Diffeomorphism Group Representations in Relativistic Quantum Field Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldin, Gerald A.; Sharp, David H.
We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.
ERIC Educational Resources Information Center
Houlrik, Jens Madsen
2009-01-01
The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…
Dynamics of oscillating relativistic tori around Kerr black holes
NASA Astrophysics Data System (ADS)
Zanotti, Olindo; Font, José A.; Rezzolla, Luciano; Montero, Pedro J.
2005-02-01
We present a comprehensive numerical study of the dynamics of relativistic axisymmetric accretion tori with a power-law distribution of specific angular momentum orbiting in the background space-time of a Kerr black hole. By combining general relativistic hydrodynamics simulations with a linear perturbative approach we investigate the main dynamical properties of these objects over a large parameter space. The astrophysical implications of our results extend and improve two interesting results that have been recently reported in the literature. First, the induced quasi-periodic variation of the mass quadrupole moment makes relativistic tori of nuclear matter densities, as those formed during the last stages of binary neutron star mergers, promising sources of gravitational radiation, potentially detectable by interferometric instruments. Secondly, p-mode oscillations in relativistic tori of low rest-mass densities could be used to explain high-frequency quasi-periodic oscillations observed in X-ray binaries containing a black hole candidate under conditions more generic than those considered so far.
Relativistic extended Thomas-Fermi calculations with exchange term contributions
NASA Astrophysics Data System (ADS)
Haddad, S.; Weigel, M. K.
1994-10-01
In this investigation we present self-consistent relativistic extended Thomas-Fermi (ETF) and extended Thomas-Fermi-Fock (ETFF) approaches, derived from the semiclassical treatment of the relativistic nuclear Hartree-Fock problem. The approximations are used to describe the ground-state properties of finite nuclei. The resulting equations are solved numerically for several one-boson-exchange (OBE) lagrangians. The results are discussed and compared with the outcome of full quantal Hartree and Hartree-Fock calculations, other semiclassical treatments and experimental data.
Secondary antiproton production in relativistic plasmas
NASA Technical Reports Server (NTRS)
Dermer, C. D.; Ramaty, R.
1985-01-01
The possibility is investigated that the reported excess low energy antiproton component of the cosmic radiation results from proton-proton (p-p) interactions in relativistic plasmas. Because of both target and projectile motion in such plasmas, the antiproton production threshold in the frame of the plasma is much lower than the threshold of antiproton production in cosmic ray interactions with ambient matter. The spectrum of the resultant antiprotons therefore extends to much lower energy than in the cosmic ray case. The antiproton spectrum is calculated for relativistic thermal plasmas and the spectrum is estimated for relativistic nonthermal plasmas. As possible production sites, matter accreting onto compact objects located in the galaxy is considered. Possible overproduction of gamma rays from associated neutral pion production can be avoided if the site is optically thick to the photons but not to the antiprotons. A possible scenario involves a sufficiently large photon density that the neutral pion gamma rays are absorbed by photon-photon pair production. Escape of the antiprotons to the interstellar medium can be mediated by antineutron production.
Relativistic Corrections to the Bohr Model of the Atom
ERIC Educational Resources Information Center
Kraft, David W.
1974-01-01
Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)
Thermodynamic laws and equipartition theorem in relativistic Brownian motion.
Koide, T; Kodama, T
2011-06-01
We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.
Hamiltonian dynamics of extended objects
NASA Astrophysics Data System (ADS)
Capovilla, R.; Guven, J.; Rojas, E.
2004-12-01
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.
Relativistic Newtonian dynamics for objects and particles
NASA Astrophysics Data System (ADS)
Friedman, Y.
2017-04-01
Relativistic Newtonian Dynamics (RND) was introduced in a series of recent papers by the author, in partial cooperation with J. M. Steiner. RND was capable of describing non-classical behavior of motion under a central attracting force. RND incorporates the influence of potential energy on spacetime in Newtonian dynamics, treating gravity as a force in flat spacetime. It was shown that this dynamics predicts accurately gravitational time dilation, the anomalous precession of Mercury and the periastron advance of any binary. In this paper the model is further refined and extended to describe also the motion of both objects with non-zero mass and massless particles, under a conservative attracting force. It is shown that for any conservative force a properly defined energy is conserved on the trajectories and if this force is central, the angular momentum is also preserved. An RND equation of motion is derived for motion under a conservative force. As an application, it is shown that RND predicts accurately also the Shapiro time delay - the fourth test of GR.
NASA Astrophysics Data System (ADS)
Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.
2018-01-01
Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.
NASA Technical Reports Server (NTRS)
Sulkanen, Martin E.; Borovsky, Joseph E.
1992-01-01
The study of relativistic plasma double layers is described through the solution of the one-dimensional, unmagnetized, steady-state Poisson-Vlasov equations and by means of one-dimensional, unmagnetized, particle-in-cell simulations. The thickness vs potential-drop scaling law is extended to relativistic potential drops and relativistic plasma temperatures. The transition in the scaling law for 'strong' double layers suggested by analytical two-beam models by Carlqvist (1982) is confirmed, and causality problems of standard double-layer simulation techniques applied to relativistic plasma systems are discussed.
Covariant and 3 + 1 Equations for Dynamo-Chiral General Relativistic Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Del Zanna, L.; Bucciantini, N.
2018-06-01
The exponential amplification of initial seed magnetic fields in relativistic plasmas is a very important topic in astrophysics, from the conditions in the early Universe to the interior of neutron stars. While dynamo action in a turbulent plasma is often invoked, in the last years a novel mechanism of quantum origin has gained increasingly more attention, namely the Chiral Magnetic Effect (CME). This has been recognized in semi-metals and it is most likely at work in the quark-gluon plasma formed in heavy-ion collision experiments, where the highest magnetic fields in nature, up to B ˜ 1018 G, are produced. This effect is expected to survive even at large hydrodynamical/MHD scales and it is based on the chiral anomaly due to an imbalance between left- and right-handed relativistic fermions in the constituent plasma. Such imbalance leads to an electric current parallel to an external magnetic field, which is precisely the same mechanism of an α-dynamo action in classical MHD. Here we extend the close parallelism between the chiral and the dynamo effects to relativistic plasmas and we propose a unified, fully covariant formulation of the generalized Ohm's law. Moreover, we derive for the first time the 3 + 1 general relativistic MHD equations for a chiral plasma both in flat and curved spacetimes, in view of numerical investigation of the CME in compact objects, especially magnetars, or of the interplay among the non-ideal magnetic effects of dynamo, the CME and reconnection.
Limits and signatures of relativistic spaceflight
NASA Astrophysics Data System (ADS)
Yurtsever, Ulvi; Wilkinson, Steven
2018-01-01
While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave photons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.
Code C# for chaos analysis of relativistic many-body systems
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Besliu, C.; Jipa, Al.; Bordeianu, C. C.; Felea, D.; Stan, E.; Esanu, T.
2010-08-01
This work presents a new Microsoft Visual C# .NET code library, conceived as a general object oriented solution for chaos analysis of three-dimensional, relativistic many-body systems. In this context, we implemented the Lyapunov exponent and the “fragmentation level” (defined using the graph theory and the Shannon entropy). Inspired by existing studies on billiard nuclear models and clusters of galaxies, we tried to apply the virial theorem for a simplified many-body system composed by nucleons. A possible application of the “virial coefficient” to the stability analysis of chaotic systems is also discussed. Catalogue identifier: AEGH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30 053 No. of bytes in distributed program, including test data, etc.: 801 258 Distribution format: tar.gz Programming language: Visual C# .NET 2005 Computer: PC Operating system: .Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread RAM: 128 Megabytes Classification: 6.2, 6.5 External routines: .Net Framework 2.0 Library Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems. Object oriented solution, easy to reuse, extend and customize, in any development environment which accepts .Net assemblies or COM components. Implementation of: Lyapunov exponent, “fragmentation level”, “average system radius”, “virial coefficient”, and energy conservation precision test. Additional comments: Easy copy/paste based deployment method. Running time: Quadratic complexity.
Periastron shifts of stellar orbits near the Galactic Center
NASA Astrophysics Data System (ADS)
Rubilar, G. F.; Eckart, A.
2001-07-01
The presence of a 2.9+/-0.4 million solar mass object in the central stellar cluster of the Milky Way has recently been demonstrated via measurements of the stellar proper motions and radial velocities. This mass is located at the position of the compact radio source Sagittarius A* (Sgr A*) at a distance of Ro=8.0 kpc and is most likely present in the form of a massive black hole (BH). Some of the stars have a projected distance to Sgr A* of <=0.005 pc and have proper motion velocities of up to 1400 km s-1. Recent measurements indicate that their orbits show significant curvatures indicating that the stars indeed orbit the central compact object. Detailed measurements of the stellar orbits close to Sgr A* will allow us to precisely determine the distribution of this mass. With an increased point source sensitivity due to the combination of large telescope apertures, adaptive optics, and - in the very near future - NIR interferometry it is likely that stars with orbital time scales of the order of one year will be detected. Theses sources, however, will most likely not be on simple Keplerian orbits. The effects of measurable prograde relativistic and retrograde Newtonian periastron shifts will result in rosetta shaped orbits. A substantial Newtonian periastron rotation can already be expected if only a few percent of the central mass are extended. We discuss the conditions under which an extended mass can (over-) compensate the relativistic periastron shift. We also demonstrate that measuring a single periastron shift is not sufficient to determine the distribution of an extended mass component. A periastron shift will allow us to determine the inclination of the stellar orbits and to derive inclination corrected shift values. These have to be acquired for three stars on orbits with different energy or angular momentum in order to unambiguously solve for the compactness, extent and shape of any extended mass contribution.
Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using Nustar
NASA Technical Reports Server (NTRS)
Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.;
2013-01-01
We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5 sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be ZnS (is) greater than 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case,ZnS(is) greater than 0.22 and RNS (is) less than12.6 km (assuming MnS = 1.4 solar mass and a = 0, where a = cJ/GM2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.
CONSTRAINTS ON THE NEUTRON STAR AND INNER ACCRETION FLOW IN SERPENS X-1 USING NuSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J. M.; Parker, M. L.; Fabian, A. C.
2013-12-10
We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5σ level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering ''hump'' peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection modelsmore » suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be z {sub NS} ≥ 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case, z {sub NS} ≥ 0.22 and R {sub NS} ≤ 12.6 km (assuming M {sub NS} = 1.4 M {sub ☉} and a = 0, where a = cJ/GM {sup 2}). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.« less
NASA Astrophysics Data System (ADS)
Ceccobello, C.; Cavecchi, Y.; Heemskerk, M. H. M.; Markoff, S.; Polko, P.; Meier, D.
2018-02-01
The paradigm in which magnetic fields play a crucial role in launching/collimating outflows in many astrophysical objects continues to gain support. However, semi-analytical models including the effect of magnetic fields on the dynamics and morphology of jets are still missing due to the intrinsic difficulties in integrating the equations describing a collimated, relativistic flow in the presence of gravity. Only few solutions have been found so far, due to the highly non-linear character of the equations together with the need to blindly search for singularities. These numerical problems prevented a full exploration of the parameter space. We present a new integration scheme to solve r-self-similar, stationary, axisymmetric magnetohydrodynamic (MHD) equations describing collimated, relativistic outflows crossing smoothly all the singular points (Alfvén point and modified slow/fast points). For the first time, we are able to integrate from the disc mid-plane to downstream of the modified fast point. We discuss an ensemble of jet solutions, emphasizing trends and features that can be compared to observables. We present, for the first time with a semi-analytical MHD model, solutions showing counter-rotation of the jet for a substantial fraction of its extent. We find diverse jet configurations with bulk Lorentz factors up to 10 and potential sites for recollimation between 103 and 107 gravitational radii. Such extended coverage of the intervals of quantities, such as magnetic-to-thermal energy ratios at the base or the heights/widths of the recollimation region, makes our solutions suitable for application to many different systems where jets are launched.
Fluctuation theorem for entropy production during effusion of a relativistic ideal gas.
Cleuren, B; Willaert, K; Engel, A; Van den Broeck, C
2008-02-01
The probability distribution of the entropy production for the effusion of a relativistic ideal gas is calculated explicitly. This result is then extended to include particle and antiparticle pair production and annihilation. In both cases, the fluctuation theorem is verified.
Covariant Uniform Acceleration
NASA Astrophysics Data System (ADS)
Friedman, Yaakov; Scarr, Tzvi
2013-04-01
We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and its acceleration is a function of the observer's acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.
Riemann Solvers in Relativistic Hydrodynamics: Basics and Astrophysical Applications
NASA Astrophysics Data System (ADS)
Ibanez, Jose M.
2001-12-01
My contribution to these proceedings summarizes a general overview on t High Resolution Shock Capturing methods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow, and capture the motion of unresolved steep gradients without creating spurious oscillations. In the first part I will show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore some challenging astrophysical scenarios. I will review recent literature concerning the main properties of different special relativistic Riemann solvers, and discuss several 1D and 2D test problems which are commonly used to evaluate the performance of numerical methods in relativistic hydrodynamics. In the second part I will illustrate the use of HRSC methods in several astrophysical applications where special and general relativistic hydrodynamical processes play a crucial role.
NASA Astrophysics Data System (ADS)
Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M.
2018-07-01
The phenomenological Landau–Lifshitz–Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy–Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.
Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M
2018-05-17
The phenomenological Landau-Lifshitz-Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy-Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.
Relativistic Navigation: A Theoretical Foundation
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.
1996-01-01
We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the relativistic equations of satellite motion in the vicinity of the extended bodies. Anticipating improvements in radio and laser tracking technologies over the next few decades, we apply this method to spacecraft orbit determination. We emphasize the number of feasible relativistic gravity tests that may be performed within the context of the parameterized WFSMA. Based on the planeto-centric equations of motion of a spacecraft around the planet, we suggested a new null test of the Strong Equivalence Principle (SEP). The experiment to measure the corresponding SEP violation effect could be performed with the future Mercury Orbiter mission. We discuss other relativistic effects, including the perihelion advance and the redshift and geodetic precession of the orbiter's orbital plane about Mercury, as well as the possible future implementation of the proposed formalism in software codes developed for solar-system orbit determination. All the important calculations are completely documented, and the references contain an extensive list of cited literature.
Evolution of relativistic outer belt electrons during extended quiescent period
NASA Astrophysics Data System (ADS)
Jaynes, A. N.; Li, X.; Schiller, Q.; Blum, L. W.; Tu, W.; Malaspina, D.; Turner, D.; Baker, D. N.; Kanekal, S. G.; Blake, J. B.; Wygant, J. R.
2013-12-01
To effectively study loss due to precipitation of relativistic electron fluxes in the radiation belt, it is necessary to isolate this loss from the Dst effect and magnetopause shadowing by studying loss during a time of relatively quiet geomagnetic activity. We present a study of the slow decay of 200 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 Dec 2012 - 10 Jan 2013, wherein Dst never extended below -25 nT. We incorporate particle measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat with measurements from the Relativistic Electron Proton Telescope (REPT) and the Magnetic Electron Ion Spectrometer (MagEIS) on the Van Allen Probes twin spacecraft to understand the evolution of the electron populations across pitch angle and energy. First, we present REPTile measurements of the precipitating populations (along with trapped & quasi-trapped) at a low-earth orbit, offering a view into the loss cone that is not as easily resolved using only the Van Allen Probes. Electron loss to the atmosphere during this event is quantified through use of a precipitation loss model, using the REPTile measurements. Additionally, phase space densities are derived using pitch-angle-resolved flux data from the REPT and MagEIS instruments, as well as from THEMIS SST data. Finally, we present the net loss effect on the outer radiation belt content during this time, by incorporating the modeled precipitation loss (from REPTile measurements) with Van Allen Probes electron flux data. Hiss and chorus wave data, along with approximate plasmapause location, from Van Allen Probes' Electric Field and Waves Suite (EFW) completes the picture by suggesting mechanisms for the precipitation loss of relativistic electrons during quiet time.
Towards an exact relativistic theory of Earth's geoid undulation
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei M.; Mazurova, Elena M.; Karpik, Alexander P.
2015-08-01
The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns equation for calculation of geoid's height with full account for relativistic effects beyond the Newtonian approximation. A brief discussion of the relativistic Bruns formula is provided.
NASA Astrophysics Data System (ADS)
Itoh, Naoki; Nozawa, Satoshi; Kohyama, Yasuharu
2000-04-01
We extend the formalism of relativistic thermal and kinematic Sunyaev-Zeldovich effects and include the polarization of the cosmic microwave background photons. We consider the situation of a cluster of galaxies moving with a velocity β≡v/c with respect to the cosmic microwave background radiation. In the present formalism, polarization of the scattered cosmic microwave background radiation caused by the proper motion of a cluster of galaxies is naturally derived as a special case of the kinematic Sunyaev-Zeldovich effect. The relativistic corrections are also included in a natural way. Our results are in complete agreement with the recent results of relativistic corrections obtained by Challinor, Ford, & Lasenby with an entirely different method, as well as the nonrelativistic limit obtained by Sunyaev & Zeldovich. The relativistic correction becomes significant in the Wien region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basumallick, Partha Pratim; Gupta, Nayantara, E-mail: basuparth314@gmail.com
The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires anmore » extreme proton energy of 3.98 × 10{sup 21} eV and a high magnetic field of 1 mG of the extended jet with jet power ∼5 × 10{sup 48} erg s{sup −1} in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.« less
Relativistic Quantum Transport in Graphene Systems
2015-07-09
which is desirable in the development of nanoscale devices such as graphene-based resonant- tunneling diodes . Details of this work can be found in • L... tunneling , etc. The AFOSR support helped create a new field of interdisciplinary research: Relativistic Quantum Chaos, which studies the relativistic quantum...Objectives 2 2 List of Publications 2 3 Accomplishments and New Findings 3 3.1 Solutions of Dirac equation, relativistic quantum tunneling and
The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory
NASA Astrophysics Data System (ADS)
Xia, X. W.; Lim, Y.; Zhao, P. W.; Liang, H. Z.; Qu, X. Y.; Chen, Y.; Liu, H.; Zhang, L. F.; Zhang, S. Q.; Kim, Y.; Meng, J.
2018-05-01
The ground-state properties of nuclei with 8 ⩽ Z ⩽ 120 from the proton drip line to the neutron drip line have been investigated using the spherical relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. It is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.
General Relativistic Effects and QPOs in X-Ray Binaries
NASA Astrophysics Data System (ADS)
Markovic, D.; Lamb, F. K.
We have investigated whether general relativistic effects may be responsible for some of the quasi-periodic X-ray brightness oscillations (QPOs) observed in low-mass binary systems containing accreting neutron stars and black hole candidates. In particular, we have computed the motions of accreting gas in the strong gravitational fields near such objects and have explored possible mechanisms for producing X-ray flux oscillations. We have discovered a family of weakly damped global gravitomagnetic (Lense-Thirring) warping modes of the inner (viscous) accretion disk that have precession frequencies ranging up to the single-particle gravitomagnetic precession frequency at the inner edge of the disk, which is about 30 Hz if the disk extends inward to the innermost stable circular orbit around a compact object of solar mass with dimensionless angular momentum cJ/GM2 ~ 0.2. Precession of regions of enhanced viscous dissipation or modulation of the accretion flow by the precession may produce observable periodic variation of the X-ray flux. Detectable effects might also be produced if the gas in the inner disk breaks up into a collection of distinct clumps. We have analyzed the dynamics of such clumps as well as the conditions required for their formation and survival on time scales long enough to produce QPOs with the coherence observed in low-mass X-ray binaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toeroek, Gabriel; Bakala, Pavel; Sramkova, Eva
2010-05-01
Boutloukos et al. discovered twin-peak quasi-periodic oscillations (QPOs) in 11 observations of the peculiar Z-source Circinus X-1. Among several other conjunctions the authors briefly discussed the related estimate of the compact object mass following from the geodesic relativistic precession model for kHz QPOs. Neglecting the neutron star rotation they reported the inferred mass M{sub 0} = 2.2 {+-} 0.3 M{sub sun}. We present a more detailed analysis of the estimate which involves the frame-dragging effects associated with rotating spacetimes. For a free mass we find acceptable fits of the model to data for (any) small dimensionless compact object angular momentummore » j = cJ/GM {sup 2}. Moreover, quality of the fit tends to increase very gently with rising j. Good fits are reached when M {approx} M{sub 0}[1 + 0.55(j + j {sup 2})]. It is therefore impossible to estimate the mass without independent knowledge of the angular momentum and vice versa. Considering j up to 0.3 the range of the feasible values of mass extends up to 3 M{sub sun}. We suggest that similar increase of estimated mass due to rotational effects can be relevant for several other sources.« less
A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindesay, James V
2001-05-11
We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' ormore » ''dressing'' of these parameters to connect them to the boundary states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yongpeng; Northwest Institute of Nuclear Technology, P.O. Box 69-13, Xi'an 710024; Liu Guozhi
In this paper, the Child-Langmuir law and Langmuir-Blodgett law are generalized to the relativistic regime by a simple method. Two classical laws suitable for the nonrelativistic regime are modified to simple approximate expressions applicable for calculating the space-charge-limited currents of one-dimensional steady-state planar diodes and coaxial diodes under the relativistic regime. The simple approximate expressions, extending the Child-Langmuir law and Langmuir-Blodgett law to fit the full range of voltage, have small relative errors less than 1% for one-dimensional planar diodes and less than 5% for coaxial diodes.
Constraints on a Proton Synchrotron Origin of VHE Gamma Rays from the Extended Jet of AP Librae
NASA Astrophysics Data System (ADS)
Pratim Basumallick, Partha; Gupta, Nayantara
2017-07-01
The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires an extreme proton energy of 3.98 × 1021 eV and a high magnetic field of 1 mG of the extended jet with jet power ˜5 × 1048 erg s-1 in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.
System and Method for an Integrated Satellite Platform
NASA Technical Reports Server (NTRS)
Starin, Scott R. (Inventor); Sheikh, Salman I. (Inventor); Hesse, Michael (Inventor); Clagett, Charles E. (Inventor); Santos Soto, Luis H. (Inventor); Hesh, Scott V. (Inventor); Paschalidis, Nikolaos (Inventor); Ericsson, Aprille J. (Inventor); Johnson, Michael A. (Inventor)
2018-01-01
A system, method, and computer-readable storage devices for a 6U CubeSat with a magnetometer boom. The example 6U CubeSat can include an on-board computing device connected to an electrical power system, wherein the electrical power system receives power from at least one of a battery and at least one solar panel, a first fluxgate sensor attached to an extendable boom, a release mechanism for extending the extendable boom, at least one second fluxgate sensor fixed within the satellite, an ion neutral mass spectrometer, and a relativistic electron/proton telescope. The on-board computing device can receive data from the first fluxgate sensor, the at least one second fluxgate sensor, the ion neutral mass spectrometer, and the relativistic electron/proton telescope via the bus, and can then process the data via an algorithm to deduce a geophysical signal.
NASA Astrophysics Data System (ADS)
Suleymanov, Michael; Horwitz, Lawrence; Yahalom, Asher
2017-06-01
A relativistic 4D string is described in the framework of the covariant quantum theory first introduced by Stueckelberg [ Helv. Phys. Acta 14, 588 (1941)], and further developed by Horwitz and Piron [ Helv. Phys. Acta 46, 316 (1973)], and discussed at length in the book of Horwitz [Relativistic Quantum Mechanics, Springer (2015)]. We describe the space-time string using the solutions of relativistic harmonic oscillator [ J. Math. Phys. 30, 66 (1989)]. We first study the problem of the discrete string, both classically and quantum mechanically, and then turn to a study of the continuum limit, which contains a basically new formalism for the quantization of an extended system. The mass and energy spectrum are derived. Some comparison is made with known string models.
On the linear stability of sheared and magnetized jets without current sheets - relativistic case
NASA Astrophysics Data System (ADS)
Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.
2018-03-01
In our prior series of papers, we studied the non-relativistic and relativistic linear stability analysis of magnetized jets that do not have current sheets. In this paper, we extend our analysis to relativistic jets with a velocity shear and a similar current sheet free structure. The jets that we study are realistic because we include a velocity shear, a current sheet free magnetic structure, a relativistic velocity and a realistic thermal pressure so as to achieve overall pressure balance in the unperturbed jet. In order to parametrize the velocity shear, we apply a parabolic profile to the jets' 4-velocity. We find that the velocity shear significantly improves the stability of relativistic magnetized jets. This fact is completely consistent with our prior stability analysis of non-relativistic, sheared jets. The velocity shear mainly plays a role in stabilizing the short wavelength unstable modes for the pinch as well as the kink instability modes. In addition, it also stabilizes the long wavelength fundamental pinch instability mode. We also visualize the pressure fluctuations of each unstable mode to provide a better physical understanding of the enhanced stabilization by the velocity shear. Our overall conclusion is that combining velocity shear with a strong and realistic magnetic field makes relativistic jets even more stable.
Radiation-mediated Shocks in Gamma-Ray Bursts: Pair Creation
NASA Astrophysics Data System (ADS)
Lundman, Christoffer; Beloborodov, Andrei M.; Vurm, Indrek
2018-05-01
Relativistic sub-photospheric shocks are a possible mechanism for producing prompt gamma-ray burst (GRB) emission. Such shocks are mediated by scattering of radiation. We introduce a time-dependent, special relativistic code which dynamically couples Monte Carlo radiative transfer to the flow hydrodynamics. The code also self-consistently follows electron–positron pair production in photon–photon collisions. We use the code to simulate shocks with properties relevant to GRBs. We focus on plane-parallel solutions, which are accurate deep below the photosphere. The shock generates a power-law photon spectrum through the first-order Fermi mechanism, extending upward from the typical upstream photon energy. Strong (high Mach number) shocks produce rising νF ν spectra. We observe that in non-relativistic shocks the spectrum extends to {E}\\max ∼ {m}e{v}2, where v is the speed difference between the upstream and downstream. In relativistic shocks the spectrum extends to energies E> 0.1 {m}e{c}2 where its slope softens due to Klein–Nishina effects. Shocks with Lorentz factors γ > 1.5 are prolific producers of electron–positron pairs, yielding hundreds of pairs per proton. The main effect of pairs is to reduce the shock width by a factor of ∼ {Z}+/- -1. Most pairs annihilate far downstream of the shock, and the radiation spectrum relaxes to a Wien distribution, reaching equilibrium with the plasma at a temperature determined by the shock jump conditions and the photon number per proton. We discuss the implications of our results for observations of radiation generated by sub-photospheric shocks.
Optical drift effects in general relativity
NASA Astrophysics Data System (ADS)
Korzyński, Mikołaj; Kopiński, Jarosław
2018-03-01
We consider the question of determining the optical drift effects in general relativity, i.e. the rate of change of the apparent position, redshift, Jacobi matrix, angular distance and luminosity distance of a distant object as registered by an observer in an arbitrary spacetime. We present a fully relativistic and covariant approach, in which the problem is reduced to a hierarchy of ODE's solved along the line of sight. The 4-velocities and 4-accelerations of the observer and the emitter and the geometry of the spacetime along the line of sight constitute the input data. We build on the standard relativistic geometric optics formalism and extend it to include the time derivatives of the observables. In the process we obtain two general, non-perturbative relations: the first one between the gravitational lensing, represented by the Jacobi matrix, and the apparent position drift, also called the cosmic parallax, and the second one between the apparent position drift and the redshift drift. The applications of the results include the theoretical study of the drift effects of cosmological origin (so-called real-time cosmology) in numerical or exact Universe models.
The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics
NASA Astrophysics Data System (ADS)
Torres, Juan Mauricio; Sadurní, Emerson; Seligman, Thomas H.
2010-12-01
The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which can be used to emulate the former.
Generalised relativistic Ohm's laws, extended gauge transformations, and magnetic linking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegoraro, F.
2015-11-15
Generalisations of the relativistic ideal Ohm's law are presented that include specific dynamical features of the current carrying particles in a plasma. Cases of interest for space and laboratory plasmas are identified where these generalisations allow for the definition of generalised electromagnetic fields that transform under a Lorentz boost in the same way as the real electromagnetic fields and that obey the same set of homogeneous Maxwell's equations.
The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, X. W.; Lim, Y.; Zhao, P. W.
The ground-state properties of nuclei with 8more » $$\\leqslant$$ Z $$\\leqslant$$ 120 from the proton drip line to the neutron drip line have been investigated using the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. Here, it is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.« less
The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory
Xia, X. W.; Lim, Y.; Zhao, P. W.; ...
2017-11-01
The ground-state properties of nuclei with 8more » $$\\leqslant$$ Z $$\\leqslant$$ 120 from the proton drip line to the neutron drip line have been investigated using the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. Here, it is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.« less
Does electromagnetic radiation accelerate galactic cosmic rays
NASA Technical Reports Server (NTRS)
Eichler, D.
1977-01-01
The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertacca, Daniele; Maartens, Roy; Raccanelli, Alvise
We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift space to include all general relativistic effects. These general relativistic corrections to the standard approach become important on large scales and at high redshifts, and they lead to new terms in the wide-angle correlations. We show that in principle the new terms can produce corrections of nearly 10% on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic variance will present a challenge in observing this.
On relativistic spin network vertices
NASA Astrophysics Data System (ADS)
Reisenberger, Michael P.
1999-04-01
Barrett and Crane have proposed a model of simplicial Euclidean quantum gravity in which a central role is played by a class of Spin(4) spin networks called "relativistic spin networks" which satisfy a series of physically motivated constraints. Here a proof is presented that demonstrates that the intertwiner of a vertex of such a spin network is uniquely determined, up to normalization, by the representations on the incident edges and the constraints. Moreover, the constraints, which were formulated for four valent spin networks only, are extended to networks of arbitrary valence, and the generalized relativistic spin networks proposed by Yetter are shown to form the entire solution set (mod normalization) of the extended constraints. Finally, using the extended constraints, the Barrett-Crane model is generalized to arbitrary polyhedral complexes (instead of just simplicial complexes) representing space-time. It is explained how this model, like the Barret-Crane model can be derived from BF theory, a simple topological field theory [G. Horowitz, Commun. Math. Phys. 125, 417 (1989)], by restricting the sum over histories to ones in which the left-handed and right-handed areas of any 2-surface are equal. It is known that the solutions of classical Euclidean general relativity form a branch of the stationary points of the BF action with respect to variations preserving this condition.
The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, Juan Mauricio; Sadurni, Emerson; Seligman, Thomas H.
2010-12-23
The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which canmore » be used to emulate the former.« less
Relativistic Dynamos in Magnetospheres of Rotating Compact Objects
NASA Astrophysics Data System (ADS)
Tomimatsu, Akira
2000-01-01
The kinematic evolution of axisymmetric magnetic fields in rotating magnetospheres of relativistic compact objects is analytically studied, based on relativistic Ohm's law in stationary axisymmetric geometry. By neglecting the poloidal flows of plasma in simplified magnetospheric models, we discuss a self-excited dynamo due to the frame-dragging effect (originally pointed out by Khanna & Camenzind) and propose alternative processes to generate axisymmetric magnetic fields against ohmic dissipation. The first process (which may be called ``induced excitation'') is caused by the help of a background uniform magnetic field in addition to the dragging of inertial frames. It is shown that excited multipolar components of poloidal and azimuthal fields are sustained as stationary modes, and outgoing Poynting flux converges toward the rotation axis. The second process is a self-excited dynamo through azimuthal convection current, which is found to be effective if plasma rotation becomes highly relativistic with a sharp gradient in the angular velocity. In this case, no frame-dragging effect is needed, and the coupling between charge separation and plasma rotation becomes important. We discuss briefly the results in relation to active phenomena in the relativistic magnetospheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Timothy F. G., E-mail: tim.green@materials.ox.ac.uk; Yates, Jonathan R., E-mail: jonathan.yates@materials.ox.ac.uk
2014-06-21
We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing themore » heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, {sup 1}J(P-Ag) and {sup 2}J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW.« less
REVIEWS OF TOPICAL PROBLEMS: Cygnus X-3: a powerful galactic source of hard radiation
NASA Astrophysics Data System (ADS)
Vladimirskiĭ, B. M.; Gal'per, A. M.; Luchkov, B. I.; Stepanyan, A. A.
1985-02-01
A review is given of experimental and theoretical research on the galactic source Cyg X-3, whose electromagnetic spectrum extends from radio frequencies to ultrahigh-energy (Eγ ~ 1016 eV) γ-rays. Cyg X-3 also has a high x-ray luminosity (1038 erg/sec) and exhibits diversified sporadic and periodic variations, most notably occasional radio outbursts and a 4h.8 infrared, x-ray, and γ-ray cycle. Analysis of the observations indicates that Cyg X-3 is a close binary system comprising a compact relativistic object (neutron star, black hole) and a dwarf companion losing mass. Particles are accelerated to 1016 eV within the system.
Radiatively driven relativistic spherical winds under relativistic radiative transfer
NASA Astrophysics Data System (ADS)
Fukue, J.
2018-05-01
We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.; Jaffe, R. L.; Langhoff, S. R.; Partridge, H.; Mascarello, F. G.
1985-01-01
Theoretical calculations of selected excitation energies and oscillator strengths for Ba are presented that overcome the difficulties of previous theoretical treatments. A relativistic effective-core potential treatment is used to account for the relativistic core contraction, but the outermost ten electrons are treated explicitly. Core-valence correlation can be included in this procedure in a rigorous and systematic way through a configuration-interaction calculation. Insight is gained into the importance of relativistic effects by repeating many of the calculations using an all-electron nonrelativistic treatment employing an extended Slater basis set. It is found that the intensity of the intercombination line 3P1-1S0 is accurately determined by accounting for the deviation from LS coupling through spin-orbit mixing with the 1P1 state, and that deviations from the Lande interval rule provide an accurate measure of the degree of mixing.
Relativistic and Slowing Down: The Flow in the Hotspots of Powerful Radio Galaxies and Quasars
NASA Technical Reports Server (NTRS)
Kazanas, D.
2003-01-01
The 'hotspots' of powerful radio galaxies (the compact, high brightness regions, where the jet flow collides with the intergalactic medium (IGM)) have been imaged in radio, optical and recently in X-ray frequencies. We propose a scheme that unifies their, at first sight, disparate broad band (radio to X-ray) spectral properties. This scheme involves a relativistic flow upstream of the hotspot that decelerates to the sub-relativistic speed of its inferred advance through the IGM and it is viewed at different angles to its direction of motion, as suggested by two independent orientation estimators (the presence or not of broad emission lines in their optical spectra and the core-to-extended radio luminosity). This scheme, besides providing an account of the hotspot spectral properties with jet orientation, it also suggests that the large-scale jets remain relativistic all the way to the hotspots.
E-beam ionized channel guiding of an intense relativistic electron beam
Frost, Charles A.; Godfrey, Brendon B.; Kiekel, Paul D.; Shope, Steven L.
1988-01-01
An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.
Relativistic effects on x-ray structure factors
NASA Astrophysics Data System (ADS)
Batke, Kilian; Eickerling, Georg
2016-04-01
Today, combined experimental and theoretical charge density studies based on quantum chemical calculations and x-ray diffraction experiments allow for the investigation of the topology of the electron density at subatomic resolution. When studying compounds containing transition metal elements, relativistic effects need to be adequately taken into account not only in quantum chemical calculations of the total electron density ρ ({r}), but also for the atomic scattering factors employed to extract ρ ({r}) from experimental x-ray diffraction data. In the present study, we investigate the magnitude of relativistic effects on x-ray structure factors and for this purpose {F}({{r}}*) have been calculated for the model systems M(C2H2) (M = Ni, Pd, Pt) from four-component molecular wave functions. Relativistic effects are then discussed by a comparison to structure factors obtained from a non-relativistic reference and different quasi-relativistic approximations. We show, that the overall effects of relativity on the structure factors on average amount to 0.81%, 1.51% and 2.78% for the three model systems under investigation, but that for individual reflections or reflection series the effects can be orders of magnitude larger. Employing the quasi-relativistic Douglas-Kroll-Hess second order or the zeroth order regular approximation Hamiltonian takes these effects into account to a large extend, reducing the differences between the (quasi-)relativistic and the non-relativistic result by one order of magnitude. In order to further determine the experimental significance of the results, the magnitude of the relativistic effects is compared to the changes of the model structure factor data when charge transfer and chemical bonding is taken into account by a multipolar expansion of {F}({{r}}*).
NASA Astrophysics Data System (ADS)
Yano, Ryosuke; Matsumoto, Jun; Suzuki, Kojiro
2011-06-01
Thermally relativistic flow with dissipation was analyzed by solving the rarefied supersonic flow of thermally relativistic matter around a triangle prism by Yano and Suzuki [Phys. Rev. DPRVDAQ1550-7998 83, 023517 (2011)10.1103/PhysRevD.83.023517], where the Anderson-Witting (AW) model was used as a solver. In this paper, we solve the same problem, which was analyzed by Yano and Suzuki, using the relativistic Boltzmann equation (RBE). To solve the RBE, the conventional direct simulation Monte Carlo method for the nonrelativistic Boltzmann equation is extended to a new direct simulation Monte Carlo method for the RBE. Additionally, we solve the modified Marle (MM) model proposed by Yano-Suzuki-Kuroda for comparisons. The solution of the thermally relativistic shock layer around the triangle prism obtained using the relativistic Boltzmann equation is considered by focusing on profiles of macroscopic quantities, such as the density, velocity, temperature, heat flux and dynamic pressure along the stagnation streamline (SSL). Differences among profiles of the number density, velocity and temperature along the SSL obtained using the RBE, the AW and MM. models are described in the framework of the relativistic Navier-Stokes-Fourier law. Finally, distribution functions on the SSL obtained using the RBE are compared with those obtained using the AW and MM models. The distribution function inside the shock wave obtained using the RBE does not indicate a bimodal form, which is obtained using the AW and MM models, but a smooth deceleration of thermally relativistic matter inside a shock wave.
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
NASA Astrophysics Data System (ADS)
Stark, D. J.; Yin, L.; Albright, B. J.
2018-06-01
We examine the relativistic Buneman instability in systems relevant to high-intensity laser-plasma interactions under conditions of relativistically-induced transparency, as this instability can generate large-amplitude electrostatic waves at low frequencies that are pertinent to ion dynamics in these systems. Ion flows are shown to significantly alter the range of unstable wave numbers and to increase the phase velocities of the unstable modes; we particularly highlight the relativistic effects from both the ion and electron (with transverse motion) populations. These findings are related to the mode structure seen in particle-in-cell simulation results of a short-pulse laser breaking through an initially opaque target with the onset of relativistic transparency. Additionally, driving mechanisms from free energy present in density and velocity gradients are shown to be capable of significantly enhancing the growth rates, and these instabilities furthermore extend the breadth of the unstable wave number range. Lastly, we discuss how the transverse self-generated magnetic fields characteristic of short-pulse interactions can potentially constrain the unstable wave numbers in a non-trivial manner.
Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach
NASA Astrophysics Data System (ADS)
Antón, Luis; Zanotti, Olindo; Miralles, Juan A.; Martí, José M.; Ibáñez, José M.; Font, José A.; Pons, José A.
2006-01-01
We present a general procedure to solve numerically the general relativistic magnetohydrodynamics (GRMHD) equations within the framework of the 3+1 formalism. The work reported here extends our previous investigation in general relativistic hydrodynamics (Banyuls et al. 1997) where magnetic fields were not considered. The GRMHD equations are written in conservative form to exploit their hyperbolic character in the solution procedure. All theoretical ingredients necessary to build up high-resolution shock-capturing schemes based on the solution of local Riemann problems (i.e., Godunov-type schemes) are described. In particular, we use a renormalized set of regular eigenvectors of the flux Jacobians of the relativistic MHD equations. In addition, the paper describes a procedure based on the equivalence principle of general relativity that allows the use of Riemann solvers designed for special relativistic MHD in GRMHD. Our formulation and numerical methodology are assessed by performing various test simulations recently considered by different authors. These include magnetized shock tubes, spherical accretion onto a Schwarzschild black hole, equatorial accretion onto a Kerr black hole, and magnetized thick disks accreting onto a black hole and subject to the magnetorotational instability.
NASA Astrophysics Data System (ADS)
Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart; Shimizu, Thomas T.; Miller, Neal
2016-12-01
We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift-BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR-radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L R/L X relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.
Progress on the three-particle quantization condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceno, Raul; Hansen, Mawell T.; Sharpe, Stephen R.
2016-10-01
We report progress on extending the relativistic model-independent quantization condition for three particles, derived previously by two of us, to a broader class of theories, as well as progress on checking the formalism. In particular, we discuss the extension to include the possibility of 2->3 and 3->2 transitions and the calculation of the finite-volume energy shift of an Efimov-like three-particle bound state. The latter agrees with the results obtained previously using non-relativistic quantum mechanics.
E-beam ionized channel guiding of an intense relativistic electron beam
Frost, C.A.; Godfrey, B.B.; Kiekel, P.D.; Shope, S.L.
1988-05-10
An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path. 2 figs.
A complete characterization of relativistic uniform acceleration
NASA Astrophysics Data System (ADS)
Scarr, Tzvi; Friedman, Yaakov
2017-05-01
We use the Frenet frame to define and completely characterize “uniform acceleration” in flat spacetime. We extend the definition to arbitrary curved spacetime and provide an example in Schwarzschild spacetime.
General Relativistic Effects and QPOs in X-Ray Binaries
NASA Astrophysics Data System (ADS)
Markovic, D.; Lamb, F.
1999-05-01
We have investigated whether general relativistic effects may be responsible for some of the quasi-periodic X-ray brightness oscillations (QPOs) with frequencies 20--300 Hz observed in low-mass binary systems containing accreting neutron stars and black hole candidates. In particular, we have computed the motions of accreting gas in the strong gravitational fields near such objects and have explored possible mechanisms for producing X-ray flux oscillations. We have discovered a family of global gravitomagnetic (Lense-Thirring) warping modes of the inner accretion disk that have precession frequencies ranging up to the single-particle gravitomagnetic precession frequency at the inner edge of the disk, which is 30 Hz if the disk extends inward to the innermost stable circular orbit around a compact object of solar mass with dimensionless angular momentum cJ/GM2 0.2. The highest-frequency warping modes are very localized spiral corrugations of the inner disk and are weakly damped, with Q values 2--50. Precession of regions of enhanced viscous dissipation or modulation of the accretion flow by the precession may produce observable periodic variation of the X-ray flux. Detectable effects might also be produced if the gas in the inner disk breaks up into a collection of distinct clumps. We have analyzed the dynamics of such clumps as well as the conditions required for their formation and survival on time scales long enough to produce oscillations with the coherence observed in X-ray binaries.
Time Operator in Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Khorasani, Sina
2017-07-01
It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.
What Can Simbol-X Do for Gamma-ray Binaries?
NASA Astrophysics Data System (ADS)
Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.
2009-05-01
Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.
Relativistic theory for time and frequency transfer to order c-3
NASA Astrophysics Data System (ADS)
Blanchet, L.; Salomon, C.; Teyssandier, P.; Wolf, P.
2001-04-01
This paper is motivated by the current development of several space missions (e.g. ACES on International Space Station) that will use Earth-orbit laser cooled atomic clocks, providing a time-keeping accuracy of the order of 5 10-17 in fractional frequency. We show that to such accuracy, the theory of frequency transfer between Earth and Space must be extended from the currently known relativistic order 1/c2 (which has been needed in previous space experiments such as GP-A) to the next relativistic correction of order 1/c3. We find that the frequency transfer includes the first and second-order Doppler contributions, the Einstein gravitational red-shift and, at the order 1/c3, a mixture of these effects. As for the time transfer, it contains the standard Shapiro time delay, and we present an expression also including the first and second-order Sagnac corrections. Higher-order relativistic corrections, at least {cal O}(1/c4), are numerically negligible for time and frequency transfers in these experiments, being for instance of order 10-20 in fractional frequency. Particular attention is paid to the problem of the frequency transfer in the two-way experimental configuration. In this case we find a simple theoretical expression which extends the previous formula (Vessot et al. \\cite{VessotLevine}) to the next order 1/c3. In the Appendix we present the detailed proofs of all the formulas which will be needed in such experiments.
Seino, Junji; Nakai, Hiromi
2012-10-14
The local unitary transformation (LUT) scheme at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level [J. Seino and H. Nakai, J. Chem. Phys. 136, 244102 (2012)], which is based on the locality of relativistic effects, has been extended to a four-component Dirac-Coulomb Hamiltonian. In the previous study, the LUT scheme was applied only to a one-particle IODKH Hamiltonian with non-relativistic two-electron Coulomb interaction, termed IODKH/C. The current study extends the LUT scheme to a two-particle IODKH Hamiltonian as well as one-particle one, termed IODKH/IODKH, which has been a real bottleneck in numerical calculation. The LUT scheme with the IODKH/IODKH Hamiltonian was numerically assessed in the diatomic molecules HX and X(2) and hydrogen halide molecules, (HX)(n) (X = F, Cl, Br, and I). The total Hartree-Fock energies calculated by the LUT method agree well with conventional IODKH/IODKH results. The computational cost of the LUT method is reduced drastically compared with that of the conventional method. In addition, the LUT method achieves linear-scaling with respect to the system size and a small prefactor.
Bierbach, Jana; Yeung, Mark; Eckner, Erich; ...
2015-05-01
Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less
Range of validity for perturbative treatments of relativistic sum rules
NASA Astrophysics Data System (ADS)
Cohen, Scott M.
2003-10-01
The range of validity of perturbative calculations of relativistic sum rules is investigated by calculating the second-order relativistic corrections to the Bethe sum rule and its small momentum limit, the Thomas-Reiche-Kuhn (TRK) sum rule. For the TRK sum rule and atomic systems, the second-order correction is found to be less than 0.5% up to about Z=70. The total relativistic corrections should then be accurate at least through this range of Z, and probably beyond this range if the second-order terms are included. For Rn (Z=86), however, the second-order corrections are nearly 1%. The total corrections to the Bethe sum rule are largest at small momentum, never being significantly larger than the corresponding corrections to the TRK sum rule. The first-order corrections to the Bethe sum rule also give better than 0.5% accuracy for Z<70, and inclusion of the second-order corrections should extend this range, as well.
NASA Astrophysics Data System (ADS)
Bertone, Stefano; Vecchiato, Alberto; Bucciarelli, Beatrice; Crosta, Mariateresa; Lattanzi, Mario G.; Bianchi, Luca; Angonin, Marie-Christine; Le Poncin-Lafitte, Christophe
2017-12-01
Context. A key objective of the ESA Gaia satellite is the realization of a quasi-inertial reference frame at visual wavelengths by means of global astrometric techniques. This requires accurate mathematical and numerical modeling of relativistic light propagation, as well as double-blind-like procedures for the internal validation of the results, before they are released to the scientific community at large. Aims: We aim to specialize the time transfer functions (TTF) formalism to the case of the Gaia observer and prove its applicability to the task of global sphere reconstruction (GSR), in anticipation of its inclusion in the GSR system, already featuring the Relativistic Astrometric MODel (RAMOD) suite, as an additional semi-external validation of the forthcoming Gaia baseline astrometric solutions. Methods: We extended the current GSR framework and software infrastructure (GSR2) to include TTF relativistic observation equations compatible with Gaia's operations. We used simulated data generated by the Gaia Data Processing and Analysis Consortium (DPAC) to obtain different least-squares estimations of the full (five-parameter) stellar spheres and gauge results. These were compared to analogous solutions obtained with the current RAMOD model in GSR2 (RAMOD@GSR2) and to the catalog generated with the Gaia RElativistic Model (GREM), the model baselined for Gaia and used to generate the DPAC synthetic data. Results: Linearized least-squares TTF solutions are based on spheres of about 132 000 primary stars uniformly distributed on the sky and simulated observations spanning the entire 5 yr range of Gaia's nominal operational lifetime. The statistical properties of the results compare well with those of GREM. Finally, comparisons to RAMOD@GSR2 solutions confirmed the known lower accuracy of that model and allowed us to establish firm limits on the quality of the linearization point outside of which an iteration for non-linearity is required for its proper convergence. This has proved invaluable as RAMOD@GSR2 is prepared to go into operations on real satellite data.
NASA Astrophysics Data System (ADS)
Haas, Fernando
2016-11-01
A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced.
NASA Astrophysics Data System (ADS)
Pan, Jun-Yang; Xie, Yi
2015-02-01
With tremendous advances in modern techniques, Einstein's general relativity has become an inevitable part of deep space missions. We investigate the relativistic algorithm for time transfer between the proper time τ of the onboard clock and the Geocentric Coordinate Time, which extends some previous works by including the effects of propagation of electromagnetic signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take an analytic approach to work out their approximate values. This analytic model might be used in an onboard computer because of its limited capability to perform calculations. Taking an orbiter like Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes of the relativistic corrections to the model.
Degenerate limit thermodynamics beyond leading order for models of dense matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantinou, Constantinos, E-mail: c.constantinou@fz-juelich.de; Muccioli, Brian, E-mail: bm956810@ohio.edu; Prakash, Madappa, E-mail: prakash@ohio.edu
2015-12-15
Analytical formulas for next-to-leading order temperature corrections to the thermal state variables of interacting nucleons in bulk matter are derived in the degenerate limit. The formalism developed is applicable to a wide class of non-relativistic and relativistic models of hot and dense matter currently used in nuclear physics and astrophysics (supernovae, proto-neutron stars and neutron star mergers) as well as in condensed matter physics. We consider the general case of arbitrary dimensionality of momentum space and an arbitrary degree of relativity (for relativistic models). For non-relativistic zero-range interactions, knowledge of the Landau effective mass suffices to compute next-to-leading order effects,more » but for finite-range interactions, momentum derivatives of the Landau effective mass function up to second order are required. Results from our analytical formulas are compared with the exact results for zero- and finite-range potential and relativistic mean-field theoretical models. In all cases, inclusion of next-to-leading order temperature effects substantially extends the ranges of partial degeneracy for which the analytical treatment remains valid. Effects of many-body correlations that deserve further investigation are highlighted.« less
NASA Astrophysics Data System (ADS)
Jarvis, P. D.; Corney, S. P.; Tsohantjis, I.
1999-12-01
A covariant spinor representation of iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, P.; Sun, Y. -E; Maxwell, T. J.
2011-06-27
We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.
Relativistic thermal plasmas - Effects of magnetic fields
NASA Technical Reports Server (NTRS)
Araki, S.; Lightman, A. P.
1983-01-01
Processes and equilibria in finite, relativistic, thermal plasmas are investigated, taking into account electron-positron creation and annihilation, photon production by internal processes, and photon production by a magnetic field. Inclusion of the latter extends previous work on such plasmas. The basic relations for thermal, Comptonized synchrotron emission are analyzed, including emission and absorption without Comptonization, Comptonized thermal synchrotron emission, and the Comptonized synchrotron and bremsstrahlung luminosities. Pair equilibria are calculated, including approximations and dimensionless parameters, the pair balance equation, maximum temperatures and field strengths, and individual models and cooling curves.
Implementation of a finite-amplitude method in a relativistic meson-exchange model
NASA Astrophysics Data System (ADS)
Sun, Xuwei; Lu, Dinghui
2017-08-01
The finite-amplitude method is a feasible numerical approach to large scale random phase approximation calculations. It avoids the storage and calculation of residual interaction elements as well as the diagonalization of the RPA matrix, which will be prohibitive when the configuration space is huge. In this work we finished the implementation of a finite-amplitude method in a relativistic meson exchange mean field model with axial symmetry. The direct variation approach makes our FAM scheme capable of being extended to the multipole excitation case.
The absence of gravitational waves and the foundations of Relativistic Cosmology
NASA Astrophysics Data System (ADS)
Djidjian, Robert
2015-07-01
Modern relativistic cosmology is based on Albert Einstein's teaching of general relativity. Observational and experimental impressive verification of general relativity have created among the astrophysicists the conviction that general relativity and relativistic cosmology are absolutely true theories. Unfortunately, the most important conclusion of general relativity is that the necessary existence of gravitational waves has been rejected by all the experiments up to the present time. There is also a kind of direct objection to the conception of expanding Universe: with the expansion of space identically expands the measuring stick, which makes the distances between the galaxies unchanged. So it should be quite reasonable to open discussions regarding the status of both general relativity and relativistic cosmology.
Stars with relativistic speeds in the Hills scenario
NASA Astrophysics Data System (ADS)
Dremova, G. N.; Dremov, V. V.; Tutukov, A. V.
2017-07-01
The dynamical capture of a binary system consisting of a supermassive black hole (SMBH) and an ordinary star in the gravitational field of a central (more massive) SMBH is considered in the three-body problem in the framework of a modified Hills scenario. The results of numerical simulations predict the existence of objects whose spatial speeds are comparable to the speed of light. The conditions for and constraints imposed on the ejection speeds realized in a classical scenario and the modified Hills scenario are analyzed. The star is modeled using an N-body approach, making it possible to treat it as a structured object, enabling estimation of the probability that the object survives when it is ejected with relativistic speed as a function of the mass of the star, the masses of both SMBHs, and the pericenter distance. It is possible that the modern kinematic classification for stars with anomalously high spatial velocities will be augmented with a new class—stars with relativistic speeds.
Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go
NASA Astrophysics Data System (ADS)
Sironi, Lorenzo; Giannios, Dimitrios; Petropoulou, Maria
2016-10-01
Blobs, or quasi-spherical emission regions containing relativistic particles and magnetic fields, are often assumed ad hoc in emission models of relativistic astrophysical jets, yet their physical origin is still not well understood. Here, we employ a suite of large-scale 2D particle-in-cell simulations in electron-positron plasmas to demonstrate that relativistic magnetic reconnection can naturally account for the formation of quasi-spherical plasmoids filled with high-energy particles and magnetic fields. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic physics independently of the initial setup. We characterize the properties of the plasmoids, continuously generated as a self-consistent by-product of the reconnection process: they are in rough energy equipartition between particles and magnetic fields; the upper energy cutoff of the plasmoid particle spectrum is proportional to the plasmoid width w, corresponding to a Larmor radius ˜0.2 w; the plasmoids grow in size at ˜0.1 of the speed of light, with most of the growth happening while they are still non-relativistic (`first they grow'); their growth is suppressed once they get accelerated to relativistic speeds by the field line tension, up to the Alfvén speed (`then they go'). The largest plasmoids reach a width wmax ˜ 0.2 L independently of the system length L, they have nearly isotropic particle distributions and contain the highest energy particles, whose Larmor radius is ˜0.03 L. The latter can be regarded as the Hillas criterion for relativistic reconnection. We briefly discuss the implications of our results for the high-energy emission from relativistic jets and pulsar winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart
We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift -BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR–radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics inmore » the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L {sub R}/ L {sub X} relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.« less
Relativistic hydrodynamic jets in the intracluster medium
NASA Astrophysics Data System (ADS)
Choi, Eunwoo
2017-08-01
We have performed the first three-dimensional relativistic hydrodynamic simulations of extragalactic jets of pure leptonic and baryonic plasma compositions propagating into a hydrostatic intracluster medium (ICM) environment. The numerical simulations use a general equation of state for a multicomponent relativistic gas, which closely reproduces the Synge equation of state for a relativistic perfect gas. We find that morphological and dynamical differences between leptonic and baryonic jets are much less evident than those between hot and cold jets. In all these models, the jets first propagate with essentially constant velocities within the core radius of the ICM and then accelerate progressively so as to increase the jet advance velocity by a factor of between 1.2 and 1.6 at the end of simulations, depending upon the models. The temporal evolution of the average cavity pressure is not consistent with that expected by the extended theoretical model even if the average cavity pressure decreases as a function of time with a power law. Our simulations produce synthetic radio images that are dominated by bright hot spots and appear similar to observations of the extended radio galaxies with collimated radio jets. These bright radio lobes would be visible as dark regions in X-ray images and are morphologically similar to observed X-ray cavities in the ICM. This supports the expectation that the bow shock surrounding the head of the jet is important mechanism for producing X-ray cavities in the ICM. Although there are quantitative differences among the models, the total radio and X-ray intensity curves show qualitatively similar trends in all of them.
Inverse Compton Scattering in Mildly Relativistic Plasma
NASA Technical Reports Server (NTRS)
Molnar, S. M.; Birkinshaw, M.
1998-01-01
We investigated the effect of inverse Compton scattering in mildly relativistic static and moving plasmas with low optical depth using Monte Carlo simulations, and calculated the Sunyaev-Zel'dovich effect in the cosmic background radiation. Our semi-analytic method is based on a separation of photon diffusion in frequency and real space. We use Monte Carlo simulation to derive the intensity and frequency of the scattered photons for a monochromatic incoming radiation. The outgoing spectrum is determined by integrating over the spectrum of the incoming radiation using the intensity to determine the correct weight. This method makes it possible to study the emerging radiation as a function of frequency and direction. As a first application we have studied the effects of finite optical depth and gas infall on the Sunyaev-Zel'dovich effect (not possible with the extended Kompaneets equation) and discuss the parameter range in which the Boltzmann equation and its expansions can be used. For high temperature clusters (k(sub B)T(sub e) greater than or approximately equal to 15 keV) relativistic corrections based on a fifth order expansion of the extended Kompaneets equation seriously underestimate the Sunyaev-Zel'dovich effect at high frequencies. The contribution from plasma infall is less important for reasonable velocities. We give a convenient analytical expression for the dependence of the cross-over frequency on temperature, optical depth, and gas infall speed. Optical depth effects are often more important than relativistic corrections, and should be taken into account for high-precision work, but are smaller than the typical kinematic effect from cluster radial velocities.
Relativistic jet models for the BL Lacertae object Mrk 421 during three epochs of observation
NASA Technical Reports Server (NTRS)
Mufson, S. L.; Hutter, D. J.; Kondo, Y.; Wisniewski, W. Z.
1988-01-01
Coordinated observation of the nearby BL Lacertae object Mrk 421 obtained during May 1980, January 1984, and March 1984 are described. These observations give a time-frozen picture of the continuous spectrum of Mrk 421 at X-ray, ultraviolet, optical, and radio wavelengths. The observed spectra have been fitted to an inhomogeneous relativistic jet model. In general, the models reproduce the data well. Many of the observed differences during the three epochs can be attributed to variations in the opening angle of the jet and in the angle that the jet makes to the line of sight. The jet models obtained here are compared with the homogeneous, spherically symmetric, synchrotron self-Compton models for this source. The models are also compared with the relativistic jet models obtained for other active galactic nuclei.
NASA Astrophysics Data System (ADS)
Bykov, Andrei M.; Toptygin, Igor'N.
2007-02-01
A system of MHD equations for the description of a magnetized nonequilibrium astrophysical plasma with neutral atoms and suprathermal (in particular, relativistic) particles is formulated. The instabilities of such a plasma, which arise from the presence of neutral and relativistic components, are considered. It is shown that the presence of nonthermal particles interacting with the thermal plasma component via regular and fluctuating electromagnetic fields is responsible for the emergence of specific mechanisms of MHD wave generation. The main generation mechanisms of static and turbulent magnetic fields near shock wave fronts in the Galaxy and interplanetary space are analyzed. We discuss the application of the generation effects of long-wave magnetic fluctuations to the problems of magnetic field origin and relativistic particle acceleration in astrophysical objects of various natures.
Equilibrium stellar systems with spindle singularities
NASA Technical Reports Server (NTRS)
Shapiro, Stuart L.; Teukolsky, Saul A.
1992-01-01
Equilibrium sequences of axisymmetric Newtonian clusters that tend toward singular states are constructed. The distribution functions are chosen to be of the form f = f(E, Jz). The numerical method then determines the density and gravitational potential self-consistently to satisfy Poisson's equation. For the prolate models, spindle singularities arise from the depletion of angular momentum near the symmetry axis. While the resulting density enhancement is confined to the region near the axis, the influence of the spindle extends much further out through its tidal gravitational field. Centrally condensed prolate clusters may contain strong-field regions even though the spindle mass is small and the mean cluster eccentricity is not extreme. While the calculations performed here are entirely Newtonian, the issue of singularities is an important topic in general relativity. Equilibrium solutions for relativistic star clusters can provide a testing ground for exploring this issue. The methods used in this paper for building nonspherical clusters can be extended to relativistic systems.
Relativistic Length Agony Continued
NASA Astrophysics Data System (ADS)
Redzic, D. V.
2014-06-01
We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.
Nonlinear waves and shocks in relativistic two-fluid hydrodynamics
NASA Astrophysics Data System (ADS)
Haim, L.; Gedalin, M.; Spitkovsky, A.; Krasnoselskikh, V.; Balikhin, M.
2012-06-01
Relativistic shocks are present in a number of objects where violent processes are accompanied by relativistic outflows of plasma. The magnetization parameter σ = B2/4πnmc2 of the ambient medium varies in wide range. Shocks with low σ are expected to substantially enhance the magnetic fields in the shock front. In non-relativistic shocks the magnetic compression is limited by nonlinear effects related to the deceleration of flow. Two-fluid analysis of perpendicular relativistic shocks shows that the nonlinearities are suppressed for σ<<1 and the magnetic field reaches nearly equipartition values when the magnetic energy density is of the order of the ion energy density, Beq2 ~ 4πnmic2γ. A large cross-shock potential eφ/mic2γ0 ~ B2/Beq2 develops across the electron-ion shock front. This potential is responsible for electron energization.
Acceleration and collimation of relativistic plasmas ejected by fast rotators
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.
2001-06-01
A stationary self-consistent outflow of a magnetised relativistic plasma from a rotating object with an initially monopole-like magnetic field is investigated in the ideal MHD approximation under the condition sigma U02 > 1, where sigma is the ratio of the Poynting flux over the mass energy flux at the equator and the surface of the star, with U0=gamma 0v0/c and gamma0 the initial four-velocity and Lorentz factor of the plasma. The mechanism of the magnetocentrifugal acceleration and self-collimation of the relativistic plasma is investigated. A jet-like relativistic flow along the axis of rotation is found in the steady-state solution under the condition sigma U02 > 1 with properties predicted analytically. The amount of the collimated matter in the jet is rather small in comparison to the total mass flux in the wind. An explanation for the weak self-collimation of relativistic winds is given.
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Felea, D.; Jipa, Al.; Besliu, C.; Stan, E.; Ristea, O.; Ristea, C.; Calin, M.; Esanu, T.; Bordeianu, C.; Tuturas, N.
2014-11-01
In this paper we present a new version of Chaos Many-Body Engine (CMBE) Grossu et al. (2014) [1]. Inspired by the Mean Free Path concept, we implemented a new parameter, namely the ;Mean Free Time;, which is defined as the mean time between one particle's creation and its stimulated decay. This new parameter should be understood as an effect of the nuclear environment and, as opposed to the particle lifetime, it has the advantage of not being affected by the relativistic dilation. In [2] we presented a toy-model for chaos analysis of relativistic nuclear collisions at 4.5 A GeV/c (the SKM 200 collaboration). In this work, we extended our model to 200 A GeV (the maximum BNL energy).
Relativistic Electron Acceleration with Ultrashort Mid-IR Laser Pulses
NASA Astrophysics Data System (ADS)
Feder, Linus; Woodbury, Daniel; Shumakova, Valentina; Gollner, Claudia; Miao, Bo; Schwartz, Robert; Pugžlys, Audrius; Baltuška, Andrius; Milchberg, Howard
2017-10-01
We report the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared laser pulses (λ = 3.9 μm , pulsewidth 100 fs, energy <20 mJ, peak power <1 TW), which enables near- and above-critical density interactions with moderate-density gas jets. We present thresholds for electron acceleration based on critical parameters for relativistic self-focusing and target width, as well as trends in the accelerated beam profiles, charge and energy spectra which are supported by 3D particle-in-cell simulations. These results extend earlier work with sub-TW self-modulated laser wakefield acceleration using near IR drivers to the Mid-IR, and enable us to capture time-resolved images of relativistic self-focusing of the laser pulse. This work supported by DOE (DESC0010706TDD, DESC0015516); AFOSR(FA95501310044, FA95501610121); NSF(PHY1535519); DHS.
NASA Astrophysics Data System (ADS)
Margutti, R.; Alexander, K. D.; Xie, X.; Sironi, L.; Metzger, B. D.; Kathirgamaraju, A.; Fong, W.; Blanchard, P. K.; Berger, E.; MacFadyen, A.; Giannios, D.; Guidorzi, C.; Hajela, A.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.; Zrake, J.
2018-03-01
We report deep Chandra X-ray Observatory (CXO), Hubble Space Telescope (HST), and Karl J. Jansky Very Large Array (VLA) observations of the binary neutron star event GW170817 at t < 160 days after merger. These observations show that GW170817 has been steadily brightening with time and might have now reached its peak, and constrain the emission process as non-thermal synchrotron emission where the cooling frequency ν c is above the X-ray band and the synchrotron frequency ν m is below the radio band. The very simple power-law spectrum extending for eight orders of magnitude in frequency enables the most precise measurement of the index p of the distribution of non-thermal relativistic electrons N(γ )\\propto {γ }-p accelerated by a shock launched by a neutron star (NS)–NS merger to date. We find p = 2.17 ± 0.01, which indicates that radiation from ejecta with Γ ∼ 3–10 dominates the observed emission. While constraining the nature of the emission process, these observations do not constrain the nature of the relativistic ejecta. We employ simulations of explosive outflows launched in NS ejecta clouds to show that the spectral and temporal evolution of the non-thermal emission from GW170817 is consistent with both emission from radially stratified quasi-spherical ejecta traveling at mildly relativistic speeds, and emission from off-axis collimated ejecta characterized by a narrow cone of ultra-relativistic material with slower wings extending to larger angles. In the latter scenario, GW170817 harbored a normal short gamma-ray burst (SGRB) directed away from our line of sight. Observations at t ≤ 200 days are unlikely to settle the debate, as in both scenarios the observed emission is effectively dominated by radiation from mildly relativistic material.
Relativistic distribution function for particles with spin at local thermodynamical equilibrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becattini, F., E-mail: becattini@fi.infn.it; INFN Sezione di Firenze, Florence; Universität Frankfurt, Frankfurt am Main
2013-11-15
We present an extension of relativistic single-particle distribution function for weakly interacting particles at local thermodynamical equilibrium including spin degrees of freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case, that at local thermodynamical equilibrium particles acquire a net polarization proportional to the vorticity of the inverse temperature four-vector field. The obtained formula for polarization also implies that a steady gradient of temperature entails a polarization orthogonal to particle momentum. The single-particle distribution function in momentum space extends the so-called Cooper–Frye formula to particles with spin 1/2 and allows us to predict theirmore » polarization in relativistic heavy ion collisions at the freeze-out. -- Highlights: •Single-particle distribution function in local thermodynamical equilibrium with spin. •Polarization of spin 1/2 particles in a fluid at local thermodynamical equilibrium. •Prediction of a new effect: a steady gradient of temperature induces a polarization. •Application to the calculation of polarization in relativistic heavy ion collisions.« less
NASA Astrophysics Data System (ADS)
Sahoo, B. K.; Das, B. P.
2018-05-01
Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.
Sahoo, B K; Das, B P
2018-05-18
Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Jaiyul
2010-10-15
We extend the general relativistic description of galaxy clustering developed in Yoo, Fitzpatrick, and Zaldarriaga (2009). For the first time we provide a fully general relativistic description of the observed matter power spectrum and the observed galaxy power spectrum with the linear bias ansatz. It is significantly different from the standard Newtonian description on large scales and especially its measurements on large scales can be misinterpreted as the detection of the primordial non-Gaussianity even in the absence thereof. The key difference in the observed galaxy power spectrum arises from the real-space matter fluctuation defined as the matter fluctuation at themore » hypersurface of the observed redshift. As opposed to the standard description, the shape of the observed galaxy power spectrum evolves in redshift, providing additional cosmological information. While the systematic errors in the standard Newtonian description are negligible in the current galaxy surveys at low redshift, correct general relativistic description is essential for understanding the galaxy power spectrum measurements on large scales in future surveys with redshift depth z{>=}3. We discuss ways to improve the detection significance in the current galaxy surveys and comment on applications of our general relativistic formalism in future surveys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienert, Matthias, E-mail: lienert@math.lmu.de
2015-04-15
The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to amore » relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.« less
Nonextensive kinetic theory and H-theorem in general relativity
NASA Astrophysics Data System (ADS)
Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.
2017-11-01
The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2006-07-01
We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of sNN=19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barack, Leor; Cutler, Curt; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
Inspirals of stellar-mass compact objects (COs) into {approx}10{sup 6}M{sub {center_dot}} black holes are especially interesting sources of gravitational waves for the planned Laser Interferometer Space Antenna (LISA). The orbits of these extreme-mass-ratio inspirals (EMRIs) are highly relativistic, displaying extreme versions of both perihelion precession and Lense-Thirring precession of the orbital plane. We investigate the question of whether the emitted waveforms can be used to strongly constrain the geometry of the central massive object, and in essence check that it corresponds to a Kerr black hole (BH). For a Kerr BH, all multipole moments of the spacetime have a simple, uniquemore » relation to M and S, the BH mass, and spin; in particular, the spacetime's mass quadrupole moment Q is given by Q=-S{sup 2}/M. Here we treat Q as an additional parameter, independent of S and M, and ask how well observation can constrain its difference from the Kerr value. This was already estimated by Ryan, but for the simplified case of circular, equatorial orbits, and Ryan also neglected the signal modulations arising from the motion of the LISA satellites. We consider generic orbits and include the modulations due to the satellite motions. For this analysis, we use a family of approximate (basically post-Newtonian) waveforms, which represent the full parameter space of EMRI sources, and which exhibit the main qualitative features of true, general relativistic waveforms. We extend this parameter space to include (in an approximate manner) an arbitrary value of Q, and then construct the Fisher information matrix for the extended parameter space. By inverting the Fisher matrix, we estimate how accurately Q could be extracted from LISA observations of EMRIs. For 1 yr of coherent data from the inspiral of a 10M{sub {center_dot}} black hole into rotating black holes of masses 10{sup 5.5}M{sub {center_dot}}, 10{sup 6}M{sub {center_dot}}, or 10{sup 6.5}M{sub {center_dot}}, we find {delta}(Q/M{sup 3}){approx}10{sup -4}, 10{sup -3}, or 10{sup -2}, respectively (assuming total signal-to-noise ratio of 100, typical of the brightest detectable EMRIs). These results depend only weakly on the eccentricity of the inspiral orbit or the spin of the central object.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierbach, Jana; Yeung, Mark; Eckner, Erich
Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less
Relativity, nonextensivity, and extended power law distributions.
Silva, R; Lima, J A S
2005-11-01
A proof of the relativistic theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the parameter lies on the interval [0,2]. It is also proven that the collisional equilibrium states (null entropy source term) are described by the relativistic power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field . Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory.
Exact relativistic expressions for wave refraction in a generally moving fluid.
Cavalleri, G; Tonni, E; Barbero, F
2013-04-01
The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.
Relativistic theory of tidal Love numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binnington, Taylor; Poisson, Eric
In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and providemore » precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.« less
Low-lying dipole modes in 26,28Ne in the quasiparticle relativistic random phase approximation
NASA Astrophysics Data System (ADS)
Cao, Li-Gang; Ma, Zhong-Yu
2005-03-01
The low-lying isovector dipole strengths in the neutron-rich nuclei 26Ne and 28Ne are investigated in the quasiparticle relativistic random phase approximation. Nuclear ground-state properties are calculated in an extended relativistic mean field theory plus Bardeen-Cooper-Schrieffer (BCS) method where the contribution of the resonant continuum to pairing correlations is properly treated. Numerical calculations are tested in the case of isovector dipole and isoscalar quadrupole modes in the neutron-rich nucleus 22O. It is found that in the present calculation, low-lying isovector dipole strengths at Ex<10MeV in nuclei 26Ne and 26Ne exhaust about 4.9% and 5.8% of the Thomas-Reiche-Kuhn dipole sum rule, respectively. The centroid energy of the low-lying dipole excitation is located at 8.3 MeV in 26Ne and 7.9 MeV in 28Ne.
Laser-plasmas in the relativistic-transparency regime: Science and applications
NASA Astrophysics Data System (ADS)
Fernández, Juan C.; Cort Gautier, D.; Huang, Chengkung; Palaniyappan, Sasikumar; Albright, Brian J.; Bang, Woosuk; Dyer, Gilliss; Favalli, Andrea; Hunter, James F.; Mendez, Jacob; Roth, Markus; Swinhoe, Martyn; Bradley, Paul A.; Deppert, Oliver; Espy, Michelle; Falk, Katerina; Guler, Nevzat; Hamilton, Christopher; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril D.; Iliev, Metodi; Johnson, Randall P.; Kleinschmidt, Annika; Losko, Adrian S.; McCary, Edward; Mocko, Michal; Nelson, Ronald O.; Roycroft, Rebecca; Santiago Cordoba, Miguel A.; Schanz, Victor A.; Schaumann, Gabriel; Schmidt, Derek W.; Sefkow, Adam; Shimada, Tsutomu; Taddeucci, Terry N.; Tebartz, Alexandra; Vogel, Sven C.; Vold, Erik; Wurden, Glen A.; Yin, Lin
2017-05-01
Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at "table-top" scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (˜104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (˜0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2-8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ˜2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed.
Laser-plasmas in the relativistic-transparency regime: science and applications
Fernandez, Juan Carlos; Gautier, Donald Cort; Huang, Chengkun; ...
2017-05-30
Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at “table-top” scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (~10 4 T, according to particle-in-cell simulations of the experiments) at the rear-sidemore » of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (~0.1 TV/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2–8 × 10 20 W/cm 2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ~2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. Finally, we discuss the plans and prospects for further improvements and applications.« less
Relativistic baryonic jets from an ultraluminous supersoft X-ray source.
Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri
2015-12-03
The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.
NASA Astrophysics Data System (ADS)
Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.
2017-11-01
The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.
NASA Astrophysics Data System (ADS)
Li, Shifeng; Duan, Zhaoyun; Huang, Hua; Liu, Zhenbang; He, Hu; Wang, Fei; Wang, Zhanliang; Gong, Yubin
2018-04-01
In this paper, an extended interaction oversized coaxial relativistic klystron amplifier (EIOC-RKA) with Gigawatt-level output at Ka band is proposed. We introduce the oversized coaxial and multi-gap resonant cavities to increase the power capacity and investigate a non-uniform extended interaction output cavity to improve the electronic efficiency of the EIOC-RKA. We develop a high order mode gap in the input and output cavities to easily design and fabricate the input and output couplers. Meanwhile, we design the EIOC-RKA by using the particle-in-cell simulation. In the simulations, we use an electron beam with a current of 6 kA and a voltage of 525 kV, which is focused by a low focusing magnetic flux intensity of 0.5 T. The simulation results demonstrate that the saturated output power is 1.17 GW, the electronic efficiency is 37.1%, and the saturated gain is 57 dB at 30 GHz. The self-oscillation is suppressed by adopting the absorbing materials. The proposed EIOC-RKA has plenty of advantages such as large power capacity, high electronic efficiency, low focusing magnetic, high gain, and simple structure.
Hertz's special relativity and physical reality.
NASA Astrophysics Data System (ADS)
Mocanu, C. I.
Maxwell-Hertz electrodynamics (MHE), valid for nonuniform motions as they occur in physical reality and which holds for the noninertial reference frame of our laboratory at small velocities only, is extended to relativistic velocities. The new theory, called Hertz's relativistic electrodynamics (HRE), is completely independent and built-up in a completely different way than Einstein's special relativity (ESR). HRE, a coordinate-free formulation, does not need postulates, but confirms the constancy principle of the speed of light in a vacuum. All experiments of first and second order in v2/c2 are correctly interpreted. To this theory a Hertzian kinematics and dynamics are associated. HRE with its corresponding mechanics form Hertz's special relativity (HSR) as a theory complementary to ESR. According to the principle of complementarity and neglecting gravitational effects, extended special relativity (ExSR) is a double-faced theory which becomes either ESR when the motion is inertial or HSR when the motion is noninertial. The complementarity of both theories assumes that the two descriptions cannot be employed for the same motion, being mutually exclusive. Consequently, to every statement of ExSR, a complementary statement of the other ExSR corresponds. The completeness of ESR with HSR ensures an extended view over relativity in our physical world.
NASA Astrophysics Data System (ADS)
Yan, Dahai; Zeng, Houdun; Zhang, Li
2012-08-01
The detections of X-ray emission from the kiloparsec-scale jets of blazars and radio galaxies could imply the existence of high-energy electrons in these extended jets, and these electrons could produce high-energy emission through the inverse Compton (IC) process. In this paper, we study the non-variable hard TeV emission from a blazar. The multiband emission consists of two components: (i) the traditional synchrotron self-Compton (SSC) emission from the inner jet; (ii) the emission produced via SSC and IC scattering of cosmic microwave background (CMB) photons (IC/CMB) and extragalactic background light (EBL) photons by relativistic electrons in the extended jet under the stochastic acceleration scenario. Such a model is applied to 1ES 1101-232. The results indicate the following. (i) The non-variable hard TeV emission of 1ES 1101-232, which is dominated by IC/CMB emission from the extended jet, can be reproduced well by using three characteristic values of the Doppler factor (δD = 5, 10 and 15) for the TeV-emitting region in the extended jet. (ii) In the cases of δD = 15 and 10, the physical parameters can achieve equipartition (or quasi-equipartition) between the relativistic electrons and the magnetic field. In contrast, the physical parameters largely deviate from equipartition for the case of δD = 5. Therefore, we conclude that the TeV emission region of 1ES 1101-232 in the extended jet should be moderately or highly beamed.
On the ambiguity in relativistic tidal deformability
NASA Astrophysics Data System (ADS)
Gralla, Samuel E.
2018-04-01
The LIGO collaboration recently reported the first gravitational-wave constraints on the tidal deformability of neutron stars. I discuss an inherent ambiguity in the notion of relativistic tidal deformability that, while too small to affect the present measurement, may become important in the future. I propose a new way to understand the ambiguity and discuss future prospects for reliably linking observed gravitational waveforms to compact object microphysics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, P.; Maxwell, T. J.; Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510
2011-06-27
We experimentally demonstrate the production of narrow-band ({delta}f/f{approx_equal}20% at f{approx_equal}0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.
Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B
2006-07-07
We report on measurements of directed flow as a function of pseudorapidity in Au + Au collisions at energies of square root of SNN = 19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.
A Bulk Comptonization Model for the Prompt GRB Emission and its Relation to the Fermi GRB Spectra
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2010-01-01
We present a model in which the GRB prompt emission at E E(sub peak) is due to bulk Comptonization by the relativistic blast wave motion of either its own synchrotron photons of ambient photons of the stellar configuration that gave birth to the GRB. The bulk Comptonization process then induces the production of relativistic electrons of Lorentz factor equal to that of the blast wave through interactions with its ambient protons. The inverse compton emission of these electrons produces a power law component that extends to multi GeV energies in good agreement with the LAT GRB observations.
A fully implicit numerical integration of the relativistic particle equation of motion
NASA Astrophysics Data System (ADS)
Pétri, J.
2017-04-01
Relativistic strongly magnetized plasmas are produced in laboratories thanks to state-of-the-art laser technology but can naturally be found around compact objects such as neutron stars and black holes. Detailed studies of the behaviour of relativistic plasmas require accurate computations able to catch the full spatial and temporal dynamics of the system. Numerical simulations of ultra-relativistic plasmas face severe restrictions due to limitations in the maximum possible Lorentz factors that current algorithms can reproduce to good accuracy. In order to circumvent this flaw and repel the limit to 9$ , we design a new fully implicit scheme to solve the relativistic particle equation of motion in an external electromagnetic field using a three-dimensional Cartesian geometry. We show some examples of numerical integrations in constant electromagnetic fields to prove the efficiency of our algorithm. The code is also able to follow the electric drift motion for high Lorentz factors. In the most general case of spatially and temporally varying electromagnetic fields, the code performs extremely well, as shown by comparison with exact analytical solutions for the relativistic electrostatic Kepler problem as well as for linearly and circularly polarized plane waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hino, K.; Watanabe, T.
1987-07-15
The relativistically extended strong-potential Born (SPB) formalism is applied to the radiative electron capture process caused by the bombardment of a heavy and highly stripped charged particle with relativistically high velocity. The results are compared with those by use of nonrelativistic SPB calculations and with those by use of the relativistic Born calculation (Sauter's formula), which includes no distortion effects between a heavy projectile ion and an active electron. Even if the strong distortion effects are taken into consideration, the shapes of photon angular distributions in the laboratory frame still nearly depend on sin/sup 2/theta/sub L/(theta/sub L/ is the anglemore » of the emitted photon) in the vicinity of the angle of 90/sup 0/, which is the same as the results by use of Sauter's formula. The higher the charge of a projectile ion becomes, however, the greater the discrepancy between the angular shape of our results and that of Sauter's becomes at both smaller and larger angles than at 90/sup 0/. As is expected, the magnitudes of the differential and the total cross sections are drastically influenced by the distortion effects ascribable to a large charge of a heavy projectile ion such as U/sup 92+/. Our results are in good agreement with recent experiments. In addition, the Coulomb off-shell factor introduced by the SPB theory is found playing important roles in the case of the relativistic radiative electron capture process because the results calculated by using the relativistic impulse approximation are too underestimated.« less
NASA Astrophysics Data System (ADS)
Ruchin, Vyacheslav; Vacaru, Olivia; Vacaru, Sergiu I.
2017-03-01
Using double 2+2 and 3+1 nonholonomic fibrations on Lorentz manifolds, we extend the concept of W-entropy for gravitational fields in general relativity (GR). Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional (3-d) Riemannian metrics by Perelman (the entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159). Non-relativistic 3-d Ricci flows are characterized by associated statistical thermodynamical values determined by W-entropy. Generalizations for geometric flows of 4-d pseudo-Riemannian metrics are considered for models with local thermodynamical equilibrium and separation of dissipative and non-dissipative processes in relativistic hydrodynamics. The approach is elaborated in the framework of classical field theories (relativistic continuum and hydrodynamic models) without an underlying kinetic description, which will be elaborated in other work. The 3+1 splitting allows us to provide a general relativistic definition of gravitational entropy in the Lyapunov-Perelman sense. It increases monotonically as structure forms in the Universe. We can formulate a thermodynamic description of exact solutions in GR depending, in general, on all spacetime coordinates. A corresponding 2+2 splitting with nonholonomic deformation of linear connection and frame structures is necessary for generating in very general form various classes of exact solutions of the Einstein and general relativistic geometric flow equations. Finally, we speculate on physical macrostates and microstate interpretations of the W-entropy in GR, geometric flow theories and possible connections to string theory (a second unsolved problem also contained in Perelman's work) in Polyakov's approach.
Weak Lie symmetry and extended Lie algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goenner, Hubert
2013-04-15
The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).
Chameleon scalar fields in relativistic gravitational backgrounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk
2009-05-15
We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by ourmore » analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}« less
Pythagoras Theorem and Relativistic Kinematics
NASA Astrophysics Data System (ADS)
Mulaj, Zenun; Dhoqina, Polikron
2010-01-01
In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.
NASA Astrophysics Data System (ADS)
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Code C# for chaos analysis of relativistic many-body systems with reactions
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Besliu, C.; Jipa, Al.; Stan, E.; Esanu, T.; Felea, D.; Bordeianu, C. C.
2012-04-01
In this work we present a reaction module for “Chaos Many-Body Engine” (Grossu et al., 2010 [1]). Following our goal of creating a customizable, object oriented code library, the list of all possible reactions, including the corresponding properties (particle types, probability, cross section, particle lifetime, etc.), could be supplied as parameter, using a specific XML input file. Inspired by the Poincaré section, we propose also the “Clusterization Map”, as a new intuitive analysis method of many-body systems. For exemplification, we implemented a numerical toy-model for nuclear relativistic collisions at 4.5 A GeV/c (the SKM200 Collaboration). An encouraging agreement with experimental data was obtained for momentum, energy, rapidity, and angular π distributions. Catalogue identifier: AEGH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 184 628 No. of bytes in distributed program, including test data, etc.: 7 905 425 Distribution format: tar.gz Programming language: Visual C#.NET 2005 Computer: PC Operating system: Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread. One processor used for each many-body system. RAM: 128 Megabytes Classification: 6.2, 6.5 Catalogue identifier of previous version: AEGH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1464 External routines: Net Framework 2.0 Library Does the new version supersede the previous version?: Yes Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems with reactions. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems with reactions. Object oriented solution, easy to reuse, extend and customize, in any development environment which accepts .Net assemblies or COM components. Treatment of two particles reactions and decays. For each particle, calculation of the time measured in the particle reference frame, according to the instantaneous velocity. Possibility to dynamically add particle properties (spin, isospin, etc.), and reactions/decays, using a specific XML input file. Basic support for Monte Carlo simulations. Implementation of: Lyapunov exponent, “fragmentation level”, “average system radius”, “virial coefficient”, “clusterization map”, and energy conservation precision test. As an example of use, we implemented a toy-model for nuclear relativistic collisions at 4.5 A GeV/c. Reasons for new version: Following our goal of applying chaos theory to nuclear relativistic collisions at 4.5 A GeV/c, we developed a reaction module integrated with the Chaos Many-Body Engine. In the previous version, inheriting the Particle class was the only possibility of implementing more particle properties (spin, isospin, and so on). In the new version, particle properties can be dynamically added using a dictionary object. The application was improved in order to calculate the time measured in the own reference frame of each particle. two particles reactions: a+b→c+d, decays: a→c+d, stimulated decays, more complicated schemas, implemented as various combinations of previous reactions. Following our goal of creating a flexible application, the reactions list, including the corresponding properties (cross sections, particles lifetime, etc.), could be supplied as parameter, using a specific XML configuration file. The simulation output files were modified for systems with reactions, assuring also the backward compatibility. We propose the “Clusterization Map” as a new investigation method of many-body systems. The multi-dimensional Lyapunov Exponent was adapted in order to be used for systems with variable structure. Basic support for Monte Carlo simulations was also added. Additional comments: Windows forms application for testing the engine. Easy copy/paste based deployment method. Running time: Quadratic complexity.
Time-dependent inhomogeneous jet models for BL Lac objects
NASA Technical Reports Server (NTRS)
Marlowe, A. T.; Urry, C. M.; George, I. M.
1992-01-01
Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.
Time-dependent inhomogeneous jet models for BL Lac objects
NASA Astrophysics Data System (ADS)
Marlowe, A. T.; Urry, C. M.; George, I. M.
1992-05-01
Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.
Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks
NASA Astrophysics Data System (ADS)
Bykov, A. M.; Treumann, R. A.
2011-08-01
In this concise review of the recent developments in relativistic shock theory in the Universe we restrict ourselves to shocks that do not exhibit quantum effects. On the other hand, emphasis is given to the formation of shocks under both non-magnetised and magnetised conditions. We only briefly discuss particle acceleration in relativistic shocks where much of the results are still preliminary. Analytical theory is rather limited in predicting the real shock structure. Kinetic instability theory is briefed including its predictions and limitations. A recent self-similar relativistic shock theory is described which predicts the average long-term shock behaviour to be magnetised and to cause reasonable power-law distributions for energetic particles. The main focus in this review is on numerical experiments on highly relativistic shocks in (i) pair and (ii) electron-nucleon plasmas and their limitations. These simulations do not validate all predictions of analytic and self-similar theory and so far they do not solve the injection problem and the self-modification by self-generated cosmic rays. The main results of the numerical experiments discussed in this review are: (i) a confirmation of shock evolution in non-magnetised relativistic plasma in 3D due to either the lepton-Weibel instability (in pair plasmas) or to the ion-Weibel instability; (ii) the sensitive dependence of shock formation on upstream magnetisation which causes suppression of Weibel modes for large upstream magnetisation ratios σ>10-3; (iii) the sensitive dependence of particle dynamics on the upstream magnetic inclination angle θ Bn , where particles of θ Bn >34° cannot escape upstream, leading to the distinction between `subluminal' and `superluminal' shocks; (iv) particles in ultra-relativistic shocks can hardly overturn the shock and escape to upstream; they may oscillate around the shock ramp for a long time, so to speak `surfing it' and thereby becoming accelerated by a kind of SDA; (v) these particles form a power-law tail on the downstream distribution; their limitations are pointed out; (vi) recently developed methods permit the calculation of the radiation spectra emitted by the downstream high-energy particles; (vii) the Weibel-generated downstream magnetic fields form large-amplitude vortices which could be advected by the downstream flow to large distances from the shock and possibly contribute to an extended strong field region; (viii) if cosmic rays are included, Bell-like modes can generate upstream magnetic turbulence at short and, by diffusive re-coupling, also long wavelengths in nearly parallel magnetic field shocks; (ix) advection of such large-amplitude waves should cause periodic reformation of the quasi-parallel shock and eject large-amplitude magnetic field vortices downstream where they contribute to turbulence and to maintaining an extended region of large magnetic fields.
Influences of the coordinate dependent noncommutative space on charged and spin currents
NASA Astrophysics Data System (ADS)
Ren, Ya-Jie; Ma, Kai
2018-06-01
We study the charged and spin currents on a coordinate dependent noncommutative space. Starting from the noncommutative extended relativistic equation of motion, the nonrelativistic approximation is obtained by using the Foldy-Wouthuysen transformation, and then the charged and spin currents are derived by using the extended Drude model. We find that the charged current is twisted by modifying the off-diagonal elements of the Hall conductivity, however, the spin current is not affected up to leading order of the noncommutative parameter.
Chen, Zi-Yu; Li, Xiao-Ya; Li, Bo-Yuan; Chen, Min; Liu, Feng
2018-02-19
The production of intense isolated attosecond pulse is a major goal in ultrafast research. Recent advances in high harmonic generation from relativistic plasma mirrors under oblique incidence interactions gave rise to photon-rich attosecond pulses with circular or elliptical polarization. However, to achieve an isolated elliptical attosecond pulse via polarization gating using currently available long driving pulses remains a challenge, because polarization gating of high harmonics from relativistic plasmas is assumed only possible at normal or near-normal incidence. Here we numerically demonstrate a scheme around this problem. We show that via control of plasma dynamics by managing laser polarization, it is possible to gate an intense single attosecond pulse with high ellipticity extending to the soft X-ray regime at oblique incidence. This approach thus paves the way towards a powerful tool enabling high-time-resolution probe of dynamics of chiral systems and magnetic materials with current laser technology.
NASA Astrophysics Data System (ADS)
Piñeiro Orioli, Asier; Boguslavski, Kirill; Berges, Jürgen
2015-07-01
We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant for a wide range of applications from ultracold quantum gases to high-energy particle physics. The universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems. For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform two independent nonperturbative calculations, first by using classical-statistical lattice simulation techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives to learn from experiments with cold atoms aspects about the dynamics during the early stages of our universe.
Relativistic effects in ab initio electron-nucleus scattering
NASA Astrophysics Data System (ADS)
Rocco, Noemi; Leidemann, Winfried; Lovato, Alessandro; Orlandini, Giuseppina
2018-05-01
The electromagnetic responses obtained from Green's function Monte Carlo (GFMC) calculations are based on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from its nonrelativistic nature and its computational cost, the latter hampering the direct evaluation of the inclusive cross sections as measured by experiments. We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers by performing the calculations in a reference frame that minimizes nucleon momenta. Additional relativistic effects in the kinematics are accounted for employing the two-fragment model. In addition, we developed a novel algorithm, based on the concept of first-kind scaling, to compute the inclusive electromagnetic cross section of 4He through an accurate and reliable interpolation of the response functions. A very good agreement is obtained between theoretical and experimental cross sections for a variety of kinematical setups. This offers a promising prospect for the data analysis of neutrino-oscillation experiments that requires an accurate description of nuclear dynamics in which relativistic effects are fully accounted for.
Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers
NASA Astrophysics Data System (ADS)
Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus
2015-11-01
Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.
CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anninos, Peter; Lau, Cheuk; Bryant, Colton
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performedmore » separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.« less
Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhenbang; Huang, Hua; Lei, Lurong
2015-09-15
To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is aboutmore » 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.« less
CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
NASA Astrophysics Data System (ADS)
Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel
2017-08-01
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.
NASA Astrophysics Data System (ADS)
De Laurentis, Mariafelicia; De Martino, Ivan; Lazkoz, Ruth
2018-05-01
Alternative theories of gravity may serve to overcome several shortcomings of the standard cosmological model but, in their weak field limit, general relativity must be recovered so as to match the tight constraints at the Solar System scale. Therefore, testing such alternative models at scales of stellar systems could give a unique opportunity to confirm or rule them out. One of the most straightforward modifications is represented by analytical f (R )-gravity models that introduce a Yukawa-like modification to the Newtonian potential thus modifying the dynamics of particles. Using the geodesics equations, we have illustrated the amplitude of these modifications. First, we have integrated numerically the equations of motion showing the orbital precession of a particle around a massive object. Second, we have computed an analytic expression for the periastron advance of systems having their semimajor axis much shorter than the Yukawa-scale length. Finally, we have extended our results to the case of a binary system composed of two massive objects. Our analysis provides a powerful tool to obtain constraints on the underlying theory of gravity using current and forthcoming data sets.
Long term monitoring of Gamma-Ray emission from the BL Lacertae object (1ES 2200+420)
NASA Astrophysics Data System (ADS)
Gunawardhana, Isuru; VERITAS Collaboration
2016-03-01
Blazars are a class of Active Galactic Nuclei (AGN) that have relativistic jets pointing along the observer line of sight. Blazars exhibit variable emission extending from radio to TeV energies. The variability timescale of the TeV flux is a key component of understanding the location of the very high energy emission zones. Deep observations of the quiescent state measurements are also required to disentangle the flaring state emission from quiescent state emission, a prerequisite for understanding the origin of blazar spectral variability. BL Lacertae (also known as 1ES 2200+420), as the namesake for all BL Lac objects, is a prime example of one such blazar. The VERITAS Observatory, an Imaging Atmospheric Cherenkov Telescope (IACT) array sensitive to gamma rays in the range from 85 GeV to 30 TeV, dedicates approximately 110 hours per year on deep observations of known gamma-ray blazars. In this talk, I will describe the TeV photon flux variability of BL Lacertae measured by VERITAS from 2013 to 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
Small amplitude propagation and quasielastic head-on collision of ion-acoustic solitary waves (IASWs) are investigated in a degenerate Thomas-Fermi electron-positron-ion magnetized plasma using extended Poincare-Lighthill-Kuo reductive perturbation method for both ultrarelativistic and nonrelativistic electron/positron degeneracy cases. It is observed that both bright- and dark-type solitary shapes can exist in such plasma, depending on two critical values. The shape of ion-acoustic solitary structures as well as sign of their collision phase shifts are both determined by the same critical values. It is further revealed that relativistic degeneracy of electrons/positrons has significant effect on the propagation as well as interaction of IASWs.
Relativistic Coulomb excitation of 88Kr
NASA Astrophysics Data System (ADS)
Moschner, K.; Blazhev, A.; Jolie, J.; Warr, N.; Boutachkov, P.; Bednarczyk, P.; Sieja, K.; Algora, A.; Ameil, F.; Bentley, M. A.; Brambilla, S.; Braun, N.; Camera, F.; Cederkäll, J.; Corsi, A.; Danchev, M.; DiJulio, D.; Fahlander, C.; Gerl, J.; Giaz, A.; Golubev, P.; Górska, M.; Grebosz, J.; Habermann, T.; Hackstein, M.; Hoischen, R.; Kojouharov, I.; Kurz, N.; Mǎrginean, N.; Merchán, E.; Möller, T.; Naqvi, F.; Nara Singh, B. S.; Nociforo, C.; Pietralla, N.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Reese, M.; Reiter, P.; Rudigier, M.; Rudolph, D.; Sava, T.; Schaffner, H.; Scruton, L.; Taprogge, J.; Thomas, T.; Weick, H.; Wendt, A.; Wieland, O.; Wollersheim, H.-J.
2016-11-01
To investigate the systematics of mixed-symmetry states in N =52 isotones, a relativistic Coulomb excitation experiment was performed during the PreSPEC campaign at the GSI Helmholtzzentrum für Schwerionenforschung to determine E 2 transition strengths to 2+ states of the radioactive nucleus 88Kr. Absolute transition rates could be measured towards the first and third 2+ states. For the latter a mixed-symmetry character is suggested on the basis of the indication for a strong M 1 transition to the fully symmetric 21+ state, extending the knowledge of the N =52 isotones below Z =40 . A comparison with the proton-neutron interacting boson model and shell-model predictions is made and supports the assignment.
Pulsar Emission: Is It All Relative?
NASA Technical Reports Server (NTRS)
Harding, Alice K.
2004-01-01
Thirty-five years after the discovery of pulsars, we still do not understand the fundamentals of their pulsed emission at any wavelength. The fact that even detailed pulse profiles cannot identlfy the origin of the emission in a magnetosphere that extends fiom the neutron star surface to plasma moving at relativistic speeds near the light cylinder compounds the problem. I will discuss the role of special and general relativistic effects on pulsar emission, fiom inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics.
Relativistic effects on galaxy redshift samples due to target selection
NASA Astrophysics Data System (ADS)
Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Zhu, Hongyu; Giusarma, Elena
2017-10-01
In a galaxy redshift survey, the objects to be targeted for spectra are selected from a photometrically observed sample. The observed magnitudes and colours of galaxies in this parent sample will be affected by their peculiar velocities, through relativistic Doppler and relativistic beaming effects. In this paper, we compute the resulting expected changes in galaxy photometry. The magnitudes of the relativistic effects are a function of redshift, stellar mass, galaxy velocity and velocity direction. We focus on the CMASS sample from the Sloan Digital Sky Survey (SDSS) and Baryon Oscillation Spectroscopic Survey (BOSS), which is selected on the basis of colour and magnitude. We find that 0.10 per cent of the sample (∼585 galaxies) has been scattered into the targeted region of colour-magnitude space by relativistic effects, and conversely 0.09 per cent of the sample (∼532 galaxies) has been scattered out. Observational consequences of these effects include an asymmetry in clustering statistics, which we explore in a companion paper. Here, we compute a set of weights that can be used to remove the effect of modulations introduced into the density field inferred from a galaxy sample. We conclude by investigating the possible effects of these relativistic modulation on large-scale clustering of the galaxy sample.
NASA Astrophysics Data System (ADS)
Golubovic, Leonardo; Knudsen, Steven
2017-01-01
We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.
Proof of the Spin Statistics Connection 2: Relativistic Theory
NASA Astrophysics Data System (ADS)
Santamato, Enrico; De Martini, Francesco
2017-12-01
The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important "Pauli Exclusion Principle" but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858-873, 2015) we presented a proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the "Conformal Quantum Geometrodynamics". In the present paper, by the same theory the proof of the spin-statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin-statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858-873, 2015). The present proof of the spin-statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858-873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotondo, M.; Rueda, Jorge A.; Xue, S.-S.
The Feynman-Metropolis-Teller treatment of compressed atoms is extended to the relativistic regimes. Each atomic configuration is confined by a Wigner-Seitz cell and is characterized by a positive electron Fermi energy. The nonrelativistic treatment assumes a pointlike nucleus and infinite values of the electron Fermi energy can be attained. In the relativistic treatment there exists a limiting configuration, reached when the Wigner-Seitz cell radius equals the radius of the nucleus, with a maximum value of the electron Fermi energy (E{sub e}{sup F}){sub max}, here expressed analytically in the ultrarelativistic approximation. The corrections given by the relativistic Thomas-Fermi-Dirac exchange term are alsomore » evaluated and shown to be generally small and negligible in the relativistic high-density regime. The dependence of the relativistic electron Fermi energies by compression for selected nuclei are compared and contrasted to the nonrelativistic ones and to the ones obtained in the uniform approximation. The relativistic Feynman-Metropolis-Teller approach here presented overcomes some difficulties in the Salpeter approximation generally adopted for compressed matter in physics and astrophysics. The treatment is then extrapolated to compressed nuclear matter cores of stellar dimensions with A{approx_equal}(m{sub Planck}/m{sub n}){sup 3}{approx}10{sup 57} or M{sub core}{approx}M{sub {circle_dot}}. A new family of equilibrium configurations exists for selected values of the electron Fermi energy varying in the range 0
Formulating viscous hydrodynamics for large velocity gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Scott
2008-02-15
Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor {tau}{sub ij} as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements {tau}{sub ij}. By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of {tau}{sub ij}. Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves.more » Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time.« less
Stationary phase method and delay times for relativistic and non-relativistic tunneling particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardini, A.E.
2009-06-15
The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for somemore » specifical colliding configurations, we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation based on the non-relativistic tunneling dynamics is revisited. Lessons concerning the dynamics of relativistic tunneling and the mathematical structure of its solutions suggest revealing insights into mathematically analogous condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, O. V., E-mail: bov@tpu.ru; Fiks, E. I.; Pivovarov, Yu. L.
2012-09-15
Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantitymore » is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.« less
Natural and Artifactual Kinds: Are Children Realists or Relativists about Categories?
ERIC Educational Resources Information Center
Kalish, Charles
1998-01-01
Four studies assessed whether children and adults saw categorization decisions as objective matters of fact or as invented conventions. Found that preschoolers treated basic-level animal and human-made artifact category decisions as objective, with kinds of animals treated as more objective than kinds of artifacts. Adults' judgments were similar…
Interaction of axions with relativistic spinning particles
NASA Astrophysics Data System (ADS)
Popov, V. A.; Balakin, A. B.
2016-05-01
We consider a covariant phenomenological model, which describes an interaction between a pseudoscalar (axion) field and massive spinning particles. The model extends the Bagrmann-Michel-Telegdy approach in application to the axion electrodynamics. We present some exact solutions and discuss them in the context of experimental tests of the model and axion detection.
Zarmi, Yair
2016-01-01
Slower-than-light multi-front solutions of the Sine-Gordon in (1+2) dimensions, constructed through the Hirota algorithm, are mapped onto spatially localized structures, which emulate free, spatially extended, massive relativistic particles. A localized structure is an image of the junctions at which the fronts intersect. It propagates together with the multi-front solution at the velocity of the latter. The profile of the localized structure obeys the linear wave equation in (1+2) dimensions, to which a term that represents interaction with a slower-than-light, Sine-Gordon-multi-front solution has been added. This result can be also formulated in terms of a (1+2)-dimensional Lagrangian system, in which the Sine-Gordon and wave equations are coupled. Expanding the Euler-Lagrange equations in powers of the coupling constant, the zero-order part of the solution reproduces the (1+2)-dimensional Sine-Gordon fronts. The first-order part is the spatially localized structure. PACS: 02.30.Ik, 03.65.Pm, 05.45.Yv, 02.30.Ik. PMID:26930077
Transverse Densities of Octet Baryons from Chiral Effective Field Theory
Alarcón, Jose Manuel; Hiller Blin, Astrid N.; Weiss, Christian
2017-03-24
Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. In this paper, we calculate the transverse densities of the octet baryons at peripheral distances b=O(M π -1) in an approach that combines chiral effective field theory (χχEFT) and dispersion analysis. The densities are represented as dispersive integrals of the imaginary parts of the baryon electromagnetic form factors in the timelike region (spectral functions). The spectral functions on the two-pion cut at t>4Mmore » $$2\\atop{π}$$ are computed using relativistic χEFT with octet and decuplet baryons in the extended on-mass-shell renormalization scheme. The calculations are extended into the ρ-meson mass region using a dispersive method that incorporates the timelike pion form-factor data. The approach allows us to construct densities at distances b>1 fm with controlled uncertainties. Finally, our results provide insight into the peripheral structure of nucleons and hyperons and can be compared with empirical densities and lattice-QCD calculations.« less
General Relativistic Smoothed Particle Hydrodynamics code developments: A progress report
NASA Astrophysics Data System (ADS)
Faber, Joshua; Silberman, Zachary; Rizzo, Monica
2017-01-01
We report on our progress in developing a new general relativistic Smoothed Particle Hydrodynamics (SPH) code, which will be appropriate for studying the properties of accretion disks around black holes as well as compact object binary mergers and their ejecta. We will discuss in turn the relativistic formalisms being used to handle the evolution, our techniques for dealing with conservative and primitive variables, as well as those used to ensure proper conservation of various physical quantities. Code tests and performance metrics will be discussed, as will the prospects for including smoothed particle hydrodynamics codes within other numerical relativity codebases, particularly the publicly available Einstein Toolkit. We acknowledge support from NSF award ACI-1550436 and an internal RIT D-RIG grant.
NASA Astrophysics Data System (ADS)
Arons, Jonathan
The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of electric current that separate regions of differing magnetization into the domain of highly relativistic magnetic fields - those with energy density large compared to the rest mass energy of the charged particles - the plasma - caught in that field. The investigators will create theoretical and computational models of the magnetic dissipation - a form of viscous flow in the thin sheets of electric current that form in the magnetized regions around the rotating stars - using Particle in-Cell plasma simulations. These simulations use a large computer to solve the equations of motion of many charged particles - millions to billions in the research that will be pursued - to unravel the dissipation of those fields and the acceleration of beams of particles in the thin sheets. The results will be incorporated into macroscopic MHD models of the magnetic structures around the stars which determine the location and strength of the current sheets, so as to model and analyze the pulsed gamma ray emission seen from hundreds of Rotation Powered Pulsars. The computational models will be assisted by ``pencil and paper'' theoretical modeling designed to motivate and interpret the computer simulations, and connect them to the observations.
Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI
NASA Astrophysics Data System (ADS)
Middelberg, E.; Roy, A. L.; Nagar, N. M.; Krichbaum, T. P.; Norris, R. P.; Wilson, A. S.; Falcke, H.; Colbert, E. J. M.; Witzel, A.; Fricke, K. J.
2004-04-01
We report EVN, MERLIN and VLBA observations at 18 cm, 6 cm and 3.6 cm of the Seyfert galaxies NGC 7674, NGC 5506, NGC 2110 and Mrk 1210 to study their structure and proper motions on pc scales and to add some constraints on the many possible causes of the radio-quietness of Seyferts. The component configurations in NGC 7674 and NGC 2110 are simple, linear structures, whereas the configurations in NGC 5506 and Mrk 1210 have multiple components with no clear axis of symmetry. We suggest that NGC 7674 is a low-luminosity compact symmetric object. Comparing the images at different epochs, we find a proper motion in NGC 7674 of (0.92±0.07) c between the two central components separated by 282 pc and, in NGC 5506, we find a 3 σ upper limit of 0.50 c for the components separated by 3.8 pc. Our results confirm and extend earlier work showing that the outward motion of radio components in Seyfert galaxies is non-relativistic on pc scales. We briefly discuss whether this non-relativistic motion is intrinsic to the jet-formation process or results from deceleration of an initially relativistic jet by interaction with the pc or sub-pc scale interstellar medium. We combined our sample with a list compiled from the literature of VLBI observations made of Seyfert galaxies, and found that most Seyfert nuclei have at least one flat-spectrum component on the VLBI scale, which was not seen in the spectral indices measured at arcsec resolution. We found also that the bimodal alignment of pc and kpc radio structures displayed by radio galaxies and quasars is not displayed by this sample of Seyferts, which shows a uniform distribution of misalignment between 0° and 90°. The frequent misalignment could result from jet precession or from deflection of the jet by interaction with gas in the interstellar medium.
The flaring activity of Markarian 421 during April 2000
NASA Astrophysics Data System (ADS)
Fegan, D. J.; VERITAS Collaboration
2001-08-01
Evidence for correlated TeV γ and X-ray flaring of the extreme blazar Mrk421 during April 2000 is presented and discussed. The remarkably persistent TeV flare of April 30th 2000 (40 σ significance), exhibiting structure over almost six hours of continuous observation, is analysed in detail. 1 Extreme BL Lac objects The most extreme members of the Active Galactic Nucleus (AGN) family are BL Lac objects and optically violently variable (OVV) quasars, collectively known as blazars. These objects are dominated by the presence of relativistic jets. For jets fortuitously aligned with an observers line of sight, emission may exhibit dramatic variability over very short time scales, in turn implying remarkably compact emission regions. For blazars, the Spectral Energy Distribution (SED) is dominated by non-thermal continuum emission, extending from radio to TeV gamma rays. The broadband nature of the blazar emission offers unique insights into energetic physical processes at work in a very compact region, close to the base of the jet and near the underlying central engine, most likely a supermassive black hole. BL Lacs are very effectively characterized on the basis of their SED shape. X-ray and radio flux limited surveys apear to display a bimodal distribution of properties, with LBL (Low-energy peaked, or "Red" BL Lacs) having synchrotron peaks in the IR-optical bands, and HBL (High-energy peaked, or "Blue" BL Lacs) in the UV to soft X-ray band. Recent comprehensive surveys such as DXRBS, REX and RGB have extended, by almost two orders of magnitude, the range of observable synchrotron peak frequencies. For blazar class objects, broadband emission confirms that the synchrotron peak may span the entire IR Xray range, thus accounting for the multi-frequency emission properties of this class of object. Mrk421, Mrk501, 1ES2344 and 1H1426 all exhibit broadband emission properties, high
Radiatively-suppressed spherical accretion under relativistic radiative transfer
NASA Astrophysics Data System (ADS)
Fukue, Jun
2018-03-01
We numerically examine radiatively-suppressed relativistic spherical accretion flows on to a central object with mass M under Newtonian gravity and special relativity. We simultaneously solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double iteration process in the case of the intermediate optical depth. We find that the accretion flow is suppressed, compared with the freefall case in the nonrelativistic regime. For example, in the case of accretion on to a luminous core with accretion luminosity L*, the freefall velocity v normalized by the speed of light c under the radiative force in the nonrelativistic regime is β (\\hat{r}) = v/c = -√{(1-Γ _*)/(\\hat{r}+1-Γ _*)}, where Γ* (≡ L*/LE, LE being the Eddington luminosity) is the Eddington parameter and \\hat{r} (= r/rS, rS being the Schwarzschild radius) the normalized radius, whereas the infall speed at the central core is ˜0.7β(1), irrespective of the mass-accretion rate. This is due to the relativistic effect; the comoving flux is enhanced by the advective flux. We briefly examine and discuss an isothermal case, where the emission takes place in the entire space.
Laser-plasmas in the relativistic-transparency regime: Science and applications
Cort Gautier, D.; Palaniyappan, Sasikumar; Albright, Brian J.; Favalli, Andrea; Hunter, James F.; Mendez, Jacob; Roth, Markus; Deppert, Oliver; Espy, Michelle; Guler, Nevzat; Hamilton, Christopher; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril D.; Iliev, Metodi; Johnson, Randall P.; Kleinschmidt, Annika; Losko, Adrian S.; McCary, Edward; Mocko, Michal; Nelson, Ronald O.; Roycroft, Rebecca; Schanz, Victor A.; Schaumann, Gabriel; Schmidt, Derek W.; Sefkow, Adam; Taddeucci, Terry N.; Yin, Lin
2017-01-01
Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at “table-top” scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (∼104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (∼0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2–8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ∼2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed. PMID:28652684
Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.
El-Shamy, E F
2015-03-01
The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.
Mass, radius and composition of the outer crust of nonaccreting cold neutron stars
NASA Astrophysics Data System (ADS)
Hempel, Matthias; Schaffner-Bielich, Jürgen
2008-01-01
The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by including higher order corrections of the atomic binding, screening, exchange and zero-point energy. The most recent experimental nuclear data from the atomic mass table of Audi, Wapstra and Thibault from 2003 are used. Extrapolation to the drip line is utilized by various state-of-the-art theoretical nuclear models (finite range droplet, relativistic nuclear field and non-relativistic Skyrme Hartree Fock parameterizations). The different nuclear models are compared with respect to the mass and radius of the outer crust for different neutron star configurations and the nuclear compositions of the outer crust.
Angular behavior of synchrotron radiation harmonics.
Bagrov, V G; Bulenok, V G; Gitman, D M; Jara, Jose Acosta; Tlyachev, V B; Jarovoi, A T
2004-04-01
The detailed analysis of angular dependence of the synchrotron radiation (SR) is presented. Angular distributions of linear and circular polarization integrated over all harmonics, well known for relativistic electron energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, completely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.
Relativistic kinematics for motion faster than light
NASA Technical Reports Server (NTRS)
Jones, R. T.
1982-01-01
The use of conformal coordinates in relativistic kinematics is illustrated and a simple extension of the theory of motions faster than light is provided. An object traveling at a speed greater than light discloses its presence by appearing suddenly at a point, splitting into two apparent objects which then recede from each other at sublight velocities. According to the present theory motion at speeds faster than light would not benefit a space traveler, since the twin paradox becomes inverted at such speeds. In Einstein's theory travel at the velocity of light in an intertial system is equivalent to infinite velocity for the traveler. In the present theory the converse is also true; travel at infinite velocity is equivalent to the velocity of light for the traveler.
NASA Astrophysics Data System (ADS)
Zhang, Bing; Li, Kunyang
2018-02-01
The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Mani; Gammie, Charles F.; Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov
Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variablemore » inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.« less
Ionospheric modification using relativistic electron beams
NASA Technical Reports Server (NTRS)
Banks, Peter M.; Fraser-Smith, Anthony C.; Gilchrist, B. E.
1990-01-01
The recent development of comparatively small electron linear accelerators (linacs) now makes possible a new class of ionospheric modification experiments using beams of relativistic electrons. These experiments can potentially provide much new information about the interactions of natural relativistic electrons with other particles in the upper atmosphere, and it may also make possible new forms of ionization structures extending down from the lower ionosphere into the largely un-ionized upper atmosphere. The consequences of firing a pulsed 1 A, 5 Mev electron beam downwards into the upper atmosphere are investigated. If a small pitch angle with respect to the ambient geomagnetic field is selected, the beam produces a narrow column of substantial ionization extending down from the source altitude to altitudes of approximately 40 to 45 km. This column is immediately polarized by the natural middle atmosphere fair weather electric field and an increasingly large potential difference is established between the column and the surrounding atmosphere. In the regions between 40 to 60 km, this potential can amount to many tens of kilovolts and the associated electric field can be greater than the field required for breakdown and discharge. Under these conditions, it may be possible to initiate lightning discharges along the initial ionization channel. Filamentation may also occur at the lower end to drive further currents in the partially ionized gases of the stratosphere. Such discharges would derive their energy from the earth-ionosphere electrical system and would be sustained until plasma depletion and/or electric field reduction brought the discharge under control. It is likely that this artificially-triggered lightning would produce measurable low-frequency radiation.
24-Hour Relativistic Bit Commitment.
Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo
2016-09-30
Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.
The stationary non-equilibrium plasma of cosmic-ray electrons and positrons
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2016-06-01
The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.
Self-Channelling of a Short Laser Pulse at Relativistic Intensity in Near Critical Underdense Plasma
NASA Astrophysics Data System (ADS)
Willi, O.; Borghesi, M.; MacKinnon, A. J.; Barringer, L.; Gaillard, R.; Meyer, C.; Gizzi, L.; Pukhov, A.; Meyer-Ter-Vehn, J.
1996-11-01
Self channelling of a picosecond pulse at relativistic intensities has been observed in near critical underdense plasmas. The plasma was preformed by laser heating of a thin film. The interaction pulse (1-3 ps duration, 1.054 μm) was focused onto the plasma at irradiances above 5 × 10^18 W/cm^2. Self-channelling of the pulse was detected via second harmonic and optical probe measurements. Intense, localised 2ω emission suggests the formation of channel structures of less than 5 μm in diameter, extending for several Rayleigh lengths. The temporal evolution of the electron density profile across the channel was measured via interferometry with picosecond temporal resolution. PIC code simulations, performed for the conditions of the experiment, predict the formation of similar channel structures. In this model, in addition to relativistic and ponderomotive self-focusing mechanisms, pinching by large self-generated magnetic fields also contributes to the single channel formation. Measurements of magnetic fields were also performed that seem to be consistent with the computational model.
Optical Variability Signatures from Massive Black Hole Binaries
NASA Astrophysics Data System (ADS)
Kasliwal, Vishal P.; Frank, Koby Alexander; Lidz, Adam
2017-01-01
The hierarchical merging of dark matter halos and their associated galaxies should lead to a population of supermassive black hole binaries (MBHBs). We consider plausible optical variability signatures from MBHBs at sub-parsec separations and search for these using data from the Catalina Real-Time Transient Survey (CRTS). Specifically, we model the impact of relativistic Doppler beaming on the accretion disk emission from the less massive, secondary black hole. We explore whether this Doppler modulation may be separated from other sources of stochastic variability in the accretion flow around the MBHBs, which we describe as a damped random walk (DRW). In the simple case of a circular orbit, relativistic beaming leads to a series of broad peaks — located at multiples of the orbital frequency — in the fluctuation power spectrum. We extend our analysis to the case of elliptical orbits and discuss the effect of beaming on the flux power spectrum and auto-correlation function using simulations. We present a code to model an observed light curve as a stochastic DRW-type time series modulated by relativistic beaming and apply the code to CRTS data.
Characterizing Relativistic Electrons Flux Enhancement Events using sensors onboard SAMPEX and POLAR
NASA Astrophysics Data System (ADS)
Kanekal, S. G.; Selesnick, R. S.; Baker, D. N.; Blake, J. B.
2004-12-01
Relativistic electron fluxes in the Earth's outer Van Allen belt are highly variable with flux enhancements of several orders of magnitude occurring on time scales of a few days. Radiation belt electrons often are energized to relativistic energies when the magnetosphere is subjected to high solar wind speed and the southward turning of the interplanetary magnetic field. Characterization of electron acceleration properties such as electron spectra and flux isotropization are important in understanding acceleration models. We use sensors onboard SAMPEX and POLAR to measure and survey systematically these properties. SAMPEX measurements cover the entire outer zone for more than a decade from mid 1992 to mid 2004 and POLAR covers the time period from mid 1996 to the present. We use the pulse height analyzed data from the PET detector onboard SAMPEX to measure electron spectra. Fluxes measured by the HIST detector onboard POLAR together with the PET measurements are used to characterize isotropization times. This paper presents electron spectra and isotropization time scales for a few representative events. We will eventually extend these measurements and survey the entire solar cycle 23.
Relativistic atomic structure calculations and electron impact excitations of Fe23+
NASA Astrophysics Data System (ADS)
El-Maaref, A. A.
2016-02-01
Relativistic calculations using the multiconfiguration Dirac-Fock method for energy levels, oscillator strengths, and electronic dipole transition probabilities of Li-like iron (Fe23+) are presented. A configuration state list with the quantum numbers nl, where n = 2 - 7 and l = s , p , d , f , g , h , i has been considered. Excitations up to three electrons and correlation contributions from higher orbitals up to 7 l have been included. Contributions from core levels have been taken into account, EOL (extended optimal level) type calculations have been applied, and doubly excited levels are considered. The calculations have been executed by using the fully relativistic atomic structure package GRASP2K. The present calculations have been compared with the available experimental and theoretical sources, the comparisons show a good agreement between the present results of energy levels and oscillator strengths with the literature. In the second part of the present study, the atomic data (energy levels, and radiative parameters) have been used to calculate the excitation and deexcitation rates of allowed transitions by electron impact, as well as the population densities of some excited levels at different electron temperatures.
Radio-loud AGN Variability from Propagating Relativistic Jets
NASA Astrophysics Data System (ADS)
Li, Yutong; Schuh, Terance; Wiita, Paul J.
2018-06-01
The great majority of variable emission in radio-loud AGNs is understood to arise from the relativistic flows of plasma along two oppositely directed jets. We study this process using the Athena hydrodynamics code to simulate propagating three-dimensional relativistic jets for a wide range of input jet velocities and jet-to-ambient matter density ratios. We then focus on those simulations that remain essentially stable for extended distances (60-120 times the jet radius). Adopting results for the densities, pressures and velocities from these propagating simulations we estimate emissivities from each cell. The observed emissivity from each cell is strongly dependent upon its variable Doppler boosting factor, which depends upon the changing bulk velocities in those zones with respect to our viewing angle to the jet. We then sum the approximations to the fluxes from a large number of zones upstream of the primary reconfinement shock. The light curves so produced are similar to those of blazars, although turbulence on sub-grid scales is likely to be important for the variability on the shortest timescales.
Relativistic theory of particles in a scattering flow I: basic equations, diffusion and drift.
NASA Astrophysics Data System (ADS)
Achterberg, A.; Norman, C. A.
2018-06-01
We reconsider the theory of particle transport in a scattering medium, allowing for relativistic flow velocities. The theory uses a mixed set of variables, with position and time measured in the Laboratory Frame, and particle energy and momentum measured in the Fluid Rest Frame, the reference frame where scattering is assumed to be elastic. We give a new derivation for the fictitious force terms in the equation of motion that are present if the Fluid Rest Frame is not an inertial frame. By using a 3+1 notation we discuss the physical interpretation of the different terms in the fictitious force. It is shown that different approaches to the problem of particle propagation in a magnetized medium due to Skilling (1975) and Kulsrud (1983) are largely equivalent. We extend known results for non-relativistic flows to include the effects of cross-field diffusion for cosmic rays in a magnetized plasma. We also carefully consider the correct form of the diffusion approximation for scattering, and show that the resulting equations can be cast in conservation form.
Universal bounds on the time evolution of entanglement entropy.
Avery, Steven G; Paulos, Miguel F
2014-12-05
Using relative entropy, we derive bounds on the time rate of change of geometric entanglement entropy for any relativistic quantum field theory in any dimension. The bounds apply to both mixed and pure states, and may be extended to curved space. We illustrate the bounds in a few examples and comment on potential applications and future extensions.
Excitation of Nuclei and Atoms Trapping in Optical Fields of High Intensity
2006-11-01
the new relativistic wave equation for half- spin particle interacting with the electromagnetic field. The proposed equation is Lorentz and gauge ...CONTENTS Task 1. Gamma-ray laser with hidden inversion of nuclear state populations 3 Introduction 3 Recoil-accompanied nuclear...31 Task 2. Extended ensemble of monoenergetic atoms 33 Introduction 33 Results 37 Conclusion 66
4D Sommerfeld quantization of the complex extended charge
NASA Astrophysics Data System (ADS)
Bulyzhenkov, Igor E.
2017-12-01
Gravitational fields and accelerations cannot change quantized magnetic flux in closed line contours due to flat 3D section of curved 4D space-time-matter. The relativistic Bohr-Sommerfeld quantization of the imaginary charge reveals an electric analog of the Compton length, which can introduce quantitatively the fine structure constant and the Plank length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yunliang; International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum; Lü, Xiaoxia
A theoretical and numerical study of the modulational instability of large amplitude quantum magnetosonic waves (QMWs) in a relativistically degenerate plasma is presented. A modified nonlinear Schrödinger equation is derived by using the reductive perturbation method. The modulational instability regions of the QMWs and the corresponding growth rates are significantly affected by the relativistic degeneracy parameter, the Pauli spin magnetization effects, and the equilibrium magnetic field. The dynamics and nonlinear saturation of the modulational instability of QMWs are investigated numerically. It is found that the increase of the relativistic degeneracy parameter can increase the growth rate of the instability, andmore » the system is saturated nonlinearly by the formation of envelope solitary waves. The current investigation may have relevance to astrophysical magnetized compact objects, such as white dwarfs and pulsar magnetospheres.« less
Matveev, Alexei V; Rösch, Notker
2008-06-28
We suggest an approximate relativistic model for economical all-electron calculations on molecular systems that exploits an atomic ansatz for the relativistic projection transformation. With such a choice, the projection transformation matrix is by definition both transferable and independent of the geometry. The formulation is flexible with regard to the level at which the projection transformation is approximated; we employ the free-particle Foldy-Wouthuysen and the second-order Douglas-Kroll-Hess variants. The (atomic) infinite-order decoupling scheme shows little effect on structural parameters in scalar-relativistic calculations; also, the use of a screened nuclear potential in the definition of the projection transformation shows hardly any effect in the context of the present work. Applications to structural and energetic parameters of various systems (diatomics AuH, AuCl, and Au(2), two structural isomers of Ir(4), and uranyl dication UO(2) (2+) solvated by 3-6 water ligands) show that the atomic approximation to the conventional second-order Douglas-Kroll-Hess projection (ADKH) transformation yields highly accurate results at substantial computational savings, in particular, when calculating energy derivatives of larger systems. The size-dependence of the intrinsic error of the ADKH method in extended systems of heavy elements is analyzed for the atomization energies of Pd(n) clusters (n=116).
Eclipsing binary stars as tests of gravity theories - The apsidal motion of AS Camelopardalis
NASA Technical Reports Server (NTRS)
Maloney, Frank P.; Guinan, Edward F.; Boyd, Patricia T.
1989-01-01
AS Camelopardalis is an 8th-magnitude eclipsing binary that consists of two main-sequence (B8 V and a B9.5 V) components in an eccentric orbit (e = 0.17) with an orbital period of 3.43 days. Like the eccentric eclipsing system DI Herculis, and a few other systems, AS Cam is an important test case for studying relativistic apsidal motion. In these systems, the theoretical general relativistic apsidal motion is comparable to that expected from classical effects arising from tidal and rotational deformation of the stellar components. Accurate determinations of the orbital and stellar properties of AS Cam have been made by Hilditch (1972) and Khalliulin and Kozyreva (1983) that permit the theoretical relativistic and classical contributions to the apsidal motion to be determined reasonably well. All the published timings of primary and secondary minima have been gathered and supplemented with eclipse timings from 1899 to 1920 obtained from the Harvard plate collection. Least-squares solutions of the eclipse timings extending over an 80 yr interval yield a smaller than expected apsidal motion, in agreement with that found by Khalliulin and Kozyreva from a smaller set of data. The observed apsidal motion for AS Cam is about one-third that expected from the combined relativistic and classical effects. Thus, AS Cam joins DI Her in having an observed apsidal motion significantly less than that predicted from theory.
The 'Supercritical Pile' GRB Model: Afterglows and GRB, XRR, XRF Unification
NASA Technical Reports Server (NTRS)
Kazanas, D.
2007-01-01
We present the general notions and observational consequences of the "Supercritical Pile" GRB model; the fundamental feature of this model is a detailed process for the conversion of the energy stored in relativistic protons in the GRB Relativistic Blast Waves (RBW) into relativistic electrons and then into radiation. The conversion is effected through the $p \\, \\gamma \\rightarrow p \\, e circumflex + e circumflex -$ reaction, whose kinematic threshold is imprinted on the GRB spectra to provide a peak of their emitted luminosity at energy \\Ep $\\sim 1$ MeV in the lab frame. We extend this model to include, in addition to the (quasi--)thermal relativistic post-shock protons an accelerated component of power law form. This component guarantees the production of $e circumflex +e circumflex- - $pairs even after the RBW has slowed down to the point that its (quasi-) thermal protons cannot fulfill the threshold of the above reaction. We suggest that this last condition marks the transition from the prompt to the afterglow GRB phase. We also discuss conditions under which this transition is accompanied by a significant drop in the flux and could thus account for several puzzling, recent observations. Finally, we indicate that the same mechanism applied to the late stages of the GRB evolution leads to a decrease in \\Ep $\\propto \\Gamma circumflex 2(t)\\propto t circumflex {-3/4}$, a feature amenable to future observational tests.
Explosive X-point collapse in relativistic magnetically dominated plasma
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver
2017-12-01
The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.
A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars
NASA Technical Reports Server (NTRS)
Chen, Wan; White, Richard L.
1992-01-01
We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.
Toda Systems, Cluster Characters, and Spectral Networks
NASA Astrophysics Data System (ADS)
Williams, Harold
2016-11-01
We show that the Hamiltonians of the open relativistic Toda system are elements of the generic basis of a cluster algebra, and in particular are cluster characters of nonrigid representations of a quiver with potential. Using cluster coordinates defined via spectral networks, we identify the phase space of this system with the wild character variety related to the periodic nonrelativistic Toda system by the wild nonabelian Hodge correspondence. We show that this identification takes the relativistic Toda Hamiltonians to traces of holonomies around a simple closed curve. In particular, this provides nontrivial examples of cluster coordinates on SL n -character varieties for n > 2 where canonical functions associated to simple closed curves can be computed in terms of quivers with potential, extending known results in the SL 2 case.
ipole: Semianalytic scheme for relativistic polarized radiative transport
NASA Astrophysics Data System (ADS)
Moscibrodzka, Monika; Gammie, Charles F.
2018-04-01
ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.
Efficiency of Magnetic to Kinetic Energy Conversion in a Monopole Magnetosphere
NASA Astrophysics Data System (ADS)
Tchekhovskoy, Alexander; McKinney, Jonathan C.; Narayan, Ramesh
2009-07-01
Unconfined relativistic outflows from rotating, magnetized compact objects are often well modeled by assuming that the field geometry is approximately a split-monopole at large radii. Earlier work has indicated that such an unconfined flow has an inefficient conversion of magnetic energy to kinetic energy. This has led to the conclusion that ideal magnetohydrodynamical (MHD) processes fail to explain observations of, e.g., the Crab pulsar wind at large radii where energy conversion appears efficient. In addition, as a model for astrophysical jets, the monopole field geometry has been abandoned in favor of externally confined jets since the latter appeared to be generically more efficient jet accelerators. We perform time-dependent axisymmetric relativistic MHD simulations in order to find steady-state solutions for a wind from a compact object endowed with a monopole field geometry. Our simulations follow the outflow for 10 orders of magnitude in distance from the compact object, which is large enough to study both the initial "acceleration zone" of the magnetized wind as well as the asymptotic "coasting zone." We obtain the surprising result that acceleration is actually efficient in the polar region, which develops a jet despite not being confined by an external medium. Our models contain jets that have sufficient energy to account for moderately energetic long and short gamma-ray burst (GRB) events (~1051-1052 erg), collimate into narrow opening angles (opening half-angle θ j ≈ 0.03 rad), become matter-dominated at large radii (electromagnetic energy flux per unit matter energy flux σ < 1), and move at ultrarelativistic Lorentz factors (γ j ~ 200 for our fiducial model). The simulated jets have γ j θ j ~ 5-15, so they are in principle capable of generating "achromatic jet breaks" in GRB afterglow light curves. By defining a "causality surface" beyond which the jet cannot communicate with a generalized "magnetic nozzle" near the axis of rotation, we obtain approximate analytical solutions for the Lorentz factor that fit the numerical solutions well. This allows us to extend our results to monopole wind models with arbitrary magnetization. Overall, our results demonstrate that the production of ultrarelativistic jets is a more robust process than previously thought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murase, Kohta; Mészáros, Peter; Fox, Derek B.
We consider some general implications of bright γ -ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, γ -ray detections with current satellites (including Swift ) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required γ -ray energy is comparable to that of the early afterglow or extended emissionmore » of short γ -ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the γ -rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from γ -ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.« less
Numerical implementation of equations for photon motion in Kerr spacetime
NASA Astrophysics Data System (ADS)
Bursa, Michal
2017-12-01
Raytracing is one of the essential tools for accurate modeling of spectra and variability of various astrophysical objects. It has a major importance in relativistic environments, where light endures to a number of relativistic effects. Because the trajectories of light rays in curved spacetimes, and in Kerr spacetime in particular, are highly non-trivial, we summarize the equations governing the motion of photon (or any other zero rest mass particle) and give analytic solution of the equations that can be further used in practical computer implementations.
Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Garbaczewski, Piotr; Klauder, John R.; Olkiewicz, Robert
1995-05-01
The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for the temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schrödinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feynman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard ``free'' case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schrödinger problem, the ``free noise'' can also be extended to any infinitely divisible probability law, as covered by the Lévy-Khintchine formula. Since the relativistic Hamiltonians ||∇|| and √-Δ+m2 -m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert) and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes exist and are spatial jump processes. In general, in the presence of external potentials, they do not share the Markov property, except for stationary situations. A concrete example of the pseudodifferential Cauchy-Schrödinger evolution is analyzed in detail. The relativistic covariance of related wave equations is exploited to demonstrate how the associated stochastic jump processes comply with the principles of special relativity.
NASA Astrophysics Data System (ADS)
Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.
2015-11-01
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
The Polarimeter for Relativistic Astrophysical X-ray Sources
NASA Astrophysics Data System (ADS)
Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru
2016-07-01
The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alarcón, J. M.; Hiller Blin, A. N.; Vicente Vacas, M. J.
2017-05-08
The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. In this paper, we calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b=O(Mmore » $$-1\\atop{π}$$) using methods of relativistic chiral effective field theory (χ EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M$$2\\atop{π}$$ are calculated using relativistic χEFT including octet and decuplet baryons. The χEFT calculations are extended into the ρ meson mass region using an N/D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. Finally, the approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.« less
Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy
NASA Astrophysics Data System (ADS)
Hasebe, Kazuki
2017-07-01
We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.
Hoffman, Donald D.; Prakash, Chetan
2014-01-01
Current models of visual perception typically assume that human vision estimates true properties of physical objects, properties that exist even if unperceived. However, recent studies of perceptual evolution, using evolutionary games and genetic algorithms, reveal that natural selection often drives true perceptions to extinction when they compete with perceptions tuned to fitness rather than truth: Perception guides adaptive behavior; it does not estimate a preexisting physical truth. Moreover, shifting from evolutionary biology to quantum physics, there is reason to disbelieve in preexisting physical truths: Certain interpretations of quantum theory deny that dynamical properties of physical objects have definite values when unobserved. In some of these interpretations the observer is fundamental, and wave functions are compendia of subjective probabilities, not preexisting elements of physical reality. These two considerations, from evolutionary biology and quantum physics, suggest that current models of object perception require fundamental reformulation. Here we begin such a reformulation, starting with a formal model of consciousness that we call a “conscious agent.” We develop the dynamics of interacting conscious agents, and study how the perception of objects and space-time can emerge from such dynamics. We show that one particular object, the quantum free particle, has a wave function that is identical in form to the harmonic functions that characterize the asymptotic dynamics of conscious agents; particles are vibrations not of strings but of interacting conscious agents. This allows us to reinterpret physical properties such as position, momentum, and energy as properties of interacting conscious agents, rather than as preexisting physical truths. We sketch how this approach might extend to the perception of relativistic quantum objects, and to classical objects of macroscopic scale. PMID:24987382
High-energy radiation from the relativistic jet of Cygnus X-3
NASA Astrophysics Data System (ADS)
Cerutti, B.; Dubus, G.; Henri, G.
2010-12-01
Cygnus X-3 is an accreting high-mass X-ray binary composed of a Wolf-Rayet star and an unknown compact object, possibly a black hole. The gamma-ray space telescope Fermi found definitive evidence that high-energy emission is produced in this system. We propose a scenario to explain the GeV gamma-ray emission in Cygnus X-3. In this model, energetic electron-positron pairs are accelerated at a specific location in the relativistic jet, possibly related to a recollimation shock, and upscatter the stellar photons to high energies. The comparison with Fermi observations shows that the jet should be inclined close to the line of sight and pairs should not be located within the system. Energetically speaking, a massive compact object is favored. We report also on our investigations of the gamma-ray absorption of GeV photons with the radiation emitted by a standard accretion disk in Cygnus X-3. This study shows that the gamma-ray source should not lie too close to the compact object.
Photoionization of S3+ using the Breit-Pauli R-matrix method
NASA Astrophysics Data System (ADS)
Stancalie, V.
2018-01-01
Sulphur is one of the most abundant chemical elements in the universe and a large number of lines have been observed in the spectra of astrophysical object. The S IV and SV ions considered in this work have received much interest in the last decade. The main objective of the present work is to report on photoionization cross-sections of S IV using the Breit-Pauli R-matrix (BPRM) method. We have carried out extensive non-relativistic and relativistic calculations of the photoionization cross sections to focus on relativistic effects. The reliability of the atomic data presented here has been carefully tested. We have exploited the BPRM code to describe the atomic wavefunctions and generate the energy levels for the SV 81 fine-structure bound target states and the corresponding A-values for transitions between these levels. The partial and total cross sections for the photoionization of the Al-like S3+ ground and excited states are determined for photon energy ranging from the S4+ 3s2 threshold up to the S4+ 4s threshold. We present statistically weighted, level resolved ground photoionization cross sections for the S IV ion. Both resonance positions and the oscillator strengths are presented. Extensive comparison of the present calculated values with those obtained from direct theoretical scattering calculation is also presented. To the best of our knowledge, the work reported herein describes for the first time a detailed relativistic photoionization calculation for this system, and the results are relevant to the laboratory and astrophysical plasmas.
Mutual interactions of phonons, rotons, and gravity
NASA Astrophysics Data System (ADS)
Nicolis, Alberto; Penco, Riccardo
2018-04-01
We introduce an effective point-particle action for generic particles living in a zero-temperature superfluid. This action describes the motion of the particles in the medium at equilibrium as well as their couplings to sound waves and generic fluid flows. While we place the emphasis on elementary excitations such as phonons and rotons, our formalism applies also to macroscopic objects such as vortex rings and rigid bodies interacting with long-wavelength fluid modes. Within our approach, we reproduce phonon decay and phonon-phonon scattering as predicted using a purely field-theoretic description of phonons. We also correct classic results by Landau and Khalatnikov on roton-phonon scattering. Finally, we discuss how phonons and rotons couple to gravity, and show that the former tend to float while the latter tend to sink but with rather peculiar trajectories. Our formalism can be easily extended to include (general) relativistic effects and couplings to additional matter fields. As such, it can be relevant in contexts as diverse as neutron star physics and light dark matter detection.
An X-ray investigation of the unusual supernova remnant CTB 80
NASA Technical Reports Server (NTRS)
Wang, Z. R.; Seward, F. D.
1984-01-01
The X-ray properties of SNR CTB 80 (G68.8 + 2.8) are discussed based on both low- and high-resolution images from the Einstein satellite. The X-ray maps show a point source coinciding with the region of maximum radio emission. Diffuse X-ray emission is evident mainly along the radio lobe extending about 8 arcmin east of the point source and aligned with the projected magnetic field lines. The observed X-ray luminosity is 3.2 x 10 to the 34th ergs/s with 1.0 x 10 to the 3th ergs/s from the point source (assuming a distance of 3 kpc). There is also faint, diffuse, X-ray emission south of the point source, where radio emission is absent. The unusual radio and X-ray morphologies are interpreted as a result of relativistic jets energized by the central object, and the possible association of CTB 80 with SN 1408 as recorded by Chinese observers is discussed.
Uniformly rotating, axisymmetric, and triaxial quark stars in general relativity
NASA Astrophysics Data System (ADS)
Zhou, Enping; Tsokaros, Antonios; Rezzolla, Luciano; Xu, Renxin; Uryū, Kōji
2018-01-01
Quasiequilibrium models of uniformly rotating axisymmetric and triaxial quark stars are computed in a general-relativistic gravity scenario. The Isenberg-Wilson-Mathews (IWM) formulation is employed and the Compact Object Calculator (cocal) code is extended to treat rotating stars with finite surface density and new equations of state (EOSs). Besides the MIT bag model for quark matter which is composed of deconfined quarks, we examine a new EOS proposed by Lai and Xu that is based on quark clustering and results in a stiff EOS that can support masses up to 3.3 M⊙ in the case we considered. We perform convergence tests for our new code to evaluate the effect of finite surface density in the accuracy of our solutions and construct sequences of solutions for both small and high compactness. The onset of secular instability due to viscous dissipation is identified and possible implications are discussed. An estimate of the gravitational wave amplitude and luminosity based on quadrupole formulas is presented and comparison with neutron stars is discussed.
Driving extreme variability: the evolving corona and evidence for jet launching in Markarian 335
NASA Astrophysics Data System (ADS)
Wilkins, D. R.; Gallo, L. C.
2015-05-01
Variations in the X-ray emission from the narrow-line Seyfert 1 galaxy, Markarian 335, are studied on both long and short time-scales through observations made between 2006 and 2013 with XMM-Newton, Suzaku and NuSTAR. Changes in the geometry and energetics of the corona that give rise to this variability are inferred through measurements of the relativistically blurred reflection seen from the accretion disc. On long time-scales, we find that during the high-flux epochs the corona has expanded, covering the inner regions of the accretion disc out to a radius of 26_{-7}^{+10} rg. The corona contracts to within 12rg and 5rg in the intermediate- and low-flux epochs, respectively. While the earlier high-flux observation made in 2006 is consistent with a corona extending over the inner part of the accretion disc, a later high-flux observation that year revealed that the X-ray source had become collimated into a vertically extended jet-like corona and suggested relativistic motion of material upwards. On short time-scales, we find that an X-ray flare during a low-flux epoch in 2013 corresponded to a reconfiguration from a slightly extended corona to one much more compact, within just 2 ˜ 3rg of the black hole. There is evidence that during the flare itself, the spectrum softened and the corona became collimated and slightly extended vertically as if a jet-launching event was aborted. Understanding the evolution of the X-ray emitting corona may reveal the underlying mechanism by which the luminous X-ray sources in AGN are powered.
Formation of dynamical structures in relativistic jets: the FRI case
NASA Astrophysics Data System (ADS)
Rossi, P.; Mignone, A.; Bodo, G.; Massaglia, S.; Ferrari, A.
2008-09-01
Context: Strong observational evidence indicates that all extragalactic jets associated with AGNs move at relativistic speed up to 100 pc-1 kpc scales from the nucleus. At greater distances, reflecting the Fanaroff-Riley radio source classification, we observe an abrupt deceleration in FR-I jets while relativistic motions persist up to Mpc scale in FR-II. Moreover, VLBI observations of some object such as B2 1144+35, Mrk501 and M87 show limb brightening of the jet radio emission on the parsec scale. This effect is interpreted kinematically as due to the deboosted central spine at high Lorentz factor and of a weakly relativistic external layer. Aims: In this paper we investigate whether these effects can be interpreted by a braking of the collimated flow by external medium entrainment favored by shear instabilities, namely Kelvin-Helmholtz instabilities. We examine in details the physical conditions under which significant deceleration of a relativistic flow is produced. Methods: We investigated the phenomenon by means of high-resolution three-dimensional relativistic hydrodynamic simulations using the PLUTO code for computational astrophysics. Results: We find that the most important parameter in determining the instability evolution and the entrainment properties is the ambient/jet density contrast. We show that lighter jets suffer stronger slowing down in the external layer than in the central part and conserve a central spine with a high Lorentz factor. Conclusions: Our model is verified by constructing synthetic emission maps from the numerical simulations which compare reasonably well with VLBI observations of the inner part of FR-I sources.
Open/closed string duality and relativistic fluids
NASA Astrophysics Data System (ADS)
Niarchos, Vasilis
2016-07-01
We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.
Electromagnetic structure of few-nucleon ground states
Marcucci, Laura E.; Gross, Franz L.; Peña, M. T.; ...
2016-01-08
Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled ChiEFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). Furthermore, for momentum transfers belowmore » Q < 5 fm -1 there is satisfactory agreement between experimental data and theoretical results in all three approaches. Conversely, at Q > 5 fm -1, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. The experimental data on the deuteron A structure function extend to Q ~ 12 fm -1, and the close agreement between these data and the CST results suggests that, even in this extreme kinematical regime, there is no evidence for new effects coming from quark and gluon degrees of freedom at short distances.« less
NASA Astrophysics Data System (ADS)
Xiong, Ying; Wiita, Paul J.; Bao, Gang
2000-12-01
The possibility that some of the observed X-ray and optical variability in active galactic nuclei and galactic black hole candidates are produced in accretion disks through the development of a self-organized critical state is reconsidered. New simulations, including more complete calculations of relativistic effects, do show that this model can produce light-curves and power-spectra for the variability which agree with the range observed in optical and X-ray studies of AGN and X-ray binaries. However, the universality of complete self-organized criticality has not quite been achieved. This is mainly because the character of the variations depend quite substantially on the extent of the unstable disk region. If it extends close to the innermost stable orbit, a physical scale is introduced and the scale-free character of self-organized criticality is vitiated. A significant dependence of the power spectrum density slope on the type of diffusion within the disk and a weaker dependence on the amount of differential rotation are noted. When general-relativistic effects are incorporated in the models, additional substantial differences are produced if the disk is viewed from directions far from the accretion disk axis.
NASA Astrophysics Data System (ADS)
Kudo, K.; Maeda, H.; Kawakubo, T.; Ootani, Y.; Funaki, M.; Fukui, H.
2006-06-01
The normalized elimination of the small component (NESC) theory, recently proposed by Filatov and Cremer [J. Chem. Phys. 122, 064104 (2005)], is extended to include magnetic interactions and applied to the calculation of the nuclear magnetic shielding in HX (X =F,Cl,Br,I) systems. The NESC calculations are performed at the levels of the zeroth-order regular approximation (ZORA) and the second-order regular approximation (SORA). The calculations show that the NESC-ZORA results are very close to the NESC-SORA results, except for the shielding of the I nucleus. Both the NESC-ZORA and NESC-SORA calculations yield very similar results to the previously reported values obtained using the relativistic infinite-order two-component coupled Hartree-Fock method. The difference between NESC-ZORA and NESC-SORA results is significant for the shieldings of iodine.
NASA Astrophysics Data System (ADS)
El, Andrej; Muronga, Azwinndini; Xu, Zhe; Greiner, Carsten
2010-12-01
Relativistic dissipative hydrodynamic equations are extended by taking into account particle number changing processes in a gluon system, which expands in one dimension boost-invariantly. Chemical equilibration is treated by a rate equation for the particle number density based on Boltzmann equation and Grad's ansatz for the off-equilibrium particle phase space distribution. We find that not only the particle production, but also the temperature and the momentum spectra of the gluon system, obtained from the hydrodynamic calculations, are sensitive to the rates of particle number changing processes. Comparisons of the hydrodynamic calculations with the transport ones employing the parton cascade BAMPS show the inaccuracy of the rate equation at large shear viscosity to entropy density ratio. To improve the rate equation, Grad's ansatz has to be modified beyond the second moments in momentum.
Magnetically driven relativistic jets and winds: Exact solutions
NASA Technical Reports Server (NTRS)
Contopoulos, J.
1994-01-01
We present self-consistent solutions of the full set of ideal MHD equations which describe steady-state relativistic cold outflows from thin accretion disks. The magnetic field forms a spiral which is anchored in the disk, rotates with it, and accelerates the flow out of the disk plane. The collimation at large distances depends on the total amount of electric current that flows along the jet. We considered various distributions of electric current and derived the result that in straight jets which extend to infinite distances, a strong electric current flows along their axis of symmetry. The asymptotic flow velocities are of the order of the initial rotational velocity at the base of the flow (a few tenths of the speed of light). The solutions are applied to both galactic (small-scale) and extragalactic (large-scale) jets.
NASA Astrophysics Data System (ADS)
Itoh, Naoki; Kawana, Youhei; Nozawa, Satoshi; Kohyama, Yasuharu
2001-10-01
We extend the formalism for the calculation of the relativistic corrections to the Sunyaev-Zel'dovich effect for clusters of galaxies and include the multiple scattering effects in the isotropic approximation. We present the results of the calculations by the Fokker-Planck expansion method as well as by the direct numerical integration of the collision term of the Boltzmann equation. The multiple scattering contribution is found to be very small compared with the single scattering contribution. For high-temperature galaxy clusters of kBTe~15keV, the ratio of both the contributions is -0.2 per cent in the Wien region. In the Rayleigh-Jeans region the ratio is -0.03 per cent. Therefore the multiple scattering contribution is safely neglected for the observed galaxy clusters.
A Mathematical Model for Plasticity and Cosmology
NASA Astrophysics Data System (ADS)
Muñoz-Andrade, Juan Daniel
2007-05-01
In the scenery of a crystalline universe, embedded and related in a spatially extended polycrystalline system, with a relativistic framework, the constancy of the speed of light is the cosmic connection between the Planck length and the Hubble length, As a matter of fact, in the general relativity theory the gravitational interaction is propagated at the speed of light and when the gravitational field changed, the gravitational waves are produced in a similar form of an elastic field with dislocations in a crystal during plastic flow. Moreover, the nature role of a field in relativistic physics shows that it is an independent physical entity that should be considered on the same grounds as matter particles and it possesses energy and momentum. Consequently, in this work a mathematical model for plasticity and cosmology is proposed and some properties of the universe are obtained.
Superpersistent Currents in Dirac Fermion Systems
2017-03-06
development of quantum mechanics,, but also to quantum information processing and computing . Exploiting various physical systems to realize two-level...Here, using the QSD method, we calculated the dynamical trajectories of the system in the quantum regime. Our computations extending to the long time...currents in 2D Dirac material systems and pertinent phenomena in the emerging field of relativistic quantum nonlinear dynamics and chaos. Systematic
Signatures of Relativistic Helical Motion in the Rotation Measures of Active Galactic Nucleus Jets
NASA Astrophysics Data System (ADS)
Broderick, Avery E.; Loeb, Abraham
2009-10-01
Polarization has proven to be an invaluable tool for probing magnetic fields in relativistic jets. Maps of the intrinsic polarization vectors have provided the best evidence to date for uniform, toroidally dominated magnetic fields within jets. More recently, maps of the rotation measure (RM) in jets have for the first time probed the field geometry of the cool, moderately relativistic surrounding material. In most cases, clear signatures of the toroidal magnetic field are detected, corresponding to gradients in RM profiles transverse to the jet. However, in many objects, these profiles also display marked asymmetries that are difficult to explain in simple helical jet models. Furthermore, in some cases, the RM profiles are strongly frequency and/or time dependent. Here we show that these features may be naturally accounted for by including relativistic helical motion in the jet model. In particular, we are able to reproduce bent RM profiles observed in a variety of jets, frequency-dependent RM profile morphologies, and even the time dependence of the RM profiles of knots in 3C 273. Finally, we predict that some sources may show reversals in their RM profiles at sufficiently high frequencies, depending upon the ratio of the components of jet sheath velocity transverse and parallel to the jet. Thus, multi-frequency RM maps promise a novel way in which to probe the velocity structure of relativistic outflows.
A Search for Low-Luminosity BL Lacertae Objects
NASA Astrophysics Data System (ADS)
Rector, Travis A.; Stocke, John T.; Perlman, Eric S.
1999-05-01
Many properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis, whereby BL Lacs are FR 1 radio galaxies viewed nearly along the jet axis. However, a possible problem with this model is that a transition population between beamed BL Lacs and unbeamed FR 1 galaxies has not been detected. A transition population of ``low-luminosity BL Lacs'' was predicted to exist in abundance in X-ray-selected samples such as the Einstein Extended Medium Sensitivity Survey (EMSS) by Browne & Marcha. However, these BL Lacs may have been misidentified as clusters of galaxies. We have conducted a search for such objects in the EMSS with the ROSAT High-Resolution Imager (HRI) here we present ROSAT HRI images, optical spectra, and VLA radio maps for a small number of BL Lacs that were previously misidentified in the EMSS catalog as clusters of galaxies. While these objects are slightly lower in luminosity than other EMSS BL Lacs, their properties are too similar to the other BL Lacs in the EMSS sample to ``bridge the gap'' between BL Lacs and FR 1 radio galaxies. Also, the number of new BL Lacs found is too low to alter significantly the X-ray luminosity function or
PROPER MOTIONS OF THE OUTER KNOTS OF THE HH 80/81/80N RADIO-JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masqué, Josep M.; Rodriguez, Luis F.; Carrasco-González, Carlos
2015-11-20
The radio-knots of the Herbig–Haro (HH) 80/81/80N jet extend from the HH 80 object to the recently discovered Source 34 and has a total projected jet size of 10.3 pc, constituting the largest collimated radio-jet system known so far. It is powered by the bright infrared source IRAS 18162−2048 associated with a massive young stellar object. We report 6 cm JVLA observations that, compared with previous 6 cm VLA observations carried out in 1989, allow us to derive proper motions of the HH 80, HH 81, and HH 80N radio knots located about 2.5 pc away in projection from themore » powering source. For the first time, we measure proper motions of the optically obscured HH 80N object providing evidence that this knot, along with HH 81 and HH 80 are associated with the same radio-jet. We also confirm the presence of Source 34, located further north of HH 80N, previously proposed to belong to the jet.We derived that the tangential velocity of HH 80N is 260 km s{sup −1} and has a direction in agreement with the expected direction of a ballistic precessing jet. The HH 80 and HH 81 objects have tangential velocities of 350 and 220 km s{sup −1}, respectively, but their directions are somewhat deviated from the expected jet path. The velocities of the HH objects studied in this work are significantly lower than those derived for the radio knots of the jet close to the powering source (600–1400 km s{sup −1}) suggesting that the jet is slowing down due to a strong interaction with the ambient medium. As a result, since HH 80 and HH 81 are located near the edge of the cloud, the inhomogeneous and low density medium may contribute to skew the direction of their determined proper motions. The HH 80 and HH 80N emission at 6 cm is, at least in part, probably synchrotron radiation produced by relativistic electrons in a magnetic field of 1 mG. If these electrons are accelerated in a reverse adiabatic shock, we estimate a jet total density of ≲1000 cm{sup −3}. All of these features are consistent with a jet emanating from a high-mass protostar and make evident its capability of accelerating particles up to relativistic velocities.« less
Solar-System Tests of Gravitational Theories
NASA Technical Reports Server (NTRS)
Shapiro, Irwin I.
2005-01-01
We are engaged in testing gravitational theory, mainly using observations of objects in the solar system and mainly on the interplanetary scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to support this model by placing tighter bounds on any departure from it. For this project, we have analyzed a combination of observational data with our model of the solar system, including planetary radar ranging, lunar laser ranging, and spacecraft tracking, as well as pulsar timing and pulsar VLBI measurements. In the past year, we have added to our data, primarily lunar laser ranging measurements, but also supplementary data concerning the physical properties of solar-system objects, such as the solar quadrupole moment, planetary masses, and asteroid radii. Because the solar quadrupole moment contributes to the classical precession of planetary perihelia, but with a dependence on distance from the Sun that differs from that of the relativistic precession, it is possible to estimate effects simultaneously. However, our interest is mainly in the relativistic effect, and we find that imposing a constraint on the quadrupole moment from helioseismology studies, gives us a dramatic (about ten-fold) decrease in the standard error of our estimate of the relativistic component of the perihelion advance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subir_ghosh2@rediffmail.com; Pal, Probir, E-mail: probirkumarpal@rediffmail.com
In the present paper, dynamics of generalized charged particles are studied in the presence of external electromagnetic interactions. This particular extension of the free relativistic particle model lives in Non-Commutative κ-Minkowski space–time, compatible with Doubly Special Relativity, that is motivated to describe Quantum Gravity effects. Furthermore we have also considered the electromagnetic field to be dynamical and have derived the modified forms of Lienard–Wiechert like potentials for these extended charged particle models. In all the above cases we exploit the new and extended form of κ-Minkowski algebra where electromagnetic effects are incorporated in the lowest order, in the Dirac frameworkmore » of Hamiltonian constraint analysis.« less
NASA Astrophysics Data System (ADS)
Doneva, Daniela D.; Yazadjiev, Stoytcho S.
2018-04-01
In the present paper we study models of neutron stars in a class of extended scalar-tensor Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is exited only in the strong curvature regime. We show that in the framework of the ESTGB theories under consideration there exist new neutron star solutions which are formed via spontaneous scalarization of the general relativistic neutron stars. In contrast to the spontaneous scalarization in the standard scalar-tensor theories which is induced by the presence of matter, in our case the scalarization is induced by the spacetime curvature.
Van Yperen-De Deyne, A; Pauwels, E; Van Speybroeck, V; Waroquier, M
2012-08-14
In this paper an overview is presented of several approximations within Density Functional Theory (DFT) to calculate g-tensors in transition metal containing systems and a new accurate description of the spin-other-orbit contribution for high spin systems is suggested. Various implementations in a broad variety of software packages (ORCA, ADF, Gaussian, CP2K, GIPAW and BAND) are critically assessed on various aspects including (i) non-relativistic versus relativistic Hamiltonians, (ii) spin-orbit coupling contributions and (iii) the gauge. Particular attention is given to the level of accuracy that can be achieved for codes that allow g-tensor calculations under periodic boundary conditions, as these are ideally suited to efficiently describe extended condensed-phase systems containing transition metals. In periodic codes like CP2K and GIPAW, the g-tensor calculation schemes currently suffer from an incorrect treatment of the exchange spin-orbit interaction and a deficient description of the spin-other-orbit term. In this paper a protocol is proposed, making the predictions of the exchange part to the g-tensor shift more plausible. Focus is also put on the influence of the spin-other-orbit interaction which becomes of higher importance for high-spin systems. In a revisited derivation of the various terms arising from the two-electron spin-orbit and spin-other-orbit interaction (SOO), new insight has been obtained revealing amongst other issues new terms for the SOO contribution. The periodic CP2K code has been adapted in view of this new development. One of the objectives of this study is indeed a serious enhancement of the performance of periodic codes in predicting g-tensors in transition metal containing systems at the same level of accuracy as the most advanced but time consuming spin-orbit mean-field approach. The methods are first applied on rhodium carbide but afterwards extended to a broad test set of molecules containing transition metals from the fourth, fifth and sixth row of the periodic table. The set contains doublets as well as high-spin molecules.
Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star Binaries LTSA98
NASA Technical Reports Server (NTRS)
Cui, Wei
2000-01-01
My group, in close collaboration with Dr. Zhang's group at University of Alabama-Huntsville, have been systematically analyzing and re-analyzing a substantial amount of archival data from previous and ongoing X-ray missions, in order to study possible relativistic effects around stellar-mass black holes and neutron stars. Our effort has been focused primarily on the data from the Rossi X-ray Timing Explorer. We carefully studied interesting quasi-periodic X-ray variability in newly discovered black hole candidates (XTE J1859+226 and XTE J1550-564), which, as we had proposed earlier, could be caused by general relativistic process (e.g., frame dragging) around the central black hole. We also discovered an intriguing temporal correlation between X-ray photons at different energies that is associated with the quasi-periodic signals of interest. The results provided new insights into the physical origin of the phenomena. Furthermore, we studied the spectral lines of black hole candidates which provide another avenue for studying general relativistic processes around black holes. The lines-may originate in the relativistic jets (which could be powered by the spin of the black hole) or in the disk around the black hole, as in the cases of 4U 1630-47 and GX 339-4 (two well-known black hole candidates), and may thus be distorted or shifted due to relativistic effects. Of course, neutron star systems were not forgotten either. After examining the properties of newly discovered fast quasi-periodic variability (at kiloHertz) associated with such systems, we proposed a relativistic model to explain the origin of the signals. We have also started to use new great observatories in orbit (such as Chandra and XMM-Newton) to observe the sources that are of interest to us. Finally, interesting results were also been obtained from our collaborations with other groups who are interested in some of the same objects. Such collaborative efforts have greatly enhanced the project and will likely continue in the future.
Curious properties of the recycled pulsars and the potential of high precision timing
NASA Astrophysics Data System (ADS)
Bailes, Matthew
2010-03-01
Binary and Millisecond pulsars have a great deal to teach us about stellar evolution and are invaluable tools for tests of relativistic theories of gravity. Our understanding of these objects has been transformed by large-scale surveys that have uncovered a great deal of new objects, exquisitely timed by ever-improving instrumentation. Here we argue that there exists a fundamental relation between the spin period of a pulsar and its companion mass, and that this determines many of the observable properties of a binary pulsar. No recycled pulsars exist in which the minimum companion mass exceeds (P/10 ms) M ⊙. Furthermore, the three fastest disk millisecond pulsars are either single, or possess extremely low-mass companions ( Mc ˜ 0.02 M ⊙), consistent with this relation. Finally, the four relativistic binaries for which we have actual measurements of neutron star masses, suggest that not only are their spin periods related to the companion neutron star mass, but that the kick imparted to the system depends upon it too, leading to a correlation between orbital eccentricity and spin period. The isolation of the relativistic binary pulsars in the magnetic field-Period diagram is used to argue that this must be because the kicks imparted to proto-relativistic systems are usually small, leading to very few if any isolated runaway mildly-recycled pulsars. This calls into question the magnitude of supernova kicks in close binaries, which have been usually assumed to be similar to those imparted to the bulk of the pulsar population. Finally, we review some of the highlights of the Parkes precision timing efforts, which suggest 10 ns timing is obtainable on PSR J1909-3744 that will aid us in searching for a cosmological sources of gravitational waves.
Special relativity in the school laboratory: a simple apparatus for cosmic-ray muon detection
NASA Astrophysics Data System (ADS)
Singh, P.; Hedgeland, H.
2015-05-01
We use apparatus based on two Geiger-Müller tubes, a simple electronic circuit and a Raspberry Pi computer to illustrate relativistic time dilation affecting cosmic-ray muons travelling through the atmosphere to the Earth’s surface. The experiment we describe lends itself to both classroom demonstration to accompany the topic of special relativity and to extended investigations for more inquisitive students.
NASA Technical Reports Server (NTRS)
Ray, J. R.
1982-01-01
The fundamental variational principle for a perfect fluid in general relativity is extended so that it applies to the metric-torsion Einstein-Cartan theory. Field equations for a perfect fluid in the Einstein-Cartan theory are deduced. In addition, the equations of motion for a fluid with intrinsic spin in general relativity are deduced from a special relativistic variational principle. The theory is a direct extension of the theory of nonspinning fluids in special relativity.
Millimeter wave generation by relativistic electron beams
NASA Astrophysics Data System (ADS)
Kuo, S. S.; Cheo, B. R.; Tiong, K. K.; Whang, M. H.
1985-11-01
The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effects of resonance broadening and perturbation expansion are treated simultaneously without time securities. The renormalization procedure is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to imhomogeneous plasma and the relationship between the transformation and ponderomotive force is obtained.
NASA Technical Reports Server (NTRS)
Bai, T.
1977-01-01
Observations of solar X-rays and gamma-rays from large flares show that the hard X-ray spectrum extends into the gamma ray region, where a flattening in the spectrum of the continuum emission is observed above about 1 MeV. This emission is believed to be due to bremsstrahlung. In addition to electron-proton collisions, at energies greater than approximately 500 keV, bremsstrahlung due to electron-electron collisions becomes significant. Bremsstrahlung production was calculated for a variety of electron spectra extending from the nonrelativistic region to relativistic energies and electron-electron bremsstrahlung is taken into account. By comparing these calculations with data, it is shown that the flattening in the spectrum of the continuum emission can be best explained by an electron spectrum consisting of two distinctive components. This evidence, together with information on the X-ray and gamma ray time profiles, implied the existence of two phases of acceleration. The first phase accelerates electrons mainly up to about several hundred keV; the second phase accelerates a small fraction of the electrons accelerated in the first phase to relativistic energies and accelerates protons to tens and hundreds of MeV.
Revisiting the emission from relativistic blast waves in a density-jump medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, J. J.; Huang, Y. F.; Dai, Z. G.
2014-09-01
Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an earlymore » time (<10{sup 4} s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.« less
Relativistic magnetised perturbations: magnetic pressure versus magnetic tension
NASA Astrophysics Data System (ADS)
Tseneklidou, Dimitra; Tsagas, Christos G.; Barrow, John D.
2018-06-01
We study the linear evolution of magnetised cosmological perturbations in the post-recombination epoch. Using full general relativity and adopting the ideal magnetohydrodynamic approximation, we refine and extend the previous treatments. More specifically, this is the first relativistic study that accounts for the effects of the magnetic tension, in addition to those of the field’s pressure. Our solutions show that on sufficiently large scales, larger than the (purely magnetic) Jeans length, the perturbations evolve essentially unaffected by the magnetic presence. The magnetic pressure dominates on small scales, where it forces the perturbations to oscillate and decay. Close to the Jeans length, however, the field’s tension takes over and leads to a weak growth of the inhomogeneities. These solutions clearly demonstrate the opposing action of the aforementioned two magnetic agents, namely of the field’s pressure and tension, on the linear evolution of cosmological density perturbations.
Terrestrial Gamma-Ray Flashes (TGFs) Above Thunderstorms
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2012-01-01
Intense of gamma rays have been observed by five different space-borne detectors. The TGFs have hard spectra, with photons extending to over 50 MeV. Most of these flashes last less than a millisecond. Relativistic electrons and positrons associated with TGFs are also seen by orbiting instruments In a special mode of operation, the Fermi-GBM detectors are now detecting an average of about one TGF every two hours. The Fermi spacecraft has been performing special orientations this year which has allowed the Fermi-LAT instrument also detect TGFs. The most likely origin of these high energy photons is bremsstrahlung radiation from electrons, produced by relativistic runaway electrons in intense electric fields within or above thunderstorm regions; the altitude of origin is uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. The observational aspects of TGFs will be the main focus of this talk; theoretical aspects remain speculative.
Determining fundamental properties of matter created in ultrarelativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Novak, J.; Novak, K.; Pratt, S.; Vredevoogd, J.; Coleman-Smith, C. E.; Wolpert, R. L.
2014-03-01
Posterior distributions for physical parameters describing relativistic heavy-ion collisions, such as the viscosity of the quark-gluon plasma, are extracted through a comparison of hydrodynamic-based transport models to experimental results from 100AGeV+100AGeV Au +Au collisions at the Relativistic Heavy Ion Collider. By simultaneously varying six parameters and by evaluating several classes of observables, we are able to explore the complex intertwined dependencies of observables on model parameters. The methods provide a full multidimensional posterior distribution for the model output, including a range of acceptable values for each parameter, and reveal correlations between them. The breadth of observables and the number of parameters considered here go beyond previous studies in this field. The statistical tools, which are based upon Gaussian process emulators, are tested in detail and should be extendable to larger data sets and a higher number of parameters.
A relativistic coupled-cluster interaction potential and rovibrational constants for the xenon dimer
NASA Astrophysics Data System (ADS)
Jerabek, Paul; Smits, Odile; Pahl, Elke; Schwerdtfeger, Peter
2018-01-01
An accurate potential energy curve has been derived for the xenon dimer using state-of-the-art relativistic coupled-cluster theory up to quadruple excitations accounting for both basis set superposition and incompleteness errors. The data obtained is fitted to a computationally efficient extended Lennard-Jones potential form and to a modified Tang-Toennies potential function treating the short- and long-range part separately. The vibrational spectrum of Xe2 obtained from a numerical solution of the rovibrational Schrödinger equation and subsequently derived spectroscopic constants are in excellent agreement with experimental values. We further present solid-state calculations for xenon using a static many-body expansion up to fourth-order in the xenon interaction potential including dynamic effects within the Einstein approximation. Again we find very good agreement with the experimental (face-centred cubic) lattice constant and cohesive energy.
Relativistic theory of surficial Love numbers
NASA Astrophysics Data System (ADS)
Landry, Philippe; Poisson, Eric
2014-06-01
A relativistic theory of surficial Love numbers, which characterize the surface deformation of a body subjected to tidal forces, was initiated by Damour and Nagar. We revisit this effort in order to extend it, clarify some of its aspects, and simplify its computational implementation. First, we refine the definition of surficial Love numbers proposed by Damour and Nagar and formulate it directly in terms of the deformed curvature of the body's surface, a meaningful geometrical quantity. Second, we develop a unified theory of surficial Love numbers that applies equally well to material bodies and black holes. Third, we derive a compactness-dependent relation between the surficial and (electric-type) gravitational Love numbers of a perfect-fluid body and show that it reduces to the familiar Newtonian relation when the compactness is small. And fourth, we simplify the tasks associated with the practical computation of the surficial and gravitational Love numbers for a material body.
Exact general relativistic disks with magnetic fields
NASA Astrophysics Data System (ADS)
Letelier, Patricio S.
1999-11-01
The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault, and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bic̆ák, Lynden-Bell, and Katz [Phys. Rev. D 47, 4334 (1993)] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.
Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)
NASA Astrophysics Data System (ADS)
Eger, Peter
2015-08-01
The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.
Electron and ion acceleration in relativistic shocks with applications to GRB afterglows
NASA Astrophysics Data System (ADS)
Warren, Donald C.; Ellison, Donald C.; Bykov, Andrei M.; Lee, Shiu-Hang
2015-09-01
We have modelled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parametrizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at non-relativistic thermal energies to above PeV energies, including the non-linear smoothing of the shock structure due to cosmic ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parametrize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of γ-ray burst (GRB) afterglows. We describe some preliminary results for photon emission from shocks of different Lorentz factors and outline how the Monte Carlo simulation can be generalized and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm diffusion for simplicity but emphasize that the non-linear effects we describe stem mainly from an extended shock precursor where higher energy particles diffuse further upstream. Quantitative differences will occur with different diffusion models, particularly for the maximum CR energy and photon emission, but these non-linear effects should be qualitatively similar as long as the scattering mean-free path is an increasing function of momentum.
The Doppler Effect: A Consideration of Quasar Redshifts.
ERIC Educational Resources Information Center
Gordon, Kurtiss J.
1980-01-01
Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)
Jet or Shock Breakout? The Low-Luminosity GRB 060218
NASA Astrophysics Data System (ADS)
Irwin, Christopher; Chevalier, Roger
2016-01-01
We consider a model for the long-duration, low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The components of our model are: (1) a long-lived (tj ~ 3000 s) central engine and accompanying low-luminosity (Lj ~ 1045 erg s-1), mildly relativistic jet; (2) a low-mass (~ 10-2 Msun) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ~ 0.1) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the prompt nonthermal X-rays and γ-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ~ 1013 cm can explain the early optical peak. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ~ 30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that ultra-long bursts such as GRB 060218 and GRB 100316D may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt high-energy emission from the supernova.
Jet or shock breakout? The low-luminosity GRB 060218
NASA Astrophysics Data System (ADS)
Irwin, Christopher M.; Chevalier, Roger A.
2016-08-01
We consider a model for the low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The model components are: (1) a long-lived (tj ˜ 3000 s) central engine and accompanying low-luminosity (Lj ˜ 1047 erg s-1), mildly relativistic (γ ˜ 10) jet; (2) a low-mass (˜4 × 10-3 M⊙) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ˜ 0.1 mag) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the non-thermal X-rays and gamma-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ˜1013 cm can explain the early optical emission. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ˜30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that bursts such as GRB 060218 may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt emission from the supernova.
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
NASA Astrophysics Data System (ADS)
Bonolis, Luisa
2017-06-01
Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.
Shinotsuka, H.; Da, B.; Tanuma, S.; Yoshikawa, H.; Powell, C. J.; Penn, D. R.
2017-01-01
We calculated electron inelastic mean free paths (IMFPs) for liquid water from its optical energy-loss function (ELF) for electron energies from 50 eV to 30 keV. These calculations were made with the relativistic full Penn algorithm (FPA) that has been used for previous IMFP and electron stopping-power calculations for many elemental solids. We also calculated IMFPs of water with three additional algorithms: the relativistic single-pole approximation (SPA), the relativistic simplified SPA, and the relativistic extended Mermin method. These calculations were made using the same optical ELF in order to assess any differences of the IMFPs arising from choice of the algorithm. We found good agreement among the IMFPs from the four algorithms for energies over 300 eV. For energies less than 100 eV, however, large differences became apparent. IMFPs from the relativistic TPP-2M equation for predicting IMFPs were in good agreement with IMFPs from the four algorithms for energies between 300 eV and 30 keV but there was poorer agreement for lower energies. We calculated values of the static structure factor as a function of momentum transfer from the FPA. The resulting values were in good agreement with results from first-principles calculations and with inelastic X-ray scattering spectroscopy experiments. We made comparisons of our IMFPs with earlier calculations from authors who had used different algorithms and different ELF data sets. IMFP differences could then be analyzed in terms of the algorithms and the data sets. Finally, we compared our IMFPs with measurements of IMFPs and of a related quantity, the effective attenuation length (EAL). There were large variations in the measured IMFPs and EALs (as well as their dependence on electron energy). Further measurements are therefore required to establish consistent data sets and for more detailed comparisons with calculated IMFPs. PMID:28751796
Shinotsuka, H; Da, B; Tanuma, S; Yoshikawa, H; Powell, C J; Penn, D R
2017-04-01
We calculated electron inelastic mean free paths (IMFPs) for liquid water from its optical energy-loss function (ELF) for electron energies from 50 eV to 30 keV. These calculations were made with the relativistic full Penn algorithm (FPA) that has been used for previous IMFP and electron stopping-power calculations for many elemental solids. We also calculated IMFPs of water with three additional algorithms: the relativistic single-pole approximation (SPA), the relativistic simplified SPA, and the relativistic extended Mermin method. These calculations were made using the same optical ELF in order to assess any differences of the IMFPs arising from choice of the algorithm. We found good agreement among the IMFPs from the four algorithms for energies over 300 eV. For energies less than 100 eV, however, large differences became apparent. IMFPs from the relativistic TPP-2M equation for predicting IMFPs were in good agreement with IMFPs from the four algorithms for energies between 300 eV and 30 keV but there was poorer agreement for lower energies. We calculated values of the static structure factor as a function of momentum transfer from the FPA. The resulting values were in good agreement with results from first-principles calculations and with inelastic X-ray scattering spectroscopy experiments. We made comparisons of our IMFPs with earlier calculations from authors who had used different algorithms and different ELF data sets. IMFP differences could then be analyzed in terms of the algorithms and the data sets. Finally, we compared our IMFPs with measurements of IMFPs and of a related quantity, the effective attenuation length (EAL). There were large variations in the measured IMFPs and EALs (as well as their dependence on electron energy). Further measurements are therefore required to establish consistent data sets and for more detailed comparisons with calculated IMFPs.
Soft X-Ray Emission Lines from a Relativistic Accretion Disk in MCG -6-30-15 and Mrk 766
NASA Technical Reports Server (NTRS)
Branduardi-Raymont, G.; Sako, M.; Kahn, S. M.; Brinkman, A. C.; Kaastra, J. S.; Page, M. J.
2000-01-01
XMM-Newton Reflection Grating Spectrometer (RGS) spectra of the Narrow Line Seyfert 1 galaxies MCG -6-30-15 and Mrk 766 are physically and spectroscopically inconsistent with standard models comprising a power-law continuum absorbed by either cold or ionized matter. We propose that the remarkably similar features detected in both objects in the 5 - 35 A band are H-like oxygen, nitrogen, and carbon emission lines, gravitation- ally redshifted and broadened by relativistic effects in the vicinity of a Kerr black hole. We discuss the implications of our interpretation, and demonstrate that the derived parameters can be physically self-consistent.
The relativistic invariance of 4D-shapes
NASA Astrophysics Data System (ADS)
Calosi, Claudio
2015-05-01
A recent debate in the metaphysics of physics focuses on the invariance and intrinsicality of four-dimensional shapes in the Special Theory of Relativity. Davidson (2014) argues that four-dimensional shapes cannot be intrinsic properties of persisting objects because they have to be relativized to reference frames. Balashov (2014a) criticizes such an argument in that it mistakes four-dimensional shapes with their three-dimensional projections on the axes of those frames. This paper adds to that debate. Rather than criticizing an argument against the relativistic invariance of four-dimensional shapes, as Balashov did, it offers a direct argument in favor of such an invariance.
Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks
NASA Astrophysics Data System (ADS)
Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke
2018-05-01
We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orban, Chris, E-mail: orban@physics.osu.edu; Feister, Scott; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459
Laser-accelerated electron beams have been created at a kHz repetition rate from the reflection of intense (∼10{sup 18 }W/cm{sup 2}), ∼40 fs laser pulses focused on a continuous water-jet in an experiment at the Air Force Research Laboratory. This paper investigates Particle-in-Cell simulations of the laser-target interaction to identify the physical mechanisms of electron acceleration in this experiment. We find that the standing-wave pattern created by the overlap of the incident and reflected laser is particularly important because this standing wave can “inject” electrons into the reflected laser pulse where the electrons are further accelerated. We identify two regimes of standingmore » wave acceleration: a highly relativistic case (a{sub 0} ≥ 1), and a moderately relativistic case (a{sub 0} ∼ 0.5) which operates over a larger fraction of the laser period. In previous studies, other groups have investigated the highly relativistic case for its usefulness in launching electrons in the forward direction. We extend this by investigating electron acceleration in the specular (back reflection) direction and over a wide range of intensities (10{sup 17}–10{sup 19 }W cm{sup −2})« less
General relativistic satellite astrometry. II. Modeling parallax and proper motion
NASA Astrophysics Data System (ADS)
de Felice, F.; Bucciarelli, B.; Lattanzi, M. G.; Vecchiato, A.
2001-07-01
The non-perturbative general relativistic approach to global astrometry introduced by de Felice et al. (\\cite{defetal}) is here extended to account for the star motions on the Schwarzschild celestial sphere. A new expression of the observables, i.e. angular distances among stars, is provided, which takes into account the effects of parallax and proper motions. This dynamical model is then tested on an end-to-end simulation of the global astrometry mission GAIA. The results confirm the findings of our earlier work, which applied to the case of a static (angular coordinates only) sphere. In particular, measurements of large arcs among stars (each measurement good to ~ 100 mu arcsec, as expected for V ~ 17 mag stars) repeated over an observing period comparable to the mission lifetime foreseen for GAIA, can be modeled to yield estimates of positions, parallaxes, and annual proper motions good to ~ 15 mu arcsec. This second round of experiments confirms, within the limitations of the simulation and the assumptions of the current relativistic model, that the space-born global astrometry initiated with Hipparcos can be pushed down to the 10-5 arcsec accuracy level proposed with the GAIA mission. Finally, the simplified case we have solved can be used as reference for testing the limiting behavior of more realistic models as they become available.
Carter separable electromagnetic fields
NASA Astrophysics Data System (ADS)
Lynden-Bell, D.
2000-02-01
The purely electromagnetic analogue in flat space of Kerr's metric in general relativity is only rarely considered. Here we carry out in flat space a programme similar to Carter's investigation of metrics in general relativity in which the motion of a charged particle is separable. We concentrate on the separability of the motion (be it classical, relativistic or quantum) of a charged particle in electromagnetic fields that lie in planes through an axis of symmetry. In cylindrical polar coordinates (t,R,φ,z) the four-vector potential takes the form [formmu2] is the unit toroidal vector. The forms of the functions Φ(R,z) and A(R,z) are sought that allow separable motion. This occurs for relativistic motion only when AR,Φ and A2-Φ2 are all of the separable form ζ(λ)-η(μ)]/(λ-μ), where ζ and η are arbitrary functions, and λ and μ are spheroidal coordinates or degenerations thereof. The special forms of A and Φ that allow this are deduced. They include the Kerr metric analogue, with E+iB=-∇{q[(r-ia).(r-ia)]-1/2}. Rather more general electromagnetic fields allow separation when the motion is non-relativistic. The investigation is extended to fields that lie in parallel planes. Connections to Larmor's theorem are remarked upon.
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan
2017-06-01
We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure pc to the central energy density ρc, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N in (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number l > 50, while for smaller values of l the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N >= 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10-3 of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.
A global solution to the Schrödinger equation: From Henstock to Feynman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathanson, Ekaterina S., E-mail: enathanson@ggc.edu; Jørgensen, Palle E. T., E-mail: palle-jorgensen@uiowa.edu
2015-09-15
One of the key elements of Feynman’s formulation of non-relativistic quantum mechanics is a so-called Feynman path integral. It plays an important role in the theory, but it appears as a postulate based on intuition, rather than a well-defined object. All previous attempts to supply Feynman’s theory with rigorous mathematics underpinning, based on the physical requirements, have not been satisfactory. The difficulty comes from the need to define a measure on the infinite dimensional space of paths and to create an integral that would possess all of the properties requested by Feynman. In the present paper, we consider a newmore » approach to defining the Feynman path integral, based on the theory developed by Muldowney [A Modern Theory of Random Variable: With Applications in Stochastic Calcolus, Financial Mathematics, and Feynman Integration (John Wiley & Sons, Inc., New Jersey, 2012)]. Muldowney uses the Henstock integration technique and deals with non-absolute integrability of the Fresnel integrals, in order to obtain a representation of the Feynman path integral as a functional. This approach offers a mathematically rigorous definition supporting Feynman’s intuitive derivations. But in his work, Muldowney gives only local in space-time solutions. A physical solution to the non-relativistic Schrödinger equation must be global, and it must be given in the form of a unitary one-parameter group in L{sup 2}(ℝ{sup n}). The purpose of this paper is to show that a system of one-dimensional local Muldowney’s solutions may be extended to yield a global solution. Moreover, the global extension can be represented by a unitary one-parameter group acting in L{sup 2}(ℝ{sup n})« less
NASA Astrophysics Data System (ADS)
Heller, René
2017-09-01
As new concepts of sending interstellar spacecraft to the nearest stars are now being investigated by various research teams, crucial questions about the timing of such a vast financial and labour investment arise. If humanity could build high-speed interstellar lightsails and reach α Centauri 20 yr after launch, would it be better to wait a few years, then take advantage of further technology improvements and arrive earlier despite waiting? The risk of being overtaken by a future, faster probe has been described earlier as the incentive trap. Based on 211 yr of historical data, we find that the speed growth of artificial vehicles, from steam-driven locomotives to Voyager 1, is much faster than previously believed, about 4.72 per cent annually or a doubling every 15 yr. We derive the mathematical framework to calculate the minimum of the wait time to launch t plus travel time τ(t) and extend it into the relativistic regime. We show that the t + τ(t) minimum disappears for nearby targets. There is no use of waiting once we can reach an object within about 20 yr of travel, irrespective of the actual speed. In terms of speed, the t + τ(t) minimum for a travel to α Centauri occurs at 19.6 per cent the speed of light (c), in agreement with the 20 per cent c proposed by the Breakthrough Starshot initiative. If interstellar travel at 20 per cent c could be achieved within 45 yr from today and the kinetic energy be increased at a rate consistent with the historical record, then humans can reach the 10 most nearby stars within 100 yr from today.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir
We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure p {sub c} to the central energy density ρ{sub c}, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linearmore » perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N element of (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number ℓ > 50, while for smaller values of ℓ the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N ≥ 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10{sup −3} of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, Davi C.; Piattella, Oliver F.; Chauvineau, Bertrand, E-mail: davi.rodrigues@cosmo-ufes.org, E-mail: Bertrand.Chauvineau@oca.eu, E-mail: oliver.piattella@pq.cnpq.br
We show that Renormalization Group extensions of the Einstein-Hilbert action for large scale physics are not, in general, a particular case of standard Scalar-Tensor (ST) gravity. We present a new class of ST actions, in which the potential is not necessarily fixed at the action level, and show that this extended ST theory formally contains the Renormalization Group case. We also propose here a Renormalization Group scale setting identification that is explicitly covariant and valid for arbitrary relativistic fluids.
NASA Technical Reports Server (NTRS)
Smalley, L. L.
1975-01-01
The coordinate independence of gravitational radiation and the parameterized post-Newtonian approximation from which it is extended are described. The general consistency of the field equations with Bianchi identities, gauge conditions, and the Newtonian limit of the perfect fluid equations of hydrodynamics are studied. A technique of modification is indicated for application to vector-metric or double metric theories, as well as to scalar-tensor theories.
3D glasma initial state for relativistic heavy ion collisions
Schenke, Björn; Schlichting, Sören
2016-10-13
We extend the impact-parameter-dependent Glasma model to three dimensions using explicit small-x evolution of the two incoming nuclear gluon distributions. We compute rapidity distributions of produced gluons and the early-time energy momentum tensor as a function of space-time rapidity and transverse coordinates. Finally, we study rapidity correlations and fluctuations of the initial geometry and multiplicity distributions and make comparisons to existing models for the three-dimensional initial state.
Electromagnetic interaction in the theory of straight strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, I.N.; Pron`ko, G.P.
1995-06-01
A scheme is proposed for including electromagnetic interaction into the theories of stretched relativistic objects. In the theory of the straight string, the operator of electromagnetic interaction is constructed, and form factors of electromagnetic transitions are calculated. 6 refs., 1 fig.
Analysis of Microvariable Activity of BL Lacertae
NASA Astrophysics Data System (ADS)
Sadun, Alberto C.; Asadi-Zeydabadi, Masoud; Hindman, Lauren; Moody, J. Ward
2018-06-01
BL Lac is a low-frequency peaked blazar (LBL) which emits synchrotron radiation at near-IR and optical wavelengths. Therefore optical observations are helpful in, among other things, studying the acceleration and cooling timescales of the electrons in the relativistic jets. We have made very high cadence observations of BL Lac over a number of nights with the Remote Observatory for Variable Object Research (ROVOR). Each night shows secular drift as well as a number of microvariable events lasting only a few minutes each. These data were then processed, compiled, and analyzed in order to examine the underlying mechanism that resulted in such activity. A geometric model is introduced that has worked well in the past on other similar sources.Our relativistic jet model consists of a slowly varying beamed source that already appears bright because it lies nearly to our line of sight. From this, individual relativistic components are ejected a few degrees relative to the aforementioned beaming angle. This is what we believe is responsible for the microvariability emission.
A signed particle formulation of non-relativistic quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg
2015-09-15
A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussedmore » and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.« less
Relativistic jets: An astrophysical laboratory for the Doppler effect
NASA Astrophysics Data System (ADS)
Zakamska, Nadia L.
2018-05-01
Special Relativity is one of the most abstract courses in the standard curriculum for physics majors, and therefore practical applications or laboratory exercises are particularly valuable for providing real-world experiences with this subject. This course poses a challenge for lab development because relativistic effects manifest themselves only at speeds close to the speed of light. The laboratory described in this paper constitutes a low-cost, low-barrier exercise suitable for students whose only background is the standard mechanics-plus-electromagnetism sequence. The activity uses research-quality astronomical data on SS433—a fascinating Galactic X-ray binary consisting of a compact object (a neutron star or a black hole) and a normal star. A pair of moderately relativistic jets moving with v ˜ 0.3 c in opposite directions emanate from the vicinity of the compact object and are clearly detected in optical and radio observations. Following step-by-step instructions, students develop a full kinematic model of a complex real-world source, use the model to fit the observational data, obtain best-fit parameters, and understand the limitations of the model. The observations are in exquisite agreement with the Doppler effect equations of Special Relativity. The complete lab manual, the dataset and the solutions are available in online supplemental materials; this paper presents the scientific and pedagogical background for the exercise.
Modeling quasar central engine as a relativistic radiating star
NASA Astrophysics Data System (ADS)
Singh, Ksh. Newton; Pant, Neeraj
2015-01-01
Long ago Hoyle & Fowler attempted to model the central engine of quasars as hot super-massive stars supported by radiation pressure. Whereas the model of Hoyle & Fowler was Newtonian, here we make a toy model of quasar central engines as ultra relativistic ultrahot plasma or as a ball of radiation. Accordingly, we consider general relativistic gravitational collapse including emission of radiation. More specifically, we discuss a new class of radiating fluid ball exact solution in conformally-flat metric which is quasi-static and contracting at negligible rate. The problem is solved by assuming that the metric potential is separable in to radial and time dependent parts. It is found the gravitational mass of the radiating ball M→0 as comoving time t→∞ in conformity of the idea of an "Eternally Collapsing Object" (ECO) which has been claimed to be the true nature of the so-called "Black Holes". In particular, we consider here a quasi-static radiation ball having M≈9.507×107 M ⊙, a radius of ≈2×1014 km, and a luminosity L ∞≈9.1×1046 erg/s. Prima-facie, such an ECO solution is compatible with the central compact object of a quasar having comoving lifetime of ≈107 yr and a distantly observed lifetime ( u) which could be higher by many orders of magnitude.
The central engine of quasars and AGNs: A relativistic proton radiative shock
NASA Astrophysics Data System (ADS)
Kazanas, D.; Ellison, D. C.
1985-08-01
Active galactic nuclei (AGNs) and quasars (QSOs) appear to emit roughly equal energy per decade from radio to gamma-ray energies (e.g. Ramaty and Ligenfelter 1982). This argues strongly for a nonthermal radiation mechanism (see Rees 1984). In addition, statistical studies have indicated that the spectra of these objects in the IR-UV and 2 to 50 keV X-ray band, can be fitted very well with power laws of specific indices. These spectral indices do not seem to depend on the luminosity or morphology of the objects (Rothschild et al. 1983; Malkan 1984), and any theory should account for them in a basic and model independent way. If shocks accelerate relativistic protons via the first-order Fermi mechanism (e.g. Axfor 1981), the radiating electrons can be produced as secondaries throughout the source by proton-proton (p-p) collisions and pion decay, thus eliminating Compton losses (Protheroe and Kazanas 1983). As shown by Kazanas (1984), if relativistic electrons are injected at high energies, e+-e- pair production results in a steady state electron distribution that is very similar to that observed in AGNs, independent of the details of injection and the dynamics of the source. The conditions required by this mechanism are met in the shock model of Eichler (1984) and Ellison and Eichler (1984) which allows the self-consistent calculation of the shock acceleration efficiency.
The Noncommutative Doplicher-Fredenhagen-Roberts-Amorim Space
NASA Astrophysics Data System (ADS)
Abreu, Everton M. C.; Mendes, Albert C. R.; Oliveira, Wilson; Zangirolami, Adriano O.
2010-10-01
This work is an effort in order to compose a pedestrian review of the recently elaborated Doplicher, Fredenhagen, Roberts and Amorim (DFRA) noncommutative (NC) space which is a minimal extension of the DFR space. In this DRFA space, the object of noncommutativity (θμν) is a variable of the NC system and has a canonical conjugate momentum. Namely, for instance, in NC quantum mechanics we will show that θij (i,j=1,2,3) is an operator in Hilbert space and we will explore the consequences of this so-called ''operationalization''. The DFRA formalism is constructed in an extended space-time with independent degrees of freedom associated with the object of noncommutativity θμν. We will study the symmetry properties of an extended x+θ space-time, given by the group P', which has the Poincaré group P as a subgroup. The Noether formalism adapted to such extended x+θ (D=4+6) space-time is depicted. A consistent algebra involving the enlarged set of canonical operators is described, which permits one to construct theories that are dynamically invariant under the action of the rotation group. In this framework it is also possible to give dynamics to the NC operator sector, resulting in new features. A consistent classical mechanics formulation is analyzed in such a way that, under quantization, it furnishes a NC quantum theory with interesting results. The Dirac formalism for constrained Hamiltonian systems is considered and the object of noncommutativity θij plays a fundamental role as an independent quantity. Next, we explain the dynamical spacetime symmetries in NC relativistic theories by using the DFRA algebra. It is also explained about the generalized Dirac equation issue, that the fermionic field depends not only on the ordinary coordinates but on θμν as well. The dynamical symmetry content of such fermionic theory is discussed, and we show that its action is invariant under P'. In the last part of this work we analyze the complex scalar fields using this new framework. As said above, in a first quantized formalism, θμν and its canonical momentum πμν are seen as operators living in some Hilbert space. In a second quantized formalism perspective, we show an explicit form for the extended Poincaré generators and the same algebra is generated via generalized Heisenberg relations. We also consider a source term and construct the general solution for the complex scalar fields using the Green function technique.
NASA Astrophysics Data System (ADS)
Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander
2016-03-01
We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.
Discovery of the Red-Skewed K-alpha Iron Line in Cyg X-2 with Suzaku
NASA Technical Reports Server (NTRS)
Shaposhnikov, Nikolai; Titarchuk, Lev; Laurent, Philippe
2008-01-01
We report on the Suzaku observation of neutron star low-mass X-ray binary Cygnus X-2 which reveals strong iron K-alpha emission line. The line profile shows a prominent red wing extending down to 4 keV. This discovery increases the number of neutron star sources where red-skewed iron lines were observed and strongly suggests that this phenomenon is common not only in black holes but also in other types of compact objects. We examine the line profile by fitting it with the model which attributes its production to the relativistic effects due to disk reflection of X-ray radiation. We also apply an alternative model where the red wing is a result of down-scattering effect of the first order with respect to electron velocity in the wind outflow. Both models describe adequately the observed line profile. However, the X-ray variability in a state similar to that in the Suzaku observation which we establish by analysing RXTE observation favors the wind origin of the line formation.
NASA Astrophysics Data System (ADS)
De Becker, Michaël
2018-04-01
Massive stars are extreme stellar objects whose properties allow for the study of some interesting physical processes, including particle acceleration up to relativistic velocities. In particular, the collisions of massive star winds in binary systems lead notably to acceleration of electrons involved in synchrotron emission, hence their identification as non-thermal radio emitters. This has been demonstrated for about 40 objects so far. The relativistic electrons are also expected to produce non-thermal high-energy radiation through inverse Compton scattering. This class of objects permits thus to investigate non-thermal physics through observations in the radio and high energy spectral domains. However, the binary nature of these sources introduces some stringent requirements to adequately interpret their behavior and model non-thermal processes. In particular, these objects are well-established variable stellar sources on the orbital time-scale. The stellar and orbital parameters need to be determined, and this is notably achieved through studies in the optical domain. The combination of observations in the visible domain (including e.g. 3.6-m DOT) with radio measurements using notably GMRT and X-ray observations constitutes thus a promising strategy to investigate particle-accelerating colliding-wind binaries in the forthcoming decade.
Can a large neutron excess help solve the baryon loading problem in gamma-Ray burst fireballs?
Fuller; Pruet; Abazajian
2000-09-25
We point out that the baryon loading problem in gamma-ray burst (GRB) models can be ameliorated if a significant fraction of the baryons which inertially confine the fireball is converted to neutrons. A high neutron fraction can result in a reduced transfer of energy from relativistic light particles in the fireball to baryons. The energy needed to produce the required relativistic flow in the GRB is consequently reduced, in some cases by orders of magnitude. A high neutron-to-proton ratio has been calculated in neutron star-merger fireball environments. Significant neutron excess also could occur near compact objects with high neutrino fluxes.
On the problem of time in quantum mechanics
NASA Astrophysics Data System (ADS)
Bauer, M.
2017-05-01
The problem of time in quantum mechanics (QM) concerns the fact that in the Schrödinger equation time is a parameter, not an operator. Pauli's objection to a time-energy uncertainty relation analogue to the position-momentum one, conjectured by Heisenberg early on, seemed to exclude the existence of such an operator. However Dirac's formulation of an electron's relativistic QM does allow the introduction of a dynamical time operator that is self-adjoint. Consequently, it can be considered as the generator of a unitary transformation of the system, as well as an additional system observable subject to uncertainty. In the present paper these aspects are examined within the standard framework of relativistic QM.
Hypergeometric Equation in Modeling Relativistic Isotropic Sphere
NASA Astrophysics Data System (ADS)
Thirukkanesh, S.; Ragel, F. C.
2014-04-01
We study the Einstein system of equations in static spherically symmetric spacetimes. We obtained classes of exact solutions to the Einstein system by transforming the condition for pressure isotropy to a hypergeometric equation choosing a rational form for one of the gravitational potentials. The solutions are given in simple form that is a desirable requisite to study the behavior of relativistic compact objects in detail. A physical analysis indicate that our models satisfy all the fundamental requirements of realistic star and match smoothly with the exterior Schwarzschild metric. The derived masses and densities are consistent with the previously reported experimental and theoretical studies describing strange stars. The models satisfy the standard energy conditions required by normal matter.
NASA Astrophysics Data System (ADS)
Vila, Gabriela S.
Relativistic jets and collimated outflows are ubiquitous phenomena in astrophysical settings, from young stellar objects up to Active Galactic Nuclei. The observed emission from some of these jets can cover the whole electromagnetic spectrum, from radio to gamma-rays. The relevant features of the spectral energy distributions depend on the nature of the source and on the characteristics of the surrounding environment. Here the author reviews the main physical processes that command the interactions between populations of relativistic particles locally accelerated in the jets, with matter, radiation and magnetic fields. Special attention is given to the conditions that lead to the dominance of the different radiative mechanisms. Examples from various types of sources are used to illustrate these effects.
NASA Astrophysics Data System (ADS)
Armas, Jay; Bhattacharya, Jyotirmoy; Jain, Akash; Kundu, Nilay
2017-06-01
Developing on a recent work on localized bubbles of ordinary relativistic fluids, we study the comparatively richer leading order surface physics of relativistic superfluids, coupled to an arbitrary stationary background metric and gauge field in 3 + 1 and 2 + 1 dimensions. The analysis is performed with the help of a Euclidean effective action in one lower dimension, written in terms of the superfluid Goldstone mode, the shape-field (characterizing the surface of the superfluid bubble) and the background fields. We find new terms in the ideal order constitutive relations of the superfluid surface, in both the parity-even and parity-odd sectors, with the corresponding transport coefficients entirely fixed in terms of the first order bulk transport coefficients. Some bulk transport coefficients even enter and modify the surface thermodynamics. In the process, we also evaluate the stationary first order parity-odd bulk currents in 2 + 1 dimensions, which follows from four independent terms in the superfluid effective action in that sector. In the second part of the paper, we extend our analysis to stationary surfaces in 3 + 1 dimensional Galilean superfluids via the null reduction of null superfluids in 4 + 1 dimensions. The ideal order constitutive relations in the Galilean case also exhibit some new terms similar to their relativistic counterparts. Finally, in the relativistic context, we turn on slow but arbitrary time dependence and answer some of the key questions regarding the time-dependent dynamics of the shape-field using the second law of thermodynamics. A linearized fluctuation analysis in 2 + 1 dimensions about a toy equilibrium configuration reveals some new surface modes, including parity-odd ones. Our framework can be easily applied to model more general interfaces between distinct fluid-phases.
NASA Astrophysics Data System (ADS)
Levan, A. J.; Tanvir, N. R.; Brown, G. C.; Metzger, B. D.; Page, K. L.; Cenko, S. B.; O'Brien, P. T.; Lyman, J. D.; Wiersema, K.; Stanway, E. R.; Fruchter, A. S.; Perley, D. A.; Bloom, J. S.
2016-03-01
We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t-70. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of LX ˜ 5 × 1042 erg s-1 and are marginally inconsistent with a continuing decay of t-5/3, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of MBH = 3 × 106 M⊙, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of MR ˜ -22 to -23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.
Yu, J.; Li, L. Y.; Cao, J. B.; ...
2016-07-28
Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (B z-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainlymore » pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J.; Li, L. Y.; Cao, J. B.
Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (B z-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainlymore » pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less
The Discovery of Low-Luminosity BL Lacs
NASA Astrophysics Data System (ADS)
Rector, Travis A.; Stocke, John T.
1995-12-01
Many of the properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis whereby BL Lacs are ``highly beamed'' FR-I radio galaxies (i.e. our line of sight to these objects is nearly along the jet axis). Further, radio-selected BL Lacs (RBLs) are believed to be seen nearly ``on-axis'' (the line-of-sight angle theta ~ 8deg ) while X-ray selected BL Lacs (XBLs) are seen at larger angles (theta ~ 30deg ; the X-ray emitting jet is believed to be less collimated). However, a major problem with this model was that a transition population between beamed BL Lacs and unbeamed FR-Is had not been detected. Low-luminosity BL Lacs may be such a transition population, and were predicted to exist by Browne and Marcha (1993). We present ROSAT HRI images, VLA radio maps and optical spectra which confirm the existence of low-luminosity BL Lacs, objects which were previously mis-identified in the EMSS catalog as clusters of galaxies. Thus our results strengthen the relativistic beaming hypothesis.
Synchronization of relativistic particles in the hyperbolic Kuramoto model
NASA Astrophysics Data System (ADS)
Ritchie, Louis M.; Lohe, M. A.; Williams, Anthony G.
2018-05-01
We formulate a noncompact version of the Kuramoto model by replacing the invariance group SO(2) of the plane rotations by the noncompact group SO(1, 1). The N equations of the system are expressed in terms of hyperbolic angles αi and are similar to those of the Kuramoto model, except that the trigonometric functions are replaced by hyperbolic functions. Trajectories are generally unbounded, nevertheless synchronization occurs for any positive couplings κi, arbitrary positive multiplicative parameters λi and arbitrary exponents ωi. There are no critical values for the coupling constants. We measure the onset of synchronization by means of several order and disorder parameters. We show numerically and by means of exact solutions for N = 2 that solutions can develop singularities if the coupling constants are negative, or if the initial values are not suitably restricted. We describe a physical interpretation of the system as a cluster of interacting relativistic particles in 1 + 1 dimensions, subject to linear repulsive forces with space-time trajectories parametrized by the rapidity αi. The trajectories synchronize provided that the particle separations remain predominantly time-like, and the synchronized cluster can be viewed as a bound state of N relativistic particle constituents. We extend the defining equations of the system to higher dimensions by means of vector equations which are covariant with respect to SO(p, q).
Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena
2013-12-28
X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
Plasmapause Location: Model Compared to Van Allen Probes Observations
NASA Astrophysics Data System (ADS)
Goldstein, J.; Baker, D. N.; Blake, J. B.; Funsten, H. O.; Jaynes, A. N.; Malaspina, D.; Reeves, G. D.; Spence, H. E.; Thaller, S. A.; Wygant, J. R.
2017-12-01
We study the evolution of the plasmapause for a multi-year period (January 2013 to January 2017) spanning much of the Van Allen Probes mission, by comparing the output of a plasmapause test particle simulation with the spacecraft potential measured by the Electric Field and Waves (EFW) suite. Consistent with previous results, we quantify the accuracy of the model by measuring the radial difference between real and virtual satellite encounters with the plasmapause boundary. We find that model performance is better on the nightside and during active periods, and worse on the duskside/dayside and during extended quiet intervals. For two case studies, we compare the plasmapause with the locations of relativistic electron flux peaks. For global context we use the test particle plasmaspheric index Fp [Goldstein et al., 2016], the fraction of a circular drift orbit inside the plasmapause, as a proxy for the globally integrated opportunity for losses in cold plasma. We find an inverse relationship between relativistic flux and the Fp index, consistent with increased likelihood of losses in cold plasma.
Equations on knot polynomials and 3d/5d duality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mironov, A.; Morozov, A.; ITEP, Moscow
2012-09-24
We briefly review the current situation with various relations between knot/braid polynomials (Chern-Simons correlation functions), ordinary and extended, considered as functions of the representation and of the knot topology. These include linear skein relations, quadratic Plucker relations, as well as 'differential' and (quantum) A-polynomial structures. We pay a special attention to identity between the A-polynomial equations for knots and Baxter equations for quantum relativistic integrable systems, related through Seiberg-Witten theory to 5d super-Yang-Mills models and through the AGT relation to the q-Virasoro algebra. This identity is an important ingredient of emerging a 3d- 5d generalization of the AGT relation. Themore » shape of the Baxter equation (including the values of coefficients) depend on the choice of the knot/braid. Thus, like the case of KP integrability, where (some, so far torus) knots parameterize particular points of the Universal Grassmannian, in this relation they parameterize particular points in the moduli space of many-body integrable systems of relativistic type.« less
NASA Astrophysics Data System (ADS)
Panda, R. N.; Sharma, Mahesh K.; Panigrahi, M.; Patra, S. K.
2018-02-01
We have examined the ground state properties of Al isotopes towards the proton rich side from A = 22 to 28 using the well known relativistic mean field (RMF) formalism with NLSH parameter set. The calculated results are compared with the predictions of finite range droplet model and experimental data. The calculation is extended to estimate the reaction cross section for ^{22-28} Al as projectiles with ^{12} C as target. The incident energy of the projectiles are taken as 950 MeV/nucleon, for both spherical and deformed RMF densities as inputs in the Glauber model approximation. Further investigation of enhanced values of total reaction cross section for ^{23} Al and ^{24} Al in comparison to rest of the isotopes indicates the proton skin structure of these isotopes. Specifically, the large value of root mean square radius and total reaction cross section of ^{23} Al could not be ruled out the formation of proton halo.
NASA Astrophysics Data System (ADS)
Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj
2017-12-01
A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.
NASA Astrophysics Data System (ADS)
Panda, R. N.; Sharma, Mahesh K.; Panigrahi, M.; Patra, S. K.
2018-06-01
We have examined the ground state properties of Al isotopes towards the proton rich side from A = 22 to 28 using the well known relativistic mean field (RMF) formalism with NLSH parameter set. The calculated results are compared with the predictions of finite range droplet model and experimental data. The calculation is extended to estimate the reaction cross section for ^{22-28}Al as projectiles with ^{12}C as target. The incident energy of the projectiles are taken as 950 MeV/nucleon, for both spherical and deformed RMF densities as inputs in the Glauber model approximation. Further investigation of enhanced values of total reaction cross section for ^{23}Al and ^{24}Al in comparison to rest of the isotopes indicates the proton skin structure of these isotopes. Specifically, the large value of root mean square radius and total reaction cross section of ^{23}Al could not be ruled out the formation of proton halo.
Spin-up of a rapidly rotating star by angular momentum loss - Effects of general relativity
NASA Technical Reports Server (NTRS)
Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.
1992-01-01
It has recently been shown that a rapidly rotating Newtonian star can spin up by radiating angular momentum. Extremely fast pulsars losing energy and angular momentum by magnetic dipole radiation or gravitational radiation may exhibit this behavior. Here, we show that this phenomenon is more widespread for rapidly rotating stars in general relativity. We construct and tabulate polytropic sequences of fully relativistic rotating stars of constant rest mass and entropy. We find that the range of adiabatic indices allowing spin-up extends somewhat above 4/3 because of the nonlinear effects of relativistic gravity. In addition, there is a new class of 'supramassive' stars which will inevitably spin up by losing angular momentum regardless of their equation of state. A supramassive star, spinning up via angular momentum loss, will ultimately evolve until it becomes unstable to catastrophic collapse to a black hole. Spin-up in a rapidly rotating star may thus be an observational precursor to such collapse.
NASA Astrophysics Data System (ADS)
Takizawa, Motokazu; Naito, Tsuguya
2000-06-01
We have investigated evolution of nonthermal emission from relativistic electrons accelerated around the shock fronts during mergers of clusters of galaxies. We estimate synchrotron radio emission and inverse Compton scattering of cosmic microwave background photons from extreme ultraviolet (EUV) to hard X-ray range. The hard X-ray emission is most luminous in the later stage of a merger. Both hard X-ray and radio emissions are luminous only while signatures of merging events are clearly seen in the thermal intracluster medium (ICM). On the other hand, EUV radiation is still luminous after the system has relaxed. Propagation of shock waves and bulk-flow motion of ICM play crucial roles in extending radio halos. In the contracting phase, radio halos are located at the hot region of ICM or between two substructures. In the expanding phase, on the other hand, radio halos are located between two ICM hot regions and show rather diffuse distribution.
`Relativistic' corrections to the mass of a plucked guitar string
NASA Astrophysics Data System (ADS)
Kolodrubetz, Michael; Polkovnikov, Anatoli
Quantum systems respond non-adiabaticity when parameters controlling them are ramped at a finite rate. If the parameters themselves are dynamical - for instance the position of a box that defines the boundary of a quantum field - the feedback of these excitations gives rise to effective Newtonian equations of motion for the parameter. For the age old problem of photons in a box, this correction gives rise to a mass proportional to the energy of the photons. We show that a similar correction arises for a classical guitar string plucked with energy E; moving clamps at the ends of the string requires inertial mass m = 2 E /cs2 , where cs is the speed of sound. This quasi-relativistic effect should be observable in freshman physics level experiments. We then comment on how these simple methods have been readily extended to treat problems such as ramps and quenches of strongly-interacting superconductors and dynamical trapping near a quantum critical point.
Representations of the Extended Poincare Superalgebras in Four Dimensions
NASA Astrophysics Data System (ADS)
Griffis, John D.
Eugene Wigner used the Poincare group to induce representations from the fundamental internal space-time symmetries of (special) relativistic quantum particles. Wigner's students spent considerable amount of time translating passages of this paper into more detailed and accessible papers and books. In 1975, R. Haag et al. investigated the possible extensions of the symmetries of relativistic quantum particles. They showed that the only consistent (super)symmetric extensions to the standard model of physics are obtained by using super charges to generate the odd part of a Lie superalgebra whose even part is generated by the Poincare group; this theory has become known as supersymmetry. In this paper, R. Haag et al. used a notation called supermultiplets to give the dimension of a representation and its multiplicity; this notation is described mathematically in chapter 5 of this thesis. By 1980 S. Ferrara et al. began classifying the representations of these algebras for dimensions greater than four, and in 1986 Strathdee published considerable work listing some representations for the Poincare superalgebra in any finite dimension. This work has been continued to date. We found the work of S. Ferrara et al. to be essential to our understanding extended supersymmetries. However, this paper was written using imprecise language meant for physicists, so it was far from trivial to understand the mathematical interpretation of this work. In this thesis, we provide a "translation" of the previous results (along with some other literature on the Extended Poincare Superalgebras) into a rigorous mathematical setting, which makes the subject more accessible to a larger audience. Having a mathematical model allows us to give explicit results and detailed proofs. Further, this model allows us to see beyond just the physical interpretation and it allows investigation by a purely mathematically adept audience. Our work was motivated by a paper written in 2012 by M. Chaichian et al, which classified all of the unitary, irreducible representations of the extended Poincare superalgebra in three dimensions. We consider only the four dimensional case, which is of interest to physicists working on quantum supergravity models without cosmological constant, and we provide explicit branching rules for the invariant subgroups corresponding to the most physically relevant symmetries of the irreducible representations of the Extended Poincare Superalgebra in four dimensions. However, it is possible to further generalize this work into any finite dimension. Such work would classify all possible finitely extended supersymmetric models.
Evolution of Photon and Particle Spectra in Compact, Luminous Objects
NASA Technical Reports Server (NTRS)
Eilek, Jean A.; Caroff, Lawrence J.
1995-01-01
Physical conditions in the radiating plasma in the cores of radio-strong quasars and active galactic nuclei cannot be derived from observations until the effects of relativistic aberration are understood. This requires determining both the bulk flow speeds and any wave or signal speed in the parsec-scale nuclear jets. In this project we studied several aspects of such waves. We considered constraints on jet deceleration by mass pickup, and found that bolometric luminosities of the active nuclei cannot constrain core jet speeds usefully. We also simulated observations of ballistic, helical trajectories and helical waves moving directly outwards along the jet. We found that ballistic trajectories are not allowed by the data; the helical features seen are very likely to be helical waves. We believe these are waves propagating in the jet plasma. To this end, we studied waves propagating in relativistic pair plasma jets. In particular, we undertook a program whose goal was to determine the nature of waves which can propagate in relativistic pair plasmas, and how such waves propagating in streaming jet plasma would be observed by an external observer. We developed the possibility of using pulsars as test cases for our models; this takes advantage of new technology in pulsar observations, and the similarity of the physical conditions in the pulsar magnetosphere to the dense, relativistic pair plasmas which exist in radio-strong quasars.
Filamentation instability in a quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.
2007-08-15
The growth rate of the filamentation instability triggered when a diluted cold electron beam passes through a cold plasma is evaluated using the quantum hydrodynamic equations. Compared with a cold fluid model, quantum effects reduce both the unstable wave vector domain and the maximum growth rate. Stabilization of large wave vector modes is always achieved, but significant reduction of the maximum growth rate depends on a dimensionless parameter that is provided. Although calculations are extended to the relativistic regime, they are mostly relevant to the nonrelativistic one.
Markov Property of the Conformal Field Theory Vacuum and the a Theorem.
Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo
2017-06-30
We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.
Some simple solutions of Schrödinger's equation for a free particle or for an oscillator
NASA Astrophysics Data System (ADS)
Andrews, Mark
2018-05-01
For a non-relativistic free particle, we show that the evolution of some simple initial wave functions made up of linear segments can be expressed in terms of Fresnel integrals. Examples include the square wave function and the triangular wave function. The method is then extended to wave functions made from quadratic elements. The evolution of all these initial wave functions can also be found for the harmonic oscillator by a transformation of the free evolutions.
Investigation of Collection Ion Acceleration Using Intense Relativistic Electron Beams.
1980-02-01
in these results ’.. . supports the reflecting bea model of Ryutov. IM 1. Introduction Graybill and TUglual appear to have first studied...current (Figure 5). 1600 ~ aupild4 ho a- Doi"e Time Og0s4.Ter E The present model extends that of Ryutov by including 1200a description of the...potential-electron density relation Ech Data POW Is based on measurements of the transmitted beam current. ’L l " j This model is applicable to the
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.
2008-11-01
Recent particle-in-cell (PIC) simulation studies have addressed particle acceleration and magnetic field generation in relativistic astrophysical flows by plasma phase space structures. We discuss the astrophysical environments such as the jets of compact objects, and we give an overview of the global PIC simulations of shocks. These reveal several types of phase space structures, which are relevant for the energy dissipation. These structures are typically coupled in shocks, but we choose to consider them here in an isolated form. Three structures are reviewed. (1) Simulations of interpenetrating or colliding plasma clouds can trigger filamentation instabilities, while simulations of thermally anisotropic plasmas observe the Weibel instability. Both transform a spatially uniform plasma into current filaments. These filament structures cause the growth of the magnetic fields. (2) The development of a modified two-stream instability is discussed. It saturates first by the formation of electron phase space holes. The relativistic electron clouds modulate the ion beam and a secondary, spatially localized electrostatic instability grows, which saturates by forming a relativistic ion phase space hole. It accelerates electrons to ultra-relativistic speeds. (3) A simulation is also revised, in which two clouds of an electron-ion plasma collide at the speed 0.9c. The inequal densities of both clouds and a magnetic field that is oblique to the collision velocity vector result in waves with a mixed electrostatic and electromagnetic polarity. The waves give rise to growing corkscrew distributions in the electrons and ions that establish an equipartition between the electron, the ion and the magnetic energy. The filament-, phase space hole- and corkscrew structures are discussed with respect to electron acceleration and magnetic field generation.
Relativistic jets without large-scale magnetic fields
NASA Astrophysics Data System (ADS)
Parfrey, K.; Giannios, D.; Beloborodov, A.
2014-07-01
The canonical model of relativistic jets from black holes requires a large-scale ordered magnetic field to provide a significant magnetic flux through the ergosphere--in the Blandford-Znajek process, the jet power scales with the square of the magnetic flux. In many jet systems the presence of the required flux in the environment of the central engine is questionable. I will describe an alternative scenario, in which jets are produced by the continuous sequential accretion of small magnetic loops. The magnetic energy stored in these coronal flux systems is amplified by the differential rotation of the accretion disc and by the rotating spacetime of the black hole, leading to runaway field line inflation, magnetic reconnection in thin current layers, and the ejection of discrete bubbles of Poynting-flux-dominated plasma. For illustration I will show the results of general-relativistic force-free electrodynamic simulations of rotating black hole coronae, performed using a new resistivity model. The dissipation of magnetic energy by coronal reconnection events, as demonstrated in these simulations, is a potential source of the observed high-energy emission from accreting compact objects.
On the origin of ultra high energy cosmic rays: subluminal and superluminal relativistic shocks
NASA Astrophysics Data System (ADS)
Meli, A.; Becker, J. K.; Quenby, J. J.
2008-12-01
Aims: The flux of ultra high energy cosmic rays (UHECRs) at E > 1018.5 eV is believed to arise in plasma shock environments in extragalactic sources. In this paper, we present a systematic study of cosmic ray (CR) particle acceleration by relativistic shocks, in particular concerning the dependence on bulk Lorentz factor and the angle between the magnetic field and the shock flow. The contribution to the observed diffuse CR spectrum provided by the accelerated particles is discussed. Methods: For the first time, Monte Carlo simulations for super- and subluminal shocks are extended to boost factors up to Γ = 1000 and systematically compared. The source spectra derived are translated into the expected diffuse proton flux from astrophysical sources by folding the spectra with the spatial distribution of active galactic nuclei (AGN) and gamma ray bursts (GRBs). Results of these predictions are compared with UHECR data. Results: While superluminal shocks are shown to be inefficient at providing acceleration to the highest energies (E > 1018.5 eV), subluminal shocks may provide particles up to 1021 eV, limited only by the Hillas-criterion. In the subluminal case, we find that mildly-relativistic shocks, thought to occur in jets of AGN (Γ ~ 10-30), yield energy spectra of dN/dE ~ E-2. Highly relativistic shocks expected in GRBs (100 < Γ < 1000), on the other hand, produce spectra as flat as ~ E-1.0 above 109.5 GeV. The model results are compared with the measured flux of CRs at the highest energies and it is shown that, while AGN spectra provide an excellent fit, GRB spectra are too flat to explain the observed flux. The first evidence of a correlation between the CR flux above 5.7 × 1010 GeV and the distribution of AGN provided by Auger are explained by our model. Although GRBs are excluded as the principle origin of UHECRs, neutrino production is expected in these sources either in mildly or highly relativistic shocks. In particular, superluminal shocks in GRBs may be observable via neutrino and photon fluxes, rather than as protons.
Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal
2018-06-12
The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1 H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d 2 -5d 8 and 6p 4 HA hydrides and deshielded in 4f 0 , 5d 0 , 6s 0 , and 6p 0 HA hydrides. This general and intuitive concept explains periodic trends in the 1 H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide chemical audience.
Oks, E; Dalimier, E; Faenov, A Ya; Angelo, P; Pikuz, S A; Tubman, E; Butler, N M H; Dance, R J; Pikuz, T A; Skobelev, I Yu; Alkhimova, M A; Booth, N; Green, J; Gregory, C; Andreev, A; Zhidkov, A; Kodama, R; McKenna, P; Woolsey, N
2017-02-06
By analyzing profiles of experimental x-ray spectral lines of Si XIV and Al XIII, we found that both Langmuir and ion acoustic waves developed in plasmas produced via irradiation of thin Si foils by relativistic laser pulses (intensities ~1021 W/cm2). We prove that these waves are due to the parametric decay instability (PDI). This is the first time that the PDI-induced ion acoustic turbulence was discovered by the x-ray spectroscopy in laser-produced plasmas. These conclusions are also supported by PIC simulations. Our results can be used for laboratory modeling of physical processes in astrophysical objects and a better understanding of intense laser-plasma interactions.
Temporal response of a surface flashover on a velvet cathode in a relativistic diode
Coleman, J. E.; Moir, D. C.; Crawford, M. T.; ...
2015-03-11
Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. Our objective is to quantify the dynamics over the ~100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. We present a qualitative comparison of calculated and measured results, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. Additionally, initial visible spectroscopy measurements will also be presentedmore » confirming the ion species are dominated by hydrogen.« less
Stationary equatorial MHD flows in general relativity
NASA Astrophysics Data System (ADS)
Daigne, F.; Drenkhahn, G.
2002-01-01
We derive a new formulation of the fully general relativistic equations describing a stationary equatorial MHD outflow from a rotating central object. The wind solution appears as a level contour of a ``Bernoulli'' function fixed by the requirements that it must pass through the slow and fast critical points. This approach is the general relativistic extension to the classical treatment of Sakurai (\\cite{sakurai:85}). We discuss in details how the efficiency of the magnetic to kinetic energy conversion depends mainly on the geometry of the flux tubes and show that the magnetic acceleration can work very well under some conditions. We show how this tool can be used for the study of several astrophysical phenomena, among which gamma-ray bursts.
NASA Astrophysics Data System (ADS)
Chardonnet, Pascal
2015-12-01
Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the ability to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d'Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chardonnet, Pascal; LAPTh, Université de Savoie, CNRS, B.P. 110, Annecy-le-Vieux F-74941; ICRANet, Piazza della Repubblica 10, 65122 Pescara
Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the abilitymore » to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d’Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.« less
NASA Astrophysics Data System (ADS)
Poli, E.; Bock, A.; Lochbrunner, M.; Maj, O.; Reich, M.; Snicker, A.; Stegmeir, A.; Volpe, F.; Bertelli, N.; Bilato, R.; Conway, G. D.; Farina, D.; Felici, F.; Figini, L.; Fischer, R.; Galperti, C.; Happel, T.; Lin-Liu, Y. R.; Marushchenko, N. B.; Mszanowski, U.; Poli, F. M.; Stober, J.; Westerhof, E.; Zille, R.; Peeters, A. G.; Pereverzev, G. V.
2018-04-01
The paraxial WKB code TORBEAM (Poli, 2001) is widely used for the description of electron-cyclotron waves in fusion plasmas, retaining diffraction effects through the solution of a set of ordinary differential equations. With respect to its original form, the code has undergone significant transformations and extensions, in terms of both the physical model and the spectrum of applications. The code has been rewritten in Fortran 90 and transformed into a library, which can be called from within different (not necessarily Fortran-based) workflows. The models for both absorption and current drive have been extended, including e.g. fully-relativistic calculation of the absorption coefficient, momentum conservation in electron-electron collisions and the contribution of more than one harmonic to current drive. The code can be run also for reflectometry applications, with relativistic corrections for the electron mass. Formulas that provide the coupling between the reflected beam and the receiver have been developed. Accelerated versions of the code are available, with the reduced physics goal of inferring the location of maximum absorption (including or not the total driven current) for a given setting of the launcher mirrors. Optionally, plasma volumes within given flux surfaces and corresponding values of minimum and maximum magnetic field can be provided externally to speed up the calculation of full driven-current profiles. These can be employed in real-time control algorithms or for fast data analysis.
NASA Astrophysics Data System (ADS)
Noureen, S.; Abbas, G.; Sarfraz, M.
2018-01-01
The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.
NASA Astrophysics Data System (ADS)
Alba, David; Crater, Horace W.; Lusanna, Luca
2015-03-01
A new formulation of relativistic classical mechanics allows a reconsideration of old unsolved problems in relativistic kinetic theory and in relativistic statistical mechanics. In particular a definition of the relativistic micro-canonical partition function is given strictly in terms of the Poincaré generators of an interacting N-particle system both in the inertial and non-inertial rest frames. The non-relativistic limit allows a definition of both the inertial and non-inertial micro-canonical ensemble in terms of the Galilei generators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
One of the oddest features of special relativity is the inability to go faster than the speed of light and this is absolutely true. The most common explanation is that the mass of an object increases with speed, but this particular explanation simply isn’t true. In this video, Fermilab’s Dr. Don Lincoln explains the truth behind this.
ERIC Educational Resources Information Center
Park, So Ra
2012-01-01
Customers' experiential value is based on holistic experience customers would have when they interact with a product/service. Experiential value is defined as "relativistic preference characterizing a subject's experience with some object" (Holbrook, 1994). Internet is characterized for interactivity and it should have a role in…
Special Relativity and Magnetism in an Introductory Physics Course
ERIC Educational Resources Information Center
Piccioni, R. G.
2007-01-01
Too often, students in introductory courses are left with the impression that Einstein's special theory of relativity comes into play only when the relative speed of two objects is an appreciable fraction of the speed of light ("c"). In fact, relativistic length contraction, along with Coulomb's law, accounts quantitatively for the force on a…
NASA Technical Reports Server (NTRS)
Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek
1995-01-01
High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.
NASA Technical Reports Server (NTRS)
Baker, D. N.; Borovsky, Joseph E.; Benford, Gregory; Eilek, Jean A.
1988-01-01
A model of the inner portions of astrophysical jets is constructed in which a relativistic electron beam is injected from the central engine into the jet plasma. This beam drives electrostatic plasma wave turbulence, which leads to the collective emission of electromagnetic waves. The emitted waves are beamed in the direction of the jet axis, so that end-on viewing of the jet yields an extremely bright source (BL Lacertae object). The relativistic electron beam may also drive long-wavelength electromagnetic plasma instabilities (firehose and Kelvin-Helmholtz) that jumble the jet magnetic field lines. After a sufficient distance from the core source, these instabilities will cause the beamed emission to point in random directions and the jet emission can then be observed from any direction relative to the jet axis. This combination of effects may lead to the gap turn-on of astrophysical jets. The collective emission model leads to different estimates for energy transport and the interpretation of radio spectra than the conventional incoherent synchrotron theory.
Weber's gravitational force as static weak field approximation
NASA Astrophysics Data System (ADS)
Tiandho, Yuant
2016-02-01
Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.
HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes
NASA Astrophysics Data System (ADS)
Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios
2015-08-01
HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.
Explanatory and illustrative visualization of special and general relativity.
Weiskopf, Daniel; Borchers, Marc; Ertl, Thomas; Falk, Martin; Fechtig, Oliver; Frank, Regine; Grave, Frank; King, Andreas; Kraus, Ute; Müller, Thomas; Nollert, Hans-Peter; Rica Mendez, Isabel; Ruder, Hanns; Schafhitzel, Tobias; Schär, Sonja; Zahn, Corvin; Zatloukal, Michael
2006-01-01
This paper describes methods for explanatory and illustrative visualizations used to communicate aspects of Einstein's theories of special and general relativity, their geometric structure, and of the related fields of cosmology and astrophysics. Our illustrations target a general audience of laypersons interested in relativity. We discuss visualization strategies, motivated by physics education and the didactics of mathematics, and describe what kind of visualization methods have proven to be useful for different types of media, such as still images in popular science magazines, film contributions to TV shows, oral presentations, or interactive museum installations. Our primary approach is to adopt an egocentric point of view: The recipients of a visualization participate in a visually enriched thought experiment that allows them to experience or explore a relativistic scenario. In addition, we often combine egocentric visualizations with more abstract illustrations based on an outside view in order to provide several presentations of the same phenomenon. Although our visualization tools often build upon existing methods and implementations, the underlying techniques have been improved by several novel technical contributions like image-based special relativistic rendering on GPUs, special relativistic 4D ray tracing for accelerating scene objects, an extension of general relativistic ray tracing to manifolds described by multiple charts, GPU-based interactive visualization of gravitational light deflection, as well as planetary terrain rendering. The usefulness and effectiveness of our visualizations are demonstrated by reporting on experiences with, and feedback from, recipients of visualizations and collaborators.
Binary Systems as Test-Beds of Gravity Theories
NASA Astrophysics Data System (ADS)
Damour, Thibault
The discovery of binary pulsars in 1974 [1] opened up a new testing ground for relativistic gravity. Before this discovery, the only available testing ground for relativistic gravity was the solar system. As Einstein's theory of General Relativity (GR) is one of the basic pillars of modern science, it deserves to be tested, with the highest possible accuracy, in all its aspects. In the solar sys tem, the gravitational field is slowly varying and represents only a very small deformation of a flat spacetime. As a consequence, solar system tests can only probe the quasi-stationary (non-radiative) weak-field limit of relativis tic gravity. By contrast binary systems containing compact objects (neutron stars or black holes) involve spacetime domains (inside and near the compact objects) where the gravitational field is strong. Indeed, the surface relativistic gravitational field h 00 ≈ 2 GM/c 2 R of a neutron star is of order 0.4, which is close to the one of a black hole (2GM/c 2 R = 1) and much larger than the surface gravitational fields of solar system bodies: (2GM/c 2 R)Sun ˜ 10-6, (2GM/c 2 R)Earth ˜ 10-9. In addition, the high stability of “pulsar clocks” has made it possible to monitor the dynamics of its orbital motion down to a precision allowing one to measure the small (˜ (v/c)5) orbital effects linked to the propagation of the gravitational field at the velocity of light between the pulsar and its companion.
NASA Astrophysics Data System (ADS)
Markoff, Sera; Ceccobello, Chiara; Heemskerk, Martin; Cavecchi, Yuri; Polko, Peter; Meier, David
2017-08-01
Jets are ubiquitous and reveal themselves at different scales and redshifts, showing an extreme diversity in energetics, shapes and emission. Indeed jets are found to be characteristic features of black hole systems, such as X-ray binaries (XRBs) and active galactic nuclei (AGN), as well as of young stellar objects (YSOs) and gamma-ray bursts (GRBs). Observations suggest that jets are an energetically important component of the system that hosts them, because the jet power appears to be comparable to the accretion power. Significant evidence has been found of the impact of jets not only in the immediate proximity of the central object, but as well on their surrounding environment, where they deposit the energy extracted from the accretion flow. Moreover, the inflow/outflow system produces radiation over the entire electromagnetic spectrum, from radio to X-rays. Therefore it is a compelling problem to be solved and deeply understood. I present a new integration scheme to solve radial self-similar, stationary, axisymmetric relativistic magneto-hydro-dynamics (MHD) equations describing collimated, relativistic outflows crossing smoothly all the singular points (the Alfvén point and the modified slow/fast points). For the first time, the integration can be performed all the way from the disk mid-plane to downstream of the modified fast point. I will discuss an ensemble of jet solutions showing diverse jet dynamics (jet Lorentz factor ~ 1-10) and geometric properties (i.e. shock height ~ 103 - 107 gravitational radii), which makes our model suitable for application to many different systems where a relativistic jet is launched.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, Hou-Jun; Lü, Jing; Zhong, Shu-Qing
GRB 160625B is an extremely bright GRB with three distinct emission episodes. By analyzing its data observed with the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi mission, we find that a multicolor blackbody (mBB) model can be used to fit very well the spectra of the initial short episode (Episode I) within the hypothesis of photosphere emission of a fireball model. The time-resolved spectra of its main episode (Episode II), which was detected with both GBM and LAT after a long quiescent stage (∼180 s) following the initial episode, can be fitted with amore » model comprising an mBB component plus a cutoff power-law (CPL) component. This GRB was detected again in the GBM and LAT bands with a long extended emission (Episode III) after a quiescent period of ∼300 s. The spectrum of Episode III is adequately fitted with CPL plus single power-law models, and no mBB component is required. These features may imply that the emission of the three episodes are dominated by distinct physics processes, i.e., Episode I is possible from the cocoon emission surrounding the relativistic jet, Episode II may be from photosphere emission and internal shock of the relativistic jet, and Episode III is contributed by internal and external shocks of the relativistic jet. On the other hand, both X-ray and optical afterglows are consistent with the standard external shocks model.« less
NASA Astrophysics Data System (ADS)
Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.
2018-04-01
We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.
NASA Astrophysics Data System (ADS)
Lü, Hou-Jun; Lü, Jing; Zhong, Shu-Qing; Huang, Xiao-Li; Zhang, Hai-Ming; Lan, Lin; Xie, Wei; Lu, Rui-Jing; Liang, En-Wei
2017-11-01
GRB 160625B is an extremely bright GRB with three distinct emission episodes. By analyzing its data observed with the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi mission, we find that a multicolor blackbody (mBB) model can be used to fit very well the spectra of the initial short episode (Episode I) within the hypothesis of photosphere emission of a fireball model. The time-resolved spectra of its main episode (Episode II), which was detected with both GBM and LAT after a long quiescent stage (˜180 s) following the initial episode, can be fitted with a model comprising an mBB component plus a cutoff power-law (CPL) component. This GRB was detected again in the GBM and LAT bands with a long extended emission (Episode III) after a quiescent period of ˜300 s. The spectrum of Episode III is adequately fitted with CPL plus single power-law models, and no mBB component is required. These features may imply that the emission of the three episodes are dominated by distinct physics processes, I.e., Episode I is possible from the cocoon emission surrounding the relativistic jet, Episode II may be from photosphere emission and internal shock of the relativistic jet, and Episode III is contributed by internal and external shocks of the relativistic jet. On the other hand, both X-ray and optical afterglows are consistent with the standard external shocks model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipping, David, E-mail: dkipping@astro.columbia.edu
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photonmore » and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.« less
NASA Astrophysics Data System (ADS)
Wu, D.; Luan, S. X.; Wang, J. W.; Yu, W.; Gong, J. X.; Cao, L. H.; Zheng, C. Y.; He, X. T.
2017-06-01
The two-stage electron acceleration/heating model (Wu et al 2017 Nucl. Fusion 57 016007 and Wu et al 2016 Phys. Plasmas 23 123116) is extended to the study of laser magnetized-plasmas interactions at relativistic intensities and in the presence of large-scale preformed plasmas. It is shown that the electron-heating efficiency is a controllable value by the external magnetic fields. Detailed studies indicate that for a right-hand circularly polarized laser, the electron heating efficiency depends on both strength and directions of external magnetic fields. The electron-heating is dramatically enhanced when the external magnetic field is of B\\equiv {ω }c/{ω }0> 1. When magnetic field is of negative direction, i.e. B< 0, it trends to suppress the electron heating. The underlining physics—the dependences of electron-heating on both the strength and directions of the external magnetic fields—is uncovered. With -∞ < B< 1, the electron-heating is explained by the synergetic effects by longitudinal charge separation electric field and the reflected ‘envelop-modulated’ CP laser. It is indicated that the ‘modulation depth’ of reflected CP laser is significantly determined by the external magnetic fields, which will in turn influence the efficiency of the electron-heating. While with B> 1, a laser front sharpening mechanism is identified at relativistic laser magnetized-plasmas interactions, which is responsible for the dramatical enhancement of electron-heating.
The radio sources CTA 21 and OF+247: The hot spots of radio galaxies
NASA Astrophysics Data System (ADS)
Artyukh, V. S.; Tyul'bashev, S. A.; Chernikov, P. A.
2013-06-01
The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ˜ 10-1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ˜ 10-3 G, and the density of relativistic electrons is n e ˜ 10-3 cm-3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, < E H > = < E e > ˜ 10-7-10-6 erg cm-3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.
NASA Astrophysics Data System (ADS)
Kipping, David
2017-06-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot, we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effectsmore » by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.« less
Quasi-Normal Modes of Stars and Black Holes.
Kokkotas, Kostas D; Schmidt, Bernd G
1999-01-01
Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordström, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.
Temporal response of a surface flashover on a velvet cathode in a relativistic diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, J. E.; Moir, D. C.; Crawford, M. T.
2015-03-15
Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. The principal objective of these experiments is to quantify the dynamics over the ∼100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. A qualitative comparison of calculated and measured results is presented, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. In addition, initial visible spectroscopy measurements willmore » also be presented confirming the ion species are dominated by hydrogen.« less
BREAKDOWN OF I-LOVE-Q UNIVERSALITY IN RAPIDLY ROTATING RELATIVISTIC STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Kokkotas, Kostas D.
It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependentmore » and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz.« less
Breakdown of I-Love-Q Universality in Rapidly Rotating Relativistic Stars
NASA Astrophysics Data System (ADS)
Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Stergioulas, Nikolaos; Kokkotas, Kostas D.
2014-01-01
It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependent and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz.
Detection of high-energy gamma rays from winter thunderclouds.
Tsuchiya, H; Enoto, T; Yamada, S; Yuasa, T; Kawaharada, M; Kitaguchi, T; Kokubun, M; Kato, H; Okano, M; Nakamura, S; Makishima, K
2007-10-19
A report is made on a comprehensive observation of a burstlike gamma-ray emission from thunderclouds on the Sea of Japan, during strong thunderstorms on 6 January 2007. The detected emission, lasting for approximately 40 sec, preceded cloud-to-ground lightning discharges. The burst spectrum, extending to 10 MeV, can be interpreted as consisting of bremsstrahlung photons originating from relativistic electrons. This ground-based observation provides the first clear evidence that strong electric fields in thunderclouds can continuously accelerate electrons beyond 10 MeV prior to lightning discharges.
Relativistic theory for picosecond time transfer in the vicinity of Earth
NASA Technical Reports Server (NTRS)
Petit, G.; Wolf, P.
1994-01-01
The problem of light propagation is treated in a geocentric reference system with the goal of ensuring picosecond accuracy for time transfer techniques using electromagnetic signals in the vicinity of the Earth. We give an explicit formula for a one way time transfer, to be applied when the spatial coordinates of the time transfer stations are known in a geocentric reference system rotating with the Earth. This expression is extended, at the same accuracy level of one picosecond, to the special cases of two way and LASSO time transfers via geostationary satellites.
BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields
NASA Astrophysics Data System (ADS)
Dai, Jialiang; Fan, Engui
2018-04-01
We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.
LLE Review 118 (January-March 2009)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bittle, W., editor
2009-08-03
This issue has the following articles: (1) Applied Plasma Spectroscopy: Laser-Fusion Experiments; (2) Relativistic Electron-Beam Transport Studies Using High-Resolution, Coherent Transition Radiation Imaging; (3) Pressure-Driven, Resistive Magnetohydrodynamic Interchange Instabilities in Laser-Produced, High-Energy-Density Plasmas; (4) Extended Model for Polymer Cholesteric Liquid Crystal Flake Reorientation and Relaxation; (5) Modeling the Effects of Microencapsulation on the Electro-Optic Behavior of Polymer Cholesteric Liquid Crystal Flakes; (6) Capillarity and Dielectrophoresis of Liquid Deuterium; and (7) A Stable Mid-IR, GaSb-Based Diode Laser Source for Cryogenic Target Layering at the OMEGA Laser Facility.
A phenomenological π-p scattering length from pionic hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
2004-07-01
We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length ah extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order α2logα using an extended charge distribution. A hadronic πN scattering length ahπ-p=0.0870(5)mπ-1 is deduced leading to a πNN coupling constant from the GMO relation gc2/(4π)=14.04(17).
a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).
Neutron Stars with Delta-Resonances in the Walecka and Zimanyi-Moszkowski Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, C. T.; Oliveira, J. C. T.; Rodrigues, H.
2010-11-12
In the present work we have obtained the equation of state of the highly asymmetric dense stellar matter focusing on the delta resonance formation. We extended the nonlinear Walecka (NLW) and Zimanyi-Moszkowski (ZM) models to accommodate in the context of the relativistic mean field approximation the Rarita-Schwinger field for the spin 3/2 resonances. With the constructed stellar matter equations of state we solve numerically the TOV equation (Tolman-Oppenheimer-Volkoff) in order to determine the internal structure of neutron stars, and discuss the obtained masses versus radii diagram.
NASA Astrophysics Data System (ADS)
Sultana, S.; Schlickeiser, R.
2018-02-01
A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.
NASA Astrophysics Data System (ADS)
Derishev, E.; Aharonian, F.
We show that, in the presence of radiation field, relativistic bulk flows can very quikly accelerate protons and electrons up to the energies limited either by Hillas criterion or by synchrotron losses. Unlike the traditional approach, we take advantage of continuous photon-induced conversion of charged particle species to neutral ones, and vice versa (proton-neutron or electron-photon). Such a conversion, though it leads to considerable energy losses, allows accelerated particles to increase their energies in each scattering by a factor roughly equal to the bulk Lorentz factor, thus avoiding the need in slow and relatively inefficient diffusive acceleration. The optical depth of accelerating region with respect to inelastic photon-induced reactions (pair production for electrons and photomeson reactions for protons) should be a substancial fraction of unity. Remarkably, self-tuning of the optical depth is automatically achieved as long as the photon density depends on the distance along the bulk flow. This mechanism can work in Gamma-Ray Bursts (GRBs), Active Galactic Nuclei (AGNs), microquasars, or any other object with relativistic bulk flows embedded in radiation-reach environment. Both GRBs and AGNs turn out to be capable of producing 1020 eV cosmic rays.
Wodyński, Artur; Gryff-Keller, Adam; Pecul, Magdalena
2013-04-09
(13)C nuclear magnetic resonance shielding constants have been calculated by means of density functional theory (DFT) for several organomercury compounds and halogen derivatives of aliphatic and aromatic compounds. Relativistic effects have been included through the four-component Dirac-Kohn-Sham (DKS) method, two-component Zeroth Order Regular Approximation (ZORA) DFT, and DFT with scalar effective core potentials (ECPs). The relative shieldings have been analyzed in terms of the position of carbon atoms with respect to the heavy atom and their hybridization. The results have been compared with the experimental values, some newly measured and some found in the literature. The main aim of the calculations has been to evaluate the magnitude of heavy atom effects on the (13)C shielding constants and to check what are the relative contributions of scalar relativistic effects and spin-orbit coupling. Another object has been to compare the DKS and ZORA results and to check how the approximate method of accounting for the heavy-atom-on-light-atom (HALA) relativistic effect by means of scalar effective core potentials on heavy atoms performs in comparison with the more rigorous two- and four-component treatment.
Kelvin-Helmholtz instability of stratified jets.
NASA Astrophysics Data System (ADS)
Hanasz, M.; Sol, H.
1996-11-01
We investigate the Kelvin-Helmholtz instability of stratified jets. The internal component (core) is made of a relativistic gas moving with a relativistic bulk speed. The second component (sheath or envelope) flows between the core and external gas with a nonrelativistic speed. Such a two-component jet describes a variety of possible astrophysical jet configurations like e.g. (1) a relativistic electron-positron beam penetrating a classical electron-proton disc wind or (2) a beam-cocoon structure. We perform a linear stability analysis of such a configuration in the hydrodynamic, plane-parallel, vortex-sheet approximation. The obtained solutions of the dispersion relation show very apparent differences with respect to the single-jet solutions. Due to the reflection of sound waves at the boundary between sheet and external gas, the growth rate as a function of wavenumber presents a specific oscillation pattern. Overdense sheets can slow down the growth rate and contribute to stabilize the configuration. Moreover, we obtain the result that even for relatively small sheet widths the properties of sheet start to dominate the jet dynamics. Such effects could have important astrophysical implications, for instance on the origin of the dichotomy between radio-loud and radio-quiet objects.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Watson, M.; Fuerst, S.; Wu, K.; Hardee, P.; Fishman, G. J.
2007-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous code. The simulation results show the jet formations from a geometrically thin accretion disk near a nonrotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field configuration including issues for future research. A General Relativistic Particle-in-Cell Code (GRPIC) has been developed using the Kerr-Schild metric. The code includes kinetic effects, and is in accordance with GRMHD code. Since the gravitational force acting on particles is extreme near black holes, there are some difficulties in numerically describing these processes. The preliminary code consists of an accretion disk and free-falling corona. Results indicate that particles are ejected from the black hole. These results are consistent with other GRMHD simulations. The GRPIC simulation results will be presented, along with some remarks and future improvements. The emission is calculated from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by GRMHD simulations considering thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We would like to extend this research using GRPIC simulations and examine a possible new mechanism for certain X-ray quasi-periodic oscillations (QPOs) observed in blackhole X-ray binaries.
The magnetized universe: its origin and dissipation through acceleration and leakage to the voids
NASA Astrophysics Data System (ADS)
Colgate, Stirling A.; Li, Hui; Kronberg, Philipp P.
2011-06-01
The consistency is awesome between over a dozen observations and the paradigm of radio lobes being immense sources of magnetic energy, flux, and relativistic electrons, - a magnetized universe. The greater the total energy of an astrophysical phenomenon, the more restricted are the possible explanations. Magnetic energy is the most challenging because its origin is still considered problematic. We suggest that it is evident that the universe is magnetized because of radio lobes, ultra relativistic electrons, Faraday rotation measures, the polarized emission of extra galactic radio structures, the x-rays from relativistic electrons Comptonized on the CMB, and possibly extra galactic cosmic rays. The implied energies are so large that only the formation of supermassive black hole, (SMBH) at the center of every galaxy is remotely energetic enough to supply this immense energy, ~(1/10) 108 Msolarc2 per galaxy. Only a galaxy cluster of 1000 galaxies has comparable energy, but it is inversely, (to the number of galaxies), rare per galaxy. Yet this energy appears to be shared between magnetic fields and accelerated relativistic particles, both electrons and ions. Only a large-scale coherent dynamo generating poloidal flux within the accretion disk forming the massive black hole makes a reasonable starting point. The subsequent winding of this dynamo-derived magnetic flux by conducting, angular momentum-dominated accreting matter, (~1011 turns near the event horizon in 108 years) produces the immense, coherent magnetic jets or total flux of radio lobes and similarly in star formation. By extending this same physics to supernova-neutron star formation, we predict that similar differential winding of the flux that couples explosion ejecta and a newly formed, rapidly rotating neutron star will produce similar phenomena of a magnetic jet and lobes in the forming supernova nebula. In all cases the conversion of force-free magnetic energy into accelerated ions and electrons is a major challenge.
Jupiter's magnetosphere and radiation belts
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Coroniti, F. V.
1979-01-01
Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.
A NOVEL PARADIGM FOR SHORT GAMMA-RAY BURSTS WITH EXTENDED X-RAY EMISSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezzolla, Luciano; Kumar, Pawan
2015-04-01
The merger of a binary of neutron stars provides natural explanations for many of the features of short gamma-ray bursts (SGRBs), such as the generation of a hot torus orbiting a rapidly rotating black hole, which can then build a magnetic jet and provide the energy reservoir to launch a relativistic outflow. However, this scenario has problems explaining the recently discovered long-term and sustained X-ray emission associated with the afterglows of a subclass of SGRBs. We propose a new model that explains how an X-ray afterglow can be sustained by the product of the merger and how the X-ray emissionmore » is produced before the corresponding emission in the gamma-band, though it is observed to follow it. Overall, our paradigm combines in a novel manner a number of well-established features of the emission in SGRBs and results from simulations. Because it involves the propagation of an ultra-relativistic outflow and its interaction with a confining medium, the paradigm also highlights a unifying phenomenology between short and long GRBs.« less
Cloud Ablation by a Relativistic Jet and the Extended Flare in CTA 102 in 2016 and 2017
NASA Astrophysics Data System (ADS)
Zacharias, M.; Böttcher, M.; Jankowsky, F.; Lenain, J.-P.; Wagner, S. J.; Wierzcholska, A.
2017-12-01
In late 2016 and early 2017, the flat spectrum radio quasar CTA 102 exhibited a very strong and long-lasting outburst. The event can be described by a roughly two-month long increase of the baseline flux in the monitored energy bands (optical to γ-rays) by a factor 8, and a subsequent decrease over another two months back to pre-flare levels. The long-term trend was superseded by short but very strong flares, resulting in a peak flux that was a factor 50 above pre-flare levels in the γ-ray domain and almost a factor 100 above pre-flare levels in the optical domain. In this paper, we explain the long-term evolution of the outburst by the ablation of a gas cloud penetrating the relativistic jet. The slice-by-slice ablation results in a gradual increase of the particle injection until the center of the cloud is reached, after which the injected number of particles decreases again. With reasonable cloud parameters, we obtain excellent fits of the long-term trend.
Numerical Hydrodynamics in General Relativity.
Font, José A
2003-01-01
The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them. Supplementary material is available for this article at 10.12942/lrr-2003-4.
Relativistic transformation between τ and TCG for Mars missions under IAU Resolutions
NASA Astrophysics Data System (ADS)
Pan, Jun-Yang; Xie, Yi
2014-02-01
Considering the fact that the general theory of relativity has become an inextricable part of deep space missions, we investigate the relativistic transformation between the proper time of an onboard clock τ and the Geocentric Coordinate Time (TCG) for Mars missions. By connecting τ with this local timescale associated with the Earth, we extend previous works which focus on the transformation between τ and the Barycentric Coordinate Time (TCB). (TCB is the global coordinate time for the whole solar system.) For practical convenience, the relation between τ and TCG is recast to directly depend on quantities which can be read from ephemerides. We find that the difference between τ and TCG can reach the level of about 0.2 seconds in a year. To distinguish various sources in the transformation, we numerically calculate the contributions caused by the Sun, eight planets, three large asteroids and the spacecraft. It is found that if the threshold of 1 microsecond is adopted, this transformation must include effects due to the Sun, Venus, the Moon, Mars, Jupiter, Saturn and the velocities of the spacecraft and Earth.
Statistical and dynamical properties of a dissipative kicked rotator
NASA Astrophysics Data System (ADS)
Oliveira, Diego F. M.; Leonel, Edson D.
2014-11-01
Some dynamical and statistical properties for a conservative as well as the dissipative problem of relativistic particles in a waveguide are considered. For the first time, two different types of dissipation namely: (i) due to viscosity and; (ii) due to inelastic collision (upon the kick) are considered individually and acting together. For the first case, and contrary to what is expected for the original Zaslavsky’s relativistic model, we show there is a critical parameter where a transition from local to global chaos occurs. On the other hand, after considering the introduction of dissipation also on the kick, the structure of the phase space changes in the sense that chaotic and periodic attractors appear. We study also the chaotic sea by using scaling arguments and we proposed an analytical argument to reinforce the validity of the scaling exponents obtained numerically. In principle such an approach can be extended to any two-dimensional map. Finally, based on the Lyapunov exponent, we show that the parameter space exhibits infinite families of self-similar shrimp-shape structures, corresponding to periodic attractors, embedded in a large region corresponding to chaotic attractors.
Fluid simulation of relativistic electron beam driven wakefield in a cold plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bera, Ratan Kumar; Sengupta, Sudip; Das, Amita
Excitation of wakefield in a cold homogeneous plasma, driven by an ultra-relativistic electron beam is studied in one dimension using fluid simulation techniques. For a homogeneous rigid beam having density (n{sub b}) less than or equal to half the plasma density (n{sub 0}), simulation results are found to be in good agreement with the analytical work of Rosenzweig [Phys. Rev. Lett. 58, 555 (1987)]. Here, Rosenzweig's work has been analytically extended to regimes where the ratio of beam density to plasma density is greater than half and results have been verified using simulation. Further in contrast to Rosenzweig's work, ifmore » the beam is allowed to evolve in a self-consistent manner, several interesting features are observed in simulation viz. splitting of the beam into beam-lets (for l{sub b} > λ{sub p}) and compression of the beam (for l{sub b} < λ{sub p}), l{sub b} and λ{sub p}, respectively, being the initial beam length and plasma wavelength.« less
Covariant electromagnetic field lines
NASA Astrophysics Data System (ADS)
Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.
2017-08-01
Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.
Mirnov, V V; Brower, D L; Den Hartog, D J; Ding, W X; Duff, J; Parke, E
2014-11-01
At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.
IPOLE - semi-analytic scheme for relativistic polarized radiative transport
NASA Astrophysics Data System (ADS)
Mościbrodzka, M.; Gammie, C. F.
2018-03-01
We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.
First-Person Visualizations of the Special and General Theory of Relativity
ERIC Educational Resources Information Center
Kraus, U.
2008-01-01
Visualizations that adopt a first-person point of view allow observation and, in the case of interactive simulations, experimentation with relativistic scenes. This paper gives examples of three types of first-person visualizations: watching objects that move at nearly the speed of light, being a high-speed observer looking at a static environment…
The Wigner function in the relativistic quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.
2016-12-15
A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.
The two-stage origin of bright rings in extended radio lobes
NASA Astrophysics Data System (ADS)
Morrison, P.; Sadun, A.
1996-01-01
A few strong radio sources show unusual large-intensity features (up to 100- or 200-kpc scale) within their extended lobes. These appear in the plane of the sky as nearly circular rings, but physically they are actually spherical shells. Two such sources, HerA (3C348) and 3C310, are analysed in terms of their similarly uniform kinematics. Such objects do not easily fit into the Fanaroff-Riley scheme for jet and lobe sources. We model these sources by a two-stage account of their dynamics. Long ago, acoustic waves (or weak shocks) were excited again and again to form sphere after sphere in the pre-existing thermal galactic wind. They all arose at one spot along the jet axis at the edge of the galaxy, to drift with the wind, expanding uniformly at the speed of sound in the near-isothermal gas. The wind flows out supersonically at about Mach 5. In a much later second stage, a new and much faster flow of relativistic plasma is energized by the active nucleus deep within the galaxy. That plasma jet swiftly forms the radio lobe and infuses it with radio electrons. The new plasma fills in locally the low-pressure portions of each drifting acoustic shell. The shells then appear as a procession of radio rings, with modest intensity contrast and an understandable polarization. Both of these radio ring sources appear to have optically double active nuclei. Perhaps periodic tidal forces determine the density modulations during the older outflow that gave rise to the several drifting shells.
Radiatively driven relativistic jets in Schwarzschild space-time
NASA Astrophysics Data System (ADS)
Vyas, Mukesh K.; Chattopadhyay, Indranil
2018-06-01
Context. Aims: We carry out a general relativistic study of radiatively driven conical fluid jets around non-rotating black holes and investigate the effects and significance of radiative acceleration, as well as radiation drag. Methods: We apply relativistic equations of motion in curved space-time around a Schwarzschild black hole for axis-symmetric one-dimensional jet in steady state, plying through the radiation field of the accretion disc. Radiative moments are computed using information of curved space-time. Slopes of physical variables at the sonic points are found using L'Hôpital's rule and employing Runge-Kutta's fourth order method to solve equations of motion. The analysis is carried out using the relativistic equation of state of the jet fluid. Results: The terminal speed of the jet depends on how much thermal energy is converted into jet momentum and how much radiation momentum is deposited onto the jet. Many classes of jet solutions with single sonic points, multiple sonic points, as well as those having radiation driven internal shocks are obtained. Variation of all flow variables along the jet-axis has been studied. Highly energetic electron-proton jets can be accelerated by intense radiation to terminal Lorentz factors γT 3. Moderate terminal speed vT 0.5 is obtained for moderately luminous discs. Lepton dominated jets may achieve γT 10. Conclusions: Thermal driving of the jet itself and radiation driving by accretion disc photons produce a wide-ranging jet solutions starting from moderately strong jets to the relativistic ones. Interplay of intensity, the nature of the radiation field, and the energetics of the jet result in a variety of jet solutions. We show that radiation field is able to induce steady shocks in jets, one of the criteria to explain high-energy power-law emission observed in spectra of some of the astrophysical objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emritte, Mohammad Shehzad; Colafrancesco, Sergio; Marchegiani, Paolo, E-mail: Sergio.Colafrancesco@wits.ac.za, E-mail: emrittes@yahoo.com, E-mail: Paolo.Marchegiani@wits.ac.za
2016-07-01
Inverse Compton (IC) scattering of the anisotropic CMB fluctuations off cosmic electron plasmas generates a polarization of the associated Sunyaev-Zel'dovich (SZ) effect. The polarized SZ effect has important applications in cosmology and in astrophysics of galaxy clusters. However, this signal has been studied so far mostly in the non-relativistic regime which is valid only in the very low electron temperature limit for a thermal electron population and, as such, has limited astrophysical applications. Partial attempts to extend this calculation to the IC scattering of a thermal electron plasma in the relativistic regime have been done but these cannot be appliedmore » to a more general or mildly relativistic electron distribution. In this paper we derive a general form of the SZ effect polarization that is valid in the full relativistic approach for both thermal and non-thermal electron plasmas, as well as for a generic combination of various electron population which can be co-spatially distributed in the environments of galaxy clusters or radiogalaxy lobes. We derive the spectral shape of the Stokes parameters induced by the IC scattering of every CMB multipole for both thermal and non-thermal electron populations, focussing in particular on the CMB quadrupole and octupole that provide the largest detectable signals in cosmic structures (like galaxy clusters). We found that the CMB quadrupole induced Stoke parameter Q is always positive with a maximum amplitude at a frequency ≈ 216 GHz which increases non-linearly with increasing cluster temperature. On the contrary, the CMB octupole induced Q spectrum shows a cross-over frequency which depends on the cluster electron temperature in a linear way, while it shows a non-linear dependence on the minimum momentum p {sub 1} of a non-thermal power-law spectrum as well as a linear dependence on the power-law spectral index of the non-thermal electron population. We discuss some of the possibilities to disentangle the quadrupole-induced Q spectrum from the octupole-induced one which will allow to measure these important cosmological quantities through the SZ effect polarization at different cluster locations in the universe. We finally apply our model to the Bullet cluster and derive the visibility windows of the total, quandrupole-induced and octupole-induced Stoke parameter Q in the frequency ranges accessible to SKA, ALMA, MILLIMETRON and CORE++ experiments.« less
HST and Merlin Observations of 3C 264--A Laboratory for Jet Physics and Unified Schemes
NASA Astrophysics Data System (ADS)
Baum, Stefi A.; O'Dea, Christopher P.; Giovannini, Gabriele; Cotton, William B.; de Koff, Sigrid; Feretti, Luigina; Golombek, Daniel; Lara, Lucas; Macchetto, Ferdinando D.; Miley, G. K.; Sparks, William B.; Venturi, Tiziana; Komissarov, Serguei S.
1997-07-01
We present new HST optical continuum and emission line WFPC2 images and MERLIN radio observations of 3C 264 at ~0.1" resolution. The jet is well resolved in both the optical and radio images. In addition, we report the discovery of an apparent optical ``ring'' at a projected radius of ~300-400 pc. The ring is most likely the manifestation of absorption by a nearly face-on circumnuclear dust disk. We discuss the evolution of the jet properties with distance. The jet collimation, brightness, and orientation change dramatically as it crosses the outer boundary of the ``ring'' suggesting an interaction between the jet and dense circumnuclear gas. We present a model for the jet propagation in which an initially relativistic jet decelerates as it crosses through a region of dense cold gas in the inner region of the galaxy. We derive the equations for brightness variations along an adiabatically expanding relativistic jet, and we model the jet brightness in 3C 264 as the combined effects of Doppler boosting, and adiabatic losses as traced through the jet velocity and width. We find that the data are consistent with a model in which the jet is initially highly relativistic (v ~ 0.98c, γ = 5) and we view it at roughly 50° inclination. We suggest that 3C 264 may serve as a laboratory for the study of relativistic entraining jets and may help us to understand the deceleration of jets, which is required in unifying schemes for FRI radio galaxies and BL Lac objects.
The Maximum Mass of Rotating Strange Stars
NASA Astrophysics Data System (ADS)
Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.
2012-12-01
Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.
Binary and Millisecond Pulsars.
Lorimer, Duncan R
2008-01-01
We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.
NASA Astrophysics Data System (ADS)
Münzenberg, Gottfried; Geissel, Hans; Litvinov, Yuri A.
2010-04-01
This contribution is based on the combination of the talks: "What can we learn from large-scale mass measurements," "Present and future experiments with stored exotic nuclei at relativistic energies," and "Beta decay of highly-charged ions." Studying the nuclear mass surface gives information on the evolution of nuclear structure such as nuclear shells, the onset of deformation and the drip-lines. Previously, most of the masses far-off stability has been obtained from decay data. Modern methods allow direct mass measurements. They are much more sensitive, down to single atoms, access short-lived species and have high accuracy. Large-scale explorations of the nuclear mass surface are ideally performed with the combination of the in-flight FRagment Separator FRS and the Experimental Storage Ring ESR. After a brief historic introduction selected examples such as the evolution of shell closures far-off stability and the proton-neutron interaction will be discussed in the framework of our data. Recently, the experiments have been extended and led to the discovery of new heavy neutron-rich isotopes along with their mass and lifetime measurements. Storage rings applied at relativistic energies are a unique tool to study the radioactive decay of bare or few-electron atomic nuclei. New features observed with the analysis of stored circulating mother and daughter ions including oscillations in the decay curves of hydrogen-like nuclei will be addressed. Future experiments with NUSTAR at FAIR will further extend our knowledge to the borderlines of nuclear existence.
Confinement of the Crab Nebula with tangled magnetic field by its supernova remnant
NASA Astrophysics Data System (ADS)
Tanaka, Shuta J.; Toma, Kenji; Tominaga, Nozomu
2018-05-01
A pulsar wind is a relativistic outflow dominated by Poynting energy at its base. Based on the standard ideal magnetohydrodynamic (MHD) model of pulsar wind nebulae (PWNe) with the ordered magnetic field, the observed slow expansion vPWN ≪ c requires the wind to be dominated by kinetic energy at the upstream of its termination shock, which conflicts with the pulsar wind theory (σ-problem). In this paper, we extend the standard model of PWNe by phenomenologically taking into account conversion of the ordered to turbulent magnetic field and dissipation of the turbulent magnetic field. Disordering of the magnetic structure is inferred from the recent three-dimensional relativistic ideal MHD simulations, while magnetic dissipation is a non-ideal MHD effect requiring a finite resistivity. We apply this model to the Crab Nebula and find that the conversion effect is important for the flow deceleration, while the dissipation effect is not. Even for Poynting-dominated pulsar wind, we obtain the Crab Nebula's vPWN by adopting a finite conversion time-scale of ˜0.3 yr. Magnetic dissipation primarily affects the synchrotron radiation properties. Any values of the pulsar wind magnetization σw are allowed within the present model of the PWN dynamics alone, and even a small termination shock radius of ≪0.1 pc reproduces the observed dynamical features of the Crab Nebula. In order to establish a high-σw model of PWNe, it is important to extend the present model by taking into account the broadband spectrum and its spacial profiles.
QUANTITATIVE EVALUATION OF THE HYPOTHESIS THAT BL LACERTAE OBJECTS ARE QSO REMNANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borra, E. F.
2014-11-20
We evaluate with numerical simulations the hypothesis that BL Lacertae objects (BLLs) are the remnants of quasi-stellar objects. This hypothesis is based on their highly peculiar redshift evolution. They have a comoving space density that increases with decreasing redshift, contrary to all other active galactic nuclei. We assume that relativistic jets are below detection in young radio-quiet quasars and increase in strength with cosmic time so that they eventually are detected as BLLs. Our numerical simulations fit very well the observed redshift distributions of BLLs. There are strong indications that only the high-synchrotron-peaked BLLs could be QSO remnants.
Object-oriented code SUR for plasma kinetic simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levchenko, V.D.; Sigov, Y.S.
1995-12-31
We have developed a self-consistent simulation code based on object-oriented model of plasma (OOMP) for solving the Vlasov/Poisson (V/P), Vlasov/Maxwell (V/M), Bhatnagar-Gross-Krook (BGK) as well as Fokker-Planck (FP) kinetic equations. The application of an object-oriented approach (OOA) to simulation of plasmas and plasma-like media by means of splitting methods permits to uniformly describe and solve the wide circle of plasma kinetics problems, including those being very complicated: many-dimensional, relativistic, with regard for collisions, specific boundary conditions etc. This paper gives the brief description of possibilities of the SUR code, as a concrete realization of OOMP.
NASA Astrophysics Data System (ADS)
Zhang, Fupeng; Iorio, Lorenzo
2017-01-01
The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, I.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster of disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100-400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fupeng; Iorio, Lorenzo, E-mail: zhangfp7@mail.sysu.edu.cn, E-mail: lorenzo.iorio@libero.it
2017-01-10
The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, i.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster ofmore » disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100–400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.« less
NASA Astrophysics Data System (ADS)
Henneaux, Marc; Lekeu, Victor; Matulich, Javier; Prohazka, Stefan
2018-06-01
The action of the free [InlineMediaObject not available: see fulltext.] theory in six spacetime dimensions is explicitly constructed. The variables of the variational principle are prepotentials adapted to the self-duality conditions on the fields. The (3, 1) supersymmetry variations are given and the invariance of the action is verified. The action is first-order in time derivatives. It is also Poincaré invariant but not manifestly so, just like the Hamiltonian action of more familiar relativistic field theories.
From Hartree Dynamics to the Relativistic Vlasov Equation
NASA Astrophysics Data System (ADS)
Dietler, Elia; Rademacher, Simone; Schlein, Benjamin
2018-02-01
We derive the relativistic Vlasov equation from quantum Hartree dynamics for fermions with relativistic dispersion in the mean-field scaling, which is naturally linked with an effective semiclassic limit. Similar results in the non-relativistic setting have been recently obtained in Benedikter et al. (Arch Rat Mech Anal 221(1): 273-334, 2016). The new challenge that we have to face here, in the relativistic setting, consists in controlling the difference between the quantum kinetic energy and the relativistic transport term appearing in the Vlasov equation.
Galilean field theories and conformal structure
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Chakrabortty, Joydeep; Mehra, Aditya
2018-04-01
We perform a detailed analysis of Galilean field theories, starting with free theories and then interacting theories. We consider non-relativistic versions of massless scalar and Dirac field theories before we go on to review our previous construction of Galilean Electrodynamics and Galilean Yang-Mills theory. We show that in all these cases, the field theories exhibit non-relativistic conformal structure (in appropriate dimensions). The surprising aspect of the analysis is that the non-relativistic conformal structure exhibited by these theories, unlike relativistic conformal invariance, becomes infinite dimensional even in spacetime dimensions greater than two. We then couple matter with Galilean gauge theories and show that there is a myriad of different sectors that arise in the non-relativistic limit from the parent relativistic theories. In every case, if the parent relativistic theory exhibited conformal invariance, we find an infinitely enhanced Galilean conformal invariance in the non-relativistic case. This leads us to suggest that infinite enhancement of symmetries in the non-relativistic limit is a generic feature of conformal field theories in any dimension.
Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christie, W.B. Jr.
This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS ismore » that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.« less
NASA Astrophysics Data System (ADS)
Martin, Jan M. L.; Sundermann, Andreas
2001-02-01
We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper.
NASA Astrophysics Data System (ADS)
Lam, Hing-Lan
2017-01-01
A statistical study of relativistic electron (>2 MeV) fluence derived from geosynchronous satellites and Pc5 ultralow frequency (ULF) wave power computed from a ground magnetic observatory data located in Canada's auroral zone has been carried out. The ground observations were made near the foot points of field lines passing through the GOESs from 1987 to 2009 (cycles 22 and 23). We determine statistical relationships between the two quantities for different phases of a solar cycle and validate these relationships in two different cycles. There is a positive linear relationship between log fluence and log Pc5 power for all solar phases; however, the power law indices vary for different phases of the cycle. High index values existed during the descending phase. The Pearson's cross correlation between electron fluence and Pc5 power indicates fluence enhancement 2-3 days after strong Pc5 wave activity for all solar phases. The lag between the two quantities is shorter for extremely high fluence (due to high Pc5 power), which tends to occur during the declining phases of both cycles. Most occurrences of extremely low fluence were observed during the extended solar minimum of cycle 23. The precursory attribute of Pc5 power with respect to fluence and the enhancement of fluence due to rising Pc5 power both support the notion of an electron acceleration mechanism by Pc5 ULF waves. This precursor behavior establishes the potential of using Pc5 power to predict relativistic electron fluence.
AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, Evan, E-mail: evanoconnor@ncsu.edu; CITA, Canadian Institute for Theoretical Astrophysics, Toronto, M5S 3H8
2015-08-15
We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrinomore » transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.« less
PKS 2155-304 relativistically beamed synchrotron radiation from BL LAC object
NASA Technical Reports Server (NTRS)
Urry, C. M.; Mushotzky, R. F.
1981-01-01
The newly discovered BL Lacertae object, PKS 2155-304, was observed with the medium and high intensity energy detectors of the HEAO-1 A2 experiment. The variability by a factor of two in less than a day reported by Snyder, et al (1979) is confirmed. Two spectra, obtained a year apart, while the satellite was in scanning mode, are well fit by simple power laws with energy spectral index alpha sub 1 equals approximately 1.4. A third spectrum, of higher statistical quality, obtained while the satellite was pointed at its source, has has two components. An acceptable fit was obtained using a two power law model, with indices alpha sub 1 equals 2.0 (+1.2, -0.6) and alpha sub 2 equals -1.5 (+1.5, -2.3). An interpretation of the overall spectrum from radio through X-rays in terms of a synchrotron self-Compton model gives a good description of the data if allowance is made for relativistic beaming. Thus, from a consideration of the spectrum, combined with an estimate of the size of the source, the presence of jets is inferred without their observation.
A Study of Multi-Λ Hypernuclei Within Spherical Relativistic Mean-Field Approach
NASA Astrophysics Data System (ADS)
Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, B.; Patra, S. K.
2017-12-01
This research article is a follow up of an earlier work by M. Ikram et al., reported in Int. J. Mod. Phys. E 25, 1650103 (2016) where we searched for Λ magic numbers in experimentally confirmed doubly magic nucleonic cores in light to heavy mass region (i.e., 16 O-208 P b) by injecting Λ's into them. In the present manuscript, working within the state of the art relativistic mean field theory with the inclusion of Λ N and ΛΛ interaction in addition to nucleon-meson NL 3∗ effective force, we extend the search of lambda magic numbers in multi- Λ hypernuclei using the predicted doubly magic nucleonic cores 292120, 304120, 360132, 370132, 336138, 396138 of the elusive superheavy mass regime. In analogy to well established signatures of magicity in conventional nuclear theory, the prediction of hypernuclear magicities is made on the basis of one-, two- Λ separation energy ( S Λ, S 2Λ) and two lambda shell gaps ( δ 2Λ) in multi- Λ hypernuclei. The calculations suggest that the Λ numbers 92, 106, 126, 138, 184, 198, 240, and 258 might be the Λ shell closures after introducing the Λ's in the elusive superheavy nucleonic cores. The appearance of new lambda shell closures apart from the nucleonic ones predicted by various relativistic and non-relativistic theoretical investigations can be attributed to the relatively weak strength of the spin-orbit coupling in hypernuclei compared to normal nuclei. Further, the predictions made in multi- Λ hypernuclei under study resembles closely the magic numbers in conventional nuclear theory suggested by various relativistic and non-relativistic theoretical models. Moreover, in support of the Λ shell closure, the investigation of Λ pairing energy and effective Λ pairing gap has been made. We noticed a very close agreement of the predicted Λ shell closures with the survey made on the pretext of S Λ, S 2Λ, and δ 2Λ except for the appearance of magic numbers corresponding to Λ = 156 which manifest in Λ effective pairing gap and pairing energy. Also, the lambda single-particle spectrum is analyzed to mark the energy shell gap for further strengthening the predictions made on the basis of separation energies and shell gaps. Lambda and nucleon spin-orbit interactions are analyzed to confirm the reduction in magnitude of Λ spin-orbit interaction compared to the nucleonic case, however the interaction profile is similar in both the cases. Lambda and nucleon density distributions have been investigated to reveal the impurity effect of Λ hyperons which make the depression of central density of the core of superheavy doubly magic nuclei. Lambda skin structure is also seen.
Leading order relativistic chiral nucleon-nucleon interaction
NASA Astrophysics Data System (ADS)
Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie
2018-01-01
Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )
Theory of relativistic Brownian motion: the (1+3) -dimensional case.
Dunkel, Jörn; Hänggi, Peter
2005-09-01
A theory for (1+3) -dimensional relativistic Brownian motion under the influence of external force fields is put forward. Starting out from a set of relativistically covariant, but multiplicative Langevin equations we describe the relativistic stochastic dynamics of a forced Brownian particle. The corresponding Fokker-Planck equations are studied in the laboratory frame coordinates. In particular, the stochastic integration prescription--i.e., the discretization rule dilemma--is elucidated (prepoint discretization rule versus midpoint discretization rule versus postpoint discretization rule). Remarkably, within our relativistic scheme we find that the postpoint rule (or the transport form) yields the only Fokker-Planck dynamics from which the relativistic Maxwell-Boltzmann statistics is recovered as the stationary solution. The relativistic velocity effects become distinctly more pronounced by going from one to three spatial dimensions. Moreover, we present numerical results for the asymptotic mean-square displacement of a free relativistic Brownian particle moving in 1+3 dimensions.
TENTATIVE EVIDENCE FOR RELATIVISTIC ELECTRONS GENERATED BY THE JET OF THE YOUNG SUN-LIKE STAR DG Tau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, Rachael E.; Ray, Tom P.; Taylor, Andrew M.
2014-09-01
Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from active galactic nuclei. We present data at 325 and 610 MHz taken with the Giant Metrewave Radio Telescope of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass young stellar object at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpretmore » this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength B {sub min} ≈ 0.11 mG and particle energy E {sub min} ≈ 4 × 10{sup 40} erg, which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.« less
A RADIO PULSAR SEARCH OF THE {gamma}-RAY BINARIES LS I +61 303 AND LS 5039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia McSwain, M.; Ray, Paul S.; Ransom, Scott M.
2011-09-01
LS I +61 303 and LS 5039 are exceptionally rare examples of high-mass X-ray binaries with MeV-TeV emission, making them two of only five known '{gamma}-ray binaries'. There has been disagreement within the literature over whether these systems are microquasars, with stellar winds accreting onto a compact object to produce high energy emission and relativistic jets, or whether their emission properties might be better explained by a relativistic pulsar wind colliding with the stellar wind. Here we present an attempt to detect radio pulsars in both systems with the Green Bank Telescope. The upper limits of flux density are betweenmore » 4.1 and 14.5 {mu}Jy, and we discuss the null results of the search. Our spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar emission will be strongly absorbed by the dense wind unless there is an evacuated region formed by a relativistic colliding wind shock. LS I +61 303 contains a rapidly rotating Be star whose wind is concentrated near the stellar equator. As long as the pulsar is not eclipsed by the circumstellar disk or viewed through the densest wind regions, detecting pulsed emission may be possible during part of the orbit.« less
Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40
NASA Astrophysics Data System (ADS)
Gierliński, Marek; Maciołek-Niedźwiecki, Andrzej; Ebisawa, Ken
2001-08-01
We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the accretion rate, the disc inclination angle and the inner disc radius. We fit the ASCA soft-state X-ray spectra of LMC X-1 and GRO J1655-40 by this model. We find that, having additional limits on the black hole mass and inclination angle from optical/UV observations, we can constrain the black hole spin from X-ray data. In LMC X-1 the constraint is weak, and we can only rule out the maximally rotating black hole. In GRO J1655-40 we can limit the spin much better, and we find 0.68<=a<=0.88. Accretion discs in both sources are radiation-pressure dominated. We do not find Compton reflection features in the spectra of any of these objects.
Relativistic Newtonian Dynamics under a central force
NASA Astrophysics Data System (ADS)
Friedman, Yaakov
2016-10-01
Planck's formula and General Relativity indicate that potential energy influences spacetime. Using Einstein's Equivalence Principle and an extension of his Clock Hypothesis, an explicit description of this influence is derived. We present a new relativity model by incorporating the influence of the potential energy on spacetime in Newton's dynamics for motion under a central force. This model extends the model used by Friedman and Steiner (EPL, 113 (2016) 39001) to obtain the exact precession of Mercury without curving spacetime. We also present a solution of this model for a hydrogen-like atom, which explains the reason for a probabilistic description.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrixhe, M.; Besson, D.; Frankenfeld, C.
We have conducted a search for extended energy deposition trails left by ultrarelativistic magnetic monopoles interacting in Antarctic ice. The nonobservation of any satisfactory candidates in the 31 days of accumulated ANITA-II (Antarctic Impulsive Transient Antenna) flight data results in an upper limit on the diffuse flux of relativistic monopoles. We obtain a 90% C.L. limit of order 10{sup -19} (cm{sup 2} s sr){sup -1} for values of Lorentz factor, {gamma}, 10{sup 10{<=}{gamma}} at the anticipated energy E{sub tot}=10{sup 16} GeV. This bound is stronger than all previously published experimental limits for this kinematic range.
NASA Astrophysics Data System (ADS)
Hofman, David J.; Phobos Collaboration; Bbback; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Kwoźniak; Wysłouch, B.
2006-11-01
A brief overview of the current results and conclusions from the PHOBOS experiment at the Relativistic Heavy Ion Collider (RHIC) is given. No evidence is found for non-monotonic behavior of observables measured by PHOBOS in the RHIC energy region. Convincing evidence is found that we have created a state of matter with high energy-density, that is nearly net-baryon free and is strongly interacting. The data are found to exhibit "simple" scaling behaviors, which include extended longitudinal scaling and scaling with the number of participating nucleons. The Au+Au collision charged particle data also exhibit a remarkable factorization of collision energy and geometry.
Thermal equilibrium and statistical thermometers in special relativity.
Cubero, David; Casado-Pascual, Jesús; Dunkel, Jörn; Talkner, Peter; Hänggi, Peter
2007-10-26
There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Jüttner function as well as modifications thereof. Here we report results from fully relativistic one-dimensional molecular dynamics simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Jüttner distribution. Moreover, our simulations illustrate that the concept of "thermal equilibrium" extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that "temperature" can be statistically defined and measured in an observer frame independent way.
Coulomb-stable triply charged diatomic: HeY3+
NASA Astrophysics Data System (ADS)
Wesendrup, Ralf; Pernpointner, Markus; Schwerdtfeger, Peter
1999-11-01
Accurate relativistic coupled-cluster calculations show that the triply charged species HeY3+ is a stable molecule and represents the lightest diatomic trication that does not undergo a Coulomb fragmentation into charged fragments. The diatomic potential-energy curve is approximated by an extended Morse potential, and vibrational-rotational constants for HeY3+ are predicted (Re=224.3 pm, D0=0.394 eV, ωe=437 cm-1, ωexe=15.8 cm-1, Be=0.877 cm-1). It is further shown that the He-Y3+ bond can basically be described as a charge-induced dipole interaction.
Study of the O-mode in a relativistic degenerate electron plasma
NASA Astrophysics Data System (ADS)
Azra, Kalsoom; Ali, Muddasir; Hussain, Azhar
2017-03-01
Using the linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi-Dirac distribution function. The propagation characteristics of the O-mode (cut offs, resonances, propagation regimes, harmonic structure) are examined by using specific values of the density and the magnetic field that correspond to different relativistic dense environments. Further, it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values, as a result the propagation regime is reduced. The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.
EXACT RELATIVISTIC NEWTONIAN REPRESENTATION OF GRAVITATIONAL STATIC SPACETIME GEOMETRIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Shubhrangshu; Sarkar, Tamal; Bhadra, Arunava, E-mail: sghosh@jcbose.ac.in, E-mail: ta.sa.nbu@hotmail.com, E-mail: aru_bhadra@yahoo.com
2016-09-01
We construct a self-consistent relativistic Newtonian analogue corresponding to gravitational static spherical symmetric spacetime geometries, starting directly from a generalized scalar relativistic gravitational action in a Newtonian framework, which gives geodesic equations of motion identical to those of the parent metric. Consequently, the derived velocity-dependent relativistic scalar potential, which is a relativistic generalization of the Newtonian gravitational potential, exactly reproduces the relativistic gravitational features corresponding to any static spherical symmetric spacetime geometry in its entirety, including all the experimentally tested gravitational effects in the weak field up to the present. This relativistic analogous potential is expected to be quite usefulmore » in studying a wide range of astrophysical phenomena, especially in strong field gravity.« less
From physics to biology by extending criticality and symmetry breakings.
Longo, G; Montévil, M
2011-08-01
Symmetries play a major role in physics, in particular since the work by E. Noether and H. Weyl in the first half of last century. Herein, we briefly review their role by recalling how symmetry changes allow to conceptually move from classical to relativistic and quantum physics. We then introduce our ongoing theoretical analysis in biology and show that symmetries play a radically different role in this discipline, when compared to those in current physics. By this comparison, we stress that symmetries must be understood in relation to conservation and stability properties, as represented in the theories. We posit that the dynamics of biological organisms, in their various levels of organization, are not "just" processes, but permanent (extended, in our terminology) critical transitions and, thus, symmetry changes. Within the limits of a relative structural stability (or interval of viability), variability is at the core of these transitions. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Palmeri, P.; Quinet, P.; Lundberg, H.; Engström, L.; Nilsson, H.; Hartman, H.
2017-10-01
We report new time-resolved laser-induced fluorescence lifetime measurements for 22 highly excited even-parity levels in singly ionized yttrium (Y II). To populate these levels belonging to the configurations 4d6s, 5s6s 4d5d, 5p2, 4d7s and 4d6d, a two-step laser excitation technique was used. Our previous pseudo-relativistic Hartree-Fock model (Biémont et al. 2011) was improved by extending the configuration interaction up to n = 10 to reproduce the new experimental lifetimes. A set of semi-empirical oscillator strengths extended to transitions falling in the spectral range λλ194-3995 nm, depopulating these 22 even-parity levels in Y II, is presented and compared to the values found in the Kurucz's data base (Kurucz 2011).
Optical imagery and spectrophotometry of CTB 80
NASA Technical Reports Server (NTRS)
Hester, J. Jeff; Kulkarni, Shrinivas R.
1989-01-01
Narrow-band imagery and spectrophotometry of the central region of CTB 80 are presented. The images show weak forbidden O III and ubiquitous filamentary forbidden S II and H-alpha emission from the extended radio lobes in which the core is embedded. The data indicate that the extended component is shock heated. Balmer line-dominated emission is observed around the perimeter of the core. Assuming that the volume of the radio shell is similar to the volume of the thermal shell, it is found that a magnetic field of about 600 microG and a cosmic-ray proton-to-electron ratio of about 200 are required to explain the pressure and synchrotron volume emissivity in the radio shell. It is suggested that the optical emission form the core of CTB 80 arises behind shocks which are being driven into a magnetized thermal plasma by the confined relativistic wind from PSR 1951+32.
Discovering the interior of black holes
NASA Astrophysics Data System (ADS)
Brustein, Ram; Medved, A. J. M.; Yagi, K.
2017-12-01
The detection of gravitational waves (GWs) from black hole (BH) mergers provides an inroad toward probing the interior of astrophysical BHs. The general-relativistic description of the BH interior is that of empty spacetime with a (possibly) singular core. Recently, however, the hypothesis that the BH interior does not exist has been gaining traction, as it provides a means for resolving the BH information-loss problem. Here, we propose a simple method for answering the following question: Does the BH interior exist and, if so, does it contain some distribution of matter or is it mostly empty? Our proposal is premised on the idea that, similar to the case of relativistic, ultracompact stars, any BH-like object whose interior has some matter distribution should support fluid modes in addition to the conventional spacetime modes. In particular, the Coriolis-induced Rossby (r-) modes, whose spectrum is mostly insensitive to the composition of the interior matter, should be a universal feature of such BH-like objects. In fact, the frequency and damping time of these modes are determined by only the object's mass and speed of rotation. The r-modes oscillate at a lower frequency, decay at a slower rate, and produce weaker GWs than do the spacetime modes. Hence, they imprint a model-insensitive signature of a nonempty interior in the GW spectrum resulting from a BH merger. We find that future GW detectors, such as Advanced LIGO with its design sensitivity, have the potential of detecting such r-modes if the amount of GWs leaking out quantum mechanically from the interior of a BH-like object is sufficiently large.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, J. Bernard
2016-03-06
It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here in this paper we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8–9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that accelerationmore » by chorus is much more efficient than losses by microbursts during the storm. It is also revealed that the strong chorus wave activity without relativistic electron microbursts does not lead to significant flux variations of relativistic electrons. Thus, effective acceleration of relativistic electrons is caused by chorus that can cause relativistic electron microbursts.« less
Physics of Nonmagnetic Relativistic Thermal Plasmas. Ph.D. Thesis - Calif. Univ., San Diego
NASA Technical Reports Server (NTRS)
Dermer, C. D.
1984-01-01
A detailed treatment of the kinematics of relativistic systems of particles and photons is presented. In the case of a relativistic Maxwell-Boltzmann distribution of particles, the reaction rate and luminosity are written as single integrals over the invariant cross section, and the production spectrum is written as a double integral over the cross section differential in the energy of the produced particles (or photons) in the center-of-momentum system of two colliding particles. The results are applied to the calculation of the annihilation spectrum of a thermal electron-positron plasma, confirming previous numerical and analytic results. Relativistic thermal electron-ion and electron-electron bremsstrahlung are calculated exactly to lowest order, and relativistic thermal electron-positron bremsstrahlung is calculated in an approximate fashion. An approximate treatment of relativistic Comptonization is developed. The question of thermalization of a relativistic plasma is considered. A formula for the energy loss or exchange rate from the interaction of two relativistic Maxwell-Boltzmann plasmas at different temperatures is derived. Application to a stable, uniform, nonmagnetic relativistic thermal plasma is made. Comparison is made with other studies.
Relativistic Celestial Mechanics of the Solar System
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George
2011-09-01
The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new commission are to: * clarify the geometrical and dynamical concepts of fundamental astronomy within a relativistic framework, * provide adequate mathematical and physical formulations to be used in fundamental astronomy, * deepen the understanding of relativity among astronomers and students of astronomy, and * promote research needed to accomplish these tasks. The present book is intended to make a theoretical contribution to the efforts undertaken by this commission. The first three chapters of the book review the foundations of celestial mechanics as well as those of special and general relativity. Subsequent chapters discuss the theoretical and experimental principles of applied relativity in the solar system. The book is written for graduate students and researchers working in the area of gravitational physics and its applications inmodern astronomy. Chapters 1 to 3 were written by Michael Efroimsky and Sergei Kopeikin, Chapters 4 to 8 by Sergei Kopeikin, and Chapter 9 by George Kaplan. Sergei Kopeikin also edited the overall text. It hardly needs to be said that Newtonian celestial mechanics is a very broad area. In Chapter 1, we have concentrated on derivation of the basic equations, on explanation of the perturbed two-body problem in terms of osculating and nonosculating elements, and on discussion of the gauge freedom in the six-dimensional configuration space of the orbital parameters. The gauge freedom of the configuration space has many similarities to the gauge freedom of solutions of the Einstein field equations in general theory of relativity. It makes an important element of the Newtonian theory of gravity, which is often ignored in the books on classic celestial mechanics. Special relativity is discussed in Chapter 2. While our treatment is in many aspects similar to the other books on special relativity, we have carefully emphasised the explanation of the Lorentz and Poincaré transformations, and the appropriate transformation properties of geometric objects like vectors and tensors, for example, the velocity, acceleration, force, electromagnetic field, and so on. Chapter 3 is devoted to general relativity. It explains the main ideas of the tensor calculus on curved manifolds, the theory of the affine connection and parallel transport, and the mathematical and physical foundations of Einstein's approach to gravity. Within this chapter, we have also included topics which are not well covered in standard books on general relativity: namely, the variational analysis on manifolds and the multipolar expansion of gravitational radiation. Chapter 4 introduces a detailed theory of relativistic reference frames and time scales in an N-body system comprised of massive, extended bodies - like our own solar system. Here, we go beyond general relativity and base our analysis on the scalar-tensor theory of gravity. This allows us to extend the domain of applicability of the IAU resolutions on relativistic reference frames, which in their original form were applicable only in the framework of general relativity. We explain the principles of construction of reference frames, and explore their relationship with the solutions of the gravitational field equations. We also discuss the post-Newtonian multipolemoments of the gravitational field from the viewpoint of global and local coordinates. Chapter 5 discusses the principles of derivation of transformations between reference frames in relativistic celestial mechanics. The standard parameterized post-Newtonian (PPN) formalism by K. Nordtevdt and C. Will operates with a single coordinate frame covering the entire N-body system, but it is insufficient for discussion of more subtle relativistic effects showing up in orbital and rotational motion of extended bodies. Consideration of such effects require, besides the global frame, the introduction of a set of local frames needed to properly treat each body and its internal structure and dynamics. The entire set of global and local frames allows us to to discover and eliminate spurious coordinate effects that have no physical meaning. The basic mathematical technique used in our theoretical treatment is based on matching of asymptotic post-Newtonian expansions of the solutions of the gravity field equations. In Chapter 6, we discuss the principles of relativistic celestial mechanics of massive bodies and particles. We focus on derivation of the post-Newtonian equations of orbital and rotational motion of an extended body possessing multipolar moments. These moments couple with the tidal gravitational fields of other bodies, making the motion of the body under consideration very complicated. Simplification is possible if the body can be assumed spherically symmetric. We discuss the conditions under which this simplification can be afforded, and derive the equations of motion of spherically-symmetric bodies. These equations are solved in the case of the two-body problem, and we demonstrate the rich nature of the possible coordinate presentations of such a solution. The relativistic celestial mechanics of light particles (photons) propagating in a time-dependent gravitational field of an N-body system is addressed in Chapter 7. This is a primary subject of relativistic astrometry which became especially important for the analysis of space observations from the Hipparcos satellite in the early 1990s. New astrometric space missions, orders of magnitude more accurate than Hipparcos, for example, Gaia, SIM, JASMINE, and so on, will require even more complete developments. Additionally, relativistic effects play an important role in other areas of modern astronomy, such as, pulsar timing, very long baseline radio interferometry, cosmological gravitational lensing, and so on. High-precision measurements of gravitational light bending in the solar system are among the most crucial experimental tests of the general theory of relativity. Einstein predicted that the amount of light bending by the Sun is twice that given by a Newtonian theory of gravity. This prediction has been confirmed with a relative precision about 0.01%. Measurements of light bending by major planets of the solar system allow us to test the dynamical characteristics of spacetime and draw conclusions about the ultimate speed of gravity as well as to explore the so-called gravitomagnetic phenomena. Chapter 8 deals with the theoretical principles and methods of the high-precision gravimetry and geodesy, based on the framework of general relativity. A gravitational field and the properties of geocentric and topocentric reference frames are described by the metric tensor obtained from the Einstein equations with the help of post-Newtonian iterations. Bymatching the asymptotic, post-Newtonian expansions of the metric tensor in geocentric and topocentric coordinates, we derive the relationship between the reference frames, and relativistic corrections to the Earth's force of gravity and its gradient. Two definitions of a relativistic geoid are discussed, and we prove that these geoids coincide under the condition of a constant rigid-body rotation of the Earth.We consider, as a model of the Earth's matter, the notion of the relativistic level surface of a self-gravitating perfect fluid. We discover that, under conditions of constant rigid rotation of the fluid and hydrostatic behavior of tides, the post-Newtonian equation of the level surface is the same as that of the relativistic geoid. In the conclusion of this chapter, a relativistic generaisation of the Clairaut's equation is obtained. Chapter 9 is a practical guide to the relativistic resolutions of the IAU, with enough background information to place these resolutions into the context of the late twentieth century positional astronomy. These resolutions involve the definitions of reference systems, time scales, and Earth rotationmodels; and some of the resolutions are quite detailed. Although the recommended Earth rotation models have not been developed ab initio within the relativistic framework presented in the other resolutions (in that regard, there still exist some difficult problems to solve), their relativistic terms are accurate enough for all the current and near-future observational techniques. At that level, the Earth rotation models are consistent with the general relativity framework recommended by the IAU and considered in this book. The chapter presents practical algorithms for implementing the recommended models. The appendices to the book contain a list of astronomical constants and the original text of the relevant IAU resolutions adopted by the IAU General Assemblies in 1997, 2000, 2006, and 2009. Numerous colleagues have contributed to this book in one way or or another. It is a pleasure for us to acknowledge the enlightening discussions which one or more of the authors had on different occasions with Victor A. Brumberg of the Institute of Applied Astronomy (St. Petersburg, Russia); Tianyi Huang and Yi Xie of Nanjing University (China); Edward B. Fomalont of the National Radio Astronomical Observatory (USA); Valeri V. Makarov, William J. Tangren, and James L. Hilton of the US Naval Observatory; Gerhard Schäfer of the Institute of Theoretical Physics (Jena, Germany); Clifford M. Will of Washington University (St. Louis, USA); Ignazio Ciufolini of the Università del Salento and INFN Sezione di Lecce (Italy); and Patrick Wallace, retired from Her Majesty's Nautical Almanac Office (UK). We also would like to thank Richard G. French of Wellesley College (Massachusetts, USA); Michael Soffel and Sergei Klioner of the Technical University of Dresden; Bahram Mashhoon of the University of Missouri-Columbia; John D. Anderson, retired from the Jet Propulsion Laboratory (USA); the late Giacomo Giampieri, also of JPL; Michael Kramer, Axel Jessner, and Norbert Wex of the Max-Planck-Institut für Radioastronomie (Bonn, Germany); Alexander F. Zakharov of the Institute of Theoretical and Experimental Physics (Moscow, Russia); the late Yuri P. Ilyasov from Astro Space Center of Russian Academy of Science; Michael V. Sazhin, Vladimir A. Zharov, and Igor Yu. Vlasov of the Sternberg Astronomical Institute (Moscow, Russia); and Vladimir B. Braginsky of Moscow State University (Russia) for their remarks and comments, all of which helped us to properly formulate the theoretical concepts and other material presented in this book. The discussions among themembers of the IAU Worki! ng Group on Relativity in Celestial Mechanics and Astrometry as well as those within the Working Group on Nomenclature for Fundamental Astronomy have also been quite valuable and have contributed to what is presented here. The numerous scientific papers written by Nicole Capitaine of the Paris Observatory and her collaborators have been essential references. Victor Slabinski and Dennis D. McCarthy of the US Naval Observatory, P. Kenneth Seidelmann of the University of Virginia, Catherine Y. Hohenkerk of Her Majesty's Nautical Almanac Office, and E. Myles Standish, retired from the Jet Propulsion Laboratory, reviewed early drafts of the material that became Chapter 9 and made many substantial suggestions for improvement. We were, of course, influenced by many other textbooks available in this field. We would like to pay particular tribute to: C.W. Misner, K. S. Thorne and J. A. Wheeler "Gravitation" V.A. Brumberg "Essential Relativistic Celestial Mechanics" B.F. Schutz "Geometrical Methods of Mathematical Physics" M.H. Soffel "Relativity in Celestial Mechanics, Astrometry and Geodesy" C.M. Will "Theory and Experiment in Gravitational Physics". There are many other books and influential papers that are important as well which are referenced in the relevant parts of the present book. Not one of our aforementioned colleagues is responsible for any remaining errors or omissions in this book, for which, of course, the authors bear full responsibility. Last, but by nomeans least,Michael Efroimsky and George Kaplan wish to thank John A. Bangert of the US Naval Observatory for the administrative support which he so kindly provided to the project during all of its stages. Sergei Kopeikin is sincerely grateful to the Research Council of the University of Missouri-Columbia for the generous financial support (grants RL-08-027, URC-08-062B, SRF-09-012) that was essential for the successful completion of the book.
Conservative 3 + 1 general relativistic variable Eddington tensor radiation transport equations
Cardall, Christian Y.; Endeve, Eirik; Mezzacappa, Anthony
2013-05-07
We present conservative 3+1 general relativistic variable Eddington tensor radiation transport equations, including greater elaboration of the momentum space divergence (that is, the energy derivative term) than in previous work. These equations are intended for use in simulations involving numerical relativity, particularly in the absence of spherical symmetry. The independent variables are the lab frame coordinate basis spacetime position coordinates and the particle energy measured in the comoving frame. With an eye towards astrophysical applications—such as core-collapse supernovae and compact object mergers—in which the fluid includes nuclei and/or nuclear matter at finite temperature, and in which the transported particles aremore » neutrinos, we pay special attention to the consistency of four-momentum and lepton number exchange between neutrinos and the fluid, showing the term-by-term cancellations that must occur for this consistency to be achieved.« less
Nucleus-acoustic Solitons in Self-gravitating Magnetized Quantum Plasmas
NASA Astrophysics Data System (ADS)
Saaduzzaman, Dewan Mohammad; Amina, Moriom; Mamun, Abdullah Al
2018-03-01
The basic properties of the nucleus-acoustic (NA) solitary waves (SWs) are investigated in a super-dense self-gravitating magnetized quantum plasma (SDSGMQP) system in the presence of an external magnetic field, whose constituents are the non-degenerate light as well as heavy nuclei, and non-/ultra-relativistically degenerate electrons. The Korteweg-de Vries (KdV) equation has been derived by employing the reductive perturbation method. The NA SWs are formed with negative (positive) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure and the obliqueness of the external magnetic field significantly change the basic properties (e.g., amplitude, width, and speed) of NA SWs. The implications of the findings of our present investigation in explaining the physics behind the formation of the NA SWs in astrophysical compact objects like neutron stars are briefly discussed.
A Search for Early High-Energy Afterglows in BATSE Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Giblin, Timothy W.
2003-01-01
The scope of this project was to perform a detailed search for the early high-energy afterglow component of gamma-ray bursts (GRBs) in the BATSE GRB data archive. GRBs are believed to be the product of shock waves generated in a relativistic outflow from the demise of extremely massive stars and/or binary neutron star mergers. The outflow undeniably encounters the ambient medium of the progenitor object and another shock wave is set up. A forward shock propagates into the medium and a reverse shock propagates through the ejecta. This "external" shock dissipates the kinetic energy of the ejecta in the form of radiation via synchrotron losses and slows the outflow eventually to a non-relativistic state. Radiation from the forward external shock is therefore expected to be long-lived, lasting days, weeks, and even months. This radiation is referred to as the 'afterglow'.
90 GHz Observations of M87 and Hydra A
NASA Technical Reports Server (NTRS)
Cotton, W. D.; Mason, B. S.; Dicker, S. R.; Korngut, P. M.; Devlin, M. J.; Aquirre, J.; Benford, D. J.; Moseley, S. H.; Staguhn, J. G.; Irwin, K. D.;
2009-01-01
This paper presents new observations of the active galactic nuclei M87 and Hydra A at 90 GHz made with the MUSTANG array on the Green Bank Telescope at 8"5 resolution. A spectral analysis is performed combining this new data and archival VLA 7 data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.
Exploring Stability of General Relativistic Accretion Disks
NASA Astrophysics Data System (ADS)
Korobkin, Oleg; Abdikamalov, Ernazar; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard
2011-04-01
Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios, involving core collapse of massive stars and mergers of compact ob jects. I will present results on our recent study of the stability of such disks against runaway and non-axisymmetric instabilities, which we explore using three-dimensional hydrodynamics simulations in full general relativity. All of our models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. We will discuss the types, growth rates and pattern speeds of the unstable modes, as well as the detectability of the gravitational waves from such objects.
Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field
NASA Astrophysics Data System (ADS)
Luo, Sui
Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its wave-function spread. A relativistic rescattering enhancement occurs at 2 x 1018 W/cm2, commensurate with relativistic motion of a classical electron in a single field cycle. The good comparison between the results with available experiments suggests the theory approach is well suited to modeling scattering in the ultrastrong intensity regime. We investigate the elastic scattering process as it changes from strong to ultrastrong fields with the photoelectron angular distributions from Ne, Ar, and Xe. Noble gas species with Hartree-Fock scattering potentials show a reduction in elastic rescattering with the increasing energy of ultrastrong fields. It is found that as one increases the returning photoelectron energy, rescattering becomes the dominating mechanism behind the yield distribution as the emission angle for all the species extends from 0° to 90°. The relativistic effects and the magnetic field do not change the angular distribution until one is well into the Gamma r "1 regime where the Lorentz defection significantly reduces the yield. As we proceed to the highest energy, the angular emission range narrows as the mechanism changes over to backscattering into narrow angles along the electric field.
Isospin flip as a relativistic effect: NN interactions
NASA Technical Reports Server (NTRS)
Buck, W. W.
1993-01-01
Results are presented of an analytic relativistic calculation of a OBE nucleon-nucleon (NN) interaction employing the Gross equation. The calculation consists of a non-relativistic reduction that keeps the negative energy states. The result is compared to purely non-relativistic OBEP results and the relativistic effects are separated out. One finds that the resulting relativistic effects are expressable as a power series in (tau(sub 1))(tau(sub 2)) that agrees, qualitatively, with NN scattering. Upon G-parity transforming this NN potential, one obtains, qualitatively, a short range NN spectroscopy in which the S-states are the lowest states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu; Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp; Garain, Sudip, E-mail: sgarain@nd.edu
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equationsmore » is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge–Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.« less
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge-Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Ronald L.
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less
Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, Gregory R.; Uzdensky, Dmitri A., E-mail: Greg.Werner@colorado.edu
As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular,more » whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron–positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.« less
Relativistic Hydrodynamics for Heavy-Ion Collisions
ERIC Educational Resources Information Center
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…
NASA Technical Reports Server (NTRS)
Rees, M. J.
1986-01-01
The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.
The host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy PKS 1502+036
NASA Astrophysics Data System (ADS)
D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Baldi, R. D.; Orienti, M.; Raiteri, C. M.; Ramos Almeida, C.
2018-07-01
The detection of γ-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses (≥108 M⊙) are needed to launch relativistic jets. We present near-infrared imaging data of the γ-ray-emitting NLSy1 PKS 1502+036 obtained with the Very Large Telescope. Its surface brightness profile, extending to ˜20 kpc, is well described by the combination of a nuclear component and a bulge with a Sérsic index n = 3.5, which is indicative of an elliptical galaxy. A circumnuclear structure observed near PKS 1502+036 may be the result of galaxy interactions. A BH mass of ˜7 × 108 M⊙ has been estimated by the bulge luminosity. The presence of an additional faint disc component cannot be ruled out with the present data, but this would reduce the BH mass estimate by only ˜30 per cent. These results, together with analogous findings obtained for FBQS J1644+2619, indicate that the relativistic jets in γ-ray-emitting NLSy1 are likely produced by massive black holes at the centre of elliptical galaxies.
No Flares from Gamma-Ray Burst Afterglow Blast Waves Encountering Sudden Circumburst Density Change
NASA Astrophysics Data System (ADS)
Gat, Ilana; van Eerten, Hendrik; MacFadyen, Andrew
2013-08-01
Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.
NASA Astrophysics Data System (ADS)
Hussain, Nur; Bhattacharjee, Buddhadeb
2017-08-01
Widths of the rapidity distributions of various identified hadrons generated with the UrQMD-3.4 event generator at all the Super Proton Synchrotron (SPS) energies have been presented and compared with the existing experimental results. An increase in the width of the rapidity distribution of Λ could be seen with both Monte Carlo (MC) and experimental data for the studied energies. Using MC data, the study has been extended to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. A similar jump, as observed in the plot of rapidity width versus rest mass at Alternating Gradient Synchrotron (AGS) and all SPS energies, persists even at RHIC and LHC energies, confirming its universal nature from AGS to the highest LHC energies. Such observation indicates that pair production may not be the only mechanism of particle production at the highest LHC energies. However, with MC data, the separate mass scaling for mesons and baryons is found to exist even at the top LHC energy.
Dark matter and alternative recipes for the missing mass
NASA Astrophysics Data System (ADS)
Tortora, Crescenzo; Jetzer, Philippe; Napolitano, Nicola R.
2012-03-01
Within the standard cosmological scenario the Universe is found to be filled by obscure components (dark matter and dark energy) for ~ 95% of its energy budget. In particular, almost all the matter content in the Universe is given by dark matter, which dominates the mass budget and drives the dynamics of galaxies and clusters of galaxies. Unfortunately, dark matter and dark energy have not been detected and no direct or indirected observations have allowed to prove their existence and amount. For this reason, some authors have suggested that a modification of Einstein Relativity or the change of the Newton's dynamics law (within a relativistic and classical framework, respectively) could allow to replace these unobserved components. We will start discussing the role of dark matter in the early-type galaxies, mainly in their central regions, investigating how its content changes as a function of the mass and the size of each galaxy and few considerations about the stellar Initial mass function have been made. In the second part of the paper we have described, as examples, some ways to overcome the dark matter hypothesis, by fitting to the observations the modified dynamics coming out from general relativistic extended theories and the MOdyfled Newtonian dynamics (MOND).
Creating the Primordial Quark-Gluon Plasma at the LHC
NASA Astrophysics Data System (ADS)
Harris, John W.
2013-04-01
Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.
The host galaxy of the γ-ray-emitting narrow-line Seyfert 1 galaxy PKS 1502+036
NASA Astrophysics Data System (ADS)
D'Ammando, F.; Acosta-Pulido, J. A.; Capetti, A.; Baldi, R. D.; Orienti, M.; Raiteri, C. M.; Ramos Almeida, C.
2018-04-01
The detection of γ-ray emission from narrow-line Seyfert 1 galaxies (NLSy1) has challenged the idea that large black hole (BH) masses (≥108 M⊙) are needed to launch relativistic jets. We present near-infrared imaging data of the γ-ray-emitting NLSy1 PKS 1502+036 obtained with the Very Large Telescope. Its surface brightness profile, extending to ˜ 20 kpc, is well described by the combination of a nuclear component and a bulge with a Sérsic index n = 3.5, which is indicative of an elliptical galaxy. A circumnuclear structure observed near PKS 1502+036 may be the result of galaxy interactions. A BH mass of ˜7 × 108 M⊙ has been estimated by the bulge luminosity. The presence of an additional faint disc component cannot be ruled out with the present data, but this would reduce the BH mass estimate by only ˜ 30%. These results, together with analogous findings obtained for FBQS J1644+2619, indicate that the relativistic jets in γ-ray-emitting NLSy1 are likely produced by massive black holes at the center of elliptical galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirnov, V. V.; Hartog, D. J. Den; Duff, J.
2014-11-15
At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused bymore » equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sub e} measurement relevant to ITER operational scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audren, Benjamin; Lesgourgues, Julien; Benabed, Karim
Models for the latest stages of the cosmological evolution rely on a less solid theoretical and observational ground than the description of earlier stages like BBN and recombination. As suggested in a previous work by Vonlanthen et al., it is possible to tweak the analysis of CMB data in such way to avoid making assumptions on the late evolution, and obtain robust constraints on ''early cosmology parameters''. We extend this method in order to marginalise the results over CMB lensing contamination, and present updated results based on recent CMB data. Our constraints on the minimal early cosmology model are weakermore » than in a standard ΛCDM analysis, but do not conflict with this model. Besides, we obtain conservative bounds on the effective neutrino number and neutrino mass, showing no hints for extra relativistic degrees of freedom, and proving in a robust way that neutrinos experienced their non-relativistic transition after the time of photon decoupling. This analysis is also an occasion to describe the main features of the new parameter inference code MONTE PYTHON, that we release together with this paper. MONTE PYTHON is a user-friendly alternative to other public codes like COSMOMC, interfaced with the Boltzmann code CLASS.« less
There are no particles, there are only fields
NASA Astrophysics Data System (ADS)
Hobson, Art
2013-03-01
Quantum foundations are still unsettled, with mixed effects on science and society. By now it should be possible to obtain consensus on at least one issue: Are the fundamental constituents fields or particles? As this paper shows, experiment and theory imply that unbounded fields, not bounded particles, are fundamental. This is especially clear for relativistic systems, implying that it's also true of nonrelativistic systems. Particles are epiphenomena arising from fields. Thus, the Schrödinger field is a space-filling physical field whose value at any spatial point is the probability amplitude for an interaction to occur at that point. The field for an electron is the electron; each electron extends over both slits in the two-slit experiment and spreads over the entire pattern; and quantum physics is about interactions of microscopic systems with the macroscopic world rather than just about measurements. It's important to clarify this issue because textbooks still teach a particles- and measurement-oriented interpretation that contributes to bewilderment among students and pseudoscience among the public. This article reviews classical and quantum fields, the two-slit experiment, rigorous theorems showing particles are inconsistent with relativistic quantum theory, and several phenomena showing particles are incompatible with quantum field theories.
Application of relativistic electrons for the quantitative analysis of trace elements
NASA Astrophysics Data System (ADS)
Hoffmann, D. H. H.; Brendel, C.; Genz, H.; Löw, W.; Richter, A.
1984-04-01
Particle induced X-ray emission methods (PIXE) have been extended to relativistic electrons to induce X-ray emission (REIXE) for quantitative trace-element analysis. The electron beam (20 ≤ E0≤ 70 MeV) was supplied by the Darmstadt electron linear accelerator DALINAC. Systematic measurements of absolute K-, L- and M-shell ionization cross sections revealed a scaling behaviour of inner-shell ionization cross sections from which X-ray production cross sections can be deduced for any element of interest for a quantitative sample investigation. Using a multielemental mineral monazite sample from Malaysia the sensitivity of REIXE is compared to well established methods of trace-element analysis like proton- and X-ray-induced X-ray fluorescence analysis. The achievable detection limit for very heavy elements amounts to about 100 ppm for the REIXE method. As an example of an application the investigation of a sample prepared from manganese nodules — picked up from the Pacific deep sea — is discussed, which showed the expected high mineral content of Fe, Ni, Cu and Ti, although the search for aliquots of Pt did not show any measurable content within an upper limit of 250 ppm.
Coupled modes in magnetized dense plasma with relativistic-degenerate electrons
NASA Astrophysics Data System (ADS)
Khan, S. A.
2012-01-01
Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.
Point form relativistic quantum mechanics and relativistic SU(6)
NASA Technical Reports Server (NTRS)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliav, E.; Kaldor, U.; Ishikawa, Y.
1994-12-31
Relativistic pair correlation energies of Xe were computed by employing a recently developed relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian. The matrix Dirac-Fock-Breit SCF and relativistic coupled cluster calculations were performed by means of expansion in basis sets of well-tempered Gaussian spinors. A detailed study of the pair correlation energies in Xe is performed, in order to investigate the effects of the low-frequency Breit interaction on the correlation energies of Xe. Nonadditivity of correlation and relativistic (particularly Breit) effects is discussed.
NASA Astrophysics Data System (ADS)
Smith, S. S.; Friedel, R. H.; Larsen, B.; Reeves, G.; Spence, H. E.
2015-12-01
In this poster, we present a summary of access to the data products of the Radiation Belt Storm Probes - Energetic Particle Composition, and Thermal plasma (RBSP-ECT) suite of NASA's Van Allen Probes mission. The RBSP-ECT science investigation (http://rbsp-ect.sr.unh.edu) measures comprehensively the near-Earth charged particle environment in order to understand the processes that control the acceleration, global distribution, and variability of radiation belt electrons and ions. RBSP-ECT data products derive from the three instrument elements that comprise the suite, which collectively covers the broad energies that define the source and seed populations, the core radiation belts, and also their highest energy ultra-relativistic extensions. These RBSP-ECT instruments include, from lowest to highest energies: the Helium, Oxygen, Proton, and Electron (HOPE) sensor, the Magnetic Electron and Ion Spectrometer (MagEIS), and the Relativistic Electron and Proton Telescope (REPT). We provide a brief overview of their principles of operation, as well as a description of the Level 2-3 data products that the HOPE, MagEIS, and REPT instruments produce, both separately and together. We provide a summary of how to access these RBSP-ECT data products at our Science Operation Center and Science Data Center (http://www.rbsp-ect.lanl.gov/rbsp_ect.php ) as well as caveats for their use. Finally, in the spirit of efficiently and effectively promoting and encouraging new collaborations, we present a summary of past publications, current studies, and opportunities for your future participation in RBSP-ECT extended mission phase science.
3D relativistic MHD numerical simulations of X-shaped radio sources
NASA Astrophysics Data System (ADS)
Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S.
2017-10-01
Context. A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. In a previous investigation we showed the existence of a connection between the radio morphology and the properties of the host galaxies. Motivated by this connection we performed two-dimensional numerical simulations showing that X-shaped radio sources may naturally form as a jet propagates along the major axis a highly elliptical density distribution, because of the fast expansion of the cocoon along the minor axis of the distribution. Aims: We intend to extend our analysis by performing three-dimensional numerical simulations and investigating the role of different parameters in determining the formation of the X-shaped morphology. Methods: The problem is addressed by numerical means, carrying out three-dimensional relativistic magnetohydrodynamic simulations of bidirectional jets propagating in a triaxial density distribution. Results: We show that only jets with power ≲ 1044 erg s-1 can give origin to an X-shaped morphology and that a misalignment of 30° between the jet axis and the major axis of the density distribution is still favourable to the formation of this kind of morphology. In addition we compute synthetic radio emission maps and polarization maps. Conclusions: In our scenario for the formation of X-shaped radio sources only low power FRII can give origin to such kind of morphology. Our synthetic emission maps show that the different observed morphologies of X-shaped sources can be the result of similar structures viewed under different perspectives.
Formulation of the relativistic quantum Hall effect and parity anomaly
NASA Astrophysics Data System (ADS)
Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu
2016-06-01
We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.
NASA Astrophysics Data System (ADS)
Tanaka, Masaomi; Morokuma, Tomoki; Itoh, Ryosuke; Akitaya, Hiroshi; Tominaga, Nozomu; Saito, Yoshihiko; Stawarz, Łukasz; Tanaka, Yasuyuki T.; Gandhi, Poshak; Ali, Gamal; Aoki, Tsutomu; Contreras, Carlos; Doi, Mamoru; Essam, Ahmad; Hamed, Gamal; Hsiao, Eric Y.; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kikuchi, Yuki; Kobayashi, Naoto; Kuroda, Daisuke; Maehara, Hiroyuki; Matsumoto, Emiko; Mazzali, Paolo A.; Minezaki, Takeo; Mito, Hiroyuki; Miyata, Takashi; Miyazaki, Satoshi; Mori, Kensho; Moritani, Yuki; Morokuma-Matsui, Kana; Morrell, Nidia; Nagao, Tohru; Nakada, Yoshikazu; Nakata, Fumiaki; Noma, Chinami; Ohsuga, Ken; Okada, Norio; Phillips, Mark M.; Pian, Elena; Richmond, Michael W.; Sahu, Devendra; Sako, Shigeyuki; Sarugaku, Yuki; Shibata, Takumi; Soyano, Takao; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Takey, Ali; Tarusawa, Ken'ichi; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi
2014-10-01
We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ~107 M ⊙ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~= 4 × 102-3 × 103, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.
Quantization of Simple Parametrized Systems
NASA Astrophysics Data System (ADS)
Ruffini, Giulio
1995-01-01
I study the canonical formulation and quantization of some simple parametrized systems using Dirac's formalism and the Becchi-Rouet-Stora-Tyutin (BRST) extended phase space method. These systems include the parametrized particle and minisuperspace. Using Dirac's formalism I first analyze for each case the construction of the classical reduced phase space. There are two separate features of these systems that may make this construction difficult: (a) Because of the boundary conditions used, the actions are not gauge invariant at the boundaries. (b) The constraints may have a disconnected solution space. The relativistic particle and minisuperspace have such complicated constraints, while the non-relativistic particle displays only the first feature. I first show that a change of gauge fixing is equivalent to a canonical transformation in the reduced phase space, thus resolving the problems associated with the first feature above. Then I consider the quantization of these systems using several approaches: Dirac's method, Dirac-Fock quantization, and the BRST formalism. In the cases of the relativistic particle and minisuperspace I consider first the quantization of one branch of the constraint at the time and then discuss the backgrounds in which it is possible to quantize simultaneously both branches. I motivate and define the inner product, and obtain, for example, the Klein-Gordon inner product for the relativistic case. Then I show how to construct phase space path integral representations for amplitudes in these approaches--the Batalin-Fradkin-Vilkovisky (BFV) and the Faddeev path integrals --from which one can then derive the path integrals in coordinate space--the Faddeev-Popov path integral and the geometric path integral. In particular I establish the connection between the Hilbert space representation and the range of the lapse in the path integrals. I also examine the class of paths that contribute in the path integrals and how they affect space-time covariance, concluding that it is consistent to take paths that move forward in time only when there is no electric field. The key elements in this analysis are the space-like paths and the behavior of the action under the non-trivial ( Z_2) element of the reparametrization group.
Physics from Time Variability of the VHE Blazar PKS 2155-304
NASA Astrophysics Data System (ADS)
Barres de Almeida, Ulisses
2010-10-01
Blazars are the principal extragalactic sources of very high energy gamma-ray emission in the Universe. These objects constitute a sub-class of Active Galactic Nuclei whose emission is dominated by Doppler boosted non-thermal radiation from plasma outflow- ing at relativistic speeds from the central engine. This plasma outflow happens in the form of large-scale collimated structures called jets, which can extend for Mpc in length and transport energy from the central engine of the galaxy to the larger scale intergalac- tic medium. Over thirty such sources have been discovered to date by ground-based gamma-ray telescopes such as H.E.S.S., and PKS 2155-304 is the prototypical southern- hemisphere representative of this population of objects. In this thesis we have studied in detail some aspects of the temporal variability of the jet emission from PKS 2155-304, combining coordinated observations across the electro- magnetic spectrum, from optical polarimetric measurements to X-ray and ground-based gamma-ray data. The temporal properties of the dataset allowed us to derive important physical information about the structure and emission mechanisms of the source and put constraints to the location of the sites of VHE emission and particle acceleration within the jet. We have also derived a sensitive statistical measure, called Kolmogorov distance, which we applied to the large outburst observed from PKS 2155-304 in July 2006, to de- rive the most stringent constraints to date on limits for the violation of Lorentz invariance induced by quantum-gravity effects from AGN measurements.
Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer
NASA Astrophysics Data System (ADS)
Meliani, Zakaria; Mizuno, Yosuke; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri
2017-02-01
Context. In many astrophysical phenomena, and especially in those that involve the high-energy regimes that always accompany the astronomical phenomenology of black holes and neutron stars, physical conditions that are achieved are extreme in terms of speeds, temperatures, and gravitational fields. In such relativistic regimes, numerical calculations are the only tool to accurately model the dynamics of the flows and the transport of radiation in the accreting matter. Aims: We here continue our effort of modelling the behaviour of matter when it orbits or is accreted onto a generic black hole by developing a new numerical code that employs advanced techniques geared towards solving the equations of general-relativistic hydrodynamics. Methods: More specifically, the new code employs a number of high-resolution shock-capturing Riemann solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of adaptive mesh-refinement (AMR) techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to accurately compute the electromagnetic emissions from such accretion flows. Results: We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry that are performed either in two or three spatial dimensions. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black-hole binary interacting with the surrounding circumbinary disc. In this way, we can present for the first time ray-traced images of the shocked fluid and the light curve resulting from consistent general-relativistic radiation-transport calculations from this process. Conclusions: The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to accurately and self-consistently calculate general-relativistic accretion flows onto compact objects. In addition to the accurate handling of the matter, we provide a self-consistent electromagnetic emission from these scenarios by solving the associated radiative-transfer problem. While magnetic fields are currently excluded from our analysis, the tools presented here can have a number of applications to study accretion flows onto black holes or neutron stars.
Matrasulov, D U; Milibaeva, G M; Salomov, U R; Sundaram, Bala
2005-07-01
Transport properties in the relativistic analog of the periodically kicked rotor are contrasted under classically and quantum mechanical dynamics. The quantum rotor is treated by solving the Dirac equation in the presence of the time-periodic delta-function potential resulting in a relativistic quantum mapping describing the evolution of the wave function. The transition from the quantum suppression behavior seen in the nonrelativistic limit to agreement between quantum and classical analyses in the relativistic regime is discussed. The absence of quantum resonances in the relativistic case is also addressed.
Jet Launching in Resistive GR-MHD Black Hole–Accretion Disk Systems
NASA Astrophysics Data System (ADS)
Qian, Qian; Fendt, Christian; Vourellis, Christos
2018-05-01
We investigate the launching mechanism of relativistic jets from black hole sources, in particular the strong winds from the surrounding accretion disk. Numerical investigations of the disk wind launching—the simulation of the accretion–ejection transition—have so far almost only been done for nonrelativistic systems. From these simulations we know that resistivity, or magnetic diffusivity, plays an important role for the launching process. Here we extend this treatment to general relativistic magnetohydrodynamics (GR-MHD), applying the resistive GR-MHD code rHARM. Our model setup considers a thin accretion disk threaded by a large-scale open magnetic field. We run a series of simulations with different Kerr parameter, field strength, and diffusivity level. Indeed, we find strong disk winds with, however, mildly relativistic speed, the latter most probably due to our limited computational domain. Further, we find that magnetic diffusivity lowers the efficiency of accretion and ejection, as it weakens the efficiency of the magnetic lever arm of the disk wind. As a major driving force of the disk wind we disentangle the toroidal magnetic field pressure gradient; however, magnetocentrifugal driving may also contribute. Black hole rotation in our simulations suppresses the accretion rate owing to an enhanced toroidal magnetic field pressure that seems to be induced by frame dragging. Comparing the energy fluxes from the Blandford–Znajek-driven central spine and the surrounding disk wind, we find that the total electromagnetic energy flux is dominated by the total matter energy flux of the disk wind (by a factor of 20). The kinetic energy flux of the matter outflow is comparatively small and comparable to the Blandford–Znajek electromagnetic energy flux.
Monte Carlo Simulations of Photospheric Emission in Relativistic Outflows
NASA Astrophysics Data System (ADS)
Bhattacharya, Mukul; Lu, Wenbin; Kumar, Pawan; Santana, Rodolfo
2018-01-01
We study the spectra of photospheric emission from highly relativistic gamma-ray burst outflows using a Monte Carlo code. We consider the Comptonization of photons with a fast-cooled synchrotron spectrum in a relativistic jet with a realistic photon-to-electron number ratio {N}γ /{N}{{e}}={10}5, using mono-energetic protons that interact with thermalized electrons through Coulomb interaction. The photons, electrons, and protons are cooled adiabatically as the jet expands outward. We find that the initial energy distributions of the protons and electrons do not have any appreciable effect on the photon peak energy {E}γ ,{peak} and the power-law spectrum above {E}γ ,{peak}. The Coulomb interaction between the electrons and the protons does not affect the output photon spectrum significantly as the energy of the electrons is elevated only marginally. {E}γ ,{peak} and the spectral indices for the low- and high-energy power-law tails of the photon spectrum remain practically unchanged even with electron-proton coupling. Increasing the initial optical depth {τ }{in} results in a slightly shallower photon spectrum below {E}γ ,{peak} and fewer photons at the high-energy tail, although {f}ν \\propto {ν }-0.5 above {E}γ ,{peak} and up to ∼1 MeV, independent of {τ }{in}. We find that {E}γ ,{peak} determines the peak energy and the shape of the output photon spectrum. Finally, we find that our simulation results are quite sensitive to {N}γ /{N}{{e}}, for {N}{{e}}=3× {10}3. For almost all our simulations, we obtain an output photon spectrum with a power-law tail above {E}γ ,{peak} extending up to ∼1 MeV.
Gravitational lensing in modified Newtonian dynamics
NASA Astrophysics Data System (ADS)
Mortlock, Daniel J.; Turner, Edwin L.
2001-10-01
Modified Newtonian dynamics (MOND) is an alternative theory of gravity that aims to explain large-scale dynamics without recourse to any form of dark matter. However, the theory is incomplete, lacking a relativistic counterpart, and so makes no definite predictions about gravitational lensing. The most obvious form that MONDian lensing might take is that photons experience twice the deflection of massive particles moving at the speed of light, as in general relativity (GR). In such a theory there is no general thin-lens approximation (although one can be made for spherically symmetric deflectors), but the three-dimensional acceleration of photons is in the same direction as the relativistic acceleration would be. In regimes where the deflector can reasonably be approximated as a single point-mass (specifically low-optical depth microlensing and weak galaxy-galaxy lensing), this naive formulation is consistent with observations. Forthcoming galaxy-galaxy lensing data and the possibility of cosmological microlensing have the potential to distinguish unambiguously between GR and MOND. Some tests can also be performed with extended deflectors, for example by using surface brightness measurements of lens galaxies to model quasar lenses, although the breakdown of the thin-lens approximation allows an extra degree of freedom. None the less, it seems unlikely that simple ellipsoidal galaxies can satisfy both constraints. Furthermore, the low-density universe implied by MOND must be completely dominated by the cosmological constant (to fit microwave background observations), and such models are at odds with the low frequency of quasar lenses. These conflicts might be resolved by a fully consistent relativistic extension to MOND; the alternative is that MOND is not an accurate description of the Universe.
NASA Astrophysics Data System (ADS)
Brunetti, G.; Zimmer, S.; Zandanel, F.
2017-12-01
The Fermi-LAT (Large Area Telescope) collaboration recently published deep upper limits to the gamma-ray emission of the Coma cluster, a cluster hosting the prototype of giant radio haloes. In this paper, we extend previous studies and use a formalism that combines particle reacceleration by turbulence and the generation of secondary particles in the intracluster medium to constrain relativistic protons and their role for the origin of the radio halo. We conclude that a pure hadronic origin of the halo is clearly disfavoured as it would require excessively large magnetic fields. However, secondary particles can still generate the observed radio emission if they are reaccelerated. For the first time the deep gamma-ray limits allow us to derive meaningful constraints if the halo is generated during phases of reacceleration of relativistic protons and their secondaries by cluster-scale turbulence. In this paper, we explore a relevant range of parameter space of reacceleration models of secondaries. Within this parameter space, a fraction of model configurations is already ruled out by current gamma-ray limits, including the cases that assume weak magnetic fields in the cluster core, B ≤ 2-3 μG. Interestingly, we also find that the flux predicted by a large fraction of model configurations assuming magnetic fields consistent with Faraday rotation measures (RMs) is not far from the limits. This suggests that a detection of gamma-rays from the cluster might be possible in the near future, provided that the electrons generating the radio halo are secondaries reaccelerated and the magnetic field in the cluster is consistent with that inferred from RM.
Loading relativistic Maxwell distributions in particle simulations
NASA Astrophysics Data System (ADS)
Zenitani, S.
2015-12-01
In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.
NASA Astrophysics Data System (ADS)
Demissie, Taye B.
2017-11-01
The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.
An X-ray survey of variable radio bright quasars
NASA Technical Reports Server (NTRS)
Henriksen, M. J.; Marshall, F. E.; Mushotzky, R. F.
1984-01-01
A sample consisting primarily of radio bright quasars was observed in X-rays with the Einstein Observatory for times ranging from 1500 to 5000 seconds. Detected sources had luminosities ranging from 0.2 to 41.0 x 10 to the 45th power ergs/sec in the 0.5 to 4.5 keV band. Three of the fourteen objects which were reobserved showed flux increases greater than a factor of two on a time scale greater than six months. No variability was detected during the individual observations. The optical and X-ray luminosities are correlated, which suggests a common origin. However, the relationship (L sub x is approximately L sub op to the (.89 + or - .15)) found for historic radio variables may be significantly different than that reported for other radio bright sources. Some of the observed X-ray fluxes were substantially below the predicted self-Compton flux, assuming incoherent synchrotron emission and using VLBI results to constrain the size of the emission region, which suggests relativistic expansion in these sources. Normal CIV emission in two of the sources with an overpredicted Compton component suggests that although they, like BL Lac objects, have highly relativistic material apparently moving at small angle to the line of sight, they have a smaller fraction of the continuum component in the beam.
GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes
NASA Astrophysics Data System (ADS)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
2013-11-01
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.
a Search for New Physics with the Beacon Mission
NASA Astrophysics Data System (ADS)
Turyshev, Slava G.; Shao, Michael; Girerd, André; Lane, Benjamin
The primary objective of the Beyond Einstein Advanced Coherent Optical Network (BEACON) mission is a search for new physics beyond general relativity by measuring the curvature of relativistic space-time around the Earth. This curvature is characterized by the Eddington parameter γ — the most fundamental relativistic gravity parameter and a direct measure for the presence of new physical interactions. BEACON will achieve an accuracy of 1 × 10-9 in measuring the parameter γ, thereby going a factor of 30,000 beyond the present best result involving the Cassini spacecraft. Secondary mission objectives include: (i) a direct measurement of the "frame-dragging" and geodetic precessions in the Earth's rotational gravitomagnetic field, to 0.05% and 0.03% accuracy respectively, (ii) the first measurement of gravity's nonlinear effects on light and the corresponding second order spatial metric's effects to 0.01% accuracy. BEACON will lead to robust advances in tests of fundamental physics — this mission could discover a violation or extension of general relativity and/or reveal the presence of an additional long range interaction in physics. It will provide crucial information to separate modern scalar-tensor theories of gravity from general relativity, probe possible ways for gravity quantization, and test modern theories of cosmological evolution.
Role of pressure anisotropy on relativistic compact stars
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Banerjee, Ayan; Hansraj, Sudan
2018-02-01
We investigate a compact spherically symmetric relativistic body with anisotropic particle pressure profiles. The distribution possesses characteristics relevant to modeling compact stars within the framework of general relativity. For this purpose, we consider a spatial metric potential of Korkina and Orlyanskii [Ukr. Phys. J. 36, 885 (1991)] type in order to solve the Einstein field equations. An additional prescription we make is that the pressure anisotropy parameter takes the functional form proposed by Lake [Phys. Rev. D 67, 104015 (2003), 10.1103/PhysRevD.67.104015]. Specifying these two geometric quantities allows for further analysis to be carried out in determining unknown constants and obtaining a limit of the mass-radius diagram, which adequately describes compact strange star candidates like Her X-1 and SMC X-1. Using the anisotropic Tolman-Oppenheimer-Volkoff equations, we explore the hydrostatic equilibrium and the stability of such compact objects. Then, we investigate other physical features of this model, such as the energy conditions, speeds of sound, and compactness of the star, in detail and show that our results satisfy all the required elementary conditions for a physically acceptable stellar model. The results obtained are useful in analyzing the stability of other anisotropic compact objects like white dwarfs, neutron stars, and gravastars.
On the Origin of the Soft X-ray excess in radio quiet AGN
NASA Astrophysics Data System (ADS)
Petrucci, P.; Ursini, F.; Cappi, M.; Bianchi, S.; Matt, G.; De Rosa, A.; Malzac, J.; Henri, G.
2016-06-01
Known since the 80s, the origin of the soft X-ray (< 2 keV) emission in excess to the high energy (2-10 keV) power law extrapolation, the so-called soft X-ray excess, is still highly debated. Two models are commonly discussed: relativistically blurred ionized reflection or thermal comptonisation. In some objects the observation of UV-soft X-ray correlation and the absence of clear signature of relativistic broadening, suggests comptonization as the dominant process. We successfully tested this hypothesis during the 2009 broad band monitoring campaign of Mkn 509. The deduced properties of the comptonizing plasma suggest a warm (˜1 keV), moderately thick (tau˜10-20) corona covering a large part of the accretion disk. Interestingly, the disc-corona energetics agree with a passive accretion disc, most of the accretion power being released in the warm corona. In this talk I will present the results obtained applying the same method to a sample of objects selected to have: a) 3 XMM observations b) at least 3 OM filters in use and c) a low (<1.e22 cm-2) neutral absorption. They all agree with a powerful warm corona above a passive or almost passive accretion disk. I will discuss the methodology and the important implications of the results.
Exploring the Effects of Disk Thickness on the Black Hole Reflection Spectrum
NASA Astrophysics Data System (ADS)
Taylor, Corbin; Reynolds, Christopher S.
2018-03-01
The relativistically broadened reflection spectrum, observed in both AGN and X-ray binaries, has proven to be a powerful probe of the properties of black holes and the environments in which they reside. Emitted from the innermost regions of the accretion disk, this X-ray spectral component carries with it information not only about the plasma that resides in these extreme conditions, but also the black hole spin, a marker of the formation and accretion history of these objects. The models currently used to interpret the reflection spectrum are often simplistic, however, approximating the disk as an infinitely thin, optically thick plane of material orbiting in circular Keplerian orbits around the central object. Using a new relativistic ray-tracing suite (Fenrir) that allows for more complex disk approximations, we examine the effects that disk thickness may have on the reflection spectrum. Assuming a lamppost corona, we find that finite disk thickness can have a variety of effects on the reflection spectrum, including a truncation of the blue wing (from self-shadowing of the accretion disk) and an enhancement of the red wing (from the irradiation of the central “eye wall” of the inner disk). We deduce the systematic errors on black hole spin and height that may result from neglecting these effects.
NASA Astrophysics Data System (ADS)
Rodriguez, Juan; Krista, Larisza
2017-04-01
Enhancements of relativistic electrons in Earth's radiation belts statistically exhibit a 27-day periodicity that is attributable to the interaction of corotating interaction regions (CIRs) with the Earth's magnetosphere. These CIRs are the interfaces between tenuous, high-speed solar wind streams (HSS) emitted by coronal holes (CH) and the denser, slower solar wind emitted from the quiet Sun (QS). At these stream interfaces (SI), the plasma is compressed, resulting in increased number density and magnetic field. Subsequent relativistic electron enhancements have been attributed to southward interplanetary magnetic field (IMF Bz). This includes southward Bz intensified within the CIR as well as southward Bz associated with Alfvenic turbulence in the following HSS. Although this chain of events is broadly accepted, few studies have studied in depth the evolution of a single persistent CH, its solar wind signatures at L1, and associated recurrent relativistic electron enhancements in the radiation belts. During the second half of 2003, a persistent CH was observed in the northern hemisphere of the Sun. The resulting CIR caused recurrent enhancements in the relativistic electron fluxes observed by the GOES satellites. During these enhancements, the >2 MeV electrons increased from dropout (instrument background) levels to hazardous levels more than an order-of-magnitude greater than the NOAA SWPC alert level. Moreover, for the first time in Solar Cycle 23 (SC23) the >4 MeV electron fluxes exceeded 100 electrons/(cm**2 s sr). This happened in five recurrent extended relativistic electron enhancement events during this period. In context, only five such events with >4 MeV electron fluxes exceeding 100 electrons/(cm**2 s sr) occurred during the rest of SC23, and not in a recurrent fashion. Using this as a geoeffectiveness criterion, neither other CHs during this period, nor the coronal mass ejections (CMEs) in later October and November were as geoeffective as this persistent CH. This paper addresses the question: how do the properties of this particularly geoeffective CH and its solar wind manifestations at 1 AU vary from rotation to rotation and how is it distinguished from less geoeffective CHs (and ICMEs) during the same period? The Coronal Hole Automated Recognition and Monitoring (CHARM; Krista and Gallagher, 2009) algorithm is used to identify CHs and to quantify their physical properties (e.g., boundary, area, magnetic field strength and polarity). The Minor Storm (MiSt) algorithm is used to link the CHs to their in situ signatures (e.g., IMF, velocity, number density, temperature) observed by the Advanced Composition Explorer (ACE) satellite. The properties of the CHs and associated geoeffective solar wind properties are evaluated and compared, as well as the Dst geomagnetic index. With these results, we determine whether any of the characteristics of the CHs and their in situ solar wind signatures distinguish them in their relative geoeffectiveness.
Relativistic Linear Restoring Force
ERIC Educational Resources Information Center
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasso, C.H.; Gallardo, M.
2006-01-15
The conclusions extracted from a recent study of the excitation of giant dipole resonances in nuclei at relativistic bombarding energies open the way for a further simplification of the problem. It consists in the elimination of the relativistic scalar and vector electromagnetic potentials and the familiar numerical difficulties associated with their presence in the calculation scheme. The inherent advantage of a reformulation of the problem of relativistic Coulomb excitation of giant dipole resonances along these lines is discussed.
Relativistic nonlinear plasma waves in a magnetic field
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Pellat, R.
1975-01-01
Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.
NASA Astrophysics Data System (ADS)
Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank
2018-02-01
Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.
NASA Astrophysics Data System (ADS)
Suzuki, Akihiro; Maeda, Keiichi
2017-04-01
The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.
A KPC-scale X-ray jet in the BL LAC Source S5 2007+777
NASA Technical Reports Server (NTRS)
Sambruna, Rita; Maraschi, Laura; Tavecchio, Fabrizio
2008-01-01
The BL Lac S3 2007++777, a classical radio-selected BL Lac from the sample of Stirkel et al. exhibiting an extended (19") radio jet. was observed with Chandra revealing an X-ray jet with simi1ar morphology. The hard X-ray spectrum and broad band SED is consistent with an IC/CMB origin for the X-ray emission, implying a highly relativistic flow at small angle to the line of sight with an unusually large deprojected length, 300 kpc. A structured jet consisting of a fast spine and slow wall is consistent with the observations.
Powerful Radio Galaxies with Simbol-X: Lobes and Hot Spots
NASA Astrophysics Data System (ADS)
Migliori, G.; Grandi, P.; Angelini, L.; Raimondi, L.; Torresi, E.; Palumbo, G. G. C.
2009-05-01
We present here the first Simbol-X simulations of the extended components, lobes and hot spots, of the radio galaxies. We use the paradigmatic case of Pictor A to test the capabilities of Simbol-X in this field of studies. Simulations demonstrate that Simbol-X will be able not only to perform spatially resolved studies on the lobes of radio galaxies below 10 keV but also to observe, for the first time, hard X-ray emission from the hot spots. These extremely promising results show the considerable potentiality of Simbol-X in studying interaction phenomena between relativistic plasma and surrounding environment.
Accelerated horizons and Planck-scale kinematics
NASA Astrophysics Data System (ADS)
Arzano, Michele; Laudonio, Matteo
2018-04-01
We extend the concept of accelerated horizons to the framework of deformed relativistic kinematics at the Planck scale. We show that the nontrivial effects due to symmetry deformation manifest in a finite blueshift for field modes as measured by a Rindler observer approaching the horizon. We investigate whether, at a field theoretic level, this effect could manifest in the possibility of a finite horizon contribution to the entropy, a sort of covariant brick wall. In the specific model of symmetry deformation considered, it will turn out that a nondiverging density of modes close to the horizon can be achieved only by introducing a momentum space measure which violates Lorentz invariance.
Relativistic fluid dynamics with spin
NASA Astrophysics Data System (ADS)
Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico
2018-04-01
Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.
Lieb-Robinson bound and locality for general markovian quantum dynamics.
Poulin, David
2010-05-14
The Lieb-Robinson bound shows the existence of a maximum speed of signal propagation in discrete quantum mechanical systems with local interactions. This generalizes the concept of relativistic causality beyond field theory, and provides a powerful tool in theoretical condensed matter physics and quantum information science. Here, we extend the scope of this seminal result by considering general markovian quantum evolution, where we prove that an equivalent bound holds. In addition, we use the generalized bound to demonstrate that correlations in the stationary state of a Markov process decay on a length scale set by the Lieb-Robinson velocity and the system's relaxation time.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.
ERIC Educational Resources Information Center
Kholmetskii, Alexander L.; Yarman, T.
2010-01-01
In this paper we consider the relativistic polarization of a moving magnetic dipole and show that this effect can be understood via the relativistic generalization of Kirchhoff's first law to a moving closed circuit with a steady current. This approach allows us to better understand the law of relativistic transformation of four-current density…
A Missing-link in the Supernova-GRB Connection: The Case of SN 2012ap
NASA Astrophysics Data System (ADS)
Chakraborti, Sayan; Soderberg, Alicia; Chomiuk, Laura; Kamble, Atish; Yadav, Naveen; Ray, Alak; Hurley, Kevin; Margutti, Raffaella; Milisavljevic, Dan; Bietenholz, Michael; Brunthaler, Andreas; Pignata, Giuliano; Pian, Elena; Mazzali, Paolo; Fransson, Claes; Bartel, Norbert; Hamuy, Mario; Levesque, Emily; MacFadyen, Andrew; Dittmann, Jason; Krauss, Miriam; Briggs, M. S.; Connaughton, V.; Yamaoka, K.; Takahashi, T.; Ohno, M.; Fukazawa, Y.; Tashiro, M.; Terada, Y.; Murakami, T.; Goldsten, J.; Barthelmy, S.; Gehrels, N.; Cummings, J.; Krimm, H.; Palmer, D.; Golenetskii, S.; Aptekar, R.; Frederiks, D.; Svinkin, D.; Cline, T.; Mitrofanov, I. G.; Golovin, D.; Litvak, M. L.; Sanin, A. B.; Boynton, W.; Fellows, C.; Harshman, K.; Enos, H.; von Kienlin, A.; Rau, A.; Zhang, X.; Savchenko, V.
2015-06-01
Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.
Device and method for electron beam heating of a high density plasma
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.
Relativistic particle in a box: Klein-Gordon versus Dirac equations
NASA Astrophysics Data System (ADS)
Alberto, Pedro; Das, Saurya; Vagenas, Elias C.
2018-03-01
The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.
From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids
NASA Astrophysics Data System (ADS)
Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele
2017-11-01
Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.
Tunneling dynamics in relativistic and nonrelativistic wave equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, F.; Muga, J. G.; Ruschhaupt, A.
2003-09-01
We obtain the solution of a relativistic wave equation and compare it with the solution of the Schroedinger equation for a source with a sharp onset and excitation frequencies below cutoff. A scaling of position and time reduces to a single case all the (below cutoff) nonrelativistic solutions, but no such simplification holds for the relativistic equation, so that qualitatively different ''shallow'' and ''deep'' tunneling regimes may be identified relativistically. The nonrelativistic forerunner at a position beyond the penetration length of the asymptotic stationary wave does not tunnel; nevertheless, it arrives at the traversal (semiclassical or Buettiker-Landauer) time {tau}. Themore » corresponding relativistic forerunner is more complex: it oscillates due to the interference between two saddle-point contributions and may be characterized by two times for the arrival of the maxima of lower and upper envelopes. There is in addition an earlier relativistic forerunner, right after the causal front, which does tunnel. Within the penetration length, tunneling is more robust for the precursors of the relativistic equation.« less
Relativistic Gas Drag on Dust Grains and Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr; Korea University of Science and Technology, Daejeon, 34113
We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative duemore » to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.« less
A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrie, Michael; Shadwick, B. A.
2016-01-04
Here, we present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Juttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviors that do not exist in the non relativistic case.more » The numerical study of the relativistic two-stream instability completes the set of benchmarking tests.« less
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.
2006-01-01
Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.
Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.
1984-01-01
A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.
NASA Astrophysics Data System (ADS)
Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.
2010-08-01
We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio η/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.
Relativistic plasma control for single attosecond x-ray burst generation
NASA Astrophysics Data System (ADS)
Baeva, T.; Gordienko, S.; Pukhov, A.
2006-12-01
We show that managing time-dependent polarization of the relativistically intense laser pulse incident on a plasma surface allows us to gate a single (sub)attosecond x-ray burst even when a multicycle driver is used. The single x-ray burst is emitted when the tangential component of the vector potential at the plasma surface vanishes. This relativistic plasma control is based on the theory of relativistic spikes [T. Baeva, S. Gordienko, and A. Pukhov, Phys. Rev. E 74, 046404 (2006)]. The relativistic plasma control is demonstrated here numerically by particle-in-cell simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouras, I.; El, A.; Fochler, O.
2010-08-15
We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio {eta}/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.
Fuzzy Logic for Incidence Geometry
2016-01-01
The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133
Relativistic transport theory for a two-temperature magnetized plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metens, T.; Balescu, R.
1990-09-01
The relativistic kinetic theory of linear transport is worked out within the framework of a new moment method. A complete analytical study of the transport in a two-temperature inhomogeneous magnetized fusion plasma is given. The transport relations and coefficients are derived from the kinetic equation with the full relativistic Beliaev--Budker collision operator and the impact of relativistic effects on the confinement are investigated.
Relativistic strings - From soap films to a grand unified theory
NASA Astrophysics Data System (ADS)
Nesterenko, V. V.
1986-11-01
The concept of relativistic strings is considered in connection with the theory of minimal surfaces (e.g., soap films stretched onto closed wire contours). The role of relativistic strings in hadron physics is discussed. Attention is then given to the creation of a grand unified theory on the basis of the superstring concept. Finally, the role of relativistic strings in cosmology is examined.
A Bell-type theorem without hidden variables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, Henry P.
2003-09-12
It is shown that no theory that satisfies certain premises can exclude faster-than-light influences. The premises include neither the existence of hidden variables nor counterfactual definiteness, nor any premise that effectively entails the general existence of outcomes of unperformed local measurements. All the premises are compatible with Copenhagen philosophy and the principles and predictions of relativistic quantum field theory. The present proof is contrasted with an earlier one with the same objective.
Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation
NASA Astrophysics Data System (ADS)
Porth, Oliver J. G.
2011-11-01
In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor 8 and half-opening angles below 1 degree are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic Lorentz force, such that we obtain an increased stability of relativistic flows. Accordingly, the non-axisymmetric modes applied to the field-line foot-points saturate quickly, with no signs of enhanced dissipation or disruption near the jet launching site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malli, Gulzari L., E-mail: malli@sfu.ca
2015-02-14
Our ab initio all-electron fully relativistic Dirac–Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO){sub 6} as −7.39 and −6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO){sub 6} are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contributionmore » of relativistic effects to the Ae of ∼0.40 eV is marginal. The Sg–C and C–O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ∼14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ∼7 kJ/mol due to relativistic effects to the mean energy of Sg(CO){sub 6} is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO){sub 6}, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO){sub 6}.« less
Diffuse radio emission in the complex merging galaxy cluster Abell2069
NASA Astrophysics Data System (ADS)
Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.
2015-03-01
Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.
Relativistic electron beam generator
Mooney, L.J.; Hyatt, H.M.
1975-11-11
A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.
Review of the theory of pulsar-wind nebulae
NASA Astrophysics Data System (ADS)
Bucciantini, N.
2014-03-01
Pulsar-wind nebulae (PWNe) are ideal astrophysical laboratories where high energy relativistic phenomena can be investigated. They are close, well resolved in our observations, and the knowledge derived in their study has a strong impact in many other fields, from AGNs to GRBs. Yet there are still unresolved issues, that prevent us from a full clear understanding of these objects. The lucky combination of high resolution X-ray imaging and numerical codes to handle the outflow and dynamical properties of relativistic MHD, has opened a new avenue of investigation that has lead to interesting progressed in the last years. Despite all of these, we do not understand yet how particles are accelerated, and the functioning of the pulsar wind and pulsar magnetosphere, that power PWNe. I will review what is now commonly known as the MHD paradigm, and in particular I will focus on various approaches that have been and are currently used to model these systems. For each I will highlight its advantages and limitations, and degree of applicability.
NASA Astrophysics Data System (ADS)
Bucciantini, Niccolò
2014-03-01
Pulsar Wind Nebulae (PWNe) are ideal astrophysical laboratories where high energy relativistic phenomena can be investigated. They are close, well resolved in our observations, and the knowledge derived in their study has a strong impact in many other fields, from AGNs to GRBs. Yet there are still unresolved issues, that prevent us from a full clear understanding of these objects. The lucky combination of high resolution X-ray imaging and numerical codes to handle the outflow and dynamical properties of relativistic MHD, has opened a new avenue of investigation that has lead to interesting progresses in the last years. Despite all of this, we do not understand yet how particles are accelerated, and the functioning of the pulsar wind and pulsar magnetosphere, that power PWNe. I will review what is now commonly known as the MHD paradigm, and in particular I will focus on various approaches that have been and are currently used to model these systems. For each I will highlight its advantages, limitations, and degree of applicability.
Poynting-Flux-Driven Bubbles and Shocks Around Merging Neutron Star Binaries
NASA Astrophysics Data System (ADS)
Medvedev, M. V.; Loeb, A.
2013-04-01
Merging binaries of compact relativistic objects are thought to be progenitors of short gamma-ray bursts. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux. The steady injection of energy by the binary forms a bubble filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it, demonstrate that it exhibits finite time singularity and find the corresponding analytical solution. We predict that such binaries can be observed as radio sources a few hours before and after the merger.
Relativistic Newtonian dynamics
NASA Astrophysics Data System (ADS)
Friedman, Yaakov; Mendel Steiner, Joseph
2017-05-01
A new Relativistic Newtonian Dynamics (RND) for motion under a conservative force capable to describe non-classical behavior in astronomy is proposed. The rotor experiments using Mössbauer spectroscopy with synchrotron radiation, described in the paper, indicate the influence of non-gravitational acceleration or potential energy on time. Similarly, the observed precession of Mercury and the periastron advance of binaries can be explained by the influence of gravitational potential energy on spacetime. The proposed RND incorporates the influence of potential energy on spacetime in Newton’s dynamics. The effect of this influence on time intervals, space increments and velocities is described explicitly by the use of the concept of escape trajectory. For an attracting conservative static potential we derived the RND energy conservation and the dynamics equation for motion of objects with non-zero mass and for massless particles. These equations are subsequently simplified for motion under a central force. Without the need to curve spacetime, this model predicts accurately the four non-classical observations in astronomy used to test the General Relativity.
Observations of M87 and Hydra A at 90 GHz
NASA Technical Reports Server (NTRS)
Cotton, W. D.; Mason, B. S.; Dicker, S.; Korngut, P.; Devlin, M. J.; Aquirre, J.; Benford, D.; Moseley, H.; Staguhn, J.; Irwin, K.;
2009-01-01
This paper presents new observations of the AGNs M87 and Hydra A at 90 GHz made with the MUSTANG bolometer array on the Green Bank Telescope at 8.5" resolution. A spectral analysis is performed combining this new data and archival VLA data or1 these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. L187 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losesto affect the spectrum at 90 GHz The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles The difference between these two sources may be accounted for by the different lengths over which the jets are observable, 2 kpc for 5187 and 45 kpc for Hydra A. Subject headings: galaxies: jets, galaxies: active, radio continuum, galaxies: individual (M87. Hydra A),
Dirac Hamiltonian and Reissner-Nordström metric: Coulomb interaction in curved space-time
NASA Astrophysics Data System (ADS)
Noble, J. H.; Jentschura, U. D.
2016-03-01
We investigate the spin-1 /2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordström space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordström geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational and electrogravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electrogravitational correction terms to the potential proportional to αnG , where α is the fine-structure constant and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is shown to be explicitly broken due to the electrostatic coupling. The resulting spectrum of radially symmetric, electrostatically bound systems (with gravitational corrections) is evaluated for example cases.
Relativistic collective diffusion in one-dimensional systems
NASA Astrophysics Data System (ADS)
Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong
2018-05-01
The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.
Indirect NMR spin-spin coupling constants in diatomic alkali halides
NASA Astrophysics Data System (ADS)
Jaszuński, Michał; Antušek, Andrej; Demissie, Taye B.; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth
2016-12-01
We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.
NASA Astrophysics Data System (ADS)
Wang, Q.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Feng, Q. S.; Zhang, H. C.; He, X. T.
2018-01-01
The longitudinal relativistic effect on stimulated Raman backscattering (SRBS) is investigated by using one-dimensional (1D) Vlasov-Maxwell simulations. Using a short backscattered light seed pulse with a very small amplitude, the linear gain spectra of SRBS in the strongly convective regime is presented by combining the relativistic and non-relativistic 1D Vlasov-Maxwell simulations, which is in agreement with the steady-state linear theory. More interestingly, by considering transition from convective to absolute instability due to electron trapping, we successfully predict the critical duration of the seed which can just trigger the kinetic inflation of the excited SRBS after the seed leaves the simulation box. The critical duration in the relativistic case is much shorter than that in the nonrelativistic case, which indicates that the kinetic inflation more easily occurs in the relativistic case than in the nonrelativistic case. In the weakly convective regime, the transition from convective to absolute instability for SRBS can directly occur in the linear regime due to the longitudinal relativistic modification. For the same pump, our simulations first demonstrate that the SRBS excited by a short and small seed pulse is a convective instability in the nonrelativistic case but becomes an absolute instability due to the decrease of the linear Landau damping from the longitudinal relativistic modification in the relativistic case. In more detail, the growth rate of the backscattered light is also in excellent agreement with theoretical prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeh, Obinna; Jolicoeur, Sheean; Maartens, Roy
Next-generation galaxy surveys will increasingly rely on the galaxy bispectrum to improve cosmological constraints, especially on primordial non-Gaussianity. A key theoretical requirement that remains to be developed is the analysis of general relativistic effects on the bispectrum, which arise from observing galaxies on the past lightcone, as well as from relativistic corrections to the dynamics. As an initial step towards a fully relativistic analysis of the galaxy bispectrum, we compute for the first time the local relativistic lightcone effects on the bispectrum, which come from Doppler and gravitational potential contributions. For the galaxy bispectrum, the problem is much more complexmore » than for the power spectrum, since we need the lightcone corrections at second order. Mode-coupling contributions at second order mean that relativistic corrections can be non-negligible at smaller scales than in the case of the power spectrum. In a primordial Gaussian universe, we show that the local lightcone projection effects for squeezed shapes at z ∼ 1 mean that the bispectrum can differ from the Newtonian prediction by ∼> 10% when the short modes are k ∼< (50 Mpc){sup −1}. These relativistic projection effects, if ignored in the analysis of observations, could be mistaken for primordial non-Gaussianity. For upcoming surveys which probe equality scales and beyond, all relativistic lightcone effects and relativistic dynamical corrections should be included for an accurate measurement of primordial non-Gaussianity.« less
Relativistic Corrections to the Properties of the Alkali Fluorides
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Partridge, Harry
1993-01-01
Relativistic corrections to the bond lengths, dissociation energies and harmonic frequencies of KF, RbF and CsF have been obtained at the self-consistent field level by dissociating to ions. The relativistic corrections to the bond lengths, harmonic frequencies and dissociation energies to the ions are very small, due to the ionic nature of these molecules and the similarity of the relativistic and nonrelativistic ionic radii.
Loading relativistic Maxwell distributions in particle simulations
NASA Astrophysics Data System (ADS)
Zenitani, Seiji
2015-04-01
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50 % for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.
A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish
2015-06-01
Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion formore » a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.« less
Entrance and Exit CSR Impedance for Non-Ultrarelativistic Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Rui; Tsai, Cheng Ying
2017-05-01
For a high-brightness electron beam being transported through beamlines involving bending systems, the coherent synchrotron radiation (CSR) and longitudinal space charge (LSC) interaction could often cause microbunching instability. The semi-analytical Vlasov solver for microbunching gain* depends on the impedances for the relevant collective effects. The existing results for CSR impedances are usually obtained for the ultrarelativistic limit. To extend the microbunching analysis to cases of low energies, such as the case of an ERL merger, or to density modulations at extremely small wavelength, it is necessary to extend the impedance analysis to the non-ultrarelativistic regime. In this study, we presentmore » the impedance analysis for the transient CSR interaction in the non-ultrarelativistic regime, for transients including both entrance to and exit from a magnetic dipole. These impedance results will be compared to their ultra-relativistic counterparts**, and the corresponding wakefield obtained from the impedance for low-energy beams will be compared with the existing results of transient CSR wakefield for general beam energies***.« less
NASA Astrophysics Data System (ADS)
Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.
2014-08-01
A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.
Coherent states for the relativistic harmonic oscillator
NASA Technical Reports Server (NTRS)
Aldaya, Victor; Guerrero, J.
1995-01-01
Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.
Predicted NMR properties of noble gas hydride cations RgH +
NASA Astrophysics Data System (ADS)
Cukras, Janusz; Sadlej, Joanna
2008-12-01
The NMR shielding constants and, for the first time, the spin-spin coupling constants of Rg and H in RgH + compounds for Rg = Ne, Ar, Kr, Xe have been investigated by non-relativistic Hartree-Fock (HF) and relativistic Dirac-Hartree-Fock (DHF) methods. Electron-correlation effects have been furthermore calculated using SOPPA and CCSD at the non-relativistic level. The correlation effects are large on both parameters and opposite to the relativistic effects. The results indicate that both the relativistic and correlation effects need to be taken into account in a quantitative computations, especially in the case of the spin-spin coupling constants.
RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor
2016-11-20
A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show amore » good agreement with simulations results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cari, C., E-mail: cari@staff.uns.ac.id; Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Yunianto, M., E-mail: muhtaryunianto@staff.uns.ac.id
2016-02-08
The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.
A Comprehensive Comparison of Relativistic Particle Integrators
NASA Astrophysics Data System (ADS)
Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.
2018-03-01
We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2013-10-01
A statistical description of the all-particle cosmic-ray spectrum is given in the 10^{14}\\ \\text{eV} to 10^{20}\\ \\text{eV} interval. The high-energy cosmic-ray flux is modeled as an ultra-relativistic multi-component plasma, whose components constitute a mixture of nearly ideal but nonthermal gases of low density and high temperature. Each plasma component is described by an ultra-relativistic power-law density manifested as spectral peak in the wideband fit. The “knee” and “ankle” features of the high- and ultra-high-energy spectrum turn out to be the global and local extrema of the double-logarithmic E3-scaled flux representation in which the spectral fit is performed. The all-particle spectrum is covered by recent data sets from several air shower arrays, and can be modeled as three-component plasma in the indicated energy range extending over six decades. The temperature, specific number density, internal energy and entropy of each plasma component are extracted from the partial fluxes in the broadband fit. The grand partition function and the extensive entropy functional of a non-equilibrated gas mixture with power-law components are derived in phase space by ensemble averaging.
Relativistic parameters of senescence.
Stathatos, Marios A
2005-01-01
The laws of biochemistry and biology are governed by parameters whose description in mathematical formulas is based on the three-dimensional space. It is a fact, however, that the life span of a cell and its specific functions, though limited, can be extended or diminished depending on the genetic code but also, on the natural pressure of the environment. The plasticity exhibited by a cellular system has been attributed to the change of the three-dimensional structure of the cell, with time being a simple measure of this change. The model of biological relativity proposed here, considers time as a flexible fourth dimension that corresponds directly to the inertial status of the cells. Two types of clocks are defined: the relativistic biological clock (RBC) and the mechanical clock (MC). In contrast to the MCs that show the astrological reference time, the time shown by the RBCs delay because it depends on cellular activity. The maximum and the expected life span of the cells and/or the organisms can be therefore relied on time transformation. One of the most important factors that can affect time flow is the energy that is produced during metabolic work. Based on this observation, RBCs can be constructed following series of theoretical experiments in order to assess biological time and life span changes.
Search For Cosmic-Ray-Induced Gamma-Ray Emission In Galaxy Clusters
Ackermann, M.
2014-04-30
Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended γ-ray emission at the locations of 50 galaxy clusters in 4 years of Fermi-LAT data under the assumption of the universal cosmic-ray model proposed by Pinzke & Pfrommer (2010). We find an excess at a significance of 2.7 σ which uponmore » closer inspection is however correlated to individual excess emission towards three galaxy clusters: Abell 400, Abell 1367 and Abell 3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background (for example, radio galaxies within the clusters). Through the combined analysis of 50 clusters we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the cosmic-ray to thermal pressure ratio within the virial radius, R200, to be below 1.2-1.4% depending on the morphological classification. In addition we derive new limits on the γ-ray flux from individual clusters in our sample.« less
Search for Cosmic-Ray-Induced Gamma-Ray Emission in Galaxy Clusters
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.;
2014-01-01
Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into gamma rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended gamma-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7 delta, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R(sub 200), to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the gamma-ray flux from individual clusters in our sample.
NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew
2013-08-10
Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change inmore » density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.« less
Fermi bubbles as a source of cosmic rays above 1015 eV
NASA Astrophysics Data System (ADS)
Chernyshov, D. O.; Cheng, K. S.; Dogiel, V. A.; Ko, C. M.
2014-11-01
Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Sebastian; Marquetand, Philipp; González, Leticia
2014-08-21
An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbitmore » coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations.« less
A Process Algebra Approach to Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Sulis, William
2017-12-01
The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitória, R.L.L.; Furtado, C., E-mail: furtado@fisica.ufpb.br; Bakke, K., E-mail: kbakke@fisica.ufpb.br
2016-07-15
The relativistic quantum dynamics of an electrically charged particle subject to the Klein–Gordon oscillator and the Coulomb potential is investigated. By searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system. The meaning of this behaviour of the angular frequency is that only some specific values of the angular frequency of the Klein–Gordon oscillator are permitted in order to obtain bound state solutions. As an example, we obtain both the angular frequency and the energy level associated with the ground statemore » of the relativistic system. Further, we analyse the behaviour of a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential.« less
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Pratiwi, B. N.
2016-04-01
D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.
Computational Relativistic Astrophysics Using the Flow Field-Dependent Variation Theory
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.
2002-01-01
We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.
NASA Astrophysics Data System (ADS)
Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa
2018-02-01
Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.
Shprits, Yuri Y; Drozdov, Alexander Y; Spasojevic, Maria; Kellerman, Adam C; Usanova, Maria E; Engebretson, Mark J; Agapitov, Oleksiy V; Zhelavskaya, Irina S; Raita, Tero J; Spence, Harlan E; Baker, Daniel N; Zhu, Hui; Aseev, Nikita A
2016-09-28
The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts
Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.
2016-01-01
The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050