Sample records for extended range operations

  1. 78 FR 58598 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Operations (ETOPS) of Multi-Engine Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Number: 2120-0718 Title: Extended Operations (ETOPS) of Multi-Engine Airplanes Form Numbers: There are no... operate two-engine airplanes over these long-range routes and extended the procedures for extended...

  2. Computerized Torque Control for Large dc Motors

    NASA Technical Reports Server (NTRS)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  3. Start-Stop Moment Optimization of Range Extender and Control Strategy Design for Extended -Range Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Zhao, Jing-bo; Han, Bing-yuan; Bei, Shao-yi

    2017-10-01

    Range extender is the core component of E-REV, its start-stop control determines the operation modes of vehicle. This paper based on a certain type of E-REV, researched constant power control strategy of range extender in extended-range model, to target range as constraint condition, combined with different driving cycle conditions, by correcting battery SOC for range extender start-stop moment, optimized the control strategy of range extender, and established the vehicle and range extender start-stop control simulation model. Selected NEDC and UDDS conditions simulation results show that: under certain target mileage, the range extender running time reduced by 37.2% and 28.2% in the NEDC condition, and running time UDDS conditions were reduced by 40.6% and 33.5% in the UDDS condition, reached the purpose of meeting the vehicle mileage and reducing consumption and emission.

  4. A Prospective Analysis on Functional Outcomes Following Extended Latissimus Dorsi Flap Breast Reconstruction.

    PubMed

    Eyjolfsdottir, H; Haraldsdottir, B; Ragnarsdottir, M; Asgeirsson, K S

    2017-06-01

    To prospectively assess the functional effect of using the extended latissimus dorsi flap in immediate breast reconstructions. A total of 15 consecutive patients undergoing breast reconstruction with extended latissimus dorsi flap participated. Shoulder range of motion, muscle strength, lateral flexion of the torso, and position of scapula were measured pre-operatively and 1, 6, and 12 months post-operatively, in addition to donor-site post-operative complications. At 12 months post-operatively, patients had achieved full range of shoulder movement, when compared to pre-operative values. Lateral flexion of the torso was, however, significantly reduced bilaterally at 1 and 6 months post-operatively (p = 0.001, p = 0.01) and to the not operated side at 12 months (p = 0.01). Muscle strength in flexion-extension-internal rotation was significantly (p = 0.01) reduced on the operated side 12 months post-operatively. All but one patient had numbness around the donor-site scar 12 months post-operatively, 33% had slight adhesions but all were pain free. Although invariably, patients having extended latissimus dorsi flap may expect to achieve full range of shoulder movement, they should be informed of possible functional consequences and the time and effort it takes to recover. Further research is needed to investigate the potential long-term functional implications that extended latissimus dorsi flap may have as a result of changes in the lateral flexion of the torso and scapula position.

  5. Extended Temperature Solar Cell Technology Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  6. FAA Long-Range Aviation Forecasts Fiscal Years 2005-2020

    DTIC Science & Technology

    1993-09-01

    assumptions translate into somewhat slower growth of aviation activity and FAA workload measures during the extended 16 -year period (2004 to 2020) than was...OPERATIONS 1.8 1.2 INSTRUMENT OPERATIONS 2.0 1.3 IFR AIRCRAFT HANDLED 2.0 1.3 FLIGHT SERVICE STTIONS (0.2) 0.1 2 II. LONG-RANGE FORECAST ASSUMPTIONS The...product (GDP), adjusted for price changes and expressed in 1987 dollars, will average 1.9 percent annually over the extended 16 -year fore- cast period

  7. Manned orbital systems concepts study. Book 2: Requirements for extended-duration missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    In order to provide essential data needed in long-range program planning, the Manned Orbital Systems Concepts (MOSC) study attempted to define, evaluate, and compare concepts for manned orbital systems that provide extended experiment mission capabilities in space, flexibility of operation, and growth potential. Specific areas discussed include roles and requirements for man in future space missions, requirements for extended capability, mission/payload concepts, and preliminary design and operational requirements.

  8. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential

    DOEpatents

    HUbbell, Joel M.

    2014-08-19

    The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.

  9. Opportunities and challenges for extended-range predictions of tropical cyclone impacts on hydrological predictions

    NASA Astrophysics Data System (ADS)

    Tsai, Hsiao-Chung; Elsberry, Russell L.

    2013-12-01

    SummaryAn opportunity exists to extend support to the decision-making processes of water resource management and hydrological operations by providing extended-range tropical cyclone (TC) formation and track forecasts in the western North Pacific from the 51-member ECMWF 32-day ensemble. A new objective verification technique demonstrates that the ECMWF ensemble can predict most of the formations and tracks of the TCs during July 2009 to December 2010, even for most of the tropical depressions. Due to the relatively large number of false-alarm TCs in the ECMWF ensemble forecasts that would cause problems for support of hydrological operations, characteristics of these false alarms are discussed. Special attention is given to the ability of the ECMWF ensemble to predict periods of no-TCs in the Taiwan area, since water resource management decisions also depend on the absence of typhoon-related rainfall. A three-tier approach is proposed to provide support for hydrological operations via extended-range forecasts twice weekly on the 30-day timescale, twice-daily on the 15-day timescale, and up to four times a day with a consensus of high-resolution deterministic models.

  10. Flow Range of Centrifugal Compressor Being Extended

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2001-01-01

    General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.

  11. Apparatus and methods for a human extender

    DOEpatents

    Jansen, John F.

    2001-01-01

    A human extender controller for interface between a human operator and a physical object through a physical plant. The human extender controller uses an inner-feedback loop to increase the equivalent damping of the operating system to stabilize the system when it contacts with the environment and reduces the impact of the environment variation by utilizing a high feedback gain, determined by a root locus sketch. Because the stability of the human extender controller of the present invention is greatly enhanced over that of the prior art, the present invention is able to achieve a force reflection ratio 500 to 1 and capable of handling loads above the two (2) ton range.

  12. Extending operating range of a homogeneous charge compression ignition engine via cylinder deactivation

    DOEpatents

    Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Duffy, Kevin P [Metamora, IL; Liechty, Michael P [Chillicothe, IL

    2008-05-27

    An HCCI engine has the ability to operate over a large load range by utilizing a lower cetane distillate diesel fuel to increase ignition delay. This permits more stable operation at high loads by avoidance of premature combustion before top dead center. During low load conditions, a portion of the engines cylinders are deactivated so that the remaining cylinders can operate at a pseudo higher load while the overall engine exhibits behavior typical of a relatively low load.

  13. School Leaders' Perceptions of the Impact of Extended Services on Families and Communities: The Case of One Local Authority

    ERIC Educational Resources Information Center

    Peterson, Andrew; Durrant, Ian

    2013-01-01

    The move in England towards extended services was a core part of the educational policy of successive Labour governments throughout the 2000s. Sitting alongside like-minded initiatives, school leaders were encouraged to envision, plan for and operate a range of activities and services aimed at deepening and extending schools' relationships with…

  14. SiC/Si diode trigger circuit provides automatic range switching for log amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    SiC/Si diode pair provides automatic range change to extend the operating range of a logarithmic amplifier-conversion circuit and assures stability at or near the range switch-over point. the diode provides hysteresis for a trigger circuit that actuates a relay at the desired range extension point.

  15. Thermionic reactors for space nuclear power

    NASA Technical Reports Server (NTRS)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  16. Dual-bridge LLC-SRC with extended voltage range for deeply depleted PEV battery charging

    NASA Astrophysics Data System (ADS)

    Shahzad, M. Imran; Iqbal, Shahid; Taib, Soib

    2017-11-01

    This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50-420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50-125, 125-250 and 250-420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.

  17. 78 FR 73916 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Operations (ETOPS) of Multi-Engine Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION...-0718. Title: Extended Operations (ETOPS) of Multi-Engine Airplanes. Form Numbers: There are no FAA... that permitted certificated air carriers to operate two-engine airplanes over long-range routes and...

  18. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE PAGES

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    2016-09-23

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  19. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  20. Extending radiative transfer models by use of Bayes rule. [in atmospheric science

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1977-01-01

    This paper presents a procedure that extends some existing radiative transfer modeling techniques to problems in atmospheric science where curvature and layering of the medium and dynamic range and angular resolution of the signal are important. Example problems include twilight and limb scan simulations. Techniques that are extended include successive orders of scattering, matrix operator, doubling, Gauss-Seidel iteration, discrete ordinates and spherical harmonics. The procedure for extending them is based on Bayes' rule from probability theory.

  1. Environmental Assessment: Western Range Instrumentation Modernization Program Vandenberg Air Force Base, Santa Barbara County, and Pillar Point Air Force Station, San Mateo County California

    DTIC Science & Technology

    2008-09-03

    Force Base ( AFB ), and Pillar Point Air Force Station (AFS), California. The 30th Space Wing at Vandenberg AFB operates the Western Launch and Test...Range (Western Range). The Western Range begins at the coastal boundaries of Vandenberg AFB and extends westward to the Marshall Islands, including...Vandenberg AFB . Vandenberg AFB is headquarters to the 30th Space Wing, the Air Force Space Command unit that operates Vandenberg AFB and the Western

  2. Extended operating range of the 30-cm ion thruster with simplified power processor requirements

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1981-01-01

    A two grid 30 cm diameter mercury ion thruster was operated with only six power supplies over the baseline J series thruster power throttle range with negligible impact on thruster performance. An analysis of the functional model power processor showed that the component mass and parts count could be reduced considerably and the electrical efficiency increased slightly by only replacing power supplies with relays. The input power, output thrust, and specific impulse of the thruster were then extended, still using six supplies, from 2660 watts, 0.13 newtons, and 2980 seconds to 9130 watts, 0.37 newtons, and 3820 seconds, respectively. Increases in thrust and power density enable reductions in the number of thrusters and power processors required for most missions. Preliminary assessments of the impact of thruster operation at increased thrust and power density on the discharge characteristics, performance, and lifetime of the thruster were also made.

  3. Medical support for law enforcement-extended operations incidents.

    PubMed

    Levy, Matthew J; Tang, Nelson

    2014-01-01

    As the complexity and frequency of law enforcement-extended operations incidents continue to increase, so do the opportunities for adverse health and well-being impacts on the responding officers. These types of clinical encounters have not been well characterized nor have the medical response strategies which have been developed to effectively manage these encounters been well described. The purpose of this article is to provide a descriptive epidemiology of the clinical encounters reported during extended law enforcement operations, as well as to describe a best practices approach for their effective management. This study retrospectively examined the clinical encounters of the Maryland State Police (MSP) Tactical Medical Unit (TMU) during law enforcement extended operations incidents lasting 8 or more hours. In addition, a qualitative analysis was performed on clinical data collected by federal law enforcement agencies during their extended operations. Forty-four percent of missions (455/1,047) supported by the MSP TMU lasted 8 or more hours. Twenty-six percent of these missions (117/455) resulted in at least one patient encounter. Nineteen percent of patient chief complaints (45/238) were related to heat illness/ dehydration. Fifteen percent of encounters (36/238) were for musculoskeletal injury/pain. Eight percent of patients (19/238) had nonspecific sick call (minor illness) complaints. The next most common occurring complaints were cold-related injuries, headache, sinus congestion, and wound/laceration, each of which accounted for 7 percent of patients (16/238), respectively. Analysis of federal law enforcement agencies' response to such events yielded similar clinical encounters. A wide range of health problems are reported by extended law enforcement operations personnel. Timely and effective treatment of these problems can help ensure that the broader operations mission is not compromised. An appropriate operational strategy for managing health complaints reported during extended operations involves the deployment of a well-trained medical support team using the core concepts of tactical emergency medical support.

  4. Red-light-emitting laser diodes operating CW at room temperature

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  5. Gap/silicon Tandem Solar Cell with Extended Temperature Range

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2006-01-01

    A two-junction solar cell has a bottom solar cell junction of crystalline silicon, and a top solar cell junction of gallium phosphide. A three (or more) junction solar cell has bottom solar cell junctions of silicon, and a top solar cell junction of gallium phosphide. The resulting solar cells exhibit improved extended temperature operation.

  6. Flow directing means for air-cooled transformers

    DOEpatents

    Jallouk, Philip A.

    1977-01-01

    This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.

  7. Extended-gate-type IGZO electric-double-layer TFT immunosensor with high sensitivity and low operation voltage

    NASA Astrophysics Data System (ADS)

    Liang, Lingyan; Zhang, Shengnan; Wu, Weihua; Zhu, Liqiang; Xiao, Hui; Liu, Yanghui; Zhang, Hongliang; Javaid, Kashif; Cao, Hongtao

    2016-10-01

    An immunosensor is proposed based on the indium-gallium-zinc-oxide (IGZO) electric-double-layer thin-film transistor (EDL TFT) with a separating extended gate. The IGZO EDL TFT has a field-effect mobility of 24.5 cm2 V-1 s-1 and an operation voltage less than 1.5 V. The sensors exhibit the linear current response to label-free target immune molecule in the concentrations ranging from 1.6 to 368 × 10-15 g/ml with a detection limit of 1.6 × 10-15 g/ml (0.01 fM) under an ultralow operation voltage of 0.5 V. The IGZO TFT component demonstrates a consecutive assay stability and recyclability due to the unique structure with the separating extended gate. With the excellent electrical properties and the potential for plug-in-card-type multifunctional sensing, extended-gate-type IGZO EDL TFTs can be promising candidates for the development of a label-free biosensor for public health applications.

  8. Improved gas thrust bearings

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Etsion, I.

    1979-01-01

    Two variations of gas-lubricated thrust bearings extend substantially load-carrying range over existing gas bearings. Dual-Action Gas Thrust Bearing's load-carrying capacity is more than ninety percent greater than that of single-action bearing over range of compressibility numbers. Advantages of Cantilever-mounted Thrust Bearing are greater tolerance to dirt ingestion, good initial lift-off characteristics, and operational capability over wide temperature range.

  9. 14 CFR 27.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges...; (ii) The landing gear extended; and (iii) The helicopter in-ground effect at a height consistent with... must be at least— (i) For reciprocating engine powered helicopters, 4,000 feet at maximum weight with a...

  10. 14 CFR 27.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges...; (ii) The landing gear extended; and (iii) The helicopter in-ground effect at a height consistent with... must be at least— (i) For reciprocating engine powered helicopters, 4,000 feet at maximum weight with a...

  11. 14 CFR 27.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... minimum operating speed. (a) For helicopters— (1) The hovering ceiling must be determined over the ranges...; (ii) The landing gear extended; and (iii) The helicopter in-ground effect at a height consistent with... must be at least— (i) For reciprocating engine powered helicopters, 4,000 feet at maximum weight with a...

  12. Hardware test program for evaluation of baseline range/range rate sensor concept

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Hardware Test Program for evaluation of the baseline range/range rate sensor concept was initiated 11 September 1984. This ninth report covers the period 12 May through 11 June 1885. A contract amendment adding a second phase has extended the Hardware Test Program through 10 December 1985. The objective of the added program phase is to establish range and range measurement accuracy and radar signature characteristics for a typical spacecraft target. Phase I of the Hardware Test Program was designed to reduce the risks associated with the Range/Range Rate (R/R) Sensor baseline design approach. These risks are associated with achieving the sensor performance required for the two modes of operation, the Interrupted CW (ICW) mode for initial acquisition and tracking to close-in ranges, and the CW mode, providing coverage during the final docking maneuver. The risks associated with these modes of operation have to do with the realization of adequate sensitivity to operate to their individual maximum ranges.

  13. A unique control system simulator for the evaluation of pulsed plasma thrusters

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1973-01-01

    Because of the low thrust characteristics of solid-propellant pulsed plasma thrusters and their operational requirement to operate in a vacuum environment, unique and sensitive test techniques are required. A technique evolved for testing and evaluating pulsed plasma thrusters in an open- or closed-loop system mode employs a unique air bearing platform as a single-axis simulator on which the thruster is mounted. The simulator described was developed to evaluate pulsed plasma thrusters in the low micropound range; however, the simulator can be extended to cover the operational range of currently developed millipound thrusters.

  14. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.

  15. A Communications-based Mission Planning Tool Concept for Low-cost Tactical UXV Operations

    DTIC Science & Technology

    2014-04-01

    communication with its base station. Significance to defence and security The Royal Canadian Navy ( RCN ) makes extensive use of unmanned aerial...further concepts for their use in RCN operations, such as off-board jamming. Communication with UAVs or USVs (UXVs) will be lost if the UXV travels too...conditions that allow communications to be extended to areas beyond the expected operating range of the UXV. This should benefit RCN operations and would

  16. Alertness management in two-person long-haul flight operations

    NASA Technical Reports Server (NTRS)

    Rosekind, M. R.; Gander, P. H.

    1992-01-01

    Long-haul flight operations involve cumulative sleep loss, circadian disruption, and extended and irregular duty schedules. These factors reduce pilot alertness and performance on the flightdeck. Conceptually and operationally, alertness management in flight operations can be divided into preventive strategies and operational countermeasures. Preventive strategies are utilized prior to a duty period to mitigate or reduce the effects of sleep loss, circadian disruption and fatigue during subsequent flight operations. Operational countermeasures are used during operations as acute techniques for maintaining performance and alertness. Results from previous NASA Ames field studies document the sleep loss and circadian disruption in three-person long-haul flying and illustrate the application of preventive strategies and operational countermeasures. One strategy that can be used in both a preventive and operational manner is strategic napping. The application and effectiveness of strategic napping in long-haul operations will be discussed. Finally, long-haul flying in two-person highly automated aircraft capable of extended range operations will create new challenges to maintaining pilot alertness and performance. Alertness management issues in this flight environment will be explored.

  17. Magnifying image intensifier

    NASA Technical Reports Server (NTRS)

    Vine, J.

    1977-01-01

    Coil assembly for zoom operation produces axial magnetic flux density that decreases in strength from photocathode to target. This results in magnification factor greater than unity. To extend magnification range, field is reversed in direction between object and image planes.

  18. Life and Operating Range Extension of the BPT-4000 Qualification Model Hall Thruster

    NASA Technical Reports Server (NTRS)

    Welander, Ben; Carpenter, Christian; deGrys, Kristi; Hofer, Richard R.; Randolph, Thomas M.; Manzella, David H.

    2006-01-01

    Following completion of the 5,600 hr qualification life test of the BPT-4000 4.5 kW Hall Thruster Propulsion System, NASA and Aerojet have undertaken efforts to extend the qualified operating range and lifetime of the thruster to support a wider range of NASA missions. The system was originally designed for orbit raising and stationkeeping applications on military and commercial geostationary satellites. As such, it was designed to operate over a range of power levels from 3 to 4.5 kW. Studies of robotic exploration applications have shown that the cost savings provided by utilizing commercial technology that can operate over a wider range of power levels provides significant mission benefits. The testing reported on here shows that the 4.5 kW thruster as designed has the capability to operate efficiently down to power levels as low as 1 kW. At the time of writing, the BPT-4000 qualification thruster and cathode have accumulated over 400 hr of operation between 1 to 2 kW with an additional 600 hr currently planned. The thruster has demonstrated no issues with longer duration operation at low power.

  19. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    NASA Astrophysics Data System (ADS)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  20. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, OH, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hour period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hour period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  1. Advanced Stirling Convertor (ASC-E2) Performance Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore; Wilson, Scott

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG Project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, four pairs of ASCs capable of operating to 850 C and designated with the model number ASC-E2, were delivered by Sunpower of Athens, Ohio, to GRC in 2010. The ASC-E2s underwent a series of tests that included workmanship vibration testing, performance mapping, and extended operation. Workmanship vibration testing was performed following fabrication of each convertor to verify proper hardware build. Performance mapping consisted of operating each convertor at various conditions representing the range expected during a mission. Included were conditions representing beginning-of-mission (BOM), end-of-mission (EOM), and fueling. This same series of tests was performed by Sunpower prior to ASC-E2 delivery. The data generated during the GRC test were compared to performance before delivery. Extended operation consisted of a 500-hr period of operation with conditions maintained at the BOM point. This was performed to demonstrate steady convertor performance following performance mapping. Following this initial 500-hr period, the ASC-E2s will continue extended operation, controller development and special durability testing, during which the goal is to accumulate tens of thousands of hours of operation. Data collected during extended operation will support reliability analysis. Performance data from these tests is summarized in this paper.

  2. Operational planning using Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)

    NASA Astrophysics Data System (ADS)

    O'Connor, Alison; Kirtman, Benjamin; Harrison, Scott; Gorman, Joe

    2016-05-01

    The US Navy faces several limitations when planning operations in regard to forecasting environmental conditions. Currently, mission analysis and planning tools rely heavily on short-term (less than a week) forecasts or long-term statistical climate products. However, newly available data in the form of weather forecast ensembles provides dynamical and statistical extended-range predictions that can produce more accurate predictions if ensemble members can be combined correctly. Charles River Analytics is designing the Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS), which performs data fusion over extended-range multi-model ensembles, such as the North American Multi-Model Ensemble (NMME), to produce a unified forecast for several weeks to several seasons in the future. We evaluated thirty years of forecasts using machine learning to select predictions for an all-encompassing and superior forecast that can be used to inform the Navy's decision planning process.

  3. The Aerodynamic Characteristics of Six Full-Scale Propellers Having Different Airfoil Sections

    NASA Technical Reports Server (NTRS)

    Biermann, David; Hartman, Edwin P

    1939-01-01

    Wind-tunnel tests are reported of six 3-blade 10-foot propellers operated in front of a liquid-cooled engine nacelle. The propellers were identical except for blade airfoil sections, which were: Clark y, R.A.F. 6, NACA 4400, NACA 2400-34, NACA 2rsub200, and NACA 6400. The range of blade angles investigated extended for 15 degrees to 40 degrees for all propellers except the Clark y, for which it extended to 45 degrees. The results showed that the range in maximum efficiency between the highest and lowest values was about 3 percent. The highest efficiencies were for the low-camber sections.

  4. HEPS4Power - Extended-range Hydrometeorological Ensemble Predictions for Improved Hydropower Operations and Revenues

    NASA Astrophysics Data System (ADS)

    Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano

    2015-04-01

    In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the forecasts against observed discharge. Analysis should be specifically oriented to the maximisation of hydroelectricity production. Thus, verification metrics should include economic measures like cost loss approaches. The final step will include the transfer of the HEPS system to several hydropower systems, the connection with the energy market prices and the development of probabilistic multi-reservoir production and management optimizations guidelines. The baseline model chain yielding three-days forecasts established for a hydropower system in southern-Switzerland will be presented alongside with the work-plan to achieve seasonal ensemble predictions.

  5. A variable-mode stator consequent pole memory machine

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Lyu, Shukang; Lin, Heyun; Zhu, Z. Q.

    2018-05-01

    In this paper, a variable-mode concept is proposed for the speed range extension of a stator-consequent-pole memory machine (SCPMM). An integrated permanent magnet (PM) and electrically excited control scheme is utilized to simplify the flux-weakening control instead of relatively complicated continuous PM magnetization control. Due to the nature of memory machine, the magnetization state of low coercive force (LCF) magnets can be easily changed by applying either a positive or negative current pulse. Therefore, the number of PM poles may be changed to satisfy the specific performance requirement under different speed ranges, i.e. the machine with all PM poles can offer high torque output while that with half PM poles provides wide constant power range. In addition, the SCPMM with non-magnetized PMs can be considered as a dual-three phase electrically excited reluctance machine, which can be fed by an open-winding based dual inverters that provide direct current (DC) bias excitation to further extend the speed range. The effectiveness of the proposed variable-mode operation for extending its operating region and improving the system reliability is verified by both finite element analysis (FEA) and experiments.

  6. Characterization of LANDSAT Panels Using the NIST BRDF Scale from 1100 nm to 2500 nm

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Tsai, Benjamin K.; Allen, David W.; Cooksey, Catherine; Yoon, Howard; Hanssen, Leonard; Zeng, Jinan; Fulton, Linda; Biggar, Stuart; Markham, Brian

    2010-01-01

    Many earth observing sensors depend on white diffuse reflectance standards to derive scales of radiance traceable to the St Despite the large number of Earth observing sensors that operate in the reflective solar region of the spectrum, there has been no direct method to provide NIST traceable BRDF measurements out to 2500 rim. Recent developments in detector technology have allowed the NIST reflectance measurement facility to expand the operating range to cover the 250 nm to 2500 nm range. The facility has been modified with and additional detector using a cooled extended range indium gallium arsenide (Extended InGaAs) detector. Measurements were made for two PTFE white diffuse reflectance standards over the 1100 nm to 2500 nm region at a 0' incident and 45' observation angle. These two panels will be used to support the OLI calibration activities. An independent means of verification was established using a NIST radiance transfer facility based on spectral irradiance, radiance standards and a diffuse reflectance plaque. An analysis on the results and associated uncertainties will be discussed.

  7. In vivo high-resolution cortical imaging with extended-focus optical coherence microscopy in the visible-NIR wavelength range

    NASA Astrophysics Data System (ADS)

    Marchand, Paul J.; Szlag, Daniel; Bouwens, Arno; Lasser, Theo

    2018-03-01

    Visible light optical coherence tomography has shown great interest in recent years for spectroscopic and high-resolution retinal and cerebral imaging. Here, we present an extended-focus optical coherence microscopy system operating from the visible to the near-infrared wavelength range for high axial and lateral resolution imaging of cortical structures in vivo. The system exploits an ultrabroad illumination spectrum centered in the visible wavelength range (λc = 650 nm, Δλ ˜ 250 nm) offering a submicron axial resolution (˜0.85 μm in water) and an extended-focus configuration providing a high lateral resolution of ˜1.4 μm maintained over ˜150 μm in depth in water. The system's axial and lateral resolution are first characterized using phantoms, and its imaging performance is then demonstrated by imaging the vasculature, myelinated axons, and neuronal cells in the first layers of the somatosensory cortex of mice in vivo.

  8. Evaluations of Extended-Range tropical Cyclone Forecasts in the Western North Pacific by using the Ensemble Reforecasts: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Tsai, Hsiao-Chung; Chen, Pang-Cheng; Elsberry, Russell L.

    2017-04-01

    The objective of this study is to evaluate the predictability of the extended-range forecasts of tropical cyclone (TC) in the western North Pacific using reforecasts from National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) during 1996-2015, and from the Climate Forecast System (CFS) during 1999-2010. Tsai and Elsberry have demonstrated that an opportunity exists to support hydrological operations by using the extended-range TC formation and track forecasts in the western North Pacific from the ECMWF 32-day ensemble. To demonstrate this potential for the decision-making processes regarding water resource management and hydrological operation in Taiwan reservoir watershed areas, special attention is given to the skill of the NCEP GEFS and CFS models in predicting the TCs affecting the Taiwan area. The first objective of this study is to analyze the skill of NCEP GEFS and CFS TC forecasts and quantify the forecast uncertainties via verifications of categorical binary forecasts and probabilistic forecasts. The second objective is to investigate the relationships among the large-scale environmental factors [e.g., El Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc.] and the model forecast errors by using the reforecasts. Preliminary results are indicating that the skill of the TC activity forecasts based on the raw forecasts can be further improved if the model biases are minimized by utilizing these reforecasts.

  9. Applications of subseasonal-to-seasonal (S2S) predictions

    NASA Astrophysics Data System (ADS)

    White, Christopher; Lamb, Rob; Carlsen, Henrik; Robertson, Andrew; Klein, Richard; Lazo, Jeffrey; Kumar, Arun; Vitart, Frederic; Coughlan de Perez, Erin; Ray, Andrea; Murray, Virginia; Graham, Richard; Buontempo, Carlo

    2017-04-01

    While long-range seasonal outlooks have been operational for many years, until recently the extended-range timescale - referred to as 'subseasonal-to-seasonal' (S2S) and which sits between the medium- to long-range forecasting timescales - has received relatively little attention. The S2S timescale has long been seen as a 'predictability desert', yet a new generation of S2S predictions are starting to bridge the gap between weather forecasts and longer-range prediction. Decisions in a range of sectors are made in this extended-range lead time, therefore there is a strong demand for this new generation of predictions. At least ten international weather centres now have some capability for issuing experimental or operational S2S predictions, including the European Centre for Medium-Range Weather Forecasting (ECMWF) and the National Oceanic and Atmospheric Administration (NOAA) that now have operational S2S outputs. International efforts are now underway to identify key sources of predictability, improve forecast skill and operationalise aspects of S2S forecasts, however challenges remain in advancing this new frontier. If S2S predictions are to be utilised effectively, it is important that along with science advances, we learn how to develop, communicate and apply these forecasts appropriately. In this study, we present the potential of the emerging operational S2S forecasts to the wider weather and climate applications community by undertaking the first comprehensive review of sectoral applications of S2S predictions, including public health, disaster preparedness, water management, energy and agriculture. We explore the value of applications-relevant S2S predictions, and highlight the opportunities and challenges facing their uptake. We show how social sciences can be integrated with S2S development - from communication to decision-making and valuation of forecasts - to enhance the benefits of 'climate services' approaches for extended-range forecasting. We highlight the availability of data repositories of near real-time S2S forecasts and hindcasts, including the WWRP-WCRP (http://apps.ecmwf.int/datasets/data/s2s) and North American Multimodel Ensemble (NMME; http://www.cpc.ncep.noaa.gov/products/NMME/data.html) repositories, and discuss how they are promoting the use (and aiding the development) of S2S predictions. While S2S forecasting is at a relatively early stage of development, we conclude that it presents a significant new window of opportunity that can be explored for application-ready capabilities that could allow many sectors the opportunity to systematically plan on a new time horizon.

  10. Diagnostic Health Monitoring System Development for Army Vehicle Reliability

    DTIC Science & Technology

    2011-07-01

    19-24 3.4 Receiver Operator Characteristics for fault detection ……………………….. 24-28 3.5 Extended diagnostic speed bump modal data analysis...extended diagnostic speed bump was akin to the use of modal impact testing for exciting broadband frequency ranges in mechanical systems for use in...for a front axle wheel crossing measured using long cleat for ( ) first 30, ( ) second 11, ( ) third 11, ( ) fourth 11, and ( ) fifth 11 data series

  11. Effect of Fourier transform on the streaming in quantum lattice gas algorithms

    NASA Astrophysics Data System (ADS)

    Oganesov, Armen; Vahala, George; Vahala, Linda; Soe, Min

    2018-04-01

    All our previous quantum lattice gas algorithms for nonlinear physics have approximated the kinetic energy operator by streaming sequences to neighboring lattice sites. Here, the kinetic energy can be treated to all orders by Fourier transforming the kinetic energy operator with interlaced Dirac-based unitary collision operators. Benchmarking against exact solutions for the 1D nonlinear Schrodinger equation shows an extended range of parameters (soliton speeds and amplitudes) over the Dirac-based near-lattice-site streaming quantum algorithm.

  12. The X-33 range Operations Control Center

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Norman, Cynthia L.

    1998-01-01

    This paper describes the capabilities and features of the X-33 Range Operations Center at NASA Dryden Flight Research Center. All the unprocessed data will be collected and transmitted over fiber optic lines to the Lockheed Operations Control Center for real-time flight monitoring of the X-33 vehicle. By using the existing capabilities of the Western Aeronautical Test Range, the Range Operations Center will provide the ability to monitor all down-range tracking sites for the Extended Test Range systems. In addition to radar tracking and aircraft telemetry data, the Telemetry and Radar Acquisition and Processing System is being enhanced to acquire vehicle command data, differential Global Positioning System corrections and telemetry receiver signal level status. The Telemetry and Radar Acquisition Processing System provides the flexibility to satisfy all X-33 data processing requirements quickly and efficiently. Additionally, the Telemetry and Radar Acquisition Processing System will run a real-time link margin analysis program. The results of this model will be compared in real-time with actual flight data. The hardware and software concepts presented in this paper describe a method of merging all types of data into a common database for real-time display in the Range Operations Center in support of the X-33 program. All types of data will be processed for real-time analysis and display of the range system status to ensure public safety.

  13. Calibration of space instruments at the Metrology Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R., E-mail: roman.klein@ptb.de; Fliegauf, R.; Gottwald, A.

    2016-07-27

    PTB has more than 20 years of experience in the calibration of space-based instruments using synchrotron radiation to cover the UV, VUV and X-ray spectral range. New instrumentation at the electron storage ring Metrology Light Source (MLS) opens up extended calibration possibilities within this framework. In particular, the set-up of a large vacuum vessel that can accommodate entire space instruments opens up new prospects. Moreover, a new facility for the calibration of radiation transfer source standards with a considerably extended spectral range has been put into operation. Besides, characterization and calibration of single components like e.g. mirrors, filters, gratings, andmore » detectors is continued.« less

  14. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{supmore » −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.« less

  15. Combustion interaction with radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Rosenberg, S. D.; Jassowski, D. M.; Barlow, R.; Lucht, R.; Mccarty, K.

    1990-01-01

    Over 15 hours of thruster operation at temperatures between 1916 and 2246 C without failure or erosion has been demonstrated using iridium-coated rhenium chamber materials with nitrogen tetroxide/monomethylhydrazine propellants operating over a mixture ratio range of 1.60-2.05. Research is now under way to provide a basic understanding of the mechanisms which make high-temperature operation possible and to extend the capability to a wider range of conditions, including other propellant combinations and chamber materials. Techniques have been demonstrated for studying surface fracture phenomena. These include surface Raman and Auger for study of oxide formation, surface Raman and X-ray diffraction to determine the oxide phase, Auger to study oxide stoichiometry, and sputter Auger to study interdiffusion of alloy species.

  16. Design Sensitivity for a Subsonic Aircraft Predicted by Neural Network and Regression Models

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2005-01-01

    A preliminary methodology was obtained for the design optimization of a subsonic aircraft by coupling NASA Langley Research Center s Flight Optimization System (FLOPS) with NASA Glenn Research Center s design optimization testbed (COMETBOARDS with regression and neural network analysis approximators). The aircraft modeled can carry 200 passengers at a cruise speed of Mach 0.85 over a range of 2500 n mi and can operate on standard 6000-ft takeoff and landing runways. The design simulation was extended to evaluate the optimal airframe and engine parameters for the subsonic aircraft to operate on nonstandard runways. Regression and neural network approximators were used to examine aircraft operation on runways ranging in length from 4500 to 7500 ft.

  17. Extended MAGTF Operations - Tactical Chat

    DTIC Science & Technology

    2017-03-01

    vertical obstructions?  Over what ranges might such a system maintain connectivity? E . ORGANIZATION OF THESIS This thesis is organized in the...likely future models of UAVs will likely be capable of providing a relay platform for a long-range communication system that can solve the shadowing...problem presented in this study. However, for reasons outlined in the remainder of this section, current models of UAVs do not appear to provide a

  18. Development of a range-extended electric vehicle powertrain for an integrated energy systems research printed utility vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambon, Paul; Curran, Scott; Huff, Shean

    Rapid vehicle and powertrain development has become essential to for the design and implementation of vehicles that meet and exceed the fuel efficiency, cost, and performance targets expected by today’s consumer while keeping pace with reduced development cycle and more frequent product releases. Advances in large-scale additive manufacturing have provided the means to bridge hardware-in-the-loop (HIL) experimentation and preproduction mule chassis evaluation, recently. Our paper details the accelerated development of a printed range-extended electric vehicle (REEV) by Oak Ridge National Laboratory, by paralleling hardware-in-the-loop development of the powertrain with rapid chassis prototyping using big area additive manufacturing (BAAM). BAAM’s abilitymore » to accelerate the mule vehicle development from computer-aided design to vehicle build is explored. The use of a hardware-in-the-loop laboratory is described as it is applied to the design of a range-extended electric powertrain to be installed in a printed prototype vehicle. Furthermore, the integration of the powertrain and the opportunities and challenges it presents are described in this work. A comparison of offline simulation, HIL and chassis rolls results is presented to validate the development process. Chassis dynamometer results for battery electric and range extender operation are analyzed to show the benefits of the architecture.« less

  19. Development of a range-extended electric vehicle powertrain for an integrated energy systems research printed utility vehicle

    DOE PAGES

    Chambon, Paul; Curran, Scott; Huff, Shean; ...

    2017-01-29

    Rapid vehicle and powertrain development has become essential to for the design and implementation of vehicles that meet and exceed the fuel efficiency, cost, and performance targets expected by today’s consumer while keeping pace with reduced development cycle and more frequent product releases. Advances in large-scale additive manufacturing have provided the means to bridge hardware-in-the-loop (HIL) experimentation and preproduction mule chassis evaluation, recently. Our paper details the accelerated development of a printed range-extended electric vehicle (REEV) by Oak Ridge National Laboratory, by paralleling hardware-in-the-loop development of the powertrain with rapid chassis prototyping using big area additive manufacturing (BAAM). BAAM’s abilitymore » to accelerate the mule vehicle development from computer-aided design to vehicle build is explored. The use of a hardware-in-the-loop laboratory is described as it is applied to the design of a range-extended electric powertrain to be installed in a printed prototype vehicle. Furthermore, the integration of the powertrain and the opportunities and challenges it presents are described in this work. A comparison of offline simulation, HIL and chassis rolls results is presented to validate the development process. Chassis dynamometer results for battery electric and range extender operation are analyzed to show the benefits of the architecture.« less

  20. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  1. A survey of instabilities within centrifugal pumps and concepts for improving the flow range of pumps in rocket engines

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1992-01-01

    Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.

  2. Testing Fundamental Properties of Space with the Fermilab Holometer

    DOE PAGES

    Kamai, Brittany

    2017-06-01

    Precision length measurements provide valuable insights about the fundamental properties of space-time. The Holometer is a research program to both experimentally probe signatures of the Planck scale and to extend the accessible frequency range from kHz up to MHz for gravitational wave searches. The instrument consists of separate yet identical 39-meter Michelson interferometers operated at Fermi National Accelerator Laboratory, which can reach length sensitivities better thanmore » $${10}^{-20}\\mathrm{m/}\\sqrt{\\mathrm{Hz}}$$ within the 1-10 MHz frequency range. Lastly, the Holometer is fully operational with 130 of hours of science quality data obtained during the first observational campaign.« less

  3. Experimental Results of the EU ITER Prototype Gyrotrons

    NASA Astrophysics Data System (ADS)

    Gantenbein, G.; Albajar, F.; Alberti, S.; Avramidis, K.; Bin, W.; Bonicelli, T.; Bruschi, A.; Chelis, J.; Fanale, F.; Legrand, F.; Hermann, V.; Hogge, J.-P.; Illy, S.; Ioannidis, Z. C.; Jin, J.; Jelonnek, J.; Kasparek, W.; Latsas, G. P.; Lechte, C.; Lontano, M.; Pagonakis, I. G.; Rzesnicki, T.; Schlatter, C.; Schmid, M.; Tigelis, I. G.; Thumm, M.; Tran, M. Q.; Vomvoridis, J. L.; Zein, A.; Zisis, A.

    2017-10-01

    The European 1 MW, 170 GHz CW industrial prototype gyrotron for ECRH&CD on ITER was under test at the KIT test facility during 2016. In order to optimize the gyrotron operation, the tube was thoroughly tested in the short-pulse regime, with pulse lengths below 10 ms, for a wide range of operational parameters. The operation was extended to longer pulses with a duration of up to 180 s. In this work we present in detail the achievements and the challenges that were faced during the long-pulse experimental campaign.

  4. An optical approach to proximity-operations communications for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Marshalek, Robert G.

    1991-01-01

    An optical communications system is described that supports bi-directional interconnections between Space Station Freedom (SSF) and a host of attached and co-orbiting platforms. These proximity-operations (Prox-Ops) platforms are categorized by their maximum distance from SSF, with several remaining inside 1-km range and several extending out to 37-km and 2000-km ranges in the initial and growth phases, respectively. Two distinct Prox-Ops optical terminals are described. A 1-cm-aperture system is used on the short-range platforms to reduce payload mass, and a 10-cm-aperture system is used on the long-range platforms and on SSF to support the optical link budgets. The system supports up to four simultaneous user links, by assigning wavelengths to the various platforms and by using separate SSF terminals for each link.

  5. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.

    PubMed

    Robert, Clélia; Michau, Vincent; Fleury, Bruno; Magli, Serge; Vial, Laurent

    2012-07-02

    Adaptive optics provide real-time compensation for atmospheric turbulence. The correction quality relies on a key element: the wavefront sensor. We have designed an adaptive optics system in the mid-infrared range providing high spatial resolution for ground-to-air applications, integrating a Shack-Hartmann infrared wavefront sensor operating on an extended source. This paper describes and justifies the design of the infrared wavefront sensor, while defining and characterizing the Shack-Hartmann wavefront sensor camera. Performance and illustration of field tests are also reported.

  6. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Emergency equipment: Extended overwater... Equipment Requirements § 125.209 Emergency equipment: Extended overwater operations. (a) No person may operate an airplane in extended overwater operations unless it carries, installed in conspicuously marked...

  7. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Emergency equipment: Extended overwater... Equipment Requirements § 125.209 Emergency equipment: Extended overwater operations. (a) No person may operate an airplane in extended overwater operations unless it carries, installed in conspicuously marked...

  8. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Emergency equipment: Extended overwater... Equipment Requirements § 125.209 Emergency equipment: Extended overwater operations. (a) No person may operate an airplane in extended overwater operations unless it carries, installed in conspicuously marked...

  9. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Emergency equipment: Extended overwater... Equipment Requirements § 125.209 Emergency equipment: Extended overwater operations. (a) No person may operate an airplane in extended overwater operations unless it carries, installed in conspicuously marked...

  10. 14 CFR 125.209 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Emergency equipment: Extended overwater... Equipment Requirements § 125.209 Emergency equipment: Extended overwater operations. (a) No person may operate an airplane in extended overwater operations unless it carries, installed in conspicuously marked...

  11. Efficient quantum circuits for dense circulant and circulant like operators

    PubMed Central

    Zhou, S. S.

    2017-01-01

    Circulant matrices are an important family of operators, which have a wide range of applications in science and engineering-related fields. They are, in general, non-sparse and non-unitary. In this paper, we present efficient quantum circuits to implement circulant operators using fewer resources and with lower complexity than existing methods. Moreover, our quantum circuits can be readily extended to the implementation of Toeplitz, Hankel and block circulant matrices. Efficient quantum algorithms to implement the inverses and products of circulant operators are also provided, and an example application in solving the equation of motion for cyclic systems is discussed. PMID:28572988

  12. 14 CFR 121.573 - Briefing passengers: Extended overwater operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Briefing passengers: Extended overwater... passengers: Extended overwater operations. (a) In addition to the oral briefing required by § 121.571(a), each certificate holder operating an airplane in extended overwater operations shall ensure that all...

  13. 14 CFR 121.573 - Briefing passengers: Extended overwater operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Briefing passengers: Extended overwater... passengers: Extended overwater operations. (a) In addition to the oral briefing required by § 121.571(a), each certificate holder operating an airplane in extended overwater operations shall ensure that all...

  14. 14 CFR 121.573 - Briefing passengers: Extended overwater operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Briefing passengers: Extended overwater... passengers: Extended overwater operations. (a) In addition to the oral briefing required by § 121.571(a), each certificate holder operating an airplane in extended overwater operations shall ensure that all...

  15. 14 CFR 121.573 - Briefing passengers: Extended overwater operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Briefing passengers: Extended overwater... passengers: Extended overwater operations. (a) In addition to the oral briefing required by § 121.571(a), each certificate holder operating an airplane in extended overwater operations shall ensure that all...

  16. 14 CFR 121.573 - Briefing passengers: Extended overwater operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Briefing passengers: Extended overwater... passengers: Extended overwater operations. (a) In addition to the oral briefing required by § 121.571(a), each certificate holder operating an airplane in extended overwater operations shall ensure that all...

  17. Nested Fork-Join Queuing Networks and Their Application to Mobility Airfield Operations Analysis.

    DTIC Science & Technology

    1997-03-01

    shortest queue length. Setia , Squillante, and Tripathi [109] extend Makowski and Nelson’s work by performing a quantitative assessment of a range of...Markov chains." Numerical Solution of Markov Chains, edited by W. J. Stewart, 63- 88. Basel: Marcel Dekker, 1991. [109] Setia , S. K., and others

  18. Hydrology and soil erosion

    Treesearch

    Leonard J. Lane; Mary R. Kidwell

    2003-01-01

    We review research on surface water hydrology and soil erosion at the Santa Rita Experimental Range (SRER). Almost all of the research was associated with eight small experimental watersheds established from 1974 to 1975 and operated until the present. Analysis of climatic features of the SRER supports extending research findings from the SRER to broad areas of the...

  19. Design and realization of a 300 W fuel cell generator on an electric bicycle

    NASA Astrophysics Data System (ADS)

    Cardinali, Luciano; Santomassimo, Saverio; Stefanoni, Marco

    At ENEA Casaccia Research Center (Rome, Italy) a 300 W NUVERA fuel cell stack has been utilized for the construction of a range extender generator on a commercial electric bicycle. The generator is fully automated with a programmable logic controller (PLC) safely operating start-up, shut-down and emergencies; a volumetric compressor supplies air to the cathode, a dc/dc converter transfers energy from the stack to the battery. All ancillary equipment are commercial; only the cell voltage sensors have been developed in order to obtain miniaturized and low consumption components. With this generator the bicycle nominal range of 25 km (utilizing only the Ni-Mh battery) is extended to over 120 km, by installing a 200 bar, 5 l bottle of hydrogen.

  20. Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Bechtol, K.

    The Large Area Telescope on board the Fermi satellite (Fermi LAT) detected more than 1.6x10{sup 6} cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from {approx}10 deg. up to 90 deg., and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy's angular scale. Themore » upper limits for a dipole anisotropy ranged from {approx}0.5% to {approx}10%.« less

  1. Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.

    2010-11-01

    The Large Area Telescope on board the Fermi satellite (Fermi LAT) detected more than 1.6 × 10 6 cosmic-ray electrons/positrons with energies above 60 GeV during its first year of operation. The arrival directions of these events were searched for anisotropies of angular scale extending from ~ 10 ° up to 90°, and of minimum energy extending from 60 GeV up to 480 GeV. Two independent techniques were used to search for anisotropies, both resulting in null results. Upper limits on the degree of the anisotropy were set that depended on the analyzed energy range and on the anisotropy’s angularmore » scale. The upper limits for a dipole anisotropy ranged from ~ 0.5 % to ~ 10 % .« less

  2. On the Road to Transportation Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-04-21

    Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources.

  3. Study of Psychological (and Associated Physiological) Effects on a Tank Crew Resulting from Being Buttoned Up

    DTIC Science & Technology

    1976-10-01

    should he made for either ixiternal storage or a means of voiding the urinal in a storage container in the compartment’. Development of-Adequate...upper temperature ranges fu- critical components of the M60 tank under desert storage and operational conditions. He found that the Wet Bulb Globe...five-gallon cans on the outside turret bustle racks. If buttoned-up operations for extended periods of time are envisioned, a built-in water storage

  4. On the Road to Transportation Efficiency

    ScienceCinema

    None

    2018-01-16

    Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources.

  5. The cost of noise reduction for departure and arrival operations of commercial tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Faulkner, H. B.; Swan, W. M.

    1976-01-01

    The relationship between direct operating cost (DOC) and noise annoyance due to a departure and an arrival operation was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles ranged across the spectrum of possible noise levels from completely unconstrained to the quietest vehicles that could be designed within the study ground rules. Optimization parameters were varied to find the minimum DOC. This basic variation was then extended to different aircraft sizes and technology time frames.

  6. Flight controller alertness and performance during MOD shiftwork operations

    NASA Technical Reports Server (NTRS)

    Kelly, Sean M.; Rosekind, Mark R.; Dinges, David F.; Miller, Donna L.; Gillen, Kelly A.; Gregory, Kevin B.; Aguilar, Ronald D.; Smith, Roy M.

    1994-01-01

    Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations. During STS operations, MOD personnel provide 24 hr. coverage of critical tasks. A joint JSC and ARC project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during STS-53 in Dec. 1992. The study measures included a background questionnaire, a subjective daily logbook completed on a 24 hr. basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen Flight controllers representing the 3 Orbit shifts participated. The initial results clearly support further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further extended duration orbiters, timelines and planning for 24 circadian disruption will remain highly relevant in the MOD environment.

  7. Extended design window of resonant plasma-wave transistor for terahertz emitter by considering degenerate carrier velocity model with Fermi-Dirac distribution

    NASA Astrophysics Data System (ADS)

    Park, Jong Yul; Kim, Sung-Ho; Rok Kim, Kyung

    2015-06-01

    In this work, we propose extended design window which is helpful to judge whether the plasma-wave transistor (PWT) operates as a resonant terahertz (THz) electromagnetic (EM) wave emitter. When metal-oxide-semiconductor field-effect transistor (MOSFET) is on strong inversion which is believed to be an operation regime of PWT THz emitter, Boltzmann statistics is no longer valid and degenerate Fermi-Dirac distribution should be considered. Based on degenerate carrier velocity model, we report the increased maximum channel length (Lmax) to 17 nm for strained silicon (s-Si) PWT with assuming μ = 500 cm2·V-1·s-1. As mobility is enhanced, it is possible to observe two emission spectrums [fundamental (N = 1) and third (N = 3) harmonics] in a specific operation range. Theoretically, increment of Lmax for enhanced μ is limited to near 35 nm by the Pauli’s principle in the case of s-Si PWT. This theoretical value of Lmax should be compromised by considering actual PWT operation voltage for gate oxide breakdown.

  8. Mode-locking evolution in ring fiber lasers with tunable repetition rate.

    PubMed

    Korobko, D A; Fotiadi, A A; Zolotovskii, I O

    2017-09-04

    We have applied a simple approach to analyze behavior of the harmonically mode-locked fiber laser incorporating an adjustable Mach-Zehnder interferometer (MZI). Our model is able to describe key features of the laser outputs and explore limitations of physical mechanisms responsible for laser operation at different pulse repetition rates tuned over a whole GHz range. At low repetition rates the laser operates as a harmonically mode-locked soliton laser triggered by a fast saturable absorber. At high repetition rates the laser mode-locking occurs due to dissipative four-wave mixing seeded by MZI and gain spectrum filtering. However, the laser stability in this regime is rather low due to poor mode selectivity provided by MZI that is able to support the desired laser operation just near the lasing threshold. The use of a double MZI instead of a single MZI could improve the laser stability and extends the range of the laser tunability. The model predicts a gap between two repetitive rate ranges where pulse train generation is not supported.

  9. Packaging of fiber lasers and components for use in harsh environments

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Johnson, Benjamin R.; Jones, Casey; Ibach, Charles; Lemons, Michael; Budni, Peter A.; Zona, James P.; Marcinuk, Adam; Willis, Chris; Sweeney, James; Setzler, Scott D.

    2016-03-01

    High power continuous and pulsed fiber lasers and amplifiers have become more prevalent in laser systems over the last ten years. In fielding such systems, strong environmental and operational factors drive the packaging of the components. These include large operational temperature ranges, non-standard wavelengths of operation, strong vibration, and lack of water cooling. Typical commercial fiber components are not designed to survive these types of environments. Based on these constraints, we have had to develop and test a wide range of customized fiber-based components and systems to survive in these conditions. In this paper, we discuss some of those designs and detail the testing performed on those systems and components. This includes the use of commercial off-the-shelf (COTS) components, modified to survive extended temperature ranges, as well as customized components designed specifically for performance in harsh environments. Some of these custom components include: ruggedized/monolithic fiber spools; detachable and repeatable fiber collimators; low loss fiber-to-fiber coupling schemes; and high power fiber-coupled isolators.

  10. Investigation of mechanical field weakening of axial flux permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.

    2015-12-01

    An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.

  11. Extended Operation of Stirling Convertors in a Thermal Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2006-01-01

    A 110 watt Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA exploration missions. The development effort is being performed by Lockheed Martin under contract to the Department of Energy (DOE). Infinia, Corp. supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been initiated at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG110, however the requirement for low mass was not considered. This test demonstrates the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The status of the test as well as the data gathered will be presented in this paper.

  12. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.

  13. Spaceport operations for deep space missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1990-01-01

    Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.

  14. Evaluation of Operator Radioprotection Using a New Injection Device during Vertebroplasty

    PubMed Central

    Nguyen-Kim, L.; Fargeot, C.; Beaussier, H.; Payen, S.; Chiras, J.

    2013-01-01

    Summary This study aimed to evaluate the protection granted by a simple device (X'TENS®, Thiebaud, France) and to provide operators with information on the performance of this new device, which has not yet been assessed. Our assumption is that this device efficiently reduces the radiation dose to the operator. In a prospective clinical study, the radiation dose the operator's hand receives has been assessed using a specific sensor (UNFOR Instrument). Each patient included in the study was to receive at least two injections of cement during the procedure. Exposure was measured with and without the range extender. The data collected were then processed using a Wilcoxon matched pairs test. During 14 interventions, 20 vertebrae were treated with both procedures. Eleven women and three men were included. Seven patients underwent vertebroplasty for metastatic lesions and seven for osteoporotic lesions, bone fractures or vertebral compressions. The average injection time was 1.35 minutes with the device and 1.20 without (p=0.75). The dose to the hand per ml injected was 111.37 vs. 166.91 (p<0.05). Theoretically, the protection granted by the range extender depends on the length of the device. Our results are consistent with the inverse-square law. However, the variations in our results indicate that a proper and rigorous use is mandatory for the device to be effective. Given that radioprotection during fluoroscopy procedures is a frequently raised issue, the need for information for a safer practice increases likewise. PMID:23693040

  15. Evaluation of operator radioprotection using a new injection device during vertebroplasty.

    PubMed

    Nguyen-Kim, L; Fargeot, C; Beaussier, H; Payen, S; Chiras, J

    2013-06-01

    This study aimed to evaluate the protection granted by a simple device (X'TENS(®), Thiebaud, France) and to provide operators with information on the performance of this new device, which has not yet been assessed. Our assumption is that this device efficiently reduces the radiation dose to the operator. In a prospective clinical study, the radiation dose the operator's hand receives has been assessed using a specific sensor (UNFOR Instrument). Each patient included in the study was to receive at least two injections of cement during the procedure. Exposure was measured with and without the range extender. The data collected were then processed using a Wilcoxon matched pairs test. During 14 interventions, 20 vertebrae were treated with both procedures. Eleven women and three men were included. Seven patients underwent vertebroplasty for metastatic lesions and seven for osteoporotic lesions, bone fractures or vertebral compressions. The average injection time was 1.35 minutes with the device and 1.20 without (p=0.75). The dose to the hand per ml injected was 111.37 vs. 166.91 (p<0.05). Theoretically, the protection granted by the range extender depends on the length of the device. Our results are consistent with the inverse-square law. However, the variations in our results indicate that a proper and rigorous use is mandatory for the device to be effective. Given that radioprotection during fluoroscopy procedures is a frequently raised issue, the need for information for a safer practice increases likewise.

  16. Operation of a New Half-Bridge Gate Driver for Enhancement - Mode GaN FETs, Type LM5113, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    A new commercial-off-the-shelf (COTS) gate driver designed to drive both the high-side and the low-side enhancement-mode GaN FETs, National Semiconductor's type LM5113, was evaluated for operation at temperatures beyond its recommended specified limits of -40 C to +125 C. The effects of limited thermal cycling under the extended test temperature, which ranged from -194 C to +150 C, on the operation of this chip as well as restart capability at the extreme cryogenic and hot temperatures were also investigated. The driver circuit was able to maintain good operation throughout the entire test regime between -194 C and +150 C without undergoing any major changes in its outputs signals and characteristics. The limited thermal cycling performed on the device also had no effect on its performance, and the driver chip was able to successfully restart at each of the extreme temperatures of -194 C and +150 C. The plastic packaging of this device was also not affected by either the short extreme temperature exposure or the limited thermal cycling. These preliminary results indicate that this new commercial-off-the-shelf (COTS) halfbridge eGaN FET driver integrated circuit has the potential for use in space exploration missions under extreme temperature environments. Further testing is planned under long-term cycling to assess the reliability of these parts and to determine their suitability for extended use in the harsh environments of space.

  17. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines

    PubMed Central

    Presas, Alexandre; Valero, Carme; Egusquiza, Eduard

    2018-01-01

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin. PMID:29601512

  18. Sensor-Based Optimized Control of the Full Load Instability in Large Hydraulic Turbines.

    PubMed

    Presas, Alexandre; Valentin, David; Egusquiza, Mònica; Valero, Carme; Egusquiza, Eduard

    2018-03-30

    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.

  19. Operational support and service concepts for observatories

    NASA Astrophysics Data System (ADS)

    Emde, Peter; Chapus, Pierre

    2014-08-01

    The operational support and service for observatories aim at the provision, the preservation and the increase of the availability and performance of the entire structural, mechanical, drive and control systems of telescopes and the related infrastructure. The operational support and service levels range from the basic service with inspections, preventive maintenance, remote diagnostics and spare parts supply over the availability service with telephone hotline, online and on-site support, condition monitoring and spare parts logistics to the extended service with operations and site and facility management. For the level of improvements and lifecycle management support they consist of expert assessments and studies, refurbishments and upgrades including the related engineering and project management activities.

  20. 14 CFR 121.339 - Emergency equipment for extended over-water operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Emergency equipment for extended over-water... § 121.339 Emergency equipment for extended over-water operations. (a) Except where the Administrator, by... certificate holder, the Administrator allows deviation for a particular extended overwater operation, no...

  1. 14 CFR 121.339 - Emergency equipment for extended over-water operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Emergency equipment for extended over-water... § 121.339 Emergency equipment for extended over-water operations. (a) Except where the Administrator, by... certificate holder, the Administrator allows deviation for a particular extended overwater operation, no...

  2. 14 CFR 121.339 - Emergency equipment for extended over-water operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Emergency equipment for extended over-water... § 121.339 Emergency equipment for extended over-water operations. (a) Except where the Administrator, by... certificate holder, the Administrator allows deviation for a particular extended overwater operation, no...

  3. 14 CFR 121.339 - Emergency equipment for extended over-water operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Emergency equipment for extended over-water... § 121.339 Emergency equipment for extended over-water operations. (a) Except where the Administrator, by... certificate holder, the Administrator allows deviation for a particular extended overwater operation, no...

  4. 14 CFR 121.339 - Emergency equipment for extended over-water operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Emergency equipment for extended over-water... § 121.339 Emergency equipment for extended over-water operations. (a) Except where the Administrator, by... certificate holder, the Administrator allows deviation for a particular extended overwater operation, no...

  5. Close-Range Tracking of Underwater Vehicles Using Light Beacons

    PubMed Central

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-01-01

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time. PMID:27023547

  6. Close-Range Tracking of Underwater Vehicles Using Light Beacons.

    PubMed

    Bosch, Josep; Gracias, Nuno; Ridao, Pere; Istenič, Klemen; Ribas, David

    2016-03-25

    This paper presents a new tracking system for autonomous underwater vehicles (AUVs) navigating in a close formation, based on computer vision and the use of active light markers. While acoustic localization can be very effective from medium to long distances, it is not so advantageous in short distances when the safety of the vehicles requires higher accuracy and update rates. The proposed system allows the estimation of the pose of a target vehicle at short ranges, with high accuracy and execution speed. To extend the field of view, an omnidirectional camera is used. This camera provides a full coverage of the lower hemisphere and enables the concurrent tracking of multiple vehicles in different positions. The system was evaluated in real sea conditions by tracking vehicles in mapping missions, where it demonstrated robust operation during extended periods of time.

  7. Paralleling power MOSFETs in their active region: Extended range of passively forced current sharing

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1989-01-01

    A simple passive circuit that improves current balance in parallelled power MOSFETs that are not precisely matched and that are operated in their active region from a common gate drive are exhibited. A nonlinear circuit consisting of diodes and resistors generates the differential gate potential required to correct for unbalance while maintaining low losses over a range of current. Also application of a thin tape wound magnetic core to effect dynamic current balance is reviewed, and a simple theory is presented showing that for operation in the active region the branch currents tend to revert to their normal unbalanced values even if the core is not driven into saturation. Results of several comparative experiments are given.

  8. Nonlinear Landing Control for Quadrotor UAVs

    NASA Astrophysics Data System (ADS)

    Voos, Holger

    Quadrotor UAVs are one of the most preferred type of small unmanned aerial vehicles because of the very simple mechanical construction and propulsion principle. However, the nonlinear dynamic behavior requires a more advanced stabilizing control and guidance of these vehicles. In addition, the small payload reduces the amount of batteries that can be carried and thus also limits the operating range of the UAV. One possible solution for a range extension is the application of a mobile base station for recharging purpose even during operation. However, landing on a moving base station requires autonomous tracking and landing control of the UAV. In this paper, a nonlinear autopilot for quadrotor UAVs is extended with a tracking and landing controller to fulfill the required task.

  9. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, E.; Wang, L.; Gonder, J.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range ofmore » battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.« less

  10. Balancing Dynamic Strength of Spur Gears Operated at Extended Center Distance

    NASA Technical Reports Server (NTRS)

    Lin, Hsiang Hsi; Liou, Chuen-Huei; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    This paper presents an analytical study on using hob offset to balance the dynamic tooth strength of spur gears operated at a center distance greater than the standard value. This study is an extension of a static study by Mabie and others. The study was limited to the offset values that assure the pinion and gear teeth will neither be undercut nor become pointed. The analysis presented in this paper was performed using DANST-PC, a new version of the NASA gear dynamics code. The operating speed of the transmission influences the amount of hob offset required to equalize the dynamic stresses in the pinion and gear. The optimum hob offset for the pinion was found to vary within a small range as the speed changes. The optimum value is generally greater than the optimum value found by static procedures. For gears that must operate over a wide range of speeds, an average offset value may be used.

  11. Condition monitoring of a prototype turbine. Description of the system and main results

    NASA Astrophysics Data System (ADS)

    Valero, C.; Egusquiza, E.; Presas, A.; Valentin, D.; Egusquiza, M.; Bossio, M.

    2017-04-01

    The fast change in new renewable energy is affecting directly the required operating range of hydropower plants. According to the present demand of electricity, it is necessary to generate different levels of power. Because of its ease to regulate and its huge storage capacity of energy, hydropower is the unique energy source that can adapt to the demand. Today, the required operating range of turbine units is expected to extend from part load to overload. These extreme operations points can cause several pressure pulsations, cavitation and vibrations in different parts of the machine. To determine the effects on the machine, vibration measurements are necessary in actual machines. Vibrations can be used for machinery protection and to identify problems in the machine (diagnosis). In this paper, some results obtained in a hydropower plant are presented. The variation of global levels and vibratory signatures has been analysed as function as gross head, transducer location and operating points.

  12. Compensating Atmospheric Turbulence Effects at High Zenith Angles with Adaptive Optics Using Advanced Phase Reconstructors

    NASA Astrophysics Data System (ADS)

    Roggemann, M.; Soehnel, G.; Archer, G.

    Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.

  13. Asymptomatic carotid bruit: long term outcome of patients having endarterectomy compared with unoperated controls.

    PubMed

    Thompson, J E; Patman, R D; Talkington, C M

    1978-09-01

    During 20 years (1957-1977), 1286 carotid endarterectomies were performed on 1022 private patients with cerebrovascular insufficiency. Included were 132 patients undergoing 167 endarterectomies for asymptomatic cervical carotid bruits. Ages ranged from 42 to 82 years (mean: 64.7). Operative mortality was zero. There were two transient and two permanent operation-related neurologic deficits. Complete follow-up was achieved, extending to 184 months. During postoperative follow-up, six patients (4.5%) developed TIA's appropriate to the unoperated artery, three patients had strokes (2.3%), and three patients died of strokes (2.3%). To characterize the natural history of asymptomatic bruit and determine proper indications for prophylactic endarterectomy, a control series of 138 additional patients with asymptomatic bruit not operated upon when the bruit was discovered was studied. Ages ranged from 39 to 86 years (mean: 65.7). During follow-up extending to 180 months, 77 patients (55.8%) remained neurologically asymptomatic, 37 patients (26.8%) developed TIA's one month to 99 months after detection of bruit, and 24 patients (17.4%) sustained mild to profound frank strokes one week to 124 months postdetection. Three of these 24 (2.2%) died of stroke. Asymptomatic carotid bruits may be potential stroke hazards, the risk of which can be significantly reduced by appropriately applied endarterectomy. A protocol for managment is presented.

  14. Emission response from extended length, variable geometry gas turbine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troth, D.L.; Verdouw, A.J.; Tomlinson, J.G.

    1974-01-01

    A program to analyze, select, and experimentally evaluate low emission combustors for aircraft gas turbine engines is conducted to demonstrate a final combustor concept having a 50 percent reduction in total mass emissions (carbon monoxide, unburnt hydrocarbons, oxides of nitrogen, and exhaust smoke) without an increase in any specific pollutant. Research conducted under an Army Contract established design concepts demonstrating significant reductions in CO and UHC emissions. Two of these concepts were an extended length intermediate zone to consume CO and UHC and variable geometry to control the primary zone fuel air ratio over varying power conditions. Emission reduction featuresmore » were identified by analytical methods employing both reaction kinetics and empirical correlations. Experimental results were obtained on a T63 component combustor rig operating at conditions simulating the engine over the complete power operating range with JP-4 fuel. A combustor incorporating both extended length and variable geometry was evaluated and the performance and emission results are reported. These results are compared on the basis of a helicopter duty cycle and the EPA 1979 turboprop regulation landing take off cycle. The 1979 EPA emission regulations for P2 class engines can be met with the extended length variable geometry combustor on the T63 turboprop engine.« less

  15. Apollo 15 Mission Report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  16. Fluorescence dynamics of biological systems using synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratton, E.; Mantulin, W.W.; Weber, G.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes thatmore » can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}« less

  17. Numerical investigation of a centrifugal compressor with circumferential grooves in vane diffuser

    NASA Astrophysics Data System (ADS)

    Chen, X. F.; Qin, G. L.; Ai, Z. J.

    2015-08-01

    Enhancing stall and surge margin has a great importance for the development of turbo compressors. The application of casing treatment is an effective measure to expand the stall margin and stable operation range. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with circumferential groove casing treatment in vane diffuser. Numerical cases with different radial location, radial width and axial depth of a circumferential single groove and different numbers of circumferential grooves were carried out to compare the results. The CFD analyses results show that the centrifugal compressor with circumferential grooves in diffuser can extend stable range by about 9% while the efficiency over the whole operating range decreases by 0.2 to 1.7%. The evaluation based on stall margin improvement showed the optimal position for the groove to be located was indicated to exist near the leading edge of the diffuser, and a combination of position, width, depth and numbers of circumferential grooves that will maximize both surge margin range and efficiency.

  18. Tunneling topological vacua via extended operators: (Spin-)TQFT spectra and boundary deconfinement in various dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Juven; Ohmori, Kantaro; Putrov, Pavel; Zheng, Yunqin; Wan, Zheyan; Guo, Meng; Lin, Hai; Gao, Peng; Yau, Shing-Tung

    2018-05-01

    Distinct quantum vacua of topologically ordered states can be tunneled into each other via extended operators. The possible applications include condensed matter and quantum cosmology. We present a straightforward approach to calculate the partition function on various manifolds and ground state degeneracy (GSD), mainly based on continuum/cochain topological quantum field theories (TQFTs), in any dimension. This information can be related to the counting of extended operators of bosonic/fermionic TQFTs. On the lattice scale, anyonic particles/strings live at the ends of line/surface operators. Certain systems in different dimensions are related to each other through dimensional reduction schemes, analogous to (de)categorification. Examples include spin TQFTs derived from gauging the interacting fermionic symmetry-protected topological states (with fermion parity {Z}_2^f) of symmetry groups {Z}_4× {Z}_2 and ({Z}_4)^2 in 3+1D, also {Z}_2 and ({Z}_2)^2 in 2+1D. Gauging the last three cases begets non-Abelian spin TQFTs (fermionic topological order). We consider situations where a TQFT lives on (1) a closed spacetime or (2) a spacetime with a boundary, such that the bulk and boundary are fully gapped and short- or long-range entangled (SRE/LRE). Anyonic excitations can be deconfined on the boundary. We introduce new exotic topological interfaces on which neither particle nor string excitations alone condense, but only fuzzy-composite objects of extended operators can end (e.g., a string-like composite object formed by a set of particles can end on a special 2+1D boundary of 3+1D bulk). We explore the relations between group extension constructions and partially breaking constructions (e.g., 0-form/higher-form/"composite" breaking) of topological boundaries, after gauging. We comment on the implications of entanglement entropy for some such LRE systems.

  19. High altitude airship configuration and power technology and method for operation of same

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Elliott, Jr., James R. (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Chu, Sang-Hyon (Inventor)

    2011-01-01

    A new High Altitude Airship (HAA) capable of various extended applications and mission scenarios utilizing inventive onboard energy harvesting and power distribution systems. The power technology comprises an advanced thermoelectric (ATE) thermal energy conversion system. The high efficiency of multiple stages of ATE materials in a tandem mode, each suited for best performance within a particular temperature range, permits the ATE system to generate a high quantity of harvested energy for the extended mission scenarios. When the figure of merit 5 is considered, the cascaded efficiency of the three-stage ATE system approaches an efficiency greater than 60 percent.

  20. Stirling Convertor Extended Operation Testing and Data Analysis at GRC

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2009-01-01

    This paper focuses on extended operation testing and data analysis of free-piston Stirling convertors at the NASA Glenn Research Center (GRC). Extended operation testing is essential to the development of radioisotope power systems and their potential use for long duration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable; allowing us to better understand and quantity the long life characteristics of the convertors. Further, investigation and comparison of the extended operation data to baseline performance data provides us an opportunity for understanding system behavior should any off-nominal performance occur. GRC currently has 14 Stirling convertors under 24-hour unattended extended operation testing, including two operating the Advanced Stirling Radioisotope Generator Engineering Unit (ASRG-EU). 10 of the 14 Stirling convertors at GRC are the Advanced Stirling Convertors (ASC) developed by Sunpower, Incorporated. These are highly efficient (up to > 33.5% conversion efficiency), low mass convertors that have evolved through technologically progressive convertor builds. The remaining four convertors at GRC are Technology Demonstration Convertors (TDC) from Infinia Corporation. They have achieved> 27% conversion efficiency and have accumulated over 178,000 of the total 250,622 hours of extended operation currently at GRC. A synopsis of the Stirling convertor extended operation testing and data analysis at NASA GRC is presented in this paper, as well as how this testing has contributed to the Stirling convertor's progression toward flight.

  1. The nonlinear wave equation for higher harmonics in free-electron lasers

    NASA Technical Reports Server (NTRS)

    Colson, W. B.

    1981-01-01

    The nonlinear wave equation and self-consistent pendulum equation are generalized to describe free-electron laser operation in higher harmonics; this can significantly extend their tunable range to shorter wavelengths. The dynamics of the laser field's amplitude and phase are explored for a wide range of parameters using families of normalized gain curves applicable to both the fundamental and harmonics. The electron phase-space displays the fundamental physics driving the wave, and this picture is used to distinguish between the effects of high gain and Coulomb forces.

  2. Extended-range tiltable micromirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, James J; Wiens, Gloria J; Bronson, Jessica R

    A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

  3. Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds

    NASA Astrophysics Data System (ADS)

    Sadia, Yatir; Ohaion-Raz, Tsion; Ben-Yehuda, Ohad; Korngold, Meidad; Gelbstein, Yaniv

    2016-09-01

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations, had positioned the research of renewable energy conversion methods in general and of thermoelectric direct conversion of thermal into electrical energies in particular, in the forefront of the currently active applicative sciences. IV-VI thermoelectric compounds (e.g. GeTe, PbTe and SnTe) and their alloys comprise some of the most efficient thermoelectric compositions ever reported. Yet a proper utilization of such materials in practical thermoelectric devices, still requires an overcoming the so-called technological "valley of death", including among others, transport properties' degradation, due to sublimation of volatile Te rich species, while being subjected to elevated temperatures for long periods of time. In an attempt to establish practical operation criteria for extending the operation periods of such thermoelectric converters, it is currently shown based on thermal gravimetric and metallurgical considerations that such harmful sublimation can be practically bridged over by limiting the maximal operating temperatures to the 410-430 °C range for GeTe rich alloys and to 510-530 °C for PbTe and SnTe rich alloys, depending of the thermoelectric leg's diameter.

  4. High-quality remote interactive imaging in the operating theatre

    NASA Astrophysics Data System (ADS)

    Grimstead, Ian J.; Avis, Nick J.; Evans, Peter L.; Bocca, Alan

    2009-02-01

    We present a high-quality display system that enables the remote access within an operating theatre of high-end medical imaging and surgical planning software. Currently, surgeons often use printouts from such software for reference during surgery; our system enables surgeons to access and review patient data in a sterile environment, viewing real-time renderings of MRI & CT data as required. Once calibrated, our system displays shades of grey in Operating Room lighting conditions (removing any gamma correction artefacts). Our system does not require any expensive display hardware, is unobtrusive to the remote workstation and works with any application without requiring additional software licenses. To extend the native 256 levels of grey supported by a standard LCD monitor, we have used the concept of "PseudoGrey" where slightly off-white shades of grey are used to extend the intensity range from 256 to 1,785 shades of grey. Remote access is facilitated by a customized version of UltraVNC, which corrects remote shades of grey for display in the Operating Room. The system is successfully deployed at Morriston Hospital, Swansea, UK, and is in daily use during Maxillofacial surgery. More formal user trials and quantitative assessments are being planned for the future.

  5. Automatic readout micrometer

    DOEpatents

    Lauritzen, Ted

    1982-01-01

    A measuring system is disclosed for surveying and very accurately positioning objects with respect to a reference line. A principal use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse or fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  6. Automatic readout micrometer

    DOEpatents

    Lauritzen, T.

    A measuring system is described for surveying and very accurately positioning objects with respect to a reference line. A principle use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse of fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  7. Stirling Convertor Extended Operation Testing and Data Analysis at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2010-01-01

    Extended operation of Stirling convertors is essential to the development of radioisotope power systems and their potential use for longduration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable, allowing us to better understand and quantify long-life characteristics of the convertors. Furthermore, investigation and comparison of the extended operation data to baseline performance data provides an opportunity to understand system behavior should any off-nominal performance occur. Glenn Research Center (GRC) has tested 16 Stirling convertors under 24-hr unattended extended operation, including four that have operated in a thermal vacuum environment and two that are operating in the Advanced Stirling Radioisotope Generator Engineering Unit. Ten of the sixteen convertors are the Advanced Stirling Convertors (ASC) developed by Sunpower, Inc. with GRC. These are highly efficient (conversion efficiency of up to 38 percent for the ASC-1), low-mass convertors that have evolved through technologically progressive convertor builds. Six convertors at GRC are Technology Demonstration Convertors from Infinia Corporation. They have achieved greater than 27 percent conversion efficiency and have accumulated over 185,000 of the total 265,000 hr of extended operation at GRC. This paper presents the extended operation testing and data analysis of free-piston Stirling convertors at NASA GRC as well as how these tests have contributed to the Stirling convertor s progression toward flight.

  8. Extended Transsphenoidal Endoscopic Endonasal Surgery of Suprasellar Craniopharyngiomas.

    PubMed

    Fomichev, Dmitry; Kalinin, Pavel; Kutin, Maxim; Sharipov, Oleg

    2016-10-01

    The endoscopic extended transsphenoidal approach for suprasellar craniopharyngiomas may be a really alternative to the transcranial approach in many cases. The authors present their experience with this technique in 136 patients with craniopharyngiomas. From the past 7 years 204 patients with different purely supradiaphragmatic tumors underwent removal by extended endoscopic transsphenoidal transtuberculum transplanum approach. Most of the patients (136) had craniopharyngiomas (suprasellar, intra-extraventricular). The patients were analyzed according to age, sex, tumor size, growth and tumor structure, and clinical symptoms. Twenty-five patients had undergone a previous surgery. The mean follow-up was 42 months (range, 4-120 months). The operation is always performed with the bilateral endoscopic endonasal anterior extended transsphenoidal approach. A gross-total removal was completed in 72%. Improvement of vision or absence of visual deterioration after operation was observed in 89% of patients; 11% had worsening vision after surgery. Endocrine dysfunction did not improve after surgery, new hypotalamopituitary dysfunction (anterior pituitary dysfunction or diabetes insipidus) or worsening of it was observed in 42.6%. Other main complications included transient new mental disorder in 11%, temporary neurological postoperative deficits in 3.7%, bacterial meningitis in 16%, cerebrospinal fluid leaks in 8.8%. The recurrence rate was 20% and the lethality was 5.8%. Resection of suprasellar craniopharyngiomas using the extended endoscopic approach is a more effective and less traumatic technology, able to provide resection of the tumor along with high quality of life after surgery, and relatively rare postoperative complications and mortality. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Laser action in chromium-doped forsterite

    NASA Technical Reports Server (NTRS)

    Petricevic, V.; Gayen, S. K.; Alfano, R. R.; Yamagishi, Kiyoshi; Anzai, H.

    1988-01-01

    This paper reports on pulsed laser operation obtained in chromium-activated forsterite Cr(3+):Mg2SiO4 at room temperature. The spectrum of the free-running laser peaks at 1235 nm and a bandwidth of about 22 nm. The spectral range of the laser emission is expected to extend from 850 to 1300, provided the parasitic impurity absorption may be minimized by improved crystal growth techique.

  10. Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days).

    PubMed

    Moyer, Eric L; Dumars, Paula M; Sun, Gwo-Shing; Martin, Kara J; Heathcote, David G; Boyle, Richard D; Skidmore, Mike G

    2016-01-01

    The National Aeronautics and Space Administration Animal Enclosure Module (AEM) was developed as a self-contained rodent habitat for shuttle flight missions that provides inhabitants with living space, food, water, ventilation, and lighting, and this study reports whether, after minimal hardware modification, the AEM could support an extended term up to 35 days for Sprague-Dawley rats and C57BL/6 female mice for use on the International Space Station. Success was evaluated based on comparison of AEM housed animals to that of vivarium housed and to normal biological ranges through various measures of animal health and well-being, including animal health evaluations, animal growth and body masses, organ masses, rodent food bar consumption, water consumption, and analysis of blood contents. The results of this study confirmed that the AEMs could support 12 adult female C57BL/6 mice for up to 35 days with self-contained RFB and water, and the AEMs could also support 5 adult male Sprague-Dawley rats for 35 days with external replenishment of diet and water. This study has demonstrated the capability and flexibility of the AEM to operate for up to 35 days with minor hardware modification. Therefore, with modifications, it is possible to utilize this hardware on the International Space Station or other operational platforms to extend the space life science research use of mice and rats.

  11. Final design proposal: Beta Systems-El Toro. A proposal in response to a commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Muenzberg, Steve; Gillespie, Shane; Coogan, Jim; Monahan, Pat; Bruen, Liam; Wincer, Bob; Wilkey, Rob

    1991-01-01

    El Toro is a remotely piloted airplane designed to operate as a commercial aircraft in a fictional 'Aeroworld' where the passengers are ping-pong balls and the distances between cities are on the order of thousands of feet. The present design for El Toro will profitably meet the requirements for operation in Aeroworld with a ticket price comparable the ticket prices of current transportation. The extended range of El Toro allows for numerous flights to be flown before the battery pack needs to be changed. This drastically reduces the operating costs to the airlines, allowing them to charge less for a ticket or else to realize a higher profit margin.

  12. Development of a Photon Counting System for Differential Lidar Signal Detection

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1997-01-01

    Photon counting has been chosen as a means to extend the detection range of current airborne DIAL ozone measurements. Lidar backscattered return signals from the on and off-line lasers experience a significant exponential decay. To extract further data from the decaying ozone return signals, photon counting will be used to measure the low light levels, thus extending the detection range. In this application, photon counting will extend signal measurement where the analog return signal is too weak. The current analog measurement range is limited to approximately 25 kilometers from an aircraft flying at 12 kilometers. Photon counting will be able to exceed the current measurement range so as to follow the mid-latitude model of ozone density as a function of height. This report describes the development of a photon counting system. The initial development phase begins with detailed evaluation of individual photomultiplier tubes. The PMT qualities investigated are noise count rates, single electron response peaks, voltage versus gain values, saturation effects, and output signal linearity. These evaluations are followed by analysis of two distinctive tube base gating schemes. The next phase is to construct and operate a photon counting system in a laboratory environment. The laboratory counting simulations are used to determine optimum discriminator setpoints and to continue further evaluations of PMT properties. The final step in the photon counting system evaluation process is the compiling of photon counting measurements on the existing ozone DIAL laser system.

  13. Towards an autonomous sensor architecture for persistent area protection

    NASA Astrophysics Data System (ADS)

    Thomas, Paul A.; Marshall, Gillian F.; Stubbins, Daniel J.; Faulkner, David A.

    2016-10-01

    The majority of sensor installations for area protection (e.g. critical national infrastructure, military forward operating bases, etc.) make use of banks of screens each containing one or more sensor feeds, such that the burden of combining data from the various sources, understanding the situation, and controlling the sensors all lies with the human operator. Any automation in the system is generally heavily bespoke for the particular installation, leading to an inflexible system which is difficult to change or upgrade. We have developed a modular system architecture consisting of intelligent autonomous sensor modules, a high level decision making module, a middleware integration layer and an end-user GUI. The modules are all effectively "plug and play", and we have demonstrated that it is relatively simple to incorporate legacy sensors into the architecture. We have extended our previously-reported SAPIENT demonstration system to operate with a larger number and variety of sensor modules, over an extended area, detecting and classifying a wider variety of "threat activities", both vehicular and pedestrian. We report the results of a demonstration of the SAPIENT system containing multiple autonomous sensor modules with a range of modalities including laser scanners, radar, TI, EO, acoustic and seismic sensors. They operate from a combination of mains, generator and battery power, and communicate with the central "hub" over Ethernet, point-to-point wireless links and Wi-Fi. The system has been configured to protect an extended area in a complex semi-urban environment. We discuss the operation of the SAPIENT system in a realistic demonstration environment (which included significant activity not under trial control), showing sensor cueing, multi-modal sensor fusion, threat prioritisation and target hand-off.

  14. The flip-flop nozzle extended to supersonic flows

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Hailye, Michael; Rice, Edward J.

    1992-01-01

    An experiment studying a fluidically oscillated rectangular jet flow was conducted. The Mach number was varied over a range from low subsonic to supersonic. Unsteady velocity and pressure measurements were made using hot wires and piezoresistive pressure transducers. In addition smoke flow visualization using high speed photography was used to document the oscillation of the jet. For the subsonic flip-flop jet it was found that the apparent time-mean widening of the jet was not accompanied by an increase in mass flux. It was found that it is possible to extend the operation of these devices to supersonic flows. Most of the measurements were made for a fixed nozzle geometry for which the oscillations ceased at a fully expanded Mach number of 1.58. By varying the nozzle geometry this limitation was overcome and operation was extended to Mach 1.8. The streamwise velocity perturbation levels produced by this device were much higher than the perturbation levels that could be produced using conventional excitation sources such as acoustic drivers. In view of this ability to produce high amplitudes, the potential for using small scale fluidically oscillated jet as an unsteady excitation source for the control of shear flows in full scale practical applications seems promising.

  15. The flip flop nozzle extended to supersonic flows

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Hailye, Michael; Rice, Edward J.

    1992-01-01

    An experiment studying a fluidically oscillated rectangular jet flow was conducted. The Mach number was varied over a range from low subsonic to supersonic. Unsteady velocity and pressure measurements were made using hot wires and piezoresistive pressure transducers. In addition smoke flow visualization using high speed photography was used to document the oscillation of the jet. For the subsonic flip-flop jet it was found that the apparent time-mean widening of the jet was not accompanied by an increase in mass flux. It was found that it is possible to extend the operation of these devices to supersonic flows. Most of the measurements were made for a fixed nozzle geometry for which the oscillations ceased at a fully expanded Mach number of 1.58. By varying the nozzle geometry this limitation was overcome and operation was extended to Mach 1.8. The streamwise velocity perturbation levels produced by this device were much higher than the perturbation levels that could be produced using conventional excitation sources such as acoustic drivers. In view of this ability to produce high amplitudes, the potential for using small scale fluidically oscillated jet as an unsteady excitation source for the control of shear flows in full scale practical applications seems promising.

  16. Fast reversible wavelet image compressor

    NASA Astrophysics Data System (ADS)

    Kim, HyungJun; Li, Ching-Chung

    1996-10-01

    We present a unified image compressor with spline biorthogonal wavelets and dyadic rational filter coefficients which gives high computational speed and excellent compression performance. Convolutions with these filters can be preformed by using only arithmetic shifting and addition operations. Wavelet coefficients can be encoded with an arithmetic coder which also uses arithmetic shifting and addition operations. Therefore, from the beginning to the end, the while encoding/decoding process can be done within a short period of time. The proposed method naturally extends form the lossless compression to the lossy but high compression range and can be easily adapted to the progressive reconstruction.

  17. The X-33 Extended Flight Test Range

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Sakahara, Robert; Kremer, Steven E.

    1998-01-01

    Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.

  18. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Emergency equipment: Extended overwater... Aircraft and Equipment § 135.167 Emergency equipment: Extended overwater operations. (a) Except where the... of the certificate holder, the Administrator allows deviation for a particular extended overwater...

  19. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Emergency equipment: Extended overwater... Aircraft and Equipment § 135.167 Emergency equipment: Extended overwater operations. (a) Except where the... of the certificate holder, the Administrator allows deviation for a particular extended overwater...

  20. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Emergency equipment: Extended overwater... Aircraft and Equipment § 135.167 Emergency equipment: Extended overwater operations. (a) Except where the... of the certificate holder, the Administrator allows deviation for a particular extended overwater...

  1. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Emergency equipment: Extended overwater... Aircraft and Equipment § 135.167 Emergency equipment: Extended overwater operations. (a) Except where the... of the certificate holder, the Administrator allows deviation for a particular extended overwater...

  2. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Emergency equipment: Extended overwater... Aircraft and Equipment § 135.167 Emergency equipment: Extended overwater operations. (a) Except where the... of the certificate holder, the Administrator allows deviation for a particular extended overwater...

  3. Enhanced Graphics for Extended Scale Range

    NASA Technical Reports Server (NTRS)

    Hanson, Andrew J.; Chi-Wing Fu, Philip

    2012-01-01

    Enhanced Graphics for Extended Scale Range is a computer program for rendering fly-through views of scene models that include visible objects differing in size by large orders of magnitude. An example would be a scene showing a person in a park at night with the moon, stars, and galaxies in the background sky. Prior graphical computer programs exhibit arithmetic and other anomalies when rendering scenes containing objects that differ enormously in scale and distance from the viewer. The present program dynamically repartitions distance scales of objects in a scene during rendering to eliminate almost all such anomalies in a way compatible with implementation in other software and in hardware accelerators. By assigning depth ranges correspond ing to rendering precision requirements, either automatically or under program control, this program spaces out object scales to match the precision requirements of the rendering arithmetic. This action includes an intelligent partition of the depth buffer ranges to avoid known anomalies from this source. The program is written in C++, using OpenGL, GLUT, and GLUI standard libraries, and nVidia GEForce Vertex Shader extensions. The program has been shown to work on several computers running UNIX and Windows operating systems.

  4. Validation of Extended MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.

    2016-10-01

    Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  5. Numerical preservation of symmetry properties of continuum problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caramana, E.J.; Whalen, P.

    1997-12-31

    The authors investigate the problem of perfectly preserving a symmetry associated naturally with one coordinate system when calculated in a different coordinate system. This allows a much wider range of problems that may be viewed as perturbations of the given symmetry to be investigated. They study the problem of preserving cylindrical symmetry in two-dimensional cartesian geometry and spherical symmetry in two-dimensional cylindrical geometry. They show that this can be achieved by a simple modification of the gradient operator used to compute the force in a staggered grid Lagrangian hydrodynamics algorithm. In the absence of the supposed symmetry they show thatmore » the new operator produces almost no change in the results because it is always close to the original gradient operator. Their technique this results in a subtle manipulation of the spatial truncation error in favor of the assumed symmetry but only to the extent that it is naturally present in the physical situation. This not only extends the range of previous algorithms and the use of new ones for these studies, but for spherical or cylindrical calculations reduces the sensitivity of the results to grid setup with equal angular zoning that has heretofore been necessary with these problems. Although this work is in two-dimensions, it does point the way to solving this problem in three-dimensions. This is particularly important for the ASCI initiative. The manner in which these results can be extended to three-dimensions will be discussed.« less

  6. Application of global weather and climate model output to the design and operation of wind-energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Judith

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatorymore » environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.« less

  7. Life Test Approach for Refractory Metal/Sodium Heat Pipes

    NASA Astrophysics Data System (ADS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    Heat pipe life tests described in the literature have seldom been conducted on a systematic basis. Typically one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. The objective of this work was to establish an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. Approximately 10 years of operational life might be compressed into 3 years of laboratory testing through a combination of increased temperature and mass fluence. To accomplish this goal test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long term corrosion rates. The heat pipes selected for demonstration purposes are fabricated from a Molybdenum-44.5%Rhenium refractory metal alloy and include an internal crescent annular wick design formed by hot isostatic pressing. A processing methodology has been devised that incorporates vacuum distillation filling with an integrated purity sampling technique for the sodium working fluid. Energy is supplied by radio frequency induction coils coupled to the heat pipe evaporator with an input range of 1 to 5 kW per unit while a static gas gap coupled water calorimeter provides condenser cooling for heat pipe temperatures ranging from 1123 to 1323 K. The test chamber's atmosphere would require active purification to maintain low oxygen concentrations at an operating pressure of approximately 75 torr. The test is designed to operate round-the-clock with 6-month non-destructive inspection intervals to identify the onset and level of corrosion. At longer intervals specific heat pipes are destructively evaluated to verify the non-destructive observations. Accomplishments prior to project cancellation included successful demonstration of the heat pipe wick fabrication technique, establishment of all engineering designs, baselined operational test requirements and procurement/assembly of supporting test hardware systems.

  8. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sun power Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. In the past year, NASA GRC has been building a test facility to support extended operation of a pair of engineering level ASCs. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. Mechanical support hardware, data acquisition software, and an instrumentation rack were developed to prepare the pair of convertors for continuous extended operation. Short-term tests were performed to gather baseline performance data before extended operation was initiated. These tests included workmanship vibration, insulation thermal loss characterization, low-temperature checkout, and fUll-power operation. Hardware and software features are implemented to ensure reliability of support systems. This paper discusses the mechanical support hardware, instrumentation rack, data acquisition software, short-term tests, and safety features designed to support continuous unattended operation of a pair of ASCs.

  9. Robots and Humans: Synergy in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2003-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

  10. Robots and Humans: Synergy in Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

  11. Method of making carbide/fluoride/silver composites

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E. (Inventor); Dellacorte, Christopher (Inventor)

    1991-01-01

    A composition containing 30 to 70 percent chromium carbide, 5 to 20 percent soft noble metal, 5 to 20 percent metal fluorides, and 20 to 60 percent metal binder is used in a powdered metallurgy process for the production of self-lubricating components, such as bearings. The use of the material allows the self-lubricating bearing to maintain its low friction properties over an extended range of operating temperatures.

  12. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  13. Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape

    DOE PAGES

    Bierbach, Jana; Yeung, Mark; Eckner, Erich; ...

    2015-05-01

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  14. Tendon-driven continuum robot for neuroendoscopy: validation of extended kinematic mapping for hysteresis operation.

    PubMed

    Kato, Takahisa; Okumura, Ichiro; Kose, Hidekazu; Takagi, Kiyoshi; Hata, Nobuhiko

    2016-04-01

    The hysteresis operation is an outstanding issue in tendon-driven actuation--which is used in robot-assisted surgery--as it is incompatible with kinematic mapping for control and trajectory planning. Here, a new tendon-driven continuum robot, designed to fit existing neuroendoscopes, is presented with kinematic mapping for hysteresis operation. With attention to tension in tendons as a salient factor of the hysteresis operation, extended forward kinematic mapping (FKM) has been developed. In the experiment, the significance of every component in the robot for the hysteresis operation has been investigated. Moreover, the prediction accuracy of postures by the extended FKM has been determined experimentally and compared with piecewise constant curvature assumption. The tendons were the most predominant factor affecting the hysteresis operation of the robot. The extended FKM including friction in tendons predicted the postures in the hysteresis operation with improved accuracy (2.89 and 3.87 mm for the single and the antagonistic-tendons layouts, respectively). The measured accuracy was within the target value of 5 mm for planning of neuroendoscopic resection of intraventricle tumors. The friction in tendons was the most predominant factor for the hysteresis operation in the robot. The extended FKM including this factor can improve prediction accuracy of the postures in the hysteresis operation. The trajectory of the new robot can be planned within target value for the neuroendoscopic procedure by using the extended FKM.

  15. Expected load spectra of prototype Francis turbines in low-load operation using numerical simulations and site measurements

    NASA Astrophysics Data System (ADS)

    Eichhorn, M.; Taruffi, A.; Bauer, C.

    2017-04-01

    The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.

  16. Validation and Continued Development of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2017-10-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. An extended MHD model has shown good agreement with experimental data at 14 kHz injector operation. Efforts to extend the existing validation to a range of higher frequencies (36, 53, 68 kHz) using the PSI-Tet 3D extended MHD code will be presented, along with simulations of potential combinations of flux conserver features and helicity injector configurations and their impact on current drive performance, density control, and temperature for future SIHI experiments. Work supported by USDoE.

  17. Hydrodynamic characteristics over a range of speeds up to 80 feet per second of a rectangular modified flat plate having an aspect ratio of 0.25 and operating at several depths of submersion

    NASA Technical Reports Server (NTRS)

    Vaughan, Victor L , Jr; Ramsen, John A

    1957-01-01

    Results of an investigation of the hydrodynamic characteristics over an extended speed range of a rectangular modified flat plate having an aspect ratio of 0.25 and operating at several depths of submersion are presented. Comparisons between these data and data over a lower speed range on a similar aspect-ratio-0.25 flat plate but having one-half the thickness are presented. These comparisons show no significant differences at the low speeds. At high speeds and high angles of attack, where extensive cavitation was present, the lift coefficients were lower than would have been indicated by the results of the previous investigations and the present investigation at the lower angles of attack. A brief discussion and comparison of ventilation are presented which shows two types of planing bubble formation and the effect of increasing the thickness of the model on the ventilation boundary.

  18. A Roadmap for Aircraft Engine Life Extending Control

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2001-01-01

    The concept of Aircraft Engine Life Extending Control is introduced. A brief description of the tradeoffs between performance and engine life are first explained. The overall goal of the life extending controller is to reduce the engine operating cost by extending the on-wing engine life while improving operational safety. The research results for NASA's Rocket Engine life extending control program are also briefly described. Major building blocks of the Engine Life Extending Control architecture are examined. These blocks include: life prediction models, engine operation models, stress and thermal analysis tools, control schemes, and intelligent control systems. The technology areas that would likely impact the successful implementation of an aircraft engine life extending control are also briefly described. Near, intermediate, and long term goals of NASA's activities are also presented.

  19. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing.

    PubMed

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-10-23

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation.

  20. Model-Based Data Integration and Process Standardization Techniques for Fault Management: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Haste, Deepak; Ghoshal, Sudipto; Johnson, Stephen B.; Moore, Craig

    2018-01-01

    This paper describes the theory and considerations in the application of model-based techniques to assimilate information from disjoint knowledge sources for performing NASA's Fault Management (FM)-related activities using the TEAMS® toolset. FM consists of the operational mitigation of existing and impending spacecraft failures. NASA's FM directives have both design-phase and operational-phase goals. This paper highlights recent studies by QSI and DST of the capabilities required in the TEAMS® toolset for conducting FM activities with the aim of reducing operating costs, increasing autonomy, and conforming to time schedules. These studies use and extend the analytic capabilities of QSI's TEAMS® toolset to conduct a range of FM activities within a centralized platform.

  1. Miniaturized multiwavelength digital holography sensor for extensive in-machine tool measurement

    NASA Astrophysics Data System (ADS)

    Seyler, Tobias; Fratz, Markus; Beckmann, Tobias; Bertz, Alexander; Carl, Daniel

    2017-06-01

    In this paper we present a miniaturized digital holographic sensor (HoloCut) for operation inside a machine tool. With state-of-the-art 3D measurement systems, short-range structures such as tool marks cannot be resolved inside a machine tool chamber. Up to now, measurements had to be conducted outside the machine tool and thus processing data are generated offline. The sensor presented here uses digital multiwavelength holography to get 3D-shape-information of the machined sample. By using three wavelengths, we get a large artificial wavelength with a large unambiguous measurement range of 0.5mm and achieve micron repeatability even in the presence of laser speckles on rough surfaces. In addition, a digital refocusing algorithm based on phase noise is implemented to extend the measurement range beyond the limits of the artificial wavelength and geometrical depth-of-focus. With complex wave field propagation, the focus plane can be shifted after the camera images have been taken and a sharp image with extended depth of focus is constructed consequently. With 20mm x 20mm field of view the sensor enables measurement of both macro- and micro-structure (such as tool marks) with an axial resolution of 1 µm, lateral resolution of 7 µm and consequently allows processing data to be generated online which in turn qualifies it as a machine tool control. To make HoloCut compact enough for operation inside a machining center, the beams are arranged in two planes: The beams are split into reference beam and object beam in the bottom plane and combined onto the camera in the top plane later on. Using a mechanical standard interface according to DIN 69893 and having a very compact size of 235mm x 140mm x 215mm (WxHxD) and a weight of 7.5 kg, HoloCut can be easily integrated into different machine tools and extends no more in height than a typical processing tool.

  2. Flight controller alertness and performance during spaceflight shiftwork operations.

    PubMed

    Kelly, S M; Rosekind, M R; Dinges, D F; Miller, D L; Gillen, K A; Gregory, K B; Aguilar, R D; Smith, R M

    1998-09-01

    Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations personnel. During Space Transportation System (STS) operations, Mission Operations Directorate (MOD) personnel provide 24-hr. coverage of critical tasks. A joint NASA Johnson Space Center and NASA Ames Research Center project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during the STS-53 mission in December 1992. The study measures included a Background Questionnaire, a subjective daily logbook completed on a 24-hour basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen flight controllers representing the 3 Orbit shifts participated. The initial results clearly support the need for further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. Countermeasure strategies specific to the MOD environment are being developed to minimize the adverse effects of fatigue, sleep loss, and circadian disruption engendered by shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further EDO (extended duration orbiters), and timelines and planning for 24-hour Space Station operations continue, alertness and performance issues related to sleep and circadian disruption will remain highly relevant in the MOD environment.

  3. Thermal characteristics of the 12-gigahertz, 200-watt output stage tube for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Curren, A. N.

    1978-01-01

    A description of the methods used to measure component temperatures and heat-rejection rates in a simulated space environment on output stage tubes (OST's) developed for the Communications Technology Satellite is presented along with summaries of experimentally determined values. The OST's were operated over the entire anticipated operating drive range, from the dc beam (zero drive) condition to the 6-db overdrive condition. The baseplate temperature was varied from -10 to 58 C with emphasis placed on the testing done at 45 C, the normal anticipated operating temperature. The heat-rejection rate of the OST baseplate ranged from 7.6 W at the dc beam condition to 184.5 W at the 6-db overdrive condition; the heat-rejection rate of the multistage depressed collector (MDC) cover ranged from 192.2 to 155.9 W for the same conditions. The maximum OST temperature measured on the MDC cover was 227 C during a dc beam test. The minimum temperature measured, also on the MDC cover, was -67.5 C at the end of an extended simulated eclipse test period. No effects were observed on the OST thermal characteristics due to vibration testing or temperature-reversal cycle testing.

  4. A Review of Solar-Powered Aircraft Flight Activity at the Pacific Missile Range Test Facility, Kauai, Hawaii

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Donohue, Casey; Teets, Edward H., Jr.

    2004-01-01

    A series of solar-powered aircraft have been designed and operated by AeroVironment, Inc. (Monrovia, CA) as a part of National Aeronautics and Space Administration (NASA) objectives to develop energy-efficient high-altitude long-endurance platforms for earth observations and communications applications. Flight operations have been conducted at NASA's Dryden Flight Research Center, Edwards CA and at the U.S. Navy Pacific Missile Range Facility (PMRF) at Barking Sands, Kauai, HI. These aircraft flown at PMRF are named Pathfinder , Pathfinder Plus and Helios . Sizes of these three aircraft range from 560 lb with a 99-ft wingspan to 2300 lb with a 247-ft wingspan. Available payload capacity reaches approximately 200 lb. Pathfinder uses six engines and propellers: Pathfinder Plus 8; and Helios 14. The 2003 Helios fuel cell configurations used 10 engines and propellers. The PMRF was selected as a base of operations because if offers optimal summertime solar exposure, low prevailing wind-speeds on the runway, modest upper-air wind-speeds and the availability of suitable airspace. Between 1997 and 2001, successive altitude records of 71,530 ft, 80,200 ft, and 96,863 ft were established. Flight durations extended to 18 hours.

  5. Collaborative engagement experiment

    NASA Astrophysics Data System (ADS)

    Mullens, Katherine; Troyer, Bradley; Wade, Robert; Skibba, Brian; Dunn, Michael

    2006-05-01

    Unmanned ground and air systems operating in collaboration have the potential to provide future Joint Forces a significant capability for operations in complex terrain. Collaborative Engagement Experiment (CEE) is a consolidation of separate Air Force, Army and Navy collaborative efforts within the Joint Robotics Program (JRP) to provide a picture of the future of unmanned warfare. The Air Force Research Laboratory (AFRL), Material and Manufacturing Directorate, Aerospace Expeditionary Force Division, Force Protection Branch (AFRL/MLQF), The Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) Joint Technology Center (JTC)/Systems Integration Laboratory (SIL), and the Space and Naval Warfare Systems Center - San Diego (SSC San Diego) are conducting technical research and proof of principle experiments for an envisioned operational concept for extended range, three dimensional, collaborative operations between unmanned systems, with enhanced situational awareness for lethal operations in complex terrain. This paper describes the work by these organizations to date and outlines some of the plans for future work.

  6. The Effect of Magnetohydrodynamic (MHD) Energy Bypass on Specific Thrust for a Supersonic Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2010-01-01

    This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.

  7. Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days)

    PubMed Central

    Moyer, Eric L; Dumars, Paula M; Sun, Gwo-Shing; Martin, Kara J; Heathcote, David G; Boyle, Richard D; Skidmore, Mike G

    2016-01-01

    The National Aeronautics and Space Administration Animal Enclosure Module (AEM) was developed as a self-contained rodent habitat for shuttle flight missions that provides inhabitants with living space, food, water, ventilation, and lighting, and this study reports whether, after minimal hardware modification, the AEM could support an extended term up to 35 days for Sprague-Dawley rats and C57BL/6 female mice for use on the International Space Station. Success was evaluated based on comparison of AEM housed animals to that of vivarium housed and to normal biological ranges through various measures of animal health and well-being, including animal health evaluations, animal growth and body masses, organ masses, rodent food bar consumption, water consumption, and analysis of blood contents. The results of this study confirmed that the AEMs could support 12 adult female C57BL/6 mice for up to 35 days with self-contained RFB and water, and the AEMs could also support 5 adult male Sprague-Dawley rats for 35 days with external replenishment of diet and water. This study has demonstrated the capability and flexibility of the AEM to operate for up to 35 days with minor hardware modification. Therefore, with modifications, it is possible to utilize this hardware on the International Space Station or other operational platforms to extend the space life science research use of mice and rats. PMID:28725722

  8. Diurnal evolution of wind structure and data availability measured by the DOE prototype radar system

    NASA Astrophysics Data System (ADS)

    Hirth, Brian D.; Schroeder, John L.; Guynes, Jerry G.

    2017-11-01

    A new Doppler radar prototype has been developed and deployed at Texas Tech University with a focus on enhancing the technologies’ capability to contribute to wind plant relevant complex flow measurements. In particular, improvements in data availability, total data coverage, and autonomous operation were targeted to enable contributions to a wider range of wind energy applications. Doppler radar offers rapid scan speeds, extended maximum range and excellent along-beam range resolution allowing for the simultaneous measurement of various wind phenomena ranging from regional and wind plant scales to inflow and wake flow assessment for an individual turbine. Data examples and performance improvements relative to a previous edition of the technology are presented, including insights into the influence of diurnal atmospheric stability evolution of wind structure and system performance.

  9. Development of ITER non-activation phase operation scenarios

    DOE PAGES

    Kim, S. H.; Poli, F. M.; Koechl, F.; ...

    2017-06-29

    Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65–5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into Hemore » plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this paper, various H/He scenarios at a wide range of plasma current (7.5–15 MA) and field (2.65–5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.« less

  10. Development of ITER non-activation phase operation scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S. H.; Poli, F. M.; Koechl, F.

    Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65–5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into Hemore » plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this paper, various H/He scenarios at a wide range of plasma current (7.5–15 MA) and field (2.65–5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.« less

  11. Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, F.; Filippetto, D.; Johnson, M.

    The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less

  12. Upgrade possibilities for continuous wave rf electron guns based on room-temperature very high frequency technology

    DOE PAGES

    Sannibale, F.; Filippetto, D.; Johnson, M.; ...

    2017-11-27

    The past decade was characterized by an increasing scientific demand for extending towards higher repetition rates (MHz class and beyond) the performance of already operating lower repetition rate accelerator-based instruments such as x-ray free electron lasers (FELs) and ultrafast electron diffraction (UED) and microscopy (UEM) instruments. Such a need stimulated a worldwide spread of a vibrant R & D activity targeting the development of high-brightness electron sources capable of operating at these challenging rates. Among the different technologies pursued, rf guns based on room-temperature structures resonating in the very high frequency (VHF) range (30-300 MHz) and operating in continuous wavemore » successfully demonstrated in the past few years the targeted brightness and reliability. Nonetheless, recently proposed upgrades for x-ray FELs and the always brightness-frontier applications such as UED and UEM are now requiring a further step forward in terms of beam brightness in electron sources. Here, we present a few possible upgrade paths that would allow one to extend, in a relatively simple and cost-effective way, the performance of the present VHF technology to the required new goals.« less

  13. Tendon-Driven Continuum Robot for Neuroendoscopy: Validation of Extended Kinematic Mapping for Hysteresis Operation

    PubMed Central

    Takahisa, Kato; Okumura, Ichiro; Kose, Hidekazu; Takagi, Kiyoshi; Hata, Nobuhiko

    2016-01-01

    Purpose The hysteresis operation is an outstanding issue in tendon-driven actuation—which is used in robot-assisted surgery—as it is incompatible with kinematic mapping for control and trajectory planning. Here, a new tendon-driven continuum robot, designed to fit existing neuroendoscopes, is presented with kinematic mapping for hysteresis operation. Methods With attention to tension in tendons as a salient factor of the hysteresis operation, extended forward kinematic mapping (FKM) has been developed. In the experiment, the significance of every component in the robot for the hysteresis operation has been investigated. Moreover, the prediction accuracy of postures by the extended FKM has been determined experimentally and compared with piecewise constant curvature assumption (PCCA). Results The tendons were the most predominant factor affecting the hysteresis operation of the robot. The extended FKM including friction in tendons predicted the postures in the hysteresis operation with improved accuracy (2.89 mm and 3.87 mm for the single and the antagonistic tendons layouts, respectively). The measured accuracy was within the target value of 5 mm for planning of neuroendoscopic resection of intraventricle tumors. Conclusion The friction in tendons was the most predominant factor for the hysteresis operation in the robot. The extended FKM including this factor can improve prediction accuracy of the postures in the hysteresis operation. The trajectory of the new robot can be planned within target value for the neuroendoscopic procedure by using the extended FKM. PMID:26476639

  14. Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zickefoose, J.; Kulkarni, T.; Martinson, T.

    The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - Xmore » and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of the tube is extended and the linearity is greatly improved. Testing has been performed at Pacific Northwest National Laboratory (PNNL) in the USA and confirms compliance to IEC 60532 as well as linearity (± 10%) up to 100 Sv/hr. Furthermore, a network of EcoGamma probes may be linked through available supervisory software to provide a dose rate map of an area. This allows for real time monitoring of dose rates from one (or multiple) remote locations. (authors)« less

  15. Local terahertz microspectroscopy with λ/100 spatial resolution.

    PubMed

    Glotin, F; Ortega, J-M; Prazeres, R

    2013-12-15

    We have extended the spectral range of a differential method of infrared microspectroscopy in order to operate in the terahertz spectral region. We show on samples of graphite embedded in a matrix of polymers that the spatial resolution is practically independent of the wavelength and is at least λ/100. This method aims at performing "chemical mapping" of various objects since it is sensitive only to the imaginary part of the index of refraction.

  16. Robots and humans: synergy in planetary exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. Published by Elsevier Ltd.

  17. F-15E Beddown at Seymour Johnson AFB, North Carolina

    DTIC Science & Technology

    1988-03-01

    fuel tanks for extended range, an expanded weapons capacity, and LANTIRN for enhanced night operations. Procurement of 392 F-15Es is required to address...target recognizer. These capabilities permit the pilot of a single or dual seat aircraft to deliver guided and 1.1-i unguided weapons under day/night...functional subsystems. The targeting pod permits day or night precision delivery of conventional, laser guided bomb, and electro-optical weapons . The

  18. 3D GIS spatial operation based on extended Euler operators

    NASA Astrophysics Data System (ADS)

    Xu, Hongbo; Lu, Guonian; Sheng, Yehua; Zhou, Liangchen; Guo, Fei; Shang, Zuoyan; Wang, Jing

    2008-10-01

    The implementation of 3 dimensions spatial operations, based on certain data structure, has a lack of universality and is not able to treat with non-manifold cases, at present. ISO/DIS 19107 standard just presents the definition of Boolean operators and set operators for topological relationship query, and OGC GeoXACML gives formal definitions for several set functions without implementation detail. Aiming at these problems, based mathematical foundation on cell complex theory, supported by non-manifold data structure and using relevant research in the field of non-manifold geometry modeling for reference, firstly, this paper according to non-manifold Euler-Poincaré formula constructs 6 extended Euler operators and inverse operators to carry out creating, updating and deleting 3D spatial elements, as well as several pairs of supplementary Euler operators to convenient for implementing advanced functions. Secondly, we change topological element operation sequence of Boolean operation and set operation as well as set functions defined in GeoXACML into combination of extended Euler operators, which separates the upper functions and lower data structure. Lastly, we develop underground 3D GIS prototype system, in which practicability and credibility of extended Euler operators faced to 3D GIS presented by this paper are validated.

  19. Adaptive logical stochastic resonance in time-delayed synthetic genetic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zheng, Wenbin; Song, Aiguo

    2018-04-01

    In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.

  20. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.

  1. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.

  2. Water vapor measurement system in global atmospheric sampling program, appendix

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  3. Spacelab energetic ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Whalen, B. A.; Mcdiarmid, I. B.; Burrows, J. R.; Sharp, R. D.; Johnson, R. G.; Shelley, E. G.

    1980-01-01

    Basic design criteria are given for an ion mass spectrometer for use in studying magnetospheric ion populations. The proposed instrument is composed of an electrostatic analyzer followed by a magnetic spectrometer and simultaneously measures the energy per unit and mass per unit charge of the ion species. An electromagnet is used for momentum analysis to extend the operational energy range over a much wider domain than is possible with the permanent magnets used in previous flights. The energetic ion source regions, ion energization mechanisms, field line tracing, coordinated investigations, and orbit considerations are discussed and operations of the momentum analyzer and of the electrostatic energy analyzer are examined.

  4. In-Flight Performance of the Mercury Laser Altimeter Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Sun, Xiaoli; Li, Steven X.; Cavanaugh, John F.; Neumann, Gregory A.

    2014-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which was launched on August 3, 2004. MLA maps Mercury's shape and topographic landforms and other surface characteristics using a diode-pumped solid-state laser transmitter and a silicon avalanche photodiode receiver that measures the round-trip time of individual laser pulses. The laser transmitter has been operating nominally during planetary flyby measurements and in orbit about Mercury since March 2011. In this paper, we review the MLA laser transmitter telemetry data and evaluate the performance of solid-state lasers under extended operation in a space environment.

  5. Sunlight readable avionics displays

    NASA Astrophysics Data System (ADS)

    Visinski, Joseph R.

    1998-09-01

    The theme of the Cockpit Displays V Conference of 'Custom versus Consumer -- Grade Displays in Defense Applications' reflects the Raytheon Systems Company field emission display (FED) development effort. Raytheon chose to license commercial FED technology and subsequently participate in a commercial industry 'FED Alliance' to insert this technology into commercial and avionics defense applications. The unaffordability of custom military displays makes them an unfeasible choice to build a business upon. The major differences between consumer FEDs and those adapted for military/avionics installations are: (1) high brightness for sunlight visibility; (2) extended environmental range; (3) high resolution; (4) wider dimming range for sunlight to NVIS operation; (5) extended gray scales; (6) lifetime product support well beyond two year consumer market life. The transition to defense applications is further being accomplished via industry/government partnerships as the DARPA Technology Reinvestment Project (TRP) and BAA 97-31. FEDs combine cathode ray tube (CRT) and matrix addressed flat panel display technology, parts, manufacturing, and test equipment, plus open systems interfaces into a new display.

  6. Fiber optic shape sensing for monitoring of flexible structures

    NASA Astrophysics Data System (ADS)

    Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.

    2012-04-01

    Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows

  7. Evaluation of the ICET Test Stand to Assess the Performance of a Range of Ceramic Media Filter Elements in Support of ASME AG-1 Subsection FO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schemmel, A.

    High Efficiency Particulate Air (HEPA) filters are defined as extended-medium, dry-type filters with: (1) a minimum particle removal efficiency of no less than 99.97 percent for 0.3 micrometer particles, (2) a maximum, clean resistance of 1.0 inch water column (in. WC) when operated at 1,000 cubic feet per minute (CFM), and (3) a rigid casing that extends the full depth of the medium. Specifically, ceramic media HEPA filters provide better performance at elevated temperatures, are moisture resistant and nonflammable, can perform their function if wetted and exposed to greater pressures, and can be cleaned and reused. This paper describes themore » modification and design of a large scale test stand which properly evaluates the filtration characteristics of a range of ceramic media filters challenged with a nuclear aerosol agent in order to develop Section FO of ASME AG-1.« less

  8. Interferometric Laser Scanner for Direction Determination

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  9. Interferometric Laser Scanner for Direction Determination.

    PubMed

    Kaloshin, Gennady; Lukin, Igor

    2016-01-21

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  10. Novel Driving Method for Two-Dimensional and Three-Dimensional Switchable Active Matrix Organic Light-Emitting Diode Displays for Emission and Programming Time Extension

    NASA Astrophysics Data System (ADS)

    In, Hai-Jung; Kwon, Oh-Kyong

    2012-03-01

    A novel driving method for two-dimensional (2D) and three-dimensional (3D) switchable active matrix organic light-emitting diode (AMOLED) displays is proposed to extend emission time and data programming time during 3D display operation. The proposed pixel consists of six thin-film transistors (TFTs) and two capacitors, and the aperture ratio of the pixel is 45.8% under 40-in. full-high-definition television condition. By increasing emission time and programming time, the flicker problem can be reduced and the lifetime of AMOLED displays can be extended owing to the decrease in emission current density. Simulation results show that the emission current error range from -0.4 to 1.6% is achieved when the threshold voltage variation of driving TFTs is in the range from -1.0 to 1.0 V, and the emission current error is 1.0% when the power line IR-drop is 2.0 V.

  11. [Recurrences after surgical treatment of early (pT1) cancer of the stomach: laws of development, extended lymphadenectomy in prophylaxis of recurrences].

    PubMed

    Skoropad, V Iu; Berdov, B A

    2007-01-01

    Long-term results of treatment of 175 patients with early cancer of the stomach are analyzed. Recurrences of the disease (local, regional recurrences and distant metastases) were diagnosed in 14 (8.2% of all operated) patients. Duration of recurrence-free period ranged from 2-3 months to 9.5 years; median was 12 months. Tumor spread, regional nodes affection, tumor morphological structure, age of patients were the main prognostic factors for recurrences. Extent of surgery and lymphodissection did not correlate with recurrences rate. It is concluded that extended lymphodissection in patients with early cancer of the stomach should not be regarded as a real method for an increase of treatment efficacy.

  12. KMCLib 1.1: Extended random number support and technical updates to the KMCLib general framework for kinetic Monte-Carlo simulations

    NASA Astrophysics Data System (ADS)

    Leetmaa, Mikael; Skorodumova, Natalia V.

    2015-11-01

    We here present a revised version, v1.1, of the KMCLib general framework for kinetic Monte-Carlo (KMC) simulations. The generation of random numbers in KMCLib now relies on the C++11 standard library implementation, and support has been added for the user to choose from a set of C++11 implemented random number generators. The Mersenne-twister, the 24 and 48 bit RANLUX and a 'minimal-standard' PRNG are supported. We have also included the possibility to use true random numbers via the C++11 std::random_device generator. This release also includes technical updates to support the use of an extended range of operating systems and compilers.

  13. Variable force, eddy-current or magnetic damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E. (Inventor)

    1985-01-01

    An object of the invention is to provide variable damping for resonant vibrations which may occur at different rotational speeds in the range of rpms in which a rotating machine is operated. A variable force damper in accordance with the invention includes a rotating mass carried on a shaft which is supported by a bearing in a resilient cage. The cage is attached to a support plate whose rim extends into an annular groove in a housing. Variable damping is effected by tabs of electrically conducting nonmagnetic material which extend radially from the cage. The tabs at an index position lie between the pole face of respective C shaped magnets. The magnets are attached by cantilever spring members to the housing.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierbach, Jana; Yeung, Mark; Eckner, Erich

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  15. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Havlin, S.; Hausdorff, J. M.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.

    1995-01-01

    Under healthy conditions, the normal cardiac (sinus) interbeat interval fluctuates in a complex manner. Quantitative analysis using techniques adapted from statistical physics reveals the presence of long-range power-law correlations extending over thousands of heartbeats. This scale-invariant (fractal) behavior suggests that the regulatory system generating these fluctuations is operating far from equilibrium. In contrast, it is found that for subjects at high risk of sudden death (e.g., congestive heart failure patients), these long-range correlations break down. Application of fractal scaling analysis and related techniques provides new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as motivating development of novel physiologic models of systems that appear to be heterodynamic rather than homeostatic.

  16. Electrodynamic Tether Operations beyond the Ionosphere in the Low-Density Magnetosphere

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2007-01-01

    In the classical concept for the operation of electrodynamic tethers in space, a voltage is generated across the tether, either by the tether's orbital motion through the earth's planetary magnetic field or by a power supply; electrons are then collected from the ionospheric plasma at the positive pole; actively emitted back into space at the negative pole; and the circuit is closed by currents driven through the ambient conducting ionosphere. This concept has been proven to work in space by the Tethered Satellite System TSS-1 and TSS-1R Space Shuttle missions; and the Plasma Motor-Generator (PMG) tether flight experiment. However, it limits electrodynamic tether operations to the F-region of the ionosphere where the plasma density is sufficient to conduct the required currents--in other words, between altitudes of approximately 200 to 1000 km in sunlight. In the earth's shadow, the ionospheric density drops precipitously and tether operations, using the above approach, are not effective--even within this altitude range. There are numerous missions that require in-space propulsion in the Earth's shadow and/or outside of the above altitude range. This paper will, therefore, present the fundamentals of a concept that would allow electrodynamic tethers to operate almost anywhere within the magnetosphere, the region of space containing the earth's planetary magnetic field. In other words, because operations would be virtually independent of any ambient plasma, the range of electrodynamic operations would be extended into the earth's shadow and out to synchronous orbit--forty times the present operational range. The key to this concept is the active generation of plasma at each pole of the tether so that current generation ,does not depend on the conductivity of the ambient ionosphere. Arguments will be presented, based on ,existing flight data, which shed light on the behavior of charge emissions in space and show the plausibility of the concept.

  17. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technicalmore » basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in various locations and at varying degrees during BWR operation based on the core loading pattern. When present during depletion, control blades harden the neutron spectrum locally because they displace the moderator and absorb thermal neutrons. The investigation of the effect of control blades on post operational cask reactivity is documented herein, as is the effect of multiple (continuous and intermittent) exposure periods with control blades inserted. The coupled effects of control blade presence on power density, void profile, or burnup profile will be addressed in future work.« less

  18. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well controlled workplace field. The CERF (CERN-EU high-energy reference field) facility is a unique example of such a field, where a number of experimental campaigns and Monte Carlo simulations have been performed over the past years. With the aim of performing this kind of workplace performance test, four different ERBSS with different degrees of validation, operated by three groups (CERN, INFN-LNF and Politecnico of Milano), were exposed in two fixed positions at CERF. Using different unfolding codes (MAXED, GRAVEL, FRUIT and FRUIT SGM), the experimental data were analyzed to provide the neutron spectra and the related dosimetric quantities. The results allow assessing the overall performance of each ERBSS and of the unfolding codes, as well as comparing the performance of three ERRCs when used in a neutron field with energy distribution different from the calibration spectrum.

  19. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing

    PubMed Central

    Wang, Zhaocai; Pu, Jun; Cao, Liling; Tan, Jian

    2015-01-01

    The unbalanced assignment problem (UAP) is to optimally resolve the problem of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in operation management and applied mathematics, having numerous real life applications. In this paper, we present a new parallel DNA algorithm for solving the unbalanced assignment problem using DNA molecular operations. We reasonably design flexible-length DNA strands representing different jobs and individuals, take appropriate steps, and get the solutions of the UAP in the proper length range and O(mn) time. We extend the application of DNA molecular operations and simultaneity to simplify the complexity of the computation. PMID:26512650

  20. Imaging of spatially extended hot spots with coded apertures for intra-operative nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Kaissas, I.; Papadimitropoulos, C.; Potiriadis, C.; Karafasoulis, K.; Loukas, D.; Lambropoulos, C. P.

    2017-01-01

    Coded aperture imaging transcends planar imaging with conventional collimators in efficiency and Field of View (FOV). We present experimental results for the detection of 141 keV and 122 keV γ-photons emitted by uniformly extended 99mTc and 57Co hot-spots along with simulations of uniformly and normally extended 99mTc hot-spots. These results prove that the method can be used for intra-operative imaging of radio-traced sentinel nodes and thyroid remnants. The study is performed using a setup of two gamma cameras, each consisting of a coded-aperture (or mask) of Modified Uniformly Redundant Array (MURA) of rank 19 positioned on top of a CdTe detector. The detector pixel pitch is 350 μm and its active area is 4.4 × 4.4 cm2, while the mask element size is 1.7 mm. The detectable photon energy ranges from 15 keV up to 200 keV with an energy resolution of 3-4 keV FWHM. Triangulation is exploited to estimate the 3D spatial coordinates of the radioactive spots within the system FOV. Two extended sources, with uniform distributed activity (11 and 24 mm in diameter, respectively), positioned at 16 cm from the system and with 3 cm distance between their centers, can be resolved and localized with accuracy better than 5%. The results indicate that the estimated positions of spatially extended sources lay within their volume size and that neighboring sources, even with a low level of radioactivity, such as 30 MBq, can be clearly distinguished with an acquisition time about 3 seconds.

  1. A Mission Concept for FUSE Operations in GFY09 and Beyond

    NASA Astrophysics Data System (ADS)

    Moos, H. W.; Sonneborn, G.; Blair, W. P.; Kruk, J. W.; FUSE Science Operations Team

    2007-05-01

    We are developing a new mission concept for the Far Ultraviolet Spectroscopic Explorer (FUSE) that would significantly reduce operating costs but would continue the availability of this unique resource into GFY09 and beyond. Launched in 1999, the FUSE satellite obtains R=20,000 spectra of astronomical sources in the far-ultraviolet (912 - 1187 A) wavelength range. The FUSE scientific instrument remains healthy and the satellite has made a remarkable recovery from attitude control problems in late 2004. We expect FUSE to remain a viable scientific tool for the foreseeable future. Current plans for FUSE operations extend through GFY2008 (Sept. 30, 2008). Key elements of this new mission concept include a) continued automation and streamlining of operations to reduce costs, and b) an emphasis on a small number of unique, high priority science programs, particularly those requiring integration times on key targets that are significantly longer than has been possible in the mission design to date. A prime example of the latter would be 100 - 400 ks integrations on selected quasars to provide much improved diagnostic power to study the intergalactic medium. Synergy with the scientific objectives of the Cosmic Origins Spectrograph (COS) program on HST, and the complementary nature of FUSE and COS data on the same sightlines, is but one major motivation for this operations model. In addition to programs emphasizing very long integrations, opportunities for other high priority targets would exist. We will describe some of the ongoing development toward such an operations model as well as the scientific drivers discussed to date. Community input on these and other science drivers for extended FUSE operations is encouraged. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS5-32985.

  2. Fan Performance From Duct Rake Instrumentation on a 1.294 Pressure Ratio, 725 ft/sec Tip Speed Turbofan Simulator Using Vaned Passage Casing Treatment

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    2006-01-01

    A 1.294 pressure ratio, 725 ft/sec tip speed, variable pitch low noise fan was designed and tested in the NASA Glenn 9- by 15-foot Wind Tunnel. The design included a casing treatment that used recirculation to extend the fan stall line and provide an acceptable operating range. Overall aerodynamic experimental results are presented for this low tip speed, low noise fan without casing treatment as well as using several variants of the casing treatment that moved the air extraction and insertion axial locations. Measurements were made to assess effects on performance, operability, and noise. An unusual instability was discovered near the design operating line and is documented in the fan operating range. Measurements were made to compare stall margin improvements as well as measure the performance impact of the casing treatments. Experimental results in the presence of simulated inlet distortion, via screens, are presented for the baseline and recirculation casing treatment configurations. Estimates are made for the quantity of recirculation weight flow based on limited instrumentation in the recirculation system along with discussion of results and conclusions

  3. Modeling and Control for Microgrids

    NASA Astrophysics Data System (ADS)

    Steenis, Joel

    Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain scheduled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.

  4. The Space Operations Simulation Center (SOSC) and Closed-loop Hardware Testing for Orion Rendezvous System Design

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Milenkovich, Zoran; Wilson, Zachary; Huich, David; Bendle, John; Kibler, Angela

    2011-01-01

    The Space Operations Simulation Center (SOSC) at the Lockheed Martin (LM) Waterton Campus in Littleton, Colorado is a dynamic test environment focused on Autonomous Rendezvous and Docking (AR&D) development testing and risk reduction activities. The SOSC supports multiple program pursuits and accommodates testing Guidance, Navigation, and Control (GN&C) algorithms for relative navigation, hardware testing and characterization, as well as software and test process development. The SOSC consists of a high bay (60 meters long by 15.2 meters wide by 15.2 meters tall) with dual six degree-of-freedom (6DOF) motion simulators and a single fixed base 6DOF robot. The large testing area (maximum sensor-to-target effective range of 60 meters) allows for large-scale, flight-like simulations of proximity maneuvers and docking events. The facility also has two apertures for access to external extended-range outdoor target test operations. In addition, the facility contains four Mission Operations Centers (MOCs) with connectivity to dual high bay control rooms and a data/video interface room. The high bay is rated at Class 300,000 (. 0.5 m maximum particles/m3) cleanliness and includes orbital lighting simulation capabilities.

  5. Decarboxylative Hydroalkylation of Alkynes.

    PubMed

    Till, Nicholas A; Smith, Russell T; MacMillan, David W C

    2018-05-02

    The merger of open- and closed-shell elementary organometallic steps has enabled the selective intermolecular addition of nucleophilic radicals to unactivated alkynes. A range of carboxylic acids can be subjected to a CO 2 extrusion, nickel capture, migratory insertion sequence with terminal and internal alkynes to generate stereodefined functionalized olefins. This platform has been further extended, via hydrogen atom transfer, to the direct vinylation of unactivated C-H bonds. Preliminary studies indicate that a Ni-alkyl migratory insertion is operative.

  6. Silicon-based silicon–germanium–tin heterostructure photonics

    PubMed Central

    Soref, Richard

    2014-01-01

    The wavelength range that extends from 1550 to 5000 nm is a new regime of operation for Si-based photonic and opto-electronic integrated circuits. To actualize the new chips, heterostructure active devices employing the ternary SiGeSn alloy are proposed in this paper. Foundry-based monolithic integration is described. Opportunities and challenges abound in creating laser diodes, optical amplifiers, light-emitting diodes, photodetectors, modulators, switches and a host of high-performance passive infrared waveguided components. PMID:24567479

  7. Ultrafast Spectroscopic Noninvasive Probe of Vertical Carrier Transport in Heterostructure Devices (Second year of three year progress report)

    DTIC Science & Technology

    2014-10-01

    properties in Army-relevant semiconductor materials and optoelectronic ( OE ) devices by developing and applying ultrafast optical spectroscopy techniques...met our Q6 through Q8 goals of incorporating electrical testing capabilities into our system, investigating OE devices under operating conditions...extending the capabilities of our system into the IR range, and investigating new OE devices. We have made significant progress towards our Q5 goal of

  8. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    PubMed

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Models for Conducting Economic Analysis of Alternative Fuel Vehicles.

    DTIC Science & Technology

    1987-06-01

    where regenerative braking is employed (5) Efficient, safe, and reliable operation (6) Overload protection for motors, motor reversing, and charging of...current to the motor in order to control the flow of power. [Ref. 3:p. 171] The regenerative braking mentioned in (4) above is a means of charging the...recovered electrically and used to charge the battery, thus extending the range of the vehicle. In regenerative braking , the electric vehicle’s V 23 AA Sg

  10. MEMS FPI-based smartphone hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Saari, Heikki; Rainio, Kari; Stuns, Ingmar; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Ojanen, Harri

    2016-05-01

    This paper demonstrates a mobile phone- compatible hyperspectral imager based on a tunable MEMS Fabry-Perot interferometer. The realized iPhone 5s hyperspectral imager (HSI) demonstrator utilizes MEMS FPI tunable filter for visible-range, which consist of atomic layer deposited (ALD) Al2O3/TiO2-thin film Bragg reflectors. Characterization results for the mobile phone hyperspectral imager utilizing MEMS FPI chip optimized for 500 nm is presented; the operation range is λ = 450 - 550 nm with FWHM between 8 - 15 nm. Also a configuration of two cascaded FPIs (λ = 500 nm and λ = 650 nm) combined with an RGB colour camera is presented. With this tandem configuration, the overall wavelength tuning range of MEMS hyperspectral imagers can be extended to cover a larger range than with a single FPI chip. The potential applications of mobile hyperspectral imagers in the vis-NIR range include authentication, counterfeit detection and potential health/wellness and food sensing applications.

  11. Methodology for Life Testing of Refractory Metal/Sodium Heat Pipes

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    The focus of this work was to establish an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identi3ed, based on American Society for Testing and Materials (ASTM) specifications, to investigate long term corrosion rates. The refractory metal selected for demonstration purposes is a Molybdenum-44.5%Rhenium alloy formed by powder metallurgy. The heat pipe makes use of an annular crescent wick design formed by hot isostatic pressing of Molybdenum-Rhenium wire mesh. The heat pipes are filled using vacuum distillation and purity sampling is considered. Testing of these units is round-the-clock with 6-month destructive and non-destructive inspection intervals to identify the onset and level of corrosion. Non-contact techniques are employed for providing power to the evaporator (radio frequency induction heating at I to 5 kW per unit) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range would extend from 1123 to 1323 K. Accomplishments prior to project cancellation included successful demonstration of the heat pipe wick fabrication technique, establishment of all engineering designs, baselined operational test requirements and procurement/assembly of supporting test hardware systems.

  12. Supervised autonomous rendezvous and docking system technology evaluation

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1991-01-01

    Technology for manned space flight is mature and has an extensive history of the use of man-in-the-loop rendezvous and docking, but there is no history of automated rendezvous and docking. Sensors exist that can operate in the space environment. The Shuttle radar can be used for ranges down to 30 meters, Japan and France are developing laser rangers, and considerable work is going on in the U.S. However, there is a need to validate a flight qualified sensor for the range of 30 meters to contact. The number of targets and illumination patterns should be minimized to reduce operation constraints with one or more sensors integrated into a robust system for autonomous operation. To achieve system redundancy, it is worthwhile to follow a parallel development of qualifying and extending the range of the 0-12 meter MSFC sensor and to simultaneously qualify the 0-30(+) meter JPL laser ranging system as an additional sensor with overlapping capabilities. Such an approach offers a redundant sensor suite for autonomous rendezvous and docking. The development should include the optimization of integrated sensory systems, packaging, mission envelopes, and computer image processing to mimic brain perception and real-time response. The benefits of the Global Positioning System in providing real-time positioning data of high accuracy must be incorporated into the design. The use of GPS-derived attitude data should be investigated further and validated.

  13. Earth Observing-1 Extended Mission

    USGS Publications Warehouse

    ,

    2003-01-01

    From its beginning in November 2000, the NASA Earth Observing-1 (EO-1) mission demonstrated the feasibility and performance of a dozen innovative sensor, spacecraft, and operational technologies. The 1-year mission tested a variety of technologies, some of which may be included on the planned 2007 Landsat Data Continuity Mission. Onboard the spacecraft are two land remote sensing instruments: the Advanced Land Imager (ALI), which acquires data in spectral bands and at resolutions similar to Landsat, and Hyperion, which acquires data in 220 10-nanometer-wide bands covering the visible, near-, and shortwave-infrared bands. Recognizing the remarkable performance of the satellite's instruments and the exceptional value of the data, the U.S. Geological Survey (USGS) and NASA agreed in December 2001 to share responsibility for operating EO-1 on a cost-reimbursable basis as long as customer sales are sufficient to recover flight and ground operations costs. The EO-1 extended mission operates within constraints imposed by its technology-pioneering origins, but it also provides unique and valuable capabilities. The spacecraft can acquire a target scene three times in a 16-day period. The ALI instrument has additional spectral coverage and greater radiometric dynamic range compared with the sensors on Landsat 7. Hyperion is the first civilian spaceborne hyperspectral imager. As of January 2003, more than 5,000 scenes had been acquired, indexed, and archived.

  14. Evaluation of a 2.5 kWel automotive low temperature PEM fuel cell stack with extended operating temperature range up to 120 °C

    NASA Astrophysics Data System (ADS)

    Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich

    2016-01-01

    Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.

  15. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs requiremore » wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.« less

  16. Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani

    2004-01-01

    The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.

  17. Comparison of microtweezers based on three lateral thermal actuator configurations

    NASA Astrophysics Data System (ADS)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-06-01

    Thermal actuator-based microtweezers with three different driving configurations have been designed, fabricated and characterized. Finite element analysis has been used to model the device performance. It was found that one configuration of microtweezer, based on two lateral bimorph thermal actuators, has a small displacement (tip opening of the tweezers) and a very limited operating power range. An alternative configuration consisting of two horizontal hot bars with separated beams as the arms can deliver a larger displacement with a much-extended operating power range. This structure can withstand a higher temperature due to the wider beams used, and has flexible arms for increased displacement. Microtweezers driven by a number of chevron structures in parallel have similar maximum displacements but at a cost of higher power consumption. The measured temperature of the devices confirms that the device with the chevron structure can deliver the largest displacement for a given working temperature, while the bimorph thermal actuator design has the highest operating temperature at the same power due to its thin hot arm, and is prone to structural failure.

  18. Incorporating Alternative Care Site Characteristics Into Estimates of Substitutable ED Visits.

    PubMed

    Trueger, Nathan Seth; Chua, Kao-Ping; Hussain, Aamir; Liferidge, Aisha T; Pitts, Stephen R; Pines, Jesse M

    2017-07-01

    Several recent efforts to improve health care value have focused on reducing emergency department (ED) visits that potentially could be treated in alternative care sites (ie, primary care offices, retail clinics, and urgent care centers). Estimates of the number of these visits may depend on assumptions regarding the operating hours and functional capabilities of alternative care sites. However, methods to account for the variability in these characteristics have not been developed. To develop methods to incorporate the variability in alternative care site characteristics into estimates of ED visit "substitutability." Our approach uses the range of hours and capabilities among alternative care sites to estimate lower and upper bounds of ED visit substitutability. We constructed "basic" and "extended" criteria that captured the plausible degree of variation in each site's hours and capabilities. To illustrate our approach, we analyzed data from 22,697 ED visits by adults in the 2011 National Hospital Ambulatory Medical Care Survey, defining a visit as substitutable if it was treat-and-release and met both the operating hours and functional capabilities criteria. Use of the combined basic hours/basic capabilities criteria and extended hours/extended capabilities generated lower and upper bounds of estimates. Our criteria classified 5.5%-27.1%, 7.6%-20.4%, and 10.6%-46.0% of visits as substitutable in primary care offices, retail clinics, and urgent care centers, respectively. Alternative care sites vary widely in operating hours and functional capabilities. Methods such as ours may help incorporate this variability into estimates of ED visit substitutability.

  19. On the Road to Transportation Efficiency (Video)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-03-01

    Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources. This animation was sponsored by the Clean Transportation Sector Initiative, and interagency effort between the U.S. Department of Transportation andmore » the U.S. Department of Energy.« less

  20. DARPA DTN Phase 3 Core Engineering Support

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh; Richard Borgen, Richard; McKelvey, James; Segui, John; Tsao, Phil

    2010-01-01

    This report covers the initial DARPA DTN Phase 3 activities as JPL provided Core Engineering Support to the DARPA DTN Program, and then further details the culmination of the Phase 3 Program with a systematic development, integration and test of a disruption-tolerant C2 Situation Awareness (SA) system that may be transitioned to the USMC and deployed in the near future. The system developed and tested was a SPAWAR/JPL-Developed Common Operating Picture Fusion Tool called the Software Interoperability Environment (SIE), running over Disruption Tolerant Networking (DTN) protocols provided by BBN and MITRE, which effectively extends the operational range of SIE from normal fully-connected internet environments to the mobile tactical edges of the battlefield network.

  1. [Conservative treatment of metacarpal fracture].

    PubMed

    Prokop, A; Helling, H J; Kulus, S; Rehm, K E

    2002-01-01

    Conservative treatment of meatacarpale fracture is recommended if there are no joint displacement, rotation failures, displacement over 30 degrees ad axim and shortening over 5 mm. Operative procedures should be done in open fractures and serial of fractures of metacarpale bones. Early functionally treatment should be done in stable, not displaced fractures. Cast can be used only for a short time in full extended position of fingers and flexion in metacarpo-phalangeal joint in 60-90 degrees. Twin-tapes after reduction of edema allowed free range of motion by fixed rotation. Closed reduction of displaced fractures of fifth metacarpal bone (boxer's fracture) isn't successful. Cases with displacement over 30 degrees may be operatively treated by intramedullary stabilization.

  2. Specification, Measurement, and Control of Electrical Switching Transients

    NASA Technical Reports Server (NTRS)

    Javor, K.

    1999-01-01

    There have been several instances of susceptibility to switching transients. The Space Shuttle Spacelab Remote Acquisition Unit (RAU-A standard interface between Spacelab payloads and the Shuttle communications system) will shut down if the input 28 Vdc bus drops below 22 volts for more than 80 gs. Although a MIL-STD-461 derivative CS06 requirement was levied on the RAU, it failed to find this susceptibility. A heavy payload on one aircraft sags the 28 volt bus below 20 volts for milliseconds. Dc-dc converters have an operating voltage. A typical 28 Vdc-to-5 Vdc converter operates within tolerance when input potential is between 17-40 Vdc, A hold-up capacitor can be used to extend the time this range is presented to the convener when the line potential sags or surges outside this range. The designer must know the range of normal transients in order to choose the correct value of hold-up. This report describes the phenomena of electrical power bus transients induced by the switching of loads both on and off the bus, and control thereof.

  3. Atmospheric Emitted Radiance Interferometer (AERI) Handbook

    DOE Data Explorer

    Gero, Jonathan; Hackel, Denny; Garcia, Raymond

    2005-01-01

    The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth's atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols.The AERI is a passive remote sounding instrument, employing a Fourier transform spectrometer operating in the spectral range 3.3-19.2 μm (520-3020 cm-1) at an unapodized resolution of 0.5 cm-1 (max optical path difference of 1 cm). The extended-range AERI (ER-AERI) deployed in dry climates, like in Alaska, have a spectral range of 3.3-25.0 μm (400-3020 cm-1) that allow measurements in the far-infrared region. Typically, the AERI averages views of the sky over a 16-second interval and operates continuously.

  4. Analysis of electric vehicle extended range misalignment based on rigid-flexible dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaowei; Lv, Mingliang; Chen, Zibo; Ji, Wei; Gao, Ruiceng

    2017-04-01

    The safety of the extended range electric vehicle is seriously affected by the misalignment fault. Therefore, this paper analyzed the electric vehicle extended range misalignment based on rigid-flexible dynamics. Through comprehensively applied the hybrid modeling of rigid-flexible and the method of fault diagnosis of machinery and equipment comprehensively, it established a extender hybrid rigid flexible mechanical model by means of the software ADAMS and ANSYS. By setting the relevant parameters to simulate the misalignment of shafting, the failure phenomenon, the spectrum analysis and the evolution rules were analyzed. It concluded that 0.5th and 1 harmonics are considered as the characteristic parameters of misalignment diagnostics for electric vehicle extended range.

  5. How to Make Money out of RLVs

    NASA Astrophysics Data System (ADS)

    Parkinson, B.

    A successful reusable launch vehicle (RLV) will need to launch payloads at lower prices than competing expendable launch vehicles (ELVs). Existing ELVs have the advantage of written off development costs, and support a range of payload sizes through dual launch and launcher modularity - features not expected to be shared by an RLV. However, the majority of ELV launch costs are expendable hardware, while for RLVs many costs are fixed annual costs. Starting with a per-flight cost below that of competing ELVs, an RLV can support a range of payload sizes at a fixed cost/kg. Since the cost of adding an extra flight to the annual operations (“marginal cost”) is also very much less than the “full recovery” cost, it is possible to extend the range of economic payload sizes downwards. This can provide the customer with a flexible, constant specific cost launcher, while giving the operator a strategy allowing recovery of the development and initial fleet production costs. An estimate for the probability distribution of future payloads (to LEO, GTO and polar orbits) is presented. This can then be used to optimize the vehicle market capture to maximise the operator's profit, or to identify a minimum market size for which an RLV will be profitable.

  6. Power allocation and range performance considerations for a dual-frequency EBPSK/MPPSK system

    NASA Astrophysics Data System (ADS)

    Yao, Yu; Wu, Lenan; Zhao, Junhui

    2017-12-01

    Extended binary phase shift keying/M-ary position phase shift keying (EBPSK/MPPSK)-MODEM provides radar and communication functions on a single hardware platform with a single waveform. However, its range estimation accuracy is worse than continuous-wave (CW) radar because of the imbalance of power in two carrier frequencies. In this article, the power allocation method for dual-frequency EBPSK/MPPSK modulated systems is presented. The power of two signal transmitters is adequately allocated to ensure that the power in two carrier frequencies is equal. The power allocation ratios for two types of modulation systems are obtained. Moreover, considerations regarding the range of operation of the dual-frequency system are analysed. In addition to theoretical considerations, computer simulations are provided to illustrate the performance.

  7. DC to DC Converter Testing for Space Applications: Use of EMI Filters and Thermal Range of Operation

    NASA Technical Reports Server (NTRS)

    Leon, Rosa

    2008-01-01

    Several tests were performed on Interpoint and International Rectifier (IR) direct current (DC) to DC converters to evaluate potential performance and reliability issues in space use of DC to DC converters and to determine if the use of electromagnetic interference (EMI) filters mitigates concerns observed during previous tests. Test findings reported here include those done up until September - October 2008. Tests performed include efficiency, regulation, cross-regulation, power consumption with inhibit on, load transient response, synchronization, and turn-on tests. Some of the test results presented here span the thermal range -55 C to 125 C. Lower range was extended to -120 C in some tested converters. Determination of failure root cause in DC/DC converters that failed at thermal extremes is also included.

  8. An experimental assessment of the imaging quality of the low energy gamma-ray telescope ZEBRA

    NASA Technical Reports Server (NTRS)

    Butler, R. C.; Caroli, E.; Dicocco, G.; Natalucci, L.; Spada, G.; Spizzichino, A.; Stephen, J. B.; Carter, J. N.; Charalambous, P. M.; Dean, A. J.

    1985-01-01

    One gamma-ray detection plane of the ZEBRA telescope, consisting of nine position sensitive scintillation crystal bars designed to operate over the spectral range 0.2 to 10 MeV, has been constructed in the laboratory. A series of experimental images has been generated using a scaled down flight pattern mask in conjunction with a diverging gamma-ray beam. Point and extended sources have been imaged in order to assess quantitatively the performance of the system.

  9. [Combined spinal and epidural anaesthesia in abdominal delivery].

    PubMed

    Matlubov, M M; Rakhimov, A U; Semenikhin, A A

    2010-01-01

    The purpose of this work is to estimate the efficacy and safety of balanced two-segmental spinal-epidural anaesthesia (SEA) as well as application of this technique in conditions of extended operative delivery. The method has been used in 69 pregnant patients aged 23-42 years, with gestation period ranging from 36 to 40 weeks. It was found out that SEA is highly effective and safe technique, therefore it can be recommended as suitable method of anaesthesia in surgery with an extension possibility.

  10. Comparative evaluation of gas-turbine engine combustion chamber starting and stalling characteristics for mechanical and air-injection

    NASA Technical Reports Server (NTRS)

    Dyatlov, I. N.

    1983-01-01

    The effectiveness of propellant atomization with and without air injection in the combustion chamber nozzle of a gas turbine engine is studied. Test show that the startup and burning performance of these combustion chambers can be improved by using an injection during the mechanical propellant atomization process. It is shown that the operational range of combustion chambers can be extended to poorer propellant mixtures by combined air injection mechanical atomization of the propellant.

  11. Three-stage Fabry-Perot liquid crystal tunable filter with extended spectral range.

    PubMed

    Zheng, Zhenrong; Yang, Guowei; Li, Haifeng; Liu, Xu

    2011-01-31

    A method to extend spectral range of tunable optical filter is proposed in this paper. Two same tunable Fabry-Perot filters and an additional tunable filter with different free spectral range are cascaded to extend spectral range and reduce sidelobes. Over 400 nm of free spectral range and 4 nm of full width at half maximum of the filter were achieved. Design procedure and simulation are described in detail. An experimental 3-stage tunable Fabry-Perot filter with visible and infrared spectra is demonstrated. The experimental results and the theoretical analysis are presented in detail to verify this method. The results revealed that a compact and extended tunable spectral range of Fabry-Perot filter can be easily attainable by this method.

  12. Thermodynamic Analysis of Dual-Mode Scramjet Engine Operation and Performance

    NASA Technical Reports Server (NTRS)

    Riggins, David; Tacket, Regan; Taylor, Trent; Auslender, Aaron

    2006-01-01

    Recent analytical advances in understanding the performance continuum (the thermodynamic spectrum) for air-breathing engines based on fundamental second-law considerations have clarified scramjet and ramjet operation, performance, and characteristics. Second-law based analysis is extended specifically in this work to clarify and describe the performance characteristics for dual-mode scramjet operation in the mid-speed range of flight Mach 4 to 7. This is done by a fundamental investigation of the complex but predictable interplay between heat release and irreversibilities in such an engine; results demonstrate the flow and performance character of the dual mode regime and of dual mode transition behavior. Both analytical and computational (multi-dimensional CFD) studies of sample dual-mode flow-fields are performed in order to demonstrate the second-law capability and performance and operability issues. The impact of the dual-mode regime is found to be characterized by decreasing overall irreversibility with increasing heat release, within the operability limits of the system.

  13. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... You may extend the sampling time to improve measurement accuracy of PM emissions, using good...-speed engines whose design prevents full-load operation for extended periods, you may ask for approval... designed to operate for extended periods. (e) See 40 CFR part 1065 for detailed specifications of...

  14. Calcium Homeostasis and Cone Signaling Are Regulated by Interactions between Calcium Stores and Plasma Membrane Ion Channels

    PubMed Central

    Bartoletti, Theodore M.; Huang, Wei; Akopian, Abram; Thoreson, Wallace B.; Krizaj, David

    2009-01-01

    Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse. PMID:19696927

  15. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, andmore » it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades are inserted in various locations and at varying degrees during BWR operation based on the reload design. The presence of control blades during depletion hardens the neutron spectrum locally due to both moderator displacement and introduction of a thermal neutron absorber. The reactivity impact of control blade presence is investigated herein, as well as the effect of multiple (continuous and intermittent) exposure periods. The coupled effects of control blade presence on power density, void profile, or burnup profile have not been considered to date but will be addressed in future work.« less

  16. Operation and performance of the New Horizons Long-Range Reconnaissance Imager during the Pluto encounter

    NASA Astrophysics Data System (ADS)

    Conard, S. J.; Weaver, H. A.; Núñez, J. I.; Taylor, H. W.; Hayes, J. R.; Cheng, A. F.; Rodgers, D. J.

    2017-09-01

    The Long-Range Reconnaissance Imager (LORRI) is a high-resolution imaging instrument on the New Horizons spacecraft. LORRI collected over 5000 images during the approach and fly-by of the Pluto system in 2015, including the highest resolution images of Pluto and Charon and the four much smaller satellites (Styx, Nix, Kerberos, and Hydra) near the time of closest approach on 14 July 2015. LORRI is a narrow field of view (0.29°), Ritchey-Chrétien telescope with a 20.8 cm diameter primary mirror and a three-lens field flattener. The telescope has an effective focal length of 262 cm. The focal plane unit consists of a 1024 × 1024 pixel charge-coupled device (CCD) detector operating in frame transfer mode. LORRI provides panchromatic imaging over a bandpass that extends approximately from 350 nm to 850 nm. The instrument operates in an extreme thermal environment, viewing space from within the warm spacecraft. For this reason, LORRI has a silicon carbide optical system with passive thermal control, designed to maintain focus without adjustment over a wide temperature range from -100 C to +50 C. LORRI operated flawlessly throughout the encounter period, providing both science and navigation imaging of the Pluto system. We describe the preparations for the Pluto system encounter, including pre-encounter rehearsals, calibrations, and navigation imaging. In addition, we describe LORRI operations during the encounter, and the resulting imaging performance. Finally, we also briefly describe the post-Pluto encounter imaging of other Kuiper belt objects and the plans for the upcoming encounter with KBO 2014 MU69.

  17. Evaluation of Regional Extended-Range Prediction for Tropical Waves Using COAMPS®

    NASA Astrophysics Data System (ADS)

    Hong, X.; Reynolds, C. A.; Doyle, J. D.; May, P. W.; Chen, S.; Flatau, M. K.; O'Neill, L. W.

    2014-12-01

    The Navy's Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS1) in a two-way coupled mode is used for two-month regional extended-range prediction for the Madden-Julian Oscillation (MJO) and Tropical Cyclone 05 (TC05) that occurred during the DYNAMO period from November to December 2011. Verification and statistics from two experiments with 45-km and 27-km horizontal resolutions indicate that 27-km run provides a better representation of the three MJO events that occurred during this 2-month period, including the two convectively-coupled Kelvin waves associated with the second MJO event as observed. The 27-km run also significantly reduces forecast error after 15-days, reaching a maximum bias reduction of 89% in the third 15-day period due to the well represented MJO propagation over the Maritime Continent. Correlations between the model forecasts and observations or ECMWF analyses show that the MJO suppressed period is more difficult to predict than the active period. In addition, correlation coefficients for cloud liquid water path (CLWP) and precipitation are relatively low for both cases compared to other variables. The study suggests that a good simulation of TC05 and a good simulation of the Kelvin waves and westerly wind bursts are linked. Further research is needed to investigate the capability in regional extended-range forecasts when the lateral boundary conditions are provided from a long-term global forecast to allow for an assessment of potential operational forecast skill. _____________________________________________________ 1COAMPS is a registered trademark of U.S. Naval Research Laboratory

  18. Comparative analysis of visual outcomes with 4 intraocular lenses: Monofocal, multifocal, and extended range of vision.

    PubMed

    Pedrotti, Emilio; Carones, Francesco; Aiello, Francesco; Mastropasqua, Rodolfo; Bruni, Enrico; Bonacci, Erika; Talli, Pietro; Nucci, Carlo; Mariotti, Cesare; Marchini, Giorgio

    2018-02-01

    To compare the visual acuity, refractive outcomes, and quality of vision in patients with bilateral implantation of 4 intraocular lenses (IOLs). Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, and Carones Ophthalmology Center, Milano, Italy. Prospective case series. The study included patients who had bilateral cataract surgery with the implantation of 1 of 4 IOLs as follows: Tecnis 1-piece monofocal (monofocal IOL), Tecnis Symfony extended range of vision (extended-range-of-vision IOL), Restor +2.5 diopter (D) (+2.5 D multifocal IOL), and Restor +3.0 D (+3.0 D multifocal IOL). Visual acuity, refractive outcome, defocus curve, objective optical quality, contrast sensitivity, spectacle independence, and glare perception were evaluated 6 months after surgery. The study comprised 185 patients. The extended-range-of-vision IOL (55 patients) showed better distance visual outcomes than the monofocal IOL (30 patients) and high-addition apodized diffractive-refractive multifocal IOLs (P ≤ .002). The +3.0 D multifocal IOL (50 patients) showed the best near visual outcomes (P < .001). The +2.5 D multifocal IOL (50 patients) and extended-range-of-vision IOL provided significantly better intermediate visual outcomes than the other 2 IOLs, with significantly better vision for a defocus level of -1.5 D (P < .001). Better spectacle independence was shown for the +2.5 D multifocal IOL and extended-range-of-vision IOL (P < .001). The extended-range-of-vision IOL and +2.5 D multifocal IOL provided significantly better intermediate visual restoration after cataract surgery than the monofocal IOL and +3.0 D multifocal IOL, with significantly better quality of vision with the extended-range-of-vision IOL. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. The learning curve of laparoscopic liver resection after the Louisville statement 2008: Will it be more effective and smooth?

    PubMed

    Lin, Chung-Wei; Tsai, Tzu-Jung; Cheng, Tsung-Yen; Wei, Hung-Kuang; Hung, Chen-Fang; Chen, Yin-Yin; Chen, Chii-Ming

    2016-07-01

    Laparoscopic liver resection (LLR) has been proven to be feasible and safe. However, it is a difficult and complex procedure with a steep learning curve. The aim of this study was to evaluate the learning curve of LLR at our institutions since 2008. One hundred and twenty-six consecutive LLRs were included from May 2008 to December 2014. Patient characteristics, operative data, and surgical outcomes were collected prospectively and analyzed. The median tumor size was 25 mm (range 5-90 mm), and 96 % of the resected tumors were malignant. 41.3 % (52/126) of patients had pathologically proven liver cirrhosis. The median operation time was 216 min (range 40-602 min) with a median blood loss of 100 ml (range 20-2300 ml). The median length of hospital stay was 4 days (range 2-10 days). Six major postoperative complications occurred in this series, and there was no 90-day postoperative mortality. Regarding the incidence of major operative events including operation time longer than 300 min, perioperative blood loss above 500 ml, and major postoperative complications, the learning curve [as evaluated by the cumulative sum (CUSUM) technique] showed its first reverse after 22 cases. The indication of laparoscopic resection in this series extended after 60 cases to include tumors located in difficult locations (segments 4a, 7, 8) and major hepatectomy. CUSUM showed that the incidence of major operative events proceeded to increase again, and the second reverse was noted after an additional 40 cases of experience. Location of the tumor in a difficult area emerged as a significant predictor of major operative events. In carefully selected patients, CUSUM analysis showed 22 cases were needed to overcome the learning curve for minor LLR.

  20. Extended effective field theory of inflation

    NASA Astrophysics Data System (ADS)

    Ashoorioon, Amjad; Casadio, Roberto; Cicoli, Michele; Geshnizjani, Ghazal; Kim, Hyung J.

    2018-02-01

    We present a general framework where the effective field theory of single field inflation is extended by the inclusion of operators with mass dimension 3 and 4 in the unitary gauge. These higher dimensional operators introduce quartic and sextic corrections to the dispersion relation. We study the regime of validity of this extended effective field theory of inflation and the effect of these higher dimensional operators on CMB observables associated with scalar perturbations, such as the speed of sound, the amplitude of the power spectrum and the tensor-to-scalar ratio. Tensor perturbations remain instead, unaltered.

  1. Extending SME to Handle Large-Scale Cognitive Modeling.

    PubMed

    Forbus, Kenneth D; Ferguson, Ronald W; Lovett, Andrew; Gentner, Dedre

    2017-07-01

    Analogy and similarity are central phenomena in human cognition, involved in processes ranging from visual perception to conceptual change. To capture this centrality requires that a model of comparison must be able to integrate with other processes and handle the size and complexity of the representations required by the tasks being modeled. This paper describes extensions to Structure-Mapping Engine (SME) since its inception in 1986 that have increased its scope of operation. We first review the basic SME algorithm, describe psychological evidence for SME as a process model, and summarize its role in simulating similarity-based retrieval and generalization. Then we describe five techniques now incorporated into the SME that have enabled it to tackle large-scale modeling tasks: (a) Greedy merging rapidly constructs one or more best interpretations of a match in polynomial time: O(n 2 log(n)); (b) Incremental operation enables mappings to be extended as new information is retrieved or derived about the base or target, to model situations where information in a task is updated over time; (c) Ubiquitous predicates model the varying degrees to which items may suggest alignment; (d) Structural evaluation of analogical inferences models aspects of plausibility judgments; (e) Match filters enable large-scale task models to communicate constraints to SME to influence the mapping process. We illustrate via examples from published studies how these enable it to capture a broader range of psychological phenomena than before. Copyright © 2016 Cognitive Science Society, Inc.

  2. Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jacobson, David (Technical Monitor)

    2004-01-01

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000 to 3000 s range. Motivated by previous industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. During the development phase, the laboratory-model NASA 173M Hall thrusters were designed and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens magnetic field design. Experiments with the NASA 173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens. During the characterization phase, additional plasma properties of the NASA 173Mv2 were measured and a performance model was derived. Results from the model and experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The electron Hall parameter was approximately constant with voltage, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  3. Coaxial Cables for Martian Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Harvey, Wayne L.; Valas, Sam; Tsai, Michael C.

    2011-01-01

    Work was conducted to validate the use of the rover external flexible coaxial cabling for space under the extreme environments to be encountered during the Mars Science Laboratory (MSL) mission. The antennas must survive all ground operations plus the nominal 670-Martian-day mission that includes summer and winter seasons of the Mars environment. Successful development of processes established coaxial cable hardware fatigue limits, which were well beyond the expected in-flight exposures. In keeping with traditional qualification philosophy, this was accomplished by subjecting flight-representative coaxial cables to temperature cycling of the same depth as expected in-flight, but for three times the expected number of in-flight thermal cycles. Insertion loss and return loss tests were performed on the coaxial cables during the thermal chamber breaks. A vector network analyzer was calibrated and operated over the operational frequency range 7.145 to 8.450 GHz. Even though some of the exposed cables function only at UHF frequencies (approximately 400 MHz), the testing was more sensitive, and extending the test range down to 400 MHz would have cost frequency resolution. The Gore flexible coaxial cables, which were the subject of these tests, proved to be robust and displayed no sign of degradation due to the 3X exposure to the punishing Mars surface operations cycles.

  4. Performance Testing of Lithium Li-ion Cells and Batteries in Support of JPL's 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2007-01-01

    In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(super 0)C to +40(super 0)C), withstand long storage periods (e.g., including pre-launch and cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the inability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The primary focus of this paper is to communicate the latest results regarding Mars surface operation mission simulation testing, as well as, the corresponding performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by Yardney Technical Products, Inc.) have been demonstrated to far exceed the requirements defined by the mission, being able to support the operation of the rovers for over three years, and are projected to support an even further extended mission.

  5. Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadia, Yatir, E-mail: yatttir@yahoo.com; Ohaion-Raz, Tsion; Ben-Yehuda, Ohad

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations, had positioned the research of renewable energy conversion methods in general and of thermoelectric direct conversion of thermal into electrical energies in particular, in the forefront of the currently active applicative sciences. IV-VI thermoelectric compounds (e.g. GeTe, PbTe and SnTe) and their alloys comprise some of the most efficient thermoelectric compositions ever reported. Yet a proper utilization of such materials in practical thermoelectric devices, still requires an overcoming the so-called technological “valley of death”, including among others, transport properties' degradation, duemore » to sublimation of volatile Te rich species, while being subjected to elevated temperatures for long periods of time. In an attempt to establish practical operation criteria for extending the operation periods of such thermoelectric converters, it is currently shown based on thermal gravimetric and metallurgical considerations that such harmful sublimation can be practically bridged over by limiting the maximal operating temperatures to the 410–430 °C range for GeTe rich alloys and to 510–530 °C for PbTe and SnTe rich alloys, depending of the thermoelectric leg's diameter. - Graphical abstract: Evaporation rate in the GeTe and PbTe system showing the measured evaporation rates and the maximal operating temperatures for different compositions. In addition, the microstructure after evaporation is shown for PbTe, TAGS-85, and doped Pb{sub 0.13}Ge{sub 087}Te. Display Omitted - Highlights: • Evaporation rates of GeTe and PbTe based thermoelectric compounds were determined. • A criterion for their maximum operating temperature was established. • The materials showed phase separations and off-stoichiometry compositions.« less

  6. Minimum Equipment Lists, Flight Rules and ... Past, Present and Future of Safety Pre-Determined Decisions for Operations

    NASA Astrophysics Data System (ADS)

    Herd, A.; Wolff, M.

    2012-01-01

    Extended mission operations, such as human spaceflight to Mars provide an opportunity for take current human exploration beyond Low Earth Orbit, such as the operations undertaken on the International Space Station (ISS). This opportunity also presents a challenge in terms of extending what we currently understand as "remote operations" performed on ISS, offering learning beyond that gained from the successful moon- lander expeditions. As such there is a need to assess how the existing operations concept of ground support teams directing (and supporting) on-orbit ISS operations can be applied in the extended mission concept. The current mission support concept involves three interacting operations products - a short term plan, crew procedures and flight rules. Flight rules (for ISS operations) currently provide overall planning, engineering and operations constraints (including those derived from a safety perspective) in the form of a rule book. This paper will focus specifically on flight rules, and describe the current use of them, and assess the future role of flight rules to support exploration, including the deployment of decision support tools (DSTs) to ensure flight rule compliancy for missions with minimal ground support. Taking consideration of the historical development of pre-planned decisions, and their manifestation within the operations environment, combined with the extended remoteness of human exploration missions, we will propose a future development of this product and a platform on which it could be presented.

  7. Developments of the European Flood Awareness System (EFAS)

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sophia; Garcia Padilla, Mercedes; Garcia, Rafael J.; Schweim, Christoph; Ziese, Markus

    2017-04-01

    EFAS (http://www.efas.eu) is an operational system for flood forecasting and early warning for the entire Europe, which is fully operational as part of the Copernicus Emergency Management Service since 2012. The prime aim of EFAS is to gain time for preparedness measures before major flood events - particularly in trans-national river basins - strike. This is achieved by providing complementary, added value information to the national and regional services holding the mandate for flood warning as well as to the ERCC (European Response and Coordination Centre). Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments (such as the rapid impact assessment, seasonal outlook and the extended domain) and the future challenges.

  8. Gasification of agricultural residues in a demonstrative plant: corn cobs.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2014-12-01

    Biomass gasification couples the high power efficiency with the possibility of valuably using the byproducts heat and biochar. The use of agricultural wastes instead of woody feedstock extends the seasonal availability of biomasses. The downdraft type is the most used reactor but has narrow ranges of feedstock specifications (above all on moisture and particle size distribution), so tests on a demonstrative scale are conducted to prove the versatility of the gasifier. Measurements on pressure drops, syngas flow rate and composition are studied to assess the feasibility of such operations with corn cobs. Material and energy balances, and performance indexes are compared for the four tests carried out under different biomass loads (66-85 kg/h). A good operability of the plant and interesting results are obtained (gas specific production of 2 m3/kg, gas heating value 5.6-5.8 MJ/m3, cold gas efficiency in the range 66-68%, potential net power efficiency 21.1-21.6%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide

    NASA Astrophysics Data System (ADS)

    Lafont, F.; Ribeiro-Palau, R.; Kazazis, D.; Michon, A.; Couturaud, O.; Consejo, C.; Chassagne, T.; Zielinski, M.; Portail, M.; Jouault, B.; Schopfer, F.; Poirier, W.

    2015-04-01

    Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10-9 in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we report on a graphene device grown by chemical vapour deposition on SiC, which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron-density devices.

  10. A Rapid Process for Fabricating Gas Sensors

    PubMed Central

    Hsiao, Chun-Ching; Luo, Li-Siang

    2014-01-01

    Zinc oxide (ZnO) is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD) was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (ΔR/R) of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost. PMID:25010696

  11. ManPortable and UGV LIVAR: advances in sensor suite integration bring improvements to target observation and identification for the electronic battlefield

    NASA Astrophysics Data System (ADS)

    Lynam, Jeff R.

    2001-09-01

    A more highly integrated, electro-optical sensor suite using Laser Illuminated Viewing and Ranging (LIVAR) techniques is being developed under the Army Advanced Concept Technology- II (ACT-II) program for enhanced manportable target surveillance and identification. The ManPortable LIVAR system currently in development employs a wide-array of sensor technologies that provides the foot-bound soldier and UGV significant advantages and capabilities in lightweight, fieldable, target location, ranging and imaging systems. The unit incorporates a wide field-of-view, 5DEG x 3DEG, uncooled LWIR passive sensor for primary target location. Laser range finding and active illumination is done with a triggered, flash-lamp pumped, eyesafe micro-laser operating in the 1.5 micron region, and is used in conjunction with a range-gated, electron-bombarded CCD digital camera to then image the target objective in a more- narrow, 0.3$DEG, field-of-view. Target range determination is acquired using the integrated LRF and a target position is calculated using data from other onboard devices providing GPS coordinates, tilt, bank and corrected magnetic azimuth. Range gate timing and coordinated receiver optics focus control allow for target imaging operations to be optimized. The onboard control electronics provide power efficient, system operations for extended field use periods from the internal, rechargeable battery packs. Image data storage, transmission, and processing performance capabilities are also being incorporated to provide the best all-around support, for the electronic battlefield, in this type of system. The paper will describe flash laser illumination technology, EBCCD camera technology with flash laser detection system, and image resolution improvement through frame averaging.

  12. Intermittent Drug Dosing Intervals Guided by the Operational Multiple Dosing Half Lives for Predictable Plasma Accumulation and Fluctuation

    PubMed Central

    Grover, Anita; Benet, Leslie Z.

    2013-01-01

    Intermittent drug dosing intervals are usually initially guided by the terminal pharmacokinetic half life and are dependent on drug formulation. For chronic multiple dosing and for extended release dosage forms, the terminal half life often does not predict the plasma drug accumulation or fluctuation observed. We define and advance applications for the operational multiple dosing half lives for drug accumulation and fluctuation after multiple oral dosing at steady-state. Using Monte Carlo simulation, our results predict a way to maximize the operational multiple dosing half lives relative to the terminal half life by using a first-order absorption rate constant close to the terminal elimination rate constant in the design of extended release dosage forms. In this way, drugs that may be eliminated early in the development pipeline due to a relatively short half life can be formulated to be dosed at intervals three times the terminal half life, maximizing compliance, while maintaining tight plasma concentration accumulation and fluctuation ranges. We also present situations in which the operational multiple dosing half lives will be especially relevant in the determination of dosing intervals, including for drugs that follow a direct PKPD model and have a narrow therapeutic index, as the rate of concentration decrease after chronic multiple dosing (that is not the terminal half life) can be determined via simulation. These principles are illustrated with case studies on valproic acid, diazepam, and anti-hypertensives. PMID:21499748

  13. Silicon detectors for combined MR-PET and MR-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.

    2013-02-01

    Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.

  14. Autonomous spacecraft maintenance study group

    NASA Technical Reports Server (NTRS)

    Marshall, M. H.; Low, G. D.

    1981-01-01

    A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established.

  15. Fuel conservation evaluation of US Army helicopters. Part 5. Ah-1S flight testing. Final report, 31 July-21 September 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, L.L.; Savage, R.T.; Vincent, R.L.

    1983-01-01

    The United States Army Aviation Engineering Flight Activity conducted level flight performance tests of the AH-1S (Prod) helicopter to provide data to determine the most fuel efficient operating conditions. Hot and cold weather test sites were used to extend the range of the advancing tip Mach number data to supplement existing AH-1S performance data. Preliminary analysis of non-dimensional data identifies the effects of compressibility on performance and shows a power penalty of as much as 6% at a high NR/theta. The power required characteristics determined by these tests can be combined with engine performance to determine the most fuel efficientmore » operating conditions.« less

  16. Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Onel, Y.

    2018-03-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I Upgrade was performed during the Extended Year End Technical Stop of 2016-2017. In the framework of the upgrade, the PMT boxes were reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics were also upgraded to QIE10-based electronics which implement larger dynamic range and a 6-bit TDC. Following this major upgrade, the Hadron Forward Calorimeters were commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  17. Performance of a 100V Half-Bridge MOSFET Driver, Type MIC4103, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    The operation of a high frequency, high voltage MOSFET (metal-oxide semiconductor field-effect transistors) driver was investigated over a wide temperature regime that extended beyond its specified range. The Micrel MIC4103 is a 100V, non-inverting, dual driver that is designed to independently drive both high-side and low-side N-channel MOSFETs. It features fast propagation delay times and can drive 1000 pF load with 10ns rise times and 6 ns fall times [1]. The device consumes very little power, has supply under-voltage protection, and is rated for a -40 C to +125 C junction temperature range. The floating high-side driver of the chip can sustain boost voltages up to 100 V. Table I shows some of the device manufacturer s specification.

  18. The Extraterrestrial Materials Simulation Laboratory

    NASA Technical Reports Server (NTRS)

    Green, J. R.

    2001-01-01

    In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.

  19. Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)

    NASA Astrophysics Data System (ADS)

    OConnor, A.; Kirtman, B. P.; Harrison, S.; Gorman, J.

    2016-02-01

    Current US Navy forecasting systems cannot easily incorporate extended-range forecasts that can improve mission readiness and effectiveness; ensure safety; and reduce cost, labor, and resource requirements. If Navy operational planners had systems that incorporated these forecasts, they could plan missions using more reliable and longer-term weather and climate predictions. Further, using multi-model forecast ensembles instead of single forecasts would produce higher predictive performance. Extended-range multi-model forecast ensembles, such as those available in the North American Multi-Model Ensemble (NMME), are ideal for system integration because of their high skill predictions; however, even higher skill predictions can be produced if forecast model ensembles are combined correctly. While many methods for weighting models exist, the best method in a given environment requires expert knowledge of the models and combination methods.We present an innovative approach that uses machine learning to combine extended-range predictions from multi-model forecast ensembles and generate a probabilistic forecast for any region of the globe up to 12 months in advance. Our machine-learning approach uses 30 years of hindcast predictions to learn patterns of forecast model successes and failures. Each model is assigned a weight for each environmental condition, 100 km2 region, and day given any expected environmental information. These weights are then applied to the respective predictions for the region and time of interest to effectively stitch together a single, coherent probabilistic forecast. Our experimental results demonstrate the benefits of our approach to produce extended-range probabilistic forecasts for regions and time periods of interest that are superior, in terms of skill, to individual NMME forecast models and commonly weighted models. The probabilistic forecast leverages the strengths of three NMME forecast models to predict environmental conditions for an area spanning from San Diego, CA to Honolulu, HI, seven months in-advance. Key findings include: weighted combinations of models are strictly better than individual models; machine-learned combinations are especially better; and forecasts produced using our approach have the highest rank probability skill score most often.

  20. Mariner Venus-Mercury 1973 project. Volume 2: Extended mission-Mercury 2 and 3 encounters

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Mariner Venus/Mercury 1973 mission operations Extended Mission is described. The activities are summarized from shortly after Mercury I through the end of mission. The operational activities are reported by Mission Operations Systems functions providing a brief summary from each discipline. Based on these experiences recommendations for future projects are made.

  1. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2010-01-01

    The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.

  2. Automating Mid- and Long-Range Scheduling for NASA's Deep Space Network

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Tran, Daniel; Arroyo, Belinda; Sorensen, Sugi; Tay, Peter; Carruth, Butch; Coffman, Adam; Wallace, Mike

    2012-01-01

    NASA has recently deployed a new mid-range scheduling system for the antennas of the Deep Space Network (DSN), called Service Scheduling Software, or S(sup 3). This system is architected as a modern web application containing a central scheduling database integrated with a collaborative environment, exploiting the same technologies as social web applications but applied to a space operations context. This is highly relevant to the DSN domain since the network schedule of operations is developed in a peer-to-peer negotiation process among all users who utilize the DSN (representing 37 projects including international partners and ground-based science and calibration users). The initial implementation of S(sup 3) is complete and the system has been operational since July 2011. S(sup 3) has been used for negotiating schedules since April 2011, including the baseline schedules for three launching missions in late 2011. S(sup 3) supports a distributed scheduling model, in which changes can potentially be made by multiple users based on multiple schedule "workspaces" or versions of the schedule. This has led to several challenges in the design of the scheduling database, and of a change proposal workflow that allows users to concur with or to reject proposed schedule changes, and then counter-propose with alternative or additional suggested changes. This paper describes some key aspects of the S(sup 3) system and lessons learned from its operational deployment to date, focusing on the challenges of multi-user collaborative scheduling in a practical and mission-critical setting. We will also describe the ongoing project to extend S(sup 3) to encompass long-range planning, downtime analysis, and forecasting, as the next step in developing a single integrated DSN scheduling tool suite to cover all time ranges.

  3. Integrated long-range UAV/UGV collaborative target tracking

    NASA Astrophysics Data System (ADS)

    Moseley, Mark B.; Grocholsky, Benjamin P.; Cheung, Carol; Singh, Sanjiv

    2009-05-01

    Coordinated operations between unmanned air and ground assets allow leveraging of multi-domain sensing and increase opportunities for improving line of sight communications. While numerous military missions would benefit from coordinated UAV-UGV operations, foundational capabilities that integrate stove-piped tactical systems and share available sensor data are required and not yet available. iRobot, AeroVironment, and Carnegie Mellon University are working together, partially SBIR-funded through ARDEC's small unit network lethality initiative, to develop collaborative capabilities for surveillance, targeting, and improved communications based on PackBot UGV and Raven UAV platforms. We integrate newly available technologies into computational, vision, and communications payloads and develop sensing algorithms to support vision-based target tracking. We first simulated and then applied onto real tactical platforms an implementation of Decentralized Data Fusion, a novel technique for fusing track estimates from PackBot and Raven platforms for a moving target in an open environment. In addition, system integration with AeroVironment's Digital Data Link onto both air and ground platforms has extended our capabilities in communications range to operate the PackBot as well as in increased video and data throughput. The system is brought together through a unified Operator Control Unit (OCU) for the PackBot and Raven that provides simultaneous waypoint navigation and traditional teleoperation. We also present several recent capability accomplishments toward PackBot-Raven coordinated operations, including single OCU display design and operation, early target track results, and Digital Data Link integration efforts, as well as our near-term capability goals.

  4. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reducemore » fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.« less

  5. Performance of MEMS Silicon Oscillator, ASFLM1, under Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2008-01-01

    Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to be offered as commercial-off-the-shelf (COTS) parts by a few companies [1-2]. These quartz-free, miniature silicon devices could compete with the traditional crystal oscillators in providing the timing (clock function) for many digital and analog electronic circuits. They provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [1-2]. In addition, they are encapsulated in compact lead-free packages, cover a wide frequency range (1 MHz to 125 MHz), and are specified, depending on the grade, for extended temperature operation from -40 C to +85 C. The small size of the MEMS oscillators along with their reliability and thermal stability make them candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an ABRACON Corporation MEMS silicon oscillator chip, type ASFLM1, under extreme temperatures.

  6. Extending ACTS Operations Through a University-Based Consortium

    NASA Technical Reports Server (NTRS)

    Bauer, Robert; Krawcyzk, Richard; Irwin, Dennis; Kruse, Hans

    2001-01-01

    The Advanced Communications Technology Satellite (ACTS) program was slated for decommissioning in October 2000 as was announced at the 6th Ka-band Utilization Conference in May 2000. Quite a celebration was had at that event too centering on the decommissioning of this very successful technology program. With plans in place to move the spacecraft to an orbital graveyard and then shut the system down, NASA was challenged to consider the feasibility of extending operations for education and research purposes provided that an academic organization would be willing to cover operations costs. Continuing operations of the system was determined viable and in the fall of 2000, an announcement was made by NASA to consider extending operations. Plans are now in place to continue the operations of ACTS through a university-based consortium led by Ohio University, Athens, Ohio. Initial plans are for two more years of operations, with options to extend up to a total of four years. This paper will present the change in plans to continue operations of ACTS. A description of the multi-month transition of the spacecraft to its new and final orbital location is provided. With the spacecraft at this new location, an update on its performance is presented as well as estimates of long-term performance. The consortium development will be presented along with its organization, membership, and operations plans for using ACTS.

  7. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  8. Sealed Battery Block Provided With A Cooling System

    DOEpatents

    Verhoog, Roelof; Barbotin, Jean-Loup

    1999-11-16

    The present invention relates to a sealed battery block operating at a pressure of at least 1 bar relative, the battery including a container made of a plastics material and made up of a lid and of a case subdivided into wells by at least one partition, said battery being provided with a cooling system including two cheek plates made of a plastics material and co-operating with the outside faces of respective ones of two opposite walls of said case, each cheek plate co-operating with the corresponding wall to define a compartment provided with a plurality of ribs forming baffles for fluid flow purposes, and with an inlet orifice and an outlet orifice for the fluid, said battery being characterized in that each of said ribs extends in a direction that forms an angle relative to the plane of said partition lying in the range 60.degree. to 90.degree..

  9. ECS - The European Communication Satellite system

    NASA Astrophysics Data System (ADS)

    Wooster, C. B.

    1981-09-01

    The evolution of the European Communication Satellite system (ECS) is traced from feasibility studies in 1970 to the development and launch in 1978 of the Orbital Test Satellite (OTS) by the European Space Agency to prove the new satellite and radio transmission technology being used on ECS. This was followed by the establishment of 'Interim EUTELSAT' in 1979 as the organization to operate ECS. The satellite, which operates at 11/14 GHz, covers all the capitals in Europe via three spot beam antennas, supplemented by a 'Eurobeam' regional coverage antenna which extends the range to cover all of Europe and the Mediterranean basin. Telephony channels are transmitted digitally using time division multiple access (TDMA) with digital speech interpolation (DSI) to optimize satellite capacity. Television transmission is by analog FM over the Eurobeam antenna to North African as well as European capitals. System implications of TDMA operation are discussed, and the EUTELSAT policy for Special Services or satellite business systems is discussed.

  10. Reinstated JET ICRF ILA: Overview and Results

    NASA Astrophysics Data System (ADS)

    Dumortier, Pierre; Durodié, Frédéric; Blackman, Trevor; Helou, Walid; Jacquet, Philippe; Lerche, Ernesto; Monakhov, Igor; Noble, Craig; Bobkov, Volodymyr; Goulding, Richard; Kaufman, Michael; Van Eester, Dirk

    2017-10-01

    The works undertaken to reinstate the JET ICRF ILA are reviewed. The vacuum matching capacitors were replaced, an extensive calibration of all the measurements in the RF circuit was carried out, new simulation tools were created and new control algorithms were implemented for the - toroidal and poloidal - phase control of the array as well as for the matching of the second stage. A review of the contribution of the reinstated ILA to the JET programme during the last campaigns is given showing namely that the new controls allowed extending the range of the operation to lower (29MHz) and higher (51MHz) frequencies than previously achieved and allowed more flexible and reliable operation. Operation with coupled power levels up to 2.8MW and voltages up to 40kV was achieved. ILA results on plasma are discussed and emphasis is given to the features of interest for ITER.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John T; Kelly, Kenneth J; Duran, Adam W

    Range-extended electric vehicle (EV) technology can be a viable option for reducing fuel consumption from medium-duty (MD) and heavy-duty (HD) engines by approximately 50 percent or more. Such engines have wide variations in use and duty cycles, however, and identifying the vocations/duty cycles most suitable for range-extended applications is vital for maximizing the potential benefits. This presentation provides information about NREL's research on range-extended EV technologies, with a focus on NREL's real-world data collection and analysis approach to identifying the vocations/duty cycles best suited for range-extender applications and to help guide related powertrain optimization and design requirements. The presentation alsomore » details NREL's drive cycle development process as it pertains to package delivery applications.« less

  12. Hypofractionated stereotactic radiotherapy in five daily fractions for post-operative surgical cavities in brain metastases patients with and without prior whole brain radiation.

    PubMed

    Al-Omair, Ameen; Soliman, Hany; Xu, Wei; Karotki, Aliaksandr; Mainprize, Todd; Phan, Nicolas; Das, Sunit; Keith, Julia; Yeung, Robert; Perry, James; Tsao, May; Sahgal, Arjun

    2013-12-01

    Our purpose was to report efficacy of hypofractionated cavity stereotactic radiotherapy (HCSRT) in patients with and without prior whole brain radiotherapy (WBRT). 32 surgical cavities in 30 patients (20 patients/21 cavities had no prior WBRT and 10 patients/11 cavities had prior WBRT) were treated with image-guided linac stereotactic radiotherapy. 7 of the 10 prior WBRT patients had "resistant" local disease given prior surgery, post-operative WBRT and a re-operation, followed by salvage HCSRT. The clinical target volume was the post-surgical cavity, and a 2-mm margin applied as planning target volume. The median total dose was 30 Gy (range: 25-37.5 Gy) in 5 fractions. In the no prior and prior WBRT cohorts, the median follow-up was 9.7 months (range: 3.0-23.6) and 15.3 months (range: 2.9-39.7), the median survival was 23.6 months and 39.7 months, and the 1-year cavity local recurrence progression- free survival (LRFS) was 79 and 100%, respectively. At 18 months the LRFS dropped to 29% in the prior WBRT cohort. Grade 3 radiation necrosis occurred in 3 prior WBRT patients. We report favorable outcomes with HCSRT, and well selected patients with prior WBRT and "resistant" disease may have an extended survival favoring aggressive salvage HCSRT at a moderate risk of radiation necrosis.

  13. Measurements of Plasma Density in a Fast and Compact Plasma Focus Operating at Hundreds of Joules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavez, Cristian; Universidad de Concepcion, Facultad de Ciencias, Departamento de Fisica, Concepcion; Silva, Patricio

    2006-12-04

    It is known that there are plasma parameters that remain relatively constant for plasma focus facilities operating in a wide range of de energy, from 1kJ to 1MJ, such as: electron density, temperature and plasma energy density. Particularly the electron density is of the order of 1025m-3. Recently the experimental studies in plasma focus has been extended to devices operating under 1kJ, in the range of hundreds and tens of joules. In this work an optical refractive system was implemented in order to measure the electron density in a plasma focus devices of hundred of joules, PF-400J (880 nF, 30more » kV, 120 kA, 400 J, 300 ns time to peak current, dI/dt{approx}4x1011 A/s. The plasma discharge was synchronized with a pulsed Nd-YAG laser ({approx}6ns FWHM at 532nm) in order to obtain optical diagnostics as interferometry and Schlieren. An electron density of (0.9{+-}0.25)x1025m-3 was obtained at the axis of the plasma column close to the pinch time. This value is of the same order that the obtained in devices oparating in the energy range of 1kJ to 1MJ.« less

  14. Generalizing Landauer's principle

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-03-01

    In a recent paper [Stud. Hist. Philos. Mod. Phys. 36, 355 (2005)] it is argued that to properly understand the thermodynamics of Landauer’s principle it is necessary to extend the concept of logical operations to include indeterministic operations. Here we examine the thermodynamics of such operations in more detail, extending the work of Landauer to include indeterministic operations and to include logical states with variable entropies, temperatures, and mean energies. We derive the most general statement of Landauer’s principle and prove its universality, extending considerably the validity of previous proofs. This confirms conjectures made that all logical operations may, in principle, be performed in a thermodynamically reversible fashion, although logically irreversible operations would require special, practically rather difficult, conditions to do so. We demonstrate a physical process that can perform any computation without work requirements or heat exchange with the environment. Many widespread statements of Landauer’s principle are shown to be special cases of our generalized principle.

  15. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOEpatents

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  16. Emissions and Total Energy Consumption of a Multicylinder Piston Engine Running on Gasoline and a Hydrogen-gasoline Mixture

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.

    1977-01-01

    A multicylinder reciprocating engine was used to extend the efficient lean operating range of gasoline by adding hydrogen. Both bottled hydrogen and hydrogen produced by a research methanol steam reformer were used. These results were compared with results for all gasoline. A high-compression-ratio, displacement production engine was used. Apparent flame speed was used to describe the differences in emissions and performance. Therefore, engine emissions and performance, including apparent flame speed and energy lost to the cooling system and the exhaust gas, were measured over a range of equivalence ratios for each fuel. All emission levels decreased at the leaner conditions. Adding hydrogen significantly increased flame speed over all equivalence ratios.

  17. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  18. Environmental Assessment for the Installation of New Urban Operation Complex Targets and Unmanned Aerial Vehicle Targets for the Nevada Test and Training Range

    DTIC Science & Technology

    2006-09-01

    NTTR. The proposed target areas were selected due to topographic requirements for the targets. A canyon area would provide narrow ravines and...south end of the canyon (rim level) exists through R-76. An access road would be developed that extends from the mouth of the canyon south 1.8 to...buildings to represent barracks would be placed off and along the roads. A simulated fence would cross the mouth of the canyon at the north end. The

  19. An extended car-following model with consideration of vehicle to vehicle communication of two conflicting streams

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Li, Peng

    2017-05-01

    In this paper, we propose a car-following model to explore the influences of V2V communication on the driving behavior at un-signalized intersections with two crossing streams and to explore how the speed guidance strategy affects the operation efficiency. The numerical results illustrate that the benefits of the guidance strategy could be enhanced by lengthening the guiding space range and increasing the maximum speed limitation, and that the guidance strategy is more suitable under low to medium traffic density and small safety interval condition.

  20. Updating the Synchrotron Radiation Monitor at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hsu, S. Y.; Wang, C. J.

    2007-01-19

    The synchrotron radiation monitor provides useful information to support routine operation and physics experiments using the beam. Precisely knowing the profile of the beam helps to improve machine performance. The synchrotron radiation monitor at the Taiwan Light Source (TLS) was recently upgraded. The optics and modeling were improved to increase the accuracy of measurement in the small beam size. A high-performance IEEE-1394 digital CCD camera was used to improve the quality of images and extend the dynamic range of measurement. The image analysis is also improved. This report summarizes status and results.

  1. Near-field refrigeration and tunable heat exchange through four-wave mixing

    NASA Astrophysics Data System (ADS)

    Khandekar, Chinmay; Messina, Riccardo; Rodriguez, Alejandro W.

    2018-05-01

    We modify and extend a recently proposed four-wave mixing scheme [C. Khandekar and A. Rodriguez, Opt. Express 25(19), 23164 (2017)] for achieving near-field thermal upconversion and energy transfer, to demonstrate efficient thermal refrigeration at low intensities ˜ 109W/m2 over a wide range of gap sizes (from tens to hundreds of nanometers) and operational temperatures (from tens to hundreds of Kelvins). We further exploit the scheme to achieve magnitude and directional tunability of near-field heat exchange between bodies held at different temperatures.

  2. Quantum logic between remote quantum registers

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.

    2013-02-01

    We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.

  3. Modeling of thermal coupling in VO2-based oscillatory neural networks

    NASA Astrophysics Data System (ADS)

    Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander

    2018-01-01

    In this study, we have demonstrated the possibility of using the thermal coupling to control the dynamics of operation of coupled VO2 oscillators. Based on the example of a 'switch-microheater' pair, we have explored the synchronization and dissynchronization modes of a single oscillator with respect to an external harmonic heat impact. The features of changes in the spectra are shown, in particular, the effect of the natural frequency attraction to the affecting signal frequency and the self-oscillation noise reduction effects at synchronization. The time constant of the temperature effect for the considered system configuration is in the range 7-140 μs, which allows operation in the oscillation frequency range of up to ∼70 kHz. A model estimate of the minimum temperature sensitivity of the switch is δTswitch ∼ 0.2 K, and the effective action radius RTC of the switch-to-switch thermal coupling is not less than 25 μm. Nevertheless, as the simulation shows, the frequency range can be significantly extended up to the values of 1-30 GHz if using nanometer-scale switches (heaters).

  4. Advancing electric-vehicle development with pure-lead-tin battery technology

    NASA Astrophysics Data System (ADS)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  5. ACTS Operations Extended Through a University-Based Consortium

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.; Krawczyk, Richard J.

    2002-01-01

    The Advanced Communications Technology Satellite (ACTS) program was slated for decommissioning in October 2000. With plans in place to move the spacecraft to an orbital graveyard and then shut the system down, NASA was challenged to consider the feasibility of extending operations for education and research purposes provided that an academic organization would be willing to cover operations costs. This was determined to be viable, and in the fall of 2000, NASA announced that it would consider extending operations. On March 19, 2001, NASA, the Ohio Board of Regents, and the Ohio University signed a Space Act Agreement to continue ACTS operations for 2 more years with options to extend operations up to a total of 4 years. To accomplish this, the Ohio University has formed a university-based consortium, the Ohio Consortium for Advanced Communications Technology (OCACT), and acts as the managing member. The Ohio University is responsible for the full reimbursement of NASA's operations costs, and does this through consortium membership. NASA retains the operating license of the spacecraft and has two contractors supporting spacecraft and master control station operations. This flexible arrangement between NASA and academia allows the education community to access a large communications satellite for learning about spacecraft operations and to use the system's transponders for communications applications. It also allows other organizations, such as commercial companies, to become consortium members and use the ACTS wideband Ka-band (30/20 GHz) payload. From the consortium members, six areas of interest have been identified.

  6. Inferior gluteal artery myocutaneous island transposition flap reconstruction of irradiated perineal defects.

    PubMed

    Boccola, Mark A; Rozen, Warren M; Ek, Edmund W; Teh, Bing M; Croxford, Matthew; Grinsell, Damien

    2010-07-01

    With the progressive use of more radical surgical resections and pre-operative chemo-radiotherapy for locally advanced anorectal cancers, there has become an increasing need for reconstructive options that import well-vascularised tissue of sufficient bulk to the perineum. We present our technique of inferior gluteal artery myocutaneous (IGAM) transposition flaps for reconstruction after extended abdomino-perineal excision (APE) for anorectal cancer. Six consecutive male patients with T2/T3 rectal carcinoma underwent neoadjuvant chemo-radiotherapy followed by extended APE and immediate reconstruction with an islanded IGAM transposition flap. The operative technique and surgical outcomes were assessed with follow-up ranging from 3 to 18 months (median 5 months). In all cases, there were clear histological margins with no flap failures or partial flap losses, and no post-operative hernias. There were no major wound complications, with only one superficial breakdown associated with high body mass index (BMI) and adhesive tape allergy, treated with dressings alone. There was no donor site morbidity evident following flap harvest. The IGAM island transposition flap provides excellent tissue bulk, a large reliable skin paddle and a long pedicle that permits flexible positioning with tension free closure. Our successful results and high patient satisfaction make it a favourable option that should be considered when faced with this reconstructive challenge. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Tests of Five Full-Scale Propellers in the Presence of a Radial and a Liquid-Cooled Engine Nacelle, Including Tests of Two Spinners

    NASA Technical Reports Server (NTRS)

    Biermann, David; Hartman, Edwin P

    1938-01-01

    Wind-tunnel tests are reported of five 3-blade 10-foot propellers operating in front of a radial and a liquid-cooled engine nacelle. The range of blade angles investigated extended from 15 degrees to 45 degrees. Two spinners were tested in conjunction with the liquid-cooled engine nacelle. Comparisons are made between propellers having different blade-shank shapes, blades of different thickness, and different airfoil sections. The results show that propellers operating in front of the liquid-cooled engine nacelle had higher take-off efficiencies than when operating in front of the radial engine nacelle; the peak efficiency was higher only when spinners were employed. One spinner increased the propulsive efficiency of the liquid-cooled unit 6 percent for the highest blade-angle setting investigated and less for lower blade angles. The propeller having airfoil sections extending into the hub was superior to one having round blade shanks. The thick propeller having a Clark y section had a higher take-off efficiency than the thinner one, but its maximum efficiency was possibly lower. Of the three blade sections tested, Clark y, R.A.F. 6, and NACA 2400-34, the Clark y was superior for the high-speed condition, but the R.A.F. 6 excelled for the take-off condition.

  8. A non-local model of fractional heat conduction in rigid bodies

    NASA Astrophysics Data System (ADS)

    Borino, G.; di Paola, M.; Zingales, M.

    2011-03-01

    In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.

  9. Modeling the Lac repressor-operator assembly: The influence of DNA looping on Lac repressor conformation

    PubMed Central

    Swigon, David; Coleman, Bernard D.; Olson, Wilma K.

    2006-01-01

    Repression of transcription of the Escherichia coli Lac operon by the Lac repressor (LacR) is accompanied by the simultaneous binding of LacR to two operators and the formation of a DNA loop. A recently developed theory of sequence-dependent DNA elasticity enables one to relate the fine structure of the LacR–DNA complex to a wide range of heretofore-unconnected experimental observations. Here, that theory is used to calculate the configuration and free energy of the DNA loop as a function of its length and base-pair sequence, its linking number, and the end conditions imposed by the LacR tetramer. The tetramer can assume two types of conformations. Whereas a rigid V-shaped structure is observed in the crystal, EM images show extended forms in which two dimer subunits are flexibly joined. Upon comparing our computed loop configurations with published experimental observations of permanganate sensitivities, DNase I cutting patterns, and loop stabilities, we conclude that linear DNA segments of short-to-medium chain length (50–180 bp) give rise to loops with the extended form of LacR and that loops formed within negatively supercoiled plasmids induce the V-shaped structure. PMID:16785444

  10. An eigenfunction method for reconstruction of large-scale and high-contrast objects.

    PubMed

    Waag, Robert C; Lin, Feng; Varslot, Trond K; Astheimer, Jeffrey P

    2007-07-01

    A multiple-frequency inverse scattering method that uses eigenfunctions of a scattering operator is extended to image large-scale and high-contrast objects. The extension uses an estimate of the scattering object to form the difference between the scattering by the object and the scattering by the estimate of the object. The scattering potential defined by this difference is expanded in a basis of products of acoustic fields. These fields are defined by eigenfunctions of the scattering operator associated with the estimate. In the case of scattering objects for which the estimate is radial, symmetries in the expressions used to reconstruct the scattering potential greatly reduce the amount of computation. The range of parameters over which the reconstruction method works well is illustrated using calculated scattering by different objects. The method is applied to experimental data from a 48-mm diameter scattering object with tissue-like properties. The image reconstructed from measurements has, relative to a conventional B-scan formed using a low f-number at the same center frequency, significantly higher resolution and less speckle, implying that small, high-contrast structures can be demonstrated clearly using the extended method.

  11. Long pulse operation of the Kamaboko negative ion source on the MANTIS test bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramham, R.; Jacquot, C.; Riz, D.

    1998-08-20

    Advanced Tokamak concepts and steady state plasma scenarios require external plasma heating and current drive for extended time periods. This poses several problems for the neutral beam injection systems that are currently in use. The power loading of the ion source and accelerator are especially problematic. The Kamaboko negative ion source, a small scale model of the ITER arc source, is being prepared for extended operation of deuterium beams for up to 1000 seconds. The operating conditions of the plasma grid prove to be important for reducing electron power loading of the accelerator. Operation of deuterium beams for extended periodsmore » also poses radiation safety risks which must be addressed.« less

  12. On the quantum Landau collision operator and electron collisions in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daligault, Jérôme, E-mail: daligaul@lanl.gov

    2016-03-15

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck formmore » of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.« less

  13. On the quantum Landau collision operator and electron collisions in dense plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  14. Mapping users' expectations regarding extended-range forecasts

    NASA Astrophysics Data System (ADS)

    Ervasti, Tiina; Gregow, Hilppa; Vajda, Andrea; Laurila, Terhi K.; Mäkelä, Antti

    2018-05-01

    An online survey was used to map the needs and preferences of the Finnish general public concerning extended-range forecasts and their presentation. First analyses of the survey were used to guide the co-design process of novel extended-range forecasts to be developed and tested during the project. In addition, the survey was used to engage the respondents from the general public to participate in a one year piloting phase that started in June 2017. The respondents considered that the tailored extended-range forecasts would be beneficial in planning activities, preparing for the weather risks and scheduling the everyday life. The respondents also perceived the information about the impacts of weather conditions more important than advice on how to prepare for the impacts.

  15. Possibility-induced simplified neutrosophic aggregation operators and their application to multi-criteria group decision-making

    NASA Astrophysics Data System (ADS)

    Şahin, Rıdvan; Liu, Peide

    2017-07-01

    Simplified neutrosophic set (SNS) is an appropriate tool used to express the incompleteness, indeterminacy and uncertainty of the evaluation objects in decision-making process. In this study, we define the concept of possibility SNS including two types of information such as the neutrosophic performance provided from the evaluation objects and its possibility degree using a value ranging from zero to one. Then by extending the existing neutrosophic information, aggregation models for SNSs that cannot be used effectively to fusion the two different information described above, we propose two novel neutrosophic aggregation operators considering possibility, which are named as a possibility-induced simplified neutrosophic weighted arithmetic averaging operator and possibility-induced simplified neutrosophic weighted geometric averaging operator, and discuss their properties. Moreover, we develop a useful method based on the proposed aggregation operators for solving a multi-criteria group decision-making problem with the possibility simplified neutrosophic information, in which the weights of decision-makers and decision criteria are calculated based on entropy measure. Finally, a practical example is utilised to show the practicality and effectiveness of the proposed method.

  16. Advances in Fabry-Perot and tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2017-05-01

    Quantum cascade lasers (QCLs) are becoming mature infrared emitting devices that convert electrical power directly into optical power and generate laser radiation in the mid wave infrared (MWIR) and long wave infrared (LWIR) regions. These lasers operate at room temperature in the 3.5 μm to >12.0 μm region. QCLs operate at longer wavelengths into the terahertz region; however, these require some level of cryogenic cooling. Nonetheless, QCLs are the only solid-state sources that convert electrical power into optical power directly in these spectral regions. Three critical advances have contributed to the broad range of applications of QCLs, since their first demonstration in 1994 [1]. The first of these was the utilization of two phonon resonance for deexcitation of electrons from the lower lasing level [2]; the second is the utilization of epi-down mounting with hard solder of QCLs for practical applications [3]; and the third is the invention of nonresonant extraction for deexciting electrons from the lower laser level and simultaneously removing constraints on QCL structure design for extending high power room temperature operation to a broad range of wavelengths [4]. Although QCLs generate CW radiation at room temperature at wavelengths ranging from 3.5 μm to <12.0 μm, two spectral regions are very important for a broad range of applications. These are the first and the second atmospheric transmission windows from 3.5 μm to 5.0 μm and from 8.0 μm to 12.0 μm, respectively. Both of these windows (except for the spectral region near 4.2 μm, which is dominated by the infrared absorption from atmospheric carbon dioxide) are relatively free from atmospheric absorption and have a range of applications that involve long distance propagation.

  17. Flow range enhancement by secondary flow effect in low solidity circular cascade diffusers

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Tun, Min Thaw; Mizokoshi, Kanata; Kishikawa, Daiki

    2014-08-01

    High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating the efficiency at design flow rate. A numerical simulation is very effective in design procedure, however, cost of the numerical simulation is generally high during the practical design process, and it is difficult to confirm the optimal design which is combined with many parameters. A multi-objective optimization technique is the idea that has been proposed for solving the problem in practical design process. In this study, a Low Solidity circular cascade Diffuser (LSD) in a centrifugal blower is successfully designed by means of multi-objective optimization technique. An optimization code with a meta-model assisted evolutionary algorithm is used with a commercial CFD code ANSYS-CFX. The optimization is aiming at improving the static pressure coefficient at design point and at low flow rate condition while constraining the slope of the lift coefficient curve. Moreover, a small tip clearance of the LSD blade was applied in order to activate and to stabilize the secondary flow effect at small flow rate condition. The optimized LSD blade has an extended operating range of 114 % towards smaller flow rate as compared to the baseline design without deteriorating the diffuser pressure recovery at design point. The diffuser pressure rise and operating flow range of the optimized LSD blade are experimentally verified by overall performance test. The detailed flow in the diffuser is also confirmed by means of a Particle Image Velocimeter. Secondary flow is clearly captured by PIV and it spreads to the whole area of LSD blade pitch. It is found that the optimized LSD blade shows good improvement of the blade loading in the whole operating range, while at small flow rate the flow separation on the LSD blade has been successfully suppressed by the secondary flow effect.

  18. Water Management Applications of Advanced Precipitation Products

    NASA Astrophysics Data System (ADS)

    Johnson, L. E.; Braswell, G.; Delaney, C.

    2012-12-01

    Advanced precipitation sensors and numerical models track storms as they occur and forecast the likelihood of heavy rain for time frames ranging from 1 to 8 hours, 1 day, and extended outlooks out to 3 to 7 days. Forecast skill decreases at the extended time frames but the outlooks have been shown to provide "situational awareness" which aids in preparation for flood mitigation and water supply operations. In California the California-Nevada River Forecast Centers and local Weather Forecast Offices provide precipitation products that are widely used to support water management and flood response activities of various kinds. The Hydrometeorology Testbed (HMT) program is being conducted to help advance the science of precipitation tracking and forecasting in support of the NWS. HMT high-resolution products have found applications for other non-federal water management activities as well. This presentation will describe water management applications of HMT advanced precipitation products, and characterization of benefits expected to accrue. Two case examples will be highlighted, 1) reservoir operations for flood control and water supply, and 2) urban stormwater management. Application of advanced precipitation products in support of reservoir operations is a focus of the Sonoma County Water Agency. Examples include: a) interfacing the high-resolution QPE products with a distributed hydrologic model for the Russian-Napa watersheds, b) providing early warning of in-coming storms for flood preparedness and water supply storage operations. For the stormwater case, San Francisco wastewater engineers are developing a plan to deploy high resolution gap-filling radars looking off shore to obtain longer lead times on approaching storms. A 4 to 8 hour lead time would provide opportunity to optimize stormwater capture and treatment operations, and minimize combined sewer overflows into the Bay.ussian River distributed hydrologic model.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kring, C.T.; Varma, V.K.; Jatko, W.B.

    The US Army and Team Crusader (United Defense, Lockheed Martin Armament Systems, etc.) are developing the next generation howitzer, the Crusader. The development program includes an advanced, self-propelled liquid propellant howitzer and a companion resupply vehicle. The resupply vehicle is intended to rendezvous with the howitzer near the battlefront and replenish ammunition, fuel, and other material. The Army has recommended that Crusader incorporate new and innovative technologies to improve performance and safety. One conceptual design proposes a robotic resupply boom on the resupply vehicle to upload supplies to the howitzer. The resupply boom would normally be retracted inside the resupplymore » vehicle during transit. When the two vehicles are within range of the resupply boom, the boom would be extended to a receiving port on the howitzer. In order to reduce exposure to small arms fire or nuclear, biological, and chemical hazards, the crew would remain inside the resupply vehicle during the resupply operation. The process of extending the boom and linking with the receiving port is called docking. A boom operator would be designated to maneuver the boom into contact with the receiving port using a mechanical joystick. The docking operation depends greatly upon the skill of the boom operator to manipulate the boom into docking position. Computer simulations at the National Aeronautics and Space Administration have shown that computer-assisted or autonomous docking can improve the ability of the operator to dock safely and quickly. This document describes the present status of the Crusader Autonomous Docking System (CADS) implemented at Oak Ridge National laboratory (ORNL). The purpose of the CADS project is to determine the feasibility and performance limitations of vision systems to satisfy the autonomous docking requirements for Crusader and conduct a demonstration under controlled conditions.« less

  20. BRAIN TUMOR SEGMENTATION WITH SYMMETRIC TEXTURE AND SYMMETRIC INTENSITY-BASED DECISION FORESTS.

    PubMed

    Bianchi, Anthony; Miller, James V; Tan, Ek Tsoon; Montillo, Albert

    2013-04-01

    Accurate automated segmentation of brain tumors in MR images is challenging due to overlapping tissue intensity distributions and amorphous tumor shape. However, a clinically viable solution providing precise quantification of tumor and edema volume would enable better pre-operative planning, treatment monitoring and drug development. Our contributions are threefold. First, we design efficient gradient and LBPTOP based texture features which improve classification accuracy over standard intensity features. Second, we extend our texture and intensity features to symmetric texture and symmetric intensity which further improve the accuracy for all tissue classes. Third, we demonstrate further accuracy enhancement by extending our long range features from 100mm to a full 200mm. We assess our brain segmentation technique on 20 patients in the BraTS 2012 dataset. Impact from each contribution is measured and the combination of all the features is shown to yield state-of-the-art accuracy and speed.

  1. Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levnajić, Zoran; Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106; Mezić, Igor

    We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone,more » and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.« less

  2. Extending Strong Scaling of Quantum Monte Carlo to the Exascale

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Baczewski, Andrew; Luo, Ye; Romero, Nichols; Kent, Paul

    Quantum Monte Carlo is one of the most accurate and most computationally expensive methods for solving the electronic structure problem. In spite of its significant computational expense, its massively parallel nature is ideally suited to petascale computers which have enabled a wide range of applications to relatively large molecular and extended systems. Exascale capabilities have the potential to enable the application of QMC to significantly larger systems, capturing much of the complexity of real materials such as defects and impurities. However, both memory and computational demands will require significant changes to current algorithms to realize this possibility. This talk will detail both the causes of the problem and potential solutions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the US Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets.

    PubMed

    Levnajić, Zoran; Mezić, Igor

    2015-05-01

    We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone, and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.

  4. Moderate temperature sodium cells. I - Transition metal disulfide cathodes

    NASA Astrophysics Data System (ADS)

    Abraham, K. M.; Pitts, L.; Schiff, R.

    1980-12-01

    TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.

  5. Frequency-selective surfaces for infrared imaging

    NASA Astrophysics Data System (ADS)

    Lesmanne, Emeline; Boulard, François; Espiau Delamaestre, Roch; Bisotto, Sylvette; Badano, Giacomo

    2017-09-01

    Bayer filter arrays are commonly added to visible detectors to achieve multicolor sensitivity. To extend this approach to the infrared range, we present frequency selective surfaces that work in the mid-infrared range (MWIR). They are easily integrated in the device fabrication process and are based on a simple operating principle. They consist of a thin metallic sheet perforated with apertures filled with a high-index dielectric material. Each aperture behaves as a separate resonator. Its size determines the transmission wavelength λ. Using an original approach based on the temporal coupled mode theory, we show that metallic loss is negligible in the infrared range, as long as the filter bandwidth is large enough (typically <λ/10). We develop closed-form expressions for the radiative and dissipative loss rates and show that the transmission of the filter depends solely on their ratio. We present a prototype infrared detector functionalized with one such array of filters and characterize it by electro-optical measurements.

  6. Data acquisition and analysis of range-finding systems for spacing construction

    NASA Technical Reports Server (NTRS)

    Shen, C. N.

    1981-01-01

    For space missions of future, completely autonomous robotic machines will be required to free astronauts from routine chores of equipment maintenance, servicing of faulty systems, etc. and to extend human capabilities in hazardous environments full of cosmic and other harmful radiations. In places of high radiation and uncontrollable ambient illuminations, T.V. camera based vision systems cannot work effectively. However, a vision system utilizing directly measured range information with a time of flight laser rangefinder, can successfully operate under these environments. Such a system will be independent of proper illumination conditions and the interfering effects of intense radiation of all kinds will be eliminated by the tuned input of the laser instrument. Processing the range data according to certain decision, stochastic estimation and heuristic schemes, the laser based vision system will recognize known objects and thus provide sufficient information to the robot's control system which can develop strategies for various objectives.

  7. 324GHz CMOS VCO Using Linear Superimposition Technique

    NASA Technical Reports Server (NTRS)

    Daquan, Huang; LaRocca, Tim R.; Samoska, Lorene A; Fung, Andy; Chang, Frank

    2007-01-01

    Terahertz (frequencies ranged from 300GHz to 3THz) imaging and spectroscopic systems have drawn increasing attention recently due to their unique capabilities in detecting and possibly analyzing concealed objects. The generation of terahertz signals is nonetheless nontrivial and traditionally accomplished by using either free-electron radiation, optical lasers, Gunn diodes or fundamental oscillation by using III-V based HBT/HEMT technology[1-3]... We have substantially extended the operation range of deep-scaled CMOS by using a linear superimposition method, in which we have realized a 324GHz VCO in 90nm digital CMOS with 4GHz tuning range under 1V supply voltage. This may also pave the way for ultra-high data rate wireless communications beyond that of IEEE 802.15.3c and reach data rates comparable to that of fiber optical communications, such as OC768 (40Gbps) and beyond.

  8. Moderate temperature sodium cells. I - Transition metal disulfide cathodes

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Pitts, L.; Schiff, R.

    1980-01-01

    TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.

  9. Development and testing of the ultraviolet spectrometer for the Mariner Mars 1971 spacecraft

    NASA Technical Reports Server (NTRS)

    Farrar, J. W.

    1972-01-01

    The Mariner Mars 1971 ultraviolet spectrometer is an Ebert-Fastie type of the same basic design as the Mariner Mars 1969 instrument. Light enters the instrument and is split into component wavelengths by a scanning reflection diffraction grating. Two monochrometer exit slits allow the use of two independent photomultiplier tube sensors. Channel 1 has a spectral range of 1100 to 1692 A with a fixed gain, while Channel 2 has a spectral range of 1450 to 3528 A with an automatic step gain control, providing a dynamic range over the expected atmosphere and surface brightness of Mars. The scientific objectives, basic operation, design, testing, and calibration for the Mariner Mars 1971 ultraviolet spectrometer are described. The design discussion includes those modifications that were necessary to extend the lifetime of the instrument in order to accomplish the Mariner Mars 1971 mission objectives.

  10. Extended operating times are more efficient, save money and maintain a high staff and patient satisfaction.

    PubMed

    Herron, Jonathan Blair Thomas; French, Rachel; Gilliam, Andrew Douglas

    2018-01-01

    Current public sector austerity measures necessitate efficiency savings throughout the NHS. Performance targets have resulted in activity being performed in the private sector, waiting list initiative lists and requests for staff to work overtime. This has resulted in staff fatigue and additional agency costs. Adoption of extended operating theatre times (0800-1800 hours) may improve productivity and efficiency, with potentially significant financial savings; however, implementation may adversely affect staff morale and patient compliance. A pilot period of four months of extended operating times (4.5 hour sessions) was completed and included all theatre surgical specialties. Outcome measures included: the number of cases completed, late starts, early finishes, cancelled operations, theatre overruns, preoperative assessment and 18-week targets. The outcomes were then compared to pre-existing normal working day operating lists (0900-1700). Theatre staff, patient and surgical trainee satisfaction with the system were also considered by use of an anonymous questionnaire. The study showed that in-session utilisation time was unchanged by extended operating hours 88.7% (vs 89.2%). The service was rated as 'good' or 'excellent' by 87.5% of patients. Over £345,000 was saved by reducing premium payments. Savings of £225,000 were made by reducing privately outsourced operation and a further £63,000 by reviewing staff hours. Day case procedures increased from 2.8 to 3.2 cases/day with extended operating. There was no significant increase in late starts (5.1% vs 6.8%) or cancellation rates (0.75% vs 1.02%). Theatre over-runs reduced from 5% to 3.4%. The 18 weeks target for surgery was achieved in 93.7% of cases (vs 88.3%). The number of elective procedures increased from 4.1 to 4.89 cases/day. Only 13.33% of trainees (n = 33) surveyed felt that extended operating had a negative impact on training. The study concludes that extended operating increased productivity from 2.8 patients per session to 3.2 patients per session with potential savings of just over £2.4 million per financial year. Extrapolating this to the other 155 trusts in England could be a potential saving of £372 million per year. Staff, trainee and patient satisfaction was unaffected. An improved 18 weeks target position was achieved with a significant reduction in private sector work. However, some staff had difficulty with arranging childcare and taking public transport and this may prevent full implementation.

  11. Point-to-Point! Validation of the Small Aircraft Transportation System Higher Volume Operations Concept

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.

    2006-01-01

    Described is the research process that NASA researchers used to validate the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept. The four phase building-block validation and verification process included multiple elements ranging from formal analysis of HVO procedures to flight test, to full-system architecture prototype that was successfully shown to the public at the June 2005 SATS Technical Demonstration in Danville, VA. Presented are significant results of each of the four research phases that extend early results presented at ICAS 2004. HVO study results have been incorporated into the development of the Next Generation Air Transportation System (NGATS) vision and offer a validated concept to provide a significant portion of the 3X capacity improvement sought after in the United States National Airspace System (NAS).

  12. Stabilized tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Jordan, Jeffrey D. (Inventor); Schryer, Jacqueline L. (Inventor)

    2008-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  13. Compact microwave re-entrant cavity applicator for plasma-assisted combustion.

    PubMed

    Hemawan, Kadek W; Wichman, Indrek S; Lee, Tonghun; Grotjohn, Timothy A; Asmussen, Jes

    2009-05-01

    The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH(4)/O(2) flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of > or = 10 W microplasma discharges can be produced in the high electric field region of the applicator.

  14. Compact microwave re-entrant cavity applicator for plasma-assisted combustion

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Wichman, Indrek S.; Lee, Tonghun; Grotjohn, Timothy A.; Asmussen, Jes

    2009-05-01

    The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH4/O2 flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of ≥10 W microplasma discharges can be produced in the high electric field region of the applicator.

  15. Treatment Planning and Image Guidance for Radiofrequency Ablations of Large Tumors

    PubMed Central

    Ren, Hongliang; Campos-Nanez, Enrique; Yaniv, Ziv; Banovac, Filip; Abeledo, Hernan; Hata, Nobuhiko; Cleary, Kevin

    2014-01-01

    This article addresses the two key challenges in computer-assisted percutaneous tumor ablation: planning multiple overlapping ablations for large tumors while avoiding critical structures, and executing the prescribed plan. Towards semi-automatic treatment planning for image-guided surgical interventions, we develop a systematic approach to the needle-based ablation placement task, ranging from pre-operative planning algorithms to an intra-operative execution platform. The planning system incorporates clinical constraints on ablations and trajectories using a multiple objective optimization formulation, which consists of optimal path selection and ablation coverage optimization based on integer programming. The system implementation is presented and validated in phantom studies and on an animal model. The presented system can potentially be further extended for other ablation techniques such as cryotherapy. PMID:24235279

  16. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    USGS Publications Warehouse

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  17. Phase-locked loop based on nanoelectromechanical resonant-body field effect transistor

    NASA Astrophysics Data System (ADS)

    Bartsch, S. T.; Rusu, A.; Ionescu, A. M.

    2012-10-01

    We demonstrate the room-temperature operation of a silicon nanoelectromechanical resonant-body field effect transistor (RB-FET) embedded into phase-locked loop (PLL). The very-high frequency resonator uses on-chip electrostatic actuation and transistor-based displacement detection. The heterodyne frequency down-conversion based on resistive FET mixing provides a loop feedback signal with high signal-to-noise ratio. We identify key parameters for PLL operation, and analyze the performance of the RB-FET at the system level. Used as resonant mass detector, the experimental frequency stability in the ppm-range translates into sub atto-gram (10-18 g) sensitivity in high vacuum. The feedback and control system are generic and may be extended to other mechanical resonators with transistor properties, such as graphene membranes and carbon nanotubes.

  18. Shift work at a modern offshore drilling rig.

    PubMed

    Rodrigues, V F; Fischer, F M; Brito, M J

    2001-12-01

    The oil and gas exploration and production offshore units are classified as hazardous installations. Work in these facilities is complex, confined and associated with a wide range of risks. The continuous operation is secured by various shift work patterns. The objective of this study was to evaluate how offshore drilling workers perceived shift work at high seas and its impacts on their life and working conditions. The main features of the studied offshore shift work schedules are: long time on board (14 to 28 days), extended shifts (12 hours or more per day), slow rotation (7 to 14 days in the same shift), long sequence of days on the night shift (7 to 14 days in a row) and the extra-long extended journey (18 hours) on shift change and landing days. Interviews revealed a wide range of stressors caused by the offshore shift work, as well as difficulties to conciliate work with family life. It was observed that changes of the family model, leading to role conflicts and social isolation, work in a hazardous environment, perceiving poor sleep when working at night shifts and the imbalance between the expected and actual rewards are the major stressors for the offshore drilling workers.

  19. Stochastic Forcing for High-Resolution Regional and Global Ocean and Atmosphere-Ocean Coupled Ensemble Forecast System

    NASA Astrophysics Data System (ADS)

    Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.

    2017-12-01

    An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.

  20. Feasibility and safety of endoscopic submucosal dissection for lower rectal tumors with hemorrhoids.

    PubMed

    Tanaka, Shinwa; Toyonaga, Takashi; Morita, Yoshinori; Hoshi, Namiko; Ishida, Tsukasa; Ohara, Yoshiko; Yoshizaki, Tetsuya; Kawara, Fumiaki; Umegaki, Eiji; Azuma, Takeshi

    2016-07-21

    To evaluate the feasibility and safety of endoscopic submucosal dissection (ESD) for lower rectal lesions with hemorrhoids. The outcome of ESD for 23 lesions with hemorrhoids (hemorrhoid group) was compared with that of 48 lesions without hemorrhoids extending to the dentate line (non-hemorrhoid group) during the same study period. Median operation times (ranges) in the hemorrhoid and non-hemorrhoid groups were 121 (51-390) and 130 (28-540) min. The en bloc resection rate and the curative resection rate in the hemorrhoid group were 96% and 83%, and they were 100% and 90% in the non-hemorrhoid group, respectively. In terms of adverse events, perforation and postoperative bleeding did not occur in both groups. In terms of the clinical course of hemorrhoids after ESD, the rate of complete recovery of hemorrhoids after ESD in lesions with resection of more than 90% was significantly higher than that in lesions with resection of less than 90%. ESD on lower rectal lesions with hemorrhoids could be performed safely, similarly to that on rectal lesions extending to the dentate line without hemorrhoids. In addition, all hemorrhoids after ESD improved to various degrees, depending on the resection range.

  1. Feasibility and safety of endoscopic submucosal dissection for lower rectal tumors with hemorrhoids

    PubMed Central

    Tanaka, Shinwa; Toyonaga, Takashi; Morita, Yoshinori; Hoshi, Namiko; Ishida, Tsukasa; Ohara, Yoshiko; Yoshizaki, Tetsuya; Kawara, Fumiaki; Umegaki, Eiji; Azuma, Takeshi

    2016-01-01

    AIM: To evaluate the feasibility and safety of endoscopic submucosal dissection (ESD) for lower rectal lesions with hemorrhoids. METHODS: The outcome of ESD for 23 lesions with hemorrhoids (hemorrhoid group) was compared with that of 48 lesions without hemorrhoids extending to the dentate line (non-hemorrhoid group) during the same study period. RESULTS: Median operation times (ranges) in the hemorrhoid and non-hemorrhoid groups were 121 (51-390) and 130 (28-540) min. The en bloc resection rate and the curative resection rate in the hemorrhoid group were 96% and 83%, and they were 100% and 90% in the non-hemorrhoid group, respectively. In terms of adverse events, perforation and postoperative bleeding did not occur in both groups. In terms of the clinical course of hemorrhoids after ESD, the rate of complete recovery of hemorrhoids after ESD in lesions with resection of more than 90% was significantly higher than that in lesions with resection of less than 90%. CONCLUSION: ESD on lower rectal lesions with hemorrhoids could be performed safely, similarly to that on rectal lesions extending to the dentate line without hemorrhoids. In addition, all hemorrhoids after ESD improved to various degrees, depending on the resection range. PMID:27468216

  2. OCCAM: a flexible, multi-purpose and extendable HPC cluster

    NASA Astrophysics Data System (ADS)

    Aldinucci, M.; Bagnasco, S.; Lusso, S.; Pasteris, P.; Rabellino, S.; Vallero, S.

    2017-10-01

    The Open Computing Cluster for Advanced data Manipulation (OCCAM) is a multipurpose flexible HPC cluster designed and operated by a collaboration between the University of Torino and the Sezione di Torino of the Istituto Nazionale di Fisica Nucleare. It is aimed at providing a flexible, reconfigurable and extendable infrastructure to cater to a wide range of different scientific computing use cases, including ones from solid-state chemistry, high-energy physics, computer science, big data analytics, computational biology, genomics and many others. Furthermore, it will serve as a platform for R&D activities on computational technologies themselves, with topics ranging from GPU acceleration to Cloud Computing technologies. A heterogeneous and reconfigurable system like this poses a number of challenges related to the frequency at which heterogeneous hardware resources might change their availability and shareability status, which in turn affect methods and means to allocate, manage, optimize, bill, monitor VMs, containers, virtual farms, jobs, interactive bare-metal sessions, etc. This work describes some of the use cases that prompted the design and construction of the HPC cluster, its architecture and resource provisioning model, along with a first characterization of its performance by some synthetic benchmark tools and a few realistic use-case tests.

  3. Extended System Operations Studies for Automated Guideway Transit Systems : Plan for Task 5--DPM Failure Management

    DOT National Transportation Integrated Search

    1981-06-01

    The purpose of Task 5 in the Extended System Operations Studies Project, DPM Failure Management, is to enhance the capabilities of the Downtown People Mover Simulation (DPMS) and the Discrete Event Simulation Model (DESM) by increasing the failure mo...

  4. Co-Optima Project E2.2.2: Accelerate Development of ACI/LTC Fuel Effects on RCCI Combustion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musculus, Mark P.

    Many advanced combustion approaches have demonstrated potential for achieving diesel-like thermal efficiency but with much lower pollutant emissions of particulate matter (PM) and nitrogen oxides (NOx). RCCI is one advanced combustion concept, which makes use of in-cylinder blending of two fuels with differing reactivity for improved control of the combustion phasing and rate (Reitz et al., 2015). Previous research and development at ORNL has demonstrated successful implementation of RCCI on a light-duty multi-cylinder engine over a wide range of operating conditions (Curran et al., 2015). Several challenges were encountered when extending the research to practical applications, including limits to themore » operating range, both for high and low loads. Co-optimizing the engine and fuel aspects of the RCCI approach might allow these operating limits to be overcome. The in-cylinder mechanisms by which fuel properties interact with engine operating condition variables is not well understood, however, in part because RCCI is a new combustion concept that is still being developed, and limited data have been acquired to date, especially using in-cylinder optical/imaging diagnostics. The objective of this work is to use in-cylinder diagnostics in a heavy-duty single-cylinder optical engine at SNL to understand the interplay between fuel properties and engine hardware and operating conditions for RCCI in general, and in particular for the light-duty multi-cylinder all-metal RCCI engine experiments at ORNL.« less

  5. Sideways Views of the Moon: Mapping Directional Thermal Emission with Diviner

    NASA Astrophysics Data System (ADS)

    Greenhagen, B. T.; Bandfield, J.; Bowles, N. E.; Hayne, P. O.; Sefton-Nash, E.; Warren, T.; Paige, D. A.

    2017-12-01

    Systematic off-nadir observations can be used to characterize the emission phase function and radiative balance of the lunar surface. These are critical inputs for thermophysical models used to derive surface properties and study a wide range of dynamic surface properties, such as the stability of volatiles and development and evolution of regolith, on the Moon and other airless bodies. After over eight years in operation and well into its 3rd extended science mission, NASA's Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer (Diviner) continues to reveal the extreme nature of the Moon's thermal environments, thermophysical properties, and surface composition. Diviner data are also used to characterize thermal emission behavior that is fundamental to airless bodies with fine-particulate surfaces, including epiregolith thermal gradients and thermal-scale surface roughness. Diviner's extended operations have provided opportunities to observe the lunar surface with a wide range of viewing geometries. Together Diviner's self-articulation and LRO's non-sun-synchronous polar orbit offer a unique platform to observe the lunar surface and characterize the emission phase behavior and radiative balance. Recently, Diviner completed global off-nadir observations at 50° and 70° in the anti-sun (low phase) direction with 8 different local times each. This fall, we'll begin a third campaign to observe the Moon at 50° emission in the pro-sun (high phase) direction. Here we present this new global off-nadir dataset, highlight models and laboratory experiments used to interpret the data, and describe the role of these data in studying the Moon and other airless bodies.

  6. Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing

    PubMed Central

    Pickens, Charles L.; Navarre, Brittany M.; Nair, Sunila G.

    2010-01-01

    We recently adapted the conditioned suppression of operant responding method to study fear incubation. We found that food-restricted rats show low fear 2 days after extended (10 d; 100 30-sec tone-shock pairings) fear training and high fear after 1–2 months. Here, we studied a potential mechanism of fear incubation: extended food-restriction stress. We also studied whether fear incubation is observed after fear training with a prolonged-duration (6-min) tone conditioned stimulus (CS), and whether conditioned freezing incubates after extended training in rats with or without a concurrent operant task. Conditioned fear was assessed 2 days and 1 month after training. In the conditioned suppression method, fear incubation was reliably observed in rats under moderate food-restriction conditions (18–20 g food/day) that allowed for weight gain, and after extended (10 d), but not limited (1 d), fear training with the 6-min CS. Incubation of conditioned freezing was observed after extended fear training in rats lever-pressing for food and, to a lesser degree, in rats not performing an operant task. Results indicate that prolonged hunger-related stress does not account for fear incubation in the conditioned suppression method, and that fear incubation occurs to a longer-duration (6-min) fear CS. Extended training also leads to robust fear incubation of conditioned freezing in rats performing an operant task and weaker fear incubation in rats not performing an operant task. PMID:20600654

  7. Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing.

    PubMed

    Pickens, C L; Navarre, B M; Nair, S G

    2010-09-15

    We recently adapted the conditioned suppression of operant responding method to study fear incubation. We found that food-restricted rats show low fear 2 days after extended (10 d; 100 30-s tone-shock pairings) fear training and high fear after 1-2 months. Here, we studied a potential mechanism of fear incubation: extended food-restriction stress. We also studied whether fear incubation is observed after fear training with a prolonged-duration (6-min) tone conditioned stimulus (CS), and whether conditioned freezing incubates after extended training in rats with or without a concurrent operant task. Conditioned fear was assessed 2 days and 1 month after training. In the conditioned suppression method, fear incubation was reliably observed in rats under moderate food-restriction conditions (18-20 g food/day) that allowed for weight gain, and after extended (10 d), but not limited (1 d), fear training with the 6-min CS. Incubation of conditioned freezing was observed after extended fear training in rats lever-pressing for food and, to a lesser degree, in rats not performing an operant task. Results indicate that prolonged hunger-related stress does not account for fear incubation in the conditioned suppression method, and that fear incubation occurs to a longer-duration (6-min) fear CS. Extended training also leads to robust fear incubation of conditioned freezing in rats performing an operant task and weaker fear incubation in rats not performing an operant task. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Surface tension and long range corrections of cylindrical interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourasseau, E.; Malfreyt, P.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential,more » (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.« less

  9. Processing and Preparation of Advanced Stirling Convertors for Extended Operation

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Paggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  10. Processing and Preparation of Advanced Stirling Convertors for Extended Operation at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Peggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  11. Sex Differences in Pitch Range and Speech Fundamental Frequency After Arytenoid Adduction and Thyroplasty.

    PubMed

    Konomi, Ujimoto; Watanabe, Yusuke; Komazawa, Daigo

    2016-05-01

    The purpose of this study was to clarify the sex differences in pitch range (PR) and speech fundamental frequency (SFF) after arytenoid adduction (AA) combined with type 1 thyroplasty (TP1) in patients with unilateral vocal fold paralysis (UVFP) and to assess the cause of these differences. This is a retrospective review of clinical records. The records of 50 patients with UVFP for whom PR, SFF, and maximum phonation time (MPT) had been evaluated before and 1 year after AA combined with TP1 were analyzed. Patients consisted of 36 men and 14 women. In particular, in the 37 patients (24 men and 13 women) who had ≥2 semitones (STs) in preoperative PR (pre-PR), the differences and correlations between the pre-PR and the postoperative PR (post-PR), SFF, and MPT were compared between the sexes. We also discussed cases of post-PR deterioration and abnormal SFF. The characteristics of PR in men are narrow pre-PR (14.7 ± 11.5 STs) and significant extension of post-PR (22.6 ± 6.3 STs). MPT extended from 4.6 ± 2.5 seconds to 14.8 ± 7.2 seconds. In contrast, women had a wide pre-PR (18.1 ± 7.2 STs) and showed no significant post-PR extension (21.7 ± 7.8 STs). MPT extended from 5.1 ± 1.9 seconds to 16.8 ± 7.2 seconds. Although there were no significant changes in average SFF, as well as the highest and lowest pitch after the operation, the variance of the pre-SFF tended to converge into the physiological range in the post-SFF (P = 0.08). Compared with the SFF data of normal adult controls, post-SFF in the normal range was 46.0% (23/50). In patients who showed a >20% improvement in PR, normal post-SFF appeared in 68.8% of the patients (11/16). Particularly in those women, 83.3% (5/6) showed a normal post-SFF. Men showed greater difficulty in recovery of normal PR, SFF, and MPT; however, there were fewer patients (4.2%; 1/24) with a PR deterioration of >20%. Regarding women, although some patients showed a parallel recovery in PR and SFF to the normal range, there was a high rate of patients showing PR deterioration (30.8%; 4/13). AA combined with TP1 resulted in the recovery of not only MPT but also PR and SFF. In addition, sex differences in operative effects were suggested. In men, although MPT is difficult to be fully recovered, PR deterioration was mild. In women, although MPT was more easily extended, PR deterioration occurred more readily because of operative effects such as hypermedialization of their smaller larynx. The post-PR variation appeared to be associated with SFF. Our results indicate the necessity to assess patients' PR and SFF even if their MPTs recover, particularly in patients with postoperative voice insufficiency. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  12. Expedition 49/50 Astronaut Shane Kimbrough briefs the press on his extended mission to the International Space Station in the Marshall Space Flight Center Payload Operations Integration Center (POIC).

    NASA Image and Video Library

    2017-08-31

    Expedition 49/50 Astronaut Shane Kimbrough briefs the press on his extended mission to the International Space Station in the Marshall Space Flight Center Payload Operations Integration Center (POIC).

  13. 14 CFR 121.423 - Pilot: Extended Envelope Training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot: Extended Envelope Training. 121.423... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Training Program § 121.423 Pilot: Extended Envelope Training. (a) Each certificate holder must include in its approved training program, the extended envelope...

  14. Extending the Host Range of Bacteriophage Particles for DNA Transduction.

    PubMed

    Yosef, Ido; Goren, Moran G; Globus, Rea; Molshanski-Mor, Shahar; Qimron, Udi

    2017-06-01

    A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Hybrid Composite Coatings for Durable and Efficient Solar Hydrogen Generation under Diverse Operating Conditions

    DOE PAGES

    Walczak, Karl A.; Segev, Gideon; Larson, David M.; ...

    2017-02-17

    Safe and practical solar-driven hydrogen generators must be capable of efficient and stable operation under diurnal cycling with full separation of gaseous H 2 and O 2 products. In this paper, a novel architecture that fulfills all of these requirements is presented. The approach is inherently scalable and provides versatility for operation under diverse electrolyte and lighting conditions. The concept is validated using a 1 cm 2 triple-junction photovoltaic cell with its illuminated photocathode protected by a composite coating comprising an organic encapsulant with an embedded catalytic support. The device is compatible with operation under conditions ranging from 1 Mmore » H 2SO 4 to 1 M KOH, enabling flexibility in selection of semiconductor, electrolyte, membrane, and catalyst. Stable operation at a solar-to-hydrogen conversion efficiency of >10% is demonstrated under continuous operation, as well as under diurnal light cycling for at least 4 d, with simulated sunlight. Operational characteristics are validated by extended time outdoor testing. A membrane ensures products are separated, with nonexplosive gas streams generated for both alkaline and acidic systems. Finally, analysis of operational characteristics under different lighting conditions is enabled by comparison of a device model to experimental data.« less

  16. Downscaling of conventional laser cladding technique to microengineering

    NASA Astrophysics Data System (ADS)

    del Val, J.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; Quintero, F.; Pou, J.

    To get an adequate response to the high increase of micro-products demand, new techniques have been developed by different types of industries in the last years. One approach is to adapt the laser surface cladding technique to the scale of microengineering. A new experimental configuration has been developed based on a highly stable high power laser with a high beam quality and a micro-feeder adequate to supply submicron particles. This work collects our efforts to extend the operation range of the laser cladding to the laser micro-cladding in order to produce micro-coatings. The viability of this new technique has been demonstrated by depositing coatings with geometrical characteristics in the micrometer range (minimum values obtained: 32 μm of width and 12 μm of height).

  17. Open Group Transformations

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    Open groups whose generators are in arbitrary involutions may be quantized within a ghost extended framework in terms of a nilpotent BFV-BRST charge operator. Previously we have shown that generalized quantum Maurer-Cartan equations for arbitrary open groups may be extracted from the quantum connection operators and that they also follow from a simple quantum master equation involving an extended nilpotent BFV-BRST charge and a master charge. Here we give further details of these results. In addition we establish the general structure of the solutions of the quantum master equation. We also construct an extended formulation whose properties are determined by the extended BRST charge in the master equation.

  18. Definition and Development of Habitation Readiness Levels (HRLs) for Planetary Surface Habitats

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Toups, Larry

    2007-01-01

    One could argue that NASA has never developed a true habitat for a planetary surface, with only the Lunar Module from the 1960's-era Apollo Program providing for a sparse 2 person, 3 day capability. An integral part of NASA's current National Vision for Space Exploration is missions back to the moon and eventually to Mars. One of the largest leaps i11 lunar surface exploration beyond the Apollo lunar missions will be the conduct of these extended duration human missions. These missions could range from 30 to 90 days in length initially and may eventually range up to 500 days in length. To enable these extended duration human missions, probably the single-most important lunar surface element is the Surface Habitat. The requirements that must be met by the Surface Habitat will go far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making intelligent, technically correct habitat design decisions. This paper will discuss the possibilities of the definition and development of a Habitation Readiness Level (HRL) scale that might be mapped to current Technology Readiness Levels (TRLs) for technology development. HRLs could help measure how well a particular technology thrust is advanced by a proposed planetary habitat concept. The readiness level would have to be measured differently than TRLs, and may include such milestones as habitat design performance under simulated mission operations and constraints (including relevant field testing), functional allocation demonstrations, crew interface evaluation and post-occupancy evaluation. With many concepts for planetary habitats proposed over the past 20 years, there are many strategic technical challenges facing designers of planetary habitats that will support NASA's exploration of the moon and Mars. The systematic assessment of a variety of planetary habitat options will be an important approach and will influence the associated requirements for human design, volumetrics, functionality, systems hardware and operations.

  19. A Novel Software Platform Extending Advances in Monitoring Technologies to On-demand Decision Support

    NASA Astrophysics Data System (ADS)

    Ormerod, R.; Scholl, M.

    2017-12-01

    Rapid evolution is occurring in the monitoring and assessment of air emissions and their impacts. The development of next generation lower cost sensor technologies creates the potential for much more intensive and far-reaching monitoring networks that provide spatially rich data. While much attention at present is being directed at the types and performance characteristics of sensor technologies, it is important also that the full potential of rich data sources be realized. Parallel to sensor developments, software platforms to display and manage data in real time are increasingly common adjuncts to sensor networks. However, the full value of data can be realized by extending platform capabilities to include complex scientific functions that are integrated into an action-oriented management framework. Depending on the purpose and nature of a monitoring network, there will be a variety of potential uses of the data or its derivatives, for example: statistical analysis for policy development, event analysis, real-time issue management including emergency response and complaints, and predictive management. Moving these functions into an on-demand, optionally mobile, environment greatly increases the value and accessibility of the data. Increased interplay between monitoring data and decision-making in an operational environment is optimised by a system that is designed with equal weight on technical robustness and user experience. A system now being used by several regulatory agencies and a larger number of industries in the US, Latin America, Europe, Australia and Asia has been developed to provide a wide range of on-demand decision-support in addition to the basic data collection, display and management that most platforms offer. With stable multi-year operation, the platform, known as Envirosuite, is assisting organisations to both reduce operating costs and improve environmental performance. Some current examples of its application across a range of applications for regulatory and industry organisations is described and demonstrated.

  20. Active Vibration Control of Hydrodynamic Journal Bearings

    NASA Astrophysics Data System (ADS)

    Tůma, J.; Šimek, J.; Škuta, J.; Los, J.; Zavadil, J.

    Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. It is assumed that the journal vibration is measured by a pair of proximity probes. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. The active vibration control was tested with the use of a test rig, which consists of a rotor supported by two controllable journal bearings and driven by an inductive motor up to 23,000 rpm. As it was proved by experiments the active vibration control extends considerably the range of the rotor operational speed.

  1. An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Cheng; Zhang, Kai; Xiong, Jian

    Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less

  2. Advanced Fire Detector for Space Applications

    NASA Technical Reports Server (NTRS)

    Kutzner, Joerg

    2012-01-01

    A document discusses an optical carbon monoxide sensor for early fire detection. During the sensor development, a concept was implemented to allow reliable carbon monoxide detection in the presence of interfering absorption signals. Methane interference is present in the operating wavelength range of the developed prototype sensor for carbon monoxide detection. The operating parameters of the prototype sensor have been optimized so that interference with methane is minimized. In addition, simultaneous measurement of methane is implemented, and the instrument automatically corrects the carbon monoxide signal at high methane concentrations. This is possible because VCSELs (vertical cavity surface emitting lasers) with extended current tuning capabilities are implemented in the optical device. The tuning capabilities of these new laser sources are sufficient to cover the wavelength range of several absorption lines. The delivered carbon monoxide sensor (COMA 1) reliably measures low carbon monoxide levels even in the presence of high methane signals. The signal bleed-over is determined during system calibration and is then accounted for in the system parameters. The sensor reports carbon monoxide concentrations reliably for (interfering) methane concentrations up to several thousand parts per million.

  3. An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch

    DOE PAGES

    Wang, Cheng; Zhang, Kai; Xiong, Jian; ...

    2017-09-26

    Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less

  4. Results of a XIPS(copyrighted) 25-cm Thruster Discharge Cathode Wear Test

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Tighe, William

    2009-01-01

    The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS (c) discharge cathode assembly was subjected to a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 16079 hours were accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe, an intermediate power point at 2.76 kWe and the minimum power point at 0.49 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate and minimum power points.

  5. Ongoing Wear Test of a XIPS(c) 25-Centimeter Thruster Discharge Cathode

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Tighe, William

    2008-01-01

    The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS(c) discharge cathode assembly is currently undergoing a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 11080 hours have been accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe and an intermediate power point at 2.76 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate power point.

  6. Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide

    PubMed Central

    Lafont, F.; Ribeiro-Palau, R.; Kazazis, D.; Michon, A.; Couturaud, O.; Consejo, C.; Chassagne, T.; Zielinski, M.; Portail, M.; Jouault, B.; Schopfer, F.; Poirier, W.

    2015-01-01

    Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10−9 in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic fields. Here, we report on a graphene device grown by chemical vapour deposition on SiC, which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron-density devices. PMID:25891533

  7. Using depolarization to quantify ice nucleating particle concentrations: a new method

    NASA Astrophysics Data System (ADS)

    Zenker, Jake; Collier, Kristen N.; Xu, Guanglang; Yang, Ping; Levin, Ezra J. T.; Suski, Kaitlyn J.; DeMott, Paul J.; Brooks, Sarah D.

    2017-12-01

    We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal size cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.

  8. A new seismic probe for coal seam hazard detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Owen, T.E.; Thill, R.E.

    1985-01-01

    An experimental hole-to-hole seismic probe system has been developed for use in coal measure geology as a means of determining the structural conditions of coal seams. The source probe produces a 500-joule electric arc discharge whose seismic wavelet has a spectrum in the 200 to 2,000 Hz frequency range. Low compliance hydrophones contained in the source probe as well as in a separate seismic detector probe are matched to the frequency range of the source. Both probes are constructed with 5.72 cm diameter housings. The transducers in the probes are equipped with fluid-inflatable boots to permit operation in either wetmore » or dry boreholes. Preliminary tests in vertical boreholes drilled 213 m apart in sedimentary rock formations show reliable operation and useful seismic propagation measurements along horizontal and oblique paths up to 232 m in length. Because the seismic wavelet has an accurately repeatable waveshape, multiple shots and signal averaging techniques can be used to enhance the signal-to-noise ratio and extend the transmission distances.« less

  9. Radiographic Evaluation of Ankle Joint Stability After Calcaneofibular Ligament Elevation During Open Reduction and Internal Fixation of Calcaneus Fracture.

    PubMed

    Wang, Chien-Shun; Tzeng, Yun-Hsuan; Lin, Chun-Cheng; Huang, Ching-Kuei; Chang, Ming-Chau; Chiang, Chao-Ching

    2016-09-01

    The aim of this prospective study was to evaluate the influence of sectioning the calcaneofibular ligament (CFL) during an extensile lateral approach during open reduction and internal fixation (ORIF) of calcaneal fractures on ankle joint stability. Forty-two patients with calcaneal fractures that received ORIF were included. Talar tilt stress and anterior drawer radiographs were performed on the operative and contralateral ankles 6 months postoperatively. The average degree of talar tilt on stress radiographs was 3.4 degrees (range, 0-12 degrees) on the operative side and 3.2 degrees (range, 0-14 degrees) on the contralateral side. The mean anterior drawer on stress radiographs of the CFL incised ankle was 6.1 mm (range, 2.4-11.8 mm) and on the contralateral ankle was 5.7 mm (range, 2.6-8.6 mm). There was no statistically significant difference of talar tilt and anterior drawer between the CFL incised side and the contralateral side (P = .658 and .302, respectively). The results suggest that sectioning of the CFL without any repair during ORIF of a calcaneal fracture does not have a negative effect on stability of the ankle. Repair of the CFL is, thus, probably not necessary following extended lateral approach for ORIF of calcaneal fractures. Level II, comparative study. © The Author(s) 2016.

  10. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  11. Hypofractionated Stereotactic Radiotherapy in Five Daily Fractions for Post-Operative Surgical Cavities in Brain Metastases Patients with and without Prior Whole Brain Radiation

    PubMed Central

    Al-Omair, Ameen; Soliman, Hany; Xu, Wei; Karotki, Aliaksandr; Mainprize, Todd; Phan, Nicolas; Das, Sunit; Keith, Julia; Yeung, Robert; Perry, James; Tsao, May; Sahgal, Arjun

    2013-01-01

    Our purpose was to report efficacy of hypofractionated cavity stereotactic radiotherapy (HCSRT) in patients with and without prior whole brain radiotherapy (WBRT). 32 surgical cavities in 30 patients (20 patients/21 cavities had no prior WBRT and 10 patients/11 cavities had prior WBRT) were treated with image-guided linac stereotactic radiotherapy. 7 of the 10 prior WBRT patients had “resistant” local disease given prior surgery, post-operative WBRT and a re-operation, followed by salvage HCSRT. The clinical target volume was the post-surgical cavity, and a 2-mm margin applied as planning target volume. The median total dose was 30 Gy (range: 25-37.5 Gy) in 5 fractions. In the no prior and prior WBRT cohorts, the median follow-up was 9.7 months (range: 3.0-23.6) and 15.3 months (range: 2.9-39.7), the median survival was 23.6 months and 39.7 months, and the 1-year cavity local recurrence progression-free survival (LRFS) was 79 and 100%, respectively. At 18 months the LRFS dropped to 29% in the prior WBRT cohort. Grade 3 radiation necrosis occurred in 3 prior WBRT patients. We report favorable outcomes with HCSRT, and well selected patients with prior WBRT and “resistant” disease may have an extended survival favoring aggressive salvage HCSRT at a moderate risk of radiation necrosis. PMID:23617283

  12. A prospective outcomes analysis of palliative procedures performed for malignant intestinal obstruction due to recurrent ovarian cancer.

    PubMed

    Chi, Dennis S; Phaëton, Rebecca; Miner, Thomas J; Kardos, Steven V; Diaz, John P; Leitao, Mario M; Gardner, Ginger; Huh, Jae; Tew, William P; Konner, Jason A; Sonoda, Yukio; Abu-Rustum, Nadeem R; Barakat, Richard R; Jaques, David P

    2009-08-01

    To obtain prospective outcomes data on patients (pts) undergoing palliative operative or endoscopic procedures for malignant bowel obstruction due to recurrent ovarian cancer. An institutional study was conducted from July 2002 to July 2003 to prospectively identify pts who underwent an operative or endoscopic procedure to palliate the symptoms of advanced cancer. This report focuses on pts with malignant bowel obstruction due to recurrent ovarian cancer. Procedures performed with an upper or lower gastrointestinal (GI) endoscope were considered "endoscopic." All other cases were classified as "operative." Following the procedure, the presence or absence of symptoms was determined and followed over time. All pts were followed until death. Palliative interventions were performed on 74 gynecologic oncology pts during the study period, of which 26 (35%) were for malignant GI obstruction due to recurrent ovarian cancer. The site of obstruction was small bowel in 14 (54%) cases and large bowel in 12 (46%) cases. Palliative procedures were operative in 14 (54%) pts and endoscopic in the other 12 (46%). Overall, symptomatic improvement or resolution within 30 days was achieved in 23 (88%) of 26 patients, with 1 (4%) postprocedure mortality. At 60 days, 10 (71%) of 14 pts who underwent operative procedures and 6 (50%) of 12 pts who had endoscopic procedures had symptom control. Median survival from the time of the palliative procedure was 191 days (range, 33-902) for those undergoing an operative procedure and 78 days (range, 18-284) for those undergoing an endoscopic procedure. Patients with malignant bowel obstructions due to recurrent ovarian cancer have a high likelihood of experiencing relief of symptoms with palliative procedures. Although recurrence of symptoms is common, durable palliation and extended survival are possible, especially in those patients selected for operative intervention.

  13. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors

    PubMed Central

    Szikra, Tamas; Cusato, Karen; Thoreson, Wallace B; Barabas, Peter; Bartoletti, Theodore M; Krizaj, David

    2008-01-01

    Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca2+]i in rod inner segments and synaptic terminals. Sustained Ca2+ entry into rod cytosol is augmented by store depletion, blocked by La3+ and Gd3+ and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca2+ influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1–43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca2+ entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca2+ signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca2+ homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1. PMID:18755743

  14. Comparison of photo detectors and operating conditions for decay time determination in phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Knappe, C.; Nada, F. Abou; Richter, M.; Aldén, M.

    2012-09-01

    This work compares the extent of linear response regions from standard time-resolving optical detectors for phosphor thermometry. Different types of photomultipliers (ordinary and time-gated) as well as an avalanche photodiode were tested and compared using the phosphorescence decay time of cadmium tungstate (CdWO4). Effects originating from incipient detector saturation are revealed as a change in evaluated phosphorescence decay time, which was found to be a more sensitive measure for saturation than the conventional signal strength comparison between in- and output. Since the decay time of thermographic phosphors is used for temperature determination systematic temperature errors in the order of several tens of Kelvins may be introduced. Saturation from the initial intensity is isolated from temporally developed saturation by varying the CdWO4 decay time over the microsecond to nanosecond range, resultant of varying the temperature from 290 to 580 K. A detector mapping procedure is developed in order to identify linear response regions where the decay-to-temperature evaluations are unbiased. In addition, this mapping procedure generates a library of the degree of distortion for operating points outside of linear response regions. Signals collected in the partly saturated regime can thus be corrected to their unbiased value using this library, extending the usable detector operating range significantly.

  15. [Extendable Cords to Prevent Tumbling of a Suction Device during Craniotomy].

    PubMed

    Shimizu, Satoru; Mochizuki, Takahiro; Osawa, Shigeyuki; Sekiguchi, Tomoko; Koizumi, Hiroyuki; Kumabe, Toshihiro

    2016-02-01

    Suction is necessary during craniotomy, and intraoperative tumbling of the suction device interrupts operative procedures. To avoid this, we developed a technique that would fasten the device to an extendable cord as is used to secure cell phones. We used this technique in more than 300 craniotomies at the specific point of time when the suction device tends to tumble, i. e., during the opening and closure of a wound, which requires frequent instrument exchanges. Extendable cords fastened to the tip of the suction hose using a gift tie were attached to the drapes to secure the suction device next to the operative field. During the operation, the extendable cord followed the suction device manipulations. Consequently, although there was some tension in the cord during its extension, the maneuverability of the suction device was maintained. As the hanging suction device was closer to the operative field than devices stored in conventional pockets, its manipulation was easier and quicker. Upon release, the suction device automatically returned to its original position without distracting the surgeon. Tumbling of the device was prevented, and there were no procedure-related complications. Our simple modification using extendable cords prevented tumbling, avoided unnecessary replacements, and eased the manipulation of a suction device.

  16. Poster - 25: Neutron Spectral Measurements around a Scanning Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kildea, John; Enger, Shirin; Maglieri, Robert

    We describe the measurements of neutron spectra that we undertook around a scanning proton beam at the Skandion proton therapy clinic in Uppsala, Sweden. Measurements were undertaken using an extended energy range Nested Neutron Spectrometer (NNS, Detec Inc., Gatineau, QC) operated in pulsed and current mode. Spectra were measured as a function of location in the treatment room and for various Bragg peak depths. Our preliminary unfolded data clearly show the direct, evaporation and thermal neutron peaks and we can show the effect on the neutron spectrum of a water phantom in the primary proton beam.

  17. Proceedings of the 8th Annual Conference on Manual Control

    NASA Technical Reports Server (NTRS)

    Pew, R. W.

    1972-01-01

    The volume presents recent developments in the field of manual control theory and applications. The papers give analytical methods as well as examples of the important interplay between man and machine, such as how man controls and stabilizes machine dynamics, and how machines extend man's capability. Included in the broad range of subjects are procedures to evaluate and identify display systems, controllers, manipulators, human operators, aircraft, and non-flying vehicles. Of particular interest is the continuing trend of applying control theory to problems in medicine and psychology, as well as to problems in vehicle control.

  18. Temperature insensitive and ultra wideband silica-based dual polarization optical hybrid for coherent receiver with highly symmetrical interferometer design.

    PubMed

    Nasu, Yusuke; Mizuno, Takayuki; Kasahara, Ryoichi; Saida, Takashi

    2011-12-12

    To extend the operation wavelength range of dual-polarization optical hybrids (DPOH), we propose a highly symmetrical interferometer design for a polarization beam splitter and an optical hybrid to reduce temperature and wavelength dependence. The design successfully decreases this dependence, and a fabricated DPOH with silica-based planar lightwave circuits provides temperature-insensitive performance with a polarization extinction ratio of over 25 dB and phase errors of less than 3 degrees over the entire C- and L-bands. © 2011 Optical Society of America

  19. Design, Manufacture and Deliver a Fully Automated Instrument to Measure, Record and Analyze the Oxygen Equilibrium Curve of Blood. Phase 2

    DTIC Science & Technology

    1994-06-20

    1040 Spruce Street, Trenton, New Jersey 08648. It is a square 1.56 in. on a side by 0.19 in. thick. It is a low current, moderate capacity module ...The module requires a d.c. voltage for its operation. We use a pulsating d.c. voltage and alter its duty cycle to control the amount of heating or...voltages that saturate the D/A output modules that pass the signal from the computer to the power electronics. The range can be extended, but with some

  20. Development of a passive phase separator for space and earth applications

    PubMed Central

    Wu, Xiongjun; Loraine, Greg; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper describes development of a passive phase separator that is capable of efficiently and reliably separating gas–liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to for both space and earth applications. PMID:29628785

  1. Extended Characterization of the Common-Source and Common-Gate Amplifiers using a Metal-Ferroelectric-Semiconductor Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Hunt, Mitchell; Sayyah, Rana; Mitchell, Cody; Laws, Crystal; MacLeod, Todd C.; Ho, Fat D.

    2013-01-01

    Collected data for both common-source and common-gate amplifiers is presented in this paper. Characterizations of the two amplifier circuits using metal-ferroelectric-semiconductor field effect transistors (MFSFETs) are developed with wider input frequency ranges and varying device sizes compared to earlier characterizations. The effects of the ferroelectric layer's capacitance and variation load, quiescent point, or input signal on each circuit are discussed. Comparisons between the MFSFET and MOSFET circuit operation and performance are discussed at length as well as applications and advantages for the MFSFETs.

  2. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave-assisted spark technology will benefit from predictive models which include the plasma processes governing the observed combustion enhancement. This dissertation documents the development of a chemical kinetic mechanism for the plasma-assisted combustion processes relevant to microwave-assisted spark ignition. The mechanism includes an existing mechanism for gas-phase methane oxidation, supplemented with electron impact reactions, cation and anion chemical reactions, and reactions involving vibrationally-excited and electronically-excited species. Calculations using the presently-developed numerical model explain experimentally-observed trends, highlighting the relative importance of pressure, temperature, and mixture composition in determining the effectiveness of microwave-assisted ignition enhancement.

  3. 14 CFR 135.165 - Communication and navigation equipment: Extended over-water or IFR operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Communication and navigation equipment: Extended over-water or IFR operations. 135.165 Section 135.165 Aeronautics and Space FEDERAL AVIATION... frequency communications gap. [Doc. No. FAA-2002-14002, 72 FR 31684, June 7, 2007] ...

  4. 14 CFR 135.165 - Communication and navigation equipment: Extended over-water or IFR operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment: Extended over-water or IFR operations. 135.165 Section 135.165 Aeronautics and Space FEDERAL AVIATION... frequency communications gap. [Doc. No. FAA-2002-14002, 72 FR 31684, June 7, 2007] ...

  5. 14 CFR 135.165 - Communication and navigation equipment: Extended over-water or IFR operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Communication and navigation equipment: Extended over-water or IFR operations. 135.165 Section 135.165 Aeronautics and Space FEDERAL AVIATION... frequency communications gap. [Doc. No. FAA-2002-14002, 72 FR 31684, June 7, 2007] ...

  6. 14 CFR 135.165 - Communication and navigation equipment: Extended over-water or IFR operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Communication and navigation equipment: Extended over-water or IFR operations. 135.165 Section 135.165 Aeronautics and Space FEDERAL AVIATION... frequency communications gap. [Doc. No. FAA-2002-14002, 72 FR 31684, June 7, 2007] ...

  7. 14 CFR 135.165 - Communication and navigation equipment: Extended over-water or IFR operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Communication and navigation equipment: Extended over-water or IFR operations. 135.165 Section 135.165 Aeronautics and Space FEDERAL AVIATION... frequency communications gap. [Doc. No. FAA-2002-14002, 72 FR 31684, June 7, 2007] ...

  8. Re-examining Prostate-specific Antigen (PSA) Density: Defining the Optimal PSA Range and Patients for Using PSA Density to Predict Prostate Cancer Using Extended Template Biopsy.

    PubMed

    Jue, Joshua S; Barboza, Marcelo Panizzutti; Prakash, Nachiketh S; Venkatramani, Vivek; Sinha, Varsha R; Pavan, Nicola; Nahar, Bruno; Kanabur, Pratik; Ahdoot, Michael; Dong, Yan; Satyanarayana, Ramgopal; Parekh, Dipen J; Punnen, Sanoj

    2017-07-01

    To compare the predictive accuracy of prostate-specific antigen (PSA) density vs PSA across different PSA ranges and by prior biopsy status in a prospective cohort undergoing prostate biopsy. Men from a prospective trial underwent an extended template biopsy to evaluate for prostate cancer at 26 sites throughout the United States. The area under the receiver operating curve assessed the predictive accuracy of PSA density vs PSA across 3 PSA ranges (<4 ng/mL, 4-10 ng/mL, >10 ng/mL). We also investigated the effect of varying the PSA density cutoffs on the detection of cancer and assessed the performance of PSA density vs PSA in men with or without a prior negative biopsy. Among 1290 patients, 585 (45%) and 284 (22%) men had prostate cancer and significant prostate cancer, respectively. PSA density performed better than PSA in detecting any prostate cancer within a PSA of 4-10 ng/mL (area under the receiver operating characteristic curve [AUC]: 0.70 vs 0.53, P < .0001) and within a PSA >10 mg/mL (AUC: 0.84 vs 0.65, P < .0001). PSA density was significantly more predictive than PSA in detecting any prostate cancer in men without (AUC: 0.73 vs 0.67, P < .0001) and with (AUC: 0.69 vs 0.55, P < .0001) a previous biopsy; however, the incremental difference in AUC was higher among men with a previous negative biopsy. Similar inferences were seen for significant cancer across all analyses. As PSA increases, PSA density becomes a better marker for predicting prostate cancer compared with PSA alone. Additionally, PSA density performed better than PSA in men with a prior negative biopsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Design and fabrication of the New Horizons Long-Range Reconnaissance Imager

    NASA Astrophysics Data System (ADS)

    Conard, S. J.; Azad, F.; Boldt, J. D.; Cheng, A.; Cooper, K. A.; Darlington, E. H.; Grey, M. P.; Hayes, J. R.; Hogue, P.; Kosakowski, K. E.; Magee, T.; Morgan, M. F.; Rossano, E.; Sampath, D.; Schlemm, C.; Weaver, H. A.

    2005-09-01

    The LOng-Range Reconnaissance Imager (LORRI) is an instrument that was designed, fabricated, and qualified for the New Horizons mission to the outermost planet Pluto, its giant satellite Charon, and the Kuiper Belt, which is the vast belt of icy bodies extending roughly from Neptune's orbit out to 50 astronomical units (AU). New Horizons is being prepared for launch in January 2006 as the inaugural mission in NASA's New Frontiers program. This paper provides an overview of the efforts to produce LORRI. LORRI is a narrow angle (field of view=0.29°), high resolution (instantaneous field of view = 4.94 μrad), Ritchey-Chretien telescope with a 20.8 cm diameter primary mirror, a focal length of 263 cm, and a three lens field-flattening assembly. A 1024 x 1024 pixel (optically active region), back-thinned, backside-illuminated charge-coupled device (CCD) detector (model CCD 47-20 from E2V Technologies) is located at the telescope focal plane and is operated in standard frame-transfer mode. LORRI does not have any color filters; it provides panchromatic imaging over a wide bandpass that extends approximately from 350 nm to 850 nm. A unique aspect of LORRI is the extreme thermal environment, as the instrument is situated inside a near room temperature spacecraft, while pointing primarily at cold space. This environment forced the use of a silicon carbide optical system, which is designed to maintain focus over the operating temperature range without a focus adjustment mechanism. Another challenging aspect of the design is that the spacecraft will be thruster stabilized (no reaction wheels), which places stringent limits on the available exposure time and the optical throughput needed to accomplish the high-resolution observations required. LORRI was designed and fabricated by a combined effort of The Johns Hopkins University Applied Physics Laboratory (APL) and SSG Precision Optronics Incorporated (SSG).

  10. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  11. The Washington DC Metro Area Lightning Mapping Array

    NASA Technical Reports Server (NTRS)

    Krehbiel, Paul; Rison, William; Edens, Harald; OConnor, Nicholas; Aulich, Graydon; Thomas, Ronald; Kieft, Sandra; Goodman, Steven; Blakeslee, Richard; Hall, John; hide

    2006-01-01

    During the spring and summer of 2006, a network of eight lightning mapping stations has been set up in the greater DC metropolitan area to monitor the total lightning activity in storms over Virginia, Maryland and the Washington DC area. The network is a joint project between New Mexico Tech, NASA, and NOAA/National Weather Service, with real-time data being provided to the NWS for use in their forecast and warning operations. The network utilizes newly available portable stations developed with support from the National Science Foundation. Cooperating institutions involved in hosting mapping stations are Howard University, Montgomery County Community College in Rockville MD, NOAA/NWS's Test and Evaluation Site in Sterling, VA, College of Southern Maryland near La Plata MD, the Applied Physics Laboratory of Johns Hopkins University, Northern Virginia Community College in Annandale, VA, the University of Maryland at Baltimore County, and George Mason University (Prince William Campus) in Manassas, VA. The network is experimental in that its stations a) operate in the upper rather than the lower VHF (TV channel 10, 192-198 MHz) to reduce the radio frequency background noise associated with urban environments, and b) are linked to the central processing site via the internet rather than by dedicated wireless communication links. The central processing is done in Huntsville, AL, and updated observations are sent to the National Weather Service every 2 min. The observational data will also be available on a public website. The higher operating frequency results in a decrease in signal strength estimated to be about 15-20 dB, relative to the LMA networks being operated in northern Alabama and central Oklahoma (which operate on TV channels 5 and 3, respectively). This is offset somewhat by decreased background noise levels at many stations. The receiver threshold levels range from about -95 dBm up to -80 dBm and the peak lightning signals typically extend 15-20 dB above the threshold values. Despite having decreased sensitivity, the network locates lightning in plan position over all of Maryland and Delaware, much of Virginia, and into Southern Pennsylvania and New Jersey. 3-D coverage is provided out to 100-150 km range from the Sterling WFO including the 3 major DC commercial airports (Reagan National, Dulles International, and Baltimore Washington International). The network will eventually consist of 10 or more stations, which will extend and improve its coverage.

  12. Automatic panoramic thermal integrated sensor

    NASA Astrophysics Data System (ADS)

    Gutin, Mikhail A.; Tsui, Eddy K.; Gutin, Olga N.

    2005-05-01

    Historically, the US Army has recognized the advantages of panoramic imagers with high image resolution: increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The novel ViperViewTM high-resolution panoramic thermal imager is the heart of the Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) in support of the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to improve situational awareness (SA) in many defense and offensive operations, as well as serve as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The ViperView is as an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS sensor suite include ancillary sensors, advanced power management, and wakeup capability. This paper describes the development status of the APTIS system.

  13. The French 35-hour workweek: a wide-ranging social change.

    PubMed

    Prunier-Poulmaire, S; Gadbois, C

    2001-12-01

    The reduction of the legal working week to 35 hours in France has generated wide-ranging social change. We examine the resulting changes in working-time patterns as well as their repercussions on the use of the time gained and on the quality of life and health. To compensate the reduction in the length of the working week, companies have modified the working-time patterns, by extending operation time (shiftwork, atypical schedules) and by matching the on-site workforce to production requirements (flexible working hours). They have sought to make more efficient use of working time: job intensification or job compression. The effects on the off-the-job life and health are linked to the shiftwork and atypical schedules designed to increase the company's operating time, and adjustments to the company's need for flexibilization impose working time/free time patterns that are at odds with biological rhythms and social life patterns. Changes to working-time patterns have unexpected consequences for work organization: heightened difficulties for the individual and the crew. These changes may generate a range of health problems related to overwork and stress. The way some companies have adapted may call into question the usefulness of work done by employees, thus damaging their social identity and mental well-being.

  14. The performance of a centrifugal compressor with high inlet prewhirl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, A.; Abdullah, A.H.

    1998-07-01

    The performance requirements of centrifugal compressors usually include a broad operating range between surge and choke. This becomes increasingly difficult to achieve as increased pressure ratio is demanded. In order to suppress the tendency to surge and extend the operating range at low flow rates, inlet swirl is often considered through the application of inlet guide vanes. To generate high inlet swirl angles efficiently, an inlet volute has been applied as the swirl generator, and a variable geometry design developed in order to provide zero swirl. The variable geometry approach can be applied to increase the swirl progressively or tomore » switch rapidly from zero swirl to maximum swirl. The variable geometry volute and the swirl conditions generated are described. The performance of a small centrifugal compressor is presented for a wide range of inlet swirl angles. In addition to the basic performance characteristics of the compressor, the onsets of flow reversals at impeller inlet are presented, together with the development of pressure pulsations, in the inlet and discharge ducts, through to full surge. The flow rate at which surge occurred was shown, by the shift of the peak pressure condition and by the measurement of the pressure pulsations, to be reduced by over 40%.« less

  15. Framing responsibility: HIV, biomedical prevention, and the performativity of the law.

    PubMed

    Race, Kane

    2012-09-01

    How can we register the participation of a range of elements, extending beyond the human subject, in the production of HIV events? In the context of proposals around biomedical prevention, there is a growing awareness of the need to find ways of responding to complexity, as everywhere new combinations of treatment, behavior, drugs, norms, meanings and devices are coming into encounter with one another, or are set to come into encounter with one another, with a range of unpredictable effects. In this paper I consider the operation of various framing devices that attribute responsibility and causation with regard to HIV events. I propose that we need to sharpen our analytic focus on what these devices do, their performativity-that is, their full range of worldly implications and effects. My primary examples are the criminal law and the randomized control trial. I argue that these institutions operate as framing devices: They attribute responsibility for HIV events and externalize other elements and effects in the process. Drawing on recent work in science and technology studies as well as queer theory, I set out an analytic frame that marks out a new role for HIV social research. Attentiveness to the performative effects of these devices is crucial, I suggest, if we want better to address the global HIV epidemic.

  16. Nano-Electromechanical Systems: Displacement Detection and the Mechanical Single Electron Shuttle

    NASA Astrophysics Data System (ADS)

    Blick, R. H.; Beil, F. W.; Höhberger, E.; Erbe, A.; Weiss, C.

    For an introduction to nano-electromechanical systems we present measurements on nanomechanical resonators operating in the radio frequency range. We discuss in detail two different schemes of displacement detection for mechanical resonators, namely conventional reflection measurements of a probing signal and direct detection by capacitive coupling via a gate electrode. For capacitive detection we employ an on-chip preamplifier, which enables direct measurements of the resonator's disp lacement. We observe that the mechanical quality factor of the resonator depends on the detection technique applied, which is verified in model calculations and report on the detection of sub-harmonics. In the second part we extend our investigations to include transport of single electrons through an electron island on the tip of a nanomachined mechanical pendulum. The pendulum is operated by applying a modulating electromagnetic field in the range of 1 - 200 MHz, leading to mechanical oscillations between two laterally integrated source and drain contacts. Forming tunneling barriers the metallic tip shuttles single electrons from source to drain. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. The transport properties of the device are compared in detail to model calculations based on a Master-equation approach.

  17. Physiological and psychological impacts of extended work hours in logging operations

    Treesearch

    Dana Mitchell; Tom Gallagher

    2007-01-01

    A study was initiated in 2006 to develop an understanding of the considerations of using extended work hours in the logging industry in the southeastern United States. Through semistructured interviews, it was obvious that loggers were individually creating ways of successfully implementing extended working hours without understanding the impacts that extended working...

  18. 47 CFR 90.727 - Extended implementation schedules for Phase I licensees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Extended implementation schedules for Phase I... Frequencies in the 220-222 MHz Band § 90.727 Extended implementation schedules for Phase I licensees. Except... constructing and placing a system in operation if: (a) The applicant submits justification for an extended...

  19. 47 CFR 90.727 - Extended implementation schedules for Phase I licensees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Extended implementation schedules for Phase I... Frequencies in the 220-222 MHz Band § 90.727 Extended implementation schedules for Phase I licensees. Except... constructing and placing a system in operation if: (a) The applicant submits justification for an extended...

  20. 47 CFR 90.727 - Extended implementation schedules for Phase I licensees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Extended implementation schedules for Phase I... Frequencies in the 220-222 MHz Band § 90.727 Extended implementation schedules for Phase I licensees. Except... constructing and placing a system in operation if: (a) The applicant submits justification for an extended...

  1. 47 CFR 90.727 - Extended implementation schedules for Phase I licensees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Extended implementation schedules for Phase I... Frequencies in the 220-222 MHz Band § 90.727 Extended implementation schedules for Phase I licensees. Except... constructing and placing a system in operation if: (a) The applicant submits justification for an extended...

  2. 47 CFR 90.727 - Extended implementation schedules for Phase I licensees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Extended implementation schedules for Phase I... Frequencies in the 220-222 MHz Band § 90.727 Extended implementation schedules for Phase I licensees. Except... constructing and placing a system in operation if: (a) The applicant submits justification for an extended...

  3. Flight Test Results for the NICMOS Cryocooler

    NASA Technical Reports Server (NTRS)

    Dolan, F. X.; McCormick, J. A.; Nellis, G. F.; Sixsmith, H.; Swift, W. L.

    1999-01-01

    In October 1998 a mechanical cryocooler and cryogenic circulator loop were flown on NASA's STS-95 as part of the Hubble Orbital System Test (HOST). The system will be installed on the Hubble Space Telescope (HST) during Service Mission #3 in 2000 and will provide cooling to the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). It will extend the useful life of that instrument by 5 to 10 years. This was the first successful space demonstration of a turbobrayton cryocooler. The cooler is a single stage reverse Brayton type, using low-vibration high-speed miniature turbomachines for the compression and expansion functions. A miniature centrifugal cryogenic circulator is used to deliver refrigerated neon to the instrument. During the mission, the cooler operated without anomalies for approximately 185 hours over a range of conditions to verify its mechanical, thermodynamic and control functions. The cryocooler satisfied all mission objectives including maximum cooldown to near-design operating conditions, warm and cold starts and stops, operation at near-design temperatures, and demonstration of long-term temperature stability. This paper presents a description of the cooler and its operation during the HOST flight.

  4. Ten years of industrial and municipal membrane bioreactor (MBR) systems - lessons from the field.

    PubMed

    Larrea, Asun; Rambor, Andre; Fabiyi, Malcolm

    2014-01-01

    The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).

  5. In-situ analysis of hydrazine decomposition products

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Whalen, Margaret V.

    1987-01-01

    A gas analyzer utilizing a nondispersive infrared (NDIR) detection system was used to monitor the ammonia and water vapor content of the products of a previously unused hydrazine gas generator. This provided an in-situ measurement of the generator's efficiency difficult to obtain by other means. The analyzer was easily installed in both the calibration and hydrazine systems, required no maintenance other than periodic zero adjustments, and performed well for extended periods in the operating range tested. The catalyst bed operated smoothly and repeatably during the 28 hr of testing. No major transients were observed on startup or during steady state operation. The amount of ammonia in the output stream of the gas generator was found to be a strong function of temperature at catalyst bed temperatures below 450 C. At temperatures above this, the efficiency remained nearly constant. On startup the gas generator efficiency was found to decrease with time until a steady state value was attained. Elevated catalyst bed temperatures in the periods before steady state operation was found to be responsible for this phenomenon.

  6. 75 FR 57061 - Public Land Order No. 7748; Extension of Public Land Order No. 6797; Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... of the Whiskey Mountain Bighorn Sheep Winter Range in Fremont County. DATES: Effective Date... Whiskey Mountain Bighorn Sheep Winter Range. The withdrawal extended by this order will expire on....C. Ch. 2) to protect the Whiskey Mountain Bighorn Sheep Winter Range, is hereby extended for an...

  7. Extended Full Computation-Tree Logic with Sequence Modal Operator: Representing Hierarchical Tree Structures

    NASA Astrophysics Data System (ADS)

    Kamide, Norihiro; Kaneiwa, Ken

    An extended full computation-tree logic, CTLS*, is introduced as a Kripke semantics with a sequence modal operator. This logic can appropriately represent hierarchical tree structures where sequence modal operators in CTLS* are applied to tree structures. An embedding theorem of CTLS* into CTL* is proved. The validity, satisfiability and model-checking problems of CTLS* are shown to be decidable. An illustrative example of biological taxonomy is presented using CTLS* formulas.

  8. Robot map building based on fuzzy-extending DSmT

    NASA Astrophysics Data System (ADS)

    Li, Xinde; Huang, Xinhan; Wu, Zuyu; Peng, Gang; Wang, Min; Xiong, Youlun

    2007-11-01

    With the extensive application of mobile robots in many different fields, map building in unknown environments has been one of the principal issues in the field of intelligent mobile robot. However, Information acquired in map building presents characteristics of uncertainty, imprecision and even high conflict, especially in the course of building grid map using sonar sensors. In this paper, we extended DSmT with Fuzzy theory by considering the different fuzzy T-norm operators (such as Algebraic Product operator, Bounded Product operator, Einstein Product operator and Default minimum operator), in order to develop a more general and flexible combinational rule for more extensive application. At the same time, we apply fuzzy-extended DSmT to mobile robot map building with the help of new self-localization method based on neighboring field appearance matching( -NFAM), to make the new tool more robust in very complex environment. An experiment is conducted to reconstruct the map with the new tool in indoor environment, in order to compare their performances in map building with four T-norm operators, when Pioneer II mobile robot runs along the same trace. Finally, a conclusion is reached that this study develops a new idea to extend DSmT, also provides a new approach for autonomous navigation of mobile robot, and provides a human-computer interactive interface to manage and manipulate the robot remotely.

  9. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  10. Kestrel: force protection and Intelligence, Surveillance, and Reconnaissance (ISR) persistent surveillance on aerostats

    NASA Astrophysics Data System (ADS)

    Luber, David R.; Marion, John E.; Fields, David

    2012-05-01

    Logos Technologies has developed and fielded the Kestrel system, an aerostat-based, wide area persistent surveillance system dedicated to force protection and ISR mission execution operating over forward operating bases. Its development included novel imaging and stabilization capability for day/night operations on military aerostat systems. The Kestrel system's contribution is a substantial enhancement to aerostat-based, force protection systems which to date have relied on narrow field of view ball gimbal sensors to identify targets of interest. This inefficient mechanism to conduct wide area field of view surveillance is greatly enhanced by Kestrel's ability to maintain a constant motion imagery stare of the entire forward operating base (FOB) area. The Kestrel airborne sensor enables 360° coverage out to extended ranges which covers a city sized area at moderate resolution, while cueing a narrow field of view sensor to provide high resolution imagery of targets of interest. The ground station exploitation system enables operators to autonomously monitor multiple regions of interest in real time, and allows for backtracking through the recorded imagery, while continuing to monitor ongoing activity. Backtracking capability allows operators to detect threat networks, their CONOPS, and locations of interest. Kestrel's unique advancement has already been utilized successfully in OEF operations.

  11. Open groups of constraints. Integrating arbitrary involutions

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1998-11-01

    A new type of quantum master equation is presented which is expressed in terms of a recently introduced quantum antibracket. The equation involves only two operators: an extended nilpotent BFV-BRST charge and an extended ghost charge. It is proposed to determine the generalized quantum Maurer-Cartan equations for arbitrary open groups. These groups are the integration of constraints in arbitrary involutions. The only condition for this is that the constraint operators may be embedded in an odd nilpotent operator, the BFV-BRST charge. The proposal is verified at the quasigroup level. The integration formulas are also used to construct a generating operator for quantum antibrackets of operators in arbitrary involutions.

  12. Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method

    NASA Astrophysics Data System (ADS)

    Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei

    The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.

  13. Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Summers, Jerry C. (Inventor); Davis, Patricia P. (Inventor); Oglesby, Donald M. (Inventor); Schryer, Jacqueline L. (Inventor); Gulati, Suresh T. (Inventor)

    2011-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  14. Moderate temperature sodium cells. V - Discharge reactions and rechargeability of NiS and NiS2 positive electrodes in molten NaAlCl4

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Elliot, J. E.

    1984-01-01

    NiS2 and NiS have been characterized as high energy density rechargeable positive electrodes for moderate-temperature Na batteries of the configuration, Na(1)/beta double prime-Al2O3/NaAlCl4(1), NiSx. The batteries operate in the temperature range 170 - 190 C. Positive electrode reactions during discharge/charge cycles have been characterized. Excellent rechargeability of the batteries has been demonstrated by extended cell cycling. A Na/NiS2 cell, operating at 190 C, exceeded 600 deep discharge/charge cycles with practically no capacity deterioration. The feasibility of secondary Na/NiSx batteries with specific energies equal to or greater than 50 Wh/lb and cycle lifes exceeding 1000 deep discharge/charge cycles has been demonstrated.

  15. Alternate operating scenarios for NDCX-II

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Lund, S. M.; Vay, J.-L.; Waldron, W. L.

    2014-01-01

    NDCX-II is a newly completed accelerator facility at LBNL, built to study ion-heated warm dense matter, as well as aspects of ion-driven targets and intense-beam dynamics for inertial-fusion energy. The baseline design calls for using 12 induction cells to accelerate 30-50 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. For operational flexibility, the option of using a helium plasma source is also being investigated. Each of these options requires development of an alternate acceleration schedule. The schedules here are worked out with a fast-running 1-D particle-in-cell code ASP.

  16. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  17. SCC500: next-generation infrared imaging camera core products with highly flexible architecture for unique camera designs

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Roy N.; Grealish, Kevin; Kacir, Tom; Arsenault, Barry; Murphy, Robert H.; Miller, Scott

    2003-09-01

    A new 4th generation MicroIR architecture is introduced as the latest in the highly successful Standard Camera Core (SCC) series by BAE SYSTEMS to offer an infrared imaging engine with greatly reduced size, weight, power, and cost. The advanced SCC500 architecture provides great flexibility in configuration to include multiple resolutions, an industry standard Real Time Operating System (RTOS) for customer specific software application plug-ins, and a highly modular construction for unique physical and interface options. These microbolometer based camera cores offer outstanding and reliable performance over an extended operating temperature range to meet the demanding requirements of real-world environments. A highly integrated lens and shutter is included in the new SCC500 product enabling easy, drop-in camera designs for quick time-to-market product introductions.

  18. TOPLEX: Teleoperated Lunar Explorer. Instruments and Operational Concepts for an Unmanned Lunar Rover

    NASA Technical Reports Server (NTRS)

    Blacic, James D.

    1992-01-01

    A Teleoperated Lunar Explorer, or TOPLEX, consisting of a lunar lander payload in which a small, instrument-carrying lunar surface rover is robotically landed and teleoperated from Earth to perform extended lunar geoscience and resource evaluation traverses is proposed. The rover vehicle would mass about 100 kg and carry approximately 100 kg of analytic instruments. Four instruments are envisioned: (1) a Laser-Induced Breakdown Spectrometer (LIBS) for geochemical analysis at ranges up to 100 m, capable of operating in three different modes; (2) a combined x-ray fluorescence and x-ray diffraction (XRF/XRD) instrument for elemental and mineralogic analysis of acquired samples; (3) a mass spectrometer system for stepwise heating analysis of gases released from acquired samples; and (4) a geophysical instrument package for subsurface mapping of structures such as lava tubes.

  19. New Model of a Solar Wind Airplane for Geomatic Operations

    NASA Astrophysics Data System (ADS)

    Achachi, A.; Benatia, D.

    2015-08-01

    The ability for an aircraft to fly during a much extended period of time has become a key issue and a target of research, both in the domain of civilian aviation and unmanned aerial vehicles. This paper describes a new design and evaluating of solar wind aircraft with the objective to assess the impact of a new system design on overall flight crew performance. The required endurance is in the range of some hours in the case of law enforcement, border surveillance, forest fire fighting or power line inspection. However, other applications at high altitudes, such as geomatic operations for delivering geographic information, weather research and forecast, environmental monitoring, would require remaining airborne during days, weeks or even months. The design of GNSS non precision approach procedure for different airports is based on geomatic data.

  20. Low Temperature Double-layer Capacitors with Improved Energy Density: An Overview of Recent Development Efforts

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek; Yushin, Gleb

    2012-01-01

    Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.

  1. Sensor Amplifier for the Venus Ground Ambient

    NASA Technical Reports Server (NTRS)

    DelCastillo, Linda Y.; Johnson, Travis W.; Hatake, Toshiro; Mojarradi, Mohammad M.; Kolawa, Elizabeth A.

    2006-01-01

    Previous Venus Landers employed high temperature pressure vessels, with thermally protected electronics, to achieve successful missions, with a maximum surface lifetime of 127 minutes. Extending the operating range of electronic systems to the temperatures (480 C) and pressures (90 bar) of the Venus ground ambient would significantly increase the science return of future missions. Toward that end, the current work describes the innovative design of a sensor preamplifier, capable of working in the Venus ground ambient and designed using commercial components (thermionic vacuum tubes, wide band gap transistors, thick film resistors, advanced high temperature capacitors, and monometallic interfaces) To identify commercial components and electronic packaging materials that are capable of operation within the specified environment, a series of active devices, passive components, and packaging materials were screened for operability at 500C, assuming a 10x increase in the mission lifetime. In addition. component degradation as a function of time at 500(deg)C was evaluated. Based on the results of these preliminary evaluations, two amplifiers were developed.

  2. Study on the thermodynamical and mechanical conditions for the generation of high operating pressures with liquefied gases for low and very low flow rates

    NASA Astrophysics Data System (ADS)

    Nieratschker, Willi

    1989-12-01

    An investigation of the thermodynamical and mechanical conditions for extending the flow rate range in the direction of low flow rates with regard to the delivery of liquefied gases at high operating pressures is presented. For low flow rates, the especially critical cavitation problem connected with the pumping of liquefied gases becomes more acute, since with decreasing volume the ratio of heat losses to the hydraulic power becomes ever more unfavorable. A first prototype is designed, produced and investigated to evaluate design-related heat loss and piston seal problems. An approach to the solution is indicated for both problem areas with the application of a new and patented pump principle, and through investigation of a second prototype modified in several respects. By reducing the pump mass when designing the second pump prototype, the nonstationary cooling phase is greatly shortened, so that intermittent pump operation becomes possible when the pump is housed external to the storage tank.

  3. Towards Intelligent Control for Next Generation Aircraft

    NASA Technical Reports Server (NTRS)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  4. Electro-optic modulator based gate transient suppression for sine-wave gated InGaAs/InP single photon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Zhang, Xuping; Shi, Yuanlei; Ying, Zhoufeng; Wang, Shun

    2014-06-01

    Capacitive gate transient noise has been problematic for the high-speed single photon avalanche photodiode (SPAD), especially when the operating frequency extends to the gigahertz level. We proposed an electro-optic modulator based gate transient noise suppression method for sine-wave gated InGaAs/InP SPAD. With the modulator, gate transient is up-converted to its higher-order harmonics that can be easily removed by low pass filtering. The proposed method enables online tuning of the operating rate without modification of the hardware setup. At 250 K, detection efficiency of 14.7% was obtained with 4.8×10-6 per gate dark count and 3.6% after-pulse probabilities for 1550-nm optical signal under 1-GHz gating frequency. Experimental results have shown that the performance of the detector can be maintained within a designated frequency range from 0.97 to 1.03 GHz, which is quite suitable for practical high-speed SPAD applications operated around the gigahertz level.

  5. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  6. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  7. Quantum cascade lasers for defense and security

    NASA Astrophysics Data System (ADS)

    Day, Timothy; Pushkarsky, Michael; Caffey, Dave; Cecchetti, Kristen; Arp, Ron; Whitmore, Alex; Henson, Michael; Takeuchi, Eric B.

    2013-10-01

    Quantum cascade laser (QCL) systems are mature and at the vanguard of a new generation of products that support military applications such as Infrared Countermeasures (IRCM) and targeting. The demanding product requirements for aircraft platforms that include reduced size, weight, power consumption and cost (SWaP-C) extends to portable, battery powered handheld products. QCL technology operates throughout the mid-wave (MWIR) and long-wave (LWIR) infrared to provide new capabilities that leverage existing thermal imaging cameras. In addition to their suitability for aircraft platforms, QCL products are a natural fit to meet operator demands for small, lightweight pointer and beacon capabilities. Field-testing of high power, lightweight, battery operated devices has demonstrated their utility across a range of air and ground applications. This talk will present an overview of QCL technology and the Defense and Security products and capabilities that are enabled by it. This talk will also provide an overview of the extensive environmental and performance testing associated with products based on QCL technology.

  8. Deuterium-tritium experiments on the Tokamak Fusion Test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosea, J.; Adler, J.H.; Alling, P.

    The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to {approx}9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning;more » possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS {approx}6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance in under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored.« less

  9. Initial Test Results from a 6 K-10 K Turbo-Brayton Cryocooler for Space Applications

    NASA Astrophysics Data System (ADS)

    Swift, W. L.; Zagarola, M. V.; Breedlove, J. J.; McCormick, J. A.; Sixsmith, H.

    2004-06-01

    In March 2002, a single-stage turbo-Brayton cryocooler was installed on the Hubble Space Telescope (HST) to re-establish cooling to the detectors in the Near Infrared Camera and Multi-Object Spectrograph (NICMOS). The system has maintained the detectors at their operating temperature near 77 K since that time. Future NASA space missions require comparable low-vibration cooling for periods of five to ten years in the 6 K-10 K temperature range. Creare is extending the NICMOS cryocooler technology to meet these lower temperatures. The primary activities address the need for smaller turbomachines. Two helium compressors for a 6 K turbo-Brayton cycle have been developed and tested in a cryogenic test facility. They have met performance goals at design speeds of about 9,500 rev/s. A miniature, dual-temperature high specific speed turboalternator has been installed in this test facility and has been used to obtain extended operational life data during low temperature cryogenic tests. A smaller, low specific speed turboalternator using advanced gas bearings is under development to replace the original dual-temperature design. This machine should provide improvements in the thermodynamic performance of the cycle. This paper presents life test results for the low temperature system and discusses the development of the smaller turboalternator.

  10. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  11. Nozzle for a turbomachine

    DOEpatents

    Lacy, Benjamin Paul; Kraemer, Gilbert Otto; Yilmaz, Ertan; Melton, Patrick Benedict

    2012-10-30

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, and an injection nozzle operatively connected to the combustor. The injection nozzle includes a main body having a first end section that extends to a second end section to define an inner flow path. The injection nozzle further includes an outlet arranged at the second end section of the main body, at least one passage that extends within the main body and is fluidly connected to the outlet, and at least one conduit extending between the inner flow path and the at least one passage.

  12. 78 FR 38748 - Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... extend the operation of its Supplemental Liquidity Providers Pilot (``SLP Pilot'' or ``Pilot'') (See Rule..., the Proposed Rule Change 1. Purpose The Exchange proposes to extend the operation of its SLP Pilot,\\4... 2573 (January 15, 2010) (SR-NYSEAmex-2009-98) (establishing the NYSE Amex Equities SLP Pilot). See also...

  13. 78 FR 1280 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... proposes to extend the operation of its Supplemental Liquidity Providers Pilot (``SLP Pilot'' or ``Pilot... for, the Proposed Rule Change 1. Purpose The Exchange proposes to extend the operation of its SLP... 29, 2008), 73 FR 65904 (November 5, 2008) (SR-NYSE-2008-108) (establishing the SLP Pilot). See also...

  14. 75 FR 18563 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... Exchange proposes to extend the operation of its Supplemental Liquidity Providers Pilot (``SLP Pilot'' or..., 2008) (SR-NYSE-2008-108) (establishing the SLP Pilot). See also Securities Exchange Act Release No. 59869 (May 6, 2009), 74 FR 22796 (May 14, 2009) (SR- NYSE-2009-46) (extending the operation of the SLP...

  15. 78 FR 38764 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... proposes to [sic] extend the operation of its Supplemental Liquidity Providers Pilot (``SLP Pilot'' or..., the Proposed Rule Change 1. Purpose The Exchange proposes to extend the operation of its SLP Pilot,\\4... 65904 (November 5, 2008) (SR-NYSE-2008-108) (establishing the SLP Pilot). See also Securities Exchange...

  16. PATRAM '80. Proceedings. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huebner, H.W.

    1980-01-01

    Volume 2 contains papers from the following sessions: Safeguards-Related Problems; Neutronics and Criticality; Operations and Systems Experience II; Plutonium Systems; Intermediate Storage in Casks; Operations and Systems Planning; Institutional Issues; Structural and Thermal Evaluation I; Poster Session B; Extended Testing I; Structural and Thermal Evaluation II; Extended Testing II; and Emergency Preparedness and Response. Individual papers were processed. (LM)

  17. 2011 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2012-01-01

    Welcome to the 2011 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides a NASA Range Safety overview for current and potential range users. As is typical with odd year editions, this is an abbreviated Range Safety Annual Report providing updates and links to full articles from the previous year's report. It also provides more complete articles covering new subject areas, summaries of various NASA Range Safety Program activities conducted during the past year, and information on several projects that may have a profound impact on the way business will be done in the future. Specific topics discussed and updated in the 2011 NASA Range Safety Annual Report include a program overview and 2011 highlights; Range Safety Training; Range Safety Policy revision; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. Once again the web-based format was used to present the annual report. We continually receive positive feedback on the web-based edition and hope you enjoy this year's product as well. As is the case each year, contributors to this report are too numerous to mention, but we thank individuals from the NASA Centers, the Department of Defense, and civilian organizations for their contributions. In conclusion, it has been a busy and productive year. I'd like to extend a personal Thank You to everyone who contributed to make this year a successful one, and I look forward to working with all of you in the upcoming year.

  18. Extended space expectation values in quantum dynamical system evolutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demiralp, Metin

    2014-10-06

    The time variant power series expansion for the expectation value of a given quantum dynamical operator is well-known and well-investigated issue in quantum dynamics. However, depending on the operator and Hamiltonian singularities this expansion either may not exist or may not converge for all time instances except the beginning of the evolution. This work focuses on this issue and seeks certain cures for the negativities. We work in the extended space obtained by adding all images of the initial wave function under the system Hamiltonian’s positive integer powers. This requires the introduction of certain appropriately defined weight operators. The resultingmore » better convergence in the temporal power series urges us to call the new defined entities “extended space expectation values” even though they are constructed over certain weight operators and are somehow pseudo expectation values.« less

  19. An improved genetic algorithm and its application in the TSP problem

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Qin, Jinlei

    2011-12-01

    Concept and research actuality of genetic algorithm are introduced in detail in the paper. Under this condition, the simple genetic algorithm and an improved algorithm are described and applied in an example of TSP problem, where the advantage of genetic algorithm is adequately shown in solving the NP-hard problem. In addition, based on partial matching crossover operator, the crossover operator method is improved into extended crossover operator in order to advance the efficiency when solving the TSP. In the extended crossover method, crossover operator can be performed between random positions of two random individuals, which will not be restricted by the position of chromosome. Finally, the nine-city TSP is solved using the improved genetic algorithm with extended crossover method, the efficiency of whose solution process is much higher, besides, the solving speed of the optimal solution is much faster.

  20. University of Washington Clinical Neutron Facility: Report on 26 Years of Operation

    NASA Astrophysics Data System (ADS)

    Laramore, George E.; Emery, Robert; Reid, David; Banerian, Stefani; Kalet, Ira; Jacky, Jonathan; Risler, Ruedi

    2011-12-01

    Particle radiotherapy facilities are highly capital intensive and must operate over decades to recoup the original investment. We describe the successful, long-term operation of a neutron radiotherapy center at the University of Washington, which has been operating continuously since September 1984. To date, 2836 patients have received neutron radiotherapy. The mission of the facility has also evolved to include the production of unique radioisotopes that cannot be made with the low-energy cyclotrons more commonly found in nuclear medicine departments. The facility is also used for neutron damage testing for industrial devices. In this paper, we describe the challenges of operating such a facility over an extended time period, including a planned maintenance and upgrade program serving diverse user groups, and summarize the major clinical results in terms of tumor control and normal tissue toxicity. Over time, the mix of patients being treated has shifted from common tumors such as prostate cancer, lung cancer, and squamous cell tumors of the head and neck to the rarer tumors such as salivary gland tumors and sarcomas due to the results of clinical trials. Current indications for neutron radiotherapy are described and neutron tolerance doses for a range of normal tissues presented.

  1. The Series Connected Buck Boost Regulator Concept for High Efficiency Light Weight DC Voltage Regulation

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2003-01-01

    Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.

  2. The Interplanetary Pioneers. Volume 3: Operations

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1972-01-01

    The operational aspects of the Pioneer program are described. The phases of the program discussed include: prelaunch operations, launch to DSS acquisition, near-earth operations, nominal and extended cruise, and scientific results.

  3. Extended Operation Testing of Stirling Convertors in Support of Stirling Radioisotope Power System Development

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffre G.; Wilson, Scott D.; oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas

    2008-01-01

    100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hours of TDC testing and 40,000 hours of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.

  4. Extended Operation Testing of Stirling Convertors in Support of Stirling Radioisotope Power System Development

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Wilson, Scott D.; Oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas

    2009-01-01

    100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements, and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hr of TDC testing and 40,000 hr of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.

  5. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, Robert C.; Schubert, W. Kent

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  6. Intralesional curettage of central low-grade chondrosarcoma: A midterm follow-up study.

    PubMed

    Chen, Yi-Chou; Wu, Po-Kuei; Chen, Cheng-Fong; Chen, Wei-Ming

    2017-03-01

    The aim of this study was to review the experience of surgical treatment of low-grade chondrosarcoma and to assess the long-term oncological and functional outcomes between intralesional curettage and wide excision. We included 11 patients with central low-grade chondrosarcoma lesions treated with intralesional curettage or wide excision from 1998 to 2013. Seven patients were treated with intralesional curettage and local adjuvant treatment (Group A), and four patients were treated with wide excision and reconstructive surgery (Group B). The mean age of patients was 43.8±17.6 years (range, 20-71 years), and the mean duration of follow-up was 84.4±47.6 months (range, 48-194 months). Group A had a significantly lower complication rate than Group B; three complications were documented in Group B (0% vs. 75%, p=0.024). The operative time (177.1 hours vs. 366.3 hours, p=0.010) and the hospital stay (6.6 days vs. 12.5 days, p=0.010) were significantly shorter in Group A. There was one local recurrence in Group A without statistical significance. Also, there were no differences between intralesional curettage and wide excision with respect to the blood loss. No metastasis disease occurred in either group during the follow-up period. The Musculoskeletal Tumor Society (MSTS) scores in Groups A and B were 99.0±2.5 and 94.2±4.2, respectively, with statistically significant difference (p=0.048). Extended intralesional curettage has the benefits of good MSTS score, shorter operative time, shorter hospital stay, and lower complication rate without increasing local recurrence in central low-grade chondrosarcoma. For central low-grade chondrosarcoma, we suggest extended curettage to decrease soft tissue damage and surgical risk. Copyright © 2016. Published by Elsevier Taiwan LLC.

  7. Estimation of precipitable water vapour using kinematic GNSS precise point positioning over an altitude range of 1 km

    NASA Astrophysics Data System (ADS)

    Webb, S. R.; Penna, N. T.; Clarke, P. J.; Webster, S.; Martin, I.

    2013-12-01

    The estimation of total precipitable water vapour (PWV) using kinematic GNSS has been investigated since around 2001, aiming to extend the use of static ground-based GNSS, from which PWV estimates are now operationally assimilated into numerical weather prediction models. To date, kinematic GNSS PWV studies suggest a PWV measurement agreement with radiosondes of 2-3 mm, almost commensurate with static GNSS measurement accuracy, but only shipborne experiments have so far been carried out. As a first step towards extending such sea level-based studies to platforms that operate at a range of altitudes, such as airplanes or land based vehicles, the kinematic GNSS estimation of PWV over an exactly repeated trajectory is considered. A data set was collected from a GNSS receiver and antenna mounted on a carriage of the Snowdon Mountain Railway, UK, which continually ascends and descends through 950 m of vertical relief. Static GNSS reference receivers were installed at the top and bottom of the altitude profile, and derived zenith wet delay (ZWD) was interpolated to the altitude of the train to provide reference values together with profile estimates from the 100 m resolution runs of the Met Office's Unified Model. We demonstrate similar GNSS accuracies as obtained from previous shipborne studies, namely a double difference relative kinematic GNSS ZWD accuracy within 14 mm, and a kinematic GNSS precise point positioning ZWD accuracy within 15 mm. The latter is a more typical airborne PWV estimation scenario i.e. without the reliance on ground-based GNSS reference stations. We show that the kinematic GPS-only precise point positioning ZWD estimation is enhanced by also incorporating GLONASS observations.

  8. 43 CFR 3809.333 - May I extend my notice, and, if so, how?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false May I extend my notice, and, if so, how... GENERAL MINING LAWS Surface Management Operations Conducted Under Notices § 3809.333 May I extend my... financial guarantee requirements of § 3809.503. You may extend your notice more than once. ...

  9. 43 CFR 3809.333 - May I extend my notice, and, if so, how?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false May I extend my notice, and, if so, how... GENERAL MINING LAWS Surface Management Operations Conducted Under Notices § 3809.333 May I extend my... financial guarantee requirements of § 3809.503. You may extend your notice more than once. ...

  10. Extended working shifts: are they applicable to the Southeastern United States?

    Treesearch

    Dana Mitchell; Tom Gallagher

    2006-01-01

    Logging operations in Scandinavia, Canada and the Lake States of the United States have used non-traditional (extended) working hours to increase their production for many years. However, extended shifts are uncommon in the southeastern United States. A major limitation in implementing extended working hours in the southeastern states is that logging business owners...

  11. Under-Ice Operations with AUVS in High Latitudes

    NASA Astrophysics Data System (ADS)

    Ferguson, J.; Kaminski, C. D.

    2012-12-01

    In 2010 and 2011, ISE Explorer Autonomous Underwater Vehicles (AUV), built for Natural Resources Canada (NRCan), were deployed to Canada's high Arctic. The mission was to undertake under-ice bathymetric surveys supporting Canada's submission under the United Nations Convention on the Law of the Sea (UNCLOS). During these deployments several under-ice records were broken and several new technologies were demonstrated. The NRCan AUV is a 5000 meter depth rated vehicle, with several innovative additions to make it suitable for arctic survey work. Most notable are a depth rated variable ballast system, a 1300 Hz long-range homing system, and under-ice charging and data transfer capabilities. The Explorer's range was extended to approximately 450 km by adding a hull section to accommodate extra batteries. The scientific payload onboard included a Seabird SBE49 Conductivity-Temperature-Depth (CTD) sensor, Knudsen singlebeam echosounder, and a Kongsberg Simrad EM2000 multibeam echosounder. In 2010, operations were conducted from an ice camp near Borden Island (78°14'N, 112°39'W) operating through an ice hole. Following several test missions, the AUV spent 10 days surveying under ice before being successfully recovered. In total, close to 1100 km of under-ice survey was undertaken at depths to 3160 meters. A further set of operations was carried out in August and September 2011 from the Canadian Icebreaker CCGS Louis St. Laurent operating with the American Icebreaker USCGS Healy. Here the operations were much further north to latitudes of 88°30' N and to depths of 3500 meters. In this paper, the 2010 ice camp and the 2011 icebreaker missions are described, with an outline of technology developments that were undertaken, the preparations that were necessary for the success of the missions and finally, the outcome of the missions themselves.

  12. Water resources planning under climate change: Assessing the robustness of real options for the Blue Nile

    NASA Astrophysics Data System (ADS)

    Jeuland, Marc; Whittington, Dale

    2014-03-01

    This article presents a methodology for planning new water resources infrastructure investments and operating strategies in a world of climate change uncertainty. It combines a real options (e.g., options to defer, expand, contract, abandon, switch use, or otherwise alter a capital investment) approach with principles drawn from robust decision-making (RDM). RDM comprises a class of methods that are used to identify investment strategies that perform relatively well, compared to the alternatives, across a wide range of plausible future scenarios. Our proposed framework relies on a simulation model that includes linkages between climate change and system hydrology, combined with sensitivity analyses that explore how economic outcomes of investments in new dams vary with forecasts of changing runoff and other uncertainties. To demonstrate the framework, we consider the case of new multipurpose dams along the Blue Nile in Ethiopia. We model flexibility in design and operating decisions—the selection, sizing, and sequencing of new dams, and reservoir operating rules. Results show that there is no single investment plan that performs best across a range of plausible future runoff conditions. The decision-analytic framework is then used to identify dam configurations that are both robust to poor outcomes and sufficiently flexible to capture high upside benefits if favorable future climate and hydrological conditions should arise. The approach could be extended to explore design and operating features of development and adaptation projects other than dams.

  13. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore

    2011-01-01

    Glenn Research Center (GRC) is supporting life and reliability database for free-piston Stirilng conversion via extended convertor operation Ongoing convertor operation: 18 convertors (4 TDCs from Infinia, 14 ASCs from Sunpower). 350,000 total convertor hours of operation. 218,000 on Infinia units and 132,000 on Sunpower units. Demonstrating steady convertor performance requires precise maintenance of operating conditions. Sources of disruption : Investigative tests: Varying operating frequency, hot-end temp, cold-end temp. Hot end control method: Constant heat input mode requires more user-adjustment than constant temperature mode. Long-term transients in hot end insulation were observed. Support facility: Open-bath circulator fluid concentration drifting. Nuisance shutdowns (instrumentation failure, EMI, power outages). Ambient temperature fluctuations due to room HVAC.

  14. The activities of a dietitian-led gastroenterology clinic using extended scope of practice.

    PubMed

    Ryan, Dominique; Pelly, Fiona; Purcell, Elizabeth

    2016-10-21

    Extending the scope of practice of allied health professionals has been a strategy adopted in the United Kingdom to address issues within the health system. Australia's health system is currently undermined by similar issues, heightening government interest in adopting the extended scope health care model. The aim of the current study was to describe the activities and outcomes of a dietitian-led gastroenterology clinic which operated under an extended scope of practice model in an outpatient gastroenterology department at a tertiary hospital in regional Queensland, Australia, and to assess patient satisfaction with the initiative. A descriptive, cross-sectional case series undertaken over 50 clinics involving 82 category 2 and 3 patients with suspected/confirmed coeliac disease or inflammatory bowel disease; low haemoglobin; gastroesophageal reflux disease, or; malnutrition. Data was analysed using Microsoft Excel 2010, and presented as descriptive statistics. Sixty out of 82 selected patients (median age 51 years) attended an initial appointment with the dietitian. Twenty-four review appointments were attended. Average waiting period for an initial appointment was 148 days (range 31-308 days). A total of 149 management strategies were provided, and 94 (63 %) of these involved the dietitian utilising extended scope of practice. The dietitian managed 47 (78 %) patients without need for gastroenterologist referral, and 25 (42 %) were discharged after dietetic management. Patients reported high levels of satisfaction with the clinic. Seventy-eight percent of category 2 and 3 patients referred to the gastroenterologist could be managed exclusively in the dietitian-led clinic. This extended scope model of care could potentially benefit the efficiency and acceptability of Australia's public health system.

  15. Phase operator problem and macroscopic extension of quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozawa, M.

    1997-06-01

    To find the Hermitian phase operator of a single-mode electromagnetic field in quantum mechanics, the Schr{umlt o}dinger representation is extended to a larger Hilbert space augmented by states with infinite excitation by nonstandard analysis. The Hermitian phase operator is shown to exist on the extended Hilbert space. This operator is naturally considered as the controversial limit of the approximate phase operators on finite dimensional spaces proposed by Pegg and Barnett. The spectral measure of this operator is a Naimark extension of the optimal probability operator-valued measure for the phase parameter found by Helstrom. Eventually, the two promising approaches to themore » statistics of the phase in quantum mechanics are synthesized by means of the Hermitian phase operator in the macroscopic extension of the Schr{umlt o}dinger representation. {copyright} 1997 Academic Press, Inc.« less

  16. White Sands Space Harbor Area 1, Runway 17/35, Extending 35,000 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    White Sands Space Harbor Area 1, Runway 17/35, Extending 35,000 feet north from Range Road 10, beginning approximately 4.2 miles northeast of intersection with Range Road 7, White Sands, Dona Ana County, NM

  17. 76 FR 612 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... Change The Exchange proposes to extend the operation of its Supplemental Liquidity Providers Pilot (``SLP... (October 29, 2008), 73 FR 65904 (November 5, 2008) (SR-NYSE-2008-108) (establishing the SLP Pilot). See...-2009-46) (extending the operation of the SLP Pilot to October 1, 2009); 60756 (October 1, 2009), 74 FR...

  18. Reflections on the relationship between artificial intelligence and operations research

    NASA Technical Reports Server (NTRS)

    Fox, Mark S.

    1989-01-01

    Historically, part of Artificial Intelligence's (AI's) roots lie in Operations Research (OR). How AI has extended the problem solving paradigm developed in OR is explored. In particular, by examining how scheduling problems are solved using OR and AI, it is demonstrated that AI extends OR's model of problem solving through the opportunistic use of knowledge, problem reformulation and learning.

  19. Open Group Transformations Within the Sp(2)-Formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    Previously we have shown that open groups whose generators are in arbitrary involutions may be quantized within a ghost extended framework in terms of the nilpotent BFV-BRST charge operator. Here we show that they may also be quantized within an Sp(2)-frame in which there are two odd anticommuting operators called Sp(2)-charges. Previous results for finite open group transformations are generalized to the Sp(2)-formalism. We show that in order to define open group transformations on the whole ghost extended space we need Sp(2)-charges in the nonminimal sector which contains dynamical Lagrange multipliers. We give an Sp(2)-version of the quantum master equation with extended Sp(2)-charges and a master charge of a more involved form, which is proposed to represent the integrability conditions of defining operators of connection operators and which therefore should encode the generalized quantum Maurer-Cartan equations for arbitrary open groups. General solutions of this master equation are given in explicit form. A further extended Sp(2)-formalism is proposed in which the group parameters are quadrupled to a supersymmetric set and from which all results may be derived.

  20. Safety in New Zealand's adventure tourism industry: the client accident experience of adventure tourism operators.

    PubMed

    Bentley , T A; Page, S J; Laird, I S

    2000-01-01

    Injuries and fatalities among participants of adventure tourism activities have the potential to seriously impact on New Zealand's tourism industry. However, the absence of statistics for tourist accidents in New Zealand, and the lack of detailed academic research into adventure tourism safety, means the extent of the problem is unknown. The aims of the present study were to determine the incidence of client injuries across a range of adventure tourism activity sectors, and to identify common accident events and contributory risk factors. A postal questionnaire survey of New Zealand adventure tourism operators was used. Operators were asked to provide information related to their business; the number of recorded client injuries during the preceding 12 month period, January to December 1998; common accident and injury events associated with their activity; and perceived risk factors for accidents in their sector of the adventure tourism industry. The survey was responded to by 142 New Zealand adventure tourism operators. The operators' reported client injury experience suggests the incidence of serious client injuries is very low. Highest client injury incidence rates were found for activities that involved the risk of falling from a moving vehicle or animal (e.g., cycle tours, quad biking, horse riding, and white-water rafting). Slips, trips, and falls on the level were common accident events across most sectors of the industry. Perceived accident/incident causes were most commonly related to the client, and in particular, failure to attend to and follow instructions. The prevalence of client injuries in activity sectors not presently covered by government regulation, suggests policy makers should look again at extending codes of practice to a wider range of adventure tourism activities. Further research considering adventure tourism involvement in overseas visitor hospitalized injuries in New Zealand, is currently in progress. This will provide supporting evidence for the risk associated with participation in a range of commercial and independently undertaken adventure activities.

  1. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.

    PubMed

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  2. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    PubMed Central

    Hwang, Jenn-Jiang; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility. PMID:26236771

  3. Contribution of sublinear and supralinear dendritic integration to neuronal computations

    PubMed Central

    Tran-Van-Minh, Alexandra; Cazé, Romain D.; Abrahamsson, Therése; Cathala, Laurence; Gutkin, Boris S.; DiGregorio, David A.

    2015-01-01

    Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem. PMID:25852470

  4. Sensor Based Engine Life Calculation: A Probabilistic Perspective

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Chen, Philip

    2003-01-01

    It is generally known that an engine component will accumulate damage (life usage) during its lifetime of use in a harsh operating environment. The commonly used cycle count for engine component usage monitoring has an inherent range of uncertainty which can be overly costly or potentially less safe from an operational standpoint. With the advance of computer technology, engine operation modeling, and the understanding of damage accumulation physics, it is possible (and desirable) to use the available sensor information to make a more accurate assessment of engine component usage. This paper describes a probabilistic approach to quantify the effects of engine operating parameter uncertainties on the thermomechanical fatigue (TMF) life of a selected engine part. A closed-loop engine simulation with a TMF life model is used to calculate the life consumption of different mission cycles. A Monte Carlo simulation approach is used to generate the statistical life usage profile for different operating assumptions. The probabilities of failure of different operating conditions are compared to illustrate the importance of the engine component life calculation using sensor information. The results of this study clearly show that a sensor-based life cycle calculation can greatly reduce the risk of component failure as well as extend on-wing component life by avoiding unnecessary maintenance actions.

  5. Extended range chemical sensing apparatus

    DOEpatents

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  6. Definition study for an extended manned test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.

  7. LWIR pupil imaging and prospects for background compensation

    NASA Astrophysics Data System (ADS)

    LeVan, Paul; Sakoglu, Ünal; Stegall, Mark; Pierce, Greg

    2015-08-01

    A previous paper described LWIR Pupil Imaging with a sensitive, low-flux focal plane array, and behavior of this type of system for higher flux operations as understood at the time. We continue this investigation, and report on a more detailed characterization of the system over a broad range of pixel fluxes. This characterization is then shown to enable non-uniformity correction over the flux range, using a standard approach. Since many commercial tracking platforms include a "guider port" that accepts pulse width modulation (PWM) error signals, we have also investigated a variation on the use of this port to "dither" the tracking platform in synchronization with the continuous collection of infrared images. The resulting capability has a broad range of applications that extend from generating scene motion in the laboratory for quantifying performance of "realtime, scene-based non-uniformity correction" approaches, to effectuating subtraction of bright backgrounds by alternating viewing aspect between a point source and adjacent, source-free backgrounds.

  8. An Overview of NASA Space Cryocooler Programs--2006

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.; Boyle, R. F.

    2006-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Many of NASA's space instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, or enable the use of advanced detectors to observe a wide range of phenomena--from crop dynamics to stellar birth. Reflecting the relative maturity of the technology at these temperatures, the largest utilization of coolers over the last fifteen years has been for instruments operating at medium to high cryogenic temperatures (55 to 150K). For the future, important new developments are focusing on the lower temperature range, from 6 to 20 K, in support of studies of the origin of the Universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and a 6 K cryocooler for the MIRI instrument on the James Webb Space Telescope (JWST) are examples of the thrust to provide low-temperature cooling for this class of future missions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves themore » development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.« less

  10. A CMOS image sensor with programmable pixel-level analog processing.

    PubMed

    Massari, Nicola; Gottardi, Massimo; Gonzo, Lorenzo; Stoppa, David; Simoni, Andrea

    2005-11-01

    A prototype of a 34 x 34 pixel image sensor, implementing real-time analog image processing, is presented. Edge detection, motion detection, image amplification, and dynamic-range boosting are executed at pixel level by means of a highly interconnected pixel architecture based on the absolute value of the difference among neighbor pixels. The analog operations are performed over a kernel of 3 x 3 pixels. The square pixel, consisting of 30 transistors, has a pitch of 35 microm with a fill-factor of 20%. The chip was fabricated in a 0.35 microm CMOS technology, and its power consumption is 6 mW with 3.3 V power supply. The device was fully characterized and achieves a dynamic range of 50 dB with a light power density of 150 nW/mm2 and a frame rate of 30 frame/s. The measured fixed pattern noise corresponds to 1.1% of the saturation level. The sensor's dynamic range can be extended up to 96 dB using the double-sampling technique.

  11. A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology

    PubMed Central

    Biró, István; Giugliano, Michele

    2015-01-01

    Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world. PMID:26157385

  12. A Sequential Multiplicative Extended Kalman Filter for Attitude Estimation Using Vector Observations.

    PubMed

    Qin, Fangjun; Chang, Lubin; Jiang, Sai; Zha, Feng

    2018-05-03

    In this paper, a sequential multiplicative extended Kalman filter (SMEKF) is proposed for attitude estimation using vector observations. In the proposed SMEKF, each of the vector observations is processed sequentially to update the attitude, which can make the measurement model linearization more accurate for the next vector observation. This is the main difference to Murrell’s variation of the MEKF, which does not update the attitude estimate during the sequential procedure. Meanwhile, the covariance is updated after all the vector observations have been processed, which is used to account for the special characteristics of the reset operation necessary for the attitude update. This is the main difference to the traditional sequential EKF, which updates the state covariance at each step of the sequential procedure. The numerical simulation study demonstrates that the proposed SMEKF has more consistent and accurate performance in a wide range of initial estimate errors compared to the MEKF and its traditional sequential forms.

  13. A Sequential Multiplicative Extended Kalman Filter for Attitude Estimation Using Vector Observations

    PubMed Central

    Qin, Fangjun; Jiang, Sai; Zha, Feng

    2018-01-01

    In this paper, a sequential multiplicative extended Kalman filter (SMEKF) is proposed for attitude estimation using vector observations. In the proposed SMEKF, each of the vector observations is processed sequentially to update the attitude, which can make the measurement model linearization more accurate for the next vector observation. This is the main difference to Murrell’s variation of the MEKF, which does not update the attitude estimate during the sequential procedure. Meanwhile, the covariance is updated after all the vector observations have been processed, which is used to account for the special characteristics of the reset operation necessary for the attitude update. This is the main difference to the traditional sequential EKF, which updates the state covariance at each step of the sequential procedure. The numerical simulation study demonstrates that the proposed SMEKF has more consistent and accurate performance in a wide range of initial estimate errors compared to the MEKF and its traditional sequential forms. PMID:29751538

  14. Sonic depth sounder for laboratory and field use

    USGS Publications Warehouse

    Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.

    1961-01-01

    The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.

  15. Quantum cascade lasers: from tool to product.

    PubMed

    Razeghi, M; Lu, Q Y; Bandyopadhyay, N; Zhou, W; Heydari, D; Bai, Y; Slivken, S

    2015-04-06

    The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication.

  16. The superiority of L3-CCDs in the high-flux and wide dynamic range regimes

    NASA Astrophysics Data System (ADS)

    Butler, Raymond F.; Sheehan, Brendan J.

    2008-02-01

    Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.

  17. SpectraCAM SPM: a camera system with high dynamic range for scientific and medical applications

    NASA Astrophysics Data System (ADS)

    Bhaskaran, S.; Baiko, D.; Lungu, G.; Pilon, M.; VanGorden, S.

    2005-08-01

    A scientific camera system having high dynamic range designed and manufactured by Thermo Electron for scientific and medical applications is presented. The newly developed CID820 image sensor with preamplifier-per-pixel technology is employed in this camera system. The 4 Mega-pixel imaging sensor has a raw dynamic range of 82dB. Each high-transparent pixel is based on a preamplifier-per-pixel architecture and contains two photogates for non-destructive readout of the photon-generated charge (NDRO). Readout is achieved via parallel row processing with on-chip correlated double sampling (CDS). The imager is capable of true random pixel access with a maximum operating speed of 4MHz. The camera controller consists of a custom camera signal processor (CSP) with an integrated 16-bit A/D converter and a PowerPC-based CPU running a Linux embedded operating system. The imager is cooled to -40C via three-stage cooler to minimize dark current. The camera housing is sealed and is designed to maintain the CID820 imager in the evacuated chamber for at least 5 years. Thermo Electron has also developed custom software and firmware to drive the SpectraCAM SPM camera. Included in this firmware package is the new Extreme DRTM algorithm that is designed to extend the effective dynamic range of the camera by several orders of magnitude up to 32-bit dynamic range. The RACID Exposure graphical user interface image analysis software runs on a standard PC that is connected to the camera via Gigabit Ethernet.

  18. The energy radiated by the 26 December 2004 Sumatra-Andaman earthquake estimated from 10-minute P-wave windows

    USGS Publications Warehouse

    Choy, G.L.; Boatwright, J.

    2007-01-01

    The rupture process of the Mw 9.1 Sumatra-Andaman earthquake lasted for approximately 500 sec, nearly twice as long as the teleseismic time windows between the P and PP arrival times generally used to compute radiated energy. In order to measure the P waves radiated by the entire earthquake, we analyze records that extend from the P-wave to the S-wave arrival times from stations at distances ?? >60??. These 8- to 10-min windows contain the PP, PPP, and ScP arrivals, along with other multiply reflected phases. To gauge the effect of including these additional phases, we form the spectral ratio of the source spectrum estimated from extended windows (between TP and TS) to the source spectrum estimated from normal windows (between TP and TPP). The extended windows are analyzed as though they contained only the P-pP-sP wave group. We analyze four smaller earthquakes that occurred in the vicinity of the Mw 9.1 mainshock, with similar depths and focal mechanisms. These smaller events range in magnitude from an Mw 6.0 aftershock of 9 January 2005 to the Mw 8.6 Nias earthquake that occurred to the south of the Sumatra-Andaman earthquake on 28 March 2005. We average the spectral ratios for these four events to obtain a frequency-dependent operator for the extended windows. We then correct the source spectrum estimated from the extended records of the 26 December 2004 mainshock to obtain a complete or corrected source spectrum for the entire rupture process (???600 sec) of the great Sumatra-Andaman earthquake. Our estimate of the total seismic energy radiated by this earthquake is 1.4 ?? 1017 J. When we compare the corrected source spectrum for the entire earthquake to the source spectrum from the first ???250 sec of the rupture process (obtained from normal teleseismic windows), we find that the mainshock radiated much more seismic energy in the first half of the rupture process than in the second half, especially over the period range from 3 sec to 40 sec.

  19. Effectiveness and Safety of an Extended ICU Visitation Model for Delirium Prevention: A Before and After Study.

    PubMed

    Rosa, Regis Goulart; Tonietto, Tulio Frederico; da Silva, Daiana Barbosa; Gutierres, Franciele Aparecida; Ascoli, Aline Maria; Madeira, Laura Cordeiro; Rutzen, William; Falavigna, Maicon; Robinson, Caroline Cabral; Salluh, Jorge Ibrain; Cavalcanti, Alexandre Biasi; Azevedo, Luciano Cesar; Cremonese, Rafael Viegas; Haack, Tarissa Ribeiro; Eugênio, Cláudia Severgnini; Dornelles, Aline; Bessel, Marina; Teles, José Mario Meira; Skrobik, Yoanna; Teixeira, Cassiano

    2017-10-01

    To evaluate the effect of an extended visitation model compared with a restricted visitation model on the occurrence of delirium among ICU patients. Prospective single-center before and after study. Thirty-one-bed medical-surgical ICU. All patients greater than or equal to 18 years old with expected length of stay greater than or equal to 24 hours consecutively admitted to the ICU from May 2015 to November 2015. Change of visitation policy from a restricted visitation model (4.5 hr/d) to an extended visitation model (12 hr/d). Two hundred eighty-six patients were enrolled (141 restricted visitation model, 145 extended visitation model). The primary outcome was the cumulative incidence of delirium, assessed bid using the confusion assessment method for the ICU. Predefined secondary outcomes included duration of delirium/coma; any ICU-acquired infection; ICU-acquired bloodstream infection, pneumonia, and urinary tract infection; all-cause ICU mortality; and length of ICU stay. The median duration of visits increased from 133 minutes (interquartile range, 97.7-162.0) in restricted visitation model to 245 minutes (interquartile range, 175.0-272.0) in extended visitation model (p < 0.001). Fourteen patients (9.6%) developed delirium in extended visitation model compared with 29 (20.5%) in restricted visitation model (adjusted relative risk, 0.50; 95% CI, 0.26-0.95). In comparison with restricted visitation model patients, extended visitation model patients had shorter length of delirium/coma (1.5 d [interquartile range, 1.0-3.0] vs 3.0 d [interquartile range, 2.5-5.0]; p = 0.03) and ICU stay (3.0 d [interquartile range, 2.0-4.0] vs 4.0 d [interquartile range, 2.0-6.0]; p = 0.04). The rate of ICU-acquired infections and all-cause ICU mortality did not differ significantly between the two study groups. In this medical-surgical ICU, an extended visitation model was associated with reduced occurrence of delirium and shorter length of delirium/coma and ICU stay.

  20. Effects of Temperature on the Performance and Stability of Recent COTS Silicon Oscillators

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2010-01-01

    Silicon oscillators have lately emerged to serve as potential replacement for crystal and ceramic resonators to provide timing and clock signals in electronic systems. These semiconductor-based devices, including those that are based on MEMS technology, are reported to be resistant to vibration and shock (an important criteria for systems to be deployed in space), immune to EMI, consume very low current, require few or no external components, and cover a wide range of frequency for analog and digital circuits. In this work, the performance of five recently-developed COTS silicon oscillator chips from different manufacturers was determined within a temperature range that extended beyond the individual specified range of operation. In addition, restart capability at extreme temperatures, i.e. power switched on while the device was soaking at extreme (hot or cold) temperature, and the effects of thermal cycling under a wide temperature range on the operation of these silicon oscillators were also investigated. Performance characterization of each oscillator was obtained in terms of its output frequency, duty cycle, rise and fall times, and supply current at specific test temperatures. The five different oscillators tested operated beyond their specified temperature region, with some displaying excellent stability throughout the whole test temperature range. Others experienced some instability at certain temperature test points as evidenced by fluctuation in the output frequency. Recovery from temperature-induced changes took place when excessive temperatures were removed. It should also be pointed out that all oscillators were able to restart at the extreme test temperatures and to withstand the limited thermal cycling without undergoing any significant changes in their characteristics. In addition, no physical damage was observed in the packaging material of any of these silicon oscillators due to extreme temperature exposure and thermal cycling. It is recommended that additional and more comprehensive testing under long term cycling be carried out to fully establish the reliability of these devices and to determine their suitability for use in space exploration missions under extreme temperature conditions.

  1. Pioneer spacecraft operation at low and high spin rates

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility of executing major changes upward or downward from the nominal spin rate for which the Pioneer F&G spacecraft was designed was investigated along with the extent of system and subsystem modifications required to implement these mode changes in future spacecraft evolving from the baseline Pioneer F and G. Results of a previous study are re-examined and updated for an extended range of spin rate variations for missions that include outer planet orbiters, outer planet flyby and outer planet probe delivery. However, in the interest of design simplicity and cost economy, major modifications of the baseline Pioneer system and subsystem concept were avoided.

  2. Electronic Ambient-Temperature Recorder

    NASA Technical Reports Server (NTRS)

    Russell, Larry; Barrows, William

    1995-01-01

    Electronic temperature-recording unit stores data in internal memory for later readout. Records temperatures from minus 40 degrees to plus 60 degrees C at intervals ranging from 1.875 to 15 minutes. With all four data channels operating at 1.875-minute intervals, recorder stores at least 10 days' data. For only one channel at 15-minute intervals, capacity extends to up to 342 days' data. Developed for recording temperatures of instruments and life-science experiments on satellites, space shuttle, and high-altitude aircraft. Adaptable to such terrestrial uses as recording temperatures of perishable goods during transportation and of other systems or processes over long times. Can be placed directly in environment to monitor.

  3. A starting point of an integrated optics concept for a space-based interferometer

    NASA Astrophysics Data System (ADS)

    Labadie, Lucas; Kern, Pierre; Schanen, Isabelle

    2017-11-01

    This article deals with instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency. The necessity to have a reliable and performant system for beam recombination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferomety in the near infrared. However, since Darwin will operate in the mid infrared, this requires extending the integrated optics concept in this spectral range. This paper presents the guiding lines of the characterization work that should validate a new integrated optics concept for the mid infrared. We present also one example of characterization experiment we are working on.

  4. Extended Range Passive Wireless Tag System and Method

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor)

    2013-01-01

    A passive wireless tag assembly comprises a plurality of antennas and transmission lines interconnected with circuitry and constructed and arranged in a Van Atta array or configuration to reflect an interrogator signal in the direction from where it came. The circuitry may comprise at least one surface acoustic wave (SAW)-based circuit that functions as a signal reflector and is operatively connected with an information circuit. In another embodiment, at least one delay circuit and/or at least one passive modulation circuit(s) are utilized. In yet another embodiment, antennas connected to SAW-based devices are mounted to at least one of the orthogonal surfaces of a corner reflector.

  5. Fast-acting self-healing metallic fuse.

    NASA Technical Reports Server (NTRS)

    Schwartz, F. C.; Renton, C. A.; Rabinovici, B.

    1971-01-01

    Description of a fast-acting nonmechanical self-healing mercury fuse capable of protecting a high current circuit or device from overcurrent fault damages. Basically the self-healing fuse consists of two enclosed mercury reservoirs connected by a fine capillary tube filled with mercury that serves as the fusing element. It is pointed out that a better understanding of the energy conversion process involved in the operation of the device could help explore other device configurations (such as a tapering geometry and use of magnetic field to drive the arc into the fuse wall on inductive loads, etc.) and thus extend the range of capabilities for this type of protective device.

  6. ISS Payload Racks Automated Flow Control Calibration Method

    NASA Technical Reports Server (NTRS)

    Simmonds, Boris G.

    2003-01-01

    Payload Racks utilize MTL and/or LTL station water for cooling of payloads and avionics. Flow control range from valves of fully closed, to up to 300 Ibmhr. Instrument accuracies are as high as f 7.5 Ibm/hr for flow sensors and f 3 Ibm/hr for valve controller, for a total system accuracy of f 10.5 Ibm/hr. Improved methodology was developed, tested and proven that reduces accuracy of the commanded flows to less than f 1 Ibmhr. Uethodology could be packed in a "calibration kit" for on- orbit flow sensor checkout and recalibration, extending the rack operations before return to earth. -

  7. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  8. Variable/Multispeed Rotorcraft Drive System Concepts

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2009-01-01

    Several recent studies for advanced rotorcraft have identified the need for variable, or multispeed-capable rotors. A speed change of up to 50 percent has been proposed for future rotorcraft to improve vehicle performance. Varying rotor speed during flight not only requires a rotor capable of performing effectively over the extended operation speed and load range, but also requires an advanced propulsion system to provide the required speed changes. A study has been completed, which investigated possible drive system arrangements to accommodate up to the 50 percent speed change. These concepts are presented. The most promising configurations are identified and will be developed for future validation testing.

  9. Numerical simulation of MPD thruster flows with anomalous transport

    NASA Technical Reports Server (NTRS)

    Caldo, Giuliano; Choueiri, Edgar Y.; Kelly, Arnold J.; Jahn, Robert G.

    1992-01-01

    Anomalous transport effects in an Ar self-field coaxial MPD thruster are presently studied by means of a fully 2D two-fluid numerical code; its calculations are extended to a range of typical operating conditions. An effort is made to compare the spatial distribution of the steady state flow and field properties and thruster power-dissipation values for simulation runs with and without anomalous transport. A conductivity law based on the nonlinear saturation of lower hybrid current-driven instability is used for the calculations. Anomalous-transport simulation runs have indicated that the resistivity in specific areas of the discharge is significantly higher than that calculated in classical runs.

  10. W7-AS: One step of the Wendelstein stellarator linea)

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Bäumel, S.; Baldzuhn, J.; Basse, N.; Brakel, R.; Burhenn, R.; Dinklage, A.; Dorst, D.; Ehmler, H.; Endler, M.; Erckmann, V.; Feng, Y.; Gadelmeier, F.; Geiger, J.; Giannone, L.; Grigull, P.; Hartfuss, H.-J.; Hartmann, D.; Hildebrandt, D.; Hirsch, M.; Holzhauer, E.; Igitkhanov, Y.; Jänicke, R.; Kick, M.; Kislyakov, A.; Kisslinger, J.; Klinger, T.; Klose, S.; Knauer, J. P.; König, R.; Kühner, G.; Laqua, H. P.; Maassberg, H.; McCormick, K.; Niedermeyer, H.; Nührenberg, C.; Pasch, E.; Ramasubramanian, N.; Ruhs, N.; Rust, N.; Sallander, E.; Sardei, F.; Schubert, M.; Speth, E.; Thomsen, H.; Volpe, F.; Weller, A.; Werner, A.; Wobig, H.; Würsching, E.; Zarnstorff, M.; Zoletnik, S.

    2005-07-01

    This paper is a summary of some of the major results from the Wendelstein 7-AS stellarator (W7-AS). W7-AS [G. Grieger et al., Phys. Fluids B 4, 2081 (1992)] has demonstrated the feasibility of modular coils and has pioneered the island divertor and the modeling of its three-dimensional characteristics with the EMC3/EIRENE code [Y. Feng, F. Sardei et al., Plasma Phys. Controlled Fusion 44, 611 (2002)]. It has extended the operational range to high density (4×1020m-3 at 2.5T) and high ⟨β⟩ (3.4% at 0.9T); it has demonstrated successfully the application of electron cyclotron resonance heating (ECRH) beyond cutoff via electron Bernstein wave heating, and it has utilized the toroidal variation of the magnetic field strength for ion cyclotron resonance frequency beach-wave heating. In preparation of W7-X [J. Nührenberg et al., Trans. Fusion Technol. 27, 71 (1995)], aspects of the optimization concept of the magnetic design have been successfully tested. W7-AS has accessed the H-mode, the first time in a "non-tokamak" and has extended H-mode operation toward high density by the discovery of the high-density H-mode (HDH), characterized by H-mode energy and L-mode-level impurity confinement. In the HDH-mode quasisteady state operation is possible close to operational limits without noticeable degradation in the plasma properties. High-β phases up to tpulse/τE=65 have been achieved, which can already be taken as an indication of the intrinsic stellarator capability of steady-state operation. Confinement issues will be discussed with emphasis on the similarities to tokamak confinement (general transport properties, H-mode transition physics) but also with respect to distinct differences (no confinement degradation toward operational boundaries, positive density scaling, lack of profile resilience, no distinct isotope effect, H-mode operational window). W7-AS turned out to be an important step in the development of the Wendelstein stellarator line towards an independent fusion power plant concept.

  11. ngVLA Cryogenic Subsystem Concept

    NASA Astrophysics Data System (ADS)

    Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.

    2018-01-01

    The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic equipment show that the proposed baseline receiver concept with two cryostats, combined with variable-speed operation of the compressor and cryocoolers should allow the operating cost for ngVLA cryogenics to remain within a factor of two over the VLA.

  12. Acoustic signal recovery by thermal demodulation

    NASA Astrophysics Data System (ADS)

    Boullosa, R. R.; Santillán, Arturo O.

    2006-10-01

    One operating mode of recently developed thermoacoustic transducers is as an audio speaker that uses an input superimposed on a direct current; as a result, the audio signal occurs at the same frequency as the input signal. To extend the potential applications of these kinds of sources, the authors propose an alternative driving mode in which a simple thermoacoustic device, consisting of a metal film over a substrate and a heat sink, is excited with a high frequency sinusoid that is amplitude modulated by a lower frequency signal. They show that the modulating signal is recovered in the radiated waves due to a mechanism that is inherent to this type of thermoacoustic process. If the frequency of the carrier is higher than 30kHz and any modulating signal (the one of interest) is in the audio frequency range, only this signal will be heard. Thus, the thermoacoustic device operates as an audio-band, self-demodulating speaker.

  13. Thermal Performance of Capillary Pumped Loops Onboard Terra Spacecraft

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Butler, Charles D.; Swanson, Theodore; Thies, Diane

    2004-01-01

    The Terra spacecraft is the flagship of NASA's Earth Science Enterprise. It provides global data on the state of atmosphere, land and oceans, as well as their interactions with solar radiation and one another. Three Terra instruments utilize Capillary Pumped Heat Transport System (CPHTS) for temperature control: Each CPHTS, consisting of two capillary pumped loops (CPLs) and several heat pipes and electrical heaters, is designed for instrument heat loads ranging from 25W to 264W. The working fluid is ammonia. Since the launch of the Terra spacecraft, each CPHTS has been providing a stable interface temperature specified by the instrument under all modes of spacecraft and instrument operations. The ability to change the CPHTS operating temperature upon demand while in service has also extended the useful life of one instrument. This paper describes the design and on-orbit performance of the CPHTS thermal systems.

  14. Comprehensive review on endonasal endoscopic sinus surgery

    PubMed Central

    Weber, Rainer K.; Hosemann, Werner

    2015-01-01

    Endonasal endoscopic sinus surgery is the standard procedure for surgery of most paranasal sinus diseases. Appropriate frame conditions provided, the respective procedures are safe and successful. These prerequisites encompass appropriate technical equipment, anatomical oriented surgical technique, proper patient selection, and individually adapted extent of surgery. The range of endonasal sinus operations has dramatically increased during the last 20 years and reaches from partial uncinectomy to pansinus surgery with extended surgery of the frontal (Draf type III), maxillary (grade 3–4, medial maxillectomy, prelacrimal approach) and sphenoid sinus. In addition there are operations outside and beyond the paranasal sinuses. The development of surgical technique is still constantly evolving. This article gives a comprehensive review on the most recent state of the art in endoscopic sinus surgery according to the literature with the following aspects: principles and fundamentals, surgical techniques, indications, outcome, postoperative care, nasal packing and stents, technical equipment. PMID:26770282

  15. An improved fast acquisition phase frequency detector for high speed phase-locked loops

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Zongmin; Zhang, Tieliang; Peng, Xinmang

    2018-04-01

    Phase-locked loops (PLL) have been widely applied in many high-speed designs, such as microprocessors or communication systems. In this paper, an improved fast acquisition phase frequency detector for high speed phase-locked loops is proposed. An improved structure based on dynamic latch is used to eliminate the non-ideal effect such as dead zone and blind zone. And frequency dividers are utilized to vastly extend the phase difference detection range and enhance the operation frequency of the PLL. Proposed PFD has been implemented in 65nm CMOS technology, which occupies an area of 0.0016mm2 and consumes 1.5mW only. Simulation results demonstrate that maximum operation frequency can be up to 5GHz. In addition, the acquisition time of PLL using proposed PFD is 1.0us which is 2.6 times faster than that of the PLL using latch-based PFD without divider.

  16. Robust Learning Control Design for Quantum Unitary Transformations.

    PubMed

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  17. Initial Feasibility Assessment of a High Altitude Long Endurance Airship

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Dolce, James (Technical Monitor)

    2003-01-01

    A high altitude solar powered airship provides the ability to carry large payloads to high altitudes and remain on station for extended periods of time. This study examines the feasibility of this concept. Factors such as time of year, latitude, wind speeds and payload are considered in establishing the capabilities of a given size airship. East and West coast operation were evaluated. The key aspect to success of this type of airship is the design and operation of the propulsion and power system. A preliminary propulsion/power system design was produced based on a regenerative fuel cell energy storage system and solar photovoltaic array for energy production. A modular system design was chosen with four independent power/propulsion units utilized by the airship. Results on payload capacity and flight envelope (latitude and time of year) were produced for a range of airship sizes.

  18. Cave Pearl Data Logger: A Flexible Arduino-Based Logging Platform for Long-Term Monitoring in Harsh Environments.

    PubMed

    Beddows, Patricia A; Mallon, Edward K

    2018-02-09

    A low-cost data logging platform is presented that provides long-term operation in remote or submerged environments. Three premade "breakout boards" from the open-source Arduino ecosystem are assembled into the core of the data logger. Power optimization techniques are presented which extend the operational life of this module-based design to >1 year on three alkaline AA batteries. Robust underwater housings are constructed for these loggers using PVC fittings. Both the logging platform and the enclosures, are easy to build and modify without specialized tools or a significant background in electronics. This combination turns the Cave Pearl data logger into a generalized prototyping system and this design flexibility is demonstrated with two field studies recording drip rates in a cave and water flow in a flooded cave system. This paper describes a complete DIY solution, suitable for a wide range of challenging deployment conditions.

  19. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  20. Fuel-flexible burner apparatus and method for fired heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zink, Darton J.; Isaacs, Rex K.; Jamaluddin, A. S.

    A burner apparatus for a fired heating system and a method of burner operation. The burner provides stable operation when burning gas fuels having heating values ranging from low to high and accommodates sudden wide changes in the Wobbe value of the fuel delivered to the burner. The burner apparatus includes a plurality of exterior fuel ejectors and has an exterior notch which extends around the burner wall for receiving and combusting a portion of the gas fuel. At least a portion of the hot combustion product gas produced in the exterior notch is delivered through channels formed in themore » burner wall to the combustion area at the forward end of the burner. As the Wobbe value of the gas fuel decreases, one or more outer series of addition ejectors can be automatically activated as needed to maintain the amount of heat output desired.« less

  1. Cave Pearl Data Logger: A Flexible Arduino-Based Logging Platform for Long-Term Monitoring in Harsh Environments

    PubMed Central

    Mallon, Edward K.

    2018-01-01

    A low-cost data logging platform is presented that provides long-term operation in remote or submerged environments. Three premade “breakout boards” from the open-source Arduino ecosystem are assembled into the core of the data logger. Power optimization techniques are presented which extend the operational life of this module-based design to >1 year on three alkaline AA batteries. Robust underwater housings are constructed for these loggers using PVC fittings. Both the logging platform and the enclosures, are easy to build and modify without specialized tools or a significant background in electronics. This combination turns the Cave Pearl data logger into a generalized prototyping system and this design flexibility is demonstrated with two field studies recording drip rates in a cave and water flow in a flooded cave system. This paper describes a complete DIY solution, suitable for a wide range of challenging deployment conditions. PMID:29425185

  2. High-power and steady-state operation of ICRF heating in the large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutoh, T., E-mail: mutoh@nifs.ac.jp; Seki, T.; Saito, K.

    2015-12-10

    Recent progress in an ion cyclotron range of frequencies (ICRF) heating system and experiment results in a Large Helical Device (LHD) are reported. Three kinds of ICRF antenna pairs were installed in the LHD, and the operation power regimes were extended up to 4.5 MW; also, the steady-state operation was extended for more than 45 min in LHD at a MW power level. We studied ICRF heating physics in heliotron configuration using a Hand Shake type (HAS) antenna, Field Aligned Impedance Transforming (FAIT) antenna, and Poloidal Array (PA) antenna, and established the optimum minority-ion heating scenario in an LHD. The FAITmore » antenna having a novel impedance transformer inside the vacuum chamber could reduce the VSWR and successfully injected a higher power to plasma. We tested the PA antennas completely removing the Faraday-shield pipes to avoid breakdown and to increase the plasma coupling. The heating performance was almost the same as other antennas; however, the heating efficiency was degraded when the gap between the antenna and plasma surface was large. Using these three kinds of antennas, ICRF heating could contribute to raising the plasma beta with the second- and third-harmonic cyclotron heating mode, and also to raising the ion temperature as discharge cleaning tools. In 2014, steady-state operation plasma with a line-averaged electron density of 1.2 × 10{sup 19} m{sup −3}, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen. In 2015, the higher-power steady-state operation with a heating power of up to 3 MW was tested with higher density of 3 × 10{sup 19} m{sup −3}.« less

  3. Efficient 7-J flashlamp-pumped dye laser at 500-nm wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, P.N.; Aldag, H.R.; Ehrlich, J.J.

    1986-07-01

    An existing transverse flow flashlamp-pumped dye laser capable of operation at 500 pps for extended periods of time has been modified and optimized for operation at 502 nm using coumarin 504. Energies of over 7 J/ pulse and efficiencies of over 1% have been demonstrated in single-shot operation. This has been achieved by using a spectral transfer dye in the flashlamp coolant to increase the useful output of the flashlamps. Flashlamps were tested at up to 400-J input per lamp for extended periods to develop lamp life data.

  4. Project Freebird: An orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Aneses, Carlos A.; Blanchette, Ryan L.; Brann, David M.; Campos, Mario J.; Cohen, Lisa E.; Corcoran, Daniel J., III; Cox, James F.; Curtis, Trevor J.; Douglass, Deborah A.; Downard, Catherine L.

    1994-01-01

    Freebird is a space-based orbital transfer vehicle designed to repair and deorbit orbital assets. Freebird is based at International Space Station Alpha (ISSA) at an inclination of 51.6 deg and is capable of three types of missions: crewed and teleoperated LEO missions, and extended robotic missions. In a crewed local configuration, the vehicle can visit inclinations between 30.8 deg and 72.4 deg at altitudes close to 390 km. Adding extra fuel tanks extends this range of inclination up to 84.9 deg and down to 18.3 deg. Furthermore, removing the crew module, using the vehicle in a teleoperated manner, and operating with extra fuel tanks allows missions to polar and geosynchronous orbits. To allow for mission flexibility, the vehicle was designed in a semimodular configuration. The major system components include a crew module, a 'smart box' (which contains command, communications, guidance, and navigation equipment), a propulsion pack, extra fuel tanks, and a vehicle storage facility (VSF) for storage purposes. To minimize risk as well as development time and cost, the vehicle was designed using only proven technology or technology which is expected to be flight-qualified in time for the intended launch date of 2002. And, because Freebird carries crew and operates near the space station, it must meet or exceed the NASA reliability standard of 0.994, as well as other standard requirements for such vehicles. The Freebird program was conceived and designed as a way to provide important and currently unavailable satellite repair and replacement services of a value equal to or exceeding operational costs.

  5. Project Freebird: An orbital transfer vehicle

    NASA Astrophysics Data System (ADS)

    Aneses, Carlos A.; Blanchette, Ryan L.; Brann, David M.; Campos, Mario J.; Cohen, Lisa E.; Corcoran, Daniel J., III; Cox, James F.; Curtis, Trevor J.; Douglass, Deborah A.; Downard, Catherine L.

    1994-08-01

    Freebird is a space-based orbital transfer vehicle designed to repair and deorbit orbital assets. Freebird is based at International Space Station Alpha (ISSA) at an inclination of 51.6 deg and is capable of three types of missions: crewed and teleoperated LEO missions, and extended robotic missions. In a crewed local configuration, the vehicle can visit inclinations between 30.8 deg and 72.4 deg at altitudes close to 390 km. Adding extra fuel tanks extends this range of inclination up to 84.9 deg and down to 18.3 deg. Furthermore, removing the crew module, using the vehicle in a teleoperated manner, and operating with extra fuel tanks allows missions to polar and geosynchronous orbits. To allow for mission flexibility, the vehicle was designed in a semimodular configuration. The major system components include a crew module, a 'smart box' (which contains command, communications, guidance, and navigation equipment), a propulsion pack, extra fuel tanks, and a vehicle storage facility (VSF) for storage purposes. To minimize risk as well as development time and cost, the vehicle was designed using only proven technology or technology which is expected to be flight-qualified in time for the intended launch date of 2002. And, because Freebird carries crew and operates near the space station, it must meet or exceed the NASA reliability standard of 0.994, as well as other standard requirements for such vehicles. The Freebird program was conceived and designed as a way to provide important and currently unavailable satellite repair and replacement services of a value equal to or exceeding operational costs.

  6. Ecrh on Asdex Upgrade - System Extension, New Modes of Operation, Plasma Physics Results

    NASA Astrophysics Data System (ADS)

    Stober, J.; Wagner, D.; Giannone, L.; Leuterer, F.; Marascheck, M.; Mlynek, A.; Monaco, F.; Münich, M.; Poli, E.; Reich, M.; Schmid-Lorch, D.; Schütz, H.; Schweinzer, J.; Treutterer, W.; Zohm, H.; Meier, A.; Scherer, Th.; Flamm, J.; Thumm, M.; Höhnle, H.; Kasparek, W.; Stroth, U.; Chirkov, A. V.; Denisov, G. G.; Litvak, A.; Malygin, S. A.; Myasnikov, V. E.; Nichiporenko, V. O.; Popov, L. G.; Soluyanova, E. A.; Tai, E. M.

    2011-02-01

    The ECRH system at ASDEX Upgrade is currently extended from 1.6 MW to 5 MW. The extension so far consists of 2-frequency units, which use single diamond-disk vacuum-windows to transmit power at the natural resonances of these disks (105 & 140 GHz). For the last unit of this extension two additional intermediate non-resonant frequencies are foreseen, requiring new window concepts. For the torus a polarisation-independent double-disk window has been developed. For the gyrotron a grooved diamond disk is actually favoured, for which the grooved surfaces act as anti-reflective coating. Since ASDEX Upgrade operates with completely W-covered plasma facing components, central ECRH is often applied to suppresses W-accumulation in the plasma center. In order to extend the operational range for central ECRH, X3- and O2-heating schemes were developed. Both are characterized by incomplete single-path absorption. For X3 heating, the X2 resonance at the pedestal on the high field side is used as a 'beam-dump', for the O2 scheme a specific reflector tile on the inner heat shield enforces a second path through the plasma center. The geometry for NTM control had to be modified to allow simultaneous central heating. In real-time the ECRH position can be determined either by ray-tracing based on real-time equilibria and density profiles or from ECE for modulated ECRH power. Fast real-time ECE also allows to determine the NTM position. Further major physics applications of the system are summarized.

  7. Functional Recovery From Extended Warm Ischemia Associated With Partial Nephrectomy.

    PubMed

    Zhang, Zhiling; Zhao, Juping; Velet, Lily; Ercole, Cesar E; Remer, Erick M; Mir, Carme M; Li, Jianbo; Takagi, Toshio; Demirjian, Sevag; Campbell, Steven C

    2016-01-01

    To evaluate the impact of extended warm ischemia on incidence of acute kidney injury (AKI) and ultimate functional recovery after partial nephrectomy (PN), incorporating rigorous control for loss of parenchymal mass, and embedded within comparison to cohorts of patients managed with hypothermia or limited warm ischemia. From 2007 to 2014, 277 patients managed with PN had appropriate studies to evaluate changes in function/mass specifically within the operated kidney. Recovery from ischemia was defined as %function saved/%parenchymal mass saved. AKI was based on global renal function and defined as a ≥1.5-fold increase in serum creatinine above the preoperative level. Hypothermia was utilized in 112 patients (median = 27 minutes) and warm ischemia in 165 (median = 21 minutes). AKI strongly correlated with solitary kidney (P < .001) and duration (P < .001) but not type (P = .49) of ischemia. Median recovery from ischemia in the operated kidney was 100% (interquartile range [IQR] = 88%-109%) for cold ischemia, with 6 (5%) noted to have <80% recovery from ischemia. For the warm ischemia group, median recovery from ischemia was 91% (IQR = 82%-101%, P < .001 compared with hypothermia), and 34 (21%) had recovery from ischemia <80% (P < .001). For warm ischemia subgrouped by duration <25 minutes (n = 114), 25-35 minutes (n = 35), and >35 minutes (n = 16), median recovery from ischemia was 92% (IQR = 86%-100%), 90% (IQR = 78%-104%), and 91% (IQR = 80%-96%), respectively (P = .77). Our results suggest that AKI after PN correlates with duration but not with type of ischemia. However, subsequent recovery, which ultimately defines the new baseline glomerular filtration rate, is most reliable with hypothermia. However, most patients undergoing PN with warm ischemia still recover relatively strongly from ischemia, even if extended to 35-45 minutes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. VLF long-range lightning location using the arrival time difference technique (ATD)

    NASA Technical Reports Server (NTRS)

    Ierkic, H. Mario

    1996-01-01

    A new network of VLF receiving systems is currently being developed in the USA to support NASA's Tropical Rain Measuring Mission (TRMM). The new network will be deployed in the east coast of the US, including Puerto Rico, and will be operational in late 1995. The system should give affordable, near real-time, accurate lightning locating capabilities at long ranges and with extended coverage. It is based on the Arrival Time Difference (ATD) method of Lee (1986; 1990). The ATD technique is based on the estimation of the time of arrival of sferics detected over an 18 kHz bandwith. The ground system results will be compared and complemented with satellite optical measurements gathered with the already operational Optical Transient Detector (OTD) instrument and in due course with its successor the Lightning Imaging Sensor (LIS). Lightning observations are important to understand atmospheric electrification phenomena, discharge processes, associated phenomena on earth (e.g. whistlers, explosive Spread-F) and other planets. In addition, lightning is a conspicuous indicator of atmospheric activity whose potential is just beginning to be recognized and utilized. On more prosaic grounds, lightning observations are important for protection of life, property and services.

  9. Active vibrations control of journal bearings with the use of piezoactuators

    NASA Astrophysics Data System (ADS)

    Tůma, Jiří; Šimek, Jiří; Škuta, Jaromír; Los, Jaroslav

    2013-04-01

    Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The controllable journal bearing is a part of a test rig, which consists of a rotor driven by an inductive motor up to 23,000 rpm. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. The journal vibration is measured by a pair of proximity probes. The control system enables run-up, coast-down and steady-state rotation. A real-time simulator dSpace encloses the control loop. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. As it was proved by experiments the active vibration control extends considerably the range of the operational speed.

  10. Using depolarization to quantify ice nucleating particle concentrations: a new method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenker, Jake; Collier, Kristen N.; Xu, Guanglang

    We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal sizemore » cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.« less

  11. Using depolarization to quantify ice nucleating particle concentrations: a new method

    DOE PAGES

    Zenker, Jake; Collier, Kristen N.; Xu, Guanglang; ...

    2017-12-01

    We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal sizemore » cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.« less

  12. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  13. Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules

    NASA Astrophysics Data System (ADS)

    Smith, Joshua; Hinterberger, Michael; Hable, Peter; Koehler, Juergen

    2014-12-01

    Extended battery system lifetime and reduced costs are essential to the success of electric vehicles. An effective thermal management strategy is one method of enhancing system lifetime increasing vehicle range. Vehicle-typical space restrictions favor the minimization of battery thermal management system (BTMS) size and weight, making their production and subsequent vehicle integration extremely difficult and complex. Due to these space requirements, a cooling plate as part of a water-glycerol cooling circuit is commonly implemented. This paper presents a computational fluid dynamics (CFD) model and multi-objective analysis technique for determining the thermal effect of coolant flow rate and inlet temperature in a cooling plate-at a range of vehicle operating conditions-on a battery system, thereby providing a dynamic input for one-dimensional models. Traditionally, one-dimensional vehicular thermal management system models assume a static heat input from components such as a battery system: as a result, the components are designed for a set coolant input (flow rate and inlet temperature). Such a design method is insufficient for dynamic thermal management models and control strategies, thereby compromising system efficiency. The presented approach allows for optimal BMTS design and integration in the vehicular coolant circuit.

  14. Experimental investigation of the effects of variable expanding channel on the performance of a low-power cusped field thruster

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Zeng, Ming; Jiang, Wenjia; Yang, Chiyu; Ning, Zhongxi; Yu, Daren

    2018-04-01

    Due to a special magnetic field structure, the multi-cusped field thruster shows advantages of low wall erosion, low noise and high thrust density over a wide range of thrust. In this paper, expanding discharge channels are employed to make up for deficiencies on the range of thrust and plume divergence, which often emerges in conventional straight cylindrical channels. Three thruster geometries are fabricated with different expanding-angle channels, and a group of experiments are carried out to find out their influence on the performance and discharge characteristics of the thruster. A retarding potential analyzer and a Faraday probe are employed to analyze the structures of the plume in these three models. The results show that when the thrusters operate at low mass flow rate, the gradually-expanding channels exhibit lower propellant utilization and lower overall performance by amounts not exceeding 44.8% in ionization rate and 19.5% in anode efficiency, respectively. But the weakening of magnetic field intensity near the exit of expanding channels leads to an extended thrust throttling ability, a smaller plume divergence angle, and a relatively larger stable operating space without mode converting and the consequent performance degradation.

  15. Long term assessment of blood pressure transducer drift in rhesus monkeys chronically instrumented with telemetry implants.

    PubMed

    Regan, Hillary K; Lynch, Joseph J; Regan, Christopher P

    2009-01-01

    The accurate assessment of blood pressure is often a key component of preclinical cardiovascular disease/efficacy models and of screening models used to determine the effects of test agents on cardiovascular physiology. Of the many methods utilized in large animals, telemetry is becoming more widely used throughout preclinical testing, and non-human primates are playing an ever increasing role as a large animal model to evaluate the cardiovascular effect of novel test agents. Therefore, we sought to characterize pressure transducer drift of a telemetry implant in primates over an extended duration. We instrumented ten rhesus monkeys with a Konigsberg T27F implant and a chronic indwelling arterial catheter and cross calibrated the diastolic pressure recorded by the implant to the diastolic pressure that was simultaneously recorded through the arterial catheter using a calibrated external transducer/amplifier system. While all implanted pressure transducers experienced drift to some degree, magnitude of drift varied across animals (range of average drift 0.7-20.5 mmHg/month). Specifically, we found that all implants could be calibrated within the voltage range of the instrument up to 6 months after implantation despite the drift observed. Between 6 and 12 months, 3 of the 10 implants studied drifted outside the defined voltage range and were unusable, two more drifted off scale within 2 years, while the remainder remained within the operating voltage range. Given that pressure transducer drift was not consistent across implants or time, these data suggest careful assessment and quantitative correction for in vivo drift of telemetry blood pressure transducers implanted for extended duration should be considered.

  16. Extended Operation of Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Schreiber, Jeffrey G.; Pepper, Stephen V.

    2004-01-01

    A high-efficiency 110 watt Stirling Radioisotope Generator 110 (SRG110) is being developed for potential NASA exploration missions. The SRG system efficiency is greater than 20%, making it an attractive candidate power system for deep space missions and unmanned rovers. The Department of Energy SRG110 Project team consists of the System Integrator, Lockheed Martin (LM), Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). One of the GRC roles is to provide Independent Verification and Validation of the Stirling TDC's. At the request of LM, a part of this effort includes the extended operation of the TDC's in the dynamically balanced dual-opposed configuration. Performance data of the Stirling Converters over time is required to demonstrate that an SRG110 can meet long-duration mission requirements. A test plan and test system were developed to evaluate TDC's #13 and #14 steady-state performance for a minimum of 5000 hours and insure safe, round-the-clock operation of the TDC's. This paper will discuss the design and development, and status of the Extended Operation Test.

  17. NASA Extends Chandra Science and Operations Support Contract

    NASA Astrophysics Data System (ADS)

    2010-01-01

    NASA has extended a contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, a powerful tool used to better understand the structure and evolution of the universe. The contract extension with the Smithsonian Astrophysical Observatory provides continued science and operations support to Chandra. This approximately 172 million modification brings the total value of the contract to approximately 545 million for the base effort. The base effort period of performance will continue through Sept. 30, 2013, except for the work associated with the administration of scientific research grants, which will extend through Feb. 28, 2016. The contract type is cost reimbursement with no fee. In addition to the base effort, the contract includes two options for three years each to extend the period of performance for an additional six years. Option 1 is priced at approximately 177 million and Option 2 at approximately 191 million, for a total possible contract value of about $913 million. The contract covers mission operations and data analysis, which includes observatory operations, science data processing and astronomer support. The operations tasks include monitoring the health and status of the observatory and developing and uplinking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning and coordination of science observations and processing and delivery of the resulting scientific data. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations. For more information about the Chandra X-ray Observatory visit: http://chandra.nasa.gov

  18. Local dynamic range compensation for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Huang, Y H

    2015-01-01

    This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.

  19. The Effect of Full-Mouth Rehabilitation on Oral Health-Related Quality of Life for Children with Special Health Care Needs.

    PubMed

    El-Meligy, Omar; Maashi, Manal; Al-Mushayt, Abdullah; Al-Nowaiser, Abeer; Al-Mubark, Sultan

    2016-01-01

    Changes in oral health-related quality of life (OHRQoL) among 40 children with special health care needs (CSHCN) aged 5-14 years before and 12 months after full-mouth rehabilitation (FMR) under general anesthesia (GA) in two hospitals in Jeddah city were assessed. The questionnaire was delivered to the parents/caregivers at baseline (pre-operative) and at the 12-month post-operative follow-up visit. Medical and dental histories and clinical findings were correlated accordingly. The follow-up response rate was 87.5% with 35 children completing a 12-month follow-up visit. The age range was from 5 to 12 years with a mean of 7.3 ± 2.4 years. More than half of the study sample was boys (63%) in the 5-8 year age-group (69%). The impact on OHRQoL was reportedly negative before FMR under GA, with overall scores ranging from 12 to 68 and a mean of 43.34 ± 14.83. OHRQoL improved significantly in all aspects evaluated (P<0.05) following FMR under GA with overall scores ranging from 4 to 41 and a mean of 18.86 ± 8.54. Treating CSHCN under GA, with 3-month recall visits for the patients, had a significant long-term effect on their OHRQoL extending up to 12 months postoperatively.

  20. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    DTIC Science & Technology

    2016-12-06

    upgrade included improving the SHRU clocks by utilizing chip- scale atomic clocks (CSAC), enlarging battery packs to extend the operation duration, and...instrument upgrade included improving the SHRU clocks by utilizing chip-scale atomic clocks (CSAC), enlarging battery packs to extend the operation...Changing the deployment configuration to use dual pressure housings to augment the alkaline primary battery payload to achieve the one-year duration

Top