kathleen; Sievers, Charlie; David, Phillips; Charles, Meertens; Glen, Mattioli
2017-04-01
UNAVCO has been providing infrastructure and support for solid-earth sciences and earthquake natural hazards for the past two decades. Recent advances in GNSS technology and data processing are now providing position solutions with centimeter-level precision at high-rate (>1 Hz) and low latency (i.e. the time required for data to arrive for analysis, in this case less than 1 second). These data have the potential to improve our understanding in diverse areas of geophysics including properties of seismic, volcanic, magmatic and tsunami sources, and thus profoundly transform rapid event characterization and warning. Scientific and operational applications also include glacier and ice sheet motions; tropospheric modeling; and space weather. These areas of geophysics represent a spectrum of research fields, including geodesy, seismology, tropospheric weather, space weather and natural hazards. Processed Real-Time GNSS (RT-GNSS) data will require formats and standards that allow this broad and diverse community to use these data and associated meta-data in existing research infrastructure. These advances have critically highlighted the difficulties associated with merging data and metadata between scientific disciplines. Even seemingly very closely related fields such as geodesy and seismology, which both have rich histories of handling large volumes of data and metadata, do not go together well in any automated way. Community analysis strategies, or lack thereof, such as treatment of error prove difficult to address and are reflected in the data and metadata. In addition, these communities have differing security, accessibility and reliability requirements. We propose some solutions to the particular problem of making RT-GNSS processed solution data and metadata accessible to multiply scientific and natural hazard communities. Importantly, we discuss the roadblocks encounter and solved and those that remain to be addressed.
A rhetorical approach to environmental information sharing
NASA Astrophysics Data System (ADS)
Woolf, Andrew
2014-05-01
`Faceted search' has recently been widely adopted as a powerful information discovery framework, enabling users to navigate a complex landscape of information by successive refinement along key dimensions. The compelling user experience that results has seen adoption of faceted search by online retailers, media outlets, and encyclopedic publishers. A key challenge with faceted browse is the choice of suitable search dimensions, or facets. Conventional facet analysis adopts principles of exclusivity and exhaustiveness; identifying facets on their relevance to the subject and discrimination ability (Spiteri, 1998). The rhetoricians of ancient Greece defined seven dimensions (`circumstances') of analytical enquiry: who, what, when, where, why, in what way, by what means. These provide a broadly applicable framework that may be seen in Ranganathan's classic (`PMEST') scheme for facet analysis. The utility of the `Five Ws' is also manifest through their adoption in daily discourse and pedagogical frameworks. If we apply the `Five Ws' to environmental information, we arrive at a model very close to the `O&M' (ISO 19156) conceptual model for standardised exchange of environmental observation and measurements data: * who: metadata * what: observed property * when: time of observation * where: feature of interest * why: metadata * how: procedure Thus, we adopt an approach for distributed environmental information sharing which factors the architecture into components aligned with the `Five Ws' (or O&M). We give an overview of this architecture and its information classes, components, interfaces and standards. We also describe how it extends the classic SDI architecture to provide additional specific benefit for environmental information. Finally, we offer a perspective on the architecture which may be seen as a `brokering' overlay to environmental information resources, enabling an O&M-conformant view. The approach to be presented is being adopted by the Australian Bureau of Meteorology as the basis for a National Environmental Information Infrastructure.
Metadata squared: enhancing its usability for volunteered geographic information and the GeoWeb
Poore, Barbara S.; Wolf, Eric B.; Sui, Daniel Z.; Elwood, Sarah; Goodchild, Michael F.
2013-01-01
The Internet has brought many changes to the way geographic information is created and shared. One aspect that has not changed is metadata. Static spatial data quality descriptions were standardized in the mid-1990s and cannot accommodate the current climate of data creation where nonexperts are using mobile phones and other location-based devices on a continuous basis to contribute data to Internet mapping platforms. The usability of standard geospatial metadata is being questioned by academics and neogeographers alike. This chapter analyzes current discussions of metadata to demonstrate how the media shift that is occurring has affected requirements for metadata. Two case studies of metadata use are presented—online sharing of environmental information through a regional spatial data infrastructure in the early 2000s, and new types of metadata that are being used today in OpenStreetMap, a map of the world created entirely by volunteers. Changes in metadata requirements are examined for usability, the ease with which metadata supports coproduction of data by communities of users, how metadata enhances findability, and how the relationship between metadata and data has changed. We argue that traditional metadata associated with spatial data infrastructures is inadequate and suggest several research avenues to make this type of metadata more interactive and effective in the GeoWeb.
Evolutions in Metadata Quality
NASA Astrophysics Data System (ADS)
Gilman, J.
2016-12-01
Metadata Quality is one of the chief drivers of discovery and use of NASA EOSDIS (Earth Observing System Data and Information System) data. Issues with metadata such as lack of completeness, inconsistency, and use of legacy terms directly hinder data use. As the central metadata repository for NASA Earth Science data, the Common Metadata Repository (CMR) has a responsibility to its users to ensure the quality of CMR search results. This talk will cover how we encourage metadata authors to improve the metadata through the use of integrated rubrics of metadata quality and outreach efforts. In addition we'll demonstrate Humanizers, a technique for dealing with the symptoms of metadata issues. Humanizers allow CMR administrators to identify specific metadata issues that are fixed at runtime when the data is indexed. An example Humanizer is the aliasing of processing level "Level 1" to "1" to improve consistency across collections. The CMR currently indexes 35K collections and 300M granules.
Metadata Means Communication: The Challenges of Producing Useful Metadata
NASA Astrophysics Data System (ADS)
Edwards, P. N.; Batcheller, A. L.
2010-12-01
Metadata are increasingly perceived as an important component of data sharing systems. For instance, metadata accompanying atmospheric model output may indicate the grid size, grid type, and parameter settings used in the model configuration. We conducted a case study of a data portal in the atmospheric sciences using in-depth interviews, document review, and observation. OUr analysis revealed a number of challenges in producing useful metadata. First, creating and managing metadata required considerable effort and expertise, yet responsibility for these tasks was ill-defined and diffused among many individuals, leading to errors, failure to capture metadata, and uncertainty about the quality of the primary data. Second, metadata ended up stored in many different forms and software tools, making it hard to manage versions and transfer between formats. Third, the exact meanings of metadata categories remained unsettled and misunderstood even among a small community of domain experts -- an effect we expect to be exacerbated when scientists from other disciplines wish to use these data. In practice, we found that metadata problems due to these obstacles are often overcome through informal, personal communication, such as conversations or email. We conclude that metadata serve to communicate the context of data production from the people who produce data to those who wish to use it. Thus while formal metadata systems are often public, critical elements of metadata (those embodied in informal communication) may never be recorded. Therefore, efforts to increase data sharing should include ways to facilitate inter-investigator communication. Instead of tackling metadata challenges only on the formal level, we can improve data usability for broader communities by better supporting metadata communication.
Inheritance rules for Hierarchical Metadata Based on ISO 19115
NASA Astrophysics Data System (ADS)
Zabala, A.; Masó, J.; Pons, X.
2012-04-01
Mainly, ISO19115 has been used to describe metadata for datasets and services. Furthermore, ISO19115 standard (as well as the new draft ISO19115-1) includes a conceptual model that allows to describe metadata at different levels of granularity structured in hierarchical levels, both in aggregated resources such as particularly series, datasets, and also in more disaggregated resources such as types of entities (feature type), types of attributes (attribute type), entities (feature instances) and attributes (attribute instances). In theory, to apply a complete metadata structure to all hierarchical levels of metadata, from the whole series to an individual feature attributes, is possible, but to store all metadata at all levels is completely impractical. An inheritance mechanism is needed to store each metadata and quality information at the optimum hierarchical level and to allow an ease and efficient documentation of metadata in both an Earth observation scenario such as a multi-satellite mission multiband imagery, as well as in a complex vector topographical map that includes several feature types separated in layers (e.g. administrative limits, contour lines, edification polygons, road lines, etc). Moreover, and due to the traditional split of maps in tiles due to map handling at detailed scales or due to the satellite characteristics, each of the previous thematic layers (e.g. 1:5000 roads for a country) or band (Landsat-5 TM cover of the Earth) are tiled on several parts (sheets or scenes respectively). According to hierarchy in ISO 19115, the definition of general metadata can be supplemented by spatially specific metadata that, when required, either inherits or overrides the general case (G.1.3). Annex H of this standard states that only metadata exceptions are defined at lower levels, so it is not necessary to generate the full registry of metadata for each level but to link particular values to the general value that they inherit. Conceptually the metadata registry is complete for each metadata hierarchical level, but at the implementation level most of the metadata elements are not stored at both levels but only at more generic one. This communication defines a metadata system that covers 4 levels, describes which metadata has to support series-layer inheritance and in which way, and how hierarchical levels are defined and stored. Metadata elements are classified according to the type of inheritance between products, series, tiles and the datasets. It explains the metadata elements classification and exemplifies it using core metadata elements. The communication also presents a metadata viewer and edition tool that uses the described model to propagate metadata elements and to show to the user a complete set of metadata for each level in a transparent way. This tool is integrated in the MiraMon GIS software.
The role of metadata in managing large environmental science datasets. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, R.B.; DeVaney, D.M.; French, J. C.
1995-06-01
The purpose of this workshop was to bring together computer science researchers and environmental sciences data management practitioners to consider the role of metadata in managing large environmental sciences datasets. The objectives included: establishing a common definition of metadata; identifying categories of metadata; defining problems in managing metadata; and defining problems related to linking metadata with primary data.
NASA Astrophysics Data System (ADS)
Ventouras, Spiros; Lawrence, Bryan; Woolf, Andrew; Cox, Simon
2010-05-01
The Metadata Objects for Linking Environmental Sciences (MOLES) model has been developed within the Natural Environment Research Council (NERC) DataGrid project [NERC DataGrid] to fill a missing part of the ‘metadata spectrum'. It is a framework within which to encode the relationships between the tools used to obtain data, the activities which organised their use, and the datasets produced. MOLES is primarily of use to consumers of data, especially in an interdisciplinary context, to allow them to establish details of provenance, and to compare and contrast such information without recourse to discipline-specific metadata or private communications with the original investigators [Lawrence et al 2009]. MOLES is also of use to the custodians of data, providing an organising paradigm for the data and metadata. The work described in this paper is a high-level view of the structure and content of a recent major revision of MOLES (v3.3) carried out as part of a NERC DataGrid extension project. The concepts of MOLES v3.3 are rooted in the harmonised ISO model [Harmonised ISO model] - particularly in metadata standards (ISO 19115, ISO 19115-2) and the ‘Observations and Measurements' conceptual model (ISO 19156). MOLES exploits existing concepts and relationships, and specialises information in these standards. A typical sequence of data capturing involves one or more projects under which a number of activities are undertaken, using appropriate tools and methods to produce the datasets. Following this typical sequence, the relevant metadata can be partitioned into the following main sections - helpful in mapping onto the most suitable standards from the ISO 19100 series. • Project section • Activity section (including both observation acquisition and numerical computation) • Observation section (metadata regarding the methods used to obtained the data, the spatial and temporal sampling regime, quality etc.) • Observation collection section The key concepts in MOLES v3.3 are: a) the result of an observation is defined uniquely from the property (of a feature-of-interest), the sampling-feature (carrying the targeted property values), the procedure used to obtain the result and the time (discrete instant or period) at which the observation takes place. b) an ‘Acquisition' and a ‘Computation' can serve as the basis for describing any observation process chain (procedure). The ‘Acquisition' uses an instrument - sensor or human being - to produce the results and is associated with field trips, flights, cruises etc., whereas the ‘Computation' class involves specific processing steps. A process chain may consist of any combination of ‘Acquisitions' and/or ‘Computations' occurring in parallel or in any order during the data capturing sequence. c) The results can be organised in collections with significantly more flexibility than if one used the original project alone d) the structure of individual observation collections may be domain-specific, in general; however we are investigating the use of CSML (Climate Science Modelling Language) for atmospheric data The model has been tested as a desk exercise by constructing object models for scenarios from various disciplines. References NERC DATAGRID: http://ndg.nerc.ac.uk LAWRENCE ET. AL. ,Information in environmental data grids, Phil. Trans. R. Soc. A, March 2009 vol. 367 no. 1890 1003-1014 ISO HARMONISED MODEL: All relevant ISO standards for geographic metadata from the TC211 series (eg. ISO 19xxx), and is harmonised within a formal UML description in the ‘HollowWorld' packages available at https://www.seegrid.csiro.au/twiki/bin/view/AppSchemas/HollowWorld
González-Beltrán, Alejandra; Neumann, Steffen; Maguire, Eamonn; Sansone, Susanna-Assunta; Rocca-Serra, Philippe
2014-01-01
The ISA-Tab format and software suite have been developed to break the silo effect induced by technology-specific formats for a variety of data types and to better support experimental metadata tracking. Experimentalists seldom use a single technique to monitor biological signals. Providing a multi-purpose, pragmatic and accessible format that abstracts away common constructs for describing Investigations, Studies and Assays, ISA is increasingly popular. To attract further interest towards the format and extend support to ensure reproducible research and reusable data, we present the Risa package, which delivers a central component to support the ISA format by enabling effortless integration with R, the popular, open source data crunching environment. The Risa package bridges the gap between the metadata collection and curation in an ISA-compliant way and the data analysis using the widely used statistical computing environment R. The package offers functionality for: i) parsing ISA-Tab datasets into R objects, ii) augmenting annotation with extra metadata not explicitly stated in the ISA syntax; iii) interfacing with domain specific R packages iv) suggesting potentially useful R packages available in Bioconductor for subsequent processing of the experimental data described in the ISA format; and finally v) saving back to ISA-Tab files augmented with analysis specific metadata from R. We demonstrate these features by presenting use cases for mass spectrometry data and DNA microarray data. The Risa package is open source (with LGPL license) and freely available through Bioconductor. By making Risa available, we aim to facilitate the task of processing experimental data, encouraging a uniform representation of experimental information and results while delivering tools for ensuring traceability and provenance tracking. The Risa package is available since Bioconductor 2.11 (version 1.0.0) and version 1.2.1 appeared in Bioconductor 2.12, both along with documentation and examples. The latest version of the code is at the development branch in Bioconductor and can also be accessed from GitHub https://github.com/ISA-tools/Risa, where the issue tracker allows users to report bugs or feature requests.
The Risa R/Bioconductor package: integrative data analysis from experimental metadata and back again
2014-01-01
Background The ISA-Tab format and software suite have been developed to break the silo effect induced by technology-specific formats for a variety of data types and to better support experimental metadata tracking. Experimentalists seldom use a single technique to monitor biological signals. Providing a multi-purpose, pragmatic and accessible format that abstracts away common constructs for describing Investigations, Studies and Assays, ISA is increasingly popular. To attract further interest towards the format and extend support to ensure reproducible research and reusable data, we present the Risa package, which delivers a central component to support the ISA format by enabling effortless integration with R, the popular, open source data crunching environment. Results The Risa package bridges the gap between the metadata collection and curation in an ISA-compliant way and the data analysis using the widely used statistical computing environment R. The package offers functionality for: i) parsing ISA-Tab datasets into R objects, ii) augmenting annotation with extra metadata not explicitly stated in the ISA syntax; iii) interfacing with domain specific R packages iv) suggesting potentially useful R packages available in Bioconductor for subsequent processing of the experimental data described in the ISA format; and finally v) saving back to ISA-Tab files augmented with analysis specific metadata from R. We demonstrate these features by presenting use cases for mass spectrometry data and DNA microarray data. Conclusions The Risa package is open source (with LGPL license) and freely available through Bioconductor. By making Risa available, we aim to facilitate the task of processing experimental data, encouraging a uniform representation of experimental information and results while delivering tools for ensuring traceability and provenance tracking. Software availability The Risa package is available since Bioconductor 2.11 (version 1.0.0) and version 1.2.1 appeared in Bioconductor 2.12, both along with documentation and examples. The latest version of the code is at the development branch in Bioconductor and can also be accessed from GitHub https://github.com/ISA-tools/Risa, where the issue tracker allows users to report bugs or feature requests. PMID:24564732
Building Format-Agnostic Metadata Repositories
NASA Astrophysics Data System (ADS)
Cechini, M.; Pilone, D.
2010-12-01
This presentation will discuss the problems that surround persisting and discovering metadata in multiple formats; a set of tenets that must be addressed in a solution; and NASA’s Earth Observing System (EOS) ClearingHOuse’s (ECHO) proposed approach. In order to facilitate cross-discipline data analysis, Earth Scientists will potentially interact with more than one data source. The most common data discovery paradigm relies on services and/or applications facilitating the discovery and presentation of metadata. What may not be common are the formats in which the metadata are formatted. As the number of sources and datasets utilized for research increases, it becomes more likely that a researcher will encounter conflicting metadata formats. Metadata repositories, such as the EOS ClearingHOuse (ECHO), along with data centers, must identify ways to address this issue. In order to define the solution to this problem, the following tenets are identified: - There exists a set of ‘core’ metadata fields recommended for data discovery. - There exists a set of users who will require the entire metadata record for advanced analysis. - There exists a set of users who will require a ‘core’ set of metadata fields for discovery only. - There will never be a cessation of new formats or a total retirement of all old formats. - Users should be presented metadata in a consistent format. ECHO has undertaken an effort to transform its metadata ingest and discovery services in order to support the growing set of metadata formats. In order to address the previously listed items, ECHO’s new metadata processing paradigm utilizes the following approach: - Identify a cross-format set of ‘core’ metadata fields necessary for discovery. - Implement format-specific indexers to extract the ‘core’ metadata fields into an optimized query capability. - Archive the original metadata in its entirety for presentation to users requiring the full record. - Provide on-demand translation of ‘core’ metadata to any supported result format. With this identified approach, the Earth Scientist is provided with a consistent data representation as they interact with a variety of datasets that utilize multiple metadata formats. They are then able to focus their efforts on the more critical research activities which they are undertaking.
Making Metadata Better with CMR and MMT
NASA Technical Reports Server (NTRS)
Gilman, Jason Arthur; Shum, Dana
2016-01-01
Ensuring complete, consistent and high quality metadata is a challenge for metadata providers and curators. The CMR and MMT systems provide providers and curators options to build in metadata quality from the start and also assess and improve the quality of already existing metadata.
Evolution in Metadata Quality: Common Metadata Repository's Role in NASA Curation Efforts
NASA Technical Reports Server (NTRS)
Gilman, Jason; Shum, Dana; Baynes, Katie
2016-01-01
Metadata Quality is one of the chief drivers of discovery and use of NASA EOSDIS (Earth Observing System Data and Information System) data. Issues with metadata such as lack of completeness, inconsistency, and use of legacy terms directly hinder data use. As the central metadata repository for NASA Earth Science data, the Common Metadata Repository (CMR) has a responsibility to its users to ensure the quality of CMR search results. This poster covers how we use humanizers, a technique for dealing with the symptoms of metadata issues, as well as our plans for future metadata validation enhancements. The CMR currently indexes 35K collections and 300M granules.
Patridge, Jeff; Namulanda, Gonza
2008-01-01
The Environmental Public Health Tracking (EPHT) Network provides an opportunity to bring together diverse environmental and health effects data by integrating}?> local, state, and national databases of environmental hazards, environmental exposures, and health effects. To help users locate data on the EPHT Network, the network will utilize descriptive metadata that provide critical information as to the purpose, location, content, and source of these data. Since 2003, the Centers for Disease Control and Prevention's EPHT Metadata Subgroup has been working to initiate the creation and use of descriptive metadata. Efforts undertaken by the group include the adoption of a metadata standard, creation of an EPHT-specific metadata profile, development of an open-source metadata creation tool, and promotion of the creation of descriptive metadata by changing the perception of metadata in the public health culture.
Metadata: Standards for Retrieving WWW Documents (and Other Digitized and Non-Digitized Resources)
NASA Astrophysics Data System (ADS)
Rusch-Feja, Diann
The use of metadata for indexing digitized and non-digitized resources for resource discovery in a networked environment is being increasingly implemented all over the world. Greater precision is achieved using metadata than relying on universal search engines and furthermore, meta-data can be used as filtering mechanisms for search results. An overview of various metadata sets is given, followed by a more focussed presentation of Dublin Core Metadata including examples of sub-elements and qualifiers. Especially the use of the Dublin Core Relation element provides connections between the metadata of various related electronic resources, as well as the metadata for physical, non-digitized resources. This facilitates more comprehensive search results without losing precision and brings together different genres of information which would otherwise be only searchable in separate databases. Furthermore, the advantages of Dublin Core Metadata in comparison with library cataloging and the use of universal search engines are discussed briefly, followed by a listing of types of implementation of Dublin Core Metadata.
Obuch, Raymond C.; Carlino, Jennifer; Zhang, Lin; Blythe, Jonathan; Dietrich, Christopher; Hawkinson, Christine
2018-04-12
The Department of the Interior (DOI) is a Federal agency with over 90,000 employees across 10 bureaus and 8 agency offices. Its primary mission is to protect and manage the Nation’s natural resources and cultural heritage; provide scientific and other information about those resources; and honor its trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities. Data and information are critical in day-to-day operational decision making and scientific research. DOI is committed to creating, documenting, managing, and sharing high-quality data and metadata in and across its various programs that support its mission. Documenting data through metadata is essential in realizing the value of data as an enterprise asset. The completeness, consistency, and timeliness of metadata affect users’ ability to search for and discover the most relevant data for the intended purpose; and facilitates the interoperability and usability of these data among DOI bureaus and offices. Fully documented metadata describe data usability, quality, accuracy, provenance, and meaning.Across DOI, there are different maturity levels and phases of information and metadata management implementations. The Department has organized a committee consisting of bureau-level points-of-contacts to collaborate on the development of more consistent, standardized, and more effective metadata management practices and guidance to support this shared mission and the information needs of the Department. DOI’s metadata implementation plans establish key roles and responsibilities associated with metadata management processes, procedures, and a series of actions defined in three major metadata implementation phases including: (1) Getting started—Planning Phase, (2) Implementing and Maintaining Operational Metadata Management Phase, and (3) the Next Steps towards Improving Metadata Management Phase. DOI’s phased approach for metadata management addresses some of the major data and metadata management challenges that exist across the diverse missions of the bureaus and offices. All employees who create, modify, or use data are involved with data and metadata management. Identifying, establishing, and formalizing the roles and responsibilities associated with metadata management are key to institutionalizing a framework of best practices, methodologies, processes, and common approaches throughout all levels of the organization; these are the foundation for effective data resource management. For executives and managers, metadata management strengthens their overarching views of data assets, holdings, and data interoperability; and clarifies how metadata management can help accelerate the compliance of multiple policy mandates. For employees, data stewards, and data professionals, formalized metadata management will help with the consistency of definitions, and approaches addressing data discoverability, data quality, and data lineage. In addition to data professionals and others associated with information technology; data stewards and program subject matter experts take on important metadata management roles and responsibilities as data flow through their respective business and science-related workflows. The responsibilities of establishing, practicing, and governing the actions associated with their specific metadata management roles are critical to successful metadata implementation.
Making Interoperability Easier with the NASA Metadata Management Tool
NASA Astrophysics Data System (ADS)
Shum, D.; Reese, M.; Pilone, D.; Mitchell, A. E.
2016-12-01
ISO 19115 has enabled interoperability amongst tools, yet many users find it hard to build ISO metadata for their collections because it can be large and overly flexible for their needs. The Metadata Management Tool (MMT), part of NASA's Earth Observing System Data and Information System (EOSDIS), offers users a modern, easy to use browser based tool to develop ISO compliant metadata. Through a simplified UI experience, metadata curators can create and edit collections without any understanding of the complex ISO-19115 format, while still generating compliant metadata. The MMT is also able to assess the completeness of collection level metadata by evaluating it against a variety of metadata standards. The tool provides users with clear guidance as to how to change their metadata in order to improve their quality and compliance. It is based on NASA's Unified Metadata Model for Collections (UMM-C) which is a simpler metadata model which can be cleanly mapped to ISO 19115. This allows metadata authors and curators to meet ISO compliance requirements faster and more accurately. The MMT and UMM-C have been developed in an agile fashion, with recurring end user tests and reviews to continually refine the tool, the model and the ISO mappings. This process is allowing for continual improvement and evolution to meet the community's needs.
Metadata-driven Clinical Data Loading into i2b2 for Clinical and Translational Science Institutes.
Post, Andrew R; Pai, Akshatha K; Willard, Richard; May, Bradley J; West, Andrew C; Agravat, Sanjay; Granite, Stephen J; Winslow, Raimond L; Stephens, David S
2016-01-01
Clinical and Translational Science Award (CTSA) recipients have a need to create research data marts from their clinical data warehouses, through research data networks and the use of i2b2 and SHRINE technologies. These data marts may have different data requirements and representations, thus necessitating separate extract, transform and load (ETL) processes for populating each mart. Maintaining duplicative procedural logic for each ETL process is onerous. We have created an entirely metadata-driven ETL process that can be customized for different data marts through separate configurations, each stored in an extension of i2b2 's ontology database schema. We extended our previously reported and open source Eureka! Clinical Analytics software with this capability. The same software has created i2b2 data marts for several projects, the largest being the nascent Accrual for Clinical Trials (ACT) network, for which it has loaded over 147 million facts about 1.2 million patients.
Metadata-driven Clinical Data Loading into i2b2 for Clinical and Translational Science Institutes
Post, Andrew R.; Pai, Akshatha K.; Willard, Richard; May, Bradley J.; West, Andrew C.; Agravat, Sanjay; Granite, Stephen J.; Winslow, Raimond L.; Stephens, David S.
2016-01-01
Clinical and Translational Science Award (CTSA) recipients have a need to create research data marts from their clinical data warehouses, through research data networks and the use of i2b2 and SHRINE technologies. These data marts may have different data requirements and representations, thus necessitating separate extract, transform and load (ETL) processes for populating each mart. Maintaining duplicative procedural logic for each ETL process is onerous. We have created an entirely metadata-driven ETL process that can be customized for different data marts through separate configurations, each stored in an extension of i2b2 ‘s ontology database schema. We extended our previously reported and open source Eureka! Clinical Analytics software with this capability. The same software has created i2b2 data marts for several projects, the largest being the nascent Accrual for Clinical Trials (ACT) network, for which it has loaded over 147 million facts about 1.2 million patients. PMID:27570667
GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality
NASA Astrophysics Data System (ADS)
Lush, Victoria; Nüst, Daniel; Bastin, Lucy; Masó, Joan; Lumsden, Jo
2014-05-01
We present demonstrations of the GEO label Web services and their integration into a prototype extension of the GEOSS portal (http://scgeoviqua.sapienzaconsulting.com/web/guest/geo_home), the GMU portal (http://gis.csiss.gmu.edu/GADMFS/) and a GeoNetwork catalog application (http://uncertdata.aston.ac.uk:8080/geonetwork/srv/eng/main.home). The GEO label is designed to communicate, and facilitate interrogation of, geospatial quality information with a view to supporting efficient and effective dataset selection on the basis of quality, trustworthiness and fitness for use. The GEO label which we propose was developed and evaluated according to a user-centred design (UCD) approach in order to maximise the likelihood of user acceptance once deployed. The resulting label is dynamically generated from producer metadata in ISO or FDGC format, and incorporates user feedback on dataset usage, ratings and discovered issues, in order to supply a highly informative summary of metadata completeness and quality. The label was easily incorporated into a community portal as part of the GEO Architecture Implementation Programme (AIP-6) and has been successfully integrated into a prototype extension of the GEOSS portal, as well as the popular metadata catalog and editor, GeoNetwork. The design of the GEO label was based on 4 user studies conducted to: (1) elicit initial user requirements; (2) investigate initial user views on the concept of a GEO label and its potential role; (3) evaluate prototype label visualizations; and (4) evaluate and validate physical GEO label prototypes. The results of these studies indicated that users and producers support the concept of a label with drill-down interrogation facility, combining eight geospatial data informational aspects, namely: producer profile, producer comments, lineage information, standards compliance, quality information, user feedback, expert reviews, and citations information. These are delivered as eight facets of a wheel-like label, which are coloured according to metadata availability and are clickable to allow a user to engage with the original metadata and explore specific aspects in more detail. To support this graphical representation and allow for wider deployment architectures we have implemented two Web services, a PHP and a Java implementation, that generate GEO label representations by combining producer metadata (from standard catalogues or other published locations) with structured user feedback. Both services accept encoded URLs of publicly available metadata documents or metadata XML files as HTTP POST and GET requests and apply XPath and XSLT mappings to transform producer and feedback XML documents into clickable SVG GEO label representations. The label and services are underpinned by two XML-based quality models. The first is a producer model that extends ISO 19115 and 19157 to allow fuller citation of reference data, presentation of pixel- and dataset- level statistical quality information, and encoding of 'traceability' information on the lineage of an actual quality assessment. The second is a user quality model (realised as a feedback server and client) which allows reporting and query of ratings, usage reports, citations, comments and other domain knowledge. Both services are Open Source and are available on GitHub at https://github.com/lushv/geolabel-service and https://github.com/52North/GEO-label-java. The functionality of these services can be tested using our GEO label generation demos, available online at http://www.geolabel.net/demo.html and http://geoviqua.dev.52north.org/glbservice/index.jsf.
GraphMeta: Managing HPC Rich Metadata in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Dong; Chen, Yong; Carns, Philip
High-performance computing (HPC) systems face increasingly critical metadata management challenges, especially in the approaching exascale era. These challenges arise not only from exploding metadata volumes, but also from increasingly diverse metadata, which contains data provenance and arbitrary user-defined attributes in addition to traditional POSIX metadata. This ‘rich’ metadata is becoming critical to supporting advanced data management functionality such as data auditing and validation. In our prior work, we identified a graph-based model as a promising solution to uniformly manage HPC rich metadata due to its flexibility and generality. However, at the same time, graph-based HPC rich metadata anagement also introducesmore » significant challenges to the underlying infrastructure. In this study, we first identify the challenges on the underlying infrastructure to support scalable, high-performance rich metadata management. Based on that, we introduce GraphMeta, a graphbased engine designed for this use case. It achieves performance scalability by introducing a new graph partitioning algorithm and a write-optimal storage engine. We evaluate GraphMeta under both synthetic and real HPC metadata workloads, compare it with other approaches, and demonstrate its advantages in terms of efficiency and usability for rich metadata management in HPC systems.« less
Grid computing enhances standards-compatible geospatial catalogue service
NASA Astrophysics Data System (ADS)
Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang
2010-04-01
A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities.
Metabolonote: A Wiki-Based Database for Managing Hierarchical Metadata of Metabolome Analyses
Ara, Takeshi; Enomoto, Mitsuo; Arita, Masanori; Ikeda, Chiaki; Kera, Kota; Yamada, Manabu; Nishioka, Takaaki; Ikeda, Tasuku; Nihei, Yoshito; Shibata, Daisuke; Kanaya, Shigehiko; Sakurai, Nozomu
2015-01-01
Metabolomics – technology for comprehensive detection of small molecules in an organism – lags behind the other “omics” in terms of publication and dissemination of experimental data. Among the reasons for this are difficulty precisely recording information about complicated analytical experiments (metadata), existence of various databases with their own metadata descriptions, and low reusability of the published data, resulting in submitters (the researchers who generate the data) being insufficiently motivated. To tackle these issues, we developed Metabolonote, a Semantic MediaWiki-based database designed specifically for managing metabolomic metadata. We also defined a metadata and data description format, called “Togo Metabolome Data” (TogoMD), with an ID system that is required for unique access to each level of the tree-structured metadata such as study purpose, sample, analytical method, and data analysis. Separation of the management of metadata from that of data and permission to attach related information to the metadata provide advantages for submitters, readers, and database developers. The metadata are enriched with information such as links to comparable data, thereby functioning as a hub of related data resources. They also enhance not only readers’ understanding and use of data but also submitters’ motivation to publish the data. The metadata are computationally shared among other systems via APIs, which facilitate the construction of novel databases by database developers. A permission system that allows publication of immature metadata and feedback from readers also helps submitters to improve their metadata. Hence, this aspect of Metabolonote, as a metadata preparation tool, is complementary to high-quality and persistent data repositories such as MetaboLights. A total of 808 metadata for analyzed data obtained from 35 biological species are published currently. Metabolonote and related tools are available free of cost at http://metabolonote.kazusa.or.jp/. PMID:25905099
Metabolonote: a wiki-based database for managing hierarchical metadata of metabolome analyses.
Ara, Takeshi; Enomoto, Mitsuo; Arita, Masanori; Ikeda, Chiaki; Kera, Kota; Yamada, Manabu; Nishioka, Takaaki; Ikeda, Tasuku; Nihei, Yoshito; Shibata, Daisuke; Kanaya, Shigehiko; Sakurai, Nozomu
2015-01-01
Metabolomics - technology for comprehensive detection of small molecules in an organism - lags behind the other "omics" in terms of publication and dissemination of experimental data. Among the reasons for this are difficulty precisely recording information about complicated analytical experiments (metadata), existence of various databases with their own metadata descriptions, and low reusability of the published data, resulting in submitters (the researchers who generate the data) being insufficiently motivated. To tackle these issues, we developed Metabolonote, a Semantic MediaWiki-based database designed specifically for managing metabolomic metadata. We also defined a metadata and data description format, called "Togo Metabolome Data" (TogoMD), with an ID system that is required for unique access to each level of the tree-structured metadata such as study purpose, sample, analytical method, and data analysis. Separation of the management of metadata from that of data and permission to attach related information to the metadata provide advantages for submitters, readers, and database developers. The metadata are enriched with information such as links to comparable data, thereby functioning as a hub of related data resources. They also enhance not only readers' understanding and use of data but also submitters' motivation to publish the data. The metadata are computationally shared among other systems via APIs, which facilitate the construction of novel databases by database developers. A permission system that allows publication of immature metadata and feedback from readers also helps submitters to improve their metadata. Hence, this aspect of Metabolonote, as a metadata preparation tool, is complementary to high-quality and persistent data repositories such as MetaboLights. A total of 808 metadata for analyzed data obtained from 35 biological species are published currently. Metabolonote and related tools are available free of cost at http://metabolonote.kazusa.or.jp/.
Robert E. Keane
2006-01-01
The Metadata (MD) table in the FIREMON database is used to record any information about the sampling strategy or data collected using the FIREMON sampling procedures. The MD method records metadata pertaining to a group of FIREMON plots, such as all plots in a specific FIREMON project. FIREMON plots are linked to metadata using a unique metadata identifier that is...
New concepts for building vocabulary for cell image ontologies.
Plant, Anne L; Elliott, John T; Bhat, Talapady N
2011-12-21
There are significant challenges associated with the building of ontologies for cell biology experiments including the large numbers of terms and their synonyms. These challenges make it difficult to simultaneously query data from multiple experiments or ontologies. If vocabulary terms were consistently used and reused across and within ontologies, queries would be possible through shared terms. One approach to achieving this is to strictly control the terms used in ontologies in the form of a pre-defined schema, but this approach limits the individual researcher's ability to create new terms when needed to describe new experiments. Here, we propose the use of a limited number of highly reusable common root terms, and rules for an experimentalist to locally expand terms by adding more specific terms under more general root terms to form specific new vocabulary hierarchies that can be used to build ontologies. We illustrate the application of the method to build vocabularies and a prototype database for cell images that uses a visual data-tree of terms to facilitate sophisticated queries based on a experimental parameters. We demonstrate how the terminology might be extended by adding new vocabulary terms into the hierarchy of terms in an evolving process. In this approach, image data and metadata are handled separately, so we also describe a robust file-naming scheme to unambiguously identify image and other files associated with each metadata value. The prototype database http://sbd.nist.gov/ consists of more than 2000 images of cells and benchmark materials, and 163 metadata terms that describe experimental details, including many details about cell culture and handling. Image files of interest can be retrieved, and their data can be compared, by choosing one or more relevant metadata values as search terms. Metadata values for any dataset can be compared with corresponding values of another dataset through logical operations. Organizing metadata for cell imaging experiments under a framework of rules that include highly reused root terms will facilitate the addition of new terms into a vocabulary hierarchy and encourage the reuse of terms. These vocabulary hierarchies can be converted into XML schema or RDF graphs for displaying and querying, but this is not necessary for using it to annotate cell images. Vocabulary data trees from multiple experiments or laboratories can be aligned at the root terms to facilitate query development. This approach of developing vocabularies is compatible with the major advances in database technology and could be used for building the Semantic Web.
New concepts for building vocabulary for cell image ontologies
2011-01-01
Background There are significant challenges associated with the building of ontologies for cell biology experiments including the large numbers of terms and their synonyms. These challenges make it difficult to simultaneously query data from multiple experiments or ontologies. If vocabulary terms were consistently used and reused across and within ontologies, queries would be possible through shared terms. One approach to achieving this is to strictly control the terms used in ontologies in the form of a pre-defined schema, but this approach limits the individual researcher's ability to create new terms when needed to describe new experiments. Results Here, we propose the use of a limited number of highly reusable common root terms, and rules for an experimentalist to locally expand terms by adding more specific terms under more general root terms to form specific new vocabulary hierarchies that can be used to build ontologies. We illustrate the application of the method to build vocabularies and a prototype database for cell images that uses a visual data-tree of terms to facilitate sophisticated queries based on a experimental parameters. We demonstrate how the terminology might be extended by adding new vocabulary terms into the hierarchy of terms in an evolving process. In this approach, image data and metadata are handled separately, so we also describe a robust file-naming scheme to unambiguously identify image and other files associated with each metadata value. The prototype database http://sbd.nist.gov/ consists of more than 2000 images of cells and benchmark materials, and 163 metadata terms that describe experimental details, including many details about cell culture and handling. Image files of interest can be retrieved, and their data can be compared, by choosing one or more relevant metadata values as search terms. Metadata values for any dataset can be compared with corresponding values of another dataset through logical operations. Conclusions Organizing metadata for cell imaging experiments under a framework of rules that include highly reused root terms will facilitate the addition of new terms into a vocabulary hierarchy and encourage the reuse of terms. These vocabulary hierarchies can be converted into XML schema or RDF graphs for displaying and querying, but this is not necessary for using it to annotate cell images. Vocabulary data trees from multiple experiments or laboratories can be aligned at the root terms to facilitate query development. This approach of developing vocabularies is compatible with the major advances in database technology and could be used for building the Semantic Web. PMID:22188658
Preservation Health Check: Monitoring Threats to Digital Repository Content
ERIC Educational Resources Information Center
Kool, Wouter; van der Werf, Titia; Lavoie, Brian
2014-01-01
The Preservation Health Check (PHC) project, undertaken as a joint effort by Open Planets Foundation (OPF) and OCLC Research, aims to evaluate the usefulness of the preservation metadata created and maintained by operational repositories for assessing basic preservation properties. The PHC project seeks to develop an implementable logic to support…
Documentation Resources on the ESIP Wiki
NASA Technical Reports Server (NTRS)
Habermann, Ted; Kozimor, John; Gordon, Sean
2017-01-01
The ESIP community includes data providers and users that communicate with one another through datasets and metadata that describe them. Improving this communication depends on consistent high-quality metadata. The ESIP Documentation Cluster and the wiki play an important central role in facilitating this communication. We will describe and demonstrate sections of the wiki that provide information about metadata concept definitions, metadata recommendation, metadata dialects, and guidance pages. We will also describe and demonstrate the ISO Explorer, a tool that the community is developing to help metadata creators.
Ismail, Mahmoud; Philbin, James
2015-04-01
The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies' metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata.
Transforming Dermatologic Imaging for the Digital Era: Metadata and Standards.
Caffery, Liam J; Clunie, David; Curiel-Lewandrowski, Clara; Malvehy, Josep; Soyer, H Peter; Halpern, Allan C
2018-01-17
Imaging is increasingly being used in dermatology for documentation, diagnosis, and management of cutaneous disease. The lack of standards for dermatologic imaging is an impediment to clinical uptake. Standardization can occur in image acquisition, terminology, interoperability, and metadata. This paper presents the International Skin Imaging Collaboration position on standardization of metadata for dermatologic imaging. Metadata is essential to ensure that dermatologic images are properly managed and interpreted. There are two standards-based approaches to recording and storing metadata in dermatologic imaging. The first uses standard consumer image file formats, and the second is the file format and metadata model developed for the Digital Imaging and Communication in Medicine (DICOM) standard. DICOM would appear to provide an advantage over using consumer image file formats for metadata as it includes all the patient, study, and technical metadata necessary to use images clinically. Whereas, consumer image file formats only include technical metadata and need to be used in conjunction with another actor-for example, an electronic medical record-to supply the patient and study metadata. The use of DICOM may have some ancillary benefits in dermatologic imaging including leveraging DICOM network and workflow services, interoperability of images and metadata, leveraging existing enterprise imaging infrastructure, greater patient safety, and better compliance to legislative requirements for image retention.
Ismail, Mahmoud; Philbin, James
2015-01-01
Abstract. The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies’ metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata. PMID:26158117
ISO, FGDC, DIF and Dublin Core - Making Sense of Metadata Standards for Earth Science Data
NASA Astrophysics Data System (ADS)
Jones, P. R.; Ritchey, N. A.; Peng, G.; Toner, V. A.; Brown, H.
2014-12-01
Metadata standards provide common definitions of metadata fields for information exchange across user communities. Despite the broad adoption of metadata standards for Earth science data, there are still heterogeneous and incompatible representations of information due to differences between the many standards in use and how each standard is applied. Federal agencies are required to manage and publish metadata in different metadata standards and formats for various data catalogs. In 2014, the NOAA National Climatic data Center (NCDC) managed metadata for its scientific datasets in ISO 19115-2 in XML, GCMD Directory Interchange Format (DIF) in XML, DataCite Schema in XML, Dublin Core in XML, and Data Catalog Vocabulary (DCAT) in JSON, with more standards and profiles of standards planned. Of these standards, the ISO 19115-series metadata is the most complete and feature-rich, and for this reason it is used by NCDC as the source for the other metadata standards. We will discuss the capabilities of metadata standards and how these standards are being implemented to document datasets. Successful implementations include developing translations and displays using XSLTs, creating links to related data and resources, documenting dataset lineage, and establishing best practices. Benefits, gaps, and challenges will be highlighted with suggestions for improved approaches to metadata storage and maintenance.
NASA Astrophysics Data System (ADS)
Hernández, B. E.; Bugbee, K.; le Roux, J.; Beaty, T.; Hansen, M.; Staton, P.; Sisco, A. W.
2017-12-01
Earth observation (EO) data collected as part of NASA's Earth Observing System Data and Information System (EOSDIS) is now searchable via the Common Metadata Repository (CMR). The Analysis and Review of CMR (ARC) Team at Marshall Space Flight Center has been tasked with reviewing all NASA metadata records in the CMR ( 7,000 records). Each collection level record and constituent granule level metadata are reviewed for both completeness as well as compliance with the CMR's set of metadata standards, as specified in the Unified Metadata Model (UMM). NASA's Distributed Active Archive Centers (DAACs) have been harmonizing priority metadata records within the context of the inter-agency federal Big Earth Data Initiative (BEDI), which seeks to improve the discoverability, accessibility, and usability of EO data. Thus, the first phase of this project constitutes reviewing BEDI metadata records, while the second phase will constitute reviewing the remaining non-BEDI records in CMR. This presentation will discuss the ARC team's findings in terms of the overall quality of BEDI records across all DAACs as well as compliance with UMM standards. For instance, only a fifth of the collection-level metadata fields needed correction, compared to a quarter of the granule-level fields. It should be noted that the degree to which DAACs' metadata did not comply with the UMM standards may reflect multiple factors, such as recent changes in the UMM standards, and the utilization of different metadata formats (e.g. DIF 10, ECHO 10, ISO 19115-1) across the DAACs. Insights, constructive criticism, and lessons learned from this metadata review process will be contributed from both ORNL and SEDAC. Further inquiry along such lines may lead to insights which may improve the metadata curation process moving forward. In terms of the broader implications for metadata compliance with the UMM standards, this research has shown that a large proportion of the prioritized collections have already been made compliant, although the process of improving metadata quality is ongoing and iterative. Further research is also warranted into whether or not the gains in metadata quality are also driving gains in data use.
Forum Guide to Metadata: The Meaning behind Education Data. NFES 2009-805
ERIC Educational Resources Information Center
National Forum on Education Statistics, 2009
2009-01-01
The purpose of this guide is to empower people to more effectively use data as information. To accomplish this, the publication explains what metadata are; why metadata are critical to the development of sound education data systems; what components comprise a metadata system; what value metadata bring to data management and use; and how to…
ERIC Educational Resources Information Center
Yang, Le
2016-01-01
This study analyzed digital item metadata and keywords from Internet search engines to learn what metadata elements actually facilitate discovery of digital collections through Internet keyword searching and how significantly each metadata element affects the discovery of items in a digital repository. The study found that keywords from Internet…
McMahon, Christiana; Denaxas, Spiros
2016-01-01
Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly. PMID:27570670
McMahon, Christiana; Denaxas, Spiros
2016-01-01
Metadata are critical in epidemiological and public health research. However, a lack of biomedical metadata quality frameworks and limited awareness of the implications of poor quality metadata renders data analyses problematic. In this study, we created and evaluated a novel framework to assess metadata quality of epidemiological and public health research datasets. We performed a literature review and surveyed stakeholders to enhance our understanding of biomedical metadata quality assessment. The review identified 11 studies and nine quality dimensions; none of which were specifically aimed at biomedical metadata. 96 individuals completed the survey; of those who submitted data, most only assessed metadata quality sometimes, and eight did not at all. Our framework has four sections: a) general information; b) tools and technologies; c) usability; and d) management and curation. We evaluated the framework using three test cases and sought expert feedback. The framework can assess biomedical metadata quality systematically and robustly.
CMO: Cruise Metadata Organizer for JAMSTEC Research Cruises
NASA Astrophysics Data System (ADS)
Fukuda, K.; Saito, H.; Hanafusa, Y.; Vanroosebeke, A.; Kitayama, T.
2011-12-01
JAMSTEC's Data Research Center for Marine-Earth Sciences manages and distributes a wide variety of observational data and samples obtained from JAMSTEC research vessels and deep sea submersibles. Generally, metadata are essential to identify data and samples were obtained. In JAMSTEC, cruise metadata include cruise information such as cruise ID, name of vessel, research theme, and diving information such as dive number, name of submersible and position of diving point. They are submitted by chief scientists of research cruises in the Microsoft Excel° spreadsheet format, and registered into a data management database to confirm receipt of observational data files, cruise summaries, and cruise reports. The cruise metadata are also published via "JAMSTEC Data Site for Research Cruises" within two months after end of cruise. Furthermore, these metadata are distributed with observational data, images and samples via several data and sample distribution websites after a publication moratorium period. However, there are two operational issues in the metadata publishing process. One is that duplication efforts and asynchronous metadata across multiple distribution websites due to manual metadata entry into individual websites by administrators. The other is that differential data types or representation of metadata in each website. To solve those problems, we have developed a cruise metadata organizer (CMO) which allows cruise metadata to be connected from the data management database to several distribution websites. CMO is comprised of three components: an Extensible Markup Language (XML) database, an Enterprise Application Integration (EAI) software, and a web-based interface. The XML database is used because of its flexibility for any change of metadata. Daily differential uptake of metadata from the data management database to the XML database is automatically processed via the EAI software. Some metadata are entered into the XML database using the web-based interface by a metadata editor in CMO as needed. Then daily differential uptake of metadata from the XML database to databases in several distribution websites is automatically processed using a convertor defined by the EAI software. Currently, CMO is available for three distribution websites: "Deep Sea Floor Rock Sample Database GANSEKI", "Marine Biological Sample Database", and "JAMSTEC E-library of Deep-sea Images". CMO is planned to provide "JAMSTEC Data Site for Research Cruises" with metadata in the future.
Towards Data Value-Level Metadata for Clinical Studies.
Zozus, Meredith Nahm; Bonner, Joseph
2017-01-01
While several standards for metadata describing clinical studies exist, comprehensive metadata to support traceability of data from clinical studies has not been articulated. We examine uses of metadata in clinical studies. We examine and enumerate seven sources of data value-level metadata in clinical studies inclusive of research designs across the spectrum of the National Institutes of Health definition of clinical research. The sources of metadata inform categorization in terms of metadata describing the origin of a data value, the definition of a data value, and operations to which the data value was subjected. The latter is further categorized into information about changes to a data value, movement of a data value, retrieval of a data value, and data quality checks, constraints or assessments to which the data value was subjected. The implications of tracking and managing data value-level metadata are explored.
Managing Complex Change in Clinical Study Metadata
Brandt, Cynthia A.; Gadagkar, Rohit; Rodriguez, Cesar; Nadkarni, Prakash M.
2004-01-01
In highly functional metadata-driven software, the interrelationships within the metadata become complex, and maintenance becomes challenging. We describe an approach to metadata management that uses a knowledge-base subschema to store centralized information about metadata dependencies and use cases involving specific types of metadata modification. Our system borrows ideas from production-rule systems in that some of this information is a high-level specification that is interpreted and executed dynamically by a middleware engine. Our approach is implemented in TrialDB, a generic clinical study data management system. We review approaches that have been used for metadata management in other contexts and describe the features, capabilities, and limitations of our system. PMID:15187070
NASA Astrophysics Data System (ADS)
Lugmayr, Artur R.; Mailaparampil, Anurag; Tico, Florina; Kalli, Seppo; Creutzburg, Reiner
2003-01-01
Digital television (digiTV) is an additional multimedia environment, where metadata is one key element for the description of arbitrary content. This implies adequate structures for content description, which is provided by XML metadata schemes (e.g. MPEG-7, MPEG-21). Content and metadata management is the task of a multimedia repository, from which digiTV clients - equipped with an Internet connection - can access rich additional multimedia types over an "All-HTTP" protocol layer. Within this research work, we focus on conceptual design issues of a metadata repository for the storage of metadata, accessible from the feedback channel of a local set-top box. Our concept describes the whole heterogeneous life-cycle chain of XML metadata from the service provider to the digiTV equipment, device independent representation of content, accessing and querying the metadata repository, management of metadata related to digiTV, and interconnection of basic system components (http front-end, relational database system, and servlet container). We present our conceptual test configuration of a metadata repository that is aimed at a real-world deployment, done within the scope of the future interaction (fiTV) project at the Digital Media Institute (DMI) Tampere (www.futureinteraction.tv).
Metazen – metadata capture for metagenomes
2014-01-01
Background As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. Unfortunately, these tools are not specifically designed for metagenomic surveys; in particular, they lack the appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusions Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility. PMID:25780508
Metazen - metadata capture for metagenomes.
Bischof, Jared; Harrison, Travis; Paczian, Tobias; Glass, Elizabeth; Wilke, Andreas; Meyer, Folker
2014-01-01
As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. Unfortunately, these tools are not specifically designed for metagenomic surveys; in particular, they lack the appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.
Improving Access to NASA Earth Science Data through Collaborative Metadata Curation
NASA Astrophysics Data System (ADS)
Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.
2017-12-01
The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.
NASA Technical Reports Server (NTRS)
Shum, Dana; Bugbee, Kaylin
2017-01-01
This talk explains the ongoing metadata curation activities in the Common Metadata Repository. It explores tools that exist today which are useful for building quality metadata and also opens up the floor for discussions on other potentially useful tools.
NASA Astrophysics Data System (ADS)
Troyan, D.
2016-12-01
The Atmospheric Radiation Measurement (ARM) program has been collecting data from instruments in diverse climate regions for nearly twenty-five years. These data are made available to all interested parties at no cost via specially designed tools found on the ARM website (www.arm.gov). Metadata is created and applied to the various datastreams to facilitate information retrieval using the ARM website, the ARM Data Discovery Tool, and data quality reporting tools. Over the last year, the Metadata Manager - a relatively new position within the ARM program - created two documents that summarize the state of ARM metadata processes: ARM Metadata Workflow, and ARM Metadata Standards. These documents serve as guides to the creation and management of ARM metadata. With many of ARM's data functions spread around the Department of Energy national laboratory complex and with many of the original architects of the metadata structure no longer working for ARM, there is increased importance on using these documents to resolve issues from data flow bottlenecks and inaccurate metadata to improving data discovery and organizing web pages. This presentation will provide some examples from the workflow and standards documents. The examples will illustrate the complexity of the ARM metadata processes and the efficiency by which the metadata team works towards achieving the goal of providing access to data collected under the auspices of the ARM program.
Efficient processing of MPEG-21 metadata in the binary domain
NASA Astrophysics Data System (ADS)
Timmerer, Christian; Frank, Thomas; Hellwagner, Hermann; Heuer, Jörg; Hutter, Andreas
2005-10-01
XML-based metadata is widely adopted across the different communities and plenty of commercial and open source tools for processing and transforming are available on the market. However, all of these tools have one thing in common: they operate on plain text encoded metadata which may become a burden in constrained and streaming environments, i.e., when metadata needs to be processed together with multimedia content on the fly. In this paper we present an efficient approach for transforming such kind of metadata which are encoded using MPEG's Binary Format for Metadata (BiM) without additional en-/decoding overheads, i.e., within the binary domain. Therefore, we have developed an event-based push parser for BiM encoded metadata which transforms the metadata by a limited set of processing instructions - based on traditional XML transformation techniques - operating on bit patterns instead of cost-intensive string comparisons.
A model for enhancing Internet medical document retrieval with "medical core metadata".
Malet, G; Munoz, F; Appleyard, R; Hersh, W
1999-01-01
Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and MEDLINE-type content descriptions. The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines.
Sinaci, A Anil; Laleci Erturkmen, Gokce B
2013-10-01
In order to enable secondary use of Electronic Health Records (EHRs) by bridging the interoperability gap between clinical care and research domains, in this paper, a unified methodology and the supporting framework is introduced which brings together the power of metadata registries (MDR) and semantic web technologies. We introduce a federated semantic metadata registry framework by extending the ISO/IEC 11179 standard, and enable integration of data element registries through Linked Open Data (LOD) principles where each Common Data Element (CDE) can be uniquely referenced, queried and processed to enable the syntactic and semantic interoperability. Each CDE and their components are maintained as LOD resources enabling semantic links with other CDEs, terminology systems and with implementation dependent content models; hence facilitating semantic search, much effective reuse and semantic interoperability across different application domains. There are several important efforts addressing the semantic interoperability in healthcare domain such as IHE DEX profile proposal, CDISC SHARE and CDISC2RDF. Our architecture complements these by providing a framework to interlink existing data element registries and repositories for multiplying their potential for semantic interoperability to a greater extent. Open source implementation of the federated semantic MDR framework presented in this paper is the core of the semantic interoperability layer of the SALUS project which enables the execution of the post marketing safety analysis studies on top of existing EHR systems. Copyright © 2013 Elsevier Inc. All rights reserved.
Developing Cyberinfrastructure Tools and Services for Metadata Quality Evaluation
NASA Astrophysics Data System (ADS)
Mecum, B.; Gordon, S.; Habermann, T.; Jones, M. B.; Leinfelder, B.; Powers, L. A.; Slaughter, P.
2016-12-01
Metadata and data quality are at the core of reusable and reproducible science. While great progress has been made over the years, much of the metadata collected only addresses data discovery, covering concepts such as titles and keywords. Improving metadata beyond the discoverability plateau means documenting detailed concepts within the data such as sampling protocols, instrumentation used, and variables measured. Given that metadata commonly do not describe their data at this level, how might we improve the state of things? Giving scientists and data managers easy to use tools to evaluate metadata quality that utilize community-driven recommendations is the key to producing high-quality metadata. To achieve this goal, we created a set of cyberinfrastructure tools and services that integrate with existing metadata and data curation workflows which can be used to improve metadata and data quality across the sciences. These tools work across metadata dialects (e.g., ISO19115, FGDC, EML, etc.) and can be used to assess aspects of quality beyond what is internal to the metadata such as the congruence between the metadata and the data it describes. The system makes use of a user-friendly mechanism for expressing a suite of checks as code in popular data science programming languages such as Python and R. This reduces the burden on scientists and data managers to learn yet another language. We demonstrated these services and tools in three ways. First, we evaluated a large corpus of datasets in the DataONE federation of data repositories against a metadata recommendation modeled after existing recommendations such as the LTER best practices and the Attribute Convention for Dataset Discovery (ACDD). Second, we showed how this service can be used to display metadata and data quality information to data producers during the data submission and metadata creation process, and to data consumers through data catalog search and access tools. Third, we showed how the centrally deployed DataONE quality service can achieve major efficiency gains by allowing member repositories to customize and use recommendations that fit their specific needs without having to create de novo infrastructure at their site.
The New Online Metadata Editor for Generating Structured Metadata
NASA Astrophysics Data System (ADS)
Devarakonda, R.; Shrestha, B.; Palanisamy, G.; Hook, L.; Killeffer, T.; Boden, T.; Cook, R. B.; Zolly, L.; Hutchison, V.; Frame, M. T.; Cialella, A. T.; Lazer, K.
2014-12-01
Nobody is better suited to "describe" data than the scientist who created it. This "description" about a data is called Metadata. In general terms, Metadata represents the who, what, when, where, why and how of the dataset. eXtensible Markup Language (XML) is the preferred output format for metadata, as it makes it portable and, more importantly, suitable for system discoverability. The newly developed ORNL Metadata Editor (OME) is a Web-based tool that allows users to create and maintain XML files containing key information, or metadata, about the research. Metadata include information about the specific projects, parameters, time periods, and locations associated with the data. Such information helps put the research findings in context. In addition, the metadata produced using OME will allow other researchers to find these data via Metadata clearinghouses like Mercury [1] [2]. Researchers simply use the ORNL Metadata Editor to enter relevant metadata into a Web-based form. How is OME helping Big Data Centers like ORNL DAAC? The ORNL DAAC is one of NASA's Earth Observing System Data and Information System (EOSDIS) data centers managed by the ESDIS Project. The ORNL DAAC archives data produced by NASA's Terrestrial Ecology Program. The DAAC provides data and information relevant to biogeochemical dynamics, ecological data, and environmental processes, critical for understanding the dynamics relating to the biological components of the Earth's environment. Typically data produced, archived and analyzed is at a scale of multiple petabytes, which makes the discoverability of the data very challenging. Without proper metadata associated with the data, it is difficult to find the data you are looking for and equally difficult to use and understand the data. OME will allow data centers like the ORNL DAAC to produce meaningful, high quality, standards-based, descriptive information about their data products in-turn helping with the data discoverability and interoperability.References:[1] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94. [2] Wilson, Bruce E., et al. "Mercury Toolset for Spatiotemporal Metadata." NASA Technical Reports Server (NTRS) (2010).
Ignizio, Drew A.; O'Donnell, Michael S.; Talbert, Colin B.
2014-01-01
Creating compliant metadata for scientific data products is mandated for all federal Geographic Information Systems professionals and is a best practice for members of the geospatial data community. However, the complexity of the The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata, the limited availability of easy-to-use tools, and recent changes in the ESRI software environment continue to make metadata creation a challenge. Staff at the U.S. Geological Survey Fort Collins Science Center have developed a Python toolbox for ESRI ArcDesktop to facilitate a semi-automated workflow to create and update metadata records in ESRI’s 10.x software. The U.S. Geological Survey Metadata Wizard tool automatically populates several metadata elements: the spatial reference, spatial extent, geospatial presentation format, vector feature count or raster column/row count, native system/processing environment, and the metadata creation date. Once the software auto-populates these elements, users can easily add attribute definitions and other relevant information in a simple Graphical User Interface. The tool, which offers a simple design free of esoteric metadata language, has the potential to save many government and non-government organizations a significant amount of time and costs by facilitating the development of The Federal Geographic Data Committee’s Content Standards for Digital Geospatial Metadata compliant metadata for ESRI software users. A working version of the tool is now available for ESRI ArcDesktop, version 10.0, 10.1, and 10.2 (downloadable at http:/www.sciencebase.gov/metadatawizard).
NASA Astrophysics Data System (ADS)
Richard, S. M.
2011-12-01
The USGIN project has drafted and is using a specification for use of ISO 19115/19/39 metadata, recommendations for simple metadata content, and a proposal for a URI scheme to identify resources using resolvable http URI's(see http://lab.usgin.org/usgin-profiles). The principal target use case is a catalog in which resources can be registered and described by data providers for discovery by users. We are currently using the ESRI Geoportal (Open Source), with configuration files for the USGIN profile. The metadata offered by the catalog must provide sufficient content to guide search engines to locate requested resources, to describe the resource content, provenance, and quality so users can determine if the resource will serve for intended usage, and finally to enable human users and sofware clients to obtain or access the resource. In order to achieve an operational federated catalog system, provisions in the ISO specification must be restricted and usage clarified to reduce the heterogeneity of 'standard' metadata and service implementations such that a single client can search against different catalogs, and the metadata returned by catalogs can be parsed reliably to locate required information. Usage of the complex ISO 19139 XML schema allows for a great deal of structured metadata content, but the heterogenity in approaches to content encoding has hampered development of sophisticated client software that can take advantage of the rich metadata; the lack of such clients in turn reduces motivation for metadata producers to produce content-rich metadata. If the only significant use of the detailed, structured metadata is to format into text for people to read, then the detailed information could be put in free text elements and be just as useful. In order for complex metadata encoding and content to be useful, there must be clear and unambiguous conventions on the encoding that are utilized by the community that wishes to take advantage of advanced metadata content. The use cases for the detailed content must be well understood, and the degree of metadata complexity should be determined by requirements for those use cases. The ISO standard provides sufficient flexibility that relatively simple metadata records can be created that will serve for text-indexed search/discovery, resource evaluation by a user reading text content from the metadata, and access to the resource via http, ftp, or well-known service protocols (e.g. Thredds; OGC WMS, WFS, WCS).
Standards-based curation of a decade-old digital repository dataset of molecular information.
Harvey, Matthew J; Mason, Nicholas J; McLean, Andrew; Murray-Rust, Peter; Rzepa, Henry S; Stewart, James J P
2015-01-01
The desirable curation of 158,122 molecular geometries derived from the NCI set of reference molecules together with associated properties computed using the MOPAC semi-empirical quantum mechanical method and originally deposited in 2005 into the Cambridge DSpace repository as a data collection is reported. The procedures involved in the curation included annotation of the original data using new MOPAC methods, updating the syntax of the CML documents used to express the data to ensure schema conformance and adding new metadata describing the entries together with a XML schema transformation to map the metadata schema to that used by the DataCite organisation. We have adopted a granularity model in which a DataCite persistent identifier (DOI) is created for each individual molecule to enable data discovery and data metrics at this level using DataCite tools. We recommend that the future research data management (RDM) of the scientific and chemical data components associated with journal articles (the "supporting information") should be conducted in a manner that facilitates automatic periodic curation. Graphical abstractStandards and metadata-based curation of a decade-old digital repository dataset of molecular information.
In situ data analytics and indexing of protein trajectories.
Johnston, Travis; Zhang, Boyu; Liwo, Adam; Crivelli, Silvia; Taufer, Michela
2017-06-15
The transition toward exascale computing will be accompanied by a performance dichotomy. Computational peak performance will rapidly increase; I/O performance will either grow slowly or be completely stagnant. Essentially, the rate at which data are generated will grow much faster than the rate at which data can be read from and written to the disk. MD simulations will soon face the I/O problem of efficiently writing to and reading from disk on the next generation of supercomputers. This article targets MD simulations at the exascale and proposes a novel technique for in situ data analysis and indexing of MD trajectories. Our technique maps individual trajectories' substructures (i.e., α-helices, β-strands) to metadata frame by frame. The metadata captures the conformational properties of the substructures. The ensemble of metadata can be used for automatic, strategic analysis within a trajectory or across trajectories, without manually identify those portions of trajectories in which critical changes take place. We demonstrate our technique's effectiveness by applying it to 26.3k helices and 31.2k strands from 9917 PDB proteins and by providing three empirical case studies. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lyness, E.; Franz, H. B.; Prats, B.
2017-12-01
The Sample Analysis at Mars (SAM) instrument is a suite of instruments on Mars aboard the Mars Science Laboratory rover. Centered on a mass spectrometer, SAM delivers its data to the PDS Atmosphere's node in PDS3 format. Over five years on Mars the process of operating SAM has evolved and extended significantly from the plan in place at the time the PDS3 delivery specification was written. For instance, SAM commonly receives double or even triple sample aliquots from the rover's drill. SAM also stores samples in spare cups for long periods of time for future analysis. These unanticipated operational changes mean that the PDS data deliveries are absent some valuable metadata without which the data can be confusing. The Mars Organic Molecule Analyzer (MOMA) instrument is another suite of instruments centered on a mass spectrometer bound for Mars. MOMA is part of the European ExoMars rover mission schedule to arrive on Mars in 2021. While SAM and MOMA differ in some important scientific ways - MOMA uses an linear ion trap compared to the SAM quadropole mass spectrometer and MOMA has a laser desorption experiment that SAM lacks - the data content from the PDS point of view is comparable. Both instruments produce data containing mass spectra acquired from solid samples collected on the surface of Mars. The MOMA PDS delivery will make use of PDS4 improvements to provide a metadata context to the data. The MOMA PDS4 specification makes few assumptions of the operational processes. Instead it provides a means for the MOMA operators to provide the important contextual metadata that was unanticipated during specification development. Further, the software tools being developed for instrument operators will provide a means for the operators to add this crucial metadata at the time it is best know - during operations.
Standardized Metadata for Human Pathogen/Vector Genomic Sequences
Dugan, Vivien G.; Emrich, Scott J.; Giraldo-Calderón, Gloria I.; Harb, Omar S.; Newman, Ruchi M.; Pickett, Brett E.; Schriml, Lynn M.; Stockwell, Timothy B.; Stoeckert, Christian J.; Sullivan, Dan E.; Singh, Indresh; Ward, Doyle V.; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M.; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H.; Cuomo, Christina A.; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W. Florian; Giovanni, Maria; Henn, Matthew R.; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C.; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F.; Murphy, Cheryl I.; Myers, Garry; Neafsey, Daniel E.; Nelson, Karen E.; Nierman, William C.; Puzak, Julia; Rasko, David; Roos, David S.; Sadzewicz, Lisa; Silva, Joana C.; Sobral, Bruno; Squires, R. Burke; Stevens, Rick L.; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H.
2014-01-01
High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium’s minimal information (MIxS) and NCBI’s BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a consistent representation of these data in the BRC resources and other repositories that leverage these data, allowing investigators to identify relevant genomic sequences and perform comparative genomics analyses that are both statistically meaningful and biologically relevant. PMID:24936976
OPUS - Outer Planets Unified Search with Enhanced Surface Geometry Parameters - Not Just for Rings
NASA Astrophysics Data System (ADS)
Gordon, Mitchell; Showalter, Mark Robert; Ballard, Lisa; Tiscareno, Matthew S.; Heather, Neil
2016-10-01
In recent years, with the massive influx of data into the PDS from a wide array of missions and instruments, finding the precise data you need has been an ongoing challenge. For remote sensing data obtained from Jupiter to Pluto, that challenge is being addressed by the Outer Planets Unified Search, more commonly known as OPUS.OPUS is a powerful search tool available at the PDS Ring-Moon Systems Node (RMS) - formerly the PDS Rings Node. While OPUS was originally designed with ring data in mind, its capabilities have been extended to include all of the targets within an instrument's field of view. OPUS provides preview images of search results, and produces a zip file for easy download of selected products, including a table of user specified metadata. For Cassini ISS and Voyager ISS we have generated and include calibrated versions of every image.Currently OPUS supports data returned by Cassini ISS, UVIS, VIMS, and CIRS (Saturn data through June 2010), New Horizons Jupiter LORRI, Galileo SSI, Voyager ISS and IRIS, and Hubble (ACS, WFC3 and WFPC2).At the RMS Node, we have developed and incorporated into OPUS detailed geometric metadata, based on the most recent SPICE kernels, for all of the bodies in the Cassini Saturn observations. This extensive set of geometric metadata is unique to the RMS Node and enables search constraints such as latitudes and longitudes (Saturn, Titan, and icy satellites), viewing and illumination geometry (phase, incidence and emission angles), and distances and resolution.Our near term plans include adding the full set of Cassini CIRS Saturn data (with enhanced geometry), New Horizons MVIC Jupiter encounter images, New Horizons LORRI and MVIC Pluto data, HST STIS observations, and Cassini and Voyager ring occultations. We also plan to develop enhanced geometric metadata for the New Horizons LORRI and MVIC instruments for both the Jupiter and the Pluto encounters.OPUS: http://pds-rings.seti.org/search/
Standardized metadata for human pathogen/vector genomic sequences.
Dugan, Vivien G; Emrich, Scott J; Giraldo-Calderón, Gloria I; Harb, Omar S; Newman, Ruchi M; Pickett, Brett E; Schriml, Lynn M; Stockwell, Timothy B; Stoeckert, Christian J; Sullivan, Dan E; Singh, Indresh; Ward, Doyle V; Yao, Alison; Zheng, Jie; Barrett, Tanya; Birren, Bruce; Brinkac, Lauren; Bruno, Vincent M; Caler, Elizabet; Chapman, Sinéad; Collins, Frank H; Cuomo, Christina A; Di Francesco, Valentina; Durkin, Scott; Eppinger, Mark; Feldgarden, Michael; Fraser, Claire; Fricke, W Florian; Giovanni, Maria; Henn, Matthew R; Hine, Erin; Hotopp, Julie Dunning; Karsch-Mizrachi, Ilene; Kissinger, Jessica C; Lee, Eun Mi; Mathur, Punam; Mongodin, Emmanuel F; Murphy, Cheryl I; Myers, Garry; Neafsey, Daniel E; Nelson, Karen E; Nierman, William C; Puzak, Julia; Rasko, David; Roos, David S; Sadzewicz, Lisa; Silva, Joana C; Sobral, Bruno; Squires, R Burke; Stevens, Rick L; Tallon, Luke; Tettelin, Herve; Wentworth, David; White, Owen; Will, Rebecca; Wortman, Jennifer; Zhang, Yun; Scheuermann, Richard H
2014-01-01
High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS) and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a consistent representation of these data in the BRC resources and other repositories that leverage these data, allowing investigators to identify relevant genomic sequences and perform comparative genomics analyses that are both statistically meaningful and biologically relevant.
A New Look at Data Usage by Using Metadata Attributes as Indicators of Data Quality
NASA Astrophysics Data System (ADS)
Won, Y. I.; Wanchoo, L.; Behnke, J.
2016-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) stores and distributes data from EOS satellites, as well as ancillary, airborne, in-situ, and socio-economic data. Twelve EOSDIS data centers support different scientific disciplines by providing products and services tailored to specific science communities. Although discipline oriented, these data centers provide common data management functions of ingest, archive and distribution, as well as documentation of their data and services on their web-sites. The Earth Science Data and Information System (ESDIS) Project collects these metrics from the EOSDIS data centers on a daily basis through a tool called the ESDIS Metrics System (EMS). These metrics are used in this study. The implementation of the Earthdata Login - formerly known as the User Registration System (URS) - across the various NASA data centers provides the EMS additional information about users obtaining data products from EOSDIS data centers. These additional user attributes collected by the Earthdata login, such as the user's primary area of study can augment the understanding of data usage, which in turn can help the EOSDIS program better understand the users' needs. This study will review the key metrics (users, distributed volume, and files) in multiple ways to gain an understanding of the significance of the metadata. Characterizing the usability of data by key metadata elements such as discipline and study area, will assist in understanding how the users have evolved over time. The data usage pattern based on version numbers may also provide some insight into the level of data quality. In addition, the data metrics by various services such as the Open-source Project for a Network Data Access Protocol (OPeNDAP), Web Map Service (WMS), Web Coverage Service (WCS), and subsets, will address how these services have extended the usage of data. Over-all, this study will present the usage of data and metadata by metrics analyses and will assist data centers in better supporting the needs of the users.
Improving Scientific Metadata Interoperability And Data Discoverability using OAI-PMH
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James M.; Wilson, Bruce E.
2010-12-01
While general-purpose search engines (such as Google or Bing) are useful for finding many things on the Internet, they are often of limited usefulness for locating Earth Science data relevant (for example) to a specific spatiotemporal extent. By contrast, tools that search repositories of structured metadata can locate relevant datasets with fairly high precision, but the search is limited to that particular repository. Federated searches (such as Z39.50) have been used, but can be slow and the comprehensiveness can be limited by downtime in any search partner. An alternative approach to improve comprehensiveness is for a repository to harvest metadata from other repositories, possibly with limits based on subject matter or access permissions. Searches through harvested metadata can be extremely responsive, and the search tool can be customized with semantic augmentation appropriate to the community of practice being served. However, there are a number of different protocols for harvesting metadata, with some challenges for ensuring that updates are propagated and for collaborations with repositories using differing metadata standards. The Open Archive Initiative Protocol for Metadata Handling (OAI-PMH) is a standard that is seeing increased use as a means for exchanging structured metadata. OAI-PMH implementations must support Dublin Core as a metadata standard, with other metadata formats as optional. We have developed tools which enable our structured search tool (Mercury; http://mercury.ornl.gov) to consume metadata from OAI-PMH services in any of the metadata formats we support (Dublin Core, Darwin Core, FCDC CSDGM, GCMD DIF, EML, and ISO 19115/19137). We are also making ORNL DAAC metadata available through OAI-PMH for other metadata tools to utilize, such as the NASA Global Change Master Directory, GCMD). This paper describes Mercury capabilities with multiple metadata formats, in general, and, more specifically, the results of our OAI-PMH implementations and the lessons learned. References: [1] R. Devarakonda, G. Palanisamy, B.E. Wilson, and J.M. Green, "Mercury: reusable metadata management data discovery and access system", Earth Science Informatics, vol. 3, no. 1, pp. 87-94, May 2010. [2] R. Devarakonda, G. Palanisamy, J.M. Green, B.E. Wilson, "Data sharing and retrieval using OAI-PMH", Earth Science Informatics DOI: 10.1007/s12145-010-0073-0, (2010). [3] Devarakonda, R.; Palanisamy, G.; Green, J.; Wilson, B. E. "Mercury: An Example of Effective Software Reuse for Metadata Management Data Discovery and Access", Eos Trans. AGU, 89(53), Fall Meet. Suppl., IN11A-1019 (2008).
An Approach to Information Management for AIR7000 with Metadata and Ontologies
2009-10-01
metadata. We then propose an approach based on Semantic Technologies including the Resource Description Framework (RDF) and Upper Ontologies, for the...mandating specific metadata schemas can result in interoperability problems. For example, many standards within the ADO mandate the use of XML for metadata...such problems, we propose an archi- tecture in which different metadata schemes can inter operate. By using RDF (Resource Description Framework ) as a
Making Interoperability Easier with NASA's Metadata Management Tool (MMT)
NASA Technical Reports Server (NTRS)
Shum, Dana; Reese, Mark; Pilone, Dan; Baynes, Katie
2016-01-01
While the ISO-19115 collection level metadata format meets many users' needs for interoperable metadata, it can be cumbersome to create it correctly. Through the MMT's simple UI experience, metadata curators can create and edit collections which are compliant with ISO-19115 without full knowledge of the NASA Best Practices implementation of ISO-19115 format. Users are guided through the metadata creation process through a forms-based editor, complete with field information, validation hints and picklists. Once a record is completed, users can download the metadata in any of the supported formats with just 2 clicks.
Predicting structured metadata from unstructured metadata.
Posch, Lisa; Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier
2016-01-01
Enormous amounts of biomedical data have been and are being produced by investigators all over the world. However, one crucial and limiting factor in data reuse is accurate, structured and complete description of the data or data about the data-defined as metadata. We propose a framework to predict structured metadata terms from unstructured metadata for improving quality and quantity of metadata, using the Gene Expression Omnibus (GEO) microarray database. Our framework consists of classifiers trained using term frequency-inverse document frequency (TF-IDF) features and a second approach based on topics modeled using a Latent Dirichlet Allocation model (LDA) to reduce the dimensionality of the unstructured data. Our results on the GEO database show that structured metadata terms can be the most accurately predicted using the TF-IDF approach followed by LDA both outperforming the majority vote baseline. While some accuracy is lost by the dimensionality reduction of LDA, the difference is small for elements with few possible values, and there is a large improvement over the majority classifier baseline. Overall this is a promising approach for metadata prediction that is likely to be applicable to other datasets and has implications for researchers interested in biomedical metadata curation and metadata prediction. © The Author(s) 2016. Published by Oxford University Press.
Metazen – metadata capture for metagenomes
Bischof, Jared; Harrison, Travis; Paczian, Tobias; ...
2014-12-08
Background: As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. These tools are not specifically designed for metagenomic surveys; in particular, they lack themore » appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results: Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusion: Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.« less
Metazen – metadata capture for metagenomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, Jared; Harrison, Travis; Paczian, Tobias
Background: As the impact and prevalence of large-scale metagenomic surveys grow, so does the acute need for more complete and standards compliant metadata. Metadata (data describing data) provides an essential complement to experimental data, helping to answer questions about its source, mode of collection, and reliability. Metadata collection and interpretation have become vital to the genomics and metagenomics communities, but considerable challenges remain, including exchange, curation, and distribution. Currently, tools are available for capturing basic field metadata during sampling, and for storing, updating and viewing it. These tools are not specifically designed for metagenomic surveys; in particular, they lack themore » appropriate metadata collection templates, a centralized storage repository, and a unique ID linking system that can be used to easily port complete and compatible metagenomic metadata into widely used assembly and sequence analysis tools. Results: Metazen was developed as a comprehensive framework designed to enable metadata capture for metagenomic sequencing projects. Specifically, Metazen provides a rapid, easy-to-use portal to encourage early deposition of project and sample metadata. Conclusion: Metazen is an interactive tool that aids users in recording their metadata in a complete and valid format. A defined set of mandatory fields captures vital information, while the option to add fields provides flexibility.« less
Predicting structured metadata from unstructured metadata
Posch, Lisa; Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier
2016-01-01
Enormous amounts of biomedical data have been and are being produced by investigators all over the world. However, one crucial and limiting factor in data reuse is accurate, structured and complete description of the data or data about the data—defined as metadata. We propose a framework to predict structured metadata terms from unstructured metadata for improving quality and quantity of metadata, using the Gene Expression Omnibus (GEO) microarray database. Our framework consists of classifiers trained using term frequency-inverse document frequency (TF-IDF) features and a second approach based on topics modeled using a Latent Dirichlet Allocation model (LDA) to reduce the dimensionality of the unstructured data. Our results on the GEO database show that structured metadata terms can be the most accurately predicted using the TF-IDF approach followed by LDA both outperforming the majority vote baseline. While some accuracy is lost by the dimensionality reduction of LDA, the difference is small for elements with few possible values, and there is a large improvement over the majority classifier baseline. Overall this is a promising approach for metadata prediction that is likely to be applicable to other datasets and has implications for researchers interested in biomedical metadata curation and metadata prediction. Database URL: http://www.yeastgenome.org/ PMID:28637268
NASA Astrophysics Data System (ADS)
Benedict, K. K.; Scott, S.
2013-12-01
While there has been a convergence towards a limited number of standards for representing knowledge (metadata) about geospatial (and other) data objects and collections, there exist a variety of community conventions around the specific use of those standards and within specific data discovery and access systems. This combination of limited (but multiple) standards and conventions creates a challenge for system developers that aspire to participate in multiple data infrastrucutres, each of which may use a different combination of standards and conventions. While Extensible Markup Language (XML) is a shared standard for encoding most metadata, traditional direct XML transformations (XSLT) from one standard to another often result in an imperfect transfer of information due to incomplete mapping from one standard's content model to another. This paper presents the work at the University of New Mexico's Earth Data Analysis Center (EDAC) in which a unified data and metadata management system has been developed in support of the storage, discovery and access of heterogeneous data products. This system, the Geographic Storage, Transformation and Retrieval Engine (GSTORE) platform has adopted a polyglot database model in which a combination of relational and document-based databases are used to store both data and metadata, with some metadata stored in a custom XML schema designed as a superset of the requirements for multiple target metadata standards: ISO 19115-2/19139/19110/19119, FGCD CSDGM (both with and without remote sensing extensions) and Dublin Core. Metadata stored within this schema is complemented by additional service, format and publisher information that is dynamically "injected" into produced metadata documents when they are requested from the system. While mapping from the underlying common metadata schema is relatively straightforward, the generation of valid metadata within each target standard is necessary but not sufficient for integration into multiple data infrastructures, as has been demonstrated through EDAC's testing and deployment of metadata into multiple external systems: Data.Gov, the GEOSS Registry, the DataONE network, the DSpace based institutional repository at UNM and semantic mediation systems developed as part of the NASA ACCESS ELSeWEB project. Each of these systems requires valid metadata as a first step, but to make most effective use of the delivered metadata each also has a set of conventions that are specific to the system. This presentation will provide an overview of the underlying metadata management model, the processes and web services that have been developed to automatically generate metadata in a variety of standard formats and highlight some of the specific modifications made to the output metadata content to support the different conventions used by the multiple metadata integration endpoints.
Beyond 10 Years of Evolving the IGSN Architecture: What's Next?
NASA Astrophysics Data System (ADS)
Lehnert, K.; Arko, R. A.
2016-12-01
The IGSN was developed as part of a US NSF-funded project, which started in 2004 to establish a registry for sample metadata, the System for Earth Sample Registration (SESAR). The initial version of the system provided a centralized solution for users to submit information about their samples and obtain IGSNs and bar codes. A new distributed architecture for the IGSN was designed at a workshop in 2011 that aimed to advance the global implementation of the IGSN. The workshop led to the founding of an international non-profit organization, the IGSN e.V., that adopted the governance model of the DataCite consortium as a non-profit membership organization and its architecture with a central registry and a network of distributed Allocating Agents that provide registration services to the users. Recent progress came at a workshop in 2015, where stakeholders from both geoscience and life science disciplines drafted a standard IGSN metadata schema for describing samples with an essential set of properties about the sample's origin and classification, creating a "birth certificate" for the sample. Consensus was reached that the IGSN should also be used to identify sampling features and collection of samples. The IGSN e.V. global network has steadily grown, with now members in 4 continents and 5 Allocating Agents operational in the US, Australia, and Europe. A Central Catalog has been established at the IGSN Management Office that harvests "birth certificate" metadata records from Allocating Agents via the Open Archives Initiative Protocol for Metadata Harvest (OAI-PMH), and publishes them as a Linked Open Data graph using the Resource Description Framework (RDF) and RDF Query Language (SPARQL) for reuse by Semantic Web clients. Next developments will include a web-based validation service that allows journal editors to check the validity of IGSNs and compliance with metadata requirements, and use of community-recommended vocabularies for specific disciplines.
Why can't I manage my digital images like MP3s? The evolution and intent of multimedia metadata
NASA Astrophysics Data System (ADS)
Goodrum, Abby; Howison, James
2005-01-01
This paper considers the deceptively simple question: Why can't digital images be managed in the simple and effective manner in which digital music files are managed? We make the case that the answer is different treatments of metadata in different domains with different goals. A central difference between the two formats stems from the fact that digital music metadata lookup services are collaborative and automate the movement from a digital file to the appropriate metadata, while image metadata services do not. To understand why this difference exists we examine the divergent evolution of metadata standards for digital music and digital images and observed that the processes differ in interesting ways according to their intent. Specifically music metadata was developed primarily for personal file management and community resource sharing, while the focus of image metadata has largely been on information retrieval. We argue that lessons from MP3 metadata can assist individuals facing their growing personal image management challenges. Our focus therefore is not on metadata for cultural heritage institutions or the publishing industry, it is limited to the personal libraries growing on our hard-drives. This bottom-up approach to file management combined with p2p distribution radically altered the music landscape. Might such an approach have a similar impact on image publishing? This paper outlines plans for improving the personal management of digital images-doing image metadata and file management the MP3 way-and considers the likelihood of success.
Why can't I manage my digital images like MP3s? The evolution and intent of multimedia metadata
NASA Astrophysics Data System (ADS)
Goodrum, Abby; Howison, James
2004-12-01
This paper considers the deceptively simple question: Why can"t digital images be managed in the simple and effective manner in which digital music files are managed? We make the case that the answer is different treatments of metadata in different domains with different goals. A central difference between the two formats stems from the fact that digital music metadata lookup services are collaborative and automate the movement from a digital file to the appropriate metadata, while image metadata services do not. To understand why this difference exists we examine the divergent evolution of metadata standards for digital music and digital images and observed that the processes differ in interesting ways according to their intent. Specifically music metadata was developed primarily for personal file management and community resource sharing, while the focus of image metadata has largely been on information retrieval. We argue that lessons from MP3 metadata can assist individuals facing their growing personal image management challenges. Our focus therefore is not on metadata for cultural heritage institutions or the publishing industry, it is limited to the personal libraries growing on our hard-drives. This bottom-up approach to file management combined with p2p distribution radically altered the music landscape. Might such an approach have a similar impact on image publishing? This paper outlines plans for improving the personal management of digital images-doing image metadata and file management the MP3 way-and considers the likelihood of success.
The Role of Metadata Standards in EOSDIS Search and Retrieval Applications
NASA Technical Reports Server (NTRS)
Pfister, Robin
1999-01-01
Metadata standards play a critical role in data search and retrieval systems. Metadata tie software to data so the data can be processed, stored, searched, retrieved and distributed. Without metadata these actions are not possible. The process of populating metadata to describe science data is an important service to the end user community so that a user who is unfamiliar with the data, can easily find and learn about a particular dataset before an order decision is made. Once a good set of standards are in place, the accuracy with which data search can be performed depends on the degree to which metadata standards are adhered during product definition. NASA's Earth Observing System Data and Information System (EOSDIS) provides examples of how metadata standards are used in data search and retrieval.
openPDS: protecting the privacy of metadata through SafeAnswers.
de Montjoye, Yves-Alexandre; Shmueli, Erez; Wang, Samuel S; Pentland, Alex Sandy
2014-01-01
The rise of smartphones and web services made possible the large-scale collection of personal metadata. Information about individuals' location, phone call logs, or web-searches, is collected and used intensively by organizations and big data researchers. Metadata has however yet to realize its full potential. Privacy and legal concerns, as well as the lack of technical solutions for personal metadata management is preventing metadata from being shared and reconciled under the control of the individual. This lack of access and control is furthermore fueling growing concerns, as it prevents individuals from understanding and managing the risks associated with the collection and use of their data. Our contribution is two-fold: (1) we describe openPDS, a personal metadata management framework that allows individuals to collect, store, and give fine-grained access to their metadata to third parties. It has been implemented in two field studies; (2) we introduce and analyze SafeAnswers, a new and practical way of protecting the privacy of metadata at an individual level. SafeAnswers turns a hard anonymization problem into a more tractable security one. It allows services to ask questions whose answers are calculated against the metadata instead of trying to anonymize individuals' metadata. The dimensionality of the data shared with the services is reduced from high-dimensional metadata to low-dimensional answers that are less likely to be re-identifiable and to contain sensitive information. These answers can then be directly shared individually or in aggregate. openPDS and SafeAnswers provide a new way of dynamically protecting personal metadata, thereby supporting the creation of smart data-driven services and data science research.
openPDS: Protecting the Privacy of Metadata through SafeAnswers
de Montjoye, Yves-Alexandre; Shmueli, Erez; Wang, Samuel S.; Pentland, Alex Sandy
2014-01-01
The rise of smartphones and web services made possible the large-scale collection of personal metadata. Information about individuals' location, phone call logs, or web-searches, is collected and used intensively by organizations and big data researchers. Metadata has however yet to realize its full potential. Privacy and legal concerns, as well as the lack of technical solutions for personal metadata management is preventing metadata from being shared and reconciled under the control of the individual. This lack of access and control is furthermore fueling growing concerns, as it prevents individuals from understanding and managing the risks associated with the collection and use of their data. Our contribution is two-fold: (1) we describe openPDS, a personal metadata management framework that allows individuals to collect, store, and give fine-grained access to their metadata to third parties. It has been implemented in two field studies; (2) we introduce and analyze SafeAnswers, a new and practical way of protecting the privacy of metadata at an individual level. SafeAnswers turns a hard anonymization problem into a more tractable security one. It allows services to ask questions whose answers are calculated against the metadata instead of trying to anonymize individuals' metadata. The dimensionality of the data shared with the services is reduced from high-dimensional metadata to low-dimensional answers that are less likely to be re-identifiable and to contain sensitive information. These answers can then be directly shared individually or in aggregate. openPDS and SafeAnswers provide a new way of dynamically protecting personal metadata, thereby supporting the creation of smart data-driven services and data science research. PMID:25007320
Lessons in weather data interoperability: the National Mesonet Program
NASA Astrophysics Data System (ADS)
Evans, J. D.; Werner, B.; Cogar, C.; Heppner, P.
2015-12-01
The National Mesonet Program (NMP) links local, state, and regional surface weather observation networks (a.k.a. mesonets) to enhance the prediction of high-impact, local-scale weather events. A consortium of 23 (and counting) private firms, state agencies, and universities provides near-real-time observations from over 7,000 fixed weather stations, and over 1,000 vehicle-mounted sensors, every 15 minutes or less, together with the detailed sensor and station metadata required for effective forecasts and decision-making. In order to integrate these weather observations across the United States, and to provide full details about sensors, stations, and observations, the NMP has defined a set of conventions for observational data and sensor metadata. These conventions address the needs of users with limited bandwidth and computing resources, while also anticipating a growing variety of sensors and observations. For disseminating weather observation data, the NMP currently employs a simple ASCII format derived from the Integrated Ocean Observing System. This simplifies data ingest into common desktop software, and parsing by simple scripts; and it directly supports basic readings of temperature, pressure, etc. By extending the format to vector-valued observations, it can also convey readings taken at different altitudes (e.g. windspeed) or depths (e.g., soil moisture). Extending beyond these observations to fit a greater variety of sensors (solar irradiation, sodar, radar, lidar) may require further extensions, or a move to more complex formats (e.g., based on XML or JSON). We will discuss the tradeoffs of various conventions for different users and use cases. To convey sensor and station metadata, the NMP uses a convention known as Starfish Fungus Language (*FL), derived from the Open Geospatial Consortium's SensorML standard. *FL separates static and dynamic elements of a sensor description, allowing for relatively compact expressions that reference a library of shared definitions (e.g., sensor manufacturer's specifications) alongside time-varying and site-specific details (slope / aspect, calibration, etc.) We will discuss the tradeoffs of *FL, SensorML, and alternatives for conveying sensor details to various users and uses.
Progress in defining a standard for file-level metadata
NASA Technical Reports Server (NTRS)
Williams, Joel; Kobler, Ben
1996-01-01
In the following narrative, metadata required to locate a file on tape or collection of tapes will be referred to as file-level metadata. This paper discribes the rationale for and the history of the effort to define a standard for this metadata.
Request queues for interactive clients in a shared file system of a parallel computing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin
Interactive requests are processed from users of log-in nodes. A metadata server node is provided for use in a file system shared by one or more interactive nodes and one or more batch nodes. The interactive nodes comprise interactive clients to execute interactive tasks and the batch nodes execute batch jobs for one or more batch clients. The metadata server node comprises a virtual machine monitor; an interactive client proxy to store metadata requests from the interactive clients in an interactive client queue; a batch client proxy to store metadata requests from the batch clients in a batch client queue;more » and a metadata server to store the metadata requests from the interactive client queue and the batch client queue in a metadata queue based on an allocation of resources by the virtual machine monitor. The metadata requests can be prioritized, for example, based on one or more of a predefined policy and predefined rules.« less
Making metadata usable in a multi-national research setting.
Ellul, Claire; Foord, Joanna; Mooney, John
2013-11-01
SECOA (Solutions for Environmental Contrasts in Coastal Areas) is a multi-national research project examining the effects of human mobility on urban settlements in fragile coastal environments. This paper describes the setting up of a SECOA metadata repository for non-specialist researchers such as environmental scientists and tourism experts. Conflicting usability requirements of two groups - metadata creators and metadata users - are identified along with associated limitations of current metadata standards. A description is given of a configurable metadata system designed to grow as the project evolves. This work is of relevance for similar projects such as INSPIRE. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Metadata mapping and reuse in caBIG.
Kunz, Isaac; Lin, Ming-Chin; Frey, Lewis
2009-02-05
This paper proposes that interoperability across biomedical databases can be improved by utilizing a repository of Common Data Elements (CDEs), UML model class-attributes and simple lexical algorithms to facilitate the building domain models. This is examined in the context of an existing system, the National Cancer Institute (NCI)'s cancer Biomedical Informatics Grid (caBIG). The goal is to demonstrate the deployment of open source tools that can be used to effectively map models and enable the reuse of existing information objects and CDEs in the development of new models for translational research applications. This effort is intended to help developers reuse appropriate CDEs to enable interoperability of their systems when developing within the caBIG framework or other frameworks that use metadata repositories. The Dice (di-grams) and Dynamic algorithms are compared and both algorithms have similar performance matching UML model class-attributes to CDE class object-property pairs. With algorithms used, the baselines for automatically finding the matches are reasonable for the data models examined. It suggests that automatic mapping of UML models and CDEs is feasible within the caBIG framework and potentially any framework that uses a metadata repository. This work opens up the possibility of using mapping algorithms to reduce cost and time required to map local data models to a reference data model such as those used within caBIG. This effort contributes to facilitating the development of interoperable systems within caBIG as well as other metadata frameworks. Such efforts are critical to address the need to develop systems to handle enormous amounts of diverse data that can be leveraged from new biomedical methodologies.
Dynamic Non-Hierarchical File Systems for Exascale Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Darrell E.; Miller, Ethan L
This constitutes the final report for “Dynamic Non-Hierarchical File Systems for Exascale Storage”. The ultimate goal of this project was to improve data management in scientific computing and high-end computing (HEC) applications, and to achieve this goal we proposed: to develop the first, HEC-targeted, file system featuring rich metadata and provenance collection, extreme scalability, and future storage hardware integration as core design goals, and to evaluate and develop a flexible non-hierarchical file system interface suitable for providing more powerful and intuitive data management interfaces to HEC and scientific computing users. Data management is swiftly becoming a serious problem in themore » scientific community – while copious amounts of data are good for obtaining results, finding the right data is often daunting and sometimes impossible. Scientists participating in a Department of Energy workshop noted that most of their time was spent “...finding, processing, organizing, and moving data and it’s going to get much worse”. Scientists should not be forced to become data mining experts in order to retrieve the data they want, nor should they be expected to remember the naming convention they used several years ago for a set of experiments they now wish to revisit. Ideally, locating the data you need would be as easy as browsing the web. Unfortunately, existing data management approaches are usually based on hierarchical naming, a 40 year-old technology designed to manage thousands of files, not exabytes of data. Today’s systems do not take advantage of the rich array of metadata that current high-end computing (HEC) file systems can gather, including content-based metadata and provenance1 information. As a result, current metadata search approaches are typically ad hoc and often work by providing a parallel management system to the “main” file system, as is done in Linux (the locate utility), personal computers, and enterprise search appliances. These search applications are often optimized for a single file system, making it difficult to move files and their metadata between file systems. Users have tried to solve this problem in several ways, including the use of separate databases to index file properties, the encoding of file properties into file names, and separately gathering and managing provenance data, but none of these approaches has worked well, either due to limited usefulness or scalability, or both. Our research addressed several key issues: High-performance, real-time metadata harvesting: extracting important attributes from files dynamically and immediately updating indexes used to improve search; Transparent, automatic, and secure provenance capture: recording the data inputs and processing steps used in the production of each file in the system; Scalable indexing: indexes that are optimized for integration with the file system; Dynamic file system structure: our approach provides dynamic directories similar to those in semantic file systems, but these are the native organization rather than a feature grafted onto a conventional system. In addition to these goals, our research effort will include evaluating the impact of new storage technologies on the file system design and performance. In particular, the indexing and metadata harvesting functions can potentially benefit from the performance improvements promised by new storage class memories.« less
Earthquake and failure forecasting in real-time: A Forecasting Model Testing Centre
NASA Astrophysics Data System (ADS)
Filgueira, Rosa; Atkinson, Malcolm; Bell, Andrew; Main, Ian; Boon, Steven; Meredith, Philip
2013-04-01
Across Europe there are a large number of rock deformation laboratories, each of which runs many experiments. Similarly there are a large number of theoretical rock physicists who develop constitutive and computational models both for rock deformation and changes in geophysical properties. Here we consider how to open up opportunities for sharing experimental data in a way that is integrated with multiple hypothesis testing. We present a prototype for a new forecasting model testing centre based on e-infrastructures for capturing and sharing data and models to accelerate the Rock Physicist (RP) research. This proposal is triggered by our work on data assimilation in the NERC EFFORT (Earthquake and Failure Forecasting in Real Time) project, using data provided by the NERC CREEP 2 experimental project as a test case. EFFORT is a multi-disciplinary collaboration between Geoscientists, Rock Physicists and Computer Scientist. Brittle failure of the crust is likely to play a key role in controlling the timing of a range of geophysical hazards, such as volcanic eruptions, yet the predictability of brittle failure is unknown. Our aim is to provide a facility for developing and testing models to forecast brittle failure in experimental and natural data. Model testing is performed in real-time, verifiably prospective mode, in order to avoid selection biases that are possible in retrospective analyses. The project will ultimately quantify the predictability of brittle failure, and how this predictability scales from simple, controlled laboratory conditions to the complex, uncontrolled real world. Experimental data are collected from controlled laboratory experiments which includes data from the UCL Laboratory and from Creep2 project which will undertake experiments in a deep-sea laboratory. We illustrate the properties of the prototype testing centre by streaming and analysing realistically noisy synthetic data, as an aid to generating and improving testing methodologies in imperfect conditions. The forecasting model testing centre uses a repository to hold all the data and models and a catalogue to hold all the corresponding metadata. It allows to: Data transfer: Upload experimental data: We have developed FAST (Flexible Automated Streaming Transfer) tool to upload data from RP laboratories to the repository. FAST sets up data transfer requirements and selects automatically the transfer protocol. Metadata are automatically created and stored. Web data access: Create synthetic data: Users can choose a generator and supply parameters. Synthetic data are automatically stored with corresponding metadata. Select data and models: Search the metadata using criteria design for RP. The metadata of each data (synthetic or from laboratory) and models are well-described through their respective catalogues accessible by the web portal. Upload models: Upload and store a model with associated metadata. This provide an opportunity to share models. The web portal solicits and creates metadata describing each model. Run model and visualise results: Selected data and a model to be submitted to a High Performance Computational resource hiding technical details. Results are displayed in accelerated time and stored allowing retrieval, inspection and aggregation. The forecasting model testing centre proposed could be integrated into EPOS. Its expected benefits are: Improved the understanding of brittle failure prediction and its scalability to natural phenomena. Accelerated and extensive testing and rapid sharing of insights. Increased impact and visibility of RP and GeoScience research. Resources for education and training. A key challenge is to agree the framework for sharing RP data and models. Our work is provocative first step.
NASA Astrophysics Data System (ADS)
Yatagai, A. I.; Iyemori, T.; Ritschel, B.; Koyama, Y.; Hori, T.; Abe, S.; Tanaka, Y.; Shinbori, A.; Umemura, N.; Sato, Y.; Yagi, M.; Ueno, S.; Hashiguchi, N. O.; Kaneda, N.; Belehaki, A.; Hapgood, M. A.
2013-12-01
The IUGONET is a Japanese program to build a metadata database for ground-based observations of the upper atmosphere [1]. The project began in 2009 with five Japanese institutions which archive data observed by radars, magnetometers, photometers, radio telescopes and helioscopes, and so on, at various altitudes from the Earth's surface to the Sun. Systems have been developed to allow searching of the above described metadata. We have been updating the system and adding new and updated metadata. The IUGONET development team adopted the SPASE metadata model [2] to describe the upper atmosphere data. This model is used as the common metadata format by the virtual observatories for solar-terrestrial physics. It includes metadata referring to each data file (called a 'Granule'), which enable a search for data files as well as data sets. Further details are described in [2] and [3]. Currently, three additional Japanese institutions are being incorporated in IUGONET. Furthermore, metadata of observations of the troposphere, taken at the observatories of the middle and upper atmosphere radar at Shigaraki and the Meteor radar in Indonesia, have been incorporated. These additions will contribute to efficient interdisciplinary scientific research. In the beginning of 2013, the registration of the 'Observatory' and 'Instrument' metadata was completed, which makes it easy to overview of the metadata database. The number of registered metadata as of the end of July, totalled 8.8 million, including 793 observatories and 878 instruments. It is important to promote interoperability and/or metadata exchange between the database development groups. A memorandum of agreement has been signed with the European Near-Earth Space Data Infrastructure for e-Science (ESPAS) project, which has similar objectives to IUGONET with regard to a framework for formal collaboration. Furthermore, observations by satellites and the International Space Station are being incorporated with a view for making/linking metadata databases. The development of effective data systems will contribute to the progress of scientific research on solar terrestrial physics, climate and the geophysical environment. Any kind of cooperation, metadata input and feedback, especially for linkage of the databases, is welcomed. References 1. Hayashi, H. et al., Inter-university Upper Atmosphere Global Observation Network (IUGONET), Data Sci. J., 12, WDS179-184, 2013. 2. King, T. et al., SPASE 2.0: A standard data model for space physics. Earth Sci. Inform. 3, 67-73, 2010, doi:10.1007/s12145-010-0053-4. 3. Hori, T., et al., Development of IUGONET metadata format and metadata management system. J. Space Sci. Info. Jpn., 105-111, 2012. (in Japanese)
Towards Precise Metadata-set for Discovering 3D Geospatial Models in Geo-portals
NASA Astrophysics Data System (ADS)
Zamyadi, A.; Pouliot, J.; Bédard, Y.
2013-09-01
Accessing 3D geospatial models, eventually at no cost and for unrestricted use, is certainly an important issue as they become popular among participatory communities, consultants, and officials. Various geo-portals, mainly established for 2D resources, have tried to provide access to existing 3D resources such as digital elevation model, LIDAR or classic topographic data. Describing the content of data, metadata is a key component of data discovery in geo-portals. An inventory of seven online geo-portals and commercial catalogues shows that the metadata referring to 3D information is very different from one geo-portal to another as well as for similar 3D resources in the same geo-portal. The inventory considered 971 data resources affiliated with elevation. 51% of them were from three geo-portals running at Canadian federal and municipal levels whose metadata resources did not consider 3D model by any definition. Regarding the remaining 49% which refer to 3D models, different definition of terms and metadata were found, resulting in confusion and misinterpretation. The overall assessment of these geo-portals clearly shows that the provided metadata do not integrate specific and common information about 3D geospatial models. Accordingly, the main objective of this research is to improve 3D geospatial model discovery in geo-portals by adding a specific metadata-set. Based on the knowledge and current practices on 3D modeling, and 3D data acquisition and management, a set of metadata is proposed to increase its suitability for 3D geospatial models. This metadata-set enables the definition of genuine classes, fields, and code-lists for a 3D metadata profile. The main structure of the proposal contains 21 metadata classes. These classes are classified in three packages as General and Complementary on contextual and structural information, and Availability on the transition from storage to delivery format. The proposed metadata set is compared with Canadian Geospatial Data Infrastructure (CGDI) metadata which is an implementation of North American Profile of ISO-19115. The comparison analyzes the two metadata against three simulated scenarios about discovering needed 3D geo-spatial datasets. Considering specific metadata about 3D geospatial models, the proposed metadata-set has six additional classes on geometric dimension, level of detail, geometric modeling, topology, and appearance information. In addition classes on data acquisition, preparation, and modeling, and physical availability have been specialized for 3D geospatial models.
2011-05-01
iTunes illustrate the difference between the centralized approach of digital library systems and the distributed approach of container file formats...metadata in a container file format. Apple’s iTunes uses a centralized metadata approach and allows users to maintain song metadata in a single...one iTunes library to another the metadata must be copied separately or reentered in the new library. This demonstrates the utility of storing metadata
Collaborative Metadata Curation in Support of NASA Earth Science Data Stewardship
NASA Technical Reports Server (NTRS)
Sisco, Adam W.; Bugbee, Kaylin; le Roux, Jeanne; Staton, Patrick; Freitag, Brian; Dixon, Valerie
2018-01-01
Growing collection of NASA Earth science data is archived and distributed by EOSDIS’s 12 Distributed Active Archive Centers (DAACs). Each collection and granule is described by a metadata record housed in the Common Metadata Repository (CMR). Multiple metadata standards are in use, and core elements of each are mapped to and from a common model – the Unified Metadata Model (UMM). Work done by the Analysis and Review of CMR (ARC) Team.
Mitogenome metadata: current trends and proposed standards.
Strohm, Jeff H T; Gwiazdowski, Rodger A; Hanner, Robert
2016-09-01
Mitogenome metadata are descriptive terms about the sequence, and its specimen description that allow both to be digitally discoverable and interoperable. Here, we review a sampling of mitogenome metadata published in the journal Mitochondrial DNA between 2005 and 2014. Specifically, we have focused on a subset of metadata fields that are available for GenBank records, and specified by the Genomics Standards Consortium (GSC) and other biodiversity metadata standards; and we assessed their presence across three main categories: collection, biological and taxonomic information. To do this we reviewed 146 mitogenome manuscripts, and their associated GenBank records, and scored them for 13 metadata fields. We also explored the potential for mitogenome misidentification using their sequence diversity, and taxonomic metadata on the Barcode of Life Datasystems (BOLD). For this, we focused on all Lepidoptera and Perciformes mitogenomes included in the review, along with additional mitogenome sequence data mined from Genbank. Overall, we found that none of 146 mitogenome projects provided all the metadata we looked for; and only 17 projects provided at least one category of metadata across the three main categories. Comparisons using mtDNA sequences from BOLD, suggest that some mitogenomes may be misidentified. Lastly, we appreciate the research potential of mitogenomes announced through this journal; and we conclude with a suggestion of 13 metadata fields, available on GenBank, that if provided in a mitogenomes's GenBank record, would increase their research value.
Design and implementation of a fault-tolerant and dynamic metadata database for clinical trials
NASA Astrophysics Data System (ADS)
Lee, J.; Zhou, Z.; Talini, E.; Documet, J.; Liu, B.
2007-03-01
In recent imaging-based clinical trials, quantitative image analysis (QIA) and computer-aided diagnosis (CAD) methods are increasing in productivity due to higher resolution imaging capabilities. A radiology core doing clinical trials have been analyzing more treatment methods and there is a growing quantity of metadata that need to be stored and managed. These radiology centers are also collaborating with many off-site imaging field sites and need a way to communicate metadata between one another in a secure infrastructure. Our solution is to implement a data storage grid with a fault-tolerant and dynamic metadata database design to unify metadata from different clinical trial experiments and field sites. Although metadata from images follow the DICOM standard, clinical trials also produce metadata specific to regions-of-interest and quantitative image analysis. We have implemented a data access and integration (DAI) server layer where multiple field sites can access multiple metadata databases in the data grid through a single web-based grid service. The centralization of metadata database management simplifies the task of adding new databases into the grid and also decreases the risk of configuration errors seen in peer-to-peer grids. In this paper, we address the design and implementation of a data grid metadata storage that has fault-tolerance and dynamic integration for imaging-based clinical trials.
Predicting biomedical metadata in CEDAR: A study of Gene Expression Omnibus (GEO).
Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier
2017-08-01
A crucial and limiting factor in data reuse is the lack of accurate, structured, and complete descriptions of data, known as metadata. Towards improving the quantity and quality of metadata, we propose a novel metadata prediction framework to learn associations from existing metadata that can be used to predict metadata values. We evaluate our framework in the context of experimental metadata from the Gene Expression Omnibus (GEO). We applied four rule mining algorithms to the most common structured metadata elements (sample type, molecular type, platform, label type and organism) from over 1.3million GEO records. We examined the quality of well supported rules from each algorithm and visualized the dependencies among metadata elements. Finally, we evaluated the performance of the algorithms in terms of accuracy, precision, recall, and F-measure. We found that PART is the best algorithm outperforming Apriori, Predictive Apriori, and Decision Table. All algorithms perform significantly better in predicting class values than the majority vote classifier. We found that the performance of the algorithms is related to the dimensionality of the GEO elements. The average performance of all algorithm increases due of the decreasing of dimensionality of the unique values of these elements (2697 platforms, 537 organisms, 454 labels, 9 molecules, and 5 types). Our work suggests that experimental metadata such as present in GEO can be accurately predicted using rule mining algorithms. Our work has implications for both prospective and retrospective augmentation of metadata quality, which are geared towards making data easier to find and reuse. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Mercury Toolset for Spatiotemporal Metadata
NASA Technical Reports Server (NTRS)
Wilson, Bruce E.; Palanisamy, Giri; Devarakonda, Ranjeet; Rhyne, B. Timothy; Lindsley, Chris; Green, James
2010-01-01
Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily) harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.
Mercury Toolset for Spatiotemporal Metadata
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce; Rhyne, B. Timothy; Lindsley, Chris
2010-06-01
Mercury (http://mercury.ornl.gov) is a set of tools for federated harvesting, searching, and retrieving metadata, particularly spatiotemporal metadata. Version 3.0 of the Mercury toolset provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. It provides a single portal to very quickly search for data and information contained in disparate data management systems, each of which may use different metadata formats. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury periodically (typically daily)harvests metadata sources through a collection of interfaces and re-indexes these metadata to provide extremely rapid search capabilities, even over collections with tens of millions of metadata records. A number of both graphical and application interfaces have been constructed within Mercury, to enable both human users and other computer programs to perform queries. Mercury was also designed to support multiple different projects, so that the particular fields that can be queried and used with search filters are easy to configure for each different project.
Unobtrusive integration of data management with fMRI analysis.
Poliakov, Andrew V; Hertzenberg, Xenia; Moore, Eider B; Corina, David P; Ojemann, George A; Brinkley, James F
2007-01-01
This note describes a software utility, called X-batch which addresses two pressing issues typically faced by functional magnetic resonance imaging (fMRI) neuroimaging laboratories (1) analysis automation and (2) data management. The first issue is addressed by providing a simple batch mode processing tool for the popular SPM software package (http://www.fil.ion. ucl.ac.uk/spm/; Welcome Department of Imaging Neuroscience, London, UK). The second is addressed by transparently recording metadata describing all aspects of the batch job (e.g., subject demographics, analysis parameters, locations and names of created files, date and time of analysis, and so on). These metadata are recorded as instances of an extended version of the Protégé-based Experiment Lab Book ontology created by the Dartmouth fMRI Data Center. The resulting instantiated ontology provides a detailed record of all fMRI analyses performed, and as such can be part of larger systems for neuroimaging data management, sharing, and visualization. The X-batch system is in use in our own fMRI research, and is available for download at http://X-batch.sourceforge.net/.
Frishkoff, Gwen; Sydes, Jason; Mueller, Kurt; Frank, Robert; Curran, Tim; Connolly, John; Kilborn, Kerry; Molfese, Dennis; Perfetti, Charles; Malony, Allen
2011-01-01
We present MINEMO (Minimal Information for Neural ElectroMagnetic Ontologies), a checklist for the description of event-related potentials (ERP) studies. MINEMO extends MINI (Minimal Information for Neuroscience Investigations)to the ERP domain. Checklist terms are explicated in NEMO, a formal ontology that is designed to support ERP data sharing and integration. MINEMO is also linked to an ERP database and web application (the NEMO portal). Users upload their data and enter MINEMO information through the portal. The database then stores these entries in RDF (Resource Description Framework), along with summary metrics, i.e., spatial and temporal metadata. Together these spatial, temporal, and functional metadata provide a complete description of ERP data and the context in which these data were acquired. The RDF files then serve as inputs to ontology-based labeling and meta-analysis. Our ultimate goal is to represent ERPs using a rich semantic structure, so results can be queried at multiple levels, to stimulate novel hypotheses and to promote a high-level, integrative account of ERP results across diverse study methods and paradigms. PMID:22180824
Metadata Realities for Cyberinfrastructure: Data Authors as Metadata Creators
ERIC Educational Resources Information Center
Mayernik, Matthew Stephen
2011-01-01
As digital data creation technologies become more prevalent, data and metadata management are necessary to make data available, usable, sharable, and storable. Researchers in many scientific settings, however, have little experience or expertise in data and metadata management. In this dissertation, I explore the everyday data and metadata…
NetCDF4/HDF5 and Linked Data in the Real World - Enriching Geoscientific Metadata without Bloat
NASA Astrophysics Data System (ADS)
Ip, Alex; Car, Nicholas; Druken, Kelsey; Poudjom-Djomani, Yvette; Butcher, Stirling; Evans, Ben; Wyborn, Lesley
2017-04-01
NetCDF4 has become the dominant generic format for many forms of geoscientific data, leveraging (and constraining) the versatile HDF5 container format, while providing metadata conventions for interoperability. However, the encapsulation of detailed metadata within each file can lead to metadata "bloat", and difficulty in maintaining consistency where metadata is replicated to multiple locations. Complex conceptual relationships are also difficult to represent in simple key-value netCDF metadata. Linked Data provides a practical mechanism to address these issues by associating the netCDF files and their internal variables with complex metadata stored in Semantic Web vocabularies and ontologies, while complying with and complementing existing metadata conventions. One of the stated objectives of the netCDF4/HDF5 formats is that they should be self-describing: containing metadata sufficient for cataloguing and using the data. However, this objective can be regarded as only partially-met where details of conventions and definitions are maintained externally to the data files. For example, one of the most widely used netCDF community standards, the Climate and Forecasting (CF) Metadata Convention, maintains standard vocabularies for a broad range of disciplines across the geosciences, but this metadata is currently neither readily discoverable nor machine-readable. We have previously implemented useful Linked Data and netCDF tooling (ncskos) that associates netCDF files, and individual variables within those files, with concepts in vocabularies formulated using the Simple Knowledge Organization System (SKOS) ontology. NetCDF files contain Uniform Resource Identifier (URI) links to terms represented as SKOS Concepts, rather than plain-text representations of those terms, so we can use simple, standardised web queries to collect and use rich metadata for the terms from any Linked Data-presented SKOS vocabulary. Geoscience Australia (GA) manages a large volume of diverse geoscientific data, much of which is being translated from proprietary formats to netCDF at NCI Australia. This data is made available through the NCI National Environmental Research Data Interoperability Platform (NERDIP) for programmatic access and interdisciplinary analysis. The netCDF files contain both scientific data variables (e.g. gravity, magnetic or radiometric values), but also domain-specific operational values (e.g. specific instrument parameters) best described fully in formal vocabularies. Our ncskos codebase provides access to multiple stores of detailed external metadata in a standardised fashion. Geophysical datasets are generated from a "survey" event, and GA maintains corporate databases of all surveys and their associated metadata. It is impractical to replicate the full source survey metadata into each netCDF dataset so, instead, we link the netCDF files to survey metadata using public Linked Data URIs. These URIs link to Survey class objects which we model as a subclass of Activity objects as defined by the PROV Ontology, and we provide URI resolution for them via a custom Linked Data API which draws current survey metadata from GA's in-house databases. We have demonstrated that Linked Data is a practical way to associate netCDF data with detailed, external metadata. This allows us to ensure that catalogued metadata is kept consistent with metadata points-of-truth, and we can infer complex conceptual relationships not possible with netCDF key-value attributes alone.
Content Metadata Standards for Marine Science: A Case Study
Riall, Rebecca L.; Marincioni, Fausto; Lightsom, Frances L.
2004-01-01
The U.S. Geological Survey developed a content metadata standard to meet the demands of organizing electronic resources in the marine sciences for a broad, heterogeneous audience. These metadata standards are used by the Marine Realms Information Bank project, a Web-based public distributed library of marine science from academic institutions and government agencies. The development and deployment of this metadata standard serve as a model, complete with lessons about mistakes, for the creation of similarly specialized metadata standards for digital libraries.
Heidelberger, Philip; Steinmacher-Burow, Burkhard
2015-01-06
According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.
WGISS-45 International Directory Network (IDN) Report
NASA Technical Reports Server (NTRS)
Morahan, Michael
2018-01-01
The objective of this presentation is to provide IDN (International Directory Network) updates on features and activities to the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS) and provider community. The following topics will be will be discussed during the presentation: Transition of Providers DIF-9 (Directory Interchange Format-9) to DIF-10 Metadata Records in the Common Metadata Repository (CMR); GCMD (Global Change Master Directory) Keyword Update; DIF-10 and UMM-C (Unified Metadata Model-Collections) Schema Changes; Metadata Validation of Provider Metadata; docBUILDER for Submitting IDN Metadata to the CMR (i.e. Registration); and Mapping WGClimate Essential Climate Variable (ECV) Inventory to IDN Records.
Texture-Based Correspondence Display
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael
2004-01-01
Texture-based correspondence display is a methodology to display corresponding data elements in visual representations of complex multidimensional, multivariate data. Texture is utilized as a persistent medium to contain a visual representation model and as a means to create multiple renditions of data where color is used to identify correspondence. Corresponding data elements are displayed over a variety of visual metaphors in a normal rendering process without adding extraneous linking metadata creation and maintenance. The effectiveness of visual representation for understanding data is extended to the expression of the visual representation model in texture.
Explorative Analyses of Nursing Research Data.
Kim, Hyeoneui; Jang, Imho; Quach, Jimmy; Richardson, Alex; Kim, Jaemin; Choi, Jeeyae
2016-10-26
As a first step of pursuing the vision of "big data science in nursing," we described the characteristics of nursing research data reported in 194 published nursing studies. We also explored how completely the Version 1 metadata specification of biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) represents these metadata. The metadata items of the nursing studies were all related to one or more of the bioCADDIE metadata entities. However, values of many metadata items of the nursing studies were not sufficiently represented through the bioCADDIE metadata. This was partly due to the differences in the scope of the content that the bioCADDIE metadata are designed to represent. The 194 nursing studies reported a total of 1,181 unique data items, the majority of which take non-numeric values. This indicates the importance of data standardization to enable the integrative analyses of these data to support big data science in nursing. © The Author(s) 2016.
A Model for Enhancing Internet Medical Document Retrieval with “Medical Core Metadata”
Malet, Gary; Munoz, Felix; Appleyard, Richard; Hersh, William
1999-01-01
Objective: Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. Design: The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and Medline-type content descriptions. Results: The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. Conclusions: The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines. PMID:10094069
MPEG-7: standard metadata for multimedia content
NASA Astrophysics Data System (ADS)
Chang, Wo
2005-08-01
The eXtensible Markup Language (XML) metadata technology of describing media contents has emerged as a dominant mode of making media searchable both for human and machine consumptions. To realize this premise, many online Web applications are pushing this concept to its fullest potential. However, a good metadata model does require a robust standardization effort so that the metadata content and its structure can reach its maximum usage between various applications. An effective media content description technology should also use standard metadata structures especially when dealing with various multimedia contents. A new metadata technology called MPEG-7 content description has merged from the ISO MPEG standards body with the charter of defining standard metadata to describe audiovisual content. This paper will give an overview of MPEG-7 technology and what impact it can bring forth to the next generation of multimedia indexing and retrieval applications.
Quality Assurance for Digital Learning Object Repositories: Issues for the Metadata Creation Process
ERIC Educational Resources Information Center
Currier, Sarah; Barton, Jane; O'Beirne, Ronan; Ryan, Ben
2004-01-01
Metadata enables users to find the resources they require, therefore it is an important component of any digital learning object repository. Much work has already been done within the learning technology community to assure metadata quality, focused on the development of metadata standards, specifications and vocabularies and their implementation…
A Model for the Creation of Human-Generated Metadata within Communities
ERIC Educational Resources Information Center
Brasher, Andrew; McAndrew, Patrick
2005-01-01
This paper considers situations for which detailed metadata descriptions of learning resources are necessary, and focuses on human generation of such metadata. It describes a model which facilitates human production of good quality metadata by the development and use of structured vocabularies. Using examples, this model is applied to single and…
Enhancing SCORM Metadata for Assessment Authoring in E-Learning
ERIC Educational Resources Information Center
Chang, Wen-Chih; Hsu, Hui-Huang; Smith, Timothy K.; Wang, Chun-Chia
2004-01-01
With the rapid development of distance learning and the XML technology, metadata play an important role in e-Learning. Nowadays, many distance learning standards, such as SCORM, AICC CMI, IEEE LTSC LOM and IMS, use metadata to tag learning materials. However, most metadata models are used to define learning materials and test problems. Few…
Development of Health Information Search Engine Based on Metadata and Ontology
Song, Tae-Min; Jin, Dal-Lae
2014-01-01
Objectives The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Methods Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. Results A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Conclusions Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers. PMID:24872907
Development of health information search engine based on metadata and ontology.
Song, Tae-Min; Park, Hyeoun-Ae; Jin, Dal-Lae
2014-04-01
The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers.
NASA Astrophysics Data System (ADS)
Hardy, D.; Janée, G.; Gallagher, J.; Frew, J.; Cornillon, P.
2006-12-01
The OPeNDAP Data Access Protocol (DAP) is a community standard for sharing scientific data across the Internet. Data providers using DAP have adopted a variety of metadata conventions to improve data utility, such as COARDS (1995) and CF (2003). Our results show, however, that metadata do not follow these conventions in practice. We collected metadata from over a hundred DAP servers, tens of thousands of data objects, and hundreds of collections. We found that a minority claim to adhere to a metadata convention, and a small percentage accurately adhere to their stated convention. We present descriptive statistics of our survey and highlight common traits such as well-populated attributes. Our empirical results indicate that unified search services cannot rely solely on metadata conventions. Although we encourage all providers to adopt a small subset of the CF convention for discovery purposes, we have no evidence to suggest that improved conventions would simplify the fundamental problem of heterogeneity. Large-scale discovery services must find methods for integrating incompatible metadata.
A metadata template for ocean acidification data
NASA Astrophysics Data System (ADS)
Jiang, L.
2014-12-01
Metadata is structured information that describes, explains, and locates an information resource (e.g., data). It is often coarsely described as data about data, and documents information such as what was measured, by whom, when, where, and how it was sampled, analyzed, with what instruments. Metadata is inherent to ensure the survivability and accessibility of the data into the future. With the rapid expansion of biological response ocean acidification (OA) studies, the lack of a common metadata template to document such type of data has become a significant gap for ocean acidification data management efforts. In this paper, we present a metadata template that can be applied to a broad spectrum of OA studies, including those studying the biological responses of organisms on ocean acidification. The "variable metadata section", which includes the variable name, observation type, whether the variable is a manipulation condition or response variable, and the biological subject on which the variable is studied, forms the core of this metadata template. Additional metadata elements, such as principal investigators, temporal and spatial coverage, platforms for the sampling, data citation are essential components to complete the template. We explain the structure of the template, and define many metadata elements that may be unfamiliar to researchers. For that reason, this paper can serve as a user's manual for the template.
A Shared Infrastructure for Federated Search Across Distributed Scientific Metadata Catalogs
NASA Astrophysics Data System (ADS)
Reed, S. A.; Truslove, I.; Billingsley, B. W.; Grauch, A.; Harper, D.; Kovarik, J.; Lopez, L.; Liu, M.; Brandt, M.
2013-12-01
The vast amount of science metadata can be overwhelming and highly complex. Comprehensive analysis and sharing of metadata is difficult since institutions often publish to their own repositories. There are many disjoint standards used for publishing scientific data, making it difficult to discover and share information from different sources. Services that publish metadata catalogs often have different protocols, formats, and semantics. The research community is limited by the exclusivity of separate metadata catalogs and thus it is desirable to have federated search interfaces capable of unified search queries across multiple sources. Aggregation of metadata catalogs also enables users to critique metadata more rigorously. With these motivations in mind, the National Snow and Ice Data Center (NSIDC) and Advanced Cooperative Arctic Data and Information Service (ACADIS) implemented two search interfaces for the community. Both the NSIDC Search and ACADIS Arctic Data Explorer (ADE) use a common infrastructure which keeps maintenance costs low. The search clients are designed to make OpenSearch requests against Solr, an Open Source search platform. Solr applies indexes to specific fields of the metadata which in this instance optimizes queries containing keywords, spatial bounds and temporal ranges. NSIDC metadata is reused by both search interfaces but the ADE also brokers additional sources. Users can quickly find relevant metadata with minimal effort and ultimately lowers costs for research. This presentation will highlight the reuse of data and code between NSIDC and ACADIS, discuss challenges and milestones for each project, and will identify creation and use of Open Source libraries.
A standard for measuring metadata quality in spectral libraries
NASA Astrophysics Data System (ADS)
Rasaiah, B.; Jones, S. D.; Bellman, C.
2013-12-01
A standard for measuring metadata quality in spectral libraries Barbara Rasaiah, Simon Jones, Chris Bellman RMIT University Melbourne, Australia barbara.rasaiah@rmit.edu.au, simon.jones@rmit.edu.au, chris.bellman@rmit.edu.au ABSTRACT There is an urgent need within the international remote sensing community to establish a metadata standard for field spectroscopy that ensures high quality, interoperable metadata sets that can be archived and shared efficiently within Earth observation data sharing systems. Metadata are an important component in the cataloguing and analysis of in situ spectroscopy datasets because of their central role in identifying and quantifying the quality and reliability of spectral data and the products derived from them. This paper presents approaches to measuring metadata completeness and quality in spectral libraries to determine reliability, interoperability, and re-useability of a dataset. Explored are quality parameters that meet the unique requirements of in situ spectroscopy datasets, across many campaigns. Examined are the challenges presented by ensuring that data creators, owners, and data users ensure a high level of data integrity throughout the lifecycle of a dataset. Issues such as field measurement methods, instrument calibration, and data representativeness are investigated. The proposed metadata standard incorporates expert recommendations that include metadata protocols critical to all campaigns, and those that are restricted to campaigns for specific target measurements. The implication of semantics and syntax for a robust and flexible metadata standard are also considered. Approaches towards an operational and logistically viable implementation of a quality standard are discussed. This paper also proposes a way forward for adapting and enhancing current geospatial metadata standards to the unique requirements of field spectroscopy metadata quality. [0430] BIOGEOSCIENCES / Computational methods and data processing [0480] BIOGEOSCIENCES / Remote sensing [1904] INFORMATICS / Community standards [1912] INFORMATICS / Data management, preservation, rescue [1926] INFORMATICS / Geospatial [1930] INFORMATICS / Data and information governance [1946] INFORMATICS / Metadata [1952] INFORMATICS / Modeling [1976] INFORMATICS / Software tools and services [9810] GENERAL OR MISCELLANEOUS / New fields
NASA Astrophysics Data System (ADS)
Delory, E.; Jirka, S.
2016-02-01
Discovering sensors and observation data is important when enabling the exchange of oceanographic data between observatories and scientists that need the data sets for their work. To better support this discovery process, one task of the European project FixO3 (Fixed-point Open Ocean Observatories) is dealing with the question which elements are needed for developing a better registry for sensors. This has resulted in four items which are addressed by the FixO3 project in cooperation with further European projects such as NeXOS (http://www.nexosproject.eu/). 1.) Metadata description format: To store and retrieve information about sensors and platforms it is necessary to have a common approach how to provide and encode the metadata. For this purpose, the OGC Sensor Model Language (SensorML) 2.0 standard was selected. Especially the opportunity to distinguish between sensor types and instances offers new chances for a more efficient provision and maintenance of sensor metadata. 2.) Conversion of existing metadata into a SensorML 2.0 representation: In order to ensure a sustainable re-use of already provided metadata content (e.g. from ESONET-FixO3 yellow pages), it is important to provide a mechanism which is capable of transforming these already available metadata sets into the new SensorML 2.0 structure. 3.) Metadata editor: To create descriptions of sensors and platforms, it is not possible to expect users to manually edit XML-based description files. Thus, a visual interface is necessary to help during the metadata creation. We will outline a prototype of this editor, building upon the development of the ESONET sensor registry interface. 4.) Sensor Metadata Store: A server is needed that for storing and querying the created sensor descriptions. For this purpose different options exist which will be discussed. In summary, we will present a set of different elements enabling sensor discovery ranging from metadata formats, metadata conversion and editing to metadata storage. Furthermore, the current development status will be demonstrated.
NASA Astrophysics Data System (ADS)
Prasad, U.; Rahabi, A.
2001-05-01
The following utilities developed for HDF-EOS format data dump are of special use for Earth science data for NASA's Earth Observation System (EOS). This poster demonstrates their use and application. The first four tools take HDF-EOS data files as input. HDF-EOS Metadata Dumper - metadmp Metadata dumper extracts metadata from EOS data granules. It operates by simply copying blocks of metadata from the file to the standard output. It does not process the metadata in any way. Since all metadata in EOS granules is encoded in the Object Description Language (ODL), the output of metadmp will be in the form of complete ODL statements. EOS data granules may contain up to three different sets of metadata (Core, Archive, and Structural Metadata). HDF-EOS Contents Dumper - heosls Heosls dumper displays the contents of HDF-EOS files. This utility provides detailed information on the POINT, SWATH, and GRID data sets. in the files. For example: it will list, the Geo-location fields, Data fields and objects. HDF-EOS ASCII Dumper - asciidmp The ASCII dump utility extracts fields from EOS data granules into plain ASCII text. The output from asciidmp should be easily human readable. With minor editing, asciidmp's output can be made ingestible by any application with ASCII import capabilities. HDF-EOS Binary Dumper - bindmp The binary dumper utility dumps HDF-EOS objects in binary format. This is useful for feeding the output of it into existing program, which does not understand HDF, for example: custom software and COTS products. HDF-EOS User Friendly Metadata - UFM The UFM utility tool is useful for viewing ECS metadata. UFM takes an EOSDIS ODL metadata file and produces an HTML report of the metadata for display using a web browser. HDF-EOS METCHECK - METCHECK METCHECK can be invoked from either Unix or Dos environment with a set of command line options that a user might use to direct the tool inputs and output . METCHECK validates the inventory metadata in (.met file) using The Descriptor file (.desc) as the reference. The tool takes (.desc), and (.met) an ODL file as inputs, and generates a simple output file contains the results of the checking process.
NASA Astrophysics Data System (ADS)
Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham
2016-11-01
New requirements to understand geological properties in three dimensions have led to the development of PropBase, a data structure and delivery tools to deliver this. At the BGS, relational database management systems (RDBMS) has facilitated effective data management using normalised subject-based database designs with business rules in a centralised, vocabulary controlled, architecture. These have delivered effective data storage in a secure environment. However, isolated subject-oriented designs prevented efficient cross-domain querying of datasets. Additionally, the tools provided often did not enable effective data discovery as they struggled to resolve the complex underlying normalised structures providing poor data access speeds. Users developed bespoke access tools to structures they did not fully understand sometimes delivering them incorrect results. Therefore, BGS has developed PropBase, a generic denormalised data structure within an RDBMS to store property data, to facilitate rapid and standardised data discovery and access, incorporating 2D and 3D physical and chemical property data, with associated metadata. This includes scripts to populate and synchronise the layer with its data sources through structured input and transcription standards. A core component of the architecture includes, an optimised query object, to deliver geoscience information from a structure equivalent to a data warehouse. This enables optimised query performance to deliver data in multiple standardised formats using a web discovery tool. Semantic interoperability is enforced through vocabularies combined from all data sources facilitating searching of related terms. PropBase holds 28.1 million spatially enabled property data points from 10 source databases incorporating over 50 property data types with a vocabulary set that includes 557 property terms. By enabling property data searches across multiple databases PropBase has facilitated new scientific research, previously considered impractical. PropBase is easily extended to incorporate 4D data (time series) and is providing a baseline for new "big data" monitoring projects.
Evolving Metadata in NASA Earth Science Data Systems
NASA Astrophysics Data System (ADS)
Mitchell, A.; Cechini, M. F.; Walter, J.
2011-12-01
NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of NASA's effort to continually evolve its data systems led ECHO to enhancing the method in which it receives inventory metadata from the data centers to allow for multiple metadata formats including ISO 19115. ECHO's metadata model will also be mapped to the NASA-specific convention for ingesting science metadata into the ECHO system. As NASA's new Earth Science missions and data centers are migrating to the ISO 19115 standards, EOSDIS is developing metadata management resources to assist in the reading, writing and parsing ISO 19115 compliant metadata. To foster interoperability with other agencies and international partners, NASA is working to ensure that a common ISO 19115 convention is developed, enhancing data sharing capabilities and other data analysis initiatives. NASA is also investigating the use of ISO 19115 standards to encode data quality, lineage and provenance with stored values. A common metadata standard across NASA's Earth Science data systems promotes interoperability, enhances data utilization and removes levels of uncertainty found in data products.
NASA Astrophysics Data System (ADS)
Okaya, D.; Deelman, E.; Maechling, P.; Wong-Barnum, M.; Jordan, T. H.; Meyers, D.
2007-12-01
Large scientific collaborations, such as the SCEC Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA) Project, involve interactions between many scientists who exchange ideas and research results. These groups must organize, manage, and make accessible their community materials of observational data, derivative (research) results, computational products, and community software. The integration of scientific workflows as a paradigm to solve complex computations provides advantages of efficiency, reliability, repeatability, choices, and ease of use. The underlying resource needed for a scientific workflow to function and create discoverable and exchangeable products is the construction, tracking, and preservation of metadata. In the scientific workflow environment there is a two-tier structure of metadata. Workflow-level metadata and provenance describe operational steps, identity of resources, execution status, and product locations and names. Domain-level metadata essentially define the scientific meaning of data, codes and products. To a large degree the metadata at these two levels are separate. However, between these two levels is a subset of metadata produced at one level but is needed by the other. This crossover metadata suggests that some commonality in metadata handling is needed. SCEC researchers are collaborating with computer scientists at SDSC, the USC Information Sciences Institute, and Carnegie Mellon Univ. in order to perform earthquake science using high-performance computational resources. A primary objective of the "PetaSHA" collaboration is to perform physics-based estimations of strong ground motion associated with real and hypothetical earthquakes located within Southern California. Construction of 3D earth models, earthquake representations, and numerical simulation of seismic waves are key components of these estimations. Scientific workflows are used to orchestrate the sequences of scientific tasks and to access distributed computational facilities such as the NSF TeraGrid. Different types of metadata are produced and captured within the scientific workflows. One workflow within PetaSHA ("Earthworks") performs a linear sequence of tasks with workflow and seismological metadata preserved. Downstream scientific codes ingest these metadata produced by upstream codes. The seismological metadata uses attribute-value pairing in plain text; an identified need is to use more advanced handling methods. Another workflow system within PetaSHA ("Cybershake") involves several complex workflows in order to perform statistical analysis of ground shaking due to thousands of hypothetical but plausible earthquakes. Metadata management has been challenging due to its construction around a number of legacy scientific codes. We describe difficulties arising in the scientific workflow due to the lack of this metadata and suggest corrective steps, which in some cases include the cultural shift of domain science programmers coding for metadata.
Studies of Big Data metadata segmentation between relational and non-relational databases
NASA Astrophysics Data System (ADS)
Golosova, M. V.; Grigorieva, M. A.; Klimentov, A. A.; Ryabinkin, E. A.; Dimitrov, G.; Potekhin, M.
2015-12-01
In recent years the concepts of Big Data became well established in IT. Systems managing large data volumes produce metadata that describe data and workflows. These metadata are used to obtain information about current system state and for statistical and trend analysis of the processes these systems drive. Over the time the amount of the stored metadata can grow dramatically. In this article we present our studies to demonstrate how metadata storage scalability and performance can be improved by using hybrid RDBMS/NoSQL architecture.
Incorporating ISO Metadata Using HDF Product Designer
NASA Technical Reports Server (NTRS)
Jelenak, Aleksandar; Kozimor, John; Habermann, Ted
2016-01-01
The need to store in HDF5 files increasing amounts of metadata of various complexity is greatly overcoming the capabilities of the Earth science metadata conventions currently in use. Data producers until now did not have much choice but to come up with ad hoc solutions to this challenge. Such solutions, in turn, pose a wide range of issues for data managers, distributors, and, ultimately, data users. The HDF Group is experimenting on a novel approach of using ISO 19115 metadata objects as a catch-all container for all the metadata that cannot be fitted into the current Earth science data conventions. This presentation will showcase how the HDF Product Designer software can be utilized to help data producers include various ISO metadata objects in their products.
Viewing and Editing Earth Science Metadata MOBE: Metadata Object Browser and Editor in Java
NASA Astrophysics Data System (ADS)
Chase, A.; Helly, J.
2002-12-01
Metadata is an important, yet often neglected aspect of successful archival efforts. However, to generate robust, useful metadata is often a time consuming and tedious task. We have been approaching this problem from two directions: first by automating metadata creation, pulling from known sources of data, and in addition, what this (paper/poster?) details, developing friendly software for human interaction with the metadata. MOBE and COBE(Metadata Object Browser and Editor, and Canonical Object Browser and Editor respectively), are Java applications for editing and viewing metadata and digital objects. MOBE has already been designed and deployed, currently being integrated into other areas of the SIOExplorer project. COBE is in the design and development stage, being created with the same considerations in mind as those for MOBE. Metadata creation, viewing, data object creation, and data object viewing, when taken on a small scale are all relatively simple tasks. Computer science however, has an infamous reputation for transforming the simple into complex. As a system scales upwards to become more robust, new features arise and additional functionality is added to the software being written to manage the system. The software that emerges from such an evolution, though powerful, is often complex and difficult to use. With MOBE the focus is on a tool that does a small number of tasks very well. The result has been an application that enables users to manipulate metadata in an intuitive and effective way. This allows for a tool that serves its purpose without introducing additional cognitive load onto the user, an end goal we continue to pursue.
Managing biomedical image metadata for search and retrieval of similar images.
Korenblum, Daniel; Rubin, Daniel; Napel, Sandy; Rodriguez, Cesar; Beaulieu, Chris
2011-08-01
Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations ("semantic" metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system's "match observations" function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.
Misra, Dharitri; Chen, Siyuan; Thoma, George R
2009-01-01
One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques.At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts.In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system.
The Metadata Cloud: The Last Piece of a Distributed Data System Model
NASA Astrophysics Data System (ADS)
King, T. A.; Cecconi, B.; Hughes, J. S.; Walker, R. J.; Roberts, D.; Thieman, J. R.; Joy, S. P.; Mafi, J. N.; Gangloff, M.
2012-12-01
Distributed data systems have existed ever since systems were networked together. Over the years the model for distributed data systems have evolved from basic file transfer to client-server to multi-tiered to grid and finally to cloud based systems. Initially metadata was tightly coupled to the data either by embedding the metadata in the same file containing the data or by co-locating the metadata in commonly named files. As the sources of data multiplied, data volumes have increased and services have specialized to improve efficiency; a cloud system model has emerged. In a cloud system computing and storage are provided as services with accessibility emphasized over physical location. Computation and data clouds are common implementations. Effectively using the data and computation capabilities requires metadata. When metadata is stored separately from the data; a metadata cloud is formed. With a metadata cloud information and knowledge about data resources can migrate efficiently from system to system, enabling services and allowing the data to remain efficiently stored until used. This is especially important with "Big Data" where movement of the data is limited by bandwidth. We examine how the metadata cloud completes a general distributed data system model, how standards play a role and relate this to the existing types of cloud computing. We also look at the major science data systems in existence and compare each to the generalized cloud system model.
ERIC Educational Resources Information Center
Mulrooney, Timothy J.
2009-01-01
A Geographic Information System (GIS) serves as the tangible and intangible means by which spatially related phenomena can be created, analyzed and rendered. GIS metadata serves as the formal framework to catalog information about a GIS data set. Metadata is independent of the encoded spatial and attribute information. GIS metadata is a subset of…
Integrating XQuery-Enabled SCORM XML Metadata Repositories into an RDF-Based E-Learning P2P Network
ERIC Educational Resources Information Center
Qu, Changtao; Nejdl, Wolfgang
2004-01-01
Edutella is an RDF-based E-Learning P2P network that is aimed to accommodate heterogeneous learning resource metadata repositories in a P2P manner and further facilitate the exchange of metadata between these repositories based on RDF. Whereas Edutella provides RDF metadata repositories with a quite natural integration approach, XML metadata…
Raising orphans from a metadata morass: A researcher's guide to re-use of public 'omics data.
Bhandary, Priyanka; Seetharam, Arun S; Arendsee, Zebulun W; Hur, Manhoi; Wurtele, Eve Syrkin
2018-02-01
More than 15 petabases of raw RNAseq data is now accessible through public repositories. Acquisition of other 'omics data types is expanding, though most lack a centralized archival repository. Data-reuse provides tremendous opportunity to extract new knowledge from existing experiments, and offers a unique opportunity for robust, multi-'omics analyses by merging metadata (information about experimental design, biological samples, protocols) and data from multiple experiments. We illustrate how predictive research can be accelerated by meta-analysis with a study of orphan (species-specific) genes. Computational predictions are critical to infer orphan function because their coding sequences provide very few clues. The metadata in public databases is often confusing; a test case with Zea mays mRNA seq data reveals a high proportion of missing, misleading or incomplete metadata. This metadata morass significantly diminishes the insight that can be extracted from these data. We provide tips for data submitters and users, including specific recommendations to improve metadata quality by more use of controlled vocabulary and by metadata reviews. Finally, we advocate for a unified, straightforward metadata submission and retrieval system. Copyright © 2017 Elsevier B.V. All rights reserved.
Science friction: data, metadata, and collaboration.
Edwards, Paul N; Mayernik, Matthew S; Batcheller, Archer L; Bowker, Geoffrey C; Borgman, Christine L
2011-10-01
When scientists from two or more disciplines work together on related problems, they often face what we call 'science friction'. As science becomes more data-driven, collaborative, and interdisciplinary, demand increases for interoperability among data, tools, and services. Metadata--usually viewed simply as 'data about data', describing objects such as books, journal articles, or datasets--serve key roles in interoperability. Yet we find that metadata may be a source of friction between scientific collaborators, impeding data sharing. We propose an alternative view of metadata, focusing on its role in an ephemeral process of scientific communication, rather than as an enduring outcome or product. We report examples of highly useful, yet ad hoc, incomplete, loosely structured, and mutable, descriptions of data found in our ethnographic studies of several large projects in the environmental sciences. Based on this evidence, we argue that while metadata products can be powerful resources, usually they must be supplemented with metadata processes. Metadata-as-process suggests the very large role of the ad hoc, the incomplete, and the unfinished in everyday scientific work.
Recipes for Semantic Web Dog Food — The ESWC and ISWC Metadata Projects
NASA Astrophysics Data System (ADS)
Möller, Knud; Heath, Tom; Handschuh, Siegfried; Domingue, John
Semantic Web conferences such as ESWC and ISWC offer prime opportunities to test and showcase semantic technologies. Conference metadata about people, papers and talks is diverse in nature and neither too small to be uninteresting or too big to be unmanageable. Many metadata-related challenges that may arise in the Semantic Web at large are also present here. Metadata must be generated from sources which are often unstructured and hard to process, and may originate from many different players, therefore suitable workflows must be established. Moreover, the generated metadata must use appropriate formats and vocabularies, and be served in a way that is consistent with the principles of linked data. This paper reports on the metadata efforts from ESWC and ISWC, identifies specific issues and barriers encountered during the projects, and discusses how these were approached. Recommendations are made as to how these may be addressed in the future, and we discuss how these solutions may generalize to metadata production for the Semantic Web at large.
Metadata or data about data describes the content, quality, condition, and other characteristics of data. Geospatial metadata are critical to data discovery and serves as the fuel for the Geospatial One-Stop data portal.
Metadata mapping and reuse in caBIG™
Kunz, Isaac; Lin, Ming-Chin; Frey, Lewis
2009-01-01
Background This paper proposes that interoperability across biomedical databases can be improved by utilizing a repository of Common Data Elements (CDEs), UML model class-attributes and simple lexical algorithms to facilitate the building domain models. This is examined in the context of an existing system, the National Cancer Institute (NCI)'s cancer Biomedical Informatics Grid (caBIG™). The goal is to demonstrate the deployment of open source tools that can be used to effectively map models and enable the reuse of existing information objects and CDEs in the development of new models for translational research applications. This effort is intended to help developers reuse appropriate CDEs to enable interoperability of their systems when developing within the caBIG™ framework or other frameworks that use metadata repositories. Results The Dice (di-grams) and Dynamic algorithms are compared and both algorithms have similar performance matching UML model class-attributes to CDE class object-property pairs. With algorithms used, the baselines for automatically finding the matches are reasonable for the data models examined. It suggests that automatic mapping of UML models and CDEs is feasible within the caBIG™ framework and potentially any framework that uses a metadata repository. Conclusion This work opens up the possibility of using mapping algorithms to reduce cost and time required to map local data models to a reference data model such as those used within caBIG™. This effort contributes to facilitating the development of interoperable systems within caBIG™ as well as other metadata frameworks. Such efforts are critical to address the need to develop systems to handle enormous amounts of diverse data that can be leveraged from new biomedical methodologies. PMID:19208192
Framework for Integrating Science Data Processing Algorithms Into Process Control Systems
NASA Technical Reports Server (NTRS)
Mattmann, Chris A.; Crichton, Daniel J.; Chang, Albert Y.; Foster, Brian M.; Freeborn, Dana J.; Woollard, David M.; Ramirez, Paul M.
2011-01-01
A software framework called PCS Task Wrapper is responsible for standardizing the setup, process initiation, execution, and file management tasks surrounding the execution of science data algorithms, which are referred to by NASA as Product Generation Executives (PGEs). PGEs codify a scientific algorithm, some step in the overall scientific process involved in a mission science workflow. The PCS Task Wrapper provides a stable operating environment to the underlying PGE during its execution lifecycle. If the PGE requires a file, or metadata regarding the file, the PCS Task Wrapper is responsible for delivering that information to the PGE in a manner that meets its requirements. If the PGE requires knowledge of upstream or downstream PGEs in a sequence of executions, that information is also made available. Finally, if information regarding disk space, or node information such as CPU availability, etc., is required, the PCS Task Wrapper provides this information to the underlying PGE. After this information is collected, the PGE is executed, and its output Product file and Metadata generation is managed via the PCS Task Wrapper framework. The innovation is responsible for marshalling output Products and Metadata back to a PCS File Management component for use in downstream data processing and pedigree. In support of this, the PCS Task Wrapper leverages the PCS Crawler Framework to ingest (during pipeline processing) the output Product files and Metadata produced by the PGE. The architectural components of the PCS Task Wrapper framework include PGE Task Instance, PGE Config File Builder, Config File Property Adder, Science PGE Config File Writer, and PCS Met file Writer. This innovative framework is really the unifying bridge between the execution of a step in the overall processing pipeline, and the available PCS component services as well as the information that they collectively manage.
Visualization of JPEG Metadata
NASA Astrophysics Data System (ADS)
Malik Mohamad, Kamaruddin; Deris, Mustafa Mat
There are a lot of information embedded in JPEG image than just graphics. Visualization of its metadata would benefit digital forensic investigator to view embedded data including corrupted image where no graphics can be displayed in order to assist in evidence collection for cases such as child pornography or steganography. There are already available tools such as metadata readers, editors and extraction tools but mostly focusing on visualizing attribute information of JPEG Exif. However, none have been done to visualize metadata by consolidating markers summary, header structure, Huffman table and quantization table in a single program. In this paper, metadata visualization is done by developing a program that able to summarize all existing markers, header structure, Huffman table and quantization table in JPEG. The result shows that visualization of metadata helps viewing the hidden information within JPEG more easily.
Use of a metadata documentation and search tool for large data volumes: The NGEE arctic example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Hook, Leslie A; Killeffer, Terri S
The Online Metadata Editor (OME) is a web-based tool to help document scientific data in a well-structured, popular scientific metadata format. In this paper, we will discuss the newest tool that Oak Ridge National Laboratory (ORNL) has developed to generate, edit, and manage metadata and how it is helping data-intensive science centers and projects, such as the U.S. Department of Energy s Next Generation Ecosystem Experiments (NGEE) in the Arctic to prepare metadata and make their big data produce big science and lead to new discoveries.
Creating preservation metadata from XML-metadata profiles
NASA Astrophysics Data System (ADS)
Ulbricht, Damian; Bertelmann, Roland; Gebauer, Petra; Hasler, Tim; Klump, Jens; Kirchner, Ingo; Peters-Kottig, Wolfgang; Mettig, Nora; Rusch, Beate
2014-05-01
Registration of dataset DOIs at DataCite makes research data citable and comes with the obligation to keep data accessible in the future. In addition, many universities and research institutions measure data that is unique and not repeatable like the data produced by an observational network and they want to keep these data for future generations. In consequence, such data should be ingested in preservation systems, that automatically care for file format changes. Open source preservation software that is developed along the definitions of the ISO OAIS reference model is available but during ingest of data and metadata there are still problems to be solved. File format validation is difficult, because format validators are not only remarkably slow - due to variety in file formats different validators return conflicting identification profiles for identical data. These conflicts are hard to resolve. Preservation systems have a deficit in the support of custom metadata. Furthermore, data producers are sometimes not aware that quality metadata is a key issue for the re-use of data. In the project EWIG an university institute and a research institute work together with Zuse-Institute Berlin, that is acting as an infrastructure facility, to generate exemplary workflows for research data into OAIS compliant archives with emphasis on the geosciences. The Institute for Meteorology provides timeseries data from an urban monitoring network whereas GFZ Potsdam delivers file based data from research projects. To identify problems in existing preservation workflows the technical work is complemented by interviews with data practitioners. Policies for handling data and metadata are developed. Furthermore, university teaching material is created to raise the future scientists awareness of research data management. As a testbed for ingest workflows the digital preservation system Archivematica [1] is used. During the ingest process metadata is generated that is compliant to the Metadata Encoding and Transmission Standard (METS). To find datasets in future portals and to make use of this data in own scientific work, proper selection of discovery metadata and application metadata is very important. Some XML-metadata profiles are not suitable for preservation, because version changes are very fast and make it nearly impossible to automate the migration. For other XML-metadata profiles schema definitions are changed after publication of the profile or the schema definitions become inaccessible, which might cause problems during validation of the metadata inside the preservation system [2]. Some metadata profiles are not used widely enough and might not even exist in the future. Eventually, discovery and application metadata have to be embedded into the mdWrap-subtree of the METS-XML. [1] http://www.archivematica.org [2] http://dx.doi.org/10.2218/ijdc.v7i1.215
NIST Gas Hydrate Research Database and Web Dissemination Channel.
Kroenlein, K; Muzny, C D; Kazakov, A; Diky, V V; Chirico, R D; Frenkel, M; Sloan, E D
2010-01-01
To facilitate advances in application of technologies pertaining to gas hydrates, a freely available data resource containing experimentally derived information about those materials was developed. This work was performed by the Thermodynamic Research Center (TRC) paralleling a highly successful database of thermodynamic and transport properties of molecular pure compounds and their mixtures. Population of the gas-hydrates database required development of guided data capture (GDC) software designed to convert experimental data and metadata into a well organized electronic format, as well as a relational database schema to accommodate all types of numerical and metadata within the scope of the project. To guarantee utility for the broad gas hydrate research community, TRC worked closely with the Committee on Data for Science and Technology (CODATA) task group for Data on Natural Gas Hydrates, an international data sharing effort, in developing a gas hydrate markup language (GHML). The fruits of these efforts are disseminated through the NIST Sandard Reference Data Program [1] as the Clathrate Hydrate Physical Property Database (SRD #156). A web-based interface for this database, as well as scientific results from the Mallik 2002 Gas Hydrate Production Research Well Program [2], is deployed at http://gashydrates.nist.gov.
NASA Astrophysics Data System (ADS)
Oggioni, Alessandro; Tagliolato, Paolo; Fugazza, Cristiano; Bastianini, Mauro; Pavesi, Fabio; Pepe, Monica; Menegon, Stefano; Basoni, Anna; Carrara, Paola
2015-04-01
Sensor observation systems for environmental data have become increasingly important in the last years. The EGU's Informatics in Oceanography and Ocean Science track stressed the importance of management tools and solutions for marine infrastructures. We think that full interoperability among sensor systems is still an open issue and that the solution to this involves providing appropriate metadata. Several open source applications implement the SWE specification and, particularly, the Sensor Observation Services (SOS) standard. These applications allow for the exchange of data and metadata in XML format between computer systems. However, there is a lack of metadata editing tools supporting end users in this activity. Generally speaking, it is hard for users to provide sensor metadata in the SensorML format without dedicated tools. In particular, such a tool should ease metadata editing by providing, for standard sensors, all the invariant information to be included in sensor metadata, thus allowing the user to concentrate on the metadata items that are related to the specific deployment. RITMARE, the Italian flagship project on marine research, envisages a subproject, SP7, for the set-up of the project's spatial data infrastructure. SP7 developed EDI, a general purpose, template-driven metadata editor that is composed of a backend web service and an HTML5/javascript client. EDI can be customized for managing the creation of generic metadata encoded as XML. Once tailored to a specific metadata format, EDI presents the users a web form with advanced auto completion and validation capabilities. In the case of sensor metadata (SensorML versions 1.0.1 and 2.0), the EDI client is instructed to send an "insert sensor" request to an SOS endpoint in order to save the metadata in an SOS server. In the first phase of project RITMARE, EDI has been used to simplify the creation from scratch of SensorML metadata by the involved researchers and data managers. An interesting by-product of this ongoing work is currently constituting an archive of predefined sensor descriptions. This information is being collected in order to further ease metadata creation in the next phase of the project. Users will be able to choose among a number of sensor and sensor platform prototypes: These will be specific instances on which it will be possible to define, in a bottom-up approach, "sensor profiles". We report on the outcome of this activity.
Publishing NASA Metadata as Linked Open Data for Semantic Mashups
NASA Astrophysics Data System (ADS)
Wilson, Brian; Manipon, Gerald; Hua, Hook
2014-05-01
Data providers are now publishing more metadata in more interoperable forms, e.g. Atom or RSS 'casts', as Linked Open Data (LOD), or as ISO Metadata records. A major effort on the part of the NASA's Earth Science Data and Information System (ESDIS) project is the aggregation of metadata that enables greater data interoperability among scientific data sets regardless of source or application. Both the Earth Observing System (EOS) ClearingHOuse (ECHO) and the Global Change Master Directory (GCMD) repositories contain metadata records for NASA (and other) datasets and provided services. These records contain typical fields for each dataset (or software service) such as the source, creation date, cognizant institution, related access URL's, and domain and variable keywords to enable discovery. Under a NASA ACCESS grant, we demonstrated how to publish the ECHO and GCMD dataset and services metadata as LOD in the RDF format. Both sets of metadata are now queryable at SPARQL endpoints and available for integration into "semantic mashups" in the browser. It is straightforward to reformat sets of XML metadata, including ISO, into simple RDF and then later refine and improve the RDF predicates by reusing known namespaces such as Dublin core, georss, etc. All scientific metadata should be part of the LOD world. In addition, we developed an "instant" drill-down and browse interface that provides faceted navigation so that the user can discover and explore the 25,000 datasets and 3000 services. The available facets and the free-text search box appear in the left panel, and the instantly updated results for the dataset search appear in the right panel. The user can constrain the value of a metadata facet simply by clicking on a word (or phrase) in the "word cloud" of values for each facet. The display section for each dataset includes the important metadata fields, a full description of the dataset, potentially some related URL's, and a "search" button that points to an OpenSearch GUI that is pre-configured to search for granules within the dataset. We will present our experiences with converting NASA metadata into LOD, discuss the challenges, illustrate some of the enabled mashups, and demonstrate the latest version of the "instant browse" interface for navigating multiple metadata collections.
EPA Facilities and Regional Boundaries Service, US, 2012, US EPA, SEGS
This SEGS web service contains EPA facilities, EPA facilities labels, small- and large-scale versions of EPA region boundaries, and EPA region boundaries extended to the 200nm Exclusive Economic Zone (EEZ). Small scale EPA boundaries and boundaries extended to the EEZ render at scales of less than 5 million, large scale EPA boundaries draw at scales greater than or equal to 5 million. EPA facilities labels draw at scales greater than 2 million. Data used to create this web service are available as a separate download at the Secondary Linkage listed above. Full FGDC metadata records for each layer may be found by clicking the layer name in the web service table of contents (available through the online link provided above) and viewing the layer description. This SEGS dataset was produced by EPA through the Office of Environmental Information.
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Richard, S. M.; Valentine, D. W., Jr.; Grethe, J. S.; Hsu, L.; Malik, T.; Bermudez, L. E.; Gupta, A.; Lehnert, K. A.; Whitenack, T.; Ozyurt, I. B.; Condit, C.; Calderon, R.; Musil, L.
2014-12-01
EarthCube is envisioned as a cyberinfrastructure that fosters new, transformational geoscience by enabling sharing, understanding and scientifically-sound and efficient re-use of formerly unconnected data resources, software, models, repositories, and computational power. Its purpose is to enable science enterprise and workforce development via an extensible and adaptable collaboration and resource integration framework. A key component of this vision is development of comprehensive inventories supporting resource discovery and re-use across geoscience domains. The goal of the EarthCube CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability) project is to create a methodology and assemble a large inventory of high-quality information resources with standard metadata descriptions and traceable provenance. The inventory is compiled from metadata catalogs maintained by geoscience data facilities, as well as from user contributions. The latter mechanism relies on community resource viewers: online applications that support update and curation of metadata records. Once harvested into CINERGI, metadata records from domain catalogs and community resource viewers are loaded into a staging database implemented in MongoDB, and validated for compliance with ISO 19139 metadata schema. Several types of metadata defects detected by the validation engine are automatically corrected with help of several information extractors or flagged for manual curation. The metadata harvesting, validation and processing components generate provenance statements using W3C PROV notation, which are stored in a Neo4J database. Thus curated metadata, along with the provenance information, is re-published and accessed programmatically and via a CINERGI online application. This presentation focuses on the role of resource inventories in a scalable and adaptable information infrastructure, and on the CINERGI metadata pipeline and its implementation challenges. Key project components are described at the project's website (http://workspace.earthcube.org/cinergi), which also provides access to the initial resource inventory, the inventory metadata model, metadata entry forms and a collection of the community resource viewers.
Metadata improvements driving new tools and services at a NASA data center
NASA Astrophysics Data System (ADS)
Moroni, D. F.; Hausman, J.; Foti, G.; Armstrong, E. M.
2011-12-01
The NASA Physical Oceanography DAAC (PO.DAAC) is responsible for distributing and maintaining satellite derived oceanographic data from a number of NASA and non-NASA missions for the physical disciplines of ocean winds, sea surface temperature, ocean topography and gravity. Currently its holdings consist of over 600 datasets with a data archive in excess of 200 Terrabytes. The PO.DAAC has recently embarked on a metadata quality and completeness project to migrate, update and improve metadata records for over 300 public datasets. An interactive database management tool has been developed to allow data scientists to enter, update and maintain metadata records. This tool communicates directly with PO.DAAC's Data Management and Archiving System (DMAS), which serves as the new archival and distribution backbone as well as a permanent repository of dataset and granule-level metadata. Although we will briefly discuss the tool, more important ramifications are the ability to now expose, propagate and leverage the metadata in a number of ways. First, the metadata are exposed directly through a faceted and free text search interface directly from drupal-based PO.DAAC web pages allowing for quick browsing and data discovery especially by "drilling" through the various facet levels that organize datasets by time/space resolution, processing level, sensor, measurement type etc. Furthermore, the metadata can now be exposed through web services to produce metadata records in a number of different formats such as FGDC and ISO 19115, or potentially propagated to visualization and subsetting tools, and other discovery interfaces. The fundamental concept is that the metadata forms the essential bridge between the user, and the tool or discovery mechanism for a broad range of ocean earth science data records.
EPA Metadata Style Guide Keywords and EPA Organization Names
The following keywords and EPA organization names listed below, along with EPA’s Metadata Style Guide, are intended to provide suggestions and guidance to assist with the standardization of metadata records.
Interpreting the ASTM 'content standard for digital geospatial metadata'
Nebert, Douglas D.
1996-01-01
ASTM and the Federal Geographic Data Committee have developed a content standard for spatial metadata to facilitate documentation, discovery, and retrieval of digital spatial data using vendor-independent terminology. Spatial metadata elements are identifiable quality and content characteristics of a data set that can be tied to a geographic location or area. Several Office of Management and Budget Circulars and initiatives have been issued that specify improved cataloguing of and accessibility to federal data holdings. An Executive Order further requires the use of the metadata content standard to document digital spatial data sets. Collection and reporting of spatial metadata for field investigations performed for the federal government is an anticipated requirement. This paper provides an overview of the draft spatial metadata content standard and a description of how the standard could be applied to investigations collecting spatially-referenced field data.
Misra, Dharitri; Chen, Siyuan; Thoma, George R.
2010-01-01
One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques. At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts. In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system. PMID:21179386
The Importance of Metadata in System Development and IKM
2003-02-01
Defence R& D Canada The Importance of Metadata in System Development and IKM Anthony W. Isenor Technical Memorandum DRDC Atlantic TM 2003-011...Metadata in System Development and IKM Anthony W. Isenor Defence R& D Canada – Atlantic Technical Memorandum DRDC Atlantic TM 2003-011 February... it is important for searches and providing relevant information to the client. A comparison of metadata standards was conducted with emphasis on
Achieving Sub-Second Search in the CMR
NASA Astrophysics Data System (ADS)
Gilman, J.; Baynes, K.; Pilone, D.; Mitchell, A. E.; Murphy, K. J.
2014-12-01
The Common Metadata Repository (CMR) is the next generation Earth Science Metadata catalog for NASA's Earth Observing data. It joins together the holdings from the EOS Clearing House (ECHO) and the Global Change Master Directory (GCMD), creating a unified, authoritative source for EOSDIS metadata. The CMR allows ingest in many different formats while providing consistent search behavior and retrieval in any supported format. Performance is a critical component of the CMR, ensuring improved data discovery and client interactivity. The CMR delivers sub-second search performance for any of the common query conditions (including spatial) across hundreds of millions of metadata granules. It also allows the addition of new metadata concepts such as visualizations, parameter metadata, and documentation. The CMR's goals presented many challenges. This talk will describe the CMR architecture, design, and innovations that were made to achieve its goals. This includes: * Architectural features like immutability and backpressure. * Data management techniques such as caching and parallel loading that give big performance gains. * Open Source and COTS tools like Elasticsearch search engine. * Adoption of Clojure, a functional programming language for the Java Virtual Machine. * Development of a custom spatial search plugin for Elasticsearch and why it was necessary. * Introduction of a unified model for metadata that maps every supported metadata format to a consistent domain model.
Syntactic and Semantic Validation without a Metadata Management System
NASA Technical Reports Server (NTRS)
Pollack, Janine; Gokey, Christopher D.; Kendig, David; Olsen, Lola; Wharton, Stephen W. (Technical Monitor)
2001-01-01
The ability to maintain quality information is essential to securing the confidence in any system for which the information serves as a data source. NASA's Global Change Master Directory (GCMD), an online Earth science data locator, holds over 9000 data set descriptions and is in a constant state of flux as metadata are created and updated on a daily basis. In such a system, the importance of maintaining the consistency and integrity of these-metadata is crucial. The GCMD has developed a metadata management system utilizing XML, controlled vocabulary, and Java technologies to ensure the metadata not only adhere to valid syntax, but also exhibit proper semantics.
Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations
Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga; ...
2017-11-27
In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.« less
Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga
In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.« less
Evaluating non-relational storage technology for HEP metadata and meta-data catalog
NASA Astrophysics Data System (ADS)
Grigorieva, M. A.; Golosova, M. V.; Gubin, M. Y.; Klimentov, A. A.; Osipova, V. V.; Ryabinkin, E. A.
2016-10-01
Large-scale scientific experiments produce vast volumes of data. These data are stored, processed and analyzed in a distributed computing environment. The life cycle of experiment is managed by specialized software like Distributed Data Management and Workload Management Systems. In order to be interpreted and mined, experimental data must be accompanied by auxiliary metadata, which are recorded at each data processing step. Metadata describes scientific data and represent scientific objects or results of scientific experiments, allowing them to be shared by various applications, to be recorded in databases or published via Web. Processing and analysis of constantly growing volume of auxiliary metadata is a challenging task, not simpler than the management and processing of experimental data itself. Furthermore, metadata sources are often loosely coupled and potentially may lead to an end-user inconsistency in combined information queries. To aggregate and synthesize a range of primary metadata sources, and enhance them with flexible schema-less addition of aggregated data, we are developing the Data Knowledge Base architecture serving as the intelligence behind GUIs and APIs.
Survey data and metadata modelling using document-oriented NoSQL
NASA Astrophysics Data System (ADS)
Rahmatuti Maghfiroh, Lutfi; Gusti Bagus Baskara Nugraha, I.
2018-03-01
Survey data that are collected from year to year have metadata change. However it need to be stored integratedly to get statistical data faster and easier. Data warehouse (DW) can be used to solve this limitation. However there is a change of variables in every period that can not be accommodated by DW. Traditional DW can not handle variable change via Slowly Changing Dimension (SCD). Previous research handle the change of variables in DW to manage metadata by using multiversion DW (MVDW). MVDW is designed using relational model. Some researches also found that developing nonrelational model in NoSQL database has reading time faster than the relational model. Therefore, we propose changes to metadata management by using NoSQL. This study proposes a model DW to manage change and algorithms to retrieve data with metadata changes. Evaluation of the proposed models and algorithms result in that database with the proposed design can retrieve data with metadata changes properly. This paper has contribution in comprehensive data analysis with metadata changes (especially data survey) in integrated storage.
NASA Astrophysics Data System (ADS)
Riddick, Andrew; Hughes, Andrew; Harpham, Quillon; Royse, Katherine; Singh, Anubha
2014-05-01
There has been an increasing interest both from academic and commercial organisations over recent years in developing hydrologic and other environmental models in response to some of the major challenges facing the environment, for example environmental change and its effects and ensuring water resource security. This has resulted in a significant investment in modelling by many organisations both in terms of financial resources and intellectual capital. To capitalise on the effort on producing models, then it is necessary for the models to be both discoverable and appropriately described. If this is not undertaken then the effort in producing the models will be wasted. However, whilst there are some recognised metadata standards relating to datasets these may not completely address the needs of modellers regarding input data for example. Also there appears to be a lack of metadata schemes configured to encourage the discovery and re-use of the models themselves. The lack of an established standard for model metadata is considered to be a factor inhibiting the more widespread use of environmental models particularly the use of linked model compositions which fuse together hydrologic models with models from other environmental disciplines. This poster presents the results of a Natural Environment Research Council (NERC) funded scoping study to understand the requirements of modellers and other end users for metadata about data and models. A user consultation exercise using an on-line questionnaire has been undertaken to capture the views of a wide spectrum of stakeholders on how they are currently managing metadata for modelling. This has provided a strong confirmation of our original supposition that there is a lack of systems and facilities to capture metadata about models. A number of specific gaps in current provision for data and model metadata were also identified, including a need for a standard means to record detailed information about the modelling environment and the model code used, to assist the selection of models for linked compositions. Existing best practice, including the use of current metadata standards (e.g. ISO 19110, ISO 19115 and ISO 19119) and the metadata components of WaterML were also evaluated. In addition to commonly used metadata attributes (e.g. spatial reference information) there was significant interest in recording a variety of additional metadata attributes. These included more detailed information about temporal data, and also providing estimates of data accuracy and uncertainty within metadata. This poster describes the key results of this study, including a number of gaps in the provision of metadata for modelling, and outlines how these might be addressed. Overall the scoping study has highlighted significant interest in addressing this issue within the environmental modelling community. There is therefore an impetus for on-going research, and we are seeking to take this forward through collaboration with other interested organisations. Progress towards an internationally recognised model metadata standard is suggested.
Descriptive Metadata: Emerging Standards.
ERIC Educational Resources Information Center
Ahronheim, Judith R.
1998-01-01
Discusses metadata, digital resources, cross-disciplinary activity, and standards. Highlights include Standard Generalized Markup Language (SGML); Extensible Markup Language (XML); Dublin Core; Resource Description Framework (RDF); Text Encoding Initiative (TEI); Encoded Archival Description (EAD); art and cultural-heritage metadata initiatives;…
2008-06-01
provides a means for file owners to add metadata which can then be used by iTunes for cataloging and searching [4]. Metadata can be stored in different...based and contain AAC data formats [3]. Specifically, Apple uses Protected AAC to encode copy-protected music titles purchased from the iTunes Music...Store [4]. The files purchased from the iTunes Music Store include the following metadata. • Name • Email address of purchaser • Year • Album
A Solution to Metadata: Using XML Transformations to Automate Metadata
2010-06-01
developed their own metadata standards—Directory Interchange Format (DIF), Ecological Metadata Language ( EML ), and International Organization for...mented all their data using the EML standard. However, when later attempting to publish to a data clearinghouse— such as the Geospatial One-Stop (GOS...construct calls to its transform(s) method by providing the type of the incoming content (e.g., eml ), the type of the resulting content (e.g., fgdc) and
2007-05-17
metadata formats, metadata repositories, enterprise portals and federated search engines that make data visible, available, and usable to users...and provides the metadata formats, metadata repositories, enterprise portals and federated search engines that make data visible, available, and...develop an enterprise- wide data sharing plan, establishment of mission area governance processes for CIOs, DISA development of federated search specifications
Assessing Public Metabolomics Metadata, Towards Improving Quality.
Ferreira, João D; Inácio, Bruno; Salek, Reza M; Couto, Francisco M
2017-12-13
Public resources need to be appropriately annotated with metadata in order to make them discoverable, reproducible and traceable, further enabling them to be interoperable or integrated with other datasets. While data-sharing policies exist to promote the annotation process by data owners, these guidelines are still largely ignored. In this manuscript, we analyse automatic measures of metadata quality, and suggest their application as a mean to encourage data owners to increase the metadata quality of their resources and submissions, thereby contributing to higher quality data, improved data sharing, and the overall accountability of scientific publications. We analyse these metadata quality measures in the context of a real-world repository of metabolomics data (i.e. MetaboLights), including a manual validation of the measures, and an analysis of their evolution over time. Our findings suggest that the proposed measures can be used to mimic a manual assessment of metadata quality.
EXIF Custom: Automatic image metadata extraction for Scratchpads and Drupal.
Baker, Ed
2013-01-01
Many institutions and individuals use embedded metadata to aid in the management of their image collections. Many deskop image management solutions such as Adobe Bridge and online tools such as Flickr also make use of embedded metadata to describe, categorise and license images. Until now Scratchpads (a data management system and virtual research environment for biodiversity) have not made use of these metadata, and users have had to manually re-enter this information if they have wanted to display it on their Scratchpad site. The Drupal described here allows users to map metadata embedded in their images to the associated field in the Scratchpads image form using one or more customised mappings. The module works seamlessly with the bulk image uploader used on Scratchpads and it is therefore possible to upload hundreds of images easily with automatic metadata (EXIF, XMP and IPTC) extraction and mapping.
Collection Metadata Solutions for Digital Library Applications
NASA Technical Reports Server (NTRS)
Hill, Linda L.; Janee, Greg; Dolin, Ron; Frew, James; Larsgaard, Mary
1999-01-01
Within a digital library, collections may range from an ad hoc set of objects that serve a temporary purpose to established library collections intended to persist through time. The objects in these collections vary widely, from library and data center holdings to pointers to real-world objects, such as geographic places, and the various metadata schemas that describe them. The key to integrated use of such a variety of collections in a digital library is collection metadata that represents the inherent and contextual characteristics of a collection. The Alexandria Digital Library (ADL) Project has designed and implemented collection metadata for several purposes: in XML form, the collection metadata "registers" the collection with the user interface client; in HTML form, it is used for user documentation; eventually, it will be used to describe the collection to network search agents; and it is used for internal collection management, including mapping the object metadata attributes to the common search parameters of the system.
METADATA REGISTRY, ISO/IEC 11179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pon, R K; Buttler, D J
2008-01-03
ISO/IEC-11179 is an international standard that documents the standardization and registration of metadata to make data understandable and shareable. This standardization and registration allows for easier locating, retrieving, and transmitting data from disparate databases. The standard defines the how metadata are conceptually modeled and how they are shared among parties, but does not define how data is physically represented as bits and bytes. The standard consists of six parts. Part 1 provides a high-level overview of the standard and defines the basic element of a metadata registry - a data element. Part 2 defines the procedures for registering classification schemesmore » and classifying administered items in a metadata registry (MDR). Part 3 specifies the structure of an MDR. Part 4 specifies requirements and recommendations for constructing definitions for data and metadata. Part 5 defines how administered items are named and identified. Part 6 defines how administered items are registered and assigned an identifier.« less
NASA Technical Reports Server (NTRS)
Ullman, Richard; Bane, Bob; Yang, Jingli
2008-01-01
A shell script has been written as a means of automatically making HDF-EOS-formatted data sets available via the World Wide Web. ("HDF-EOS" and variants thereof are defined in the first of the two immediately preceding articles.) The shell script chains together some software tools developed by the Data Usability Group at Goddard Space Flight Center to perform the following actions: Extract metadata in Object Definition Language (ODL) from an HDF-EOS file, Convert the metadata from ODL to Extensible Markup Language (XML), Reformat the XML metadata into human-readable Hypertext Markup Language (HTML), Publish the HTML metadata and the original HDF-EOS file to a Web server and an Open-source Project for a Network Data Access Protocol (OPeN-DAP) server computer, and Reformat the XML metadata and submit the resulting file to the EOS Clearinghouse, which is a Web-based metadata clearinghouse that facilitates searching for, and exchange of, Earth-Science data.
EXIF Custom: Automatic image metadata extraction for Scratchpads and Drupal
2013-01-01
Abstract Many institutions and individuals use embedded metadata to aid in the management of their image collections. Many deskop image management solutions such as Adobe Bridge and online tools such as Flickr also make use of embedded metadata to describe, categorise and license images. Until now Scratchpads (a data management system and virtual research environment for biodiversity) have not made use of these metadata, and users have had to manually re-enter this information if they have wanted to display it on their Scratchpad site. The Drupal described here allows users to map metadata embedded in their images to the associated field in the Scratchpads image form using one or more customised mappings. The module works seamlessly with the bulk image uploader used on Scratchpads and it is therefore possible to upload hundreds of images easily with automatic metadata (EXIF, XMP and IPTC) extraction and mapping. PMID:24723768
NASA Astrophysics Data System (ADS)
Hills, S. J.; Richard, S. M.; Doniger, A.; Danko, D. M.; Derenthal, L.; Energistics Metadata Work Group
2011-12-01
A diverse group of organizations representative of the international community involved in disciplines relevant to the upstream petroleum industry, - energy companies, - suppliers and publishers of information to the energy industry, - vendors of software applications used by the industry, - partner government and academic organizations, has engaged in the Energy Industry Metadata Standards Initiative. This Initiative envisions the use of standard metadata within the community to enable significant improvements in the efficiency with which users discover, evaluate, and access distributed information resources. The metadata standard needed to realize this vision is the initiative's primary deliverable. In addition to developing the metadata standard, the initiative is promoting its adoption to accelerate realization of the vision, and publishing metadata exemplars conformant with the standard. Implementation of the standard by community members, in the form of published metadata which document the information resources each organization manages, will allow use of tools requiring consistent metadata for efficient discovery and evaluation of, and access to, information resources. While metadata are expected to be widely accessible, access to associated information resources may be more constrained. The initiative is being conducting by Energistics' Metadata Work Group, in collaboration with the USGIN Project. Energistics is a global standards group in the oil and natural gas industry. The Work Group determined early in the initiative, based on input solicited from 40+ organizations and on an assessment of existing metadata standards, to develop the target metadata standard as a profile of a revised version of ISO 19115, formally the "Energy Industry Profile of ISO/DIS 19115-1 v1.0" (EIP). The Work Group is participating on the ISO/TC 211 project team responsible for the revision of ISO 19115, now ready for "Draft International Standard" (DIS) status. With ISO 19115 an established, capability-rich, open standard for geographic metadata, EIP v1 is expected to be widely acceptable within the community and readily sustainable over the long-term. The EIP design, also per community requirements, will enable discovery, evaluation, and access to types of information resources considered important to the community, including structured and unstructured digital resources, and physical assets such as hardcopy documents and material samples. This presentation will briefly review the development of this initiative as well as the current and planned Work Group activities. More time will be spent providing an overview of the EIP v1, including the requirements it prescribes, design efforts made to enable automated metadata capture and processing, and the structure and content of its documentation, which was written to minimize ambiguity and facilitate implementation. The Work Group considers EIP v1 a solid initial design for interoperable metadata, and first step toward the vision of the Initiative.
NASA Astrophysics Data System (ADS)
Wood, Chris
2016-04-01
Under the Marine Strategy Framework Directive (MSFD), EU Member States are mandated to achieve or maintain 'Good Environmental Status' (GES) in their marine areas by 2020, through a series of Programme of Measures (PoMs). The Celtic Seas Partnership (CSP), an EU LIFE+ project, aims to support policy makers, special-interest groups, users of the marine environment, and other interested stakeholders on MSFD implementation in the Celtic Seas geographical area. As part of this support, a metadata portal has been built to provide a signposting service to datasets that are relevant to MSFD within the Celtic Seas. To ensure that the metadata has the widest possible reach, a linked data approach was employed to construct the database. Although the metadata are stored in a traditional RDBS, the metadata are exposed as linked data via the D2RQ platform, allowing virtual RDF graphs to be generated. SPARQL queries can be executed against the end-point allowing any user to manipulate the metadata. D2RQ's mapping language, based on turtle, was used to map a wide range of relevant ontologies to the metadata (e.g. The Provenance Ontology (prov-o), Ocean Data Ontology (odo), Dublin Core Elements and Terms (dc & dcterms), Friend of a Friend (foaf), and Geospatial ontologies (geo)) allowing users to browse the metadata, either via SPARQL queries or by using D2RQ's HTML interface. The metadata were further enhanced by mapping relevant parameters to the NERC Vocabulary Server, itself built on a SPARQL endpoint. Additionally, a custom web front-end was built to enable users to browse the metadata and express queries through an intuitive graphical user interface that requires no prior knowledge of SPARQL. As well as providing means to browse the data via MSFD-related parameters (Descriptor, Criteria, and Indicator), the metadata records include the dataset's country of origin, the list of organisations involved in the management of the data, and links to any relevant INSPIRE-compliant services relating to the dataset. The web front-end therefore enables users to effectively filter, sort, or search the metadata. As the MSFD timeline requires Member States to review their progress on achieving or maintaining GES every six years, the timely development of this metadata portal will not only aid interested stakeholders in understanding how member states are meeting their targets, but also shows how linked data can be used effectively to support policy makers and associated legislative bodies.
THE NEW ONLINE METADATA EDITOR FOR GENERATING STRUCTURED METADATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Shrestha, Biva; Palanisamy, Giri
Nobody is better suited to describe data than the scientist who created it. This description about a data is called Metadata. In general terms, Metadata represents the who, what, when, where, why and how of the dataset [1]. eXtensible Markup Language (XML) is the preferred output format for metadata, as it makes it portable and, more importantly, suitable for system discoverability. The newly developed ORNL Metadata Editor (OME) is a Web-based tool that allows users to create and maintain XML files containing key information, or metadata, about the research. Metadata include information about the specific projects, parameters, time periods, andmore » locations associated with the data. Such information helps put the research findings in context. In addition, the metadata produced using OME will allow other researchers to find these data via Metadata clearinghouses like Mercury [2][4]. OME is part of ORNL s Mercury software fleet [2][3]. It was jointly developed to support projects funded by the United States Geological Survey (USGS), U.S. Department of Energy (DOE), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA). OME s architecture provides a customizable interface to support project-specific requirements. Using this new architecture, the ORNL team developed OME instances for USGS s Core Science Analytics, Synthesis, and Libraries (CSAS&L), DOE s Next Generation Ecosystem Experiments (NGEE) and Atmospheric Radiation Measurement (ARM) Program, and the international Surface Ocean Carbon Dioxide ATlas (SOCAT). Researchers simply use the ORNL Metadata Editor to enter relevant metadata into a Web-based form. From the information on the form, the Metadata Editor can create an XML file on the server that the editor is installed or to the user s personal computer. Researchers can also use the ORNL Metadata Editor to modify existing XML metadata files. As an example, an NGEE Arctic scientist use OME to register their datasets to the NGEE data archive and allows the NGEE archive to publish these datasets via a data search portal (http://ngee.ornl.gov/data). These highly descriptive metadata created using OME allows the Archive to enable advanced data search options using keyword, geo-spatial, temporal and ontology filters. Similarly, ARM OME allows scientists or principal investigators (PIs) to submit their data products to the ARM data archive. How would OME help Big Data Centers like the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC)? The ORNL DAAC is one of NASA s Earth Observing System Data and Information System (EOSDIS) data centers managed by the Earth Science Data and Information System (ESDIS) Project. The ORNL DAAC archives data produced by NASA's Terrestrial Ecology Program. The DAAC provides data and information relevant to biogeochemical dynamics, ecological data, and environmental processes, critical for understanding the dynamics relating to the biological, geological, and chemical components of the Earth's environment. Typically data produced, archived and analyzed is at a scale of multiple petabytes, which makes the discoverability of the data very challenging. Without proper metadata associated with the data, it is difficult to find the data you are looking for and equally difficult to use and understand the data. OME will allow data centers like the NGEE and ORNL DAAC to produce meaningful, high quality, standards-based, descriptive information about their data products in-turn helping with the data discoverability and interoperability. Useful Links: USGS OME: http://mercury.ornl.gov/OME/ NGEE OME: http://ngee-arctic.ornl.gov/ngeemetadata/ ARM OME: http://archive2.ornl.gov/armome/ Contact: Ranjeet Devarakonda (devarakondar@ornl.gov) References: [1] Federal Geographic Data Committee. Content standard for digital geospatial metadata. Federal Geographic Data Committee, 1998. [2] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94. [3] Wilson, B. E., Palanisamy, G., Devarakonda, R., Rhyne, B. T., Lindsley, C., & Green, J. (2010). Mercury Toolset for Spatiotemporal Metadata. [4] Pouchard, L. C., Branstetter, M. L., Cook, R. B., Devarakonda, R., Green, J., Palanisamy, G., ... & Noy, N. F. (2013). A Linked Science investigation: enhancing climate change data discovery with semantic technologies. Earth science informatics, 6(3), 175-185.« less
Recovering Nimbus era Observations at the NASA GES DISC
NASA Astrophysics Data System (ADS)
Meyer, D. J.; Johnson, J. E.; Esfandiari, A. E.; Zamkoff, E. B.; Al-Jazrawi, A. F.; Gerasimov, I. V.; Alcott, G. T.
2017-12-01
Between 1964 and 1978, NASA launched a series of seven Nimbus meteorological satellites which provided Earth observations for 30 years. These satellites, carrying a total of 33 instruments to observe the Earth at visible, infrared, ultraviolet, and microwave wavelengths, revolutionized weather forecasting, provided early observations of ocean color and atmospheric ozone, and prototyped location-based search and rescue capabilities. The Nimbus series paved the way for a number of currently operational systems such as the EOS Terra, Aqua and Aura platforms.The original data archive included both magnetic tapes and film media. These media are well past their expected end of life, placing at risk valuable data that are critical to extending the history of Earth observations back in time. GES DISC has been incorporating these data into a modern online archive by recovering the digital data files from the tapes, and scanning images of the data from film strips. The original data products were written on obsolete hardware systems in outdated file formats, and in the absence of metadata standards at that time, were often written in proprietary file structures. Through a tedious and laborious process, oft-corrupted data are recovered, and incomplete metadata and documentation are reconstructed.
McKinney, Bill; Meyer, Peter A.; Crosas, Mercè; Sliz, Piotr
2016-01-01
Access to experimental X-ray diffraction image data is important for validation and reproduction of macromolecular models and indispensable for the development of structural biology processing methods. In response to the evolving needs of the structural biology community, we recently established a diffraction data publication system, the Structural Biology Data Grid (SBDG, data.sbgrid.org), to preserve primary experimental datasets supporting scientific publications. All datasets published through the SBDG are freely available to the research community under a public domain dedication license, with metadata compliant with the DataCite Schema (schema.datacite.org). A proof-of-concept study demonstrated community interest and utility. Publication of large datasets is a challenge shared by several fields, and the SBDG has begun collaborating with the Institute for Quantitative Social Science at Harvard University to extend the Dataverse (dataverse.org) open-source data repository system to structural biology datasets. Several extensions are necessary to support the size and metadata requirements for structural biology datasets. In this paper, we describe one such extension—functionality supporting preservation of filesystem structure within Dataverse—which is essential for both in-place computation and supporting non-http data transfers. PMID:27862010
A document centric metadata registration tool constructing earth environmental data infrastructure
NASA Astrophysics Data System (ADS)
Ichino, M.; Kinutani, H.; Ono, M.; Shimizu, T.; Yoshikawa, M.; Masuda, K.; Fukuda, K.; Kawamoto, H.
2009-12-01
DIAS (Data Integration and Analysis System) is one of GEOSS activities in Japan. It is also a leading part of the GEOSS task with the same name defined in GEOSS Ten Year Implementation Plan. The main mission of DIAS is to construct data infrastructure that can effectively integrate earth environmental data such as observation data, numerical model outputs, and socio-economic data provided from the fields of climate, water cycle, ecosystem, ocean, biodiversity and agriculture. Some of DIAS's data products are available at the following web site of http://www.jamstec.go.jp/e/medid/dias. Most of earth environmental data commonly have spatial and temporal attributes such as the covering geographic scope or the created date. The metadata standards including these common attributes are published by the geographic information technical committee (TC211) in ISO (the International Organization for Standardization) as specifications of ISO 19115:2003 and 19139:2007. Accordingly, DIAS metadata is developed with basing on ISO/TC211 metadata standards. From the viewpoint of data users, metadata is useful not only for data retrieval and analysis but also for interoperability and information sharing among experts, beginners and nonprofessionals. On the other hand, from the viewpoint of data providers, two problems were pointed out after discussions. One is that data providers prefer to minimize another tasks and spending time for creating metadata. Another is that data providers want to manage and publish documents to explain their data sets more comprehensively. Because of solving these problems, we have been developing a document centric metadata registration tool. The features of our tool are that the generated documents are available instantly and there is no extra cost for data providers to generate metadata. Also, this tool is developed as a Web application. So, this tool does not demand any software for data providers if they have a web-browser. The interface of the tool provides the section titles of the documents and by filling out the content of each section, the documents for the data sets are automatically published in PDF and HTML format. Furthermore, the metadata XML file which is compliant with ISO19115 and ISO19139 is created at the same moment. The generated metadata are managed in the metadata database of the DIAS project, and will be used in various ISO19139 compliant metadata management tools, such as GeoNetwork.
Sahoo, Satya S; Valdez, Joshua; Rueschman, Michael
2016-01-01
Scientific reproducibility is key to scientific progress as it allows the research community to build on validated results, protect patients from potentially harmful trial drugs derived from incorrect results, and reduce wastage of valuable resources. The National Institutes of Health (NIH) recently published a systematic guideline titled "Rigor and Reproducibility " for supporting reproducible research studies, which has also been accepted by several scientific journals. These journals will require published articles to conform to these new guidelines. Provenance metadata describes the history or origin of data and it has been long used in computer science to capture metadata information for ensuring data quality and supporting scientific reproducibility. In this paper, we describe the development of Provenance for Clinical and healthcare Research (ProvCaRe) framework together with a provenance ontology to support scientific reproducibility by formally modeling a core set of data elements representing details of research study. We extend the PROV Ontology (PROV-O), which has been recommended as the provenance representation model by World Wide Web Consortium (W3C), to represent both: (a) data provenance, and (b) process provenance. We use 124 study variables from 6 clinical research studies from the National Sleep Research Resource (NSRR) to evaluate the coverage of the provenance ontology. NSRR is the largest repository of NIH-funded sleep datasets with 50,000 studies from 36,000 participants. The provenance ontology reuses ontology concepts from existing biomedical ontologies, for example the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), to model the provenance information of research studies. The ProvCaRe framework is being developed as part of the Big Data to Knowledge (BD2K) data provenance project.
Sahoo, Satya S.; Valdez, Joshua; Rueschman, Michael
2016-01-01
Scientific reproducibility is key to scientific progress as it allows the research community to build on validated results, protect patients from potentially harmful trial drugs derived from incorrect results, and reduce wastage of valuable resources. The National Institutes of Health (NIH) recently published a systematic guideline titled “Rigor and Reproducibility “ for supporting reproducible research studies, which has also been accepted by several scientific journals. These journals will require published articles to conform to these new guidelines. Provenance metadata describes the history or origin of data and it has been long used in computer science to capture metadata information for ensuring data quality and supporting scientific reproducibility. In this paper, we describe the development of Provenance for Clinical and healthcare Research (ProvCaRe) framework together with a provenance ontology to support scientific reproducibility by formally modeling a core set of data elements representing details of research study. We extend the PROV Ontology (PROV-O), which has been recommended as the provenance representation model by World Wide Web Consortium (W3C), to represent both: (a) data provenance, and (b) process provenance. We use 124 study variables from 6 clinical research studies from the National Sleep Research Resource (NSRR) to evaluate the coverage of the provenance ontology. NSRR is the largest repository of NIH-funded sleep datasets with 50,000 studies from 36,000 participants. The provenance ontology reuses ontology concepts from existing biomedical ontologies, for example the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), to model the provenance information of research studies. The ProvCaRe framework is being developed as part of the Big Data to Knowledge (BD2K) data provenance project. PMID:28269904
Semantic Metadata for Heterogeneous Spatial Planning Documents
NASA Astrophysics Data System (ADS)
Iwaniak, A.; Kaczmarek, I.; Łukowicz, J.; Strzelecki, M.; Coetzee, S.; Paluszyński, W.
2016-09-01
Spatial planning documents contain information about the principles and rights of land use in different zones of a local authority. They are the basis for administrative decision making in support of sustainable development. In Poland these documents are published on the Web according to a prescribed non-extendable XML schema, designed for optimum presentation to humans in HTML web pages. There is no document standard, and limited functionality exists for adding references to external resources. The text in these documents is discoverable and searchable by general-purpose web search engines, but the semantics of the content cannot be discovered or queried. The spatial information in these documents is geographically referenced but not machine-readable. Major manual efforts are required to integrate such heterogeneous spatial planning documents from various local authorities for analysis, scenario planning and decision support. This article presents results of an implementation using machine-readable semantic metadata to identify relationships among regulations in the text, spatial objects in the drawings and links to external resources. A spatial planning ontology was used to annotate different sections of spatial planning documents with semantic metadata in the Resource Description Framework in Attributes (RDFa). The semantic interpretation of the content, links between document elements and links to external resources were embedded in XHTML pages. An example and use case from the spatial planning domain in Poland is presented to evaluate its efficiency and applicability. The solution enables the automated integration of spatial planning documents from multiple local authorities to assist decision makers with understanding and interpreting spatial planning information. The approach is equally applicable to legal documents from other countries and domains, such as cultural heritage and environmental management.
Design and Application of an Ontology for Component-Based Modeling of Water Systems
NASA Astrophysics Data System (ADS)
Elag, M.; Goodall, J. L.
2012-12-01
Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.
A metadata-driven approach to data repository design.
Harvey, Matthew J; McLean, Andrew; Rzepa, Henry S
2017-01-01
The design and use of a metadata-driven data repository for research data management is described. Metadata is collected automatically during the submission process whenever possible and is registered with DataCite in accordance with their current metadata schema, in exchange for a persistent digital object identifier. Two examples of data preview are illustrated, including the demonstration of a method for integration with commercial software that confers rich domain-specific data analytics without introducing customisation into the repository itself.
NASA Astrophysics Data System (ADS)
le Roux, J.; Baker, A.; Caltagirone, S.; Bugbee, K.
2017-12-01
The Common Metadata Repository (CMR) is a high-performance, high-quality repository for Earth science metadata records, and serves as the primary way to search NASA's growing 17.5 petabytes of Earth science data holdings. Released in 2015, CMR has the capability to support several different metadata standards already being utilized by NASA's combined network of Earth science data providers, or Distributed Active Archive Centers (DAACs). The Analysis and Review of CMR (ARC) Team located at Marshall Space Flight Center is working to improve the quality of records already in CMR with the goal of making records optimal for search and discovery. This effort entails a combination of automated and manual review, where each NASA record in CMR is checked for completeness, accuracy, and consistency. This effort is highly collaborative in nature, requiring communication and transparency of findings amongst NASA personnel, DAACs, the CMR team and other metadata curation teams. Through the evolution of this project it has become apparent that there is a need to document and report findings, as well as track metadata improvements in a more efficient manner. The ARC team has collaborated with Element 84 in order to develop a metadata curation tool to meet these needs. In this presentation, we will provide an overview of this metadata curation tool and its current capabilities. Challenges and future plans for the tool will also be discussed.
Social tagging in the life sciences: characterizing a new metadata resource for bioinformatics.
Good, Benjamin M; Tennis, Joseph T; Wilkinson, Mark D
2009-09-25
Academic social tagging systems, such as Connotea and CiteULike, provide researchers with a means to organize personal collections of online references with keywords (tags) and to share these collections with others. One of the side-effects of the operation of these systems is the generation of large, publicly accessible metadata repositories describing the resources in the collections. In light of the well-known expansion of information in the life sciences and the need for metadata to enhance its value, these repositories present a potentially valuable new resource for application developers. Here we characterize the current contents of two scientifically relevant metadata repositories created through social tagging. This investigation helps to establish how such socially constructed metadata might be used as it stands currently and to suggest ways that new social tagging systems might be designed that would yield better aggregate products. We assessed the metadata that users of CiteULike and Connotea associated with citations in PubMed with the following metrics: coverage of the document space, density of metadata (tags) per document, rates of inter-annotator agreement, and rates of agreement with MeSH indexing. CiteULike and Connotea were very similar on all of the measurements. In comparison to PubMed, document coverage and per-document metadata density were much lower for the social tagging systems. Inter-annotator agreement within the social tagging systems and the agreement between the aggregated social tagging metadata and MeSH indexing was low though the latter could be increased through voting. The most promising uses of metadata from current academic social tagging repositories will be those that find ways to utilize the novel relationships between users, tags, and documents exposed through these systems. For more traditional kinds of indexing-based applications (such as keyword-based search) to benefit substantially from socially generated metadata in the life sciences, more documents need to be tagged and more tags are needed for each document. These issues may be addressed both by finding ways to attract more users to current systems and by creating new user interfaces that encourage more collectively useful individual tagging behaviour.
A Metadata Element Set for Project Documentation
NASA Technical Reports Server (NTRS)
Hodge, Gail; Templeton, Clay; Allen, Robert B.
2003-01-01
Abstract NASA Goddard Space Flight Center is a large engineering enterprise with many projects. We describe our efforts to develop standard metadata sets across project documentation which we term the "Goddard Core". We also address broader issues for project management metadata.
SIPSMetGen: It's Not Just For Aircraft Data and ECS Anymore.
NASA Astrophysics Data System (ADS)
Schwab, M.
2015-12-01
The SIPSMetGen utility, developed for the NASA EOSDIS project, under the EED contract, simplified the creation of file level metadata for the ECS System. The utility has been enhanced for ease of use, efficiency, speed and increased flexibility. The SIPSMetGen utility was originally created as a means of generating file level spatial metadata for Operation IceBridge. The first version created only ODL metadata, specific for ingest into ECS. The core strength of the utility was, and continues to be, its ability to take complex shapes and patterns of data collection point clouds from aircraft flights and simplify them to a relatively simple concave hull geo-polygon. It has been found to be a useful and easy to use tool for creating file level metadata for many other missions, both aircraft and satellite. While the original version was useful it had its limitations. In 2014 Raytheon was tasked to make enhancements to SIPSMetGen, this resulted a new version of SIPSMetGen which can create ISO Compliant XML metadata; provides optimization and streamlining of the algorithm for creating the spatial metadata; a quicker runtime with more consistent results; a utility that can be configured to run multi-threaded on systems with multiple processors. The utility comes with a java based graphical user interface to aid in configuration and running of the utility. The enhanced SIPSMetGen allows more diverse data sets to be archived with file level metadata. The advantage of archiving data with file level metadata is that it makes it easier for data users, and scientists to find relevant data. File level metadata unlocks the power of existing archives and metadata repositories such as ECS and CMR and search and discovery utilities like Reverb and Earth Data Search. Current missions now using SIPSMetGen include: Aquarius, Measures, ARISE, and Nimbus.
NASA Astrophysics Data System (ADS)
Thomas, R.; Connell, D.; Spears, T.; Leadbetter, A.; Burger, E. F.
2016-12-01
The scientific literature heavily features small-scale studies with the impact of the results extrapolated to regional/global importance. There are on-going initiatives (e.g. OA-ICC, GOA-ON, GEOTRACES, EMODNet Chemistry) aiming to assemble regional to global-scale datasets that are available for trend or meta-analyses. Assessing the quality and comparability of these data requires information about the processing chain from "sampling to spreadsheet". This provenance information needs to be captured and readily available to assess data fitness for purpose. The NOAA Ocean Acidification metadata template was designed in consultation with domain experts for this reason; the core carbonate chemistry variables have 23-37 metadata fields each and for scientists generating these datasets there could appear to be an ever increasing amount of metadata expected to accompany a dataset. While this provenance metadata should be considered essential by those generating or using the data, for those discovering data there is a sliding scale between what is considered discovery metadata (title, abstract, contacts, etc.) versus usage metadata (methodology, environmental setup, lineage, etc.), the split depending on the intended use of data. As part of the OA-ICC's activities, the metadata fields from the NOAA template relevant to the sample processing chain and QA criteria have been factored to develop profiles for, and extensions to, the OM-JSON encoding supported by the PROV ontology. While this work started focused on carbonate chemistry variable specific metadata, the factorization could be applied within the O&M model across other disciplines such as trace metals or contaminants. In a linked data world with a suitable high level model for sample processing and QA available, tools and support can be provided to link reproducible units of metadata (e.g. the standard protocol for a variable as adopted by a community) and simplify the provision of metadata and subsequent discovery.
Metadata Creation, Management and Search System for your Scientific Data
NASA Astrophysics Data System (ADS)
Devarakonda, R.; Palanisamy, G.
2012-12-01
Mercury Search Systems is a set of tools for creating, searching, and retrieving of biogeochemical metadata. Mercury toolset provides orders of magnitude improvements in search speed, support for any metadata format, integration with Google Maps for spatial queries, multi-facetted type search, search suggestions, support for RSS (Really Simple Syndication) delivery of search results, and enhanced customization to meet the needs of the multiple projects that use Mercury. Mercury's metadata editor provides a easy way for creating metadata and Mercury's search interface provides a single portal to search for data and information contained in disparate data management systems, each of which may use any metadata format including FGDC, ISO-19115, Dublin-Core, Darwin-Core, DIF, ECHO, and EML. Mercury harvests metadata and key data from contributing project servers distributed around the world and builds a centralized index. The search interfaces then allow the users to perform a variety of fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury is being used more than 14 different projects across 4 federal agencies. It was originally developed for NASA, with continuing development funded by NASA, USGS, and DOE for a consortium of projects. Mercury search won the NASA's Earth Science Data Systems Software Reuse Award in 2008. References: R. Devarakonda, G. Palanisamy, B.E. Wilson, and J.M. Green, "Mercury: reusable metadata management data discovery and access system", Earth Science Informatics, vol. 3, no. 1, pp. 87-94, May 2010. R. Devarakonda, G. Palanisamy, J.M. Green, B.E. Wilson, "Data sharing and retrieval using OAI-PMH", Earth Science Informatics DOI: 10.1007/s12145-010-0073-0, (2010);
Master Metadata Repository and Metadata-Management System
NASA Technical Reports Server (NTRS)
Armstrong, Edward; Reed, Nate; Zhang, Wen
2007-01-01
A master metadata repository (MMR) software system manages the storage and searching of metadata pertaining to data from national and international satellite sources of the Global Ocean Data Assimilation Experiment (GODAE) High Resolution Sea Surface Temperature Pilot Project [GHRSSTPP]. These sources produce a total of hundreds of data files daily, each file classified as one of more than ten data products representing global sea-surface temperatures. The MMR is a relational database wherein the metadata are divided into granulelevel records [denoted file records (FRs)] for individual satellite files and collection-level records [denoted data set descriptions (DSDs)] that describe metadata common to all the files from a specific data product. FRs and DSDs adhere to the NASA Directory Interchange Format (DIF). The FRs and DSDs are contained in separate subdatabases linked by a common field. The MMR is configured in MySQL database software with custom Practical Extraction and Reporting Language (PERL) programs to validate and ingest the metadata records. The database contents are converted into the Federal Geographic Data Committee (FGDC) standard format by use of the Extensible Markup Language (XML). A Web interface enables users to search for availability of data from all sources.
Brady's Geothermal Field Nodal Seismometers Metadata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesley Parker
Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.
Extraction of CT dose information from DICOM metadata: automated Matlab-based approach.
Dave, Jaydev K; Gingold, Eric L
2013-01-01
The purpose of this study was to extract exposure parameters and dose-relevant indexes of CT examinations from information embedded in DICOM metadata. DICOM dose report files were identified and retrieved from a PACS. An automated software program was used to extract from these files information from the structured elements in the DICOM metadata relevant to exposure. Extracting information from DICOM metadata eliminated potential errors inherent in techniques based on optical character recognition, yielding 100% accuracy.
ERIC Educational Resources Information Center
O'Neill, Edward T.; Lavoie, Brian F.; Bennett, Rick; Staples, Thornton; Wayland, Ross; Payette, Sandra; Dekkers, Makx; Weibel, Stuart; Searle, Sam; Thompson, Dave; Rudner, Lawrence M.
2003-01-01
Includes five articles that examine key trends in the development of the public Web: size and growth, internationalization, and metadata usage; Flexible Extensible Digital Object and Repository Architecture (Fedora) for use in digital libraries; developments in the Dublin Core Metadata Initiative (DCMI); the National Library of New Zealand Te Puna…
NASA Astrophysics Data System (ADS)
Andre, Francois; Fleury, Laurence; Gaillardet, Jerome; Nord, Guillaume
2015-04-01
RBV (Réseau des Bassins Versants) is a French initiative to consolidate the national efforts made by more than 15 elementary observatories funded by various research institutions (CNRS, INRA, IRD, IRSTEA, Universities) that study river and drainage basins. The RBV Metadata Catalogue aims at giving an unified vision of the work produced by every observatory to both the members of the RBV network and any external person interested by this domain of research. Another goal is to share this information with other existing metadata portals. Metadata management is heterogeneous among observatories ranging from absence to mature harvestable catalogues. Here, we would like to explain the strategy used to design a state of the art catalogue facing this situation. Main features are as follows : - Multiple input methods: Metadata records in the catalog can either be entered with the graphical user interface, harvested from an existing catalogue or imported from information system through simplified web services. - Hierarchical levels: Metadata records may describe either an observatory, one of its experimental site or a single dataset produced by one instrument. - Multilingualism: Metadata can be easily entered in several configurable languages. - Compliance to standards : the backoffice part of the catalogue is based on a CSW metadata server (Geosource) which ensures ISO19115 compatibility and the ability of being harvested (globally or partially). On going tasks focus on the use of SKOS thesaurus and SensorML description of the sensors. - Ergonomy : The user interface is built with the GWT Framework to offer a rich client application with a fully ajaxified navigation. - Source code sharing : The work has led to the development of reusable components which can be used to quickly create new metadata forms in other GWT applications You can visit the catalogue (http://portailrbv.sedoo.fr/) or contact us by email rbv@sedoo.fr.
Uciteli, Alexandr; Herre, Heinrich
2015-01-01
The specification of metadata in clinical and epidemiological study projects absorbs significant expense. The validity and quality of the collected data depend heavily on the precise and semantical correct representation of their metadata. In various research organizations, which are planning and coordinating studies, the required metadata are specified differently, depending on many conditions, e.g., on the used study management software. The latter does not always meet the needs of a particular research organization, e.g., with respect to the relevant metadata attributes and structuring possibilities. The objective of the research, set forth in this paper, is the development of a new approach for ontology-based representation and management of metadata. The basic features of this approach are demonstrated by the software tool OntoStudyEdit (OSE). The OSE is designed and developed according to the three ontology method. This method for developing software is based on the interactions of three different kinds of ontologies: a task ontology, a domain ontology and a top-level ontology. The OSE can be easily adapted to different requirements, and it supports an ontologically founded representation and efficient management of metadata. The metadata specifications can by imported from various sources; they can be edited with the OSE, and they can be exported in/to several formats, which are used, e.g., by different study management software. Advantages of this approach are the adaptability of the OSE by integrating suitable domain ontologies, the ontological specification of mappings between the import/export formats and the DO, the specification of the study metadata in a uniform manner and its reuse in different research projects, and an intuitive data entry for non-expert users.
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Valentine, D.; Richard, S. M.; Gupta, A.; Meier, O.; Peucker-Ehrenbrink, B.; Hudman, G.; Stocks, K. I.; Hsu, L.; Whitenack, T.; Grethe, J. S.; Ozyurt, I. B.
2017-12-01
EarthCube Data Discovery Hub (DDH) is an EarthCube Building Block project using technologies developed in CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability) to enable geoscience users to explore a growing portfolio of EarthCube-created and other geoscience-related resources. Over 1 million metadata records are available for discovery through the project portal (cinergi.sdsc.edu). These records are retrieved from data facilities, including federal, state and academic sources, or contributed by geoscientists through workshops, surveys, or other channels. CINERGI metadata augmentation pipeline components 1) provide semantic enhancement based on a large ontology of geoscience terms, using text analytics to generate keywords with references to ontology classes, 2) add spatial extents based on place names found in the metadata record, and 3) add organization identifiers to the metadata. The records are indexed and can be searched via a web portal and standard search APIs. The added metadata content improves discoverability and interoperability of the registered resources. Specifically, the addition of ontology-anchored keywords enables faceted browsing and lets users navigate to datasets related by variables measured, equipment used, science domain, processes described, geospatial features studied, and other dataset characteristics that are generated by the pipeline. DDH also lets data curators access and edit the automatically generated metadata records using the CINERGI metadata editor, accept or reject the enhanced metadata content, and consider it in updating their metadata descriptions. We consider several complex data discovery workflows, in environmental seismology (quantifying sediment and water fluxes using seismic data), marine biology (determining available temperature, location, weather and bleaching characteristics of coral reefs related to measurements in a given coral reef survey), and river geochemistry (discovering observations relevant to geochemical measurements outside the tidal zone, given specific discharge conditions).
75 FR 4689 - Electronic Tariff Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... collaborative process relies upon the use of metadata (or information) about the tariff filing, including such... code.\\5\\ Because the Commission is using the electronic metadata to establish statutory action dates... code, as well as accurately providing any other metadata. 6. Similarly, the Commission will be using...
The center for expanded data annotation and retrieval
Bean, Carol A; Cheung, Kei-Hoi; Dumontier, Michel; Durante, Kim A; Gevaert, Olivier; Gonzalez-Beltran, Alejandra; Khatri, Purvesh; Kleinstein, Steven H; O’Connor, Martin J; Pouliot, Yannick; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Wiser, Jeffrey A
2015-01-01
The Center for Expanded Data Annotation and Retrieval is studying the creation of comprehensive and expressive metadata for biomedical datasets to facilitate data discovery, data interpretation, and data reuse. We take advantage of emerging community-based standard templates for describing different kinds of biomedical datasets, and we investigate the use of computational techniques to help investigators to assemble templates and to fill in their values. We are creating a repository of metadata from which we plan to identify metadata patterns that will drive predictive data entry when filling in metadata templates. The metadata repository not only will capture annotations specified when experimental datasets are initially created, but also will incorporate links to the published literature, including secondary analyses and possible refinements or retractions of experimental interpretations. By working initially with the Human Immunology Project Consortium and the developers of the ImmPort data repository, we are developing and evaluating an end-to-end solution to the problems of metadata authoring and management that will generalize to other data-management environments. PMID:26112029
Bruland, Philipp; Doods, Justin; Storck, Michael; Dugas, Martin
2017-01-01
Data dictionaries provide structural meta-information about data definitions in health information technology (HIT) systems. In this regard, reusing healthcare data for secondary purposes offers several advantages (e.g. reduce documentation times or increased data quality). Prerequisites for data reuse are its quality, availability and identical meaning of data. In diverse projects, research data warehouses serve as core components between heterogeneous clinical databases and various research applications. Given the complexity (high number of data elements) and dynamics (regular updates) of electronic health record (EHR) data structures, we propose a clinical metadata warehouse (CMDW) based on a metadata registry standard. Metadata of two large hospitals were automatically inserted into two CMDWs containing 16,230 forms and 310,519 data elements. Automatic updates of metadata are possible as well as semantic annotations. A CMDW allows metadata discovery, data quality assessment and similarity analyses. Common data models for distributed research networks can be established based on similarity analyses.
Separation of metadata and pixel data to speed DICOM tag morphing.
Ismail, Mahmoud; Philbin, James
2013-01-01
The DICOM information model combines pixel data and metadata in single DICOM object. It is not possible to access the metadata separately from the pixel data. There are use cases where only metadata is accessed. The current DICOM object format increases the running time of those use cases. Tag morphing is one of those use cases. Tag morphing includes deletion, insertion or manipulation of one or more of the metadata attributes. It is typically used for order reconciliation on study acquisition or to localize the issuer of patient ID (IPID) and the patient ID attributes when data from one domain is transferred to a different domain. In this work, we propose using Multi-Series DICOM (MSD) objects, which separate metadata from pixel data and remove duplicate attributes, to reduce the time required for Tag Morphing. The time required to update a set of study attributes in each format is compared. The results show that the MSD format significantly reduces the time required for tag morphing.
Do Community Recommendations Improve Metadata?
NASA Astrophysics Data System (ADS)
Gordon, S.; Habermann, T.; Jones, M. B.; Leinfelder, B.; Mecum, B.; Powers, L. A.; Slaughter, P.
2016-12-01
Complete documentation of scientific data is the surest way to facilitate discovery and reuse. What is complete metadata? There are many metadata recommendations from communities like the OGC, FGDC, NASA, and LTER, that can provide data documentation guidance for discovery, access, use and understanding. Often, the recommendations that communities develop are for a particular metadata dialect. Two examples of this are the LTER Completeness recommendation for EML and the FGDC Data Discovery recommendation for CSDGM. Can community adoption of a recommendation ensure that what is included in the metadata is understandable to the scientific community and beyond? By applying quantitative analysis to different LTER and USGS metadata collections in DataOne and ScienceBase, we show that community recommendations can improve the completeness of collections over time. Additionally, by comparing communities in DataOne that use the EML and CSDGM dialects, but have not adopted the recommendations to the communities that have, the positive effects of recommendation adoption on documentation completeness can be measured.
The Heliophysics Integrated Observatory
NASA Astrophysics Data System (ADS)
Csillaghy, A.; Bentley, R. D.
2009-12-01
HELIO is a new Europe-wide, FP7-funded distributed network of services that will address the needs of a broad community of researchers in heliophysics. This new research field explores the “Sun-Solar System Connection” and requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO will provide the most comprehensive integrated information system in this domain; it will coordinate access to the distributed resources needed by the community, and will provide access to services to mine and analyse the data. HELIO will be designed as a Service-oriented Architecture. The initial infrastructure will include services based on metadata and data servers deployed by the European Grid of Solar Observations (EGSO). We will extend these to address observations from all the disciplines of heliophysics; differences in the way the domains describe and handle the data will be resolved using semantic mapping techniques. Processing and storage services will allow the user to explore the data and create the products that meet stringent standards of interoperability. These capabilities will be orchestrated with the data and metadata services using the Taverna workflow tool. HELIO will address the challenges along the FP7 I3 activities model: (1) Networking: we will cooperate closely with the community to define new standards for heliophysics and the required capabilities of the HELIO system. (2) Services: we will integrate the services developed by the project and other groups to produce an infrastructure that can easily be extended to satisfy the growing and changing needs of the community. (3) Joint Research: we will develop search tools that span disciplinary boundaries and explore new types of user-friendly interfaces HELIO will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains.
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2017-01-01
Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon-HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon-HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon-HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5. PMID:28649160
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2016-02-13
Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon-HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon-HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon-HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5.
NASA Astrophysics Data System (ADS)
Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier
2016-02-01
Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon- HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon- HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon- HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5.
Global Federation of Data Services in Seismology: Extending the Concept to Interdisciplinary Science
NASA Astrophysics Data System (ADS)
Ahern, Tim; Trabant, Chad; Stults, Mike; VanFossen, Mick
2016-04-01
The International Federation of Digital Seismograph Networks (FDSN) sets international standards, formats, and access protocols for global seismology. Recently the availability of an FDSN standard for web services has enabled the development of a federated model of data access. With a growing number of internationally distributed data centers supporting compatible web services the task of federation is now fully realizable. The utility of this approach is already starting to bear fruit in seismology. This presentation will highlight the advances the seismological community has made in the past year towards federated access to seismological data including waveforms, earthquake event catalogs, and metadata describing seismic stations. It will include a discussion of an IRIS Federator as well as an emerging effort to develop an FDSN Federator that will allow seamless access to seismological information across multiple FDSN data centers. As part of the NSF EarthCube initiative as well as the US-European data coordination project (COOPEUS), IRIS and several partners, collectively called GeoWS, have been extending the concept of standard web services to other domains. Our primary partners include Lamont Doherty Earth Observatory (marine geophysics), Caltech (tectonic plate reconstructions), SDSC (hydrology), UNAVCO (geodesy), and Unidata (atmospheric sciences). Additionally, IRIS is working with partners at NOAA's National Centers for Environmental Information (NCEI) , NEON, UTEP, WOVOdat, INTERMAGNET, Global Geodynamics Program, and the Ocean Observatory Initiative (OOI) to develop web services for those domains. The ultimate goal is to allow discovery, access, and utilization of cross-domain data sources. One of the significant outcomes of this effort is the development of a simple text and metadata representation for tabular data called GeoCSV, that allows straightforward interpretation of information from multiple domains by non-domain experts.
A Generic Metadata Editor Supporting System Using Drupal CMS
NASA Astrophysics Data System (ADS)
Pan, J.; Banks, N. G.; Leggott, M.
2011-12-01
Metadata handling is a key factor in preserving and reusing scientific data. In recent years, standardized structural metadata has become widely used in Geoscience communities. However, there exist many different standards in Geosciences, such as the current version of the Federal Geographic Data Committee's Content Standard for Digital Geospatial Metadata (FGDC CSDGM), the Ecological Markup Language (EML), the Geography Markup Language (GML), and the emerging ISO 19115 and related standards. In addition, there are many different subsets within the Geoscience subdomain such as the Biological Profile of the FGDC (CSDGM), or for geopolitical regions, such as the European Profile or the North American Profile in the ISO standards. It is therefore desirable to have a software foundation to support metadata creation and editing for multiple standards and profiles, without re-inventing the wheels. We have developed a software module as a generic, flexible software system to do just that: to facilitate the support for multiple metadata standards and profiles. The software consists of a set of modules for the Drupal Content Management System (CMS), with minimal inter-dependencies to other Drupal modules. There are two steps in using the system's metadata functions. First, an administrator can use the system to design a user form, based on an XML schema and its instances. The form definition is named and stored in the Drupal database as a XML blob content. Second, users in an editor role can then use the persisted XML definition to render an actual metadata entry form, for creating or editing a metadata record. Behind the scenes, the form definition XML is transformed into a PHP array, which is then rendered via Drupal Form API. When the form is submitted the posted values are used to modify a metadata record. Drupal hooks can be used to perform custom processing on metadata record before and after submission. It is trivial to store the metadata record as an actual XML file or in a storage/archive system. We are working on adding many features to help editor users, such as auto completion, pre-populating of forms, partial saving, as well as automatic schema validation. In this presentation we will demonstrate a few sample editors, including an FGDC editor and a bare bone editor for ISO 19115/19139. We will also demonstrate the use of templates during the definition phase, with the support of export and import functions. Form pre-population and input validation will also be covered. Theses modules are available as open-source software from the Islandora software foundation, as a component of a larger Drupal-based data archive system. They can be easily installed as stand-alone system, or to be plugged into other existing metadata platforms.
A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations
Christianson, Danielle S.; Varadharajan, Charuleka; Christoffersen, Bradley; ...
2017-06-20
Metadata describe the ancillary information needed for data interpretation, comparison across heterogeneous datasets, and quality control and quality assessment (QA/QC). Metadata enable the synthesis of diverse ecohydrological and biogeochemical observations, an essential step in advancing a predictive understanding of earth systems. Environmental observations can be taken across a wide range of spatiotemporal scales in a variety of measurement settings and approaches, and saved in multiple formats. Thus, well-organized, consistent metadata are required to produce usable data products from diverse observations collected in disparate field sites. However, existing metadata reporting protocols do not support the complex data synthesis needs of interdisciplinarymore » earth system research. We developed a metadata reporting framework (FRAMES) to enable predictive understanding of carbon cycling in tropical forests under global change. FRAMES adheres to best practices for data and metadata organization, enabling consistent data reporting and thus compatibility with a variety of standardized data protocols. We used an iterative scientist-centered design process to develop FRAMES. The resulting modular organization streamlines metadata reporting and can be expanded to incorporate additional data types. The flexible data reporting format incorporates existing field practices to maximize data-entry efficiency. With FRAMES’s multi-scale measurement position hierarchy, data can be reported at observed spatial resolutions and then easily aggregated and linked across measurement types to support model-data integration. FRAMES is in early use by both data providers and users. Here in this article, we describe FRAMES, identify lessons learned, and discuss areas of future development.« less
Handling Metadata in a Neurophysiology Laboratory
Zehl, Lyuba; Jaillet, Florent; Stoewer, Adrian; Grewe, Jan; Sobolev, Andrey; Wachtler, Thomas; Brochier, Thomas G.; Riehle, Alexa; Denker, Michael; Grün, Sonja
2016-01-01
To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework. PMID:27486397
Handling Metadata in a Neurophysiology Laboratory.
Zehl, Lyuba; Jaillet, Florent; Stoewer, Adrian; Grewe, Jan; Sobolev, Andrey; Wachtler, Thomas; Brochier, Thomas G; Riehle, Alexa; Denker, Michael; Grün, Sonja
2016-01-01
To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework.
A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christianson, Danielle S.; Varadharajan, Charuleka; Christoffersen, Bradley
Metadata describe the ancillary information needed for data interpretation, comparison across heterogeneous datasets, and quality control and quality assessment (QA/QC). Metadata enable the synthesis of diverse ecohydrological and biogeochemical observations, an essential step in advancing a predictive understanding of earth systems. Environmental observations can be taken across a wide range of spatiotemporal scales in a variety of measurement settings and approaches, and saved in multiple formats. Thus, well-organized, consistent metadata are required to produce usable data products from diverse observations collected in disparate field sites. However, existing metadata reporting protocols do not support the complex data synthesis needs of interdisciplinarymore » earth system research. We developed a metadata reporting framework (FRAMES) to enable predictive understanding of carbon cycling in tropical forests under global change. FRAMES adheres to best practices for data and metadata organization, enabling consistent data reporting and thus compatibility with a variety of standardized data protocols. We used an iterative scientist-centered design process to develop FRAMES. The resulting modular organization streamlines metadata reporting and can be expanded to incorporate additional data types. The flexible data reporting format incorporates existing field practices to maximize data-entry efficiency. With FRAMES’s multi-scale measurement position hierarchy, data can be reported at observed spatial resolutions and then easily aggregated and linked across measurement types to support model-data integration. FRAMES is in early use by both data providers and users. Here in this article, we describe FRAMES, identify lessons learned, and discuss areas of future development.« less
Streamlining geospatial metadata in the Semantic Web
NASA Astrophysics Data System (ADS)
Fugazza, Cristiano; Pepe, Monica; Oggioni, Alessandro; Tagliolato, Paolo; Carrara, Paola
2016-04-01
In the geospatial realm, data annotation and discovery rely on a number of ad-hoc formats and protocols. These have been created to enable domain-specific use cases generalized search is not feasible for. Metadata are at the heart of the discovery process and nevertheless they are often neglected or encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Linked Open Data (LOD) movement did not induce so far a consistent, interlinked baseline in the geospatial domain. In a nutshell, datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated on different systems, seldom consistently. Instead, our workflow for metadata management envisages i) editing via customizable web- based forms, ii) encoding of records in any XML application profile, iii) translation into RDF (involving the semantic lift of metadata records), and finally iv) storage of the metadata as RDF and back-translation into the original XML format with added semantics-aware features. Phase iii) hinges on relating resource metadata to RDF data structures that represent keywords from code lists and controlled vocabularies, toponyms, researchers, institutes, and virtually any description one can retrieve (or directly publish) in the LOD Cloud. In the context of a distributed Spatial Data Infrastructure (SDI) built on free and open-source software, we detail phases iii) and iv) of our workflow for the semantics-aware management of geospatial metadata.
Multi-facetted Metadata - Describing datasets with different metadata schemas at the same time
NASA Astrophysics Data System (ADS)
Ulbricht, Damian; Klump, Jens; Bertelmann, Roland
2013-04-01
Inspired by the wish to re-use research data a lot of work is done to bring data systems of the earth sciences together. Discovery metadata is disseminated to data portals to allow building of customized indexes of catalogued dataset items. Data that were once acquired in the context of a scientific project are open for reappraisal and can now be used by scientists that were not part of the original research team. To make data re-use easier, measurement methods and measurement parameters must be documented in an application metadata schema and described in a written publication. Linking datasets to publications - as DataCite [1] does - requires again a specific metadata schema and every new use context of the measured data may require yet another metadata schema sharing only a subset of information with the meta information already present. To cope with the problem of metadata schema diversity in our common data repository at GFZ Potsdam we established a solution to store file-based research data and describe these with an arbitrary number of metadata schemas. Core component of the data repository is an eSciDoc infrastructure that provides versioned container objects, called eSciDoc [2] "items". The eSciDoc content model allows assigning files to "items" and adding any number of metadata records to these "items". The eSciDoc items can be submitted, revised, and finally published, which makes the data and metadata available through the internet worldwide. GFZ Potsdam uses eSciDoc to support its scientific publishing workflow, including mechanisms for data review in peer review processes by providing temporary web links for external reviewers that do not have credentials to access the data. Based on the eSciDoc API, panMetaDocs [3] provides a web portal for data management in research projects. PanMetaDocs, which is based on panMetaWorks [4], is a PHP based web application that allows to describe data with any XML-based schema. It uses the eSciDoc infrastructures REST-interface to store versioned dataset files and metadata in a XML-format. The software is able to administrate more than one eSciDoc metadata record per item and thus allows the description of a dataset according to its context. The metadata fields can be filled with static or dynamic content to reduce the number of fields that require manual entries to a minimum and, at the same time, make use of contextual information available in a project setting. Access rights can be adjusted to set visibility of datasets to the required degree of openness. Metadata from separate instances of panMetaDocs can be syndicated to portals through RSS and OAI-PMH interfaces. The application architecture presented here allows storing file-based datasets and describe these datasets with any number of metadata schemas, depending on the intended use case. Data and metadata are stored in the same entity (eSciDoc items) and are managed by a software tool through the eSciDoc REST interface - in this case the application is panMetaDocs. Other software may re-use the produced items and modify the appropriate metadata records by accessing the web API of the eSciDoc data infrastructure. For presentation of the datasets in a web browser we are not bound to panMetaDocs. This is done by stylesheet transformation of the eSciDoc-item. [1] http://www.datacite.org [2] http://www.escidoc.org , eSciDoc, FIZ Karlruhe, Germany [3] http://panmetadocs.sf.net , panMetaDocs, GFZ Potsdam, Germany [4] http://metaworks.pangaea.de , panMetaWorks, Dr. R. Huber, MARUM, Univ. Bremen, Germany
Perspective: Interactive material property databases through aggregation of literature data
NASA Astrophysics Data System (ADS)
Seshadri, Ram; Sparks, Taylor D.
2016-05-01
Searchable, interactive, databases of material properties, particularly those relating to functional materials (magnetics, thermoelectrics, photovoltaics, etc.) are curiously missing from discussions of machine-learning and other data-driven methods for advancing new materials discovery. Here we discuss the manual aggregation of experimental data from the published literature for the creation of interactive databases that allow the original experimental data as well additional metadata to be visualized in an interactive manner. The databases described involve materials for thermoelectric energy conversion, and for the electrodes of Li-ion batteries. The data can be subject to machine-learning, accelerating the discovery of new materials.
78 FR 67352 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
...-75-001. Applicants: Entergy Arkansas, Inc. Description: Metadata Correction--Sec. 1.01 Amendment to.... Description: Metadata Correction--Section 1.01 Amendment to be effective 12/31/9998. Filed Date: 10/25/13...: Entergy Louisiana, LLC. Description: Metadata Correction--Section 1.01 Amendment to be effective 12/31...
ERIC Educational Resources Information Center
White, Hollie C.
2012-01-01
Background: According to Salo (2010), the metadata entered into repositories are "disorganized" and metadata schemes underlying repositories are "arcane". This creates a challenging repository environment in regards to personal information management (PIM) and knowledge organization systems (KOSs). This dissertation research is…
International Metadata Initiatives: Lessons in Bibliographic Control.
ERIC Educational Resources Information Center
Caplan, Priscilla
This paper looks at a subset of metadata schemes, including the Text Encoding Initiative (TEI) header, the Encoded Archival Description (EAD), the Dublin Core Metadata Element Set (DCMES), and the Visual Resources Association (VRA) Core Categories for visual resources. It examines why they developed as they did, major point of difference from…
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2010 CFR
2010-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2012 CFR
2012-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
Leveraging Metadata to Create Better Web Services
ERIC Educational Resources Information Center
Mitchell, Erik
2012-01-01
Libraries have been increasingly concerned with data creation, management, and publication. This increase is partly driven by shifting metadata standards in libraries and partly by the growth of data and metadata repositories being managed by libraries. In order to manage these data sets, libraries are looking for new preservation and discovery…
36 CFR § 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2013 CFR
2013-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2011 CFR
2011-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
36 CFR 1235.48 - What documentation must agencies transfer with electronic records?
Code of Federal Regulations, 2014 CFR
2014-07-01
... digital geospatial data files can include metadata that conforms to the Federal Geographic Data Committee's Content Standards for Digital Geospatial Metadata, as specified in Executive Order 12906 of April... number (301) 837-2903 for digital photographs and metadata, or the National Archives and Records...
Shared Geospatial Metadata Repository for Ontario University Libraries: Collaborative Approaches
ERIC Educational Resources Information Center
Forward, Erin; Leahey, Amber; Trimble, Leanne
2015-01-01
Successfully providing access to special collections of digital geospatial data in academic libraries relies upon complete and accurate metadata. Creating and maintaining metadata using specialized standards is a formidable challenge for libraries. The Ontario Council of University Libraries' Scholars GeoPortal project, which created a shared…
106-17 Telemetry Standards Metadata Configuration Chapter 23
2017-07-01
23-1 23.2 Metadata Description Language ...Chapter 23, July 2017 iii Acronyms HTML Hypertext Markup Language MDL Metadata Description Language PCM pulse code modulation TMATS Telemetry...Attributes Transfer Standard W3C World Wide Web Consortium XML eXtensible Markup Language XSD XML schema document Telemetry Network Standard
Digital Initiatives and Metadata Use in Thailand
ERIC Educational Resources Information Center
SuKantarat, Wichada
2008-01-01
Purpose: This paper aims to provide information about various digital initiatives in libraries in Thailand and especially use of Dublin Core metadata in cataloguing digitized objects in academic and government digital databases. Design/methodology/approach: The author began researching metadata use in Thailand in 2003 and 2004 while on sabbatical…
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras.
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-06-24
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.
McMahon, Christiana; Denaxas, Spiros
2017-11-06
Informed consent is an important feature of longitudinal research studies as it enables the linking of the baseline participant information with administrative data. The lack of standardized models to capture consent elements can lead to substantial challenges. A structured approach to capturing consent-related metadata can address these. a) Explore the state-of-the-art for recording consent; b) Identify key elements of consent required for record linkage; and c) Create and evaluate a novel metadata management model to capture consent-related metadata. The main methodological components of our work were: a) a systematic literature review and qualitative analysis of consent forms; b) the development and evaluation of a novel metadata model. We qualitatively analyzed 61 manuscripts and 30 consent forms. We extracted data elements related to obtaining consent for linkage. We created a novel metadata management model for consent and evaluated it by comparison with the existing standards and by iteratively applying it to case studies. The developed model can facilitate the standardized recording of consent for linkage in longitudinal research studies and enable the linkage of external participant data. Furthermore, it can provide a structured way of recording consent-related metadata and facilitate the harmonization and streamlining of processes.
Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras
Jung, Jaehoon; Yoon, Inhye; Lee, Seungwon; Paik, Joonki
2016-01-01
Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i) generation of a three-dimensional (3D) human model; (ii) human object-based automatic scene calibration; and (iii) metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system. PMID:27347961
Evaluating and Improving Metadata for Data Use and Understanding
NASA Astrophysics Data System (ADS)
Habermann, T.
2013-12-01
The last several decades have seen an extraordinary increase in the number and breadth of environmental data available to the scientific community and the general public. These increases have focused the environmental data community on creating metadata for discovering data and on the creation and population of catalogs and portals for facilitating discovery. This focus is reflected in the fields required by commonly used metadata standards and has resulted in collections populated with metadata that meet, but don't go far beyond, minimal discovery requirements. Discovery is the first step towards addressing scientific questions using data. As more data are discovered and accessed, users need metadata that 1) automates use and integration of these data in tools and 2) facilitates understanding the data when it is compared to similar datasets or as internal variations are observed. When data discovery is the primary goal, it is important to create records for as many datasets as possible. The content of these records is controlled by minimum requirements, and evaluation is generally limited to testing for required fields and counting records. As the use and understanding needs become more important, more comprehensive evaluation tools are needed. An approach is described for evaluating existing metadata in the light of these new requirements and for improving the metadata to meet them.
Collaborative Sharing of Multidimensional Space-time Data Using HydroShare
NASA Astrophysics Data System (ADS)
Gan, T.; Tarboton, D. G.; Horsburgh, J. S.; Dash, P. K.; Idaszak, R.; Yi, H.; Blanton, B.
2015-12-01
HydroShare is a collaborative environment being developed for sharing hydrological data and models. It includes capability to upload data in many formats as resources that can be shared. The HydroShare data model for resources uses a specific format for the representation of each type of data and specifies metadata common to all resource types as well as metadata unique to specific resource types. The Network Common Data Form (NetCDF) was chosen as the format for multidimensional space-time data in HydroShare. NetCDF is widely used in hydrological and other geoscience modeling because it contains self-describing metadata and supports the creation of array-oriented datasets that may include three spatial dimensions, a time dimension and other user defined dimensions. For example, NetCDF may be used to represent precipitation or surface air temperature fields that have two dimensions in space and one dimension in time. This presentation will illustrate how NetCDF files are used in HydroShare. When a NetCDF file is loaded into HydroShare, header information is extracted using the "ncdump" utility. Python functions developed for the Django web framework on which HydroShare is based, extract science metadata present in the NetCDF file, saving the user from having to enter it. Where the file follows Climate Forecast (CF) convention and Attribute Convention for Dataset Discovery (ACDD) standards, metadata is thus automatically populated. Users also have the ability to add metadata to the resource that may not have been present in the original NetCDF file. HydroShare's metadata editing functionality then writes this science metadata back into the NetCDF file to maintain consistency between the science metadata in HydroShare and the metadata in the NetCDF file. This further helps researchers easily add metadata information following the CF and ACDD conventions. Additional data inspection and subsetting functions were developed, taking advantage of Python and command line libraries for working with NetCDF files. We describe the design and implementation of these features and illustrate how NetCDF files from a modeling application may be curated in HydroShare and thus enhance reproducibility of the associated research. We also discuss future development planned for multidimensional space-time data in HydroShare.
EUDAT B2FIND : A Cross-Discipline Metadata Service and Discovery Portal
NASA Astrophysics Data System (ADS)
Widmann, Heinrich; Thiemann, Hannes
2016-04-01
The European Data Infrastructure (EUDAT) project aims at a pan-European environment that supports a variety of multiple research communities and individuals to manage the rising tide of scientific data by advanced data management technologies. This led to the establishment of the community-driven Collaborative Data Infrastructure that implements common data services and storage resources to tackle the basic requirements and the specific challenges of international and interdisciplinary research data management. The metadata service B2FIND plays a central role in this context by providing a simple and user-friendly discovery portal to find research data collections stored in EUDAT data centers or in other repositories. For this we store the diverse metadata collected from heterogeneous sources in a comprehensive joint metadata catalogue and make them searchable in an open data portal. The implemented metadata ingestion workflow consists of three steps. First the metadata records - provided either by various research communities or via other EUDAT services - are harvested. Afterwards the raw metadata records are converted and mapped to unified key-value dictionaries as specified by the B2FIND schema. The semantic mapping of the non-uniform, community specific metadata to homogenous structured datasets is hereby the most subtle and challenging task. To assure and improve the quality of the metadata this mapping process is accompanied by • iterative and intense exchange with the community representatives, • usage of controlled vocabularies and community specific ontologies and • formal and semantic validation. Finally the mapped and checked records are uploaded as datasets to the catalogue, which is based on the open source data portal software CKAN. CKAN provides a rich RESTful JSON API and uses SOLR for dataset indexing that enables users to query and search in the catalogue. The homogenization of the community specific data models and vocabularies enables not only the unique presentation of these datasets as tables of field-value pairs but also the faceted, spatial and temporal search in the B2FIND metadata portal. Furthermore the service provides transparent access to the scientific data objects through the given references and identifiers in the metadata. B2FIND offers support for new communities interested in publishing their data within EUDAT. We present here the functionality and the features of the B2FIND service and give an outlook of further developments as interfaces to external libraries and use of Linked Data.
NASA Astrophysics Data System (ADS)
Klump, J. F.; Ulbricht, D.; Conze, R.
2014-12-01
The Continental Deep Drilling Programme (KTB) was a scientific drilling project from 1987 to 1995 near Windischeschenbach, Bavaria. The main super-deep borehole reached a depth of 9,101 meters into the Earth's continental crust. The project used the most current equipment for data capture and processing. After the end of the project key data were disseminated through the web portal of the International Continental Scientific Drilling Program (ICDP). The scientific reports were published as printed volumes. As similar projects have also experienced, it becomes increasingly difficult to maintain a data portal over a long time. Changes in software and underlying hardware make a migration of the entire system inevitable. Around 2009 the data presented on the ICDP web portal were migrated to the Scientific Drilling Database (SDDB) and published through DataCite using Digital Object Identifiers (DOI) as persistent identifiers. The SDDB portal used a relational database with a complex data model to store data and metadata. A PHP-based Content Management System with custom modifications made it possible to navigate and browse datasets using the metadata and then download datasets. The data repository software eSciDoc allows storing self-contained packages consistent with the OAIS reference model. Each package consists of binary data files and XML-metadata. Using a REST-API the packages can be stored in the eSciDoc repository and can be searched using the XML-metadata. During the last maintenance cycle of the SDDB the data and metadata were migrated into the eSciDoc repository. Discovery metadata was generated following the GCMD-DIF, ISO19115 and DataCite schemas. The eSciDoc repository allows to store an arbitrary number of XML-metadata records with each data object. In addition to descriptive metadata each data object may contain pointers to related materials, such as IGSN-metadata to link datasets to physical specimens, or identifiers of literature interpreting the data. Datasets are presented by XSLT-stylesheet transformation using the stored metadata. The presentation shows several migration cycles of data and metadata, which were driven by aging software systems. Currently the datasets reside as self-contained entities in a repository system that is ready for digital preservation.
Effective use of metadata in the integration and analysis of multi-dimensional optical data
NASA Astrophysics Data System (ADS)
Pastorello, G. Z.; Gamon, J. A.
2012-12-01
Data discovery and integration relies on adequate metadata. However, creating and maintaining metadata is time consuming and often poorly addressed or avoided altogether, leading to problems in later data analysis and exchange. This is particularly true for research fields in which metadata standards do not yet exist or are under development, or within smaller research groups without enough resources. Vegetation monitoring using in-situ and remote optical sensing is an example of such a domain. In this area, data are inherently multi-dimensional, with spatial, temporal and spectral dimensions usually being well characterized. Other equally important aspects, however, might be inadequately translated into metadata. Examples include equipment specifications and calibrations, field/lab notes and field/lab protocols (e.g., sampling regimen, spectral calibration, atmospheric correction, sensor view angle, illumination angle), data processing choices (e.g., methods for gap filling, filtering and aggregation of data), quality assurance, and documentation of data sources, ownership and licensing. Each of these aspects can be important as metadata for search and discovery, but they can also be used as key data fields in their own right. If each of these aspects is also understood as an "extra dimension," it is possible to take advantage of them to simplify the data acquisition, integration, analysis, visualization and exchange cycle. Simple examples include selecting data sets of interest early in the integration process (e.g., only data collected according to a specific field sampling protocol) or applying appropriate data processing operations to different parts of a data set (e.g., adaptive processing for data collected under different sky conditions). More interesting scenarios involve guided navigation and visualization of data sets based on these extra dimensions, as well as partitioning data sets to highlight relevant subsets to be made available for exchange. The DAX (Data Acquisition to eXchange) Web-based tool uses a flexible metadata representation model and takes advantage of multi-dimensional data structures to translate metadata types into data dimensions, effectively reshaping data sets according to available metadata. With that, metadata is tightly integrated into the acquisition-to-exchange cycle, allowing for more focused exploration of data sets while also increasing the value of, and incentives for, keeping good metadata. The tool is being developed and tested with optical data collected in different settings, including laboratory, field, airborne, and satellite platforms.
Seeking the Path to Metadata Nirvana
NASA Astrophysics Data System (ADS)
Graybeal, J.
2008-12-01
Scientists have always found reusing other scientists' data challenging. Computers did not fundamentally change the problem, but enabled more and larger instances of it. In fact, by removing human mediation and time delays from the data sharing process, computers emphasize the contextual information that must be exchanged in order to exchange and reuse data. This requirement for contextual information has two faces: "interoperability" when talking about systems, and "the metadata problem" when talking about data. As much as any single organization, the Marine Metadata Interoperability (MMI) project has been tagged with the mission "Solve the metadata problem." Of course, if that goal is achieved, then sustained, interoperable data systems for interdisciplinary observing networks can be easily built -- pesky metadata differences, like which protocol to use for data exchange, or what the data actually measures, will be a thing of the past. Alas, as you might imagine, there will always be complexities and incompatibilities that are not addressed, and data systems that are not interoperable, even within a science discipline. So should we throw up our hands and surrender to the inevitable? Not at all. Rather, we try to minimize metadata problems as much as we can. In this we increasingly progress, despite natural forces that pull in the other direction. Computer systems let us work with more complexity, build community knowledge and collaborations, and preserve and publish our progress and (dis-)agreements. Funding organizations, science communities, and technologists see the importance interoperable systems and metadata, and direct resources toward them. With the new approaches and resources, projects like IPY and MMI can simultaneously define, display, and promote effective strategies for sustainable, interoperable data systems. This presentation will outline the role metadata plays in durable interoperable data systems, for better or worse. It will describe times when "just choosing a standard" can work, and when it probably won't work. And it will point out signs that suggest a metadata storm is coming to your community project, and how you might avoid it. From these lessons we will seek a path to producing interoperable, interdisciplinary, metadata-enlightened environment observing systems.
Sharma, Deepak K; Solbrig, Harold R; Tao, Cui; Weng, Chunhua; Chute, Christopher G; Jiang, Guoqian
2017-06-05
Detailed Clinical Models (DCMs) have been regarded as the basis for retaining computable meaning when data are exchanged between heterogeneous computer systems. To better support clinical cancer data capturing and reporting, there is an emerging need to develop informatics solutions for standards-based clinical models in cancer study domains. The objective of the study is to develop and evaluate a cancer genome study metadata management system that serves as a key infrastructure in supporting clinical information modeling in cancer genome study domains. We leveraged a Semantic Web-based metadata repository enhanced with both ISO11179 metadata standard and Clinical Information Modeling Initiative (CIMI) Reference Model. We used the common data elements (CDEs) defined in The Cancer Genome Atlas (TCGA) data dictionary, and extracted the metadata of the CDEs using the NCI Cancer Data Standards Repository (caDSR) CDE dataset rendered in the Resource Description Framework (RDF). The ITEM/ITEM_GROUP pattern defined in the latest CIMI Reference Model is used to represent reusable model elements (mini-Archetypes). We produced a metadata repository with 38 clinical cancer genome study domains, comprising a rich collection of mini-Archetype pattern instances. We performed a case study of the domain "clinical pharmaceutical" in the TCGA data dictionary and demonstrated enriched data elements in the metadata repository are very useful in support of building detailed clinical models. Our informatics approach leveraging Semantic Web technologies provides an effective way to build a CIMI-compliant metadata repository that would facilitate the detailed clinical modeling to support use cases beyond TCGA in clinical cancer study domains.
BCO-DMO: Enabling Access to Federally Funded Research Data
NASA Astrophysics Data System (ADS)
Kinkade, D.; Allison, M. D.; Chandler, C. L.; Groman, R. C.; Rauch, S.; Shepherd, A.; Gegg, S. R.; Wiebe, P. H.; Glover, D. M.
2013-12-01
In a February, 2013 memo1, the White House Office of Science and Technology Policy (OSTP) outlined principles and objectives to increase access by the public to federally funded research publications and data. Such access is intended to drive innovation by allowing private and commercial efforts to take full advantage of existing resources, thereby maximizing Federal research dollars and efforts. The Biological and Chemical Oceanography Data Management Office (BCO-DMO; bco-dmo.org) serves as a model resource for organizations seeking compliance with the OSTP policy. BCO-DMO works closely with scientific investigators to publish their data from research projects funded by the National Science Foundation (NSF), within the Biological and Chemical Oceanography Sections (OCE) and the Division of Polar Programs Antarctic Organisms & Ecosystems Program (PLR). BCO-DMO addresses many of the OSTP objectives for public access to digital scientific data: (1) Marine biogeochemical and ecological data and metadata are disseminated via a public website, and curated on intermediate time frames; (2) Preservation needs are met by collaborating with appropriate national data facilities for data archive; (3) Cost and administrative burden associated with data management is minimized by the use of one dedicated office providing hundreds of NSF investigators support for data management plan development, data organization, metadata generation and deposition of data and metadata into the BCO-DMO repository; (4) Recognition of intellectual property is reinforced through the office's citation policy and the use of digital object identifiers (DOIs); (5) Education and training in data stewardship and use of the BCO-DMO system is provided by office staff through a variety of venues. Oceanographic research data and metadata from thousands of datasets generated by hundreds of investigators are now available through BCO-DMO. 1 White House Office of Science and Technology Policy, Memorandum for the Heads of Executive Departments and Agencies: Increasing Access to the Results of Federally Funded Scientific Research, February 23, 2013. http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf
NASA Astrophysics Data System (ADS)
Chan, S.; Lehnert, K. A.; Coleman, R. J.
2011-12-01
SESAR, the System for Earth Sample Registration, is an online registry for physical samples collected for Earth and environmental studies. SESAR generates and administers the International Geo Sample Number IGSN, a unique identifier for samples that is dramatically advancing interoperability amongst information systems for sample-based data. SESAR was developed to provide the complete range of registry services, including definition of IGSN syntax and metadata profiles, registration and validation of name spaces requested by users, tools for users to submit and manage sample metadata, validation of submitted metadata, generation and validation of the unique identifiers, archiving of sample metadata, and public or private access to the sample metadata catalog. With the development of SESAR v3, we placed particular emphasis on creating enhanced tools that make metadata submission easier and more efficient for users, and that provide superior functionality for users to manage metadata of their samples in their private workspace MySESAR. For example, SESAR v3 includes a module where users can generate custom spreadsheet templates to enter metadata for their samples, then upload these templates online for sample registration. Once the content of the template is uploaded, it is displayed online in an editable grid format. Validation rules are executed in real-time on the grid data to ensure data integrity. Other new features of SESAR v3 include the capability to transfer ownership of samples to other SESAR users, the ability to upload and store images and other files in a sample metadata profile, and the tracking of changes to sample metadata profiles. In the next version of SESAR (v3.5), we will further improve the discovery, sharing, registration of samples. For example, we are developing a more comprehensive suite of web services that will allow discovery and registration access to SESAR from external systems. Both batch and individual registrations will be possible through web services. Based on valuable feedback from the user community, we will introduce enhancements that add greater flexibility to the system to accommodate the vast diversity of metadata that users want to store. Users will be able to create custom metadata fields and use these for the samples they register. Users will also be able to group samples into 'collections' to make retrieval for research projects or publications easier. An improved interface design will allow for better workflow transition and navigation throughout the application. In keeping up with the demands of a growing community, SESAR has also made process changes to ensure efficiency in system development. For example, we have implemented a release cycle to better track enhancements and fixes to the system, and an API library that facilitates reusability of code. Usage tracking, metrics and surveys capture information to guide the direction of future developments. A new set of administrative tools allows greater control of system management.
VPipe: Virtual Pipelining for Scheduling of DAG Stream Query Plans
NASA Astrophysics Data System (ADS)
Wang, Song; Gupta, Chetan; Mehta, Abhay
There are data streams all around us that can be harnessed for tremendous business and personal advantage. For an enterprise-level stream processing system such as CHAOS [1] (Continuous, Heterogeneous Analytic Over Streams), handling of complex query plans with resource constraints is challenging. While several scheduling strategies exist for stream processing, efficient scheduling of complex DAG query plans is still largely unsolved. In this paper, we propose a novel execution scheme for scheduling complex directed acyclic graph (DAG) query plans with meta-data enriched stream tuples. Our solution, called Virtual Pipelined Chain (or VPipe Chain for short), effectively extends the "Chain" pipelining scheduling approach to complex DAG query plans.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
... Information Technology. SUMMARY: As part of the HHS Open Government Plan, the HealthData.gov Platform (HDP) is... application of existing voluntary consensus standards for metadata common to all open government data, and... vocabulary recommendations for Linked Data publishers, defining cross domain semantic metadata of open...
Inferring Metadata for a Semantic Web Peer-to-Peer Environment
ERIC Educational Resources Information Center
Brase, Jan; Painter, Mark
2004-01-01
Learning Objects Metadata (LOM) aims at describing educational resources in order to allow better reusability and retrieval. In this article we show how additional inference rules allows us to derive additional metadata from existing ones. Additionally, using these rules as integrity constraints helps us to define the constraints on LOM elements,…
ERIC Educational Resources Information Center
Solomou, Georgia; Pierrakeas, Christos; Kameas, Achilles
2015-01-01
The ability to effectively administrate educational resources in terms of accessibility, reusability and interoperability lies in the adoption of an appropriate metadata schema, able of adequately describing them. A considerable number of different educational metadata schemas can be found in literature, with the IEEE LOM being the most widely…
Manifestations of Metadata: From Alexandria to the Web--Old is New Again
ERIC Educational Resources Information Center
Kennedy, Patricia
2008-01-01
This paper is a discussion of the use of metadata, in its various manifestations, to access information. Information management standards are discussed. The connection between the ancient world and the modern world is highlighted. Individual perspectives are paramount in fulfilling information seeking. Metadata is interpreted and reflected upon in…
To Teach or Not to Teach: The Ethics of Metadata
ERIC Educational Resources Information Center
Barnes, Cynthia; Cavaliere, Frank
2009-01-01
Metadata is information about computer-generated documents that is often inadvertently transmitted to others. The problems associated with metadata have become more acute over time as word processing and other popular programs have become more receptive to the concept of collaboration. As more people become involved in the preparation of…
Document Classification in Support of Automated Metadata Extraction Form Heterogeneous Collections
ERIC Educational Resources Information Center
Flynn, Paul K.
2014-01-01
A number of federal agencies, universities, laboratories, and companies are placing their documents online and making them searchable via metadata fields such as author, title, and publishing organization. To enable this, every document in the collection must be catalogued using the metadata fields. Though time consuming, the task of identifying…
Creating FGDC and NBII metadata with Metavist 2005.
David J. Rugg
2004-01-01
This report documents a computer program for creating metadata compliant with the Federal Geographic Data Committee (FGDC) 1998 metadata standard or the National Biological Information Infrastructure (NBII) 1999 Biological Data Profile for the FGDC standard. The software runs under the Microsoft Windows 2000 and XP operating systems, and requires the presence of...
An Assistant for Loading Learning Object Metadata: An Ontology Based Approach
ERIC Educational Resources Information Center
Casali, Ana; Deco, Claudia; Romano, Agustín; Tomé, Guillermo
2013-01-01
In the last years, the development of different Repositories of Learning Objects has been increased. Users can retrieve these resources for reuse and personalization through searches in web repositories. The importance of high quality metadata is key for a successful retrieval. Learning Objects are described with metadata usually in the standard…
iLOG: A Framework for Automatic Annotation of Learning Objects with Empirical Usage Metadata
ERIC Educational Resources Information Center
Miller, L. D.; Soh, Leen-Kiat; Samal, Ashok; Nugent, Gwen
2012-01-01
Learning objects (LOs) are digital or non-digital entities used for learning, education or training commonly stored in repositories searchable by their associated metadata. Unfortunately, based on the current standards, such metadata is often missing or incorrectly entered making search difficult or impossible. In this paper, we investigate…
Representing Hydrologic Models as HydroShare Resources to Facilitate Model Sharing and Collaboration
NASA Astrophysics Data System (ADS)
Castronova, A. M.; Goodall, J. L.; Mbewe, P.
2013-12-01
The CUAHSI HydroShare project is a collaborative effort that aims to provide software for sharing data and models within the hydrologic science community. One of the early focuses of this work has been establishing metadata standards for describing models and model-related data as HydroShare resources. By leveraging this metadata definition, a prototype extension has been developed to create model resources that can be shared within the community using the HydroShare system. The extension uses a general model metadata definition to create resource objects, and was designed so that model-specific parsing routines can extract and populate metadata fields from model input and output files. The long term goal is to establish a library of supported models where, for each model, the system has the ability to extract key metadata fields automatically, thereby establishing standardized model metadata that will serve as the foundation for model sharing and collaboration within HydroShare. The Soil Water & Assessment Tool (SWAT) is used to demonstrate this concept through a case study application.
NASA Astrophysics Data System (ADS)
Mihajlovski, Andrej; Plieger, Maarten; Som de Cerff, Wim; Page, Christian
2016-04-01
The CLIPC project is developing a portal to provide a single point of access for scientific information on climate change. This is made possible through the Copernicus Earth Observation Programme for Europe, which will deliver a new generation of environmental measurements of climate quality. The data about the physical environment which is used to inform climate change policy and adaptation measures comes from several categories: satellite measurements, terrestrial observing systems, model projections and simulations and from re-analyses (syntheses of all available observations constrained with numerical weather prediction systems). These data categories are managed by different communities: CLIPC will provide a single point of access for the whole range of data. The CLIPC portal will provide a number of indicators showing impacts on specific sectors which have been generated using a range of factors selected through structured expert consultation. It will also, as part of the transformation services, allow users to explore the consequences of using different combinations of driving factors which they consider to be of particular relevance to their work or life. The portal will provide information on the scientific quality and pitfalls of such transformations to prevent misleading usage of the results. The CLIPC project will develop an end to end processing chain (indicator tool kit), from comprehensive information on the climate state through to highly aggregated decision relevant products. Indicators of climate change and climate change impact will be provided, and a tool kit to update and post process the collection of indicators will be integrated into the portal. The CLIPC portal has a distributed architecture, making use of OGC services provided by e.g., climate4impact.eu and CEDA. CLIPC has two themes: 1. Harmonized access to climate datasets derived from models, observations and re-analyses 2. A climate impact tool kit to evaluate, rank and aggregate indicators Key is the availability of standardized metadata, describing indicator data and services. This will enable standardization and interoperability between the different distributed services of CLIPC. To disseminate CLIPC indicator data, transformed data products to enable impacts assessments and climate change impact indicators a standardized meta-data infrastructure is provided. The challenge is that compliance of existing metadata to INSPIRE ISO standards and GEMINI standards needs to be extended to further allow the web portal to be generated from the available metadata blueprint. The information provided in the headers of netCDF files available through multiple catalogues, allow us to generate ISO compliant meta data which is in turn used to generate web based interface content, as well as OGC compliant web services such as WCS and WMS for front end and WPS interactions for the scientific users to combine and generate new datasets. The goal of the metadata infrastructure is to provide a blueprint for creating a data driven science portal, generated from the underlying: GIS data, web services and processing infrastructure. In the presentation we will present the results and lessons learned.
XAFS Data Interchange: A single spectrum XAFS data file format.
Ravel, B; Newville, M
We propose a standard data format for the interchange of XAFS data. The XAFS Data Interchange (XDI) standard is meant to encapsulate a single spectrum of XAFS along with relevant metadata. XDI is a text-based format with a simple syntax which clearly delineates metadata from the data table in a way that is easily interpreted both by a computer and by a human. The metadata header is inspired by the format of an electronic mail header, representing metadata names and values as an associative array. The data table is represented as columns of numbers. This format can be imported as is into most existing XAFS data analysis, spreadsheet, or data visualization programs. Along with a specification and a dictionary of metadata types, we provide an application-programming interface written in C and bindings for programming dynamic languages.
XAFS Data Interchange: A single spectrum XAFS data file format
NASA Astrophysics Data System (ADS)
Ravel, B.; Newville, M.
2016-05-01
We propose a standard data format for the interchange of XAFS data. The XAFS Data Interchange (XDI) standard is meant to encapsulate a single spectrum of XAFS along with relevant metadata. XDI is a text-based format with a simple syntax which clearly delineates metadata from the data table in a way that is easily interpreted both by a computer and by a human. The metadata header is inspired by the format of an electronic mail header, representing metadata names and values as an associative array. The data table is represented as columns of numbers. This format can be imported as is into most existing XAFS data analysis, spreadsheet, or data visualization programs. Along with a specification and a dictionary of metadata types, we provide an application-programming interface written in C and bindings for programming dynamic languages.
NASA Astrophysics Data System (ADS)
Wong, John-Michael; Stojadinovic, Bozidar
2005-05-01
A framework has been defined for storing and retrieving civil infrastructure monitoring data over a network. The framework consists of two primary components: metadata and network communications. The metadata component provides the descriptions and data definitions necessary for cataloging and searching monitoring data. The communications component provides Java classes for remotely accessing the data. Packages of Enterprise JavaBeans and data handling utility classes are written to use the underlying metadata information to build real-time monitoring applications. The utility of the framework was evaluated using wireless accelerometers on a shaking table earthquake simulation test of a reinforced concrete bridge column. The NEESgrid data and metadata repository services were used as a backend storage implementation. A web interface was created to demonstrate the utility of the data model and provides an example health monitoring application.
3D mapping of existing observing capabilities in the frame of GAIA-CLIM H2020 project
NASA Astrophysics Data System (ADS)
Emanuele, Tramutola; Madonna, Fabio; Marco, Rosoldi; Francesco, Amato
2017-04-01
The aim of the Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring (GAIA-CLIM) project is to improve our ability to use ground-based and sub-orbital observations to characterise satellite observations for a number of atmospheric Essential Climate Variables (ECVs). The key outcomes will be a "Virtual Observatory" (VO) facility of co-locations and their uncertainties and a report on gaps in capabilities or understanding, which shall be used to inform subsequent Horizon 2020 activities. In particular, Work Package 1 (WP1) of the GAIA-CLIM project is devoted to the geographical mapping of existing non-satellite measurement capabilities for a number of ECVs in the atmospheric, oceanic and terrestrial domains. The work carried out within WP1 has allowed to provide the users with an up-to-date geographical identification, at the European and global scales, of current surface-based, balloon-based and oceanic (floats) observing capabilities on an ECV by ECV basis for several parameters which can be obtained using space-based observations from past, present and planned satellite missions. Having alighted on a set of metadata schema to follow, a consistent collection of discovery metadata has been provided into a common structure and will be made available to users through the GAIA-CLIM VO in 2018. Metadata can be interactively visualized through a 3D Graphical User Interface. The metadataset includes 54 plausible networks and 2 aircraft permanent infrastructures for EO Characterisation in the context of GAIA-CLIM currently operating on different spatial domains and measuring different ECVs using one or more measurement techniques. Each classified network has in addition been assessed for suitability against metrological criteria to identifyy those with a level of maturity which enables closure on a comparison with satellite measurements. The metadata GUI is based on Cesium, a virtual globe freeware and open source written in Javascript. It allows users to apply different filters to the data displayed on the globe, selecting data per ECV, network, measurements type and level of maturity. Filtering is operated with a query to GeoServer web application through the WFS interface on a data layer configured on our DB Postgres with PostGIS extension; filters set on the GUI are expressed using ECQL (Extended Common Query Language). The GUI allows to visualize in real-time the current non-satellite observing capabilities along with the satellite platforms measuring the same ECVs. Satellite ground track and footprint of the instruments on board can be also visualized. This work contributes to improve metadata and web map services and to facilitate users' experience in the spatio-temporal analysis of Earth Observation data.
QualityML: a dictionary for quality metadata encoding
NASA Astrophysics Data System (ADS)
Ninyerola, Miquel; Sevillano, Eva; Serral, Ivette; Pons, Xavier; Zabala, Alaitz; Bastin, Lucy; Masó, Joan
2014-05-01
The scenario of rapidly growing geodata catalogues requires tools focused on facilitate users the choice of products. Having quality fields populated in metadata allow the users to rank and then select the best fit-for-purpose products. In this direction, we have developed the QualityML (http://qualityml.geoviqua.org), a dictionary that contains hierarchically structured concepts to precisely define and relate quality levels: from quality classes to quality measurements. Generically, a quality element is the path that goes from the higher level (quality class) to the lowest levels (statistics or quality metrics). This path is used to encode quality of datasets in the corresponding metadata schemas. The benefits of having encoded quality, in the case of data producers, are related with improvements in their product discovery and better transmission of their characteristics. In the case of data users, particularly decision-makers, they would find quality and uncertainty measures to take the best decisions as well as perform dataset intercomparison. Also it allows other components (such as visualization, discovery, or comparison tools) to be quality-aware and interoperable. On one hand, the QualityML is a profile of the ISO geospatial metadata standards providing a set of rules for precisely documenting quality indicator parameters that is structured in 6 levels. On the other hand, QualityML includes semantics and vocabularies for the quality concepts. Whenever possible, if uses statistic expressions from the UncertML dictionary (http://www.uncertml.org) encoding. However it also extends UncertML to provide list of alternative metrics that are commonly used to quantify quality. A specific example, based on a temperature dataset, is shown below. The annual mean temperature map has been validated with independent in-situ measurements to obtain a global error of 0.5 ° C. Level 0: Quality class (e.g., Thematic accuracy) Level 1: Quality indicator (e.g., Quantitative attribute correctness) Level 2: Measurement field (e.g., DifferentialErrors1D) Level 3: Statistic or Metric (e.g., Half-lengthConfidenceInterval) Level 4: Units (e.g. Celsius degrees) Level 5: Value (e.g.0.5) Level 6: Specifications. Additional information on how the measurement took place, citation of the reference data, the traceability of the process and a publication describing the validation process encoded using new 19157 elements or the GeoViQua (http://www.geoviqua.org) Quality Model (PQM-UQM) extensions to the ISO models. Finally, keep in mind, that QualityML is not just suitable for encoding dataset level but also considers pixel and object level uncertainties. This is done by link the metadata quality descriptions with layers representing not just the data but the uncertainty values associated with each geospatial element.
EnviroAtlas Tree Cover Configuration and Connectivity, Water Background Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The 1-meter resolution tree cover configuration and connectivity map categorizes tree cover into structural elements (e.g. core, edge, connector, etc.). Source imagery varies by community. For specific information about methods and accuracy of each community's tree cover configuration and connectivity classification, consult their individual metadata records: Austin, TX (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B29D2B039-905C-4825-B0B4-9315122D6A9F%7D); Cleveland, OH (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B03cd54e1-4328-402e-ba75-e198ea9fbdc7%7D); Des Moines, IA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B350A83E6-10A2-4D5D-97E6-F7F368D268BB%7D); Durham, NC (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BC337BA5F-8275-4BA8-9647-F63C443F317D%7D); Fresno, CA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B84B98749-9C1C-4679-AE24-9B9C0998EBA5%7D); Green Bay, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B69E48A44-3D30-4E84-A764-38FBDCCAC3D0%7D); Memphis, TN (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BB7313ADA-04F7-4D80-ABBA-77E753AAD002%7D); Milwaukee, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?u
OlyMPUS - The Ontology-based Metadata Portal for Unified Semantics
NASA Astrophysics Data System (ADS)
Huffer, E.; Gleason, J. L.
2015-12-01
The Ontology-based Metadata Portal for Unified Semantics (OlyMPUS), funded by the NASA Earth Science Technology Office Advanced Information Systems Technology program, is an end-to-end system designed to support data consumers and data providers, enabling the latter to register their data sets and provision them with the semantically rich metadata that drives the Ontology-Driven Interactive Search Environment for Earth Sciences (ODISEES). OlyMPUS leverages the semantics and reasoning capabilities of ODISEES to provide data producers with a semi-automated interface for producing the semantically rich metadata needed to support ODISEES' data discovery and access services. It integrates the ODISEES metadata search system with multiple NASA data delivery tools to enable data consumers to create customized data sets for download to their computers, or for NASA Advanced Supercomputing (NAS) facility registered users, directly to NAS storage resources for access by applications running on NAS supercomputers. A core function of NASA's Earth Science Division is research and analysis that uses the full spectrum of data products available in NASA archives. Scientists need to perform complex analyses that identify correlations and non-obvious relationships across all types of Earth System phenomena. Comprehensive analytics are hindered, however, by the fact that many Earth science data products are disparate and hard to synthesize. Variations in how data are collected, processed, gridded, and stored, create challenges for data interoperability and synthesis, which are exacerbated by the sheer volume of available data. Robust, semantically rich metadata can support tools for data discovery and facilitate machine-to-machine transactions with services such as data subsetting, regridding, and reformatting. Such capabilities are critical to enabling the research activities integral to NASA's strategic plans. However, as metadata requirements increase and competing standards emerge, metadata provisioning becomes increasingly burdensome to data producers. The OlyMPUS system helps data providers produce semantically rich metadata, making their data more accessible to data consumers, and helps data consumers quickly discover and download the right data for their research.
GeneLab Analysis Working Group Kick-Off Meeting
NASA Technical Reports Server (NTRS)
Costes, Sylvain V.
2018-01-01
Goals to achieve for GeneLab AWG - GL vision - Review of GeneLab AWG charter Timeline and milestones for 2018 Logistics - Monthly Meeting - Workshop - Internship - ASGSR Introduction of team leads and goals of each group Introduction of all members Q/A Three-tier Client Strategy to Democratize Data Physiological changes, pathway enrichment, differential expression, normalization, processing metadata, reproducibility, Data federation/integration with heterogeneous bioinformatics external databases The GLDS currently serves over 100 omics investigations to the biomedical community via open access. In order to expand the scope of metadata record searches via the GLDS, we designed a metadata warehouse that collects and updates metadata records from external systems housing similar data. To demonstrate the capabilities of federated search and retrieval of these data, we imported metadata records from three open-access data systems into the GLDS metadata warehouse: NCBI's Gene Expression Omnibus (GEO), EBI's PRoteomics IDEntifications (PRIDE) repository, and the Metagenomics Analysis server (MG-RAST). Each of these systems defines metadata for omics data sets differently. One solution to bridge such differences is to employ a common object model (COM) to which each systems' representation of metadata can be mapped. Warehoused metadata records are then transformed at ETL to this single, common representation. Queries generated via the GLDS are then executed against the warehouse, and matching records are shown in the COM representation (Fig. 1). While this approach is relatively straightforward to implement, the volume of the data in the omics domain presents challenges in dealing with latency and currency of records. Furthermore, the lack of a coordinated has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.
New Tools to Document and Manage Data/Metadata: Example NGEE Arctic and ARM
NASA Astrophysics Data System (ADS)
Crow, M. C.; Devarakonda, R.; Killeffer, T.; Hook, L.; Boden, T.; Wullschleger, S.
2017-12-01
Tools used for documenting, archiving, cataloging, and searching data are critical pieces of informatics. This poster describes tools being used in several projects at Oak Ridge National Laboratory (ORNL), with a focus on the U.S. Department of Energy's Next Generation Ecosystem Experiment in the Arctic (NGEE Arctic) and Atmospheric Radiation Measurements (ARM) project, and their usage at different stages of the data lifecycle. The Online Metadata Editor (OME) is used for the documentation and archival stages while a Data Search tool supports indexing, cataloging, and searching. The NGEE Arctic OME Tool [1] provides a method by which researchers can upload their data and provide original metadata with each upload while adhering to standard metadata formats. The tool is built upon a Java SPRING framework to parse user input into, and from, XML output. Many aspects of the tool require use of a relational database including encrypted user-login, auto-fill functionality for predefined sites and plots, and file reference storage and sorting. The Data Search Tool conveniently displays each data record in a thumbnail containing the title, source, and date range, and features a quick view of the metadata associated with that record, as well as a direct link to the data. The search box incorporates autocomplete capabilities for search terms and sorted keyword filters are available on the side of the page, including a map for geo-searching. These tools are supported by the Mercury [2] consortium (funded by DOE, NASA, USGS, and ARM) and developed and managed at Oak Ridge National Laboratory. Mercury is a set of tools for collecting, searching, and retrieving metadata and data. Mercury collects metadata from contributing project servers, then indexes the metadata to make it searchable using Apache Solr, and provides access to retrieve it from the web page. Metadata standards that Mercury supports include: XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115.
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Richard, S. M.; Malik, T.; Hsu, L.; Gupta, A.; Grethe, J. S.; Valentine, D. W., Jr.; Lehnert, K. A.; Bermudez, L. E.; Ozyurt, I. B.; Whitenack, T.; Schachne, A.; Giliarini, A.
2015-12-01
While many geoscience-related repositories and data discovery portals exist, finding information about available resources remains a pervasive problem, especially when searching across multiple domains and catalogs. Inconsistent and incomplete metadata descriptions, disparate access protocols and semantic differences across domains, and troves of unstructured or poorly structured information which is hard to discover and use are major hindrances toward discovery, while metadata compilation and curation remain manual and time-consuming. We report on methodology, main results and lessons learned from an ongoing effort to develop a geoscience-wide catalog of information resources, with consistent metadata descriptions, traceable provenance, and automated metadata enhancement. Developing such a catalog is the central goal of CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability), an EarthCube building block project (earthcube.org/group/cinergi). The key novel technical contributions of the projects include: a) development of a metadata enhancement pipeline and a set of document enhancers to automatically improve various aspects of metadata descriptions, including keyword assignment and definition of spatial extents; b) Community Resource Viewers: online applications for crowdsourcing community resource registry development, curation and search, and channeling metadata to the unified CINERGI inventory, c) metadata provenance, validation and annotation services, d) user interfaces for advanced resource discovery; and e) geoscience-wide ontology and machine learning to support automated semantic tagging and faceted search across domains. We demonstrate these CINERGI components in three types of user scenarios: (1) improving existing metadata descriptions maintained by government and academic data facilities, (2) supporting work of several EarthCube Research Coordination Network projects in assembling information resources for their domains, and (3) enhancing the inventory and the underlying ontology to address several complicated data discovery use cases in hydrology, geochemistry, sedimentology, and critical zone science. Support from the US National Science Foundation under award ICER-1343816 is gratefully acknowledged.
Evaluating and Evolving Metadata in Multiple Dialects
NASA Technical Reports Server (NTRS)
Kozimore, John; Habermann, Ted; Gordon, Sean; Powers, Lindsay
2016-01-01
Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways.
Metadata Evaluation and Improvement: Evolving Analysis and Reporting
NASA Technical Reports Server (NTRS)
Habermann, Ted; Kozimor, John; Gordon, Sean
2017-01-01
ESIP Community members create and manage a large collection of environmental datasets that span multiple decades, the entire globe, and many parts of the solar system. Metadata are critical for discovering, accessing, using and understanding these data effectively and ESIP community members have successfully created large collections of metadata describing these data. As part of the White House Big Earth Data Initiative (BEDI), ESDIS has developed a suite of tools for evaluating these metadata in native dialects with respect to recommendations from many organizations. We will describe those tools and demonstrate evolving techniques for sharing results with data providers.
Park, Yu Rang; Kim*, Ju Han
2006-01-01
Standardized management of data elements (DEs) for Case Report Form (CRF) is crucial in Clinical Trials Information System (CTIS). Traditional CTISs utilize organization-specific definitions and storage methods for Des and CRFs. We developed metadata-based DE management system for clinical trials, Clinical and Histopathological Metadata Registry (CHMR), using international standard for metadata registry (ISO 11179) for the management of cancer clinical trials information. CHMR was evaluated in cancer clinical trials with 1625 DEs extracted from the College of American Pathologists Cancer Protocols for 20 major cancers. PMID:17238675
Metadata to Support Data Warehouse Evolution
NASA Astrophysics Data System (ADS)
Solodovnikova, Darja
The focus of this chapter is metadata necessary to support data warehouse evolution. We present the data warehouse framework that is able to track evolution process and adapt data warehouse schemata and data extraction, transformation, and loading (ETL) processes. We discuss the significant part of the framework, the metadata repository that stores information about the data warehouse, logical and physical schemata and their versions. We propose the physical implementation of multiversion data warehouse in a relational DBMS. For each modification of a data warehouse schema, we outline the changes that need to be made to the repository metadata and in the database.
ERIC Educational Resources Information Center
Alemneh, Daniel Gelaw
2009-01-01
Digital preservation is a significant challenge for cultural heritage institutions and other repositories of digital information resources. Recognizing the critical role of metadata in any successful digital preservation strategy, the Preservation Metadata Implementation Strategies (PREMIS) has been extremely influential on providing a "core" set…
Inconsistencies between Academic E-Book Platforms: A Comparison of Metadata and Search Results
ERIC Educational Resources Information Center
Wiersma, Gabrielle; Tovstiadi, Esta
2017-01-01
This article presents the results of a study of academic e-books that compared the metadata and search results from major academic e-book platforms. The authors collected data and performed a series of test searches designed to produce the same result regardless of platform. Testing, however, revealed metadata-related errors and significant…
ERIC Educational Resources Information Center
Fast, Karl V.; Campbell, D. Grant
2001-01-01
Compares the implied ontological frameworks of the Open Archives Initiative Protocol for Metadata Harvesting and the World Wide Web Consortium's Semantic Web. Discusses current search engine technology, semantic markup, indexing principles of special libraries and online databases, and componentization and the distinction between data and…
Bayesian Modeling of Temporal Coherence in Videos for Entity Discovery and Summarization.
Mitra, Adway; Biswas, Soma; Bhattacharyya, Chiranjib
2017-03-01
A video is understood by users in terms of entities present in it. Entity Discovery is the task of building appearance model for each entity (e.g., a person), and finding all its occurrences in the video. We represent a video as a sequence of tracklets, each spanning 10-20 frames, and associated with one entity. We pose Entity Discovery as tracklet clustering, and approach it by leveraging Temporal Coherence (TC): the property that temporally neighboring tracklets are likely to be associated with the same entity. Our major contributions are the first Bayesian nonparametric models for TC at tracklet-level. We extend Chinese Restaurant Process (CRP) to TC-CRP, and further to Temporally Coherent Chinese Restaurant Franchise (TC-CRF) to jointly model entities and temporal segments using mixture components and sparse distributions. For discovering persons in TV serial videos without meta-data like scripts, these methods show considerable improvement over state-of-the-art approaches to tracklet clustering in terms of clustering accuracy, cluster purity and entity coverage. The proposed methods can perform online tracklet clustering on streaming videos unlike existing approaches, and can automatically reject false tracklets. Finally we discuss entity-driven video summarization- where temporal segments of the video are selected based on the discovered entities, to create a semantically meaningful summary.
Square2 - A Web Application for Data Monitoring in Epidemiological and Clinical Studies
Schmidt, Carsten Oliver; Krabbe, Christine; Schössow, Janka; Albers, Martin; Radke, Dörte; Henke, Jörg
2017-01-01
Valid scientific inferences from epidemiological and clinical studies require high data quality. Data generating departments therefore aim to detect data irregularities as early as possible in order to guide quality management processes. In addition, after the completion of data collections the obtained data quality must be evaluated. This can be challenging in complex studies due to a wide scope of examinations, numerous study variables, multiple examiners, devices, and examination centers. This paper describes a Java EE web application used to monitor and evaluate data quality in institutions with complex and multiple studies, named Square 2 . It uses the Java libraries Apache MyFaces 2, extended by BootsFaces for layout and style. RServe and REngine manage calls to R server processes. All study data and metadata are stored in PostgreSQL. R is the statistics backend and LaTeX is used for the generation of print ready PDF reports. A GUI manages the entire workflow. Square 2 covers all steps in the data monitoring workflow, including the setup of studies and their structure, the handling of metadata for data monitoring purposes, selection of variables, upload of data, statistical analyses, and the generation as well as inspection of quality reports. To take into account data protection issues, Square 2 comprises an extensive user rights and roles concept.
Where-Fi: a dynamic energy-efficient multimedia distribution framework for MANETs
NASA Astrophysics Data System (ADS)
Mohapatra, Shivajit; Carbunar, Bogdan; Pearce, Michael; Chaudhri, Rohit; Vasudevan, Venu
2008-01-01
Next generation mobile ad-hoc applications will revolve around users' need for sharing content/presence information with co-located devices. However, keeping such information fresh requires frequent meta-data exchanges, which could result in significant energy overheads. To address this issue, we propose distributed algorithms for energy efficient dissemination of presence and content usage information between nodes in mobile ad-hoc networks. First, we introduce a content dissemination protocol (called CPMP) for effectively distributing frequent small meta-data updates between co-located devices using multicast. We then develop two distributed algorithms that use the CPMP protocol to achieve "phase locked" wake up cycles for all the participating nodes in the network. The first algorithm is designed for fully-connected networks and then extended in the second to handle hidden terminals. The "phase locked" schedules are then exploited to adaptively transition the network interface to a deep sleep state for energy savings. We have implemented a prototype system (called "Where-Fi") on several Motorola Linux-based cell phone models. Our experimental results show that for all network topologies our algorithms were able to achieve "phase locking" between nodes even in the presence of hidden terminals. Moreover, we achieved battery lifetime extensions of as much as 28% for fully connected networks and about 20% for partially connected networks.
Recovering Nimbus Era Observations at the NASA GES DISC
NASA Technical Reports Server (NTRS)
Meyer, D.; Johnson, J.; Esfandiari, A.; Zamkoff, E.; Al-Jazrawi, A.; Gerasimov, I.; Alcott, G.
2017-01-01
Between 1964 and 1978, NASA launched a series of seven Nimbus meteorological satellites which provided Earth observations for 30 years. These satellites, carrying a total of 33 instruments to observe the Earth at visible, infrared, ultraviolet, and microwave wavelengths, revolutionized weather forecasting, provided early observations of ocean color and atmospheric ozone, and prototyped location-based search and rescue capabilities. The Nimbus series paved the way for a number of currently operational systems such as the EOS (Earth Observation System) Terra, Aqua, and Aura platforms. The original data archive includes both magnetic tapes and film media. These media are well past their expected end of life, placing at risk valuable data that are critical to extending the history of Earth observations back in time. GES DISC (Goddard Earth Sciences Data and Information Services Center) has been incorporating these data into a modern online archive by recovering the digital data files from the tapes, and scanning images of the data from film strips. The digital data products were written on obsolete hardware systems in outdated file formats, and in the absence of metadata standards at that time, were often written in proprietary file structures. Through a tedious and laborious process, oft-corrupted data are recovered, and incomplete metadata and documentation are reconstructed.
McKinney, Bill; Meyer, Peter A; Crosas, Mercè; Sliz, Piotr
2017-01-01
Access to experimental X-ray diffraction image data is important for validation and reproduction of macromolecular models and indispensable for the development of structural biology processing methods. In response to the evolving needs of the structural biology community, we recently established a diffraction data publication system, the Structural Biology Data Grid (SBDG, data.sbgrid.org), to preserve primary experimental datasets supporting scientific publications. All datasets published through the SBDG are freely available to the research community under a public domain dedication license, with metadata compliant with the DataCite Schema (schema.datacite.org). A proof-of-concept study demonstrated community interest and utility. Publication of large datasets is a challenge shared by several fields, and the SBDG has begun collaborating with the Institute for Quantitative Social Science at Harvard University to extend the Dataverse (dataverse.org) open-source data repository system to structural biology datasets. Several extensions are necessary to support the size and metadata requirements for structural biology datasets. In this paper, we describe one such extension-functionality supporting preservation of file system structure within Dataverse-which is essential for both in-place computation and supporting non-HTTP data transfers. © 2016 New York Academy of Sciences.
SIOExplorer: Advances Across Disciplinary and Institutional Boundaries
NASA Astrophysics Data System (ADS)
Miller, S. P.; Clark, D.; Helly, J.; Sutton, D.; Houghton, T.
2004-12-01
Strategies for interoperability have been an underlying theme in the development of the SIOExplorer Digital Library. The project was launched three years ago to stabilize data from 700 cruises by the Scripps Institution of Oceanography (SIO), scattered across distributed laboratories and on various media, mostly off-line, including paper and at-risk magnetic tapes. The need for a comprehensive scalable approach to harvesting data from 40 years of evolving instrumentation, media and formats has resulted in the implementation of a digital library architecture that is ready for interoperability. Key metadata template files maintain the integrity of the metadata and data structures, allowing forward and backward compatibility throughout the project as metadata blocks evolve or data types are added. The overall growth of the library is managed by federating new collections in disciplines as needed, each with their own independent data publishing authority. We now have a total of four collections: SIO Cruises, SIO Photo Archives, the Seamount Catalog, and the new Educators' Collection for learning resources. The data types include high resolution meteorological observations, water profiles, biological and geological samples, gravity, magnetics, seafloor swath mapping sonar files, maps and visualization files. The library transactions across the Internet amount to approximately 50,000 hits and 6 GB of downloads each month. We are currently building a new Geological Collection with thousands of dredged rocks and cores, a Seismic Collection with 30 years of reflection data, and a Physical Oceanography Collection with 50 cruises of Hydrographic Doppler Sonar System (HDSS) deep acoustic current profiling data. For the user, a Java CruiseViewer provides an interactive portal to the all the federated collections. With CruiseViewer, contents can be discovered by keyword or geographic searches over a global map, metadata can be browsed, and objects can be displayed or scheduled for download. For computer applications, REST and SOAP web services are being implemented to allow computer-to-computer interoperability for applications to search and receive data across the Internet. Discussions are underway to extend this approach and establish a digital library at the Woods Hole Oceanographic Institution for cruise data as well as extensive submersible and ROV digital video and mapping data. These efforts have been supported by NSF NSDL, ITR and OCE awards.
Mining dark information resources to develop new informatics capabilities to support science
NASA Astrophysics Data System (ADS)
Ramachandran, Rahul; Maskey, Manil; Bugbee, Kaylin
2016-04-01
Dark information resources are digital resources that organizations collect, process, and store for regular business or operational activities but fail to realize their potential for other purposes. The challenge for any organization is to recognize, identify and effectively exploit these dark information stores. Metadata catalogs at different data centers store dark information resources consisting of structured information, free form descriptions of data and browse images. These information resources are never fully exploited beyond a few fields used for search and discovery. For example, the NASA Earth science catalog holds greater than 6000 data collections, 127 million records for individual files and 67 million browse images. We believe that the information contained in the metadata catalogs and the browse images can be utilized beyond their original design intent to provide new data discovery and exploration pathways to support science and education communities. In this paper we present two research applications using information stored in the metadata catalog in a completely novel way. The first application is designing a data curation service. The objective of the data curation service is to augment the existing data search capabilities. Given a specific atmospheric phenomenon, the data curation service returns the user a ranked list of relevant data sets. Different fields in the metadata records including textual descriptions are mined. A specialized relevancy ranking algorithm has been developed that uses a "bag of words" to define phenomena along with an ensemble of known approaches such as the Jaccard Coefficient, Cosine Similarity and Zone ranking to rank the data sets. This approach is also extended to map from the data set level to data file variable level. The second application is focused on providing a service where a user can search and discover browse images containing specific phenomena from the vast catalog. This service will aid researchers in uncovering interesting event in the data for case study analysis. The challenge of this second application is to bridge the semantic gap between the low level image pixel values and the semantic concept perceived by a user when he or she sees an image. A deep learning algorithm, specifically the Convolution Neural Network (CNN), has been trained and tested to identify three types of Earth science phenomena - Hurricanes, Dust, and Smoke/Haze in MODIS imagery. Latest results from both the applications will be presented in this paper.
Progress and Plans in Support of the Polar Community
NASA Technical Reports Server (NTRS)
Olsen, Lola M.; Meaux, Melanie F.
2006-01-01
Feedback provided by the Antarctic community has proven instrumental in positively influencing the direction of the GCMD's development. For example, in response to requests for a stand alone metadata authoring tool, a new shareable software package called docBUILDER solo will be released to the public in March 2006. This tool permits researchers to document their data during experiments and observational periods in the field. The international polar community has also played a key role in encouraging support for the foreign language character set in the metadata display and tools (10% of the records in the AMD hold foreign characters). In the upcoming release, the full ISO character set, which also includes mathematical symbols, will be supported. Additional upgrades include the ability for users to search for data sets based on pre-selected temporal and spatial resolution ranges. Data providers are strongly encouraged to populate the resolution fields for their data sets, although these fields are not currently required. In prior versions, browser incompatibilities often resulted in unreliable performance for users attempting to initiate a spatial search using a map based on Java applet technology. The GCMD will offer an integrated Google map and date search, replacing the applet technology and enhancing the geospatial and temporal searches. It is estimated that 30% of the records in the AMD have direct access to data. A growing number of these records can be accessed through data service links. Related data services are therefore becoming valuable assets in facilitating the use and visualization of data. Users will gain the ability to refine services using the same options as those available for data set searches. Data providers are encouraged to describe available data-related services through the directory. Future plans include offering web services through a SOAP interface and extending semantic queries for the polar regions through the use of ontologies. The Open Archives Initiative's (OAI) Protocol for Metadata Harvesting (PMH) has been successfully tested with several organizations and appears to be a prime candidate for sharing metadata within the community. The GCMD anticipates contributing to the design of the data management system for the International Polar Year and to the ongoing efforts in the years to come. Further enhancements will be discussed at the meeting.
Improvements to the Ontology-based Metadata Portal for Unified Semantics (OlyMPUS)
NASA Astrophysics Data System (ADS)
Linsinbigler, M. A.; Gleason, J. L.; Huffer, E.
2016-12-01
The Ontology-based Metadata Portal for Unified Semantics (OlyMPUS), funded by the NASA Earth Science Technology Office Advanced Information Systems Technology program, is an end-to-end system designed to support Earth Science data consumers and data providers, enabling the latter to register data sets and provision them with the semantically rich metadata that drives the Ontology-Driven Interactive Search Environment for Earth Sciences (ODISEES). OlyMPUS complements the ODISEES' data discovery system with an intelligent tool to enable data producers to auto-generate semantically enhanced metadata and upload it to the metadata repository that drives ODISEES. Like ODISEES, the OlyMPUS metadata provisioning tool leverages robust semantics, a NoSQL database and query engine, an automated reasoning engine that performs first- and second-order deductive inferencing, and uses a controlled vocabulary to support data interoperability and automated analytics. The ODISEES data discovery portal leverages this metadata to provide a seamless data discovery and access experience for data consumers who are interested in comparing and contrasting the multiple Earth science data products available across NASA data centers. Olympus will support scientists' services and tools for performing complex analyses and identifying correlations and non-obvious relationships across all types of Earth System phenomena using the full spectrum of NASA Earth Science data available. By providing an intelligent discovery portal that supplies users - both human users and machines - with detailed information about data products, their contents and their structure, ODISEES will reduce the level of effort required to identify and prepare large volumes of data for analysis. This poster will explain how OlyMPUS leverages deductive reasoning and other technologies to create an integrated environment for generating and exploiting semantically rich metadata.
Chapter 35: Describing Data and Data Collections in the VO
NASA Astrophysics Data System (ADS)
Kent, B. R.; Hanisch, R. J.; Williams, R. D.
The list of numbers: 19.22, 17.23, 18.11, 16.98, and 15.11, is of little intrinsic interest without information about the context in which they appear. For instance, are these daily closing stock prices for your favorite investment, or are they hourly photometric measurements of an increasingly bright quasar? The information needed to define this context is called metadata. Metadata are data about data. Astronomers are familiar with metadata through the headers of FITS files and the names and units associated with columns in a table or database. In the VO, metadata describe the contents of tables, images, and spectra, as well as aggregate collections of data (archives, surveys) and computational services. Moreover, VO metadata are constructed according to rules that avoid ambiguity and make it clear whether, in the example above, the stock prices are in dollars or euros, or the photometry is Johnson V or Sloan g. Organization of data is important in any scientific discipline. Equally crucial are the descriptions of that data: the organization publishing the data, its creator or the person making it available, what instruments were used, units assigned to measurement, calibration status, and data quality assessment. The Virtual Observatory metadata scheme not only applies to datasets, but to resources as well, including data archive facilities, searchable web forms, and online analysis and display tools. Since the scientific output flowing from large datasets depends greatly on how well the data are described, it is important for users to understand the basics of the metadata scheme in order to locate the data that they want and use it correctly. Metadata are the key to data discovery and data and service interoperability in the Virtual Observatory.
Boulos, Maged N; Roudsari, Abdul V; Carson, Ewart R
2002-07-01
HealthCyberMap (http://healthcybermap.semanticweb.org/) aims at mapping Internet health information resources in novel ways for enhanced retrieval and navigation. This is achieved by collecting appropriate resource metadata in an unambiguous form that preserves semantics. We modelled a qualified Dublin Core (DC) metadata set ontology with extra elements for resource quality and geographical provenance in Prot g -2000. A metadata collection form helps acquiring resource instance data within Prot g . The DC subject field is populated with UMLS terms directly imported from UMLS Knowledge Source Server using UMLS tab, a Prot g -2000 plug-in. The project is saved in RDFS/RDF. The ontology and associated form serve as a free tool for building and maintaining an RDF medical resource metadata base. The UMLS tab enables browsing and searching for concepts that best describe a resource, and importing them to DC subject fields. The resultant metadata base can be used with a search and inference engine, and have textual and/or visual navigation interface(s) applied to it, to ultimately build a medical Semantic Web portal. Different ways of exploiting Prot g -2000 RDF output are discussed. By making the context and semantics of resources, not merely their raw text and formatting, amenable to computer 'understanding,' we can build a Semantic Web that is more useful to humans than the current Web. This requires proper use of metadata and ontologies. Clinical codes can reliably describe the subjects of medical resources, establish the semantic relationships (as defined by underlying coding scheme) between related resources, and automate their topical categorisation.
NASA Astrophysics Data System (ADS)
San Gil, Inigo; White, Marshall; Melendez, Eda; Vanderbilt, Kristin
The thirty-year-old United States Long Term Ecological Research Network has developed extensive metadata to document their scientific data. Standard and interoperable metadata is a core component of the data-driven analytical solutions developed by this research network Content management systems offer an affordable solution for rapid deployment of metadata centered information management systems. We developed a customized integrative metadata management system based on the Drupal content management system technology. Building on knowledge and experience with the Sevilleta and Luquillo Long Term Ecological Research sites, we successfully deployed the first two medium-scale customized prototypes. In this paper, we describe the vision behind our Drupal based information management instances, and list the features offered through these Drupal based systems. We also outline the plans to expand the information services offered through these metadata centered management systems. We will conclude with the growing list of participants deploying similar instances.
NASA Astrophysics Data System (ADS)
Baumann, Peter
2013-04-01
There is a traditional saying that metadata are understandable, semantic-rich, and searchable. Data, on the other hand, are big, with no accessible semantics, and just downloadable. Not only has this led to an imbalance of search support form a user perspective, but also underneath to a deep technology divide often using relational databases for metadata and bespoke archive solutions for data. Our vision is that this barrier will be overcome, and data and metadata become searchable likewise, leveraging the potential of semantic technologies in combination with scalability technologies. Ultimately, in this vision ad-hoc processing and filtering will not distinguish any longer, forming a uniformly accessible data universe. In the European EarthServer initiative, we work towards this vision by federating database-style raster query languages with metadata search and geo broker technology. We present our approach taken, how it can leverage OGC standards, the benefits envisaged, and first results.
Distributed metadata in a high performance computing environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Zhang, Zhenhua
A computer-executable method, system, and computer program product for managing meta-data in a distributed storage system, wherein the distributed storage system includes one or more burst buffers enabled to operate with a distributed key-value store, the co computer-executable method, system, and computer program product comprising receiving a request for meta-data associated with a block of data stored in a first burst buffer of the one or more burst buffers in the distributed storage system, wherein the meta data is associated with a key-value, determining which of the one or more burst buffers stores the requested metadata, and upon determination thatmore » a first burst buffer of the one or more burst buffers stores the requested metadata, locating the key-value in a portion of the distributed key-value store accessible from the first burst buffer.« less
Metadata-Driven SOA-Based Application for Facilitation of Real-Time Data Warehousing
NASA Astrophysics Data System (ADS)
Pintar, Damir; Vranić, Mihaela; Skočir, Zoran
Service-oriented architecture (SOA) has already been widely recognized as an effective paradigm for achieving integration of diverse information systems. SOA-based applications can cross boundaries of platforms, operation systems and proprietary data standards, commonly through the usage of Web Services technology. On the other side, metadata is also commonly referred to as a potential integration tool given the fact that standardized metadata objects can provide useful information about specifics of unknown information systems with which one has interest in communicating with, using an approach commonly called "model-based integration". This paper presents the result of research regarding possible synergy between those two integration facilitators. This is accomplished with a vertical example of a metadata-driven SOA-based business process that provides ETL (Extraction, Transformation and Loading) and metadata services to a data warehousing system in need of a real-time ETL support.
Life+ EnvEurope DEIMS - improving access to long-term ecosystem monitoring data in Europe
NASA Astrophysics Data System (ADS)
Kliment, Tomas; Peterseil, Johannes; Oggioni, Alessandro; Pugnetti, Alessandra; Blankman, David
2013-04-01
Long-term ecological (LTER) studies aim at detecting environmental changes and analysing its related drivers. In this respect LTER Europe provides a network of about 450 sites and platforms. However, data on various types of ecosystems and at a broad geographical scale is still not easily available. Managing data resulting from long-term observations is therefore one of the important tasks not only for an LTER site itself but also on the network level. Exchanging and sharing the information within a wider community is a crucial objective in the upcoming years. Due to the fragmented nature of long-term ecological research and monitoring (LTER) in Europe - and also on the global scale - information management has to face several challenges: distributed data sources, heterogeneous data models, heterogeneous data management solutions and the complex domain of ecosystem monitoring with regard to the resulting data. The Life+ EnvEurope project (2010-2013) provides a case study for a workflow using data from the distributed network of LTER-Europe sites. In order to enhance discovery, evaluation and access to data, the EnvEurope Drupal Ecological Information Management System (DEIMS) has been developed. This is based on the first official release of the Drupal metadata editor developed by US LTER. EnvEurope DEIMS consists of three main components: 1) Metadata editor: a web-based client interface to manage metadata of three information resource types - datasets, persons and research sites. A metadata model describing datasets based on Ecological Metadata Language (EML) was developed within the initial phase of the project. A crosswalk to the INSPIRE metadata model was implemented to convey to the currently on-going European activities. Person and research site metadata models defined within the LTER Europe were adapted for the project needs. The three metadata models are interconnected within the system in order to provide easy way to navigate the user among the related resources. 2) Discovery client: provides several search profiles for datasets, persons, research sites and external resources commonly used in the domain, e.g. Catalogue of Life , based on several search patterns ranging from simple full text search, glossary browsing to categorized faceted search. 3) Geo-Viewer: a map client that portrays boundaries and centroids of the research sites as Web Map Service (WMS) layers. Each layer provides a link to both Metadata editor and Discovery client in order to create or discover metadata describing the data collected within the individual research site. Sharing of the dataset metadata with DEIMS is ensured in two ways: XML export of individual metadata records according to the EML schema for inclusion in the international DataOne network, and periodic harvesting of metadata into GeoNetwork catalogue, thus providing catalogue service for web (CSW), which can be invoked by remote clients. The final version of DEIMS will be a pilot implementation for the information system of LTER-Europe, which should establish a common information management framework within the European ecosystem research domain and provide valuable environmental information to other European information infrastructures as SEIS, Copernicus and INSPIRE.
Report from the International Conference on Dublin Core and Metadata Applications, 2001.
ERIC Educational Resources Information Center
Sugimoto, Shigeo; Adachi, Jun; Baker, Thomas; Weibel, Stuart
This paper describes the International Conference on Dublin Core and Metadata Applications 2001 (DC-2001), the ninth major workshop of the Dublin Core Metadata Initiative (DCMI), which was held in Tokyo in October 2001. DC-2001 was a week-long event that included both a workshop and a conference. In the tradition of previous events, the workshop…
Using Open Educational Resources in Course Syllabi
ERIC Educational Resources Information Center
Andreatos, Antonios; Katsoulis, Stavros
2012-01-01
The purpose of this article is (1) to review the advantages of using learning objects (LOs) and open educational resources (OER), (2) to propose the enrichment of course syllabi with LOs/OER, (3) to propose new fields to be included in metadata and ways for embedding metadata in LOs/OER, (4) to review the problem of lack of metadata in Web 2.0…
Metadata Repository for Improved Data Sharing and Reuse Based on HL7 FHIR.
Ulrich, Hannes; Kock, Ann-Kristin; Duhm-Harbeck, Petra; Habermann, Jens K; Ingenerf, Josef
2016-01-01
Unreconciled data structures and formats are a common obstacle to the urgently required sharing and reuse of data within healthcare and medical research. Within the North German Tumor Bank of Colorectal Cancer, clinical and sample data, based on a harmonized data set, is collected and can be pooled by using a hospital-integrated Research Data Management System supporting biobank and study management. Adding further partners who are not using the core data set requires manual adaptations and mapping of data elements. Facing this manual intervention and focusing the reuse of heterogeneous healthcare instance data (value level) and data elements (metadata level), a metadata repository has been developed. The metadata repository is an ISO 11179-3 conformant server application built for annotating and mediating data elements. The implemented architecture includes the translation of metadata information about data elements into the FHIR standard using the FHIR Data Element resource with the ISO 11179 Data Element Extensions. The FHIR-based processing allows exchange of data elements with clinical and research IT systems as well as with other metadata systems. With increasingly annotated and harmonized data elements, data quality and integration can be improved for successfully enabling data analytics and decision support.
Desaules, André
2012-11-01
It is crucial for environmental monitoring to fully control temporal bias, which is the distortion of real data evolution by varying bias through time. Temporal bias cannot be fully controlled by statistics alone but requires appropriate and sufficient metadata, which should be under rigorous and continuous quality assurance and control (QA/QC) to reliably document the degree of consistency of the monitoring system. All presented strategies to detect and control temporal data bias (QA/QC, harmonisation/homogenisation/standardisation, mass balance approach, use of tracers and analogues and control of changing boundary conditions) rely on metadata. The Will Rogers phenomenon, due to subsequent reclassification, is a particular source of temporal data bias introduced to environmental monitoring here. Sources and effects of temporal data bias are illustrated by examples from the Swiss soil monitoring network. The attempt to make a comprehensive compilation and assessment of required metadata for soil contamination monitoring reveals that most metadata are still far from being reliable. This leads to the conclusion that progress in environmental monitoring means further development of the concept of environmental metadata for the sake of temporal data bias control as a prerequisite for reliable interpretations and decisions.
Transformation of HDF-EOS metadata from the ECS model to ISO 19115-based XML
NASA Astrophysics Data System (ADS)
Wei, Yaxing; Di, Liping; Zhao, Baohua; Liao, Guangxuan; Chen, Aijun
2007-02-01
Nowadays, geographic data, such as NASA's Earth Observation System (EOS) data, are playing an increasing role in many areas, including academic research, government decisions and even in people's every lives. As the quantity of geographic data becomes increasingly large, a major problem is how to fully make use of such data in a distributed, heterogeneous network environment. In order for a user to effectively discover and retrieve the specific information that is useful, the geographic metadata should be described and managed properly. Fortunately, the emergence of XML and Web Services technologies greatly promotes information distribution across the Internet. The research effort discussed in this paper presents a method and its implementation for transforming Hierarchical Data Format (HDF)-EOS metadata from the NASA ECS model to ISO 19115-based XML, which will be managed by the Open Geospatial Consortium (OGC) Catalogue Services—Web Profile (CSW). Using XML and international standards rather than domain-specific models to describe the metadata of those HDF-EOS data, and further using CSW to manage the metadata, can allow metadata information to be searched and interchanged more widely and easily, thus promoting the sharing of HDF-EOS data.
Development of an open metadata schema for prospective clinical research (openPCR) in China.
Xu, W; Guan, Z; Sun, J; Wang, Z; Geng, Y
2014-01-01
In China, deployment of electronic data capture (EDC) and clinical data management system (CDMS) for clinical research (CR) is in its very early stage, and about 90% of clinical studies collected and submitted clinical data manually. This work aims to build an open metadata schema for Prospective Clinical Research (openPCR) in China based on openEHR archetypes, in order to help Chinese researchers easily create specific data entry templates for registration, study design and clinical data collection. Singapore Framework for Dublin Core Application Profiles (DCAP) is used to develop openPCR and four steps such as defining the core functional requirements and deducing the core metadata items, developing archetype models, defining metadata terms and creating archetype records, and finally developing implementation syntax are followed. The core functional requirements are divided into three categories: requirements for research registration, requirements for trial design, and requirements for case report form (CRF). 74 metadata items are identified and their Chinese authority names are created. The minimum metadata set of openPCR includes 3 documents, 6 sections, 26 top level data groups, 32 lower data groups and 74 data elements. The top level container in openPCR is composed of public document, internal document and clinical document archetypes. A hierarchical structure of openPCR is established according to Data Structure of Electronic Health Record Architecture and Data Standard of China (Chinese EHR Standard). Metadata attributes are grouped into six parts: identification, definition, representation, relation, usage guides, and administration. OpenPCR is an open metadata schema based on research registration standards, standards of the Clinical Data Interchange Standards Consortium (CDISC) and Chinese healthcare related standards, and is to be publicly available throughout China. It considers future integration of EHR and CR by adopting data structure and data terms in Chinese EHR Standard. Archetypes in openPCR are modularity models and can be separated, recombined, and reused. The authors recommend that the method to develop openPCR can be referenced by other countries when designing metadata schema of clinical research. In the next steps, openPCR should be used in a number of CR projects to test its applicability and to continuously improve its coverage. Besides, metadata schema for research protocol can be developed to structurize and standardize protocol, and syntactical interoperability of openPCR with other related standards can be considered.
Automated Test Methods for XML Metadata
2017-12-28
Group under RCC Task TG-147. This document (Volume VI of the RCC Document 118 series) describes procedures used for evaluating XML metadata documents...including TMATS, MDL, IHAL, and DDML documents. These documents contain specifications or descriptions of artifacts and systems of importance to...the collection and management of telemetry data. The methods defined in this report provide a means of evaluating the suitability of such a metadata
Inigo San Gil; Wade Sheldon; Tom Schmidt; Mark Servilla; Raul Aguilar; Corinna Gries; Tanya Gray; Dawn Field; James Cole; Jerry Yun Pan; Giri Palanisamy; Donald Henshaw; Margaret O' Brien; Linda Kinkel; Kathrine McMahon; Renzo Kottmann; Linda Amaral-Zettler; John Hobbie; Philip Goldstein; Robert P. Guralnick; James Brunt; William K. Michener
2008-01-01
The Genomic Standards Consortium (GSC) invited a representative of the Long-Term Ecological Research (LTER) to its fifth workshop to present the Ecological Metadata Language (EML) metadata standard and its relationship to the Minimum Information about a Genome/Metagenome Sequence (MIGS/MIMS) and its implementation, the Genomic Contextual Data Markup Language (GCDML)....
Automated Transformation of CDISC ODM to OpenClinica.
Gessner, Sophia; Storck, Michael; Hegselmann, Stefan; Dugas, Martin; Soto-Rey, Iñaki
2017-01-01
Due to the increasing use of electronic data capture systems for clinical research, the interest in saving resources by automatically generating and reusing case report forms in clinical studies is growing. OpenClinica, an open-source electronic data capture system enables the reuse of metadata in its own Excel import template, hampering the reuse of metadata defined in other standard formats. One of these standard formats is the Operational Data Model for metadata, administrative and clinical data in clinical studies. This work suggests a mapping from Operational Data Model to OpenClinica and describes the implementation of a converter to automatically generate OpenClinica conform case report forms based upon metadata in the Operational Data Model.
Data Discovery of Big and Diverse Climate Change Datasets - Options, Practices and Challenges
NASA Astrophysics Data System (ADS)
Palanisamy, G.; Boden, T.; McCord, R. A.; Frame, M. T.
2013-12-01
Developing data search tools is a very common, but often confusing, task for most of the data intensive scientific projects. These search interfaces need to be continually improved to handle the ever increasing diversity and volume of data collections. There are many aspects which determine the type of search tool a project needs to provide to their user community. These include: number of datasets, amount and consistency of discovery metadata, ancillary information such as availability of quality information and provenance, and availability of similar datasets from other distributed sources. Environmental Data Science and Systems (EDSS) group within the Environmental Science Division at the Oak Ridge National Laboratory has a long history of successfully managing diverse and big observational datasets for various scientific programs via various data centers such as DOE's Atmospheric Radiation Measurement Program (ARM), DOE's Carbon Dioxide Information and Analysis Center (CDIAC), USGS's Core Science Analytics and Synthesis (CSAS) metadata Clearinghouse and NASA's Distributed Active Archive Center (ORNL DAAC). This talk will showcase some of the recent developments for improving the data discovery within these centers The DOE ARM program recently developed a data discovery tool which allows users to search and discover over 4000 observational datasets. These datasets are key to the research efforts related to global climate change. The ARM discovery tool features many new functions such as filtered and faceted search logic, multi-pass data selection, filtering data based on data quality, graphical views of data quality and availability, direct access to data quality reports, and data plots. The ARM Archive also provides discovery metadata to other broader metadata clearinghouses such as ESGF, IASOA, and GOS. In addition to the new interface, ARM is also currently working on providing DOI metadata records to publishers such as Thomson Reuters and Elsevier. The ARM program also provides a standards based online metadata editor (OME) for PIs to submit their data to the ARM Data Archive. USGS CSAS metadata Clearinghouse aggregates metadata records from several USGS projects and other partner organizations. The Clearinghouse allows users to search and discover over 100,000 biological and ecological datasets from a single web portal. The Clearinghouse also enabled some new data discovery functions such as enhanced geo-spatial searches based on land and ocean classifications, metadata completeness rankings, data linkage via digital object identifiers (DOIs), and semantically enhanced keyword searches. The Clearinghouse also currently working on enabling a dashboard which allows the data providers to look at various statistics such as number their records accessed via the Clearinghouse, most popular keywords, metadata quality report and DOI creation service. The Clearinghouse also publishes metadata records to broader portals such as NSF DataONE and Data.gov. The author will also present how these capabilities are currently reused by the recent and upcoming data centers such as DOE's NGEE-Arctic project. References: [1] Devarakonda, R., Palanisamy, G., Wilson, B. E., & Green, J. M. (2010). Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics, 3(1-2), 87-94. [2]Devarakonda, R., Shrestha, B., Palanisamy, G., Hook, L., Killeffer, T., Krassovski, M., ... & Frame, M. (2014, October). OME: Tool for generating and managing metadata to handle BigData. In BigData Conference (pp. 8-10).
panMetaDocs and DataSync - providing a convenient way to share and publish research data
NASA Astrophysics Data System (ADS)
Ulbricht, D.; Klump, J. F.
2013-12-01
In recent years research institutions, geological surveys and funding organizations started to build infrastructures to facilitate the re-use of research data from previous work. At present, several intermeshed activities are coordinated to make data systems of the earth sciences interoperable and recorded data discoverable. Driven by governmental authorities, ISO19115/19139 emerged as metadata standards for discovery of data and services. Established metadata transport protocols like OAI-PMH and OGC-CSW are used to disseminate metadata to data portals. With the persistent identifiers like DOI and IGSN research data and corresponding physical samples can be given unambiguous names and thus become citable. In summary, these activities focus primarily on 'ready to give away'-data, already stored in an institutional repository and described with appropriate metadata. Many datasets are not 'born' in this state but are produced in small and federated research projects. To make access and reuse of these 'small data' easier, these data should be centrally stored and version controlled from the very beginning of activities. We developed DataSync [1] as supplemental application to the panMetaDocs [2] data exchange platform as a data management tool for small science projects. DataSync is a JAVA-application that runs on a local computer and synchronizes directory trees into an eSciDoc-repository [3] by creating eSciDoc-objects via eSciDocs' REST API. DataSync can be installed on multiple computers and is in this way able to synchronize files of a research team over the internet. XML Metadata can be added as separate files that are managed together with data files as versioned eSciDoc-objects. A project-customized instance of panMetaDocs is provided to show a web-based overview of the previously uploaded file collection and to allow further annotation with metadata inside the eSciDoc-repository. PanMetaDocs is a PHP based web application to assist the creation of metadata in any XML-based metadata schema. To reduce manual entries of metadata to a minimum and make use of contextual information in a project setting, metadata fields can be populated with static or dynamic content. Access rights can be defined to control visibility and access to stored objects. Notifications about recently updated datasets are available by RSS and e-mail and the entire inventory can be harvested via OAI-PMH. panMetaDocs is optimized to be harvested by panFMP [4]. panMetaDocs is able to mint dataset DOIs though DataCite and uses eSciDocs' REST API to transfer eSciDoc-objects from a non-public 'pending'-status to the published status 'released', which makes data and metadata of the published object available worldwide through the internet. The application scenario presented here shows the adoption of open source applications to data sharing and publication of data. An eSciDoc-repository is used as storage for data and metadata. DataSync serves as a file ingester and distributor, whereas panMetaDocs' main function is to annotate the dataset files with metadata to make them ready for publication and sharing with your own team, or with the scientific community.
NASA Astrophysics Data System (ADS)
The U.S. Integrated Ocean Observing System (IOOS) is encouraging public comment on the draft plan for its Data Management and Communications (DMAC∥ component. The deadline for receipt of comments has been extended to 18 November 2003. The plan can be found at http://www.dmac.ocean.us/dacsc/imp_plan.jsp. The plan was developed by the DMAC Steering Committee, which includes representatives from federal and state agencies, private industry, and academia. This committee was tasked by Ocean.US (the national office for IOOS) with the preparation of a detailed, phased DMAC implementation plan, and initial oversight of its implementation. The scope of the plan includes the IOOS DMAC infrastructure, data archive and access, and basic information products needed for assessing the availability and quality of data within IOOS. Four expert teams (Data Transport, Metadata and Data Discovery, Data Archive and Access, Applications and Products), and two outreach teams (Data Facilities Management, and User Outreach), were assembled to assist in developing material for the plan.
MEG-BIDS, the brain imaging data structure extended to magnetoencephalography
Niso, Guiomar; Gorgolewski, Krzysztof J.; Bock, Elizabeth; Brooks, Teon L.; Flandin, Guillaume; Gramfort, Alexandre; Henson, Richard N.; Jas, Mainak; Litvak, Vladimir; T. Moreau, Jeremy; Oostenveld, Robert; Schoffelen, Jan-Mathijs; Tadel, Francois; Wexler, Joseph; Baillet, Sylvain
2018-01-01
We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone. PMID:29917016
MEG-BIDS, the brain imaging data structure extended to magnetoencephalography.
Niso, Guiomar; Gorgolewski, Krzysztof J; Bock, Elizabeth; Brooks, Teon L; Flandin, Guillaume; Gramfort, Alexandre; Henson, Richard N; Jas, Mainak; Litvak, Vladimir; T Moreau, Jeremy; Oostenveld, Robert; Schoffelen, Jan-Mathijs; Tadel, Francois; Wexler, Joseph; Baillet, Sylvain
2018-06-19
We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone.
Modeling of ETL-Processes and Processed Information in Clinical Data Warehousing.
Tute, Erik; Steiner, Jochen
2018-01-01
Literature describes a big potential for reuse of clinical patient data. A clinical data warehouse (CDWH) is a means for that. To support management and maintenance of processes extracting, transforming and loading (ETL) data into CDWHs as well as to ease reuse of metadata between regular IT-management, CDWH and secondary data users by providing a modeling approach. Expert survey and literature review to find requirements and existing modeling techniques. An ETL-modeling-technique was developed extending existing modeling techniques. Evaluation by exemplarily modeling existing ETL-process and a second expert survey. Nine experts participated in the first survey. Literature review yielded 15 included publications. Six existing modeling techniques were identified. A modeling technique extending 3LGM2 and combining it with openEHR information models was developed and evaluated. Seven experts participated in the evaluation. The developed approach can help in management and maintenance of ETL-processes and could serve as interface between regular IT-management, CDWH and secondary data users.
Deck, John; Gaither, Michelle R; Ewing, Rodney; Bird, Christopher E; Davies, Neil; Meyer, Christopher; Riginos, Cynthia; Toonen, Robert J; Crandall, Eric D
2017-08-01
The Genomic Observatories Metadatabase (GeOMe, http://www.geome-db.org/) is an open access repository for geographic and ecological metadata associated with biosamples and genetic data. Whereas public databases have served as vital repositories for nucleotide sequences, they do not accession all the metadata required for ecological or evolutionary analyses. GeOMe fills this need, providing a user-friendly, web-based interface for both data contributors and data recipients. The interface allows data contributors to create a customized yet standard-compliant spreadsheet that captures the temporal and geospatial context of each biosample. These metadata are then validated and permanently linked to archived genetic data stored in the National Center for Biotechnology Information's (NCBI's) Sequence Read Archive (SRA) via unique persistent identifiers. By linking ecologically and evolutionarily relevant metadata with publicly archived sequence data in a structured manner, GeOMe sets a gold standard for data management in biodiversity science.
Metadata management and semantics in microarray repositories.
Kocabaş, F; Can, T; Baykal, N
2011-12-01
The number of microarray and other high-throughput experiments on primary repositories keeps increasing as do the size and complexity of the results in response to biomedical investigations. Initiatives have been started on standardization of content, object model, exchange format and ontology. However, there are backlogs and inability to exchange data between microarray repositories, which indicate that there is a great need for a standard format and data management. We have introduced a metadata framework that includes a metadata card and semantic nets that make experimental results visible, understandable and usable. These are encoded in syntax encoding schemes and represented in RDF (Resource Description Frame-word), can be integrated with other metadata cards and semantic nets, and can be exchanged, shared and queried. We demonstrated the performance and potential benefits through a case study on a selected microarray repository. We concluded that the backlogs can be reduced and that exchange of information and asking of knowledge discovery questions can become possible with the use of this metadata framework.
Deck, John; Gaither, Michelle R.; Ewing, Rodney; Bird, Christopher E.; Davies, Neil; Meyer, Christopher; Riginos, Cynthia; Toonen, Robert J.; Crandall, Eric D.
2017-01-01
The Genomic Observatories Metadatabase (GeOMe, http://www.geome-db.org/) is an open access repository for geographic and ecological metadata associated with biosamples and genetic data. Whereas public databases have served as vital repositories for nucleotide sequences, they do not accession all the metadata required for ecological or evolutionary analyses. GeOMe fills this need, providing a user-friendly, web-based interface for both data contributors and data recipients. The interface allows data contributors to create a customized yet standard-compliant spreadsheet that captures the temporal and geospatial context of each biosample. These metadata are then validated and permanently linked to archived genetic data stored in the National Center for Biotechnology Information’s (NCBI’s) Sequence Read Archive (SRA) via unique persistent identifiers. By linking ecologically and evolutionarily relevant metadata with publicly archived sequence data in a structured manner, GeOMe sets a gold standard for data management in biodiversity science. PMID:28771471
Using RDF and Git to Realize a Collaborative Metadata Repository.
Stöhr, Mark R; Majeed, Raphael W; Günther, Andreas
2018-01-01
The German Center for Lung Research (DZL) is a research network with the aim of researching respiratory diseases. The participating study sites' register data differs in terms of software and coding system as well as data field coverage. To perform meaningful consortium-wide queries through one single interface, a uniform conceptual structure is required covering the DZL common data elements. No single existing terminology includes all our concepts. Potential candidates such as LOINC and SNOMED only cover specific subject areas or are not granular enough for our needs. To achieve a broadly accepted and complete ontology, we developed a platform for collaborative metadata management. The DZL data management group formulated detailed requirements regarding the metadata repository and the user interfaces for metadata editing. Our solution builds upon existing standard technologies allowing us to meet those requirements. Its key parts are RDF and the distributed version control system Git. We developed a software system to publish updated metadata automatically and immediately after performing validation tests for completeness and consistency.
A Prototype Publishing Registry for the Virtual Observatory
NASA Astrophysics Data System (ADS)
Williamson, R.; Plante, R.
2004-07-01
In the Virtual Observatory (VO), a registry helps users locate resources, such as data and services, in a distributed environment. A general framework for VO registries is now under development within the International Virtual Observatory Alliance (IVOA) Registry Working Group. We present a prototype of one component of this framework: the publishing registry. The publishing registry allows data providers to expose metadata descriptions of their resources to the VO environment. Searchable registries can harvest the metadata from many publishing registries and make them searchable by users. We have developed a prototype publishing registry that data providers can install at their sites to publish their resources. The descriptions are exposed using the Open Archive Initiative (OAI) Protocol for Metadata Harvesting. Automating the input of metadata into registries is critical when a provider wishes to describe many resources. We illustrate various strategies for such automation, both currently in use and planned for the future. We also describe how future versions of the registry can adapt automatically to evolving metadata schemas for describing resources.
HTTP-based Search and Ordering Using ECHO's REST-based and OpenSearch APIs
NASA Astrophysics Data System (ADS)
Baynes, K.; Newman, D. J.; Pilone, D.
2012-12-01
Metadata is an important entity in the process of cataloging, discovering, and describing Earth science data. NASA's Earth Observing System (EOS) ClearingHOuse (ECHO) acts as the core metadata repository for EOSDIS data centers, providing a centralized mechanism for metadata and data discovery and retrieval. By supporting both the ESIP's Federated Search API and its own search and ordering interfaces, ECHO provides multiple capabilities that facilitate ease of discovery and access to its ever-increasing holdings. Users are able to search and export metadata in a variety of formats including ISO 19115, json, and ECHO10. This presentation aims to inform technically savvy clients interested in automating search and ordering of ECHO's metadata catalog. The audience will be introduced to practical and applicable examples of end-to-end workflows that demonstrate finding, sub-setting and ordering data that is bound by keyword, temporal and spatial constraints. Interaction with the ESIP OpenSearch Interface will be highlighted, as will ECHO's own REST-based API.
NASA Astrophysics Data System (ADS)
Zschocke, Thomas; Beniest, Jan
The Consultative Group on International Agricultural Re- search (CGIAR) has established a digital repository to share its teaching and learning resources along with descriptive educational information based on the IEEE Learning Object Metadata (LOM) standard. As a critical component of any digital repository, quality metadata are critical not only to enable users to find more easily the resources they require, but also for the operation and interoperability of the repository itself. Studies show that repositories have difficulties in obtaining good quality metadata from their contributors, especially when this process involves many different stakeholders as is the case with the CGIAR as an international organization. To address this issue the CGIAR began investigating the Open ECBCheck as well as the ISO/IEC 19796-1 standard to establish quality protocols for its training. The paper highlights the implications and challenges posed by strengthening the metadata creation workflow for disseminating learning objects of the CGIAR.
Metadata and annotations for multi-scale electrophysiological data.
Bower, Mark R; Stead, Matt; Brinkmann, Benjamin H; Dufendach, Kevin; Worrell, Gregory A
2009-01-01
The increasing use of high-frequency (kHz), long-duration (days) intracranial monitoring from multiple electrodes during pre-surgical evaluation for epilepsy produces large amounts of data that are challenging to store and maintain. Descriptive metadata and clinical annotations of these large data sets also pose challenges to simple, often manual, methods of data analysis. The problems of reliable communication of metadata and annotations between programs, the maintenance of the meanings within that information over long time periods, and the flexibility to re-sort data for analysis place differing demands on data structures and algorithms. Solutions to these individual problem domains (communication, storage and analysis) can be configured to provide easy translation and clarity across the domains. The Multi-scale Annotation Format (MAF) provides an integrated metadata and annotation environment that maximizes code reuse, minimizes error probability and encourages future changes by reducing the tendency to over-fit information technology solutions to current problems. An example of a graphical utility for generating and evaluating metadata and annotations for "big data" files is presented.
Charming Users into Scripting CIAO with Python
NASA Astrophysics Data System (ADS)
Burke, D. J.
2011-07-01
The Science Data Systems group of the Chandra X-ray Center provides a number of scripts and Python modules that extend the capabilities of CIAO. Experience in converting the existing scripts—written in a variety of languages such as bash, csh/tcsh, Perl and S-Lang—to Python, and conversations with users, led to the development of the ciao_contrib.runtool module. This allows users to easily run CIAO tools from Python scripts, and utilizes the metadata provided by the parameter-file system to create an API that provides the flexibility and safety guarantees of the command-line. The module is provided to the user community and is being used within our group to create new scripts.
Twiddlenet: Metadata Tagging and Data Dissemination in Mobile Device Networks
2007-09-01
hosting a distributed data dissemination application. Stated simply, there are a multitude of handheld devices on the market that can communicate in...content ( UGC ) across a network of distributed devices. This sharing is accomplished through the use of descriptive metadata tags that are assigned to a...file once it has been shared. These metadata files are uploaded to a centralized portal and arranged for efficient UGC location and searching
Streamlining Metadata and Data Management for Evolving Digital Libraries
NASA Astrophysics Data System (ADS)
Clark, D.; Miller, S. P.; Peckman, U.; Smith, J.; Aerni, S.; Helly, J.; Sutton, D.; Chase, A.
2003-12-01
What began two years ago as an effort to stabilize the Scripps Institution of Oceanography (SIO) data archives from more than 700 cruises going back 50 years, has now become the operational fully-searchable "SIOExplorer" digital library, complete with thousands of historic photographs, images, maps, full text documents, binary data files, and 3D visualization experiences, totaling nearly 2 terabytes of digital content. Coping with data diversity and complexity has proven to be more challenging than dealing with large volumes of digital data. SIOExplorer has been built with scalability in mind, so that the addition of new data types and entire new collections may be accomplished with ease. It is a federated system, currently interoperating with three independent data-publishing authorities, each responsible for their own quality control, metadata specifications, and content selection. The IT architecture implemented at the San Diego Supercomputer Center (SDSC) streamlines the integration of additional projects in other disciplines with a suite of metadata management and collection building tools for "arbitrary digital objects." Metadata are automatically harvested from data files into domain-specific metadata blocks, and mapped into various specification standards as needed. Metadata can be browsed and objects can be viewed onscreen or downloaded for further analysis, with automatic proprietary-hold request management.
Lindsköld, Lars; Wintell, Mikael; Edgren, Lars; Aspelin, Peter; Lundberg, Nina
2013-07-01
Challenges related to the cross-organizational access of accurate and timely information about a patient's condition has become a critical issue in healthcare. Interoperability of different local sources is necessary. To identify and present missing and semantically incorrect data elements of metadata in the radiology enterprise service that supports cross-organizational sharing of dynamic information about patients' visits, in the Region Västra Götaland, Sweden. Quantitative data elements of metadata were collected yearly from the first Wednesday in March from 2006 to 2011 from the 24 in-house radiology departments in Region Västra Götaland. These radiology departments were organized into four hospital groups and three stand-alone hospitals. Included data elements of metadata were the patient name, patient ID, institutional department name, referring physician's name, and examination description. The majority of missing data elements of metadata was related to the institutional department name for Hospital 2, from 87% in 2007 to 25% in 2011. All data elements of metadata except the patient ID contained semantic errors. For example, for the data element "patient name", only three names out of 3537 were semantically correct. This study shows that the semantics of metadata elements are poorly structured and inconsistently used. Although a cross-organizational solution may technically be fully functional, semantic errors may prevent it from serving as an information infrastructure for collaboration between all departments and hospitals in the region. For interoperability, it is important that the agreed semantic models are implemented in vendor systems using the information infrastructure.
Pathogen metadata platform: software for accessing and analyzing pathogen strain information.
Chang, Wenling E; Peterson, Matthew W; Garay, Christopher D; Korves, Tonia
2016-09-15
Pathogen metadata includes information about where and when a pathogen was collected and the type of environment it came from. Along with genomic nucleotide sequence data, this metadata is growing rapidly and becoming a valuable resource not only for research but for biosurveillance and public health. However, current freely available tools for analyzing this data are geared towards bioinformaticians and/or do not provide summaries and visualizations needed to readily interpret results. We designed a platform to easily access and summarize data about pathogen samples. The software includes a PostgreSQL database that captures metadata useful for disease outbreak investigations, and scripts for downloading and parsing data from NCBI BioSample and BioProject into the database. The software provides a user interface to query metadata and obtain standardized results in an exportable, tab-delimited format. To visually summarize results, the user interface provides a 2D histogram for user-selected metadata types and mapping of geolocated entries. The software is built on the LabKey data platform, an open-source data management platform, which enables developers to add functionalities. We demonstrate the use of the software in querying for a pathogen serovar and for genome sequence identifiers. This software enables users to create a local database for pathogen metadata, populate it with data from NCBI, easily query the data, and obtain visual summaries. Some of the components, such as the database, are modular and can be incorporated into other data platforms. The source code is freely available for download at https://github.com/wchangmitre/bioattribution .
In Interactive, Web-Based Approach to Metadata Authoring
NASA Technical Reports Server (NTRS)
Pollack, Janine; Wharton, Stephen W. (Technical Monitor)
2001-01-01
NASA's Global Change Master Directory (GCMD) serves a growing number of users by assisting the scientific community in the discovery of and linkage to Earth science data sets and related services. The GCMD holds over 8000 data set descriptions in Directory Interchange Format (DIF) and 200 data service descriptions in Service Entry Resource Format (SERF), encompassing the disciplines of geology, hydrology, oceanography, meteorology, and ecology. Data descriptions also contain geographic coverage information, thus allowing researchers to discover data pertaining to a particular geographic location, as well as subject of interest. The GCMD strives to be the preeminent data locator for world-wide directory level metadata. In this vein, scientists and data providers must have access to intuitive and efficient metadata authoring tools. Existing GCMD tools are not currently attracting. widespread usage. With usage being the prime indicator of utility, it has become apparent that current tools must be improved. As a result, the GCMD has released a new suite of web-based authoring tools that enable a user to create new data and service entries, as well as modify existing data entries. With these tools, a more interactive approach to metadata authoring is taken, as they feature a visual "checklist" of data/service fields that automatically update when a field is completed. In this way, the user can quickly gauge which of the required and optional fields have not been populated. With the release of these tools, the Earth science community will be further assisted in efficiently creating quality data and services metadata. Keywords: metadata, Earth science, metadata authoring tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inigo, Gil San; Servilla, Mark; Brunt, James
2008-06-01
The Genomic Standards Consortium (GSC) invited a representative of the Long-Term Ecological Research (LTER) to its fifth workshop to present the Ecological Metadata Language (EML) metadata standard and its relationship to the Minimum Information about a Genome/Metagenome Sequence (MIGS/MIMS) and its implementation, the Genomic Contextual Data Markup Language (GCDML). The LTER is one of the top National Science Foundation (NSF) programs in biology since 1980, representing diverse ecosystems and creating long-term, interdisciplinary research, synthesis of information, and theory. The adoption of EML as the LTER network standard has been key to build network synthesis architectures based on high-quality standardized metadata.more » EML is the NSF-recognized metadata standard for LTER, and EML is a criteria used to review the LTER program progress. At the workshop, a potential crosswalk between the GCDML and EML was explored. Also, collaboration between the LTER and GSC developers was proposed to join efforts toward a common metadata cataloging designer's tool. The community adoption success of a metadata standard depends, among other factors, on the tools and trainings developed to use the standard. LTER's experience in embracing EML may help GSC to achieve similar success. A possible collaboration between LTER and GSC to provide training opportunities for GCDML and the associated tools is being explored. Finally, LTER is investigating EML enhancements to better accommodate genomics data, possibly integrating the GCDML schema into EML. All these action items have been accepted by the LTER contingent, and further collaboration between the GSC and LTER is expected.« less
Gil, Inigo San; Sheldon, Wade; Schmidt, Tom; Servilla, Mark; Aguilar, Raul; Gries, Corinna; Gray, Tanya; Field, Dawn; Cole, James; Pan, Jerry Yun; Palanisamy, Giri; Henshaw, Donald; O'Brien, Margaret; Kinkel, Linda; McMahon, Katherine; Kottmann, Renzo; Amaral-Zettler, Linda; Hobbie, John; Goldstein, Philip; Guralnick, Robert P; Brunt, James; Michener, William K
2008-06-01
The Genomic Standards Consortium (GSC) invited a representative of the Long-Term Ecological Research (LTER) to its fifth workshop to present the Ecological Metadata Language (EML) metadata standard and its relationship to the Minimum Information about a Genome/Metagenome Sequence (MIGS/MIMS) and its implementation, the Genomic Contextual Data Markup Language (GCDML). The LTER is one of the top National Science Foundation (NSF) programs in biology since 1980, representing diverse ecosystems and creating long-term, interdisciplinary research, synthesis of information, and theory. The adoption of EML as the LTER network standard has been key to build network synthesis architectures based on high-quality standardized metadata. EML is the NSF-recognized metadata standard for LTER, and EML is a criteria used to review the LTER program progress. At the workshop, a potential crosswalk between the GCDML and EML was explored. Also, collaboration between the LTER and GSC developers was proposed to join efforts toward a common metadata cataloging designer's tool. The community adoption success of a metadata standard depends, among other factors, on the tools and trainings developed to use the standard. LTER's experience in embracing EML may help GSC to achieve similar success. A possible collaboration between LTER and GSC to provide training opportunities for GCDML and the associated tools is being explored. Finally, LTER is investigating EML enhancements to better accommodate genomics data, possibly integrating the GCDML schema into EML. All these action items have been accepted by the LTER contingent, and further collaboration between the GSC and LTER is expected.
NCPP's Use of Standard Metadata to Promote Open and Transparent Climate Modeling
NASA Astrophysics Data System (ADS)
Treshansky, A.; Barsugli, J. J.; Guentchev, G.; Rood, R. B.; DeLuca, C.
2012-12-01
The National Climate Predictions and Projections (NCPP) Platform is developing comprehensive regional and local information about the evolving climate to inform decision making and adaptation planning. This includes both creating and providing tools to create metadata about the models and processes used to create its derived data products. NCPP is using the Common Information Model (CIM), an ontology developed by a broad set of international partners in climate research, as its metadata language. This use of a standard ensures interoperability within the climate community as well as permitting access to the ecosystem of tools and services emerging alongside the CIM. The CIM itself is divided into a general-purpose (UML & XML) schema which structures metadata documents, and a project or community-specific (XML) Controlled Vocabulary (CV) which constraints the content of metadata documents. NCPP has already modified the CIM Schema to accommodate downscaling models, simulations, and experiments. NCPP is currently developing a CV for use by the downscaling community. Incorporating downscaling into the CIM will lead to several benefits: easy access to the existing CIM Documents describing CMIP5 models and simulations that are being downscaled, access to software tools that have been developed in order to search, manipulate, and visualize CIM metadata, and coordination with national and international efforts such as ES-DOC that are working to make climate model descriptions and datasets interoperable. Providing detailed metadata descriptions which include the full provenance of derived data products will contribute to making that data (and, the models and processes which generated that data) more open and transparent to the user community.
The Chandra Source Catalog: Storage and Interfaces
NASA Astrophysics Data System (ADS)
van Stone, David; Harbo, Peter N.; Tibbetts, Michael S.; Zografou, Panagoula; Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Winkelman, Sherry L.
2009-09-01
The Chandra Source Catalog (CSC) is part of the Chandra Data Archive (CDA) at the Chandra X-ray Center. The catalog contains source properties and associated data objects such as images, spectra, and lightcurves. The source properties are stored in relational databases and the data objects are stored in files with their metadata stored in databases. The CDA supports different versions of the catalog: multiple fixed release versions and a live database version. There are several interfaces to the catalog: CSCview, a graphical interface for building and submitting queries and for retrieving data objects; a command-line interface for property and source searches using ADQL; and VO-compliant services discoverable though the VO registry. This poster describes the structure of the catalog and provides an overview of the interfaces.
EnviroAtlas Estimated Percent Tree Cover Along Walkable Roads Web Service
This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter strip beginning at the estimated road edge. Percent tree cover is calculated for each block between road intersections. Tree cover provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. For specific information about each community's Estimated Percent Tree Cover Along Walkable Roads layer, consult their individual metadata records: Austin, TX (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B4876FD99-C14A-464A-9E31-5CB5F2225687%7D); Cleveland, OH (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B28e3f937-6f22-45c5-98cf-1707b0fc92df%7D); Des Moines, IA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B09FE7D60-B636-405C-BB07-68147DFE8CAF%7D); Durham, NC (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BF341A26B-4972-4C6B-B675-9B5E02F4F25F%7D); Fresno, CA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BB71334B9-C53A-4674-A739-1031969E5163%7D); Green Bay, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BB9AFEBED-9C29-4DB0-8B54-0CAF58BE5A2D%7D); Memphis, TN (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BBE552E7A-A789-4AA9-ADF9-234109C6517E%7D); Mi
Increasing the international visibility of research data by a joint metadata schema
NASA Astrophysics Data System (ADS)
Svoboda, Nikolai; Zoarder, Muquit; Gärtner, Philipp; Hoffmann, Carsten; Heinrich, Uwe
2017-04-01
The BonaRes Project ("Soil as a sustainable resource for the bioeconomy") was launched in 2015 to promote sustainable soil management and to avoid fragmentation of efforts (Wollschläger et al., 2016). For this purpose, an IT infrastructure is being developed to upload, manage, store, and provide research data and its associated metadata. The research data provided by the BonaRes data centre are, in principle, not subject to any restrictions on reuse. For all research data considerable standardized metadata are the key enablers for the effective use of these data. Providing proper metadata is often viewed as an extra burden with further work and resources consumed. In our lecture we underline the benefits of structured and interoperable metadata like: accessibility of data, discovery of data, interpretation of data, linking data and several more and we counter these advantages with the effort of time, personnel and further costs. Building on this, we describe the framework of metadata in BonaRes combining the standards of OGC for description, visualization, exchange and discovery of geodata as well as the schema of DataCite for the publication and citation of this research data. This enables the generation of a DOI, a unique identifier that provides a permanent link to the citable research data. By using OGC standards, data and metadata become interoperable with numerous research data provided via INSPIRE. It enables further services like CSW for harvesting WMS for visualization and WFS for downloading. We explain the mandatory fields that result from our approach and we give a general overview about our metadata architecture implementation. Literature: Wollschläger, U; Helming, K.; Heinrich, U.; Bartke, S.; Kögel-Knabner, I.; Russell, D.; Eberhardt, E. & Vogel, H.-J.: The BonaRes Centre - A virtual institute for soil research in the context of a sustainable bio-economy. Geophysical Research Abstracts, Vol. 18, EGU2016-9087, 2016.
Predicting age groups of Twitter users based on language and metadata features
Morgan-Lopez, Antonio A.; Chew, Robert F.; Ruddle, Paul
2017-01-01
Health organizations are increasingly using social media, such as Twitter, to disseminate health messages to target audiences. Determining the extent to which the target audience (e.g., age groups) was reached is critical to evaluating the impact of social media education campaigns. The main objective of this study was to examine the separate and joint predictive validity of linguistic and metadata features in predicting the age of Twitter users. We created a labeled dataset of Twitter users across different age groups (youth, young adults, adults) by collecting publicly available birthday announcement tweets using the Twitter Search application programming interface. We manually reviewed results and, for each age-labeled handle, collected the 200 most recent publicly available tweets and user handles’ metadata. The labeled data were split into training and test datasets. We created separate models to examine the predictive validity of language features only, metadata features only, language and metadata features, and words/phrases from another age-validated dataset. We estimated accuracy, precision, recall, and F1 metrics for each model. An L1-regularized logistic regression model was conducted for each age group, and predicted probabilities between the training and test sets were compared for each age group. Cohen’s d effect sizes were calculated to examine the relative importance of significant features. Models containing both Tweet language features and metadata features performed the best (74% precision, 74% recall, 74% F1) while the model containing only Twitter metadata features were least accurate (58% precision, 60% recall, and 57% F1 score). Top predictive features included use of terms such as “school” for youth and “college” for young adults. Overall, it was more challenging to predict older adults accurately. These results suggest that examining linguistic and Twitter metadata features to predict youth and young adult Twitter users may be helpful for informing public health surveillance and evaluation research. PMID:28850620
Predicting age groups of Twitter users based on language and metadata features.
Morgan-Lopez, Antonio A; Kim, Annice E; Chew, Robert F; Ruddle, Paul
2017-01-01
Health organizations are increasingly using social media, such as Twitter, to disseminate health messages to target audiences. Determining the extent to which the target audience (e.g., age groups) was reached is critical to evaluating the impact of social media education campaigns. The main objective of this study was to examine the separate and joint predictive validity of linguistic and metadata features in predicting the age of Twitter users. We created a labeled dataset of Twitter users across different age groups (youth, young adults, adults) by collecting publicly available birthday announcement tweets using the Twitter Search application programming interface. We manually reviewed results and, for each age-labeled handle, collected the 200 most recent publicly available tweets and user handles' metadata. The labeled data were split into training and test datasets. We created separate models to examine the predictive validity of language features only, metadata features only, language and metadata features, and words/phrases from another age-validated dataset. We estimated accuracy, precision, recall, and F1 metrics for each model. An L1-regularized logistic regression model was conducted for each age group, and predicted probabilities between the training and test sets were compared for each age group. Cohen's d effect sizes were calculated to examine the relative importance of significant features. Models containing both Tweet language features and metadata features performed the best (74% precision, 74% recall, 74% F1) while the model containing only Twitter metadata features were least accurate (58% precision, 60% recall, and 57% F1 score). Top predictive features included use of terms such as "school" for youth and "college" for young adults. Overall, it was more challenging to predict older adults accurately. These results suggest that examining linguistic and Twitter metadata features to predict youth and young adult Twitter users may be helpful for informing public health surveillance and evaluation research.
NOAA's Data Catalog and the Federal Open Data Policy
NASA Astrophysics Data System (ADS)
Wengren, M. J.; de la Beaujardiere, J.
2014-12-01
The 2013 Open Data Policy Presidential Directive requires Federal agencies to create and maintain a 'public data listing' that includes all agency data that is currently or will be made publicly-available in the future. The directive requires the use of machine-readable and open formats that make use of 'common core' and extensible metadata formats according to the best practices published in an online repository called 'Project Open Data', to use open licenses where possible, and to adhere to existing metadata and other technology standards to promote interoperability. In order to meet the requirements of the Open Data Policy, the National Oceanic and Atmospheric Administration (NOAA) has implemented an online data catalog that combines metadata from all subsidiary NOAA metadata catalogs into a single master inventory. The NOAA Data Catalog is available to the public for search and discovery, providing access to the NOAA master data inventory through multiple means, including web-based text search, OGC CS-W endpoint, as well as a native Application Programming Interface (API) for programmatic query. It generates on a daily basis the Project Open Data JavaScript Object Notation (JSON) file required for compliance with the Presidential directive. The Data Catalog is based on the open source Comprehensive Knowledge Archive Network (CKAN) software and runs on the Amazon Federal GeoCloud. This presentation will cover topics including mappings of existing metadata in standard formats (FGDC-CSDGM and ISO 19115 XML ) to the Project Open Data JSON metadata schema, representation of metadata elements within the catalog, and compatible metadata sources used to feed the catalog to include Web Accessible Folder (WAF), Catalog Services for the Web (CS-W), and Esri ArcGIS.com. It will also discuss related open source technologies that can be used together to build a spatial data infrastructure compliant with the Open Data Policy.
NASA Astrophysics Data System (ADS)
Devaraju, Anusuriya; Klump, Jens; Tey, Victor; Fraser, Ryan
2016-04-01
Physical samples such as minerals, soil, rocks, water, air and plants are important observational units for understanding the complexity of our environment and its resources. They are usually collected and curated by different entities, e.g., individual researchers, laboratories, state agencies, or museums. Persistent identifiers may facilitate access to physical samples that are scattered across various repositories. They are essential to locate samples unambiguously and to share their associated metadata and data systematically across the Web. The International Geo Sample Number (IGSN) is a persistent, globally unique label for identifying physical samples. The IGSNs of physical samples are registered by end-users (e.g., individual researchers, data centers and projects) through allocating agents. Allocating agents are the institutions acting on behalf of the implementing organization (IGSN e.V.). The Commonwealth Scientific and Industrial Research Organisation CSIRO) is one of the allocating agents in Australia. To implement IGSN in our organisation, we developed a RESTful service and a metadata model. The web service enables a client to register sub-namespaces and multiple samples, and retrieve samples' metadata programmatically. The metadata model provides a framework in which different types of samples may be represented. It is generic and extensible, therefore it may be applied in the context of multi-disciplinary projects. The metadata model has been implemented as an XML schema and a PostgreSQL database. The schema is used to handle sample registrations requests and to disseminate their metadata, whereas the relational database is used to preserve the metadata records. The metadata schema leverages existing controlled vocabularies to minimize the scope for error and incorporates some simplifications to reduce complexity of the schema implementation. The solutions developed have been applied and tested in the context of two sample repositories in CSIRO, the Capricorn Distal Footprints project and the Rock Store.
Solutions for extracting file level spatial metadata from airborne mission data
NASA Astrophysics Data System (ADS)
Schwab, M. J.; Stanley, M.; Pals, J.; Brodzik, M.; Fowler, C.; Icebridge Engineering/Spatial Metadata
2011-12-01
Authors: Michael Stanley Mark Schwab Jon Pals Mary J. Brodzik Cathy Fowler Collaboration: Raytheon EED and NSIDC Raytheon / EED 5700 Rivertech Court Riverdale, MD 20737 NSIDC University of Colorado UCB 449 Boulder, CO 80309-0449 Data sets acquired from satellites and aircraft may differ in many ways. We will focus on the differences in spatial coverage between the two platforms. Satellite data sets over a given period typically cover large geographic regions. These data are collected in a consistent, predictable and well understood manner due to the uniformity of satellite orbits. Since satellite data collection paths are typically smooth and uniform the data from satellite instruments can usually be described with simple spatial metadata. Subsequently, these spatial metadata can be stored and searched easily and efficiently. Conversely, aircraft have significantly more freedom to change paths, circle, overlap, and vary altitude all of which add complexity to the spatial metadata. Aircraft are also subject to wind and other elements that result in even more complicated and unpredictable spatial coverage areas. This unpredictability and complexity makes it more difficult to extract usable spatial metadata from data sets collected on aircraft missions. It is not feasible to use all of the location data from aircraft mission data sets for use as spatial metadata. The number of data points in typical data sets poses serious performance problems for spatial searching. In order to provide efficient spatial searching of the large number of files cataloged in our systems, we need to extract approximate spatial descriptions as geo-polygons from a small number of vertices (fewer than two hundred). We present some of the challenges and solutions for creating airborne mission-derived spatial metadata. We are implementing these methods to create the spatial metadata for insertion of IceBridge mission data into ECS for public access through NSIDC and ECHO but, they are potentially extensible to any aircraft mission data.
Özdemir, Vural; Kolker, Eugene; Hotez, Peter J; Mohin, Sophie; Prainsack, Barbara; Wynne, Brian; Vayena, Effy; Coşkun, Yavuz; Dereli, Türkay; Huzair, Farah; Borda-Rodriguez, Alexander; Bragazzi, Nicola Luigi; Faris, Jack; Ramesar, Raj; Wonkam, Ambroise; Dandara, Collet; Nair, Bipin; Llerena, Adrián; Kılıç, Koray; Jain, Rekha; Reddy, Panga Jaipal; Gollapalli, Kishore; Srivastava, Sanjeeva; Kickbusch, Ilona
2014-01-01
Metadata refer to descriptions about data or as some put it, "data about data." Metadata capture what happens on the backstage of science, on the trajectory from study conception, design, funding, implementation, and analysis to reporting. Definitions of metadata vary, but they can include the context information surrounding the practice of science, or data generated as one uses a technology, including transactional information about the user. As the pursuit of knowledge broadens in the 21(st) century from traditional "science of whats" (data) to include "science of hows" (metadata), we analyze the ways in which metadata serve as a catalyst for responsible and open innovation, and by extension, science diplomacy. In 2015, the United Nations Millennium Development Goals (MDGs) will formally come to an end. Therefore, we propose that metadata, as an ingredient of responsible innovation, can help achieve the Sustainable Development Goals (SDGs) on the post-2015 agenda. Such responsible innovation, as a collective learning process, has become a key component, for example, of the European Union's 80 billion Euro Horizon 2020 R&D Program from 2014-2020. Looking ahead, OMICS: A Journal of Integrative Biology, is launching an initiative for a multi-omics metadata checklist that is flexible yet comprehensive, and will enable more complete utilization of single and multi-omics data sets through data harmonization and greater visibility and accessibility. The generation of metadata that shed light on how omics research is carried out, by whom and under what circumstances, will create an "intervention space" for integration of science with its socio-technical context. This will go a long way to addressing responsible innovation for a fairer and more transparent society. If we believe in science, then such reflexive qualities and commitments attained by availability of omics metadata are preconditions for a robust and socially attuned science, which can then remain broadly respected, independent, and responsibly innovative. "In Sierra Leone, we have not too much electricity. The lights will come on once in a week, and the rest of the month, dark[ness]. So I made my own battery to power light in people's houses." Kelvin Doe (Global Minimum, 2012) MIT Visiting Young Innovator Cambridge, USA, and Sierra Leone "An important function of the (Global) R&D Observatory will be to provide support and training to build capacity in the collection and analysis of R&D flows, and how to link them to the product pipeline." World Health Organization (2013) Draft Working Paper on a Global Health R&D Observatory.
NASA Astrophysics Data System (ADS)
Koppe, Roland; Scientific MaNIDA-Team
2013-04-01
The Marine Network for Integrated Data Access (MaNIDA) aims to build a sustainable e-infrastructure to support discovery and re-use of marine data from distinct data providers in Germany (see related abstracts in session ESSI 1.2). In order to provide users integrated access and retrieval of expedition or cruise metadata, data, services and publications as well as relationships among the various objects, we are developing (web) applications based on state of the art technologies: the Data Portal of German Marine Research. Since the German network of distributed content providers have distinct objectives and mandates for storing digital objects (e.g. long-term data preservation, near real time data, publication repositories), we have to cope with heterogeneous metadata in terms of syntax and semantic, data types and formats as well as access solutions. We have defined a set of core metadata elements which are common to our content providers and therefore useful for discovery and building relationships among objects. Existing catalogues for various types of vocabularies are being used to assure the mapping to community-wide used terms. We distinguish between expedition metadata and continuously harvestable metadata objects from distinct data providers. • Existing expedition metadata from distinct sources is integrated and validated in order to create an expedition metadata catalogue which is used as authoritative source for expedition-related content. The web application allows browsing by e.g. research vessel and date, exploring expeditions and research gaps by tracklines and viewing expedition details (begin/end, ports, platforms, chief scientists, events, etc.). Also expedition-related objects from harvesting are dynamically associated with expedition information and presented to the user. Hence we will provide web services to detailed expedition information. • Other harvestable content is separated into four categories: archived data and data products, near real time data, publications and reports. Reports are a special case of publication, describing cruise planning, cruise reports or popular reports on expeditions and are orthogonal to e.g. peer-reviewed articles. Each object's metadata contains at least: identifier(s) e.g. doi/hdl, title, author(s), date, expedition(s), platform(s) e.g. research vessel Polarstern. Furthermore project(s), parameter(s), device(s) and e.g. geographic coverage are of interest. An international gazetteer resolves geographic coverage to region names and annotates to object metadata. Information is homogenously presented to the user, independent of the underlying format, but adaptable to specific disciplines e.g. bathymetry. Also data access and dissemination information is available to the user as data download link or web services (e.g. WFS, WMS). Based on relationship metadata we are dynamically building graphs of objects to support the user in finding possible relevant associated objects. Technically metadata is based on ISO / OGC standards or provider specification. Metadata is harvested via OAI-PMH or OGC CSW and indexed with Apache Lucene. This enables powerful full-text search, geographic and temporal search as well as faceting. In this presentation we will illustrate the architecture and the current implementation of our integrated approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogalovskii, M.R.
This paper presents a review of problems related to statistical database systems, which are wide-spread in various fields of activity. Statistical databases (SDB) are referred to as databases that consist of data and are used for statistical analysis. Topics under consideration are: SDB peculiarities, properties of data models adequate for SDB requirements, metadata functions, null-value problems, SDB compromise protection problems, stored data compression techniques, and statistical data representation means. Also examined is whether the present Database Management Systems (DBMS) satisfy the SDB requirements. Some actual research directions in SDB systems are considered.
Toolsets for Airborne Data (TAD): Customized Data Merging Function
NASA Astrophysics Data System (ADS)
Benson, A.; Peeters, M. C.; Perez, J.; Parker, L.; Chen, G.
2013-12-01
NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, including a wide range of the trace gases and aerosol properties. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. Prior to the actual toolset development, a comprehensive metadata database was created to compensate for the absence of standardization of the ICARTT data format in which the data is stored. This database tracks the Principal Investigator-provided metadata, and links the measurement variables to a common naming system that was developed as a part of this project. This database is used by the data merging module. Most aircraft data reported during a single flight is not on a consistent time base and is difficult to intercompare. This module provides the user with the ability to merge original data measurements from multiple data providers into a specified time interval or common time base. The database development, common naming scheme and data merge module development will be presented.
The Use of Metadata Visualisation Assist Information Retrieval
2007-10-01
album title, the track length and the genre of music . Again, any of these pieces of information can be used to quickly search and locate specific...that person. Music files also have metadata tags, in a format called ID3. This usually contains information such as the artist, the song title, the...tracks, to provide more information about the entire music collection, or to find similar or diverse tracks within the collection. Metadata is
Comprehensive Optimal Manpower and Personnel Analytic Simulation System (COMPASS)
2009-10-01
4 The EDB consists of 4 major components (some of which are re-usable): 1. Metadata Editor ( MDE ): Also considered a leaf node, the metadata...end-user queries via the QB. The EDB supports multiple instances of the MDE , although currently, only a single instance is recommended. 2 Query...the MSB is a central collection of web services, responsible for the authentication and authorization of users, maintenance of the EDB metadata
Omics Metadata Management Software v. 1 (OMMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Our application, the Omics Metadata Management Software (OMMS), answers both needs, empowering experimentalists to generate intuitive, consistent metadata, and to perform bioinformatics analyses and information management tasks via a simple and intuitive web-based interface. Several use cases with short-read sequence datasets are provided to showcase the full functionality of the OMMS, from metadata curation tasks, to bioinformatics analyses and results management and downloading. The OMMS can be implemented as a stand alone-package for individual laboratories, or can be configured for web-based deployment supporting geographically dispersed research teams. Our software was developed with open-source bundles, is flexible, extensible and easily installedmore » and run by operators with general system administration and scripting language literacy.« less
NASA Astrophysics Data System (ADS)
Boldrini, Enrico; Schaap, Dick M. A.; Nativi, Stefano
2013-04-01
SeaDataNet implements a distributed pan-European infrastructure for Ocean and Marine Data Management whose nodes are maintained by 40 national oceanographic and marine data centers from 35 countries riparian to all European seas. A unique portal makes possible distributed discovery, visualization and access of the available sea data across all the member nodes. Geographic metadata play an important role in such an infrastructure, enabling an efficient documentation and discovery of the resources of interest. In particular: - Common Data Index (CDI) metadata describe the sea datasets, including identification information (e.g. product title, interested area), evaluation information (e.g. data resolution, constraints) and distribution information (e.g. download endpoint, download protocol); - Cruise Summary Reports (CSR) metadata describe cruises and field experiments at sea, including identification information (e.g. cruise title, name of the ship), acquisition information (e.g. utilized instruments, number of samples taken) In the context of the second phase of SeaDataNet (SeaDataNet 2 EU FP7 project, grant agreement 283607, started on October 1st, 2011 for a duration of 4 years) a major target is the setting, adoption and promotion of common international standards, to the benefit of outreach and interoperability with the international initiatives and communities (e.g. OGC, INSPIRE, GEOSS, …). A standardization effort conducted by CNR with the support of MARIS, IFREMER, STFC, BODC and ENEA has led to the creation of a ISO 19115 metadata profile of CDI and its XML encoding based on ISO 19139. The CDI profile is now in its stable version and it's being implemented and adopted by the SeaDataNet community tools and software. The effort has then continued to produce an ISO based metadata model and its XML encoding also for CSR. The metadata elements included in the CSR profile belong to different models: - ISO 19115: E.g. cruise identification information, including title and area of interest; metadata responsible party information - ISO 19115-2: E.g. acquisition information, including date of sampling, instruments used - SeaDataNet: E.g. SeaDataNet community specific, including EDMO and EDMERP code lists Two main guidelines have been followed in the metadata model drafting: - All the obligations and constraints required by both the ISO standards and INSPIRE directive had to be satisfied. These include the presence of specific elements with given cardinality (e.g. mandatory metadata date stamp, mandatory lineage information) - All the content information of legacy CSR format had to be supported by the new metadata model. An XML encoding of the CSR profile has been defined as well. Based on the ISO 19139 XML schema and constraints, it adds the new elements specific of the SeaDataNet community. The associated Schematron rules are used to enforce constraints not enforceable just with the Schema and to validate elements content against the SeaDataNet code lists vocabularies.
Mercury: Reusable software application for Metadata Management, Data Discovery and Access
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce E.
2009-12-01
Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury is itself a reusable toolset for metadata, with current use in 12 different projects. Mercury also supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects To balance these common and project-specific needs, Mercury’s architecture includes three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of configuration files. The harvested files are then passed to the Indexing system, where each of the fields in these structured metadata records are indexed properly, so that the query engine can perform simple, keyword, spatial and temporal searches across these metadata sources. The search user interface software has two API categories; a common core API which is used by all the Mercury user interfaces for querying the index and a customized API for project specific user interfaces. For our work in producing a reusable, portable, robust, feature-rich application, Mercury received a 2008 NASA Earth Science Data Systems Software Reuse Working Group Peer-Recognition Software Reuse Award. The new Mercury system is based on a Service Oriented Architecture and effectively reuses components for various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. The software also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets, integrated shopping cart to order datasets from various data centers (ORNL DAAC, NSIDC) and integrated visualization tools. Other features include: Filtering and dynamic sorting of search results, book-markable search results, save, retrieve, and modify search criteria.
Cleaning by clustering: methodology for addressing data quality issues in biomedical metadata.
Hu, Wei; Zaveri, Amrapali; Qiu, Honglei; Dumontier, Michel
2017-09-18
The ability to efficiently search and filter datasets depends on access to high quality metadata. While most biomedical repositories require data submitters to provide a minimal set of metadata, some such as the Gene Expression Omnibus (GEO) allows users to specify additional metadata in the form of textual key-value pairs (e.g. sex: female). However, since there is no structured vocabulary to guide the submitter regarding the metadata terms to use, consequently, the 44,000,000+ key-value pairs in GEO suffer from numerous quality issues including redundancy, heterogeneity, inconsistency, and incompleteness. Such issues hinder the ability of scientists to hone in on datasets that meet their requirements and point to a need for accurate, structured and complete description of the data. In this study, we propose a clustering-based approach to address data quality issues in biomedical, specifically gene expression, metadata. First, we present three different kinds of similarity measures to compare metadata keys. Second, we design a scalable agglomerative clustering algorithm to cluster similar keys together. Our agglomerative cluster algorithm identified metadata keys that were similar, based on (i) name, (ii) core concept and (iii) value similarities, to each other and grouped them together. We evaluated our method using a manually created gold standard in which 359 keys were grouped into 27 clusters based on six types of characteristics: (i) age, (ii) cell line, (iii) disease, (iv) strain, (v) tissue and (vi) treatment. As a result, the algorithm generated 18 clusters containing 355 keys (four clusters with only one key were excluded). In the 18 clusters, there were keys that were identified correctly to be related to that cluster, but there were 13 keys which were not related to that cluster. We compared our approach with four other published methods. Our approach significantly outperformed them for most metadata keys and achieved the best average F-Score (0.63). Our algorithm identified keys that were similar to each other and grouped them together. Our intuition that underpins cleaning by clustering is that, dividing keys into different clusters resolves the scalability issues for data observation and cleaning, and keys in the same cluster with duplicates and errors can easily be found. Our algorithm can also be applied to other biomedical data types.
Introducing a Web API for Dataset Submission into a NASA Earth Science Data Center
NASA Astrophysics Data System (ADS)
Moroni, D. F.; Quach, N.; Francis-Curley, W.
2016-12-01
As the landscape of data becomes increasingly more diverse in the domain of Earth Science, the challenges of managing and preserving data become more onerous and complex, particularly for data centers on fixed budgets and limited staff. Many solutions already exist to ease the cost burden for the downstream component of the data lifecycle, yet most archive centers are still racing to keep up with the influx of new data that still needs to find a quasi-permanent resting place. For instance, having well-defined metadata that is consistent across the entire data landscape provides for well-managed and preserved datasets throughout the latter end of the data lifecycle. Translators between different metadata dialects are already in operational use, and facilitate keeping older datasets relevant in today's world of rapidly evolving metadata standards. However, very little is done to address the first phase of the lifecycle, which deals with the entry of both data and the corresponding metadata into a system that is traditionally opaque and closed off to external data producers, thus resulting in a significant bottleneck to the dataset submission process. The ATRAC system was the NOAA NCEI's answer to this previously obfuscated barrier to scientists wishing to find a home for their climate data records, providing a web-based entry point to submit timely and accurate metadata and information about a very specific dataset. A couple of NASA's Distributed Active Archive Centers (DAACs) have implemented their own versions of a web-based dataset and metadata submission form including the ASDC and the ORNL DAAC. The Physical Oceanography DAAC is the most recent in the list of NASA-operated DAACs who have begun to offer their own web-based dataset and metadata submission services to data producers. What makes the PO.DAAC dataset and metadata submission service stand out from these pre-existing services is the option of utilizing both a web browser GUI and a RESTful API to facilitate rapid and efficient updating of dataset metadata records by external data producers. Here we present this new service and demonstrate the variety of ways in which a multitude of Earth Science datasets may be submitted in a manner that significantly reduces the time in ensuring that new, vital data reaches the public domain.
Next-Generation Search Engines for Information Retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Hook, Leslie A; Palanisamy, Giri
In the recent years, there have been significant advancements in the areas of scientific data management and retrieval techniques, particularly in terms of standards and protocols for archiving data and metadata. Scientific data is rich, and spread across different places. In order to integrate these pieces together, a data archive and associated metadata should be generated. Data should be stored in a format that can be retrievable and more importantly it should be in a format that will continue to be accessible as technology changes, such as XML. While general-purpose search engines (such as Google or Bing) are useful formore » finding many things on the Internet, they are often of limited usefulness for locating Earth Science data relevant (for example) to a specific spatiotemporal extent. By contrast, tools that search repositories of structured metadata can locate relevant datasets with fairly high precision, but the search is limited to that particular repository. Federated searches (such as Z39.50) have been used, but can be slow and the comprehensiveness can be limited by downtime in any search partner. An alternative approach to improve comprehensiveness is for a repository to harvest metadata from other repositories, possibly with limits based on subject matter or access permissions. Searches through harvested metadata can be extremely responsive, and the search tool can be customized with semantic augmentation appropriate to the community of practice being served. One such system, Mercury, a metadata harvesting, data discovery, and access system, built for researchers to search to, share and obtain spatiotemporal data used across a range of climate and ecological sciences. Mercury is open-source toolset, backend built on Java and search capability is supported by the some popular open source search libraries such as SOLR and LUCENE. Mercury harvests the structured metadata and key data from several data providing servers around the world and builds a centralized index. The harvested files are indexed against SOLR search API consistently, so that it can render search capabilities such as simple, fielded, spatial and temporal searches across a span of projects ranging from land, atmosphere, and ocean ecology. Mercury also provides data sharing capabilities using Open Archive Initiatives Protocol for Metadata Handling (OAI-PMH). In this paper we will discuss about the best practices for archiving data and metadata, new searching techniques, efficient ways of data retrieval and information display.« less
ERIC Educational Resources Information Center
Armstrong, C. J.
1997-01-01
Discusses PICS (Platform for Internet Content Selection), the Centre for Information Quality Management (CIQM), and metadata. Highlights include filtering networked information; the quality of information; and standardizing search engines. (LRW)
Elements of a next generation time-series ASCII data file format for Earth Sciences
NASA Astrophysics Data System (ADS)
Webster, C. J.
2015-12-01
Data in ASCII comma separated value (CSV) format are recognized as the most simple, straightforward and readable type of data present in the geosciences. Many scientific workflows developed over the years rely on data using this simple format. However, there is a need for a lightweight ASCII header format standard that is easy to create and easy to work with. Current OGC grade XML standards are complex and difficult to implement for researchers with few resources. Ideally, such a format should provide the data in CSV for easy consumption by generic applications such as spreadsheets. The format should use an existing time standard. The header should be easily human readable as well as machine parsable. The metadata format should be extendable to allow vocabularies to be adopted as they are created by external standards bodies. The creation of such a format will increase the productivity of software engineers and scientists because fewer translators and checkers would be required. Data in ASCII comma separated value (CSV) format are recognized as the most simple, straightforward and readable type of data present in the geosciences. Many scientific workflows developed over the years rely on data using this simple format. However, there is a need for a lightweight ASCII header format standard that is easy to create and easy to work with. Current OGC grade XML standards are complex and difficult to implement for researchers with few resources. Ideally, such a format would provide the data in CSV for easy consumption by generic applications such as spreadsheets. The format would use existing time standard. The header would be easily human readable as well as machine parsable. The metadata format would be extendable to allow vocabularies to be adopted as they are created by external standards bodies. The creation of such a format would increase the productivity of software engineers and scientists because fewer translators would be required.
EnviroAtlas One Meter Resolution Urban Land Cover Data (2008-2012) Web Service
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas ). The EnviroAtlas One Meter-scale Urban Land Cover (MULC) Data were generated individually for each EnviroAtlas community. Source imagery varies by community. Land cover classes mapped also vary by community and include the following: water, impervious surfaces, soil and barren land, trees, shrub, grass and herbaceous, agriculture, orchards, woody wetlands, and emergent wetlands. Accuracy assessments were completed for each community's classification. For specific information about methods and accuracy of each community's land cover classification, consult their individual metadata records: Austin, TX (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B91A32A9D-96F5-4FA0-BC97-73BAD5D1F158%7D); Cleveland, OH (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B82ab1edf-8fc8-4667-9c52-5a5acffffa34%7D); Des Moines, IA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BA4152198-978D-4C0B-959F-42EABA9C4E1B%7D); Durham, NC (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B2FF66877-A037-4693-9718-D1870AA3F084%7D); Fresno, CA (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B87041CF3-05BC-43C3-82DA-F066267C9871%7D); Green Bay, WI (https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7BD602E7C9-7F53-4C24
Serving Fisheries and Ocean Metadata to Communities Around the World
NASA Technical Reports Server (NTRS)
Meaux, Melanie
2006-01-01
NASA's Global Change Master Directory (GCMD) assists the oceanographic community in the discovery, access, and sharing of scientific data by serving on-line fisheries and ocean metadata to users around the globe. As of January 2006, the directory holds more than 16,300 Earth Science data descriptions and over 1,300 services descriptions. Of these, nearly 4,000 unique ocean-related metadata records are available to the public, with many having direct links to the data. In 2005, the GCMD averaged over 5 million hits a month, with nearly a half million unique hosts for the year. Through the GCMD portal (http://qcrnd.nasa.qov/), users can search vast and growing quantities of data and services using controlled keywords, free-text searches or a combination of both. Users may now refine a search based on topic, location, instrument, platform, project, data center, spatial and temporal coverage. The directory also offers data holders a means to post and search their data through customized portals, i.e. online customized subset metadata directories. The discovery metadata standard used is the Directory Interchange Format (DIF), adopted in 1994. This format has evolved to accommodate other national and international standards such as FGDC and IS019115. Users can submit metadata through easy-to-use online and offline authoring tools. The directory, which also serves as a coordinating node of the International Directory Network (IDN), has been active at the international, regional and national level for many years through its involvement with the Committee on Earth Observation Satellites (CEOS), federal agencies (such as NASA, NOAA, and USGS), international agencies (such as IOC/IODE, UN, and JAXA) and partnerships (such as ESIP, IOOS/DMAC, GOSIC, GLOBEC, OBIS, and GoMODP), sharing experience, knowledge related to metadata and/or data management and interoperability.
The Metadata Coverage Index (MCI): A standardized metric for quantifying database metadata richness.
Liolios, Konstantinos; Schriml, Lynn; Hirschman, Lynette; Pagani, Ioanna; Nosrat, Bahador; Sterk, Peter; White, Owen; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Taylor, Chris; Kyrpides, Nikos C; Field, Dawn
2012-07-30
Variability in the extent of the descriptions of data ('metadata') held in public repositories forces users to assess the quality of records individually, which rapidly becomes impractical. The scoring of records on the richness of their description provides a simple, objective proxy measure for quality that enables filtering that supports downstream analysis. Pivotally, such descriptions should spur on improvements. Here, we introduce such a measure - the 'Metadata Coverage Index' (MCI): the percentage of available fields actually filled in a record or description. MCI scores can be calculated across a database, for individual records or for their component parts (e.g., fields of interest). There are many potential uses for this simple metric: for example; to filter, rank or search for records; to assess the metadata availability of an ad hoc collection; to determine the frequency with which fields in a particular record type are filled, especially with respect to standards compliance; to assess the utility of specific tools and resources, and of data capture practice more generally; to prioritize records for further curation; to serve as performance metrics of funded projects; or to quantify the value added by curation. Here we demonstrate the utility of MCI scores using metadata from the Genomes Online Database (GOLD), including records compliant with the 'Minimum Information about a Genome Sequence' (MIGS) standard developed by the Genomic Standards Consortium. We discuss challenges and address the further application of MCI scores; to show improvements in annotation quality over time, to inform the work of standards bodies and repository providers on the usability and popularity of their products, and to assess and credit the work of curators. Such an index provides a step towards putting metadata capture practices and in the future, standards compliance, into a quantitative and objective framework.
Challenges to Standardization: A Case Study Using Coastal and Deep-Ocean Water Level Data
NASA Astrophysics Data System (ADS)
Sweeney, A. D.; Stroker, K. J.; Mungov, G.; McLean, S. J.
2015-12-01
Sea levels recorded at coastal stations and inferred from deep-ocean pressure observations at the seafloor are submitted for archive in multiple data and metadata formats. These formats include two forms of schema-less XML and a custom binary format accompanied by metadata in a spreadsheet. The authors report on efforts to use existing standards to make this data more discoverable and more useful beyond their initial use in detecting tsunamis. An initial review of data formats for sea level data around the globe revealed heterogeneity in presentation and content. In the absence of a widely-used domain-specific format, we adopted the general model for structuring data and metadata expressed by the Network Common Data Form (netCDF). netCDF has been endorsed by the Open Geospatial Consortium and has the advantages of small size when compared to equivalent plain text representation and provides a standard way of embedding metadata in the same file. We followed the orthogonal time-series profile of the Climate and Forecast discrete sampling geometries as the convention for structuring the data and describing metadata relevant for use. We adhered to the Attribute Convention for Data Discovery for capturing metadata to support user search. Beyond making it possible to structure data and metadata in a standard way, netCDF is supported by multiple software tools in providing programmatic cataloging, access, subsetting, and transformation to other formats. We will describe our successes and failures in adhering to existing standards and provide requirements for either augmenting existing conventions or developing new ones. Some of these enhancements are specific to sea level data, while others are applicable to time-series data in general.
Data Access Based on a Guide Map of the Underwater Wireless Sensor Network
Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Cheng, Albert M. K.
2017-01-01
Underwater wireless sensor networks (UWSNs) represent an area of increasing research interest, as data storage, discovery, and query of UWSNs are always challenging issues. In this paper, a data access based on a guide map (DAGM) method is proposed for UWSNs. In DAGM, the metadata describes the abstracts of data content and the storage location. The center ring is composed of nodes according to the shortest average data query path in the network in order to store the metadata, and the data guide map organizes, diffuses and synchronizes the metadata in the center ring, providing the most time-saving and energy-efficient data query service for the user. For this method, firstly the data is stored in the UWSN. The storage node is determined, the data is transmitted from the sensor node (data generation source) to the storage node, and the metadata is generated for it. Then, the metadata is sent to the center ring node that is the nearest to the storage node and the data guide map organizes the metadata, diffusing and synchronizing it to the other center ring nodes. Finally, when there is query data in any user node, the data guide map will select a center ring node nearest to the user to process the query sentence, and based on the shortest transmission delay and lowest energy consumption, data transmission routing is generated according to the storage location abstract in the metadata. Hence, specific application data transmission from the storage node to the user is completed. The simulation results demonstrate that DAGM has advantages with respect to data access time and network energy consumption. PMID:29039757
Public Participation in Earth Science from the ISS
NASA Technical Reports Server (NTRS)
Willis, Kimberly J.; Runco, Susan K.; Stefanov, William L.
2010-01-01
The Gateway to Astronaut Photography of Earth (GAPE) is an online database (http://eol.jsc.nasa.gov) of terrestrial astronaut photography that enables the public to experience the astronaut s view from orbit. This database of imagery includes all NASA human-directed missions from the Mercury program of the early 1960 s to the current International Space Station (ISS). To date, the total number of images taken by astronauts is 1,025,333. Of the total, 621,316 images have been "cataloged" (image geographic center points determined and descriptive metadata added). The remaining imagery provides an opportunity for the citizen-scientist to become directly involved with NASA through cataloging of astronaut photography, while simultaneously experiencing the wonder and majesty of our home planet as seen by astronauts on board the ISS every day. We are currently developing a public cataloging interface for the GAPE website. When complete, the citizen-scientist will be able to access a selected subset of astronaut imagery. Each candidate will be required to pass a training tutorial in order to receive certification as a cataloger. The cataloger can then choose from a selection of images with basic metadata that is sorted by difficulty levels. Some guidance will be provided (template/pull down menus) for generation of geographic metadata required from the cataloger for each photograph. Each cataloger will also be able to view other contributions and further edit that metadata if they so choose. After the public inputs their metadata the images will be posted to an internal screening site. Images with similar geographic metadata and centerpoint coordinates from multiple catalogers will be reviewed by NASA JSC Crew Earth Observations (CEO) staff. Once reviewed and verified, the metadata will be entered into the GAPE database with the contributors identified by their chosen usernames as having cataloged the frame.
Data Access Based on a Guide Map of the Underwater Wireless Sensor Network.
Wei, Zhengxian; Song, Min; Yin, Guisheng; Song, Houbing; Wang, Hongbin; Ma, Xuefei; Cheng, Albert M K
2017-10-17
Underwater wireless sensor networks (UWSNs) represent an area of increasing research interest, as data storage, discovery, and query of UWSNs are always challenging issues. In this paper, a data access based on a guide map (DAGM) method is proposed for UWSNs. In DAGM, the metadata describes the abstracts of data content and the storage location. The center ring is composed of nodes according to the shortest average data query path in the network in order to store the metadata, and the data guide map organizes, diffuses and synchronizes the metadata in the center ring, providing the most time-saving and energy-efficient data query service for the user. For this method, firstly the data is stored in the UWSN. The storage node is determined, the data is transmitted from the sensor node (data generation source) to the storage node, and the metadata is generated for it. Then, the metadata is sent to the center ring node that is the nearest to the storage node and the data guide map organizes the metadata, diffusing and synchronizing it to the other center ring nodes. Finally, when there is query data in any user node, the data guide map will select a center ring node nearest to the user to process the query sentence, and based on the shortest transmission delay and lowest energy consumption, data transmission routing is generated according to the storage location abstract in the metadata. Hence, specific application data transmission from the storage node to the user is completed. The simulation results demonstrate that DAGM has advantages with respect to data access time and network energy consumption.
NASA Astrophysics Data System (ADS)
Schaap, Dick M. A.; Maudire, Gilbert
2010-05-01
SeaDataNet is a leading infrastructure in Europe for marine & ocean data management. It is actively operating and further developing a Pan-European infrastructure for managing, indexing and providing access to ocean and marine data sets and data products, acquired via research cruises and other observational activities, in situ and remote sensing. The basis of SeaDataNet is interconnecting 40 National Oceanographic Data Centres and Marine Data Centers from 35 countries around European seas into a distributed network of data resources with common standards for metadata, vocabularies, data transport formats, quality control methods and flags, and access. Thereby most of the NODC's operate and/or are developing national networks to other institutes in their countries to ensure national coverage and long-term stewardship of available data sets. The majority of data managed by SeaDataNet partners concerns physical oceanography, marine chemistry, hydrography, and a substantial volume of marine biology and geology and geophysics. These are partly owned by the partner institutes themselves and for a major part also owned by other organizations from their countries. The SeaDataNet infrastructure is implemented with support of the EU via the EU FP6 SeaDataNet project to provide the Pan-European data management system adapted both to the fragmented observation system and the users need for an integrated access to data, meta-data, products and services. The SeaDataNet project has a duration of 5 years and started in 2006, but builds upon earlier data management infrastructure projects, undertaken over a period of 20 years by an expanding network of oceanographic data centres from the countries around all European seas. Its predecessor project Sea-Search had a strict focus on metadata. SeaDataNet maintains significant interest in the further development of the metadata infrastructure, extending its services with the provision of easy data access and generic data products. Version 1 of its infrastructure upgrade was launched in April 2008 and is now well underway to include all 40 data centres at V1 level. It comprises the network of 40 interconnected data centres (NODCs) and a central SeaDataNet portal. V1 provides users a unified and transparent overview of the metadata and controlled access to the large collections of data sets, that are managed at these data centres. The SeaDataNet V1 infrastructure comprises the following middleware services: • Discovery services = Metadata directories and User interfaces • Vocabulary services = Common vocabularies and Governance • Security services = Authentication, Authorization & Accounting • Delivery services = Requesting and Downloading of data sets • Viewing services = Mapping of metadata • Monitoring services = Statistics on system usage and performance and Registration of data requests and transactions • Maintenance services = Entry and updating of metadata by data centres Also good progress is being made with extending the SeaDataNet infrastructure with V2 services: • Viewing services = Quick views and Visualisation of data and data products • Product services = Generic and standard products • Exchange services = transformation of SeaDataNet portal CDI output to INSPIRE compliance As a basis for the V1 services, common standards have been defined for metadata and data formats, common vocabularies, quality flags, and quality control methods, based on international standards, such as ISO 19115, OGC, NetCDF (CF), ODV, best practices from IOC and ICES, and following INSPIRE developments. An important objective of the SeaDataNet V1 infrastructure is to provide transparent access to the distributed data sets via a unique user interface and download service. In the SeaDataNet V1 architecture the Common Data Index (CDI) V1 metadata service provides the link between discovery and delivery of data sets. The CDI user interface enables users to have a detailed insight of the availability and geographical distribution of marine data, archived at the connected data centres. It provides sufficient information to allow the user to assess the data relevance. Moreover the CDI user interface provides the means for downloading data sets in common formats via a transaction mechanism. The SeaDataNet portal provides registered users access to these distributed data sets via the CDI V1 Directory and a shopping basket mechanism. This allows registered users to locate data of interest and submit their data requests. The requests are forwarded automatically from the portal to the relevant SeaDataNet data centres. This process is controlled via the Request Status Manager (RSM) Web Service at the portal and a Download Manager (DM) java software module, implemented at each of the data centres. The RSM also enables registered users to check regularly the status of their requests and download data sets, after access has been granted. Data centres can follow all transactions for their data sets online and can handle requests which require their consent. The actual delivery of data sets is done between the user and the selected data centre. Very good progress is being made with connecting all SeaDataNet data centres and their data sets to the CDI V1 system. At present the CDI V1 system provides users functionality to discover and download more than 500.000 data sets, a number which is steadily increasing. The SeaDataNet architecture provides a coherent system of the various V1 services and inclusion of the V2 services. For the implementation, a range of technical components have been defined and developed. These make use of recent web technologies, and also comprise Java components, to provide multi-platform support and syntactic interoperability. To facilitate sharing of resources and interoperability, SeaDataNet has adopted the technology of SOAP Web services for various communication tasks. The SeaDataNet architecture has been designed as a multi-disciplinary system from the beginning. It is able to support a wide variety of data types and to serve several sector communities. SeaDataNet is willing to share its technologies and expertise, to spread and expand its approach, and to build bridges to other well established infrastructures in the marine domain. Therefore SeaDataNet has developed a strategy of seeking active cooperation on a national scale with other data holding organisations via its NODC networks and on an international scale with other European and international data management initiatives and networks. This is done with the objective to achieve a wider coverage of data sources and an overall interoperability between data infrastructures in the marine and ocean domains. Recent examples are e.g. the EU FP7 projects Geo-Seas for geology and geophysical data sets, UpgradeBlackSeaScene for a Black Sea data management infrastructure, CaspInfo for a Caspian Sea data management infrastructure, the EU EMODNET pilot projects, for hydrographic, chemical, and biological data sets. All projects are adopting the SeaDataNet standards and extending its services. Also active cooperation takes place with EuroGOOS and MyOcean in the domain of real-time and delayed mode metocean monitoring data. SeaDataNet Partners: IFREMER (France), MARIS (Netherlands), HCMR/HNODC (Greece), ULg (Belgium), OGS (Italy), NERC/BODC (UK), BSH/DOD (Germany), SMHI (Sweden), IEO (Spain), RIHMI/WDC (Russia), IOC (International), ENEA (Italy), INGV (Italy), METU (Turkey), CLS (France), AWI (Germany), IMR (Norway), NERI (Denmark), ICES (International), EC-DG JRC (International), MI (Ireland), IHPT (Portugal), RIKZ (Netherlands), RBINS/MUMM (Belgium), VLIZ (Belgium), MRI (Iceland), FIMR (Finland ), IMGW (Poland), MSI (Estonia), IAE/UL (Latvia), CMR (Lithuania), SIO/RAS (Russia), MHI/DMIST (Ukraine), IO/BAS (Bulgaria), NIMRD (Romania), TSU (Georgia), INRH (Morocco), IOF (Croatia), PUT (Albania), NIB (Slovenia), UoM (Malta), OC/UCY (Cyprus), IOLR (Israel), NCSR/NCMS (Lebanon), CNR-ISAC (Italy), ISMAL (Algeria), INSTM (Tunisia)
Making Information Visible, Accessible, and Understandable: Meta-Data and Registries
2007-07-01
the data created, the length of play time, album name, and the genre. Without resource metadata, portable digital music players would not be so...notion of a catalog card in a library. An example of metadata is the description of a music file specifying the creator, the artist that performed the song...describe struc- ture and formatting which are critical to interoperability and the management of databases. Going back to the portable music player example
Mercury- Distributed Metadata Management, Data Discovery and Access System
NASA Astrophysics Data System (ADS)
Palanisamy, Giri; Wilson, Bruce E.; Devarakonda, Ranjeet; Green, James M.
2007-12-01
Mercury is a federated metadata harvesting, search and retrieval tool based on both open source and ORNL- developed software. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury supports various metadata standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115 (under development). Mercury provides a single portal to information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data. Mercury supports various projects including: ORNL DAAC, NBII, DADDI, LBA, NARSTO, CDIAC, OCEAN, I3N, IAI, ESIP and ARM. The new Mercury system is based on a Service Oriented Architecture and supports various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. This system also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets. Other features include: Filtering and dynamic sorting of search results, book-markable search results, save, retrieve, and modify search criteria.
SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.
Hitz, Benjamin C; Rowe, Laurence D; Podduturi, Nikhil R; Glick, David I; Baymuradov, Ulugbek K; Malladi, Venkat S; Chan, Esther T; Davidson, Jean M; Gabdank, Idan; Narayana, Aditi K; Onate, Kathrina C; Hilton, Jason; Ho, Marcus C; Lee, Brian T; Miyasato, Stuart R; Dreszer, Timothy R; Sloan, Cricket A; Strattan, J Seth; Tanaka, Forrest Y; Hong, Eurie L; Cherry, J Michael
2017-01-01
The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.
SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata
Podduturi, Nikhil R.; Glick, David I.; Baymuradov, Ulugbek K.; Malladi, Venkat S.; Chan, Esther T.; Davidson, Jean M.; Gabdank, Idan; Narayana, Aditi K.; Onate, Kathrina C.; Hilton, Jason; Ho, Marcus C.; Lee, Brian T.; Miyasato, Stuart R.; Dreszer, Timothy R.; Sloan, Cricket A.; Strattan, J. Seth; Tanaka, Forrest Y.; Hong, Eurie L.; Cherry, J. Michael
2017-01-01
The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package. PMID:28403240
Napolitano, Rebecca; Blyth, Anna; Glisic, Branko
2018-01-16
Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included.
Napolitano, Rebecca; Blyth, Anna; Glisic, Branko
2018-01-01
Visualization of sensor networks, data, and metadata is becoming one of the most pivotal aspects of the structural health monitoring (SHM) process. Without the ability to communicate efficiently and effectively between disparate groups working on a project, an SHM system can be underused, misunderstood, or even abandoned. For this reason, this work seeks to evaluate visualization techniques in the field, identify flaws in current practices, and devise a new method for visualizing and accessing SHM data and metadata in 3D. More precisely, the work presented here reflects a method and digital workflow for integrating SHM sensor networks, data, and metadata into a virtual reality environment by combining spherical imaging and informational modeling. Both intuitive and interactive, this method fosters communication on a project enabling diverse practitioners of SHM to efficiently consult and use the sensor networks, data, and metadata. The method is presented through its implementation on a case study, Streicker Bridge at Princeton University campus. To illustrate the efficiency of the new method, the time and data file size were compared to other potential methods used for visualizing and accessing SHM sensor networks, data, and metadata in 3D. Additionally, feedback from civil engineering students familiar with SHM is used for validation. Recommendations on how different groups working together on an SHM project can create SHM virtual environment and convey data to proper audiences, are also included. PMID:29337877
NASA Astrophysics Data System (ADS)
Ward-Garrison, C.; May, R.; Davis, E.; Arms, S. C.
2016-12-01
NetCDF is a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. The Climate and Forecasting (CF) metadata conventions for netCDF foster the ability to work with netCDF files in general and useful ways. These conventions include metadata attributes for physical units, standard names, and spatial coordinate systems. While these conventions have been successful in easing the use of working with netCDF-formatted output from climate and forecast models, their use for point-based observation data has been less so. Unidata has prototyped using the discrete sampling geometry (DSG) CF conventions to serve, using the THREDDS Data Server, the real-time point observation data flowing across the Internet Data Distribution (IDD). These data originate in text format reports for individual stations (e.g. METAR surface data or TEMP upper air data) and are converted and stored in netCDF files in real-time. This work discusses the experiences and challenges of using the current CF DSG conventions for storing such real-time data. We also test how parts of netCDF's extended data model can address these challenges, in order to inform decisions for a future version of CF (CF 2.0) that would take advantage of features of the netCDF enhanced data model.
NASA Astrophysics Data System (ADS)
Tsontos, V. M.; Huang, T.; Holt, B.
2015-12-01
The earth science enterprise increasingly relies on the integration and synthesis of multivariate datasets from diverse observational platforms. NASA's ocean salinity missions, that include Aquarius/SAC-D and the SPURS (Salinity Processes in the Upper Ocean Regional Study) field campaign, illustrate the value of integrated observations in support of studies on ocean circulation, the water cycle, and climate. However, the inherent heterogeneity of resulting data and the disparate, distributed systems that serve them complicates their effective utilization for both earth science research and applications. Key technical interoperability challenges include adherence to metadata and data format standards that are particularly acute for in-situ data and the lack of a unified metadata model facilitating archival and integration of both satellite and oceanographic field datasets. Here we report on efforts at the PO.DAAC, NASA's physical oceanographic data center, to extend our data management and distribution support capabilities for field campaign datasets such as those from SPURS. We also discuss value-added services, based on the integration of satellite and in-situ datasets, which are under development with a particular focus on DOMS. The distributed oceanographic matchup service (DOMS) implements a portable technical infrastructure and associated web services that will be broadly accessible via the PO.DAAC for the dynamic collocation of satellite and in-situ data, hosted by distributed data providers, in support of mission cal/val, science and operational applications.
Advancing data reuse in phyloinformatics using an ontology-driven Semantic Web approach.
Panahiazar, Maryam; Sheth, Amit P; Ranabahu, Ajith; Vos, Rutger A; Leebens-Mack, Jim
2013-01-01
Phylogenetic analyses can resolve historical relationships among genes, organisms or higher taxa. Understanding such relationships can elucidate a wide range of biological phenomena, including, for example, the importance of gene and genome duplications in the evolution of gene function, the role of adaptation as a driver of diversification, or the evolutionary consequences of biogeographic shifts. Phyloinformaticists are developing data standards, databases and communication protocols (e.g. Application Programming Interfaces, APIs) to extend the accessibility of gene trees, species trees, and the metadata necessary to interpret these trees, thus enabling researchers across the life sciences to reuse phylogenetic knowledge. Specifically, Semantic Web technologies are being developed to make phylogenetic knowledge interpretable by web agents, thereby enabling intelligently automated, high-throughput reuse of results generated by phylogenetic research. This manuscript describes an ontology-driven, semantic problem-solving environment for phylogenetic analyses and introduces artefacts that can promote phyloinformatic efforts to promote accessibility of trees and underlying metadata. PhylOnt is an extensible ontology with concepts describing tree types and tree building methodologies including estimation methods, models and programs. In addition we present the PhylAnt platform for annotating scientific articles and NeXML files with PhylOnt concepts. The novelty of this work is the annotation of NeXML files and phylogenetic related documents with PhylOnt Ontology. This approach advances data reuse in phyloinformatics.
Li, Zhao; Li, Jin; Yu, Peng
2018-01-01
Abstract Metadata curation has become increasingly important for biological discovery and biomedical research because a large amount of heterogeneous biological data is currently freely available. To facilitate efficient metadata curation, we developed an easy-to-use web-based curation application, GEOMetaCuration, for curating the metadata of Gene Expression Omnibus datasets. It can eliminate mechanical operations that consume precious curation time and can help coordinate curation efforts among multiple curators. It improves the curation process by introducing various features that are critical to metadata curation, such as a back-end curation management system and a curator-friendly front-end. The application is based on a commonly used web development framework of Python/Django and is open-sourced under the GNU General Public License V3. GEOMetaCuration is expected to benefit the biocuration community and to contribute to computational generation of biological insights using large-scale biological data. An example use case can be found at the demo website: http://geometacuration.yubiolab.org. Database URL: https://bitbucket.com/yubiolab/GEOMetaCuration PMID:29688376
MetaRNA-Seq: An Interactive Tool to Browse and Annotate Metadata from RNA-Seq Studies.
Kumar, Pankaj; Halama, Anna; Hayat, Shahina; Billing, Anja M; Gupta, Manish; Yousri, Noha A; Smith, Gregory M; Suhre, Karsten
2015-01-01
The number of RNA-Seq studies has grown in recent years. The design of RNA-Seq studies varies from very simple (e.g., two-condition case-control) to very complicated (e.g., time series involving multiple samples at each time point with separate drug treatments). Most of these publically available RNA-Seq studies are deposited in NCBI databases, but their metadata are scattered throughout four different databases: Sequence Read Archive (SRA), Biosample, Bioprojects, and Gene Expression Omnibus (GEO). Although the NCBI web interface is able to provide all of the metadata information, it often requires significant effort to retrieve study- or project-level information by traversing through multiple hyperlinks and going to another page. Moreover, project- and study-level metadata lack manual or automatic curation by categories, such as disease type, time series, case-control, or replicate type, which are vital to comprehending any RNA-Seq study. Here we describe "MetaRNA-Seq," a new tool for interactively browsing, searching, and annotating RNA-Seq metadata with the capability of semiautomatic curation at the study level.
NASA Astrophysics Data System (ADS)
Tanner, S.; Schwab, M.; Beam, K.; Skaug, M.
2017-12-01
Operation IceBridge has been flying campaigns in the Arctic and Antarctic for nearly 10 years and will soon be a decadal mission. During that time, the generation and use of file level metadata has evolved from nearly non-existent to robust spatio-temporal support. This evolution has been difficult at times, but the results speak for themselves in the form of production tools for search, discovery, access and analysis. The lessons learned from this experience are now being incorporated into SnowEx, a new mission to measure snow cover using airborne and ground-based measurements. This presentation will focus on techniques for generating metadata for such a diverse set of measurements as well as the resulting tools that utilize this information. This includes the development and deployment of MetGen, a semi-automated metadata generation capability that relies on collaboration between data producers and data archivers, the newly deployed IceBridge data portal which incorporates data browse capabilities and limited in-line analysis, and programmatic access to metadata and data for incorporation into larger automated workflows.
Operational Support for Instrument Stability through ODI-PPA Metadata Visualization and Analysis
NASA Astrophysics Data System (ADS)
Young, M. D.; Hayashi, S.; Gopu, A.; Kotulla, R.; Harbeck, D.; Liu, W.
2015-09-01
Over long time scales, quality assurance metrics taken from calibration and calibrated data products can aid observatory operations in quantifying the performance and stability of the instrument, and identify potential areas of concern or guide troubleshooting and engineering efforts. Such methods traditionally require manual SQL entries, assuming the requisite metadata has even been ingested into a database. With the ODI-PPA system, QA metadata has been harvested and indexed for all data products produced over the life of the instrument. In this paper we will describe how, utilizing the industry standard Highcharts Javascript charting package with a customized AngularJS-driven user interface, we have made the process of visualizing the long-term behavior of these QA metadata simple and easily replicated. Operators can easily craft a custom query using the powerful and flexible ODI-PPA search interface and visualize the associated metadata in a variety of ways. These customized visualizations can be bookmarked, shared, or embedded externally, and will be dynamically updated as new data products enter the system, enabling operators to monitor the long-term health of their instrument with ease.
Principles of metadata organization at the ENCODE data coordination center
Hong, Eurie L.; Sloan, Cricket A.; Chan, Esther T.; Davidson, Jean M.; Malladi, Venkat S.; Strattan, J. Seth; Hitz, Benjamin C.; Gabdank, Idan; Narayanan, Aditi K.; Ho, Marcus; Lee, Brian T.; Rowe, Laurence D.; Dreszer, Timothy R.; Roe, Greg R.; Podduturi, Nikhil R.; Tanaka, Forrest; Hilton, Jason A.; Cherry, J. Michael
2016-01-01
The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org PMID:26980513
PanMetaDocs - A tool for collecting and managing the long tail of "small science data"
NASA Astrophysics Data System (ADS)
Klump, J.; Ulbricht, D.
2011-12-01
In the early days of thinking about cyberinfrastructure the focus was on "big science data". Today, the challenge is not anymore to store several terabytes of data, but to manage data objects in a way that facilitates their re-use. Key to re-use by a user as a data consumer is proper documentation of the data. Also, data consumers need discovery metadata to find the data they need and they need descriptive metadata to be able to use the data they retrieved. Thus, data documentation faces the challenge to extensively and completely describe these objects, hold the items easily accessible at a sustainable cost level. However, data curation and documentation do not rank high in the everyday work of a scientist as a data producer. Data producers are often frustrated by being asked to provide metadata on their data over and over again, information that seemed very obvious from the context of their work. A challenge to data archives is the wide variety of metadata schemata in use, which creates a number of maintenance and design challenges of its own. PanMetaDocs addresses these issues by allowing an uploaded files to be described by more than one metadata object. PanMetaDocs, which was developed from PanMetaWorks, is a PHP based web application that allow to describe data with any xml-based metadata schema. Its user interface is browser based and was developed to collect metadata and data in collaborative scientific projects situated at one or more institutions. The metadata fields can be filled with static or dynamic content to reduce the number of fields that require manual entries to a minimum and make use of contextual information in a project setting. In the development of PanMetaDocs the business logic of panMetaWorks is reused, except for the authentication and data management functions of PanMetaWorks, which are delegated to the eSciDoc framework. The eSciDoc repository framework is designed as a service oriented architecture that can be controlled through a REST interface to create version controlled items with metadata records in XML format. PanMetaDocs utilizes the eSciDoc items model to add multiple metadata records that describe uploaded files in different metadata schemata. While datasets are collected and described, shared to collaborate with other scientists and finally published, data objects are transferred from a shared data curation domain into a persistent data curation domain. Through an RSS interface for recent datasets PanMetaWorks allows project members to be informed about data uploaded by other project members. The implementation of the OAI-PMH interface can be used to syndicate data catalogs to research data portals, such as the panFMP data portal framework. Once data objects are uploaded to the eSciDoc infrastructure it is possible to drop the software instance that was used for collecting the data, while the compiled data and metadata are accessible for other authorized applications through the institution's eSciDoc middleware. This approach of "expendable data curation tools" allows for a significant reduction in costs for software maintenance as expensive data capture applications do not need to be maintained indefinitely to ensure long term access to the stored data.
Unified Science Information Model for SoilSCAPE using the Mercury Metadata Search System
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Lu, Kefa; Palanisamy, Giri; Cook, Robert; Santhana Vannan, Suresh; Moghaddam, Mahta Clewley, Dan; Silva, Agnelo; Akbar, Ruzbeh
2013-12-01
SoilSCAPE (Soil moisture Sensing Controller And oPtimal Estimator) introduces a new concept for a smart wireless sensor web technology for optimal measurements of surface-to-depth profiles of soil moisture using in-situ sensors. The objective is to enable a guided and adaptive sampling strategy for the in-situ sensor network to meet the measurement validation objectives of spaceborne soil moisture sensors such as the Soil Moisture Active Passive (SMAP) mission. This work is being carried out at the University of Michigan, the Massachusetts Institute of Technology, University of Southern California, and Oak Ridge National Laboratory. At Oak Ridge National Laboratory we are using Mercury metadata search system [1] for building a Unified Information System for the SoilSCAPE project. This unified portal primarily comprises three key pieces: Distributed Search/Discovery; Data Collections and Integration; and Data Dissemination. Mercury, a Federally funded software for metadata harvesting, indexing, and searching would be used for this module. Soil moisture data sources identified as part of this activity such as SoilSCAPE and FLUXNET (in-situ sensors), AirMOSS (airborne retrieval), SMAP (spaceborne retrieval), and are being indexed and maintained by Mercury. Mercury would be the central repository of data sources for cal/val for soil moisture studies and would provide a mechanism to identify additional data sources. Relevant metadata from existing inventories such as ORNL DAAC, USGS Clearinghouse, ARM, NASA ECHO, GCMD etc. would be brought in to this soil-moisture data search/discovery module. The SoilSCAPE [2] metadata records will also be published in broader metadata repositories such as GCMD, data.gov. Mercury can be configured to provide a single portal to soil moisture information contained in disparate data management systems located anywhere on the Internet. Mercury is able to extract, metadata systematically from HTML pages or XML files using a variety of methods including OAI-PMH [3]. The Mercury search interface then allows users to perform simple, fielded, spatial and temporal searches across a central harmonized index of metadata. Mercury supports various metadata standards including FGDC, ISO-19115, DIF, Dublin-Core, Darwin-Core, and EML. This poster describes in detail how Mercury implements the Unified Science Information Model for Soil moisture data. References: [1]Devarakonda R., et al. Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics (2010), 3(1): 87-94. [2]Devarakonda R., et al. Daymet: Single Pixel Data Extraction Tool. http://daymet.ornl.gov/singlepixel.html (2012). Last Accesses 10-01-2013 [3]Devarakonda R., et al. Data sharing and retrieval using OAI-PMH. Earth Science Informatics (2011), 4(1): 1-5.
ODISEES: A New Paradigm in Data Access
NASA Astrophysics Data System (ADS)
Huffer, E.; Little, M. M.; Kusterer, J.
2013-12-01
As part of its ongoing efforts to improve access to data, the Atmospheric Science Data Center has developed a high-precision Earth Science domain ontology (the 'ES Ontology') implemented in a graph database ('the Semantic Metadata Repository') that is used to store detailed, semantically-enhanced, parameter-level metadata for ASDC data products. The ES Ontology provides the semantic infrastructure needed to drive the ASDC's Ontology-Driven Interactive Search Environment for Earth Science ('ODISEES'), a data discovery and access tool, and will support additional data services such as analytics and visualization. The ES ontology is designed on the premise that naming conventions alone are not adequate to provide the information needed by prospective data consumers to assess the suitability of a given dataset for their research requirements; nor are current metadata conventions adequate to support seamless machine-to-machine interactions between file servers and end-user applications. Data consumers need information not only about what two data elements have in common, but also about how they are different. End-user applications need consistent, detailed metadata to support real-time data interoperability. The ES ontology is a highly precise, bottom-up, queriable model of the Earth Science domain that focuses on critical details about the measurable phenomena, instrument techniques, data processing methods, and data file structures. Earth Science parameters are described in detail in the ES Ontology and mapped to the corresponding variables that occur in ASDC datasets. Variables are in turn mapped to well-annotated representations of the datasets that they occur in, the instrument(s) used to create them, the instrument platforms, the processing methods, etc., creating a linked-data structure that allows both human and machine users to access a wealth of information critical to understanding and manipulating the data. The mappings are recorded in the Semantic Metadata Repository as RDF-triples. An off-the-shelf Ontology Development Environment and a custom Metadata Conversion Tool comprise a human-machine/machine-machine hybrid tool that partially automates the creation of metadata as RDF-triples by interfacing with existing metadata repositories and providing a user interface that solicits input from a human user, when needed. RDF-triples are pushed to the Ontology Development Environment, where a reasoning engine executes a series of inference rules whose antecedent conditions can be satisfied by the initial set of RDF-triples, thereby generating the additional detailed metadata that is missing in existing repositories. A SPARQL Endpoint, a web-based query service and a Graphical User Interface allow prospective data consumers - even those with no familiarity with NASA data products - to search the metadata repository to find and order data products that meet their exact specifications. A web-based API will provide an interface for machine-to-machine transactions.
Dhaval, Rakesh; Borlawsky, Tara; Ostrander, Michael; Santangelo, Jennifer; Kamal, Jyoti; Payne, Philip R O
2008-11-06
In order to enhance interoperability between enterprise systems, and improve data validity and reliability throughout The Ohio State University Medical Center (OSUMC), we have initiated the development of an ontology-anchored metadata architecture and knowledge collection for our enterprise data warehouse. The metadata and corresponding semantic relationships stored in the OSUMC knowledge collection are intended to promote consistency and interoperability across the heterogeneous clinical, research, business and education information managed within the data warehouse.
Deploying the ATLAS Metadata Interface (AMI) on the cloud with Jenkins
NASA Astrophysics Data System (ADS)
Lambert, F.; Odier, J.; Fulachier, J.; ATLAS Collaboration
2017-10-01
The ATLAS Metadata Interface (AMI) is a mature application of more than 15 years of existence. Mainly used by the ATLAS experiment at CERN, it consists of a very generic tool ecosystem for metadata aggregation and cataloguing. AMI is used by the ATLAS production system, therefore the service must guarantee a high level of availability. We describe our monitoring and administration systems, and the Jenkins-based strategy used to dynamically test and deploy cloud OpenStack nodes on demand.
47 CFR 1.1206 - Permit-but-disclose proceedings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... document to be filed electronically contains metadata that is confidential or protected from disclosure by... metadata from the document before filing it electronically. (iii) Filing dates outside the Sunshine period...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
... development of standardized metadata in hundreds of organizations, and funded numerous implementations of OGC... of emphasis include: Metadata documentation, clearinghouse establishment, framework development...
47 CFR 1.1206 - Permit-but-disclose proceedings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... technically possible. Where the document to be filed electronically contains metadata that is confidential or... filer may remove such metadata from the document before filing it electronically. (iii) Filing dates...
Dataworks for GNSS: Software for Supporting Data Sharing and Federation of Geodetic Networks
NASA Astrophysics Data System (ADS)
Boler, F. M.; Meertens, C. M.; Miller, M. M.; Wier, S.; Rost, M.; Matykiewicz, J.
2015-12-01
Continuously-operating Global Navigation Satellite System (GNSS) networks are increasingly being installed globally for a wide variety of science and societal applications. GNSS enables Earth science research in areas including tectonic plate interactions, crustal deformation in response to loading by tectonics, magmatism, water and ice, and the dynamics of water - and thereby energy transfer - in the atmosphere at regional scale. The many individual scientists and organizations that set up GNSS stations globally are often open to sharing data, but lack the resources or expertise to deploy systems and software to manage and curate data and metadata and provide user tools that would support data sharing. UNAVCO previously gained experience in facilitating data sharing through the NASA-supported development of the Geodesy Seamless Archive Centers (GSAC) open source software. GSAC provides web interfaces and simple web services for data and metadata discovery and access, supports federation of multiple data centers, and simplifies transfer of data and metadata to long-term archives. The NSF supported the dissemination of GSAC to multiple European data centers forming the European Plate Observing System. To expand upon GSAC to provide end-to-end, instrument-to-distribution capability, UNAVCO developed Dataworks for GNSS with NSF funding to the COCONet project, and deployed this software on systems that are now operating as Regional GNSS Data Centers as part of the NSF-funded TLALOCNet and COCONet projects. Dataworks consists of software modules written in Python and Java for data acquisition, management and sharing. There are modules for GNSS receiver control and data download, a database schema for metadata, tools for metadata handling, ingest software to manage file metadata, data file management scripts, GSAC, scripts for mirroring station data and metadata from partner GSACs, and extensive software and operator documentation. UNAVCO plans to provide a cloud VM image of Dataworks that would allow standing up a Dataworks-enabled GNSS data center without requiring upfront investment in server hardware. By enabling data creators to organize their data and metadata for sharing, Dataworks helps scientists expand their data curation awareness and responsibility, and enhances data access for all.
DOIDB: Reusing DataCite's search software as metadata portal for GFZ Data Services
NASA Astrophysics Data System (ADS)
Elger, K.; Ulbricht, D.; Bertelmann, R.
2016-12-01
GFZ Data Services is the central service point for the publication of research data at the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (GFZ). It provides data publishing services to scientists of GFZ, associated projects, and associated institutions. The publishing services aim to make research data and physical samples visible and citable, by assigning persistent identifiers (DOI, IGSN) and by complementing existing IT infrastructure. To integrate several research domains a modular software stack that is made of free software components has been created to manage data and metadata as well as register persistent identifiers [1]. Pivotal component for the registration of DOIs is the DOIDB. It has been derived from three software components provided by DataCite [2] that moderate the registration of DOIs and the deposition of metadata, allow the dissemination of metadata, and provide a user interface to navigate and discover datasets. The DOIDB acts as a proxy to the DataCite infrastructure and in addition to the DataCite metadata schema, it allows to deposit and disseminate metadata following the schemas ISO19139 and NASA GCMD DIF. The search component has been modified to meet the requirements of a geosciences metadata portal. In particular, the search component has been altered to make use of Apache SOLRs capability to index and query spatial coordinates. Furthermore, the user interface has been adjusted to provide a first impression of the data by showing a map, summary information and subjects. DOIDB and its components are available on GitHub [3].We present a software solution for registration of DOIs that allows to integrate existing data systems, keeps track of registered DOIs, and provides a metadata portal to discover datasets [4]. [1] Ulbricht, D.; Elger, K.; Bertelmann, R.; Klump, J. panMetaDocs, eSciDoc, and DOIDB—An Infrastructure for the Curation and Publication of File-Based Datasets for GFZ Data Services. ISPRS Int. J. Geo-Inf. 2016, 5, 25. http://doi.org/10.3390/ijgi5030025[2] https://github.com/datacite[3] https://github.com/ulbricht/search/tree/doidb , https://github.com/ulbricht/mds/tree/doidb , https://github.com/ulbricht/oaip/tree/doidb[4] http://doidb.wdc-terra.org
Advancements in Large-Scale Data/Metadata Management for Scientific Data.
NASA Astrophysics Data System (ADS)
Guntupally, K.; Devarakonda, R.; Palanisamy, G.; Frame, M. T.
2017-12-01
Scientific data often comes with complex and diverse metadata which are critical for data discovery and users. The Online Metadata Editor (OME) tool, which was developed by an Oak Ridge National Laboratory team, effectively manages diverse scientific datasets across several federal data centers, such as DOE's Atmospheric Radiation Measurement (ARM) Data Center and USGS's Core Science Analytics, Synthesis, and Libraries (CSAS&L) project. This presentation will focus mainly on recent developments and future strategies for refining OME tool within these centers. The ARM OME is a standard based tool (https://www.archive.arm.gov/armome) that allows scientists to create and maintain metadata about their data products. The tool has been improved with new workflows that help metadata coordinators and submitting investigators to submit and review their data more efficiently. The ARM Data Center's newly upgraded Data Discovery Tool (http://www.archive.arm.gov/discovery) uses rich metadata generated by the OME to enable search and discovery of thousands of datasets, while also providing a citation generator and modern order-delivery techniques like Globus (using GridFTP), Dropbox and THREDDS. The Data Discovery Tool also supports incremental indexing, which allows users to find new data as and when they are added. The USGS CSAS&L search catalog employs a custom version of the OME (https://www1.usgs.gov/csas/ome), which has been upgraded with high-level Federal Geographic Data Committee (FGDC) validations and the ability to reserve and mint Digital Object Identifiers (DOIs). The USGS's Science Data Catalog (SDC) (https://data.usgs.gov/datacatalog) allows users to discover a myriad of science data holdings through a web portal. Recent major upgrades to the SDC and ARM Data Discovery Tool include improved harvesting performance and migration using new search software, such as Apache Solr 6.0 for serving up data/metadata to scientific communities. Our presentation will highlight the future enhancements of these tools which enable users to retrieve fast search results, along with parallelizing the retrieval process from online and High Performance Storage Systems. In addition, these improvements to the tools will support additional metadata formats like the Large-Eddy Simulation (LES) ARM Symbiotic and Observation (LASSO) bundle data.
Expanding Access to NCAR's Digital Assets: Towards a Unified Scientific Data Management System
NASA Astrophysics Data System (ADS)
Stott, D.
2016-12-01
In 2014 the National Center for Atmospheric Research (NCAR) Directorate created the Data Stewardship Engineering Team (DSET) to plan and implement the strategic vision of an integrated front door for data discovery and access across the organization, including all laboratories, the library, and UCAR Community Programs. The DSET is focused on improving the quality of users' experiences in finding and using NCAR's digital assets. This effort also supports new policies included in federal mandates, NSF requirements, and journal publication rules. An initial survey with 97 respondents identified 68 persons responsible for more than 3 petabytes of data. An inventory, using the Data Asset Framework produced by the UK Digital Curation Centre as a starting point, identified asset types that included files and metadata, publications, images, and software (visualization, analysis, model codes). User story sessions with representatives from each lab identified and ranked desired features for a unified Scientific Data Management System (SDMS). A process beginning with an organization-wide assessment of metadata by the HDF Group and followed by meetings with labs to identify key documentation concepts, culminated in the development of an NCAR metadata dialect that leverages the DataCite and ISO 19115 standards. The tasks ahead are to build out an SDMS and populate it with rich standardized metadata. Software packages have been prototyped and currently are being tested and reviewed by DSET members. Key challenges for the DSET include technical and non-technical issues. First, the status quo with regard to how assets are managed varies widely across the organization. There are differences in file format standards, technologies, and discipline-specific vocabularies. Metadata diversity is another real challenge. The types of metadata, the standards used, and the capacity to create new metadata varies across the organization. Significant effort is required to develop tools to create new standard metadata across the organization, adapt and integrate current digital assets, and establish consistent data management practices going forward. To be successful, best practices must be infused into daily activities. This poster will highlight the processes, lessons learned, and current status of the DSET effort at NCAR.
The International Satellite Cloud Climatology Project H-Series climate data record product
NASA Astrophysics Data System (ADS)
Young, Alisa H.; Knapp, Kenneth R.; Inamdar, Anand; Hankins, William; Rossow, William B.
2018-03-01
This paper describes the new global long-term International Satellite Cloud Climatology Project (ISCCP) H-series climate data record (CDR). The H-series data contain a suite of level 2 and 3 products for monitoring the distribution and variation of cloud and surface properties to better understand the effects of clouds on climate, the radiation budget, and the global hydrologic cycle. This product is currently available for public use and is derived from both geostationary and polar-orbiting satellite imaging radiometers with common visible and infrared (IR) channels. The H-series data currently span July 1983 to December 2009 with plans for continued production to extend the record to the present with regular updates. The H-series data are the longest combined geostationary and polar orbiter satellite-based CDR of cloud properties. Access to the data is provided in network common data form (netCDF) and archived by NOAA's National Centers for Environmental Information (NCEI) under the satellite Climate Data Record Program (https://doi.org/10.7289/V5QZ281S). The basic characteristics, history, and evolution of the dataset are presented herein with particular emphasis on and discussion of product changes between the H-series and the widely used predecessor D-series product which also spans from July 1983 through December 2009. Key refinements included in the ISCCP H-series CDR are based on improved quality control measures, modified ancillary inputs, higher spatial resolution input and output products, calibration refinements, and updated documentation and metadata to bring the H-series product into compliance with existing standards for climate data records.
47 CFR 1.1206 - Permit-but-disclose proceed-ings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... technically possible. Where the document to be filed electronically contains metadata that is confidential or... filer may remove such metadata from the document before filing it electronically. (iii) Filing dates...
47 CFR 1.1206 - Permit-but-disclose proceed-ings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... technically possible. Where the document to be filed electronically contains metadata that is confidential or... filer may remove such metadata from the document before filing it electronically. (iii) Filing dates...
Air Quality uFIND: User-oriented Tool Set for Air Quality Data Discovery and Access
NASA Astrophysics Data System (ADS)
Hoijarvi, K.; Robinson, E. M.; Husar, R. B.; Falke, S. R.; Schultz, M. G.; Keating, T. J.
2012-12-01
Historically, there have been major impediments to seamless and effective data usage encountered by both data providers and users. Over the last five years, the international Air Quality (AQ) Community has worked through forums such as the Group on Earth Observations AQ Community of Practice, the ESIP AQ Working Group, and the Task Force on Hemispheric Transport of Air Pollution to converge on data format standards (e.g., netCDF), data access standards (e.g., Open Geospatial Consortium Web Coverage Services), metadata standards (e.g., ISO 19115), as well as other conventions (e.g., CF Naming Convention) in order to build an Air Quality Data Network. The centerpiece of the AQ Data Network is the web service-based tool set: user-oriented Filtering and Identification of Networked Data. The purpose of uFIND is to provide rich and powerful facilities for the user to: a) discover and choose a desired dataset by navigation through the multi-dimensional metadata space using faceted search, b) seamlessly access and browse datasets, and c) use uFINDs facilities as a web service for mashups with other AQ applications and portals. In a user-centric information system such as uFIND, the user experience is improved by metadata that includes the general fields for discovery as well as community-specific metadata to narrow the search beyond space, time and generic keyword searches. However, even with the community-specific additions, the ISO 19115 records were formed in compliance with the standard, so that other standards-based search interface could leverage this additional information. To identify the fields necessary for metadata discovery we started with the ISO 19115 Core Metadata fields and fields that were needed for a Catalog Service for the Web (CSW) Record. This fulfilled two goals - one to create valid ISO 19115 records and the other to be able to retrieve the records through a Catalog Service for the Web query. Beyond the required set of fields, the AQ Community added additional fields using a combination of keywords and ISO 19115 fields. These extensions allow discovery by measurement platform or observed phenomena. Beyond discovery metadata, the AQ records include service identification objects that allow standards-based clients, such as some brokers, to access the data found via OGC WCS or WMS data access protocols. uFIND, is one such smart client, this combination of discovery and access metadata allows the user to preview each registered dataset through spatial and temporal views; observe the data access and usage pattern and also find links to dataset-specific metadata directly in uFIND. The AQ data providers also benefit from this architecture since their data products are easier to find and re-use, enhancing the relevance and importance of their products. Finally, the earth science community at large benefits from the Service Oriented Architecture of uFIND, since it is a service itself and allows service-based interfacing with providers and users of the metadata, allowing uFIND facets to be further refined for a particular AQ application or completely repurposed for other Earth Science domains that use the same set of data access and metadata standards.
FITS and PDS4: Planetary Surface Data Interoperability Made Easier
NASA Astrophysics Data System (ADS)
Marmo, C.; Hare, T. M.; Erard, S.; Cecconi, B.; Minin, M.; Rossi, A. P.; Costard, F.; Schmidt, F.
2018-04-01
This abstract describes how Flexible Image Transport System (FITS) can be used in planetary surface investigations, and how its metadata can easily be inserted in the PDS4 metadata distribution model.
Principles of metadata organization at the ENCODE data coordination center.
Hong, Eurie L; Sloan, Cricket A; Chan, Esther T; Davidson, Jean M; Malladi, Venkat S; Strattan, J Seth; Hitz, Benjamin C; Gabdank, Idan; Narayanan, Aditi K; Ho, Marcus; Lee, Brian T; Rowe, Laurence D; Dreszer, Timothy R; Roe, Greg R; Podduturi, Nikhil R; Tanaka, Forrest; Hilton, Jason A; Cherry, J Michael
2016-01-01
The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org. © The Author(s) 2016. Published by Oxford University Press.
Utilizing Linked Open Data Sources for Automatic Generation of Semantic Metadata
NASA Astrophysics Data System (ADS)
Nummiaho, Antti; Vainikainen, Sari; Melin, Magnus
In this paper we present an application that can be used to automatically generate semantic metadata for tags given as simple keywords. The application that we have implemented in Java programming language creates the semantic metadata by linking the tags to concepts in different semantic knowledge bases (CrunchBase, DBpedia, Freebase, KOKO, Opencyc, Umbel and/or WordNet). The steps that our application takes in doing so include detecting possible languages, finding spelling suggestions and finding meanings from amongst the proper nouns and common nouns separately. Currently, our application supports English, Finnish and Swedish words, but other languages could be included easily if the required lexical tools (spellcheckers, etc.) are available. The created semantic metadata can be of great use in, e.g., finding and combining similar contents, creating recommendations and targeting advertisements.
The ground truth about metadata and community detection in networks.
Peel, Leto; Larremore, Daniel B; Clauset, Aaron
2017-05-01
Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.
Interoperable Solar Data and Metadata via LISIRD 3
NASA Astrophysics Data System (ADS)
Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.
2015-12-01
LISIRD 3 is a major upgrade of the LASP Interactive Solar Irradiance Data Center (LISIRD), which serves several dozen space based solar irradiance and related data products to the public. Through interactive plots, LISIRD 3 provides data browsing supported by data subsetting and aggregation. Incorporating a semantically enabled metadata repository, LISIRD 3 users see current, vetted, consistent information about the datasets offered. Users can now also search for datasets based on metadata fields such as dataset type and/or spectral or temporal range. This semantic database enables metadata browsing, so users can discover the relationships between datasets, instruments, spacecraft, mission and PI. The database also enables creation and publication of metadata records in a variety of formats, such as SPASE or ISO, making these datasets more discoverable. The database also enables the possibility of a public SPARQL endpoint, making the metadata browsable in an automated fashion. LISIRD 3's data access middleware, LaTiS, provides dynamic, on demand reformatting of data and timestamps, subsetting and aggregation, and other server side functionality via a RESTful OPeNDAP compliant API, enabling interoperability between LASP datasets and many common tools. LISIRD 3's templated front end design, coupled with the uniform data interface offered by LaTiS, allows easy integration of new datasets. Consequently the number and variety of datasets offered by LISIRD has grown to encompass several dozen, with many more to come. This poster will discuss design and implementation of LISIRD 3, including tools used, capabilities enabled, and issues encountered.
Metadata Authoring with Versatility and Extensibility
NASA Technical Reports Server (NTRS)
Pollack, Janine; Olsen, Lola
2004-01-01
NASA's Global Change Master Directory (GCMD) assists the scientific community in the discovery of and linkage to Earth science data sets and related services. The GCMD holds over 13,800 data set descriptions in Directory Interchange Format (DIF) and 700 data service descriptions in Service Entry Resource Format (SERF), encompassing the disciplines of geology, hydrology, oceanography, meteorology, and ecology. Data descriptions also contain geographic coverage information and direct links to the data, thus allowing researchers to discover data pertaining to a geographic location of interest, then quickly acquire those data. The GCMD strives to be the preferred data locator for world-wide directory-level metadata. In this vein, scientists and data providers must have access to intuitive and efficient metadata authoring tools. Existing GCMD tools are attracting widespread usage; however, a need for tools that are portable, customizable and versatile still exists. With tool usage directly influencing metadata population, it has become apparent that new tools are needed to fill these voids. As a result, the GCMD has released a new authoring tool allowing for both web-based and stand-alone authoring of descriptions. Furthermore, this tool incorporates the ability to plug-and-play the metadata format of choice, offering users options of DIF, SERF, FGDC, ISO or any other defined standard. Allowing data holders to work with their preferred format, as well as an option of a stand-alone application or web-based environment, docBUlLDER will assist the scientific community in efficiently creating quality data and services metadata.
JAMSTEC DARWIN Database Assimilates GANSEKI and COEDO
NASA Astrophysics Data System (ADS)
Tomiyama, T.; Toyoda, Y.; Horikawa, H.; Sasaki, T.; Fukuda, K.; Hase, H.; Saito, H.
2017-12-01
Introduction: Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives data and samples obtained by JAMSTEC research vessels and submersibles. As a common property of the human society, JAMSTEC archive is open for public users with scientific/educational purposes [1]. For publicizing its data and samples online, JAMSTEC is operating NUUNKUI data sites [2], a group of several databases for various data and sample types. For years, data and metadata of JAMSTEC rock samples, sediment core samples and cruise/dive observation were publicized through databases named GANSEKI, COEDO, and DARWIN, respectively. However, because they had different user interfaces and data structures, these services were somewhat confusing for unfamiliar users. Maintenance costs of multiple hardware and software were also problematic for performing sustainable services and continuous improvements. Database Integration: In 2017, GANSEKI, COEDO and DARWIN were integrated into DARWIN+ [3]. The update also included implementation of map-search function as a substitute of closed portal site. Major functions of previous systems were incorporated into the new system; users can perform the complex search, by thumbnail browsing, map area, keyword filtering, and metadata constraints. As for data handling, the new system is more flexible, allowing the entry of variety of additional data types. Data Management: After the DARWIN major update, JAMSTEC data & sample team has been dealing with minor issues of individual sample data/metadata which sometimes need manual modification to be transferred to the new system. Some new data sets, such as onboard sample photos and surface close-up photos of rock samples, are getting available online. Geochemical data of sediment core samples will supposedly be added in the near future. Reference: [1] http://www.jamstec.go.jp/e/database/data_policy.html [2] http://www.godac.jamstec.go.jp/jmedia/portal/e/ [3] http://www.godac.jamstec.go.jp/darwin/e/
Mercury: An Example of Effective Software Reuse for Metadata Management, Data Discovery and Access
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce E.
2008-12-01
Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. Though originally developed for NASA, the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the 12 projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects. To balance these common and project-specific needs, Mercury's architecture has three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of project specific configuration files. The harvested files are structured metadata records that are indexed against the search library API consistently, so that it can render various search capabilities such as simple, fielded, spatial and temporal. This backend component is supported by a very flexible, easy to use Graphical User Interface which is driven by cascading style sheets, which make it even simpler for reusable design implementation. The new Mercury system is based on a Service Oriented Architecture and effectively reuses components for various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. The software also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets, integrated shopping cart to order datasets from various data centers (ORNL DAAC, NSIDC) and integrated visualization tools. Other features include: Filtering and dynamic sorting of search results, book- markable search results, save, retrieve, and modify search criteria.
Mercury: An Example of Effective Software Reuse for Metadata Management, Data Discovery and Access
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet
2008-01-01
Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. Though originally developed for NASA, the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfacesmore » then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the 12 projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects. To balance these common and project-specific needs, Mercury's architecture has three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of project specific configuration files. The harvested files are structured metadata records that are indexed against the search library API consistently, so that it can render various search capabilities such as simple, fielded, spatial and temporal. This backend component is supported by a very flexible, easy to use Graphical User Interface which is driven by cascading style sheets, which make it even simpler for reusable design implementation. The new Mercury system is based on a Service Oriented Architecture and effectively reuses components for various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. The software also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets, integrated shopping cart to order datasets from various data centers (ORNL DAAC, NSIDC) and integrated visualization tools. Other features include: Filtering and dynamic sorting of search results, book- markable search results, save, retrieve, and modify search criteria.« less
The Kiel data management infrastructure - arising from a generic data model
NASA Astrophysics Data System (ADS)
Fleischer, D.; Mehrtens, H.; Schirnick, C.; Springer, P.
2010-12-01
The Kiel Data Management Infrastructure (KDMI) started from a cooperation of three large-scale projects (SFB574, SFB754 and Cluster of Excellence The Future Ocean) and the Leibniz Institute of Marine Sciences (IFM-GEOMAR). The common strategy for project data management is a single person collecting and transforming data according to the requirements of the targeted data center(s). The intention of the KDMI cooperation is to avoid redundant and potentially incompatible data management efforts for scientists and data managers and to create a single sustainable infrastructure. An increased level of complexity in the conceptual planing arose from the diversity of marine disciplines and approximately 1000 scientists involved. KDMI key features focus on the data provenance which we consider to comprise the entire workflow from field sampling thru labwork to data calculation and evaluation. Managing the data of each individual project participant in this way yields the data management for the entire project and warrants the reusability of (meta)data. Accordingly scientists provide a workflow definition of their data creation procedures resulting in their target variables. The central idea in the development of the KDMI presented here is based on the object oriented programming concept which allows to have one object definition (workflow) and infinite numbers of object instances (data). Each definition is created by a graphical user interface and produces XML output stored in a database using a generic data model. On creation of a data instance the KDMI translates the definition into web forms for the scientist, the generic data model then accepts all information input following the given data provenance definition. An important aspect of the implementation phase is the possibility of a successive transition from daily measurement routines resulting in single spreadsheet files with well known points of failure and limited reuseability to a central infrastructure as a single point of truth. The data provenance approach has the following positive side effects: (1) the scientist designs the extend and timing of data and metadata prompts by workflow definitions himself while (2) consistency and completeness (mandatory information) of metadata in the resulting XML document can be checked by XML validation. (3) Storage of the entire data creation process (including raw data and processing steps) provides a multidimensional quality history accessible by all researchers in addition to the commonly applied one dimensional quality flag system. (4) The KDMI can be extended to other scientific disciplines by adding new workflows and domain specific outputs assisted by the KDMI-Team. The KDMI is a social network inspired system but instead of sharing privacy it is a sharing platform for daily scientific work, data and their provenance.
Kolker, Eugene; Özdemir, Vural; Martens, Lennart; Hancock, William; Anderson, Gordon; Anderson, Nathaniel; Aynacioglu, Sukru; Baranova, Ancha; Campagna, Shawn R; Chen, Rui; Choiniere, John; Dearth, Stephen P; Feng, Wu-Chun; Ferguson, Lynnette; Fox, Geoffrey; Frishman, Dmitrij; Grossman, Robert; Heath, Allison; Higdon, Roger; Hutz, Mara H; Janko, Imre; Jiang, Lihua; Joshi, Sanjay; Kel, Alexander; Kemnitz, Joseph W; Kohane, Isaac S; Kolker, Natali; Lancet, Doron; Lee, Elaine; Li, Weizhong; Lisitsa, Andrey; Llerena, Adrian; Macnealy-Koch, Courtney; Marshall, Jean-Claude; Masuzzo, Paola; May, Amanda; Mias, George; Monroe, Matthew; Montague, Elizabeth; Mooney, Sean; Nesvizhskii, Alexey; Noronha, Santosh; Omenn, Gilbert; Rajasimha, Harsha; Ramamoorthy, Preveen; Sheehan, Jerry; Smarr, Larry; Smith, Charles V; Smith, Todd; Snyder, Michael; Rapole, Srikanth; Srivastava, Sanjeeva; Stanberry, Larissa; Stewart, Elizabeth; Toppo, Stefano; Uetz, Peter; Verheggen, Kenneth; Voy, Brynn H; Warnich, Louise; Wilhelm, Steven W; Yandl, Gregory
2014-01-01
Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency, facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in use by the life sciences community. The checklist will serve as a common denominator to guide experimental design, capture important parameters, and be used as a standard format for stand-alone data publications. The omics metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life sciences innovation and, importantly, allow for appropriate attribution to data generators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata checklist and data publications and provide feedback for their use and improvement.
Kamel Boulos, Maged N; Roudsari, Abdul V; Carso N, Ewart R
2002-12-01
HealthCyberMap (HCM-http://healthcybermap.semanticweb.org) is a web-based service for healthcare professionals and librarians, patients and the public in general that aims at mapping parts of the health information resources in cyberspace in novel ways to improve their retrieval and navigation. HCM adopts a clinical metadata framework built upon a clinical coding ontology for the semantic indexing, classification and browsing of Internet health information resources. A resource metadata base holds information about selected resources. HCM then uses GIS (Geographic Information Systems) spatialization methods to generate interactive navigational cybermaps from the metadata base. These visual cybermaps are based on familiar medical metaphors. HCM cybermaps can be considered as semantically spatialized, ontology-based browsing views of the underlying resource metadata base. Using a clinical coding scheme as a metric for spatialization ('semantic distance') is unique to HCM and is very much suited for the semantic categorization and navigation of Internet health information resources. Clinical codes ensure reliable and unambiguous topical indexing of these resources. HCM also introduces a useful form of cyberspatial analysis for the detection of topical coverage gaps in the resource metadata base using choropleth (shaded) maps of human body systems.
NASA Technical Reports Server (NTRS)
Smit, Christine; Hegde, Mahabaleshwara; Strub, Richard; Bryant, Keith; Li, Angela; Petrenko, Maksym
2017-01-01
Giovanni is a data exploration and visualization tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC). It has been around in one form or another for more than 15 years. Giovanni calculates simple statistics and produces 22 different visualizations for more than 1600 geophysical parameters from more than 90 satellite and model products. Giovanni relies on external data format standards to ensure interoperability, including the NetCDF CF Metadata Conventions. Unfortunately, these standards were insufficient to make Giovanni's internal data representation truly simple to use. Finding and working with dimensions can be convoluted with the CF Conventions. Furthermore, the CF Conventions are silent on machine-friendly descriptive metadata such as the parameter's source product and product version. In order to simplify analyzing disparate earth science data parameters in a unified way, we developed Giovanni's internal standard. First, the format standardizes parameter dimensions and variables so they can be easily found. Second, the format adds all the machine-friendly metadata Giovanni needs to present our parameters to users in a consistent and clear manner. At a glance, users can grasp all the pertinent information about parameters both during parameter selection and after visualization.
Metadata management for high content screening in OMERO
Li, Simon; Besson, Sébastien; Blackburn, Colin; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gillen, Kenneth; Leigh, Roger; Lindner, Dominik; Linkert, Melissa; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Allan, Chris; Burel, Jean-Marie; Moore, Josh; Swedlow, Jason R.
2016-01-01
High content screening (HCS) experiments create a classic data management challenge—multiple, large sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce a set of “final” results. These different data include images, reagents, protocols, analytic output, and phenotypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and where appropriate the wider community. The OME Consortium has built several open source tools for managing, linking and sharing these different types of data. The OME Data Model is a metadata specification that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java library that reads recorded image data and metadata and includes support for several HCS screening systems. OMERO is an enterprise data management application that integrates image data, experimental and analytic metadata and makes them accessible for visualization, mining, sharing and downstream analysis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications and software are open source and are available at https://www.openmicroscopy.org. PMID:26476368
Kolker, Eugene; Özdemir, Vural; Martens, Lennart; Hancock, William; Anderson, Gordon; Anderson, Nathaniel; Aynacioglu, Sukru; Baranova, Ancha; Campagna, Shawn R; Chen, Rui; Choiniere, John; Dearth, Stephen P; Feng, Wu-Chun; Ferguson, Lynnette; Fox, Geoffrey; Frishman, Dmitrij; Grossman, Robert; Heath, Allison; Higdon, Roger; Hutz, Mara H; Janko, Imre; Jiang, Lihua; Joshi, Sanjay; Kel, Alexander; Kemnitz, Joseph W; Kohane, Isaac S; Kolker, Natali; Lancet, Doron; Lee, Elaine; Li, Weizhong; Lisitsa, Andrey; Llerena, Adrian; MacNealy-Koch, Courtney; Marshall, Jean-Claude; Masuzzo, Paola; May, Amanda; Mias, George; Monroe, Matthew; Montague, Elizabeth; Mooney, Sean; Nesvizhskii, Alexey; Noronha, Santosh; Omenn, Gilbert; Rajasimha, Harsha; Ramamoorthy, Preveen; Sheehan, Jerry; Smarr, Larry; Smith, Charles V; Smith, Todd; Snyder, Michael; Rapole, Srikanth; Srivastava, Sanjeeva; Stanberry, Larissa; Stewart, Elizabeth; Toppo, Stefano; Uetz, Peter; Verheggen, Kenneth; Voy, Brynn H; Warnich, Louise; Wilhelm, Steven W; Yandl, Gregory
2013-12-01
Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency, facilitate data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in use by the life sciences community. The checklist will serve as a common denominator to guide experimental design, capture important parameters, and be used as a standard format for stand-alone data publications. The omics metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life sciences innovation and, importantly, allow for appropriate attribution to data generators and infrastructure science builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata checklist and data publications and provide feedback for their use and improvement.
Scalable PGAS Metadata Management on Extreme Scale Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Agarwal, Khushbu; Straatsma, TP
Programming models intended to run on exascale systems have a number of challenges to overcome, specially the sheer size of the system as measured by the number of concurrent software entities created and managed by the underlying runtime. It is clear from the size of these systems that any state maintained by the programming model has to be strictly sub-linear in size, in order not to overwhelm memory usage with pure overhead. A principal feature of Partitioned Global Address Space (PGAS) models is providing easy access to global-view distributed data structures. In order to provide efficient access to these distributedmore » data structures, PGAS models must keep track of metadata such as where array sections are located with respect to processes/threads running on the HPC system. As PGAS models and applications become ubiquitous on very large transpetascale systems, a key component to their performance and scalability will be efficient and judicious use of memory for model overhead (metadata) compared to application data. We present an evaluation of several strategies to manage PGAS metadata that exhibit different space/time tradeoffs. We use two real-world PGAS applications to capture metadata usage patterns and gain insight into their communication behavior.« less
Metadata management for high content screening in OMERO.
Li, Simon; Besson, Sébastien; Blackburn, Colin; Carroll, Mark; Ferguson, Richard K; Flynn, Helen; Gillen, Kenneth; Leigh, Roger; Lindner, Dominik; Linkert, Melissa; Moore, William J; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Allan, Chris; Burel, Jean-Marie; Moore, Josh; Swedlow, Jason R
2016-03-01
High content screening (HCS) experiments create a classic data management challenge-multiple, large sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce a set of "final" results. These different data include images, reagents, protocols, analytic output, and phenotypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and where appropriate the wider community. The OME Consortium has built several open source tools for managing, linking and sharing these different types of data. The OME Data Model is a metadata specification that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java library that reads recorded image data and metadata and includes support for several HCS screening systems. OMERO is an enterprise data management application that integrates image data, experimental and analytic metadata and makes them accessible for visualization, mining, sharing and downstream analysis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications and software are open source and are available at https://www.openmicroscopy.org. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
OntoSoft: A Software Registry for Geosciences
NASA Astrophysics Data System (ADS)
Garijo, D.; Gil, Y.
2017-12-01
The goal of the EarthCube OntoSoft project is to enable the creation of an ecosystem for software stewardship in geosciences that will empower scientists to manage their software as valuable scientific assets. By sharing software metadata in OntoSoft, scientists enable broader access to that software by other scientists, software professionals, students, and decision makers. Our work to date includes: 1) an ontology for describing scientific software metadata, 2) a distributed scientific software repository that contains more than 750 entries that can be searched and compared across metadata fields, 3) an intelligent user interface that guides scientists to publish software and allows them to crowdsource its corresponding metadata. We have also developed a training program where scientists learn to describe and cite software in their papers in addition to data and provenance, and we are using OntoSoft to show them the benefits of publishing their software metadata. This training program is part of a Geoscience Papers of the Future Initiative, where scientists are reflecting on their current practices, benefits and effort for sharing software and data. This journal paper can be submitted to a Special Section of the AGU Earth and Space Science Journal.