NASA Technical Reports Server (NTRS)
Smyth, W. H.
1980-01-01
Highly developed numerical models are applied to interpret extended-atmosphere data for the sodium cloud of Io and the hydrogen torus of Titan. Solar radiation pressure was identified and verified by model calculations as the mechanism to explain two different east-west asymmetries observed in the sodium cloud. Analysis of sodium line profile data, suggesting that a Jupiter magnetospheric wind may be responsible for high speed sodium atoms emitted from Io, and preliminary modeling of the interaction of the Io plasma torus and Io's sodium cloud are also reported. Models presented for Titan's hydrogen torus are consistent both with the recent Pioneer 11 measurements and earlier Earth-orbiting observations by the Copernicus satellite. Progress is reported on developing models for extended gas and dust atmospheres of comets.
Outer satellite atmospheres: Their nature and planetary interactions
NASA Technical Reports Server (NTRS)
Smyth, W. H.
1981-01-01
Modeling capabilities and initial model calculations are reported for the peculiar directional features of the Io sodium cloud discovered by Pilcher and the extended atomic oxygen atmosphere of Io discovered by Brown. Model results explaining the directional feature by a localized emission from the satellite are encouraging, but as yet, inconclusive; whereas for the oxygen cloud, an escape rate of 1 to 2 x 10 to the 27th power atoms/sec or higher from Io is suggested. Preliminary modeling efforts were also initiated for the extended hydrogen ring-atmosphere of Saturn detected by the Voyager spacecraft and for possible extended atmospheres of some of the smaller satellites located in the E-ring. Continuing research efforts reported for the Io sodium cloud include further refinement in the modeling of the east-west asymmetry data, the asymmetric line profile shape, and the intersection of the cloud with the Io plasma torus. In addition, the completed pre-Voyager modeling of Titan's hydrogen torus is included and the near completed model development for the extended atmosphere of comets is discussed.
NASA Technical Reports Server (NTRS)
Smyth, William H.
1993-01-01
The research performed in this project is divided in two main investigations: (1) the synthesis and analysis of a collection of independent observations for Io's sodium corona, its sodium extended atmosphere, and the sodium cloud, and (2) the analysis of a (System III longitude correlated) space-time 'bite-out' near western elongation in the 1981 sodium cloud images from the JPL Table Mountain Sodium Cloud Data Set. For the first investigation, modeling analysis of the collective observed spatial profiles has shown that they are reproduced by adopting at Io's exobase a modified sputtering flux speed distribution function which is peaked near 0.5 km/s and has a small high-speed (15-20 km/s) nonisotropic component. The nonisotropic high-speed component is consistent with earlier modeling of the trailing directional feature. For the second investigation, modeling analysis of the 'bite-out' observed near western elongation (but not eastern elongation) has shown that it is reproduced in model calculation by adopting a plasma torus description for the sodium lifetime that is inherently asymmetric in System III longitudes of the active sector and that also has an east-west asymmetry. The east-west and System III longitude asymmetries were determined from independent observations for the plasma torus in 1981. The presence of the 'bite-out' feature only near western elongation may be understood in terms of the relative value for sodium of its lifetime and its transport time through the System III enhanced plasma torus region.
NASA Astrophysics Data System (ADS)
Schmidt, C.; Johnson, R. E.; Mendillo, M.; Baumgardner, J. L.; Moore, L.; O'Donoghue, J.; Leblanc, F.
2015-12-01
With the object of constraining Iogenic contributions and identifying drivers for variability, we report new observations of neutral sodium in Europa's exosphere. An R~20000 integral field spectrograph at McDonald Observatory is used to generate Doppler maps of sodium cloud structures with a resolution of 2.8 km/s/pixel. In the five nights of observations since 2011, measurements on UT 6.15-6.31 May 2015 uniquely feature fast (10s of km/s) neutral sodium clouds extending nearly 100 Europa radii, more distant than in any previous findings. During these measurements, the satellite geometry was favorable for the transfer of Na from Io to Europa, located at 1:55 to 4:00 and 3:38 to 4:39 Jovian local time, respectively. Eastward emission (away from Jupiter) extends 10-20 Europa radii retaining the moon's rest velocity, while westward emission blue-shifts with distance, and a broad range of velocities are measured, reaching at least 70 km/s at 80 Europa radii. These cloud features are distinct from Io's "banana" and "stream" features, the distant Jupiter-orbiting nebula, and from terrestrial OH and Na contaminant emissions. Io's production was quiescent during this observation, following an extremely active phase in February 2015. These results are consistent with previous findings that Europa's Na exosphere has peak emission between midnight and dawn Jovian local time and support the idea that sodium escape from Io can significantly enhance the emission intensity measured at Europa.
Outer satellite atmospheres: Their extended nature and planetary interactions
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1984-01-01
Model calculations for the brightness of the sodium cloud in Region A were performed to clarify the role played by the plasma torus sink in producing the east-west intensity asymmetry observed in the sodium D-lines. It was determined that the east-west electric field, proposed by Barbosa and Kievelson (1983) and Ip and Goertz (1983) to explain the dawn-dusk asymmetry in the torus ion emissions measured by the Voyager UVS instrument, could also produce the east-west sodium intensity asymmetry discovered earlier by Bergstralh et al. (1975, 1977). Model results for the directional features of the sodium cloud are also reported. The completion of the development of the Io potassium cloud model, progress in improving the Titan hydrogen torus model, and efforts in developing our model for hydrogen cometary atmospheres are also discussed.
On the distribution of sodium in the vicinity of Io
NASA Technical Reports Server (NTRS)
Trafton, L.; Macy, W., Jr.
1978-01-01
The contribution of scattering in a telescope to measurements of the size of Io's sodium cloud and to the distribution of emission intensity in the cloud is investigated. The brightest regions, within 30 arcsec of Io near opposition and along the equatorial plane, are relatively undistorted, but regions further than 45 arcsec away and not close to the equatorial plane are very likely to consist mainly of scattered light. Portions of the cloud in the vicinity of the magnetic equator are also mostly scattered light when Io is near extreme magnetic latitude. The equatorial torus, however, extends up to 20 arcmin from Jupiter. The large size of the cloud is thus confirmed. High-resolution line profile shapes indicate that sodium streams from Io preferentially in the forward direction with velocities distributed up to 18 km/sec. The observed wavelength shifts of the peak intensities from Io's rest frame are compatible with a cloud streaming through a bound atmospheric component, but they could also be caused by a velocity distribution peaked at very low velocities.
NASA Technical Reports Server (NTRS)
Smyth, W. H.
1978-01-01
Results show that Amalthea is likely to form a tightly-bound partial toroidal-shaped hydrogen cloud about its planet, while Ganymede, Callisto and Titan may have rather large, complete and nearly symmetric toroidal-shaped clouds. The toroidal cloud for Amalthea compares favorably with spacecraft data of Pioneer 10 for a satellite escape flux of order 10 to the 11th power atoms/sq cm/sec. Model results for Ganymede, Callisto and Titan suggest that these extended hydrogen atmospheres are likely to be detected by the Voyager spacecrafts and that Titan's cloud might also be detected by the Pioneer 11 spacecraft. Ions created because of atoms lost through ionization processes from these four extended hydrogen atmospheres and from the sodium cloud of Io are discussed.
The Encounter of P/Shoemaker-Levy 9 with the Jovian Plasma and Extended Sodium Cloud
NASA Technical Reports Server (NTRS)
Niciejewski, R. J.
1997-01-01
The encounter of comet P/Shoemaker-Levy 9 with Jupiter during July, 1994, provided an unprecedented opportunity to observe any potential perturbations in the Jovian plasma torus and extended sodium cloud as the comet entered the planet's atmosphere. Though the most obvious affect of the encounter was the distinctive response of the visible disk to the impact of the cometary fragments, the potential disruptions to the extended Jovian atmosphere and the restoration of the system to equilibrium also provided a test for the current interpretation of the Jovian plasma torus and sodium magneto-nebula. The observations that were performed for this grant were made by a complementary group of researchers and could not have been made if the individuals worked singly. In a sense, the exciting opportunity provided by this astronomical event also provided a mechanism to test the potential of pooling limited resources from several sources to construct a state-of-the-art spectrally resolving instrument, to acquire the necessary time and resources from institutions that maintain world-class optical telescopes, to perform the observations with the assistance of students, and to analyze the data sets.
Io's Sodium Corona and Spatially Extended Cloud: A Consistent Flux Speed Distribution
NASA Technical Reports Server (NTRS)
Smyth, William H.; Combi, Michael R.
1997-01-01
For Io neutral cloud calculations, an SO2 source strength of approximately 4x10(exp 27) molecules/sec was determined by successfully matching the SO2(+) density profile near the satellite deduced from magnetometer data acquired by the Galileo spacecraft during its close flyby on December 7, 1995. The incomplete collision source velocity distribution for SO2 is the same as recently determined for the trace species atomic sodium by Smyth and Combi (1997). Estimates for the total energy loss rate (i.e. power) of O and S atoms escaping Io were also determined and imply a significant pickup current and a significant reduction in the local planetary magnetic field near Io.
Outer satellite atmospheres: Their nature and planetary interactions
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1982-01-01
Significant progress is reported in early modeling analysis of observed sodium cloud images with our new model which includes the oscillating Io plasma torus ionization sink. Both the general w-D morphology of the region B cloud as well as the large spatial gradient seen between the region A and B clouds are found to be consistent with an isotropic flux of sodium atoms from Io. Model analysis of the spatially extended high velocity directional features provided substantial evidence for a magnetospheric wind driven gas escape mechanism from Io. In our efforts to define the source(s) of hydrogen atoms in the Saturn system, major steps were taken in order to understand the role of Titan. We have completed the comparison of the Voyager UVS data with previous Titan model results, as well as the update of the old model computer code to handle the spatially varying ionization sink for H atoms.
A modeling analysis program for the JPL table mountain Io sodium cloud data
NASA Technical Reports Server (NTRS)
Smyth, William H.; Goldberg, Bruce A.
1988-01-01
Research in the third and final year of this project is divided into three main areas: (1) completion of data processing and calibration for 34 of the 1981 Region B/C images, selected from the massive JPL sodium cloud data set; (2) identification and examination of the basic features and observed changes in the morphological characteristics of the sodium cloud images; and (3) successful physical interpretation of these basic features and observed changes using the highly developed numerical sodium cloud model at AER. The modeling analysis has led to a number of definite conclusions regarding the local structure of Io's atmosphere, the gas escape mechanism at Io, and the presence of an east-west electric field and a System III longitudinal asymmetry in the plasma torus. Large scale stability, as well as some smaller scale time variability for both the sodium cloud and the structure of the plasma torus over a several year time period are also discussed.
Other satellite atmospheres: Their nature and planetary interactions
NASA Technical Reports Server (NTRS)
Smyth, W. H.
1982-01-01
The Io sodium cloud model was successfully generated to include the time and spatial dependent lifetime sink produced by electron impact ionization as the plasma torus oscillates about the satellite plane, while simultaneously including the additional time dependence introduced by the action of solar radiation pressure on the cloud. Very preliminary model results are discussed and continuing progress in analysis of the peculiar directional features of the sodium cloud is also reported. Significant progress was made in developing a model for the Io potassium cloud and differences anticipated between the potassium and sodium cloud are described. An effort to understand the hydrogen atmosphere associated with Saturn's rings was initiated and preliminary results of a very and study are summarized.
Io's Sodium Cloud (Clear Filter and Green-Yellow Filter with Intensity Contours)
NASA Technical Reports Server (NTRS)
1997-01-01
This picture contains two images of Jupiter's moon Io and its surrounding sky. The original frame was exposed twice, once through a clear filter and once through a green-yellow filter. The camera pointed in slightly different directions for the two exposures, placing a clear filter image of Io in the top half of the frame, and a green-yellow filter image of Io in the bottom half of the frame. This picture shows the entire original frame with the addition of intensity contours and false color. East is to the right.
Most of Io's visible surface is in shadow, though part of a white crescent can be seen on its western side. This crescent is being illuminated mostly by 'Jupitershine' (i.e., sunlight reflected off Jupiter). Near Io's eastern equatorial edge is a burst of white light which shows up best in the lower image. This sunlight being scattered by the plume of the volcano Prometheus. Prometheus lies just beyond the visible edge of the moon on Io's far side. Its plume extends about 100 kilometers above the surface, and is being hit by sunlight just a little east of Io's eastern edge.The sky is full of diffuse light, some of which is scattered light from Prometheus' plume and Io's lit crescent (particularly in the half of the frame dominated by the clear filter). However, much of the diffuse emission comes from Io's Sodium Cloud: sodium atoms within Io's extensive material halo are scattering sunlight into both the clear and green-yellow filters at a wavelength of about 589 nanometers.The intensity contours help to illustrate that: (i) significant diffuse emission is present all the way to the eastern edge of the frame (indeed, the Sodium Cloud is known to extend far beyond that edge); (ii) the diffuse emission exhibits a directional feature at about four o'clock relative to Io's center (similar features have been seen in the Sodium Cloud at greater distances from Io).The upper image of Io exhibits a roundish white spot in the bottom half of Io's shadowed side. This corresponds to thermal emission from the volcano Pele. The lower image bears a much smaller trace of this emission because the clear filter is far more sensitive than the green-yellow filter to those relatively long wavelengths where thermal emission is strongest.This image was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft. Galileo was then in Jupiter's shadow, and located about 2.3 million kilometers (about 32 Jovian radii) from both Jupiter and Io.The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.Artist's Rendering of Multiple Whirlpools in a Sodium Gas Cloud
NASA Technical Reports Server (NTRS)
2003-01-01
This image depicts the formation of multiple whirlpools in a sodium gas cloud. Scientists who cooled the cloud and made it spin created the whirlpools in a Massachusetts Institute of Technology laboratory, as part of NASA-funded research. This process is similar to a phenomenon called starquakes that appear as glitches in the rotation of pulsars in space. MIT's Wolgang Ketterle and his colleagues, who conducted the research under a grant from the Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif., cooled the sodium gas to less than one millionth of a degree above absolute zero (-273 Celsius or -460 Fahrenheit). At such extreme cold, the gas cloud converts to a peculiar form of matter called Bose-Einstein condensate, as predicted by Albert Einstein and Satyendra Bose of India in 1927. No physical container can hold such ultra-cold matter, so Ketterle's team used magnets to keep the cloud in place. They then used a laser beam to make the gas cloud spin, a process Ketterle compares to stroking a ping-pong ball with a feather until it starts spirning. The spinning sodium gas cloud, whose volume was one- millionth of a cubic centimeter, much smaller than a raindrop, developed a regular pattern of more than 100 whirlpools.
NASA Technical Reports Server (NTRS)
Goody, R.
1978-01-01
Some unusual properties of Io are discussed, and possible explanations for these are considered. The properties discussed include Io's ability to modify radio waves emitted by Jupiter in the decametric band, the satellite's ionosphere and sodium cloud, its extraordinary brightness, and the presence of ionized sulfur just inside the satellite's orbit. Io's ability to modulate Jovian decametric radio emission is explained on the basis of the hypothesis that the satellite conducts electricity and interacts with Jupiter's magnetic field. Characteristics of the sodium cloud are reviewed, and the probable mechanism responsible for this cloud is outlined. It is concluded that the only plausible explanation for the brightness of Io is the presence of cat's-eye-type reflectors, possibly composed of crystalline deposits, on the satellite's surface.
Io, the closest Galileo's Medicean Moon: Changes in its Sodium Cloud Caused by Jupiter Eclipse
NASA Astrophysics Data System (ADS)
Grava, Cesare; Schneider, Nicholas M.; Barbieri, Cesare
2010-01-01
We report results of a study of true temporal variations in Io's sodium cloud before and after eclipse by Jupiter. The eclipse geometry is important because there is a hypothesis that the atmosphere partially condenses when the satellite enters the Jupiter's shadow, preventing sodium from being released to the cloud in the hours immediately after the reappearance. The challenge lies in disentangling true variations in sodium content from the changing strength of resonant scattering due Io's changing Doppler shift in the solar sodium absorption line. We undertook some observing runs at Telescopio Nazionale Galileo (TNG) at La Palma Canary Island with the high resolution spectrograph SARG in order to observe Io entering into Jupiter's shadow and coming out from it. The particular configuration chosen for the observations allowed us to observe Io far enough from Jupiter and to disentangle line-of-sight effects looking perpendicularly at the sodium cloud. We will present results which took advantage of a very careful reduction strategy. We remove the dependence from γ-factor, which is the fraction of solar light available for resonant scattering, in order to remove the dependence on the radial velocity of Io with respect to the Sun. This work has been supported by NSF's Planetary Astronomy Program, INAF/TNG and the Department of Astronomy and Cisas of University of Padova, through a contract by the Italian Space Agency ASI.
Io's Sodium Clouds and Plasma Torus: Three Quiet Apparitions
NASA Astrophysics Data System (ADS)
Wilson, Jody; Mendillo, M.; Baumgardner, J.
2007-10-01
Ground-based observations of Io's sodium clouds from February 2005 to June 2007 indicate that Io was in an unusually quiet state of atmospheric escape. Simultaneous observations of the sulfur-ion plasma torus in that same period indicate that the torus has been gradually dimming, which is also consistent with below-average atmospheric escape rates from Io. The S+ torus was essentially undetectable in May 2007. Our goal in this 3-year project was to compare variability in the clouds and torus with observations of Io's volcanic infrared ``hot spots'' (e.g., Marchis et al. 2005) in order to track the flow of mass from Io's volcanoes into Jupiter's magnetosphere. Of particular interest was the 18-month cycle of Io's large volcano Loki (Rathbun et al. 2002, Mendillo et al. 2004), however it seems that Loki has settled into an unusually long-term quiescent state (Rathbun and Spencer, 2006). Thus, although we have been unable to monitor the month-to-month effects of the Loki cycle, we nonetheless have indirect evidence for Loki's long-term effects on Io's atmosphere and Jupiter's magnetosphere by observing their weak states when Loki is not actively contributing. This research is funded in part by NASA's Planetary Astronomy Program. Marchis et al., Keck AO survey of Io global volcanic activity between 2 and 5 microns, Icarus, 176, 96-122, 2005. Mendillo et al., Io's volcanic control of Jupiter's extended neutral clouds, Icarus, 170, 430-442, 2004. Rathbun, J.A. et al., Loki, Io: A periodic volcano, Geophysical Research Letters, 29, Issue 10, pp. 84-1, 2002. Rathbun, J.A. and J.R. Spencer, Loki, Io: New ground-based observations and a model describing the change from periodic overturn, Geophysical Research Letters, 33, Issue 17, 2006.
2003-02-09
This image depicts the formation of multiple whirlpools in a sodium gas cloud. Scientists who cooled the cloud and made it spin created the whirlpools in a Massachusetts Institute of Technology laboratory, as part of NASA-funded research. This process is similar to a phenomenon called starquakes that appear as glitches in the rotation of pulsars in space. MIT's Wolgang Ketterle and his colleagues, who conducted the research under a grant from the Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif., cooled the sodium gas to less than one millionth of a degree above absolute zero (-273 Celsius or -460 Fahrenheit). At such extreme cold, the gas cloud converts to a peculiar form of matter called Bose-Einstein condensate, as predicted by Albert Einstein and Satyendra Bose of India in 1927. No physical container can hold such ultra-cold matter, so Ketterle's team used magnets to keep the cloud in place. They then used a laser beam to make the gas cloud spin, a process Ketterle compares to stroking a ping-pong ball with a feather until it starts spirning. The spinning sodium gas cloud, whose volume was one- millionth of a cubic centimeter, much smaller than a raindrop, developed a regular pattern of more than 100 whirlpools.
An absolute sodium abundance for a cloud-free 'hot Saturn' exoplanet.
Nikolov, N; Sing, D K; Fortney, J J; Goyal, J M; Drummond, B; Evans, T M; Gibson, N P; De Mooij, E J W; Rustamkulov, Z; Wakeford, H R; Smalley, B; Burgasser, A J; Hellier, C; Helling, Ch; Mayne, N J; Madhusudhan, N; Kataria, T; Baines, J; Carter, A L; Ballester, G E; Barstow, J K; McCleery, J; Spake, J J
2018-05-01
Broad absorption signatures from alkali metals, such as the sodium (Na I) and potassium (K I) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets 1-3 . However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles 4-6 . Cloud and haze opacity at the day-night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances 7-9 . Here we report an optical transmission spectrum for the 'hot Saturn' exoplanet WASP-96b obtained with the Very Large Telescope, which exhibits the complete pressure-broadened profile of the sodium absorption feature. The spectrum is in excellent agreement with cloud-free, solar-abundance models assuming chemical equilibrium. We are able to measure a precise, absolute sodium abundance of logε Na = [Formula: see text], and use it as a proxy for the planet's atmospheric metallicity relative to the solar value (Z p /Z ʘ = [Formula: see text]). This result is consistent with the mass-metallicity trend observed for Solar System planets and exoplanets 10-12 .
An absolute sodium abundance for a cloud-free `hot Saturn' exoplanet
NASA Astrophysics Data System (ADS)
Nikolov, N.; Sing, D. K.; Fortney, J. J.; Goyal, J. M.; Drummond, B.; Evans, T. M.; Gibson, N. P.; De Mooij, E. J. W.; Rustamkulov, Z.; Wakeford, H. R.; Smalley, B.; Burgasser, A. J.; Hellier, C.; Helling, Ch.; Mayne, N. J.; Madhusudhan, N.; Kataria, T.; Baines, J.; Carter, A. L.; Ballester, G. E.; Barstow, J. K.; McCleery, J.; Spake, J. J.
2018-05-01
Broad absorption signatures from alkali metals, such as the sodium (Na i) and potassium (K i) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets1-3. However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles4-6. Cloud and haze opacity at the day-night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances7-9. Here we report an optical transmission spectrum for the `hot Saturn' exoplanet WASP-96b obtained with the Very Large Telescope, which exhibits the complete pressure-broadened profile of the sodium absorption feature. The spectrum is in excellent agreement with cloud-free, solar-abundance models assuming chemical equilibrium. We are able to measure a precise, absolute sodium abundance of logɛNa = 6.9-0.4+0.6, and use it as a proxy for the planet's atmospheric metallicity relative to the solar value (Zp/Zʘ = 2.3-1.7+8.9). This result is consistent with the mass-metallicity trend observed for Solar System planets and exoplanets10-12.
Chlorine-containing salts as water ice nucleating particles on Mars
NASA Astrophysics Data System (ADS)
Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.
2018-03-01
Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.
Io's Sodium Cloud (Green-yellow Filter)
NASA Technical Reports Server (NTRS)
1997-01-01
This image of Jupiter's moon Io and its surrounding sky is shown in false color. North is at the top, and east is to the right. Most of Io's visible surface is in shadow, though one can see part of a white crescent on its western side. This crescent is being illuminated mostly by 'Jupitershine' (i.e. sunlight reflected off Jupiter).
The striking burst of white light near Io's eastern equatorial edge is sunlight being scattered by the plume of the volcano Prometheus. Prometheus lies just beyond the visible edge of the moon on Io's far side. Its plume extends about 100 kilometers above the surface, and is being hit by sunlight just a little east of Io's eastern edge.Scattered light from Prometheus' plume and Io's lit crescent also contribute to the diffuse yellowish emission which appears throughout much of the sky. However, much of this emission comes from Io's Sodium Cloud: sodium atoms within Io's extensive material halo are scattering sunlight at the yellow wavelength of about 589 nanometers.This image was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 through the green-yellow filter of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft. Galileo was then in Jupiter's shadow, and located about 2.3 million kilometers (about 32 Jovian radii) from both Jupiter and Io.The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.Studies for the loss of atomic and molecular species from Io
NASA Technical Reports Server (NTRS)
Combi, Michael R.
1994-01-01
The general objective of this project is to advance theoretical understanding of Io's atmosphere and how various atomic and molecular species are lost from this atmosphere and are distributed in the circumplanetary environment of Jupiter. The major task for the University of Michigan portion of this work is the generalization of the Io sodium cloud model to simulate the ion-precursor of sodium that is the apparent source of the fast sodium jet observed by Schneider et al. (1991). The goal is a quantitative test of the molecular ion hypothesis with a model that is comparable to a general sodium cloud model published previously. A detailed comparison of observations with such a model will help to probe the feasibility of such a source and to examine the rates and scale lengths associated with the decay of the ion precursor so as to possibly uncover the identity of the parent ion. Another important task to be performed at Michigan is more support of AER in the general area of modeling the Na and SO2-family clouds.
Sodium D-line emission from Io - Comparison of observed and theoretical line profiles
NASA Technical Reports Server (NTRS)
Carlson, R. W.; Matson, D. L.; Johnson, T. V.; Bergstralh, J. T.
1978-01-01
High-resolution spectra of the D-line profiles have been obtained for Io's sodium emission cloud. These lines, which are produced through resonance scattering of sunlight, are broad and asymmetric and can be used to infer source and dynamical properties of the sodium cloud. In this paper we compare line profile data with theoretical line shapes computed for several assumed initial velocity distributions corresponding to various source mechanisms. We also examine the consequences of source distributions which are nonuniform over the surface of Io. It is found that the experimental data are compatible with escape of sodium atoms from the leading hemisphere of Io and with velocity distributions characteristic of sputtering processes. Thermal escape and simple models of plasma sweeping are found to be incompatible with the observations.
HST Hot-Jupiter Transmission Spectral Survey: Clear Skies for Cool Saturn WASP-39b
NASA Astrophysics Data System (ADS)
Fischer, Patrick D.; Knutson, Heather A.; Sing, David K.; Henry, Gregory W.; Williamson, Michael W.; Fortney, Jonathan J.; Burrows, Adam S.; Kataria, Tiffany; Nikolov, Nikolay; Showman, Adam P.; Ballester, Gilda E.; Désert, Jean-Michel; Aigrain, Suzanne; Deming, Drake; Lecavelier des Etangs, Alain; Vidal-Madjar, Alfred
2016-08-01
We present the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) optical transmission spectroscopy of the cool Saturn-mass exoplanet WASP-39b from 0.29-1.025 μm, along with complementary transit observations from Spitzer IRAC at 3.6 and 4.5 μm. The low density and large atmospheric pressure scale height of WASP-39b make it particularly amenable to atmospheric characterization using this technique. We detect a Rayleigh scattering slope as well as sodium and potassium absorption features; this is the first exoplanet in which both alkali features are clearly detected with the extended wings predicted by cloud-free atmosphere models. The full transmission spectrum is well matched by a clear H2-dominated atmosphere, or one containing a weak contribution from haze, in good agreement with the preliminary reduction of these data presented in Sing et al. WASP-39b is predicted to have a pressure-temperature profile comparable to that of HD 189733b and WASP-6b, making it one of the coolest transiting gas giants observed in our HST STIS survey. Despite this similarity, WASP-39b appears to be largely cloud-free, while the transmission spectra of HD 189733b and WASP-6b both indicate the presence of high altitude clouds or hazes. These observations further emphasize the surprising diversity of cloudy and cloud-free gas giant planets in short-period orbits and the corresponding challenges associated with developing predictive cloud models for these atmospheres.
Io: Escape and ionization of atmospheric gases
NASA Technical Reports Server (NTRS)
Smyth, W. H.
1981-01-01
Models for the Io oxygen clouds were improved to calculate the two dimensional sky plane intensity of the 1304 A emission and the 880 A emission of atomic oxygen, in addition to the 6300 A emission intensity. These three wavelength emissions are those for which observational measurements have been performed by ground based, rocket, Earth orbiting satellite and Voyager spacecraft instruments. Comparison of model results and observations suggests that an oxygen flux from Io of about 3 billion atoms sq cm sec is required for agreement. Quantitative analysis of the Io sodium cloud has focused upon the initial tasks of acquiring and preliminary evaluation of new sodium cloud and Io plasma torus data.
Occupational contact dermatitis in manual cloud seeding operations.
Ng, W T; Koh, D
2011-05-01
This is a case report on irritant contact dermatitis secondary to calcium oxide exposure during manual cloud seeding operations. A less hazardous substitute such as sodium chloride should be considered wherever possible. Cloud seeding operations are briefly discussed in this report, and the impact of calcium oxide exposure as an occupational hazard is elaborated.
Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Wind, G.; Platnick, S.; Menzel, W. P.
2010-01-01
The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with ocean, particularly in the tropics and summer hemisphere.
HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Patrick D.; Knutson, Heather A.; Sing, David K.
We present the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) optical transmission spectroscopy of the cool Saturn-mass exoplanet WASP-39b from 0.29-1.025 μ m, along with complementary transit observations from Spitzer IRAC at 3.6 and 4.5 μ m. The low density and large atmospheric pressure scale height of WASP-39b make it particularly amenable to atmospheric characterization using this technique. We detect a Rayleigh scattering slope as well as sodium and potassium absorption features; this is the first exoplanet in which both alkali features are clearly detected with the extended wings predicted by cloud-free atmosphere models. The full transmission spectrummore » is well matched by a clear H{sub 2}-dominated atmosphere, or one containing a weak contribution from haze, in good agreement with the preliminary reduction of these data presented in Sing et al. WASP-39b is predicted to have a pressure-temperature profile comparable to that of HD 189733b and WASP-6b, making it one of the coolest transiting gas giants observed in our HST STIS survey. Despite this similarity, WASP-39b appears to be largely cloud-free, while the transmission spectra of HD 189733b and WASP-6b both indicate the presence of high altitude clouds or hazes. These observations further emphasize the surprising diversity of cloudy and cloud-free gas giant planets in short-period orbits and the corresponding challenges associated with developing predictive cloud models for these atmospheres.« less
Alkali and Chlorine Photochemistry in a Volcanically Driven Atmosphere on Io
NASA Astrophysics Data System (ADS)
Moses, Julianne I.; Zolotov, Mikhail Yu.; Fegley, Bruce
2002-03-01
Observations of the Io plasma torus and neutral clouds indicate that the extended ionian atmosphere must contain sodium, potassium, and chlorine in atomic and/or molecular form. Models that consider sublimation of pure sulfur dioxide frost as the sole mechanism for generating an atmosphere on Io cannot explain the presence of alkali and halogen species in the atmosphere—active volcanoes or surface sputtering must also be considered, or the alkali and halide species must be discharged along with the SO 2 as the frost sublimates. To determine how volcanic outgassing can affect the chemistry of Io's atmosphere, we have developed a one-dimensional photochemical model in which active volcanoes release a rich suite of S-, O-, Na-, K-, and Cl-bearing vapor and in which photolysis, chemical reactions, condensation, and vertical eddy and molecular diffusion affect the subsequent evolution of the volcanic gases. Observations of Pele plume constituents, along with thermochemical equilibrium calculations of the composition of volcanic gases exsolved from high-temperature silicate magmas on Io, are used to constrain the composition of the volcanic vapor. We find that NaCl, Na, Cl, KCl, and K will be the dominant alkali and chlorine gases in atmospheres generated from Pele-like plume eruptions on Io. Although the relative abundances of these species will depend on uncertain model parameters and initial conditions, these five species remain dominant for a wide variety of realistic conditions. Other sodium and chlorine molecules such as NaS, NaO, Na 2, NaS 2, NaO 2, NaOS, NaSO 2, SCl, ClO, Cl 2, S 2Cl, and SO 2Cl 2 will be only minor constituents in the ionian atmosphere because of their low volcanic emission rates and their efficient photochemical destruction mechanisms. Our modeling has implications for the general appearance, properties, and variability of the neutral sodium clouds and jets observed near Io. The neutral NaCl molecules present at high altitudes in atmosph eres generated by active volcanoes might provide the NaX + ion needed to help explain the morphology of the high-velocity sodium "stream" feature observed near Io.
Preliminary aerosol generator design studies
NASA Technical Reports Server (NTRS)
Stampfer, J. F., Jr.
1976-01-01
The design and construction of a prototype vaporization generator for highly dispersed sodium chloride aerosols is described. The aerosol generating system is to be used in the Science Simulator of the Cloud Physics Laboratory Project and as part of the Cloud Physics Laboratory payload to be flown on the shuttle/spacelab.
Effect of acidification on carrot (Daucus carota) juice cloud stability.
Schultz, Alison K; Barrett, Diane M; Dungan, Stephanie R
2014-11-26
Effects of acidity on cloud stability in pasteurized carrot juice were examined over the pH range of 3.5-6.2. Cloud sedimentation, particle diameter, and ζ potential were measured at each pH condition to quantify juice cloud stability and clarification during 3 days of storage. Acidification below pH 4.9 resulted in a less negative ζ potential, an increased particle size, and an unstable cloud, leading to juice clarification. As the acidity increased, clarification occurred more rapidly and to a greater extent. Only a weak effect of ionic strength was observed when sodium salts were added to the juice, but the addition of calcium salts significantly reduced the cloud stability.
A modeling analysis program for the JPL Table Mountain Io sodium cloud data
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Goldberg, B. A.
1986-01-01
Progress and achievements in the second year are discussed in three main areas: (1) data quality review of the 1981 Region B/C images; (2) data processing activities; and (3) modeling activities. The data quality review revealed that almost all 1981 Region B/C images are of sufficient quality to be valuable in the analyses of the JPL data set. In the second area, the major milestone reached was the successful development and application of complex image-processing software required to render the original image data suitable for modeling analysis studies. In the third area, the lifetime description of sodium atoms in the planet magnetosphere was improved in the model to include the offset dipole nature of the magnetic field as well as an east-west electric field. These improvements are important in properly representing the basic morphology as well as the east-west asymmetries of the sodium cloud.
21 CFR 172.810 - Dioctyl sodium sulfo-suc-cinate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dioctyl sodium sulfo-suc-cinate. 172.810 Section... combination with α-hydro-omega -hydroxy - poly(oxyethylene) - poly-(oxypropylene) (53-59 moles) poly(oxyethylene) (14-16 moles) block copolymer, having a molecular weight range of 3,500-4,125 and a cloud point...
21 CFR 172.810 - Dioctyl sodium sulfo-suc-cinate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dioctyl sodium sulfo-suc-cinate. 172.810 Section... combination with α-hydro-omega -hydroxy - poly(oxyethylene) - poly-(oxypropylene) (53-59 moles) poly(oxyethylene) (14-16 moles) block copolymer, having a molecular weight range of 3,500-4,125 and a cloud point...
21 CFR 172.810 - Dioctyl sodium sulfo-suc-cinate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dioctyl sodium sulfo-suc-cinate. 172.810 Section... combination with α-hydro-omega -hydroxy - poly(oxyethylene) - poly-(oxypropylene) (53-59 moles) poly(oxyethylene) (14-16 moles) block copolymer, having a molecular weight range of 3,500-4,125 and a cloud point...
21 CFR 172.810 - Dioctyl sodium sulfo-suc-cinate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dioctyl sodium sulfo-suc-cinate. 172.810 Section... combination with α-hydro-omega -hydroxy - poly(oxyethylene) - poly-(oxypropylene) (53-59 moles) poly(oxyethylene) (14-16 moles) block copolymer, having a molecular weight range of 3,500-4,125 and a cloud point...
Volcanic Plume from Mt. Unzen, Dust Cloud, cloud Vortices
1991-12-01
Stable, south flowing air over the western Pacific Ocean (26.0N, 131.0E) is disturbed by islands south of Korea, resulting in sinuous clouds known as von Karman vortices. The smoke plume from Japan's Mount Unzen Volcano on Kyushu, is visible just west of the large cloud mass and extending southward. A very large, purple tinged dust pall, originating in Mongolia, can be seen on the Earth's Limb, covering eastern China and extending into the East China Sea.
Studies of extra-solar Oort Clouds and the Kuiper disk
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1992-01-01
In 1991 we detected extended 1.1 mm emission around Fomalhaut (alpha PsA) at distances in order of magnitude beyond previous detections. This emission is plausibly related to the presence of an extended comet cloud, like our Oort Cloud, and may therefore represent indirect evidence for the formation of a planetary system at Fomalhaut. We propose now to extend this work to create a map of the angular and spatial extent of this emission. Fomalhaut is the only known main-sequence, submm-resolved IR excess source besides beta Pic.
Gaston, Cassandra J; Pratt, Kerri A; Suski, Kaitlyn J; May, Nathaniel W; Gill, Thomas E; Prather, Kimberly A
2017-02-07
Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of A FHH = 2.20 ± 0.60 and B FHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.
Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90)
NASA Astrophysics Data System (ADS)
Dierking, Christoph W.; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr
2017-06-01
Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n <5 . In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (˜2.8 eV) and signal saturation (˜4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n ≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H2O)n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.
Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90).
Dierking, Christoph W; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr
2017-06-28
Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H 2 O) n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n<5. In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (∼2.8 eV) and signal saturation (∼4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H 2 O) n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.
21 CFR 172.810 - Dioctyl sodium sulfosuccinate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dioctyl sodium sulfosuccinate. 172.810 Section 172...-hydro-omega -hydroxy - poly(oxyethylene) - poly-(oxypropylene) (53-59 moles) poly(oxyethylene) (14-16 moles) block copolymer, having a molecular weight range of 3,500-4,125 and a cloud point of 9 °C-12 °C...
NASA Technical Reports Server (NTRS)
Norris, Joel R.
2005-01-01
This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.
NASA Astrophysics Data System (ADS)
Gaston, C.; Pratt, K.; Suski, K. J.; May, N.; Gill, T. E.; Prather, K. A.
2016-12-01
Saline playas (dried lake beds) emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dust for cloud formation, several models assume that dust is non-hygroscopic highlighting the need for measurements to clarify the role of dust from multiple sources in aerosol-cloud-climate interactions. Here we present water uptake measurements onto playa dust represented by the hygroscopicity parameter κ, which ranged from 0.002 ± 0.001 to 0.818 ± 0.094. Single-particle measurements made using an aircraft-aerosol time-of-flight mass spectrometer (A-ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that dust composition plays in water uptake. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values; however, several samples were poorly predicted using bulk particle composition. The lack of measurements/model agreement using this method and the strong correlations between κ and single-particle data are suggestive of chemical heterogeneities as a function of particle size and/or chemically distinct particle surfaces that dictate the water uptake properties of playa dust particles. Overall, our results highlight the ability of playa dust particles to act as cloud condensation nuclei that should be accounted for in models.
Altitude-dependent Drift of a Chemical Release Cloud at Middle Latitudes
NASA Astrophysics Data System (ADS)
Pedersen, T.; Holmes, J. M.; Sutton, E. K.
2017-12-01
A chemical release experiment conducted at the White Sands Missile Range in February 2015 consisted of firing of three identical canisters at different altitudes along a near-vertical trajectory, creating a large structured cloud after diffusion and expansion of the three initial dispersals. Dedicated optical observations from near the launch site and a remote site allow determination of the position and motion of the extended optical cloud as a function of time, while photographs captured and posted by members of the general public provide additional look angles to constrain the cloud shape in more detail. We compare the observed drift and evolution of the cloud with empirical and theoretical models of the neutral winds to examine the altitudinal shear in the neutral winds and their effects on the motion and shape of the extended optical cloud.
NASA Astrophysics Data System (ADS)
Kuilman, Maartje; Karlsson, Bodil; Benze, Susanne; Megner, Linda
2017-11-01
Ice particles in the summer mesosphere - such as those connected to noctilucent clouds and polar mesospheric summer echoes - have since their discovery contributed to the uncovering of atmospheric processes on various scales ranging from interactions on molecular levels to global scale circulation patterns. While there are numerous model studies on mesospheric ice microphysics and how the clouds relate to the background atmosphere, there are at this point few studies using comprehensive global climate models to investigate observed variability and climatology of noctilucent clouds. In this study it is explored to what extent the large-scale inter-annual characteristics of noctilucent clouds are captured in a 30-year run - extending from 1979 to 2009 - of the nudged and extended version of the Canadian Middle Atmosphere Model (CMAM30). To construct and investigate zonal mean inter-seasonal variability in noctilucent cloud occurrence frequency and ice mass density in both hemispheres, a simple cloud model is applied in which it is assumed that the ice content is solely controlled by the local temperature and water vapor volume mixing ratio. The model results are compared to satellite observations, each having an instrument-specific sensitivity when it comes to detecting noctilucent clouds. It is found that the model is able to capture the onset dates of the NLC seasons in both hemispheres as well as the hemispheric differences in NLCs, such as weaker NLCs in the SH than in the NH and differences in cloud height. We conclude that the observed cloud climatology and zonal mean variability are well captured by the model.
Probing the magnetic topologies of magnetic clouds by means of solar energetic particles
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Reames, D. V.
1991-01-01
Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... of Sodium Hexametaphosphate From the People's Republic of China: Extension of Preliminary Results... administrative review of sodium hexametaphosphate (``sodium hex'') from the People's Republic of China (``PRC... duty order on sodium hex from the PRC.\\1\\ On November 29, 2011 the Department extended the deadline for...
Bustamante, P; Pena, M A; Barra, J
2000-01-20
Sodium salts are often used in drug formulation but their partial solubility parameters are not available. Sodium alters the physical properties of the drug and the knowledge of these parameters would help to predict adhesion properties that cannot be estimated using the solubility parameters of the parent acid. This work tests the applicability of the modified extended Hansen method to determine partial solubility parameters of sodium salts of acidic drugs containing a single hydrogen bonding group (ibuprofen, sodium ibuprofen, benzoic acid and sodium benzoate). The method uses a regression analysis of the logarithm of the experimental mole fraction solubility of the drug against the partial solubility parameters of the solvents, using models with three and four parameters. The solubility of the drugs was determined in a set of solvents representative of several chemical classes, ranging from low to high solubility parameter values. The best results were obtained with the four parameter model for the acidic drugs and with the three parameter model for the sodium derivatives. The four parameter model includes both a Lewis-acid and a Lewis-base term. Since the Lewis acid properties of the sodium derivatives are blocked by sodium, the three parameter model is recommended for these kind of compounds. Comparison of the parameters obtained shows that sodium greatly changes the polar parameters whereas the dispersion parameter is not much affected. Consequently the total solubility parameters of the salts are larger than for the parent acids in good agreement with the larger hydrophilicity expected from the introduction of sodium. The results indicate that the modified extended Hansen method can be applied to determine the partial solubility parameters of acidic drugs and their sodium salts.
Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D T; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung
2014-01-01
Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/.
Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D. T.; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung
2014-01-01
Background Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. Results We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. Conclusions CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. Availability: CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/. PMID:24897343
The sodium exosphere and magnetosphere of Mercury
NASA Astrophysics Data System (ADS)
Ip, W.-H.
1986-05-01
Following the recent optical discovery of intense sodium D-line emission from Mercury, the scenario of an extended exosphere of sodium and other metallic atoms is explored. It is shown that the strong effect of solar radiation pressure acceleration would permit the escape of Na atoms from Mercury's surface even if they are ejected at a velocity lower than the surface escape velocity. Fast photoionization of the Na atoms is effective in limiting the tailward extension of the sodium exosphere, however. The subsequent loss of the photoions to the magnetosphere could be a significant source of the magnetospheric plasma. The recirculation of the magnetospheric charged particles to the planetary surface could also play an important role in maintaining an extended sodium exosphere as well as a magnetosphere of sputtered metallic ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heng, Kevin, E-mail: kevin.heng@csh.unibe.ch
We present a dimensionless index that quantifies the degree of cloudiness of the atmosphere of a transiting exoplanet. Our cloudiness index is based on measuring the transit radii associated with the line center and wing of the sodium or potassium line. In deriving this index, we revisited the algebraic formulae for inferring the isothermal pressure scale height from transit measurements. We demonstrate that the formulae of Lecavelier et al. and Benneke and Seager are identical: the former is inferring the temperature while assuming a value for the mean molecular mass and the latter is inferring the mean molecular mass whilemore » assuming a value for the temperature. More importantly, these formulae cannot be used to distinguish between cloudy and cloud-free atmospheres. We derive values of our cloudiness index for a small sample of seven hot Saturns/Jupiters taken from Sing et al. We show that WASP-17b, WASP-31b, and HAT-P-1b are nearly cloud-free at visible wavelengths. We find the tentative trend that more irradiated atmospheres tend to have fewer clouds consisting of sub-micron-sized particles. We also derive absolute sodium and/or potassium abundances ∼10{sup 2} cm{sup −3} for WASP-17b, WASP-31b, and HAT-P-1b (and upper limits for the other objects). Higher-resolution measurements of both the sodium and potassium lines, for a larger sample of exoplanetary atmospheres, are needed to confirm or refute this trend.« less
Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds
NASA Astrophysics Data System (ADS)
WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.
2016-12-01
Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.
Impact of cirrus on the surface radiative environment at the FIRE ETLA Palisades, NY site
NASA Technical Reports Server (NTRS)
Robinson, David A.; Kukla, George; Frei, Allan
1990-01-01
FIRE Extended Time Limited Area (ETLA) observations provide year round information critical to gaining a better understanding of cloud/climate interactions. The Lamont/Rutgers team has participated in the ETLS program through the collection and analysis of shortwave and longwave downwelling irradiances at Palisades, NY. These data are providing useful information on surface radiative fluxes with respect to sky condition, solar zenith angle and season. Their utility extends to the calibration and validation of cloud/radiative models and satellite cloud and radiative retrievals. The impact cirrus clouds have on the surface radiative environment is examined using Palisades ETLA information on atmospheric transmissivities and downwelling longwave fluxes for winter and summer cirrus and clear sky episodes in 1987.
Laurora, Irene; Wang, Yuan
2016-10-01
Extended-release (ER) naproxen sodium provides pain relief for up to 24 hours with a single dose (660 mg/day). Its pharmacokinetic profile after single and multiple dosing was compared to immediate release (IR) naproxen sodium in two randomized, open-label, crossover studies, under fasting and fed conditions. Eligible healthy subjects were randomized to ER naproxen sodium 660-mg tablet once daily or IR naproxen sodium 220-mg tablet twice daily (440 mg initially, followed by 220 mg 12 hours later). Primary variables: pharmacokinetic parameters after singleday administration (day 1) and at steady state after multiple-day administration (day 6). Total exposure was comparable for both treatments under fasting and fed conditions. After fasting: peak naproxen concentrations were slightly lower with ER naproxen sodium than with IR naproxen sodium but were reached at a similar time. Fed conditions: mean peak concentrations were comparable but reached after a longer time with ER vs. IR naproxen sodium. ER naproxen sodium was well tolerated, with a similar safety profile to IR naproxen sodium. The total exposure of ER naproxen sodium (660 mg) is comparable to IR naproxen sodium (220 mg) when administered at the maximum over the counter (OTC) dose of 660-mg daily dose on a single day and over multiple days. The rate of absorption is delayed under fed conditions.
Clouds and fogs can significantly impact the concentration and distribution of atmospheric gases and aerosols through chemistry, scavenging, and transport. This presentation summarizes the representation of cloud processes in the Community Multiscale Air Quality (CMAQ) modeling ...
Clouds on Hot Jupiters Illustration
2016-10-18
Hot Jupiters are exoplanets that orbit their stars so tightly that their temperatures are extremely high, reaching over 2,400 degrees Fahrenheit (1600 Kelvin). They are also tidally locked, so one side of the planet always faces the sun and the other is in permanent darkness. Research suggests that the "dayside" is largely free of clouds, while the "nightside" is heavily clouded. This illustration represents how hot Jupiters of different temperatures and different cloud compositions might appear to a person flying over the dayside of these planets on a spaceship, based on computer modeling. Cooler planets are entirely cloudy, whereas hotter planets have morning clouds only. Clouds of different composition have different colors, whereas the clear sky is bluer than on Earth. For the hottest planets, the atmosphere is hot enough on the evening side to glow like a charcoal. Figure 1 shows an approximation of what various hot Jupiters might look like based on a combination of computer modeling and data from NASA's Kepler Space Telescope. From left to right it shows: sodium sulfide clouds (1000 to 1200 Kelvin), manganese sulfide clouds (1200 to 1600 Kelvin), magnesium silicate clouds (1600 to 1800 Kelvin), magnesium silicate and aluminum oxide clouds (1800 Kelvin) and clouds composed of magnesium silicate, aluminum oxide, iron and calcium titanate (1900 to 2200 Kelvin). http://photojournal.jpl.nasa.gov/catalog/PIA21074
Io Sodium Cloud Green-yellow Filter
1997-12-18
This image of Jupiter moon Io and its surrounding sky is shown in false color. This image was taken on Nov. 9, 1996 through the green-yellow filter of the solid state imaging CCD system aboard NASA Galileo spacecraft.
1997-12-18
This image of Jupiter moon Io and its surrounding sky is shown in false color. It was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging CCD system aboard NASA Galileo spacecraft,
A modeling analysis program for the JPL table mountain Io sodium cloud
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Goldberg, B. A.
1985-01-01
Progress and achievements in the first year are discussed in three main areas: (1) review and assessment of the massive JPL Table Mountain Io sodium cloud data set, (2) formulation and execution of a plan to perform further processing of this data set, and (3) initiation of modeling activities. The complete 1976-79 and 1981 data sets are reviewed. Particular emphasis is placed on the superior 1981 Region B/C images which provide a rich base of information for studying the structure and escape of gases from Io as well as possible east-west and magnetic longitudinal asymmetries in the plasma torus. A data processing plan is developed and is undertaken by the Multimission Image Processing Laboratory of JPL for the purpose of providing a more refined and complete data set for our modeling studies in the second year. Modeling priorities are formulated and initial progress in achieving these goals is reported.
Studies for the loss of atomic and molecular species for Io
NASA Technical Reports Server (NTRS)
Smyth, William H.
1996-01-01
A summary is presented for research undertaken, physical insight gained, and new directives identified in this project. Significant enhancements for the SO2 neutral cloud model and its dissociative products (SO, O2, O, S) as well as its application to investigating the amount of SO2+ measured by the Voyager PLS instrument in the plasma torus inside of Io's orbit are discussed. New excitation rates for UV and visible emission lines were incorporated in the O and S neutral cloud models, and the very preliminary analysis of UV observations near Io acquired in 1992 by the Hubble Space telescope is discussed. Observations for O('D) 6300 A emission near Io, preliminary reduction of these observations, and an initial assessment of these observations are presented. The analysis of 1985 sodium eclipse and emission data for Io has been completed and is contained in a paper in the Appendix. A larger data set for 1987 sodium emission observations, which will provide a new base for more detailed future studies, is described. A preliminary discussion is also presented for the likely nature of neutral gas clouds for the outer three Galilean satellites.
New framework for extending cloud chemistry in the Community Multiscale Air Quality (CMAQ) modeling
Clouds and fogs significantly impact the amount, composition, and spatial distribution of gas and particulate atmospheric species, not least of which through the chemistry that occurs in cloud droplets. Atmospheric sulfate is an important component of fine aerosol mass and in an...
SPARCCS - Smartphone-Assisted Readiness, Command and Control System
2012-06-01
and database needs. By doing this SPARCCS takes advantage of all the capabilities cloud computing has to offer, especially that of disbursed data...40092829/ Microsoft. (2011). Cloud Computing . Retrieved September 24, 2011, http ://www.microsoft.com/industry/government/guides/cloud_computing/2...Command, and Control System) to address these issues. We use smartphones in conjunction with cloud computing to extend the benefits of collaborative
Maximizing adhesion of auxin solutions to stem cuttings using sodium cellulose glycolate
USDA-ARS?s Scientific Manuscript database
Auxin solutions prepared with sodium cellulose glycolate (SCG; a thickening agent, also known as sodium carboxymethylcellulose) and applied to stem cuttings using a basal quick-dip extend the duration of exposure of cuttings to the auxin and have previously been shown to increase root number and/or ...
CO observations of dark clouds in Lupus
NASA Technical Reports Server (NTRS)
Murphy, D. C.; Cohen, R.; May, J.
1986-01-01
C-12O observations covering 170 square degrees toward the southern T Association Lupus have revealed the presence of an extended physically related complex of dark clouds which have recently formed low mass stars. The estimated mass of the clouds (about 30,000 solar masses) is comparable to that of the nearby Ophiuchus dust clouds. The Lupus clouds are projected onto a gap between two subgroups of the Scorpio-Centaurus OB association suggesting that this long accepted subgrouping may require reinterpretation.
Light Stops at Exceptional Points
NASA Astrophysics Data System (ADS)
Goldzak, Tamar; Mailybaev, Alexei A.; Moiseyev, Nimrod
2018-01-01
Almost twenty years ago, light was slowed down to less than 10-7 of its vacuum speed in a cloud of ultracold atoms of sodium. Upon a sudden turn-off of the coupling laser, a slow light pulse can be imprinted on cold atoms such that it can be read out and converted into a photon again. In this process, the light is stopped by absorbing it and storing its shape within the atomic ensemble. Alternatively, the light can be stopped at the band edge in photonic-crystal waveguides, where the group speed vanishes. Here, we extend the phenomenon of stopped light to the new field of parity-time (P T ) symmetric systems. We show that zero group speed in P T symmetric optical waveguides can be achieved if the system is prepared at an exceptional point, where two optical modes coalesce. This effect can be tuned for optical pulses in a wide range of frequencies and bandwidths, as we demonstrate in a system of coupled waveguides with gain and loss.
Secure data sharing in public cloud
NASA Astrophysics Data System (ADS)
Venkataramana, Kanaparti; Naveen Kumar, R.; Tatekalva, Sandhya; Padmavathamma, M.
2012-04-01
Secure multi-party protocols have been proposed for entities (organizations or individuals) that don't fully trust each other to share sensitive information. Many types of entities need to collect, analyze, and disseminate data rapidly and accurately, without exposing sensitive information to unauthorized or untrusted parties. Solutions based on secure multiparty computation guarantee privacy and correctness, at an extra communication (too costly in communication to be practical) and computation cost. The high overhead motivates us to extend this SMC to cloud environment which provides large computation and communication capacity which makes SMC to be used between multiple clouds (i.e., it may between private or public or hybrid clouds).Cloud may encompass many high capacity servers which acts as a hosts which participate in computation (IaaS and PaaS) for final result, which is controlled by Cloud Trusted Authority (CTA) for secret sharing within the cloud. The communication between two clouds is controlled by High Level Trusted Authority (HLTA) which is one of the hosts in a cloud which provides MgaaS (Management as a Service). Due to high risk for security in clouds, HLTA generates and distributes public keys and private keys by using Carmichael-R-Prime- RSA algorithm for exchange of private data in SMC between itself and clouds. In cloud, CTA creates Group key for Secure communication between the hosts in cloud based on keys sent by HLTA for exchange of Intermediate values and shares for computation of final result. Since this scheme is extended to be used in clouds( due to high availability and scalability to increase computation power) it is possible to implement SMC practically for privacy preserving in data mining at low cost for the clients.
NASA Astrophysics Data System (ADS)
Schüller, Lothar; Bennartz, Ralf; Fischer, Jürgen; Brenguier, Jean-Louis
2005-01-01
Algorithms are now currently used for the retrieval of cloud optical thickness and droplet effective radius from multispectral radiance measurements. This paper extends their application to the retrieval of cloud droplet number concentration, cloud geometrical thickness, and liquid water path in shallow convective clouds, using an algorithm that was previously tested with airborne measurements of cloud radiances and validated against in situ measurements of the same clouds. The retrieval is based on a stratified cloud model of liquid water content and droplet spectrum. Radiance measurements in visible and near-infrared channels of the Moderate Resolution Imaging Spectroradiometer (MODIS), which is operated from the NASA platforms Terra and Aqua, are analyzed. Because of uncertainties in the simulation of the continental surface reflectance, the algorithm is presently limited to the monitoring of the microphysical structure of boundary layer clouds over the ocean. Two MODIS scenes of extended cloud fields over the North Atlantic Ocean trade wind region are processed. A transport and dispersion model (the Hybrid Single-Particle Lagrangian Integrated Trajectory Model, HYSPLIT4) is also used to characterize the origin of the air masses and hence their aerosol regimes. One cloud field formed in an air mass that was advected from southern Europe and North Africa. It shows high values of the droplet concentration when compared with the second cloud system, which developed in a more pristine environment. The more pristine case also exhibits a higher geometrical thickness and, thus, liquid water path, which counterbalances the expected cloud albedo increase of the polluted case. Estimates of cloud liquid water path are then compared with retrievals from the Special Sensor Microwave Imager (SSM/I). SSM/I-derived liquid water paths are in good agreement with the MODIS-derived values.
Contrasting cloud composition between coupled and decoupled marine boundary layer clouds
NASA Astrophysics Data System (ADS)
Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin
2016-10-01
Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.
Temporally consistent segmentation of point clouds
NASA Astrophysics Data System (ADS)
Owens, Jason L.; Osteen, Philip R.; Daniilidis, Kostas
2014-06-01
We consider the problem of generating temporally consistent point cloud segmentations from streaming RGB-D data, where every incoming frame extends existing labels to new points or contributes new labels while maintaining the labels for pre-existing segments. Our approach generates an over-segmentation based on voxel cloud connectivity, where a modified k-means algorithm selects supervoxel seeds and associates similar neighboring voxels to form segments. Given the data stream from a potentially mobile sensor, we solve for the camera transformation between consecutive frames using a joint optimization over point correspondences and image appearance. The aligned point cloud may then be integrated into a consistent model coordinate frame. Previously labeled points are used to mask incoming points from the new frame, while new and previous boundary points extend the existing segmentation. We evaluate the algorithm on newly-generated RGB-D datasets.
NASA Technical Reports Server (NTRS)
Goldenberg, Stanley B.; Houze, Robert A., Jr.; Churchill, Dean D.
1990-01-01
The horizontal precipitation structure of cloud clusters observed over the South China Sea during the Winter Monsoon Experiment (WMONEX) is analyzed using a convective-stratiform technique (CST) developed by Adler and Negri (1988). The technique was modified by altering the method for identifying convective cells in the satellite data, accounting for the extremely cold cloud tops characteristic of the WMONEX region, and modifying the threshold infrared temperature for the boundary of the stratiform rain area. The precipitation analysis was extended to the entire history of the cloud cluster by applying the modified CST to IR imagery from geosynchronous-satellite observations. The ship and aircraft data from the later period of the cluster's lifetime make it possible to check the locations of convective and stratiform precipitation identified by the CST using in situ observations. The extended CST is considered to be effective for determining the climatology of the convective-stratiform structure of tropical cloud clusters.
Utilizing HDF4 File Content Maps for the Cloud
NASA Technical Reports Server (NTRS)
Lee, Hyokyung Joe
2016-01-01
We demonstrate a prototype study that HDF4 file content map can be used for efficiently organizing data in cloud object storage system to facilitate cloud computing. This approach can be extended to any binary data formats and to any existing big data analytics solution powered by cloud computing because HDF4 file content map project started as long term preservation of NASA data that doesn't require HDF4 APIs to access data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayer, Andrew M.; Hsu, C.; Bettenhausen, Corey
Cases of absorbing aerosols above clouds (AAC), such as smoke or mineral dust, are omitted from most routinely-processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar
CloudSat Safety Operations at Vandenberg AFB
NASA Technical Reports Server (NTRS)
Greenberg, Steve
2006-01-01
CloudSat safety operations at Vendenberg AFB is given. The topics include: 1) CloudSat Project Overview; 2) Vandenberg Ground Operations; 3) Delta II Launch Vehicle; 4) The A-Train; 5) System Safety Management; 6) CALIPSO Hazards Assessment; 7) CALIPSO Supplemental Safeguards; 8) Joint System Safety Operations; 9) Extended Stand-down; 10) Launch Delay Safety Concerns; and 11) Lessons Learned.
NASA Technical Reports Server (NTRS)
Matta, M.; Smith, S.; Baumgardner, J.; Wilson, J.; Martinis, C.; Mendillo, M.
2009-01-01
During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping "hot" component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.
The search for extended infrared emission near interacting and active galaxies
NASA Technical Reports Server (NTRS)
Appleton, Philip N.
1991-01-01
The following subject areas are covered: the search for extended far IR emission; the search for extended emission in galaxy groups; a brief review of the flattening algorithm; the target groups; extended emission from groups and intergalactic HI clouds; and morphological image processing.
Application of cellular automata approach for cloud simulation and rendering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher Immanuel, W.; Paul Mary Deborrah, S.; Samuel Selvaraj, R.
Current techniques for creating clouds in games and other real time applications produce static, homogenous clouds. These clouds, while viable for real time applications, do not exhibit an organic feel that clouds in nature exhibit. These clouds, when viewed over a time period, were able to deform their initial shape and move in a more organic and dynamic way. With cloud shape technology we should be able in the future to extend to create even more cloud shapes in real time with more forces. Clouds are an essential part of any computer model of a landscape or an animation ofmore » an outdoor scene. A realistic animation of clouds is also important for creating scenes for flight simulators, movies, games, and other. Our goal was to create a realistic animation of clouds.« less
Outer satellite atmospheres: Their nature and planetary interactions
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1984-01-01
Significant insights regarding the nature and interactions of Io and the planetary magnetosphere were gained through modeling studies of the spatial morphology and brightness of the Io sodium cloud. East-west intensity asymmetries in Region A are consistent with an east-west electric field and the offset of the magnetic and planetary-spin axes. East-west orbital asymmetries and the absolute brightness of Region B suggest a low-velocity (3 km/sec) satellite source of 1 to 2 x 10(26) sodium atoms/sec. The time-varying spatial structure of the sodium directional features in near Region C provides direct evidence for a magnetospheric-wind-driven escape mechanism with a high-velocity (20 km/sec) source of 1 x 10(26) atoms/sec and a flux distribution enhanced at the equator relative to the poles. A model for the Io potassium cloud is presented and analysis of data suggests a low velocity source rate of 5 x 10(24) atoms/sec. To understand the role of Titan and non-Titan sources for H atoms in the Saturn system, the lifetime of hydrogen in the planetary magnetosphere was incorporated into the earlier Titan torus model of Smyth (1981) and its expected impact discussed. A particle trajectory model for cometary hydrogen is presented and applied to the Lyman-alpha distribution of Comet Kohoutek (1973XII).
43 CFR 3505.61 - May BLM extend the term of my prospecting permit?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false May BLM extend the term of my prospecting....61 May BLM extend the term of my prospecting permit? We may extend prospecting permits for phosphate... additional 2 years. We cannot extend sodium and sulphur prospecting permits. ...
43 CFR 3505.61 - May BLM extend the term of my prospecting permit?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false May BLM extend the term of my prospecting....61 May BLM extend the term of my prospecting permit? We may extend prospecting permits for phosphate... additional 2 years. We cannot extend sodium and sulphur prospecting permits. ...
43 CFR 3505.61 - May BLM extend the term of my prospecting permit?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false May BLM extend the term of my prospecting....61 May BLM extend the term of my prospecting permit? We may extend prospecting permits for phosphate... additional 2 years. We cannot extend sodium and sulphur prospecting permits. ...
RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds
NASA Technical Reports Server (NTRS)
Vogelmann, Andrew M.; McFarquhar, Greg M.; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, Graham; Long, Charles N.; Jonsson, Haflidi H.; Bucholtz, Anthony; Collins, Don R.;
2012-01-01
Small boundary-layer clouds are ubiquitous over many parts of the globe and strongly influence the Earths radiative energy balance. However, our understanding of these clouds is insufficient to solve pressing scientific problems. For example, cloud feedback represents the largest uncertainty amongst all climate feedbacks in general circulation models (GCM). Several issues complicate understanding boundary-layer clouds and simulating them in GCMs. The high spatial variability of boundary-layer clouds poses an enormous computational challenge, since their horizontal dimensions and internal variability occur at spatial scales much finer than the computational grids used in GCMs. Aerosol-cloud interactions further complicate boundary-layer cloud measurement and simulation. Additionally, aerosols influence processes such as precipitation and cloud lifetime. An added complication is that at small scales (order meters to 10s of meters) distinguishing cloud from aerosol is increasingly difficult, due to the effects of aerosol humidification, cloud fragments and photon scattering between clouds.
ATLAS user analysis on private cloud resources at GoeGrid
NASA Astrophysics Data System (ADS)
Glaser, F.; Nadal Serrano, J.; Grabowski, J.; Quadt, A.
2015-12-01
User analysis job demands can exceed available computing resources, especially before major conferences. ATLAS physics results can potentially be slowed down due to the lack of resources. For these reasons, cloud research and development activities are now included in the skeleton of the ATLAS computing model, which has been extended by using resources from commercial and private cloud providers to satisfy the demands. However, most of these activities are focused on Monte-Carlo production jobs, extending the resources at Tier-2. To evaluate the suitability of the cloud-computing model for user analysis jobs, we developed a framework to launch an ATLAS user analysis cluster in a cloud infrastructure on demand and evaluated two solutions. The first solution is entirely integrated in the Grid infrastructure by using the same mechanism, which is already in use at Tier-2: A designated Panda-Queue is monitored and additional worker nodes are launched in a cloud environment and assigned to a corresponding HTCondor queue according to the demand. Thereby, the use of cloud resources is completely transparent to the user. However, using this approach, submitted user analysis jobs can still suffer from a certain delay introduced by waiting time in the queue and the deployed infrastructure lacks customizability. Therefore, our second solution offers the possibility to easily deploy a totally private, customizable analysis cluster on private cloud resources belonging to the university.
STABILITY OF GAS CLOUDS IN GALACTIC NUCLEI: AN EXTENDED VIRIAL THEOREM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xian; Cuadra, Jorge; Amaro-Seoane, Pau, E-mail: xchen@astro.puc.cl, E-mail: jcuadra@astro.puc.cl, E-mail: Pau.Amaro-Seoane@aei.mpg.de
2016-03-10
Cold gas entering the central 1–10{sup 2} pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulatemore » a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.« less
Self-reports of salt intake by 10- to 18-year-olds: relationship to urinary sodium excretion.
Murphy, J K; Alpert, B S; Stapleton, F B; Miller, L A; Willey, E S; Walker, S S; Nanney, G C
1990-03-01
Our data indicated that self-reports of consumption of salty foods by children and adolescents were associated with 24-hour urinary sodium excretion. Specifically, youths 10 to 18 years of age who selected a poster depicting high-sodium foods excreted significantly more sodium than youths who selected a poster depicting low-sodium foods. Future research is needed to refine simplified self-report measures, to corroborate the validity of the measures, and to extend the studies to other samples, e.g., younger children.
Newton, Robert G.
1977-01-01
The intermediate heat transport system for a sodium-cooled fast breeder reactor includes a device for rapidly draining the sodium therefrom should a sodium-water reaction occur within the system. This device includes a rupturable member in a drain line in the system and means for cutting a large opening therein and for positively removing the sheared-out portion from the opening cut in the rupturable member. According to the preferred embodiment of the invention the rupturable member includes a solid head seated in the end of the drain line having a rim extending peripherally therearound, the rim being clamped against the end of the drain line by a clamp ring having an interior shearing edge, the bottom of the rupturable member being convex and extending into the drain line. Means are provided to draw the rupturable member away from the drain line against the shearing edge to clear the drain line for outflow of sodium therethrough.
NASA Astrophysics Data System (ADS)
Nelson, Peter N.; Taylor, Richard A.
2015-03-01
A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state 13C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc > 8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.
Cloud-based MOTIFSIM: Detecting Similarity in Large DNA Motif Data Sets.
Tran, Ngoc Tam L; Huang, Chun-Hsi
2017-05-01
We developed the cloud-based MOTIFSIM on Amazon Web Services (AWS) cloud. The tool is an extended version from our web-based tool version 2.0, which was developed based on a novel algorithm for detecting similarity in multiple DNA motif data sets. This cloud-based version further allows researchers to exploit the computing resources available from AWS to detect similarity in multiple large-scale DNA motif data sets resulting from the next-generation sequencing technology. The tool is highly scalable with expandable AWS.
The Distant Sodium Tail of Mercury
NASA Technical Reports Server (NTRS)
Potter, A. E.; Killen, R. M.; Morgan, T. H.
2001-01-01
Models of the sodium atmosphere of Mercury predict the possible existence of a cornet-like sodium tail. Detection and mapping of the predicted sodium tail would provide quantitative data on the energy of the process that produces sodium atoms from the planetary surface. Previous efforts to detect the sodium tail by means of observations done during daylight hours have been only partially successful because scattered sunlight obscured the weak sodium emissions in the tail. However, at greatest eastern elongation around the March equinox in the northern hemisphere, Mercury can be seen as an evening star in astronomical twilight. At this time, the intensity of scattered sunlight is low enough that sodium emissions as low as 500 Rayleighs can be detected. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, Minghua; Valero, Francisco P. J.; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Zender, Charles S.
1998-01-01
We have extended the interpretations made in two prior studies of the aircraft shortwave radiation measurements that were obtained as part of the Atmospheric Radiation Measurements (ARM) Enhanced Shortwave Experiments (ARESE). These extended interpretations use the 500 nm (10 nm bandwidth) measurements to minimize sampling errors in the broadband measurements. It is indicated that the clouds present during this experiment absorb more shortwave radiation than predicted by clear skies and thus by theoretical models, that at least some (less than or equal to 20%) of this enhanced cloud absorption occurs at wavelengths less than 680 nm, and that the observed cloud absorption does not appear to be an artifact of sampling errors nor of instrument calibration errors.
NASA Astrophysics Data System (ADS)
Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.
2014-12-01
The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.
Science in the cloud (SIC): A use case in MRI connectomics.
Kiar, Gregory; Gorgolewski, Krzysztof J; Kleissas, Dean; Roncal, William Gray; Litt, Brian; Wandell, Brian; Poldrack, Russel A; Wiener, Martin; Vogelstein, R Jacob; Burns, Randal; Vogelstein, Joshua T
2017-05-01
Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called 'science in the cloud' (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended. © The Author 2017. Published by Oxford University Press.
Enabling Earth Science Through Cloud Computing
NASA Technical Reports Server (NTRS)
Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian
2012-01-01
Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.
ERIC Educational Resources Information Center
Gradel, Kathleen; Edson, Alden J.
2012-01-01
This article is based on the premise that face-to-face training can be augmented with cloud-based technology tools, to potentially extend viable training supports as higher education staff and faculty implement new content/skills in their jobs and classrooms. There are significant benefits to harnessing cloud-based tools that can facilitate both…
Research of centroiding algorithms for extended and elongated spot of sodium laser guide star
NASA Astrophysics Data System (ADS)
Shao, Yayun; Zhang, Yudong; Wei, Kai
2016-10-01
Laser guide stars (LGSs) increase the sky coverage of astronomical adaptive optics systems. But spot array obtained by Shack-Hartmann wave front sensors (WFSs) turns extended and elongated, due to the thickness and size limitation of sodium LGS, which affects the accuracy of the wave front reconstruction algorithm. In this paper, we compared three different centroiding algorithms , the Center-of-Gravity (CoG), weighted CoG (WCoG) and Intensity Weighted Centroid (IWC), as well as those accuracies for various extended and elongated spots. In addition, we compared the reconstructed image data from those three algorithms with theoretical results, and proved that WCoG and IWC are the best wave front reconstruction algorithms for extended and elongated spot among all the algorithms.
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Mundell, Carole G.; Karovska, Margarita; Zezas, Andreas
2011-07-01
We have studied the X-ray emission within the inner ~150 pc radius of NGC 4151 by constructing high spatial resolution emission line images of blended O VII, O VIII, and Ne IX. These maps show extended structures that are spatially correlated with the radio outflow and optical [O III] emission. We find strong evidence for jet-gas cloud interaction, including morphological correspondences with regions of X-ray enhancement, peaks of near-infrared [Fe II] emission, and optical clouds. In these regions, moreover, we find evidence of elevated Ne IX/O VII ratios; the X-ray emission of these regions also exceeds that expected from nuclear photoionization. Spectral fitting reveals the presence of a collisionally ionized component. The thermal energy of the hot gas suggests that >~ 0.1% of the estimated jet power is deposited into the host interstellar medium through interaction between the radio jet and the dense medium of the circumnuclear region. We find possible pressure equilibrium between the collisionally ionized hot gas and the photoionized line-emitting cool clouds. We also obtain constraints on the extended iron and silicon fluorescent emission. Both lines are spatially unresolved. The upper limit on the contribution of an extended emission region to the Fe Kα emission is <~ 5% of the total, in disagreement with a previous claim that 65% of the Fe Kα emission originates in the extended narrow line region.
Extending 3D Near-Cloud Corrections from Shorter to Longer Wavelengths
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Evans, K. Frank; Varnai, Tamas; Guoyong, Wen
2014-01-01
Satellite observations have shown a positive correlation between cloud amount and aerosol optical thickness (AOT) that can be explained by the humidification of aerosols near clouds, and/or by cloud contamination by sub-pixel size clouds and the cloud adjacency effect. The last effect may substantially increase reflected radiation in cloud-free columns, leading to overestimates in the retrieved AOT. For clear-sky areas near boundary layer clouds the main contribution to the enhancement of clear sky reflectance at shorter wavelengths comes from the radiation scattered into clear areas by clouds and then scattered to the sensor by air molecules. Because of the wavelength dependence of air molecule scattering, this process leads to a larger reflectance increase at shorter wavelengths, and can be corrected using a simple two-layer model. However, correcting only for molecular scattering skews spectral properties of the retrieved AOT. Kassianov and Ovtchinnikov proposed a technique that uses spectral reflectance ratios to retrieve AOT in the vicinity of clouds; they assumed that the cloud adjacency effect influences the spectral ratio between reflectances at two wavelengths less than it influences the reflectances themselves. This paper combines the two approaches: It assumes that the 3D correction for the shortest wavelength is known with some uncertainties, and then it estimates the 3D correction for longer wavelengths using a modified ratio method. The new approach is tested with 3D radiances simulated for 26 cumulus fields from Large-Eddy Simulations, supplemented with 40 aerosol profiles. The results showed that (i) for a variety of cumulus cloud scenes and aerosol profiles over ocean the 3D correction due to cloud adjacency effect can be extended from shorter to longer wavelengths and (ii) the 3D corrections for longer wavelengths are not very sensitive to unbiased random uncertainties in the 3D corrections at shorter wavelengths.
Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Li, Chengyuan; de Grijs, Richard; Deng, Licai; Milone, Antonino P.
2017-08-01
An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color-magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet-visual CMDs of four Large and Small Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35-50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.
17 Years of Cloud Heights from Terra, and Beyond
NASA Astrophysics Data System (ADS)
Davies, R.
2017-12-01
The effective cloud height, H, is the integral of observed cloud-top heights, weighted by their frequency of occurrence. Here we look at changes in the effective cloud height, H', as measured by the Multiangle Imaging Spectroradiometer (MISR) on the first Earth Observing System platform, Terra. Terra was launched in December 1999, and now has over 17 years of consistently measured climate records. Globally, HG' has an important influence on Earth's climate, whereas regionally, HR' is a useful measure of low frequency changes in circulation patterns. MISR has a sampling error in the annual mean HG' of ≈11 m, allowing fairly small interannual variations to be detected. This paper extends the previous 15-year summary that showed significant differences in the long term mean hemispheric cloud height changes. Also of interest are the correlations in tropical cloud height changes and related teleconnections. The largest ephemeral values in the annual HR' [over 1.5 km] are noted over the Central Pacific and the Maritime Continent. These changes are strongly anticorrelated with each other, being directly related to changes in ENSO. They are also correlated with the largest ephemeral changes in HG'. Around the equator, we find at least four distinct centres of similar fluctuations in cloud height. This paper examines the relative time dependence of these regional height changes, separately for La Niña and El Niño events, and stresses the value of extending the time series of uniformly measured cloud heights from space beyond EOS-Terra.
NASA Technical Reports Server (NTRS)
Fairall, C. W.; Hare, J. E.; Snider, Jack B.
1990-01-01
As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.
Pietrasik, Z; Gaudette, N J; Johnston, S P
2017-07-01
The effects of high pressure processing (HPP; 600MPa for 3min at 8°C) on the quality and shelf life of reduced sodium naturally-cured wieners was studied. HPP did not negatively impact processing characteristics and assisted in extending shelf life of all wiener treatments up to a 12week storage period. At week 8, HPP wieners received higher acceptability scores, indicating HPP can effectively extend the sensory quality of products, including sodium reduced formulations containing natural forms of nitrite. Substitution of 50% NaCl with modified KCl had negative effect on textural characteristics of conventionally cured wieners but not those processed with celery powder as a source of nitrite. Celery powder favorably affected hydration of textural properties of wieners, and consumer acceptability of juiciness and texture was higher compared to nitrite. Sodium reduction, independent of curing agent, negatively impacted flavor acceptability, while only nitrite containing reduced sodium wieners scored significantly lower than both regular salt wieners for texture, juiciness and saltiness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automating NEURON Simulation Deployment in Cloud Resources.
Stockton, David B; Santamaria, Fidel
2017-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.
Automating NEURON Simulation Deployment in Cloud Resources
Santamaria, Fidel
2016-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the Open-Stack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model. PMID:27655341
Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Christensen, M. W.; Suzuki, K.; Zambri, B.; Stephens, G. L.
2014-10-01
Aerosol influences on clouds are a major source of uncertainty to our understanding of forced climate change. Increased aerosol can enhance solar reflection from clouds countering greenhouse gas warming. Recently, this indirect effect has been extended from water droplet clouds to other types including mixed-phase clouds. Aerosol effects on mixed-phase clouds are important because of their fundamental role on sea ice loss and polar climate change, but very little is known about aerosol effects on these clouds. Here we provide the first analysis of the effects of aerosol emitted from ship stacks into mixed-phase clouds. Satellite observations of solar reflection in numerous ship tracks reveal that cloud albedo increases 5 times more in liquid clouds when polluted and persist 2 h longer than in mixed-phase clouds. These results suggest that seeding mixed-phase clouds via shipping aerosol is unlikely to provide any significant counterbalancing solar radiative cooling effects in warming polar regions.
Identification of Absorption Features in an Extrasolar Planet Atmosphere
NASA Astrophysics Data System (ADS)
Barman, T.
2007-06-01
Water absorption is identified in the atmosphere of HD 209458b by comparing models for the planet's transmitted spectrum to recent, multiwavelength, eclipse-depth measurements (from 0.3 to 1 μm) published by Knutson et al. A cloud-free model that includes solar abundances, rainout of condensates, and photoionization of sodium and potassium is in good agreement with the entire set of eclipse-depth measurements from the ultraviolet to near-infrared. Constraints are placed on condensate removal by gravitational settling, the bulk metallicity, and the redistribution of absorbed stellar flux. Comparisons are also made to the Charbonneau et al. sodium measurements.
Microbubble cloud characterization by nonlinear frequency mixing.
Cavaro, M; Payan, C; Moysan, J; Baqué, F
2011-05-01
In the frame of the fourth generation forum, France decided to develop sodium fast nuclear reactors. French Safety Authority requests the associated monitoring of argon gas into sodium. This implies to estimate the void fraction, and a histogram indicating the bubble population. In this context, the present letter studies the possibility of achieving an accurate determination of the histogram with acoustic methods. A nonlinear, two-frequency mixing technique has been implemented, and a specific optical device has been developed in order to validate the experimental results. The acoustically reconstructed histograms are in excellent agreement with those obtained using optical methods.
NASA Astrophysics Data System (ADS)
Lin, Qinhao; Zhang, Guohua; Peng, Long; Bi, Xinhui; Wang, Xinming; Brechtel, Fred J.; Li, Mei; Chen, Duohong; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen
2017-07-01
To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. ), southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC), potassium-rich (K-rich), amine, dust, Pb, Fe, organic carbon (OC), sodium-rich (Na-rich) and Other
. The largest fraction of the total cloud residues was the aged EC type (49.3 %), followed by the K-rich type (33.9 %). Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF) of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5-4.1 %) to the total cloud residues. Higher fraction of nitrate (88-89 %) was found in the dust and Na-rich cloud residues relative to sulfate (41-42 %) and ammonium (15-23 %). Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.
Heydari, Rouhollah; Elyasi, Najmeh S
2014-10-01
A novel, simple, and effective ion-pair cloud-point extraction coupled with a gradient high-performance liquid chromatography method was developed for determination of thiamine (vitamin B1 ), niacinamide (vitamin B3 ), pyridoxine (vitamin B6 ), and riboflavin (vitamin B2 ) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion-pair formation approach between these ionizable analytes and 1-heptanesulfonic acid sodium salt as an ion-pairing agent. Influential variables on the ion-pair cloud-point extraction efficiency, such as the ion-pairing agent concentration, ionic strength, pH, volume of Triton X-100, extraction temperature, and incubation time have been fully evaluated and optimized. Water-soluble vitamins were successfully extracted by 1-heptanesulfonic acid sodium salt (0.2% w/v) as ion-pairing agent with Triton X-100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r(2) > 0.9916) and precision in the concentration ranges of 1-50 μg/mL for thiamine and niacinamide, 5-100 μg/mL for pyridoxine, and 0.5-20 μg/mL for riboflavin. The recoveries were in the range of 78.0-88.0% with relative standard deviations ranging from 6.2 to 8.2%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Richardson, I. G.; Burlaga, L. F.; Lepping, R. P.; Osherovich, V. A.
1993-01-01
Simultaneous ISEE 3 and IMP 8 spacecraft observations of magnetic fields and flow anisotropies of solar energetic protons and electrons during the passage of an interplanetary magnetic cloud show various particle signature differences at the two spacecraft. These differences are interpretable in terms of the magnetic line topology of the cloud, the connectivity of the cloud field lines to the solar surface, and the interconnection between the magnetic fields of the magnetic clouds and of the earth. These observations are consistent with a magnetic cloud model in which these mesoscale configurations are curved magnetic flux ropes attached at both ends to the sun's surface, extending out to 1 AU.
Arcmimute scale HI and IRAS observations toward high latitude cloud G86.5+59.6
NASA Technical Reports Server (NTRS)
Martin, Peter G.; Rogers, C.; Reach, W. T.; Dewdney, P. E.; Heiles, C. E.
1994-01-01
G86.5+59.6 is a degree-sized high latitude cloud originally selected for investigation by Heiles, Reach, and Koo (1988) on the basis of its appearance on the IRAS Skyflux images at 60 and 100 micrometers. Because of the interesting possibility that this is an intermediate velocity cloud colliding with HI in the Galactic plane, we have examined this region further, both at low resolution over an extended field to provide some context and at higher (arcminute) resolution within the cloud.
NASA Astrophysics Data System (ADS)
Nimnuan, P.; Janjai, S.; Nunez, M.; Pratummasoot, N.; Buntoung, S.; Charuchittipan, D.; Chanyatham, T.; Chantraket, P.; Tantiplubthong, N.
2017-08-01
This paper presents an algorithm for deriving the effective droplet radius and optical depth of liquid water clouds using ground-based measurements, aircraft observations and an adiabatic model of cloud liquid water. The algorithm derives cloud effective radius and cloud optical depth over a tropical site at Omkoi (17.80°N, 98.43°E), Thailand. Monthly averages of cloud optical depth are highest in April (54.5), which is the month with the lowest average cloud effective radius (4.2 μm), both occurring before the start of the rainy season and at the end of the high contamination period. By contrast, the monsoon period extending from May to October brings higher cloud effective radius and lower cloud optical depth to the region on average. At the diurnal scale there is a gradual increase in average cloud optical depth and decrease in cloud effective radius as the day progresses.
Coherent forward broadening in cold atom clouds
NASA Astrophysics Data System (ADS)
Sutherland, R. T.; Robicheaux, F.
2016-02-01
It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.
Tropical High Cloud Fraction Controlled by Cloud Lifetime Rather Than Clear-sky Convergence
NASA Astrophysics Data System (ADS)
Seeley, J.; Jeevanjee, N.; Romps, D. M.
2016-12-01
Observations and simulations show a peak in cloud fraction below the tropopause. This peak is usually attributed to a roughly co-located peak in radiatively-driven clear-sky convergence, which is presumed to force convective detrainment and thus promote large cloud fraction. Using simulations of radiative-convective equilibrium forced by various radiative cooling profiles, we refute this mechanism by showing that an upper-tropospheric peak in cloud fraction persists even in simulations with no peak in clear-sky convergence. Instead, cloud fraction profiles seem to be controlled by cloud lifetimes — i.e., how long it takes for clouds to dissipate after they have detrained. A simple model of cloud evaporation shows that the small saturation deficit in the upper troposphere greatly extends cloud lifetimes there, while the large saturation deficit in the lower troposphere causes condensate to evaporate quickly. Since cloud mass flux must go to zero at the tropopause, a peak in cloud fraction emerges at a "sweet spot" below the tropopause where cloud lifetimes are long and there is still sufficient mass flux to be detrained.
Metallization pattern on solid electrolyte or porous support of sodium battery process
Kim, Jin Yong; Li, Guosheng; Lu, Xiaochuan; Sprenkle, Vincent L.; Lemmon, John P.
2016-05-31
A new battery configuration and process are detailed. The battery cell includes a solid electrolyte configured with an engineered metallization layer that distributes sodium across the surface of the electrolyte extending the active area of the cathode in contact with the anode during operation. The metallization layer enhances performance, efficiency, and capacity of sodium batteries at intermediate temperatures at or below about 200.degree. C.
NASA Astrophysics Data System (ADS)
Nakamura, Fumitaka; Dobashi, Kazuhito; Shimoikura, Tomomi; Tanaka, Tomohiro; Onishi, Toshikazu
2017-03-01
We present the results of wide-field 12CO (J=2{--}1) and 13CO (J=2{--}1) observations toward the Aquila Rift and Serpens molecular cloud complexes (25^\\circ < l< 33^\\circ and 1^\\circ < b< 6^\\circ ) at an angular resolution of 3.‧4 (≈ 0.25 pc) and at a velocity resolution of 0.079 km s-1 with velocity coverage of -5 {km} {{{s}}}-1< {V}{LSR}< 35 {km} {{{s}}}-1. We found that the 13CO emission better traces the structures seen in the extinction map, and derived the {X}{13{CO}}-factor of this region. Applying SCIMES to the 13CO data cube, we identified 61 clouds and derived their mass, radii, and line widths. The line width-radius relation of the identified clouds basically follows those of nearby molecular clouds. The majority of the identified clouds are close to virial equilibrium, although the dispersion is large. By inspecting the 12CO channel maps by eye, we found several arcs that are spatially extended to 0.°2-3° in length. In the longitude-velocity diagrams of 12CO, we also found two spatially extended components that appear to converge toward Serpens South and the W40 region. The existence of two components with different velocities and arcs suggests that large-scale expanding bubbles and/or flows play a role in the formation and evolution of the Serpens South and W40 cloud.
Testing the Two-Layer Model for Correcting Clear Sky Reflectance near Clouds
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Evans, Frank; Varnai, Tamas; Levy, Rob
2015-01-01
A two-layer model (2LM) was developed in our earlier studies to estimate the clear sky reflectance enhancement due to cloud-molecular radiative interaction at MODIS at 0.47 micrometers. Recently, we extended the model to include cloud-surface and cloud-aerosol radiative interactions. We use the LES/SHDOM simulated 3D true radiation fields to test the 2LM for reflectance enhancement at 0.47 micrometers. We find: The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; the cloud-molecular interaction alone accounts for 70 percent of the enhancement; the cloud-surface interaction accounts for 16 percent of the enhancement; the cloud-aerosol interaction accounts for an additional 13 percent of the enhancement. We conclude that the 2LM is simple to apply and unbiased.
Regional Impacts of extending inorganic and organic cloud chemistry with AQCHEM-KMT
Starting with CMAQ version 5.1, AQCHEM-KMT has been offered as a readily expandable option for cloud chemistry via application of the Kinetic PreProcessor (KPP). AQCHEM-KMT treats kinetic mass transfer between the gas and aqueous phases, ionization, chemical kinetics, droplet sc...
NASA Astrophysics Data System (ADS)
Yagi, Masafumi; Yoshida, Michitoshi; Komiyama, Yutaka; Kashikawa, Nobunari; Furusawa, Hisanori; Okamura, Sadanori; Graham, Alister W.; Miller, Neal A.; Carter, David; Mobasher, Bahram; Jogee, Shardha
2010-12-01
We present images of extended Hα clouds associated with 14 member galaxies in the Coma cluster obtained from deep narrowband imaging observations with the Suprime-Cam at the Subaru Telescope. The parent galaxies of the extended Hα clouds are distributed farther than 0.2 Mpc from the peak of the X-ray emission of the cluster. Most of the galaxies are bluer than g - r ≈ 0.5 and they account for 57% of the blue (g - r < 0.5) bright (r < 17.8 mag) galaxies in the central region of the Coma cluster. They reside near the red- and blueshifted edges of the radial velocity distribution of Coma cluster member galaxies. Our findings suggest that most of the parent galaxies were recently captured by the Coma cluster potential and are now infalling toward the cluster center with their disk gas being stripped off and producing the observed Hα clouds. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Comparing the Atmospheric Losses at Io and Europa
NASA Astrophysics Data System (ADS)
Dols, V. J.; Bagenal, F.; Crary, F. J.; Cassidy, T.
2017-12-01
At Io and Europa, the interaction of the Jovian plasma with the moon atmosphere leads to a significant loss of atomic/molecular neutrals and ions to space. The processes that lead to atmospheric escape are diverse: atmospheric sputtering, molecular dissociation, molecular ion recombination, Jeans escape etc. Each process leads to neutrals escaping at different velocities (i.e. electron impact dissociation leads to very slow atomic neutrals, sputtering might eject faster molecular neutrals). Some neutrals will be ejected out of the Jovian system; others will form extended neutral clouds along the orbit of the moons. These atomic/molecular extended neutral clouds are probably the main source of plasma for the Jovian magnetosphere. They are difficult to observe directly thus their composition and density are still poorly constrained. A future modeling of the formation of these extended clouds requires an estimate of their atmospheric sources. We estimate the atmospheric losses at Io and Europa for each loss process with a multi-species chemistry model, using a prescribed atmospheric distribution consistent with the observations. We compare the neutral losses at Io and Europa.
NASA Technical Reports Server (NTRS)
Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.
1984-01-01
Summary studies are presented for the entire cloud observation archieve from the NASA Global Atmospheric Sampling Program (GASP). Studies are also presented for GASP particle concentration data gathered concurrently with the cloud observations. Cloud encounters are shown on about 15 percent of the data samples overall, but the probability of cloud encounter is shown to vary significantly with altitude, latitude, and distance from the tropopause. Several meteorological circulation features are apparent in the latitudinal distribution of cloud cover, and the cloud encounter statistics are shown to be consistent with the classical mid-latitude cyclone model. Observations of clouds spaced more closely than 90 minutes are shown to be statistically dependent. The statistics for cloud and particle encounter are utilized to estimate the frequency of cloud encounter on long range airline routes, and to assess the probability and extent of laminar flow loss due to cloud or particle encounter by aircraft utilizing laminar flow control (LFC). It is shown that the probability of extended cloud encounter is too low, of itself, to make LFC impractical.
Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengyuan; De Grijs, Richard; Deng, Licai
An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color–magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet–visual CMDs of four Large and Smallmore » Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35–50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.« less
Coherent Forward Broadening in Cold Atom Clouds
NASA Astrophysics Data System (ADS)
Sutherland, R. T.; Robicheaux, Francis
2016-05-01
It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.
Exploration of cloud computing late start LDRD #149630 : Raincoat. v. 2.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Echeverria, Victor T.; Metral, Michael David; Leger, Michelle A.
This report contains documentation from an interoperability study conducted under the Late Start LDRD 149630, Exploration of Cloud Computing. A small late-start LDRD from last year resulted in a study (Raincoat) on using Virtual Private Networks (VPNs) to enhance security in a hybrid cloud environment. Raincoat initially explored the use of OpenVPN on IPv4 and demonstrates that it is possible to secure the communication channel between two small 'test' clouds (a few nodes each) at New Mexico Tech and Sandia. We extended the Raincoat study to add IPSec support via Vyatta routers, to interface with a public cloud (Amazon Elasticmore » Compute Cloud (EC2)), and to be significantly more scalable than the previous iteration. The study contributed to our understanding of interoperability in a hybrid cloud.« less
The pH and ionic composition of stratiform cloud water
NASA Astrophysics Data System (ADS)
Castillo, Raymond A.; Jiusto, James E.; Mclaren, Eugene
Over 50 cloud water samples were collected during five comprehensive case studies of the water chemistry of stratiform clouds at Whiteface Mountain, New York. The water samples were analyzed for pH, conductivity and ions of sodium, potassium, magnesium, calcium, ammonium, sulfate, chloride and nitrate. Trajectory analyses and cloud condensation nucleus concentrations at 0.5 % confirmed that the air masses in all five of these cases represented continental air that was relatively clean (low aerosol concentration) for the northeystern United States. The major ions related to cloud water pH were found to be sulfate, nitrate, potassium, ammonium and calcium. The results revealed a mean hydrogen ion concentration [ H+] = 0.239 meq ℓ -1 ( σ = ± 0.21) which converts to a mean pH = 3.6 for all collected cloud samples. The low pH values are related to a normal background of nitrate ions found in the rural continental air masses plus sulfate ions largely from the industrial emissions of the midwestern United States. The [NO -3], in two of the three cases presented, demonstrates the importance of the nitrate ions' contribution to the pH of cloud water. A dependent means analysis of 40 events yielded a significant difference (0.04 level of significance), with the mean pH of precipitation (4.2) being greater than the mean pH of cloud water (4.0) for event samples. The ion concentrations indicated that the cloud rainout process contributed from 67 % to almost 100% of the total ion concentration of the precipitation. The washout process, i.e. precipitation scavenging below the cloud base, contributed considerably less than the cloud/rainout process of those total precipitation anions associated with air pollution.
NASA Astrophysics Data System (ADS)
Sudhakar, P.; Sheela, K. Anitha; Ramakrishna Rao, D.; Malladi, Satyanarayana
2016-05-01
In recent years weather modification activities are being pursued in many countries through cloud seeding techniques to facilitate the increased and timely precipitation from the clouds. In order to induce and accelerate the precipitation process clouds are artificially seeded with suitable materials like silver iodide, sodium chloride or other hygroscopic materials. The success of cloud seeding can be predicted with confidence if the precipitation process involving aerosol, the ice water balance, water vapor content and size of the seeding material in relation to aerosol in the cloud is monitored in real time and optimized. A project on the enhancement of rain fall through cloud seeding is being implemented jointly with Kerala State Electricity Board Ltd. Trivandrum, Kerala, India at the catchment areas of the reservoir of one of the Hydro electric projects. The dual polarization lidar is being used to monitor and measure the microphysical properties, the extinction coefficient, size distribution and related parameters of the clouds. The lidar makes use of the Mie, Rayleigh and Raman scattering techniques for the various measurement proposed. The measurements with the dual polarization lidar as above are being carried out in real time to obtain the various parameters during cloud seeding operations. In this paper we present the details of the multi-wavelength dual polarization lidar being used and the methodology to monitor the various cloud parameters involved in the precipitation process. The necessary retrieval algorithms for deriving the microphysical properties of clouds, aerosols characteristics and water vapor profiles are incorporated as a software package working under Lab-view for online and off line analysis. Details on the simulation studies and the theoretical model developed in this regard for the optimization of various parameters are discussed.
NASA Astrophysics Data System (ADS)
Frieswijk, W. W. F.; Shipman, R. F.
2010-06-01
Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant mode of star formation in the Galaxy. Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. Aims: The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. An accompanying paper describes the cross-identification of the identified regions with existing data, uncovering more on the nature of the reddening. Methods: We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60´´ and 90´´. The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. Results: We identify 1320 extended red regions at the higher resolution and 1589 in the lower resolution run. The linear extent of the identified regions ranges from a few arc-minutes to about a degree. Conclusions: The majority of extended red regions are associated with major molecular cloud complexes, supporting our hypothesis that the reddening is mostly due to foreground clouds and embedded objects. The reliability of the identified regions is >99.9%. Because we choose to identify object with a high reliability we can not quantify the completeness of the list of regions. Full Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A51
Stacked vapor fed amtec modules
Sievers, Robert K.
1989-01-01
The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.
A Study of Surface Temperatures, Clouds and Net Radiation
NASA Technical Reports Server (NTRS)
Dhuria, Harbans
1996-01-01
This study focused on the seasonal relationships and interactions of climate parameters such as the surface temperatures, net radiation, long wave flux, short wave flux, and clouds on a global basis. Five years of observations (December 1984 to November 1989) from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Program (ISCCP) were used to study both seasonal variations and interannual variations by use of a basic radiation budget equation. In addition, the study was extended to include an analysis of the cloud forcing due El-Nino's impact on the ERBE parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro
2013-01-01
We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. Wemore » made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.« less
Lin, Tsung-Hung; Tsung, Chen-Kun; Lee, Tian-Fu; Wang, Zeng-Bo
2017-12-03
The security is a critical issue for business purposes. For example, the cloud meeting must consider strong security to maintain the communication privacy. Considering the scenario with cloud meeting, we apply extended chaotic map to present passwordless group authentication key agreement, termed as Passwordless Group Authentication Key Agreement (PL-GAKA). PL-GAKA improves the computation efficiency for the simple group password-based authenticated key agreement (SGPAKE) proposed by Lee et al. in terms of computing the session key. Since the extended chaotic map has equivalent security level to the Diffie-Hellman key exchange scheme applied by SGPAKE, the security of PL-GAKA is not sacrificed when improving the computation efficiency. Moreover, PL-GAKA is a passwordless scheme, so the password maintenance is not necessary. Short-term authentication is considered, hence the communication security is stronger than other protocols by dynamically generating session key in each cloud meeting. In our analysis, we first prove that each meeting member can get the correct information during the meeting. We analyze common security issues for the proposed PL-GAKA in terms of session key security, mutual authentication, perfect forward security, and data integrity. Moreover, we also demonstrate that communicating in PL-GAKA is secure when suffering replay attacks, impersonation attacks, privileged insider attacks, and stolen-verifier attacks. Eventually, an overall comparison is given to show the performance between PL-GAKA, SGPAKE and related solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.
Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunitiesmore » to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.« less
Infrared radiative transfer through a regular array of cuboidal clouds
NASA Technical Reports Server (NTRS)
HARSHVARDHAN; Weinman, J. A.
1981-01-01
Infrared radiative transfer through a regular array of cuboidal clouds is studied and the interaction of the sides of the clouds with each other and the ground is considered. The theory is developed for black clouds and is extended to scattering clouds using a variable azimuth two-stream approximation. It is shown that geometrical considerations often dominate over the microphysical aspects of radiative transfer through the clouds. For example, the difference in simulated 10 micron brightness temperature between black isothermal cubic clouds and cubic clouds of optical depth 10, is less than 2 deg for zenith angles less than 50 deg for all cloud fractions when viewed parallel to the array. The results show that serious errors are made in flux and cooling rate computations if broken clouds are modeled as planiform. Radiances computed by the usual practice of area-weighting cloudy and clear sky radiances are in error by 2 to 8 K in brightness temperature for cubic clouds over a wide range of cloud fractions and zenith angles. It is also shown that the lapse rate does not markedly affect the exiting radiances for cuboidal clouds of unit aspect ratio and optical depth 10.
NASA Astrophysics Data System (ADS)
Carazzo, G.; Jellinek, M.
2010-12-01
The prolonged disruption of global air travel as a result of the 2010 Eyjafjöll eruption in Iceland underscores the value of discerning the dynamics of volcanic ash-clouds in the atmosphere. Understanding the longevity of these clouds is a particularly long standing problem that bears not only on volcanic hazards to humans but also on the nature and time scale of volcanic forcings on climate change. Since early work on the subject, the common practice to tackle the problem of cloud longevity has been to account for the dynamics of sedimentation by individual particle settling. We use 1D modeling and analog experiments of a turbulent particle-laden umbrella cloud to show that this classical view can be misleading and that the residence times of these ash-clouds in the atmosphere depends strongly on the collective behavior of the solid fraction. Diffusive convection driven by the differential diffusion of constituents altering the cloud density (ash, temperature, sulfur dioxide) may enhance particle scavenging and extend the cloud longevity over time scales orders of magnitude longer than currently expected (i.e., years rather than days for powerful eruptions). Records of this behavior can be found in real-time measurements of stratospheric post-volcanic aerosols following the 1974 Fuego, the 1982 El Chichon, the 1991 Hudson and Pinatubo events, and more recently, from the 14 April 2010 Eyjafjöll eruption. The importance of diffusive convection in volcanic ash-clouds depends strongly on particle size distribution and concentration. For the 2010 Eyjafjöll eruption, we predict that particles larger than 10 microns should settle individually as commonly assumed, but particles smaller than 1 micron should diffuse slowly in layers extending the cloud longevity to several weeks rather than days. These predictions are found to be in good agreement with a number of satellite and ground-based lidar data on ash size and mass estimates performed at different locations across Europe.
Shedding light on the Type Ia supernova extinction puzzle: dust location found
NASA Astrophysics Data System (ADS)
Bulla, M.; Goobar, A.; Dhawan, S.
2018-06-01
The colour evolution of reddened Type Ia supernovae can place strong constraints on the location of dust and help address the question of whether the observed extinction stems from the interstellar medium or from circumstellar material surrounding the progenitor. Here we analyse BV photometry of 48 reddened Type Ia supernovae from the literature and estimate the dust location from their B - V colour evolution. We find a time-variable colour excess E(B - V) for 15 supernovae in our sample and constrain dust to distances between 0.013 and 45 pc (4 × 1016 - 1020 cm). For the remaining supernovae, we obtain a constant E(B - V) evolution and place lower limits on the dust distance from the explosion. In all the 48 supernovae, the inferred dust location is compatible with an interstellar origin for the extinction. This is corroborated by the observation that supernovae with relatively nearby dust (≲ 1 pc) are located close to the center of their host galaxy, in high-density dusty regions where interactions between the supernova radiation and interstellar clouds close by are likely to occur. For supernovae showing time-variable E(B - V), we identify a potential preference for low RV values, unusually strong sodium absorption and blue-shifted and time-variable absorption features. Within the interstellar framework, this brings evidence to a proposed scenario where cloud-cloud collisions induced by the supernova radiation pressure can shift the grain size distribution to smaller values and enhance the abundance of sodium in the gaseous phase.
ERIC Educational Resources Information Center
Anshari, Muhammad; Alas, Yabit; Guan, Lim Sei
2016-01-01
Utilizing online learning resources (OLR) from multi channels in learning activities promise extended benefits from traditional based learning-centred to a collaborative based learning-centred that emphasises pervasive learning anywhere and anytime. While compiling big data, cloud computing, and semantic web into OLR offer a broader spectrum of…
Science in the cloud (SIC): A use case in MRI connectomics
Gorgolewski, Krzysztof J.; Kleissas, Dean; Roncal, William Gray; Litt, Brian; Wandell, Brian; Poldrack, Russel A.; Wiener, Martin; Vogelstein, R. Jacob; Burns, Randal
2017-01-01
Abstract Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or extending scientific results very difficult. With the creation of data organization structures and tools that drastically improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and extensible model for reproducible research, called ‘science in the cloud’ (SIC). Exploiting scientific containers, cloud computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables intimate interaction with the tools and data presented. We hope this model will inspire the community to produce reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific breakthroughs are discovered, replicated, and extended. PMID:28327935
NASA Astrophysics Data System (ADS)
Forster, Linda; Seefeldner, Meinhard; Wiegner, Matthias; Mayer, Bernhard
2017-07-01
Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs) indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT) provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.
Hahn, C. J. [University of Arizona; Warren, S. G. [University of Washington; Eastman, R.
1999-08-01
This database contains surface synoptic weather reports for the entire globe, gathered from various available data sets. The reports were processed, edited, and rewritten to provide a single dataset of individual observations of clouds, spanning the 57 years 1952-2008 for ship data and the 39 years 1971-2009 for land station data. In addition to the cloud portion of the synoptic report, each edited report also includes the associated pressure, present weather, wind, air temperature, and dew point (and sea surface temperature over oceans). This data set is called the "Extended Edited Cloud Report Archive" (EECRA). The EECRA is based solely on visual cloud observations from weather stations, reported in the WMO synoptic code (WMO, 1974). Reports must contain cloud-type information to be included in the archive. Past data sources include those from the Fleet Numerical Oceanographic Center (FNOC, 1971-1976) and the National Centers for Environmental Prediction (NCEP, 1977-1996). This update uses data from a new source, the 'Integrated Surface Database' (ISD, 1997-2009; Smith et al., 2011). Our past analyses of the EECRA identified a subset of 5388 weather stations that were determined to produce reliable day and night observations of cloud amount and type. The update contains observations only from this subset of stations. Details concerning processing, previous problems, contents, and comments are available in the archive's original documentation . The EECRA contains about 81 million cloud observations from ships and 380 million from land stations. The data files have been compressed using unix. Unix/linux users can "uncompress" or "gunzip" the files after downloading. If you're interested in the NDP-026C database, then you'll also want to explore its related data products, NDP-026D and NDP-026E.
NASA Astrophysics Data System (ADS)
Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy
2017-08-01
Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.
NASA Technical Reports Server (NTRS)
Minnis, P.; Harrison, E. F.
1984-01-01
Cloud cover is one of the most important variables affecting the earth radiation budget (ERB) and, ultimately, the global climate. The present investigation is concerned with several aspects of the effects of extended cloudiness, taking into account hourly visible and infrared data from the Geostationary Operational Environmental Satelite (GOES). A methodology called the hybrid bispectral threshold method is developed to extract regional cloud amounts at three levels in the atmosphere, effective cloud-top temperatures, clear-sky temperature and cloud and clear-sky visible reflectance characteristics from GOES data. The diurnal variations are examined in low, middle, high, and total cloudiness determined with this methodology for November 1978. The bulk, broadband radiative properties of the resultant cloud and clear-sky data are estimated to determine the possible effect of the diurnal variability of regional cloudiness on the interpretation of ERB measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.
Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunitiesmore » to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.« less
Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.; ...
2017-12-06
Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunitiesmore » to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.« less
Multi-sensor measurements of mixed-phase clouds above Greenland
NASA Astrophysics Data System (ADS)
Stillwell, Robert A.; Shupe, Matthew D.; Thayer, Jeffrey P.; Neely, Ryan R.; Turner, David D.
2018-04-01
Liquid-only and mixed-phase clouds in the Arctic strongly affect the regional surface energy and ice mass budgets, yet much remains unknown about the nature of these clouds due to the lack of intensive measurements. Lidar measurements of these clouds are challenged by very large signal dynamic range, which makes even seemingly simple tasks, such as thermodynamic phase classification, difficult. This work focuses on a set of measurements made by the Clouds Aerosol Polarization and Backscatter Lidar at Summit, Greenland and its retrieval algorithms, which use both analog and photon counting as well as orthogonal and non-orthogonal polarization retrievals to extend dynamic range and improve overall measurement quality and quantity. Presented here is an algorithm for cloud parameter retrievals that leverages enhanced dynamic range retrievals to classify mixed-phase clouds. This best guess retrieval is compared to co-located instruments for validation.
Radar characteristics of cloud-to-ground lightning producing storms in Florida
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Goodman, S. J.
1991-01-01
The interrelation between cloud-to-ground lightning, convective rainfall, and the environment in Central Florida storms is examined. The rain flux, storm area, and ground discharge rates are computed within the outlined area. Time-height cross sections of maximum dBZ values at each level for two storms are shown. The multicellular nature of these storms is readily apparent. The cloud-to-ground lightning activity occurs mainly where high reflectivity values (30-40 dBZ) extend above 7 km.
García-Peñalvo, Francisco J.; Pérez-Blanco, Jonás Samuel; Martín-Suárez, Ana
2014-01-01
This paper discusses how cloud-based architectures can extend and enhance the functionality of the training environments based on virtual worlds and how, from this cloud perspective, we can provide support to analysis of training processes in the area of health, specifically in the field of training processes in quality assurance for pharmaceutical laboratories, presenting a tool for data retrieval and analysis that allows facing the knowledge discovery in the happenings inside the virtual worlds. PMID:24778593
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigra, Lou; Stanimirovic, Snezana; Gallagher, John S. III
2012-11-20
The Magellanic Stream (MS) is a nearby laboratory for studying the fate of cool gas streams injected into a gaseous galactic halo. We investigate properties of the boundary layer between the cool MS gas and the hot Milky Way halo with 21 cm H I observations of a relatively isolated cloud having circular projection in the northern MS. Through averaging and modeling techniques, our observations, obtained with the Robert C. Byrd Green Bank Telescope, reach unprecedented 3{sigma} sensitivity of {approx}1 Multiplication-Sign 10{sup 17} cm{sup -2}, while retaining the telescope's 9.'1 resolution in the essential radial dimension. We find an envelopemore » of diffuse neutral gas with FWHM of 60 km s{sup -1}, associated in velocity with the cloud core having FWHM of 20 km s{sup -1}, extending to 3.5 times the core radius with a neutral mass seven times that of the core. We show that the envelope is too extended to represent a conduction-dominated layer between the core and the halo. Its observed properties are better explained by a turbulent mixing layer driven by hydrodynamic instabilities. The fortuitous alignment of the NGC 7469 background source near the cloud center allows us to combine UV absorption and H I emission data to determine a core temperature of 8350 {+-} 350 K. We show that the H I column density and size of the core can be reproduced when a slightly larger cloud is exposed to Galactic and extragalactic background ionizing radiation. Cooling in the large diffuse turbulent mixing layer envelope extends the cloud lifetime by at least a factor of two relative to a simple hydrodynamic ablation case, suggesting that the cloud is likely to reach the Milky Way disk.« less
Depth Distribution Of The Maxima Of Extensive Air Shower
NASA Technical Reports Server (NTRS)
Adams, J. H.; Howell, L. W.
2003-01-01
Observations of the extensive air showers from space can be free from interference by low altitude clouds and aerosols if the showers develop at a sufficiently high altitude. In this paper we explore the altitude distribution of shower maxima to determine the fraction of all showers that will reach their maxima at sufficient altitudes to avoid interference from these lower atmosphere phenomena. Typically the aerosols are confined within a planetary boundary layer that extends from only 2-3 km above the Earth's surface. Cloud top altitudes extend above 15 km but most are below 4 km. The results reported here show that more than 75% of the showers that will be observed by EUSO have maxima above the planetary boundary layer. The results also show that more than 50% of the showers that occur on cloudy days have their maxima above the cloud tops.
The cloud-ionosphere discharge: a newly observed thunderstorm phenomenon.
Winckler, J R
1997-09-30
This paper deals with a luminous electric discharge that forms in the mesospheric region between thundercloud tops and the ionosphere at 90-km altitude. These cloud-ionosphere discharges (CIs), following visual reports dating back to the 19th century, were finally imaged by a low-light TV camera as part of the "SKYFLASH" program at the University of Minnesota in 1989. Many observations were made by various groups in the period 1993-1996. The characteristics of CIs are that they have a wide range of sizes from a few kilometers up to 50 km horizontally; they extend from 40 km to nearly 90 km vertically, with an intense region near 60-70 km and streamers extending down toward cloud tops; the CIs are partly or entirely composed of vertical luminous filaments of kilometer size. The predominate color is red. The TV images show that the CIs usually have a duration less than one TV field (16.7 ms), but higher-speed photometric measurements show that they last about 3 ms, and are delayed 3 ms after an initiating cloud-ground lightning stroke; 95% of these initiating strokes are found to be "positive"-i.e., carry positive charges from clouds to ground. The preference for positive initiating strokes is not understood. Theories of the formation of CIs are briefly reviewed.
Zhu, Hai-Zhen; Liu, Wei; Mao, Jian-Wei; Yang, Ming-Min
2008-04-28
4-Amino-4'-nitrobiphenyl, which is formed by catalytic effect of trichlorfon on sodium perborate oxidizing benzidine, is extracted with a cloud point extraction method and then detected using a high performance liquid chromatography with ultraviolet detection (HPLC-UV). Under the optimum experimental conditions, there was a linear relationship between trichlorfon in the concentration range of 0.01-0.2 mgL(-1) and the peak areas of 4-amino-4'-nitrobiphenyl (r=0.996). Limit of detection was 2.0 microgL(-1), recoveries of spiked water and cabbage samples ranged between 95.4-103 and 85.2-91.2%, respectively. It was proved that the cloud point extraction (CPE) method was simple, cheap, and environment friendly than extraction with organic solvents and had more effective extraction yield.
Magnetic clouds, helicity conservation, and intrinsic scale flux ropes
NASA Technical Reports Server (NTRS)
Kumar, A.; Rust, D. M.
1995-01-01
An intrinsic-scale flux-rope model for interplanetary magnetic clouds, incorporating conservation of magnetic helicity, flux and mass is found to adequately explain clouds' average thermodynamic and magnetic properties. In spite their continuous expansion as they balloon into interplanetary space, magnetic clouds maintain high temperatures. This is shown to be due to magnetic energy dissipation. The temperature of an expanding cloud is shown to pass through a maximum above its starting temperature if the initial plasma beta in the cloud is less than 2/3. Excess magnetic pressure inside the cloud is not an important driver of the expansion as it is almost balanced by the tension in the helical field lines. It is conservation of magnetic helicity and flux that requires that clouds expand radially as they move away from the Sun. Comparison with published data shows good agreement between measured cloud properties and theory. Parameters determined from theoretical fits to the data, when extended back to the Sun, are consistent with the origin of interplanetary magnetic clouds in solar filament eruptions. A possible extension of the heating mechanism discussed here to heating of the solar corona is discussed.
Structures observed on the spot radiance fields during the FIRE experiment
NASA Technical Reports Server (NTRS)
Seze, Genevieve; Smith, Leonard; Desbois, Michel
1990-01-01
Three Spot images taken during the FIRE experiment on stratocumulus are analyzed. From this high resolution data detailed observations of the true cloud radiance field may be made. The structure and inhomogeneity of these radiance fields hold important implications for the radiation budget, while the fine scale structure in radiance field provides information on cloud dynamics. Wieliki and Welsh, and Parker et al., have quantified the inhomogeneities of the cumulus clouds through a careful examination of the distribution of cloud (and hole) size as functions of an effective cloud diameter and radiance threshold. Cahalan (1988) has compared for different cloud types of (stratocumulus, fair weather cumulus, convective clouds in the ITCZ) the distributions of clouds (and holes) sizes, the relation between the size and the perimeter of these clouds (and holes), and examining the possibility of scale invariance. These results are extended from LANDSAT resolution (57 m and 30 m) to the Spot resolution (10 m) resolution in the case of boundary layer clouds. Particular emphasis is placed on the statistics of zones of high and low reflectivity as a function of a threshold reflectivity.
Earth Observations taken by the Expedition 23 Crew
2010-05-25
ISS023-E-057948 (25 May 2010) --- A sunset on the Indian Ocean is featured in this image photographed by an Expedition 23 crew member on the International Space Station (ISS). The image presents an edge-on, or limb view, of Earth’s atmosphere as seen from orbit. The Earth’s curvature is visible along the horizon line, or limb, that extends across the image from center left to lower right. Above the darkened surface of Earth, a brilliant sequence of colors roughly denotes several layers of the atmosphere. Deep oranges and yellows are visible in the troposphere that extends from Earth’s surface to 6-20 kilometers high. This layer contains over 80 percent of the mass of the atmosphere and almost all of the water vapor, clouds, and precipitation – several dark cloud layers are visible within this layer. Variations in the colors are due mainly to varying concentrations of either clouds or aerosols (airborne particles or droplets). The pink to white region above the clouds appears to be the stratosphere; this atmospheric layer generally has little or no clouds and extends up to approximately 50 kilometers above Earth’s surface. Above the stratosphere blue layers mark the upper atmosphere (including the mesosphere, thermosphere, ionosphere, and exosphere) as it gradually fades into the blackness of outer space. The ISS was located over the southern Indian Ocean when this image was taken, with the observer looking towards the west. Crew members aboard the space station see 16 sunrises and sunsets per day due to their high orbital velocity (greater than 28,000 kilometers per hour). The multiple chances for photography are fortunate, as at that speed each sunrise/sunset event only lasts a few seconds.
NASA Technical Reports Server (NTRS)
Jasperson, W. H.; Nastron, G. D.; Davis, R. E.; Holdeman, J. D.
1984-01-01
Summary studies are presented for the entire cloud observation archive from the NASA Global Atmospheric Sampling Program (GASP). Studies are also presented for GASP particle-concentration data gathered concurrently with the cloud observations. Cloud encounters are shown on about 15 percent of the data samples overall, but the probability of cloud encounter is shown to vary significantly with altitude, latitude, and distance from the tropopause. Several meteorological circulation features are apparent in the latitudinal distribution of cloud cover, and the cloud-encounter statistics are shown to be consistent with the classical mid-latitude cyclone model. Observations of clouds spaced more closely than 90 minutes are shown to be statistically dependent. The statistics for cloud and particle encounter are utilized to estimate the frequency of cloud encounter on long-range airline routes, and to assess the probability and extent of laminaar flow loss due to cloud or particle encounter by aircraft utilizing laminar flow control (LFC). It is shown that the probability of extended cloud encounter is too low, of itself, to make LFC impractical. This report is presented in two volumes. Volume I contains the narrative, analysis, and conclusions. Volume II contains five supporting appendixes.
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; Ottaviani, Matteo; Wasilewski, Andrzej P.
2016-01-01
The Research Scanning Polarimeter (RSP) is an airborne instrument, whose measurements have been extensively used for retrievals of microphysical properties of clouds. In this study we show that for cumulus clouds the information content of the RSP data can be extended by adding the macroscopic parameters of the cloud, such as its geometric shape, dimensions, and height above the ground. This extension is possible by virtue of the high angular resolution and high frequency of the RSP measurements, which allow for geometric constraint of the cloud's 2D cross section between a number of tangent lines of view. The retrieval method is tested on realistic 3D radiative transfer simulations and applied to actual RSP data.
GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems (WG2)
NASA Technical Reports Server (NTRS)
Starr, David
2002-01-01
Status, progress and plans will be given for current GCSS (GEWEX Cloud System Study) WG2 (Working Group on Cirrus Cloud Systems) projects, including: (a) the Idealized Cirrus Model Comparison Project, (b) the Cirrus Parcel Model Comparison Project (Phase 2), and (c) the developing Hurricane Nora extended outflow model case study project. Past results will be summarized and plans for the upcoming year described. Issues and strategies will be discussed. Prospects for developing improved cloud parameterizations derived from results of GCSS WG2 projects will be assessed. Plans for NASA's CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Layers - Florida Area Cirrus Experiment) potential opportunities for use of those data for WG2 model simulations (future projects) will be briefly described.
Metam sodium (MS) is a soil fumigant and Category II pesticide with a relatively low toxicity in mammals. Previous data have shown an ability to impair reproductive mechanisms in ovariectomized, estradiol-primed rats. A single i.p. injection blocked the luteinizing hormone (LH) s...
NASA Astrophysics Data System (ADS)
Mat Sharif, Zainon Binti; Taib, Norhasnina Binti Mohd; Yusof, Mohd Sallehuddin Bin; Rahim, Mohammad Zulafif Bin; Tobi, Abdul Latif Bin Mohd; Othman, Mohd Syafiq Bin
2017-05-01
This research paper presents the possible solutions to prolong the shelf life of spicy (chili) soy sauce. The current spicy soy sauce formulation is without adding preservative which result in shorter shelf life. It is suggested to add chemical preservative to this spicy soy sauce in order to prolong its shelf life without jeopardising its prevailing taste. The proposed preservative is sodium benzoate. It is hope that by adding sodium benzoate, it can prolong the shelf life of the products from one year to two years without jeopardising the taste and quality of the products. The problem to extend the shelf life of spicy (chilli) soy sauce was 100% solved. The product could be extended to 2 years without adding any preservative (sodium benzoate) as the main raw material (soy sauce) purchased from “Kicap Jalen” had been added sodium benzoate as their preservative to prolong the soy sauce shelf life. All the physicochemical and nutritional analysis shown good results. As for the microbiological analysis, all the 3 samples shown good results on the total plate count.
Laurora, Irene; An, Robert
2016-01-01
To evaluate the efficacy of a novel formulation of extended-release/immediate-release (ER) naproxen sodium over 24 h in a dental pain model. Two randomized, double-blind, placebo-controlled trials in moderate to severe pain after extraction of one or two impacted third molars (at least one partial mandibular bony impaction). Treatment comprised oral ER naproxen sodium 660 mg (single dose), placebo (both studies) or immediate-release (IR) naproxen sodium 220 mg tid (study 2). Primary efficacy endpoint: 24-h summed pain intensity difference (SPID). Secondary variables included total pain relief (TOTPAR), use of rescue medication. All treatment-emergent adverse events were recorded. NCT00720057 (study 1), NCT01389284 (study 2). Primary efficacy analyses: pain intensity was significantly lower over 24 h with ER naproxen sodium vs. placebo (p < 0.001), with significant relief from 15 min (study 2). In study 2, ER naproxen sodium was non-inferior to IR naproxen sodium, reducing pain intensity to a comparable extent over 24 h. TOTPAR was significantly greater with ER and IR naproxen sodium vs. placebo at all time points, with generally comparable differences between active treatments. Significantly more placebo patients required rescue medication vs. ER and IR naproxen sodium from 2-24 h post-dose. Once daily ER naproxen sodium was generally safe and well tolerated, with a similar safety profile to IR naproxen sodium tid. The studies were single dose, with limited ability to assess efficacy or safety of multiple doses over time. As the imputed pain score meant that estimated treatment differences may have been biased in favor of ER naproxen sodium, a post hoc analysis evaluated the robustness of the results for pain relief. A single dose of ER naproxen sodium 660 mg significantly reduced moderate to severe dental pain vs. placebo and was comparable to IR naproxen sodium 220 mg tid. Significant pain relief was experienced from 15 min and sustained over 24 h, resulting in a reduced need for rescue medication. ER naproxen sodium 660 mg once daily is a convenient and effective therapy providing 24 h relief of pain.
Carbon Dioxide Snow Storms During the Polar Night on Mars
NASA Technical Reports Server (NTRS)
Toon, Owen B.; Colaprete, Anthony
2001-01-01
The Mars Orbiter Laser Altimeter (MOLA) detected clouds associated with topographic features during the polar night on Mars. While uplift generated from flow over mountains initiates clouds on both Earth and Mars, we suggest that the Martian clouds differ greatly from terrestrial mountain wave clouds. Terrestrial wave clouds are generally compact features with sharp edges due to the relatively small particles in them. However, we find that the large mass of condensible carbon dioxide on Mars leads to clouds with snow tails that may extend many kilometers down wind from the mountain and even reach the surface. Both the observations and the simulations suggest substantial carbon dioxide snow precipitation in association with the underlying topography. This precipitation deposits CO2, dust and water ice to the polar caps, and may lead to propagating geologic features in the Martian polar regions.
NASA Technical Reports Server (NTRS)
Vaughan, M. A.; Winker, D. M.
1994-01-01
Intensive cloud lidar observations have been made by NASA Langley Research Center during the two observation phases of the ECLIPS project. Less intensive but longer term observations have been conducted as part of the FIRE extended time observation (ETO) program since 1987. We present a preliminary analysis of the vertical distribution of clouds based on these observations. A mean cirrus thickness of just under 1 km has been observed with a mean altitude of about 80 percent of the tropopause height. Based on the lidar data, cirrus coverage was estimated to be just under 20 percent, representing roughly 50 percent of all clouds studied. Cirrus was observed to have less seasonal variation than lower clouds. Mid-level clouds are found to occur primarily in association with frontal activity.
IRAS observations of dust heating and energy balance in the Rho Ophiuchi dark cloud
NASA Technical Reports Server (NTRS)
Greene, Thomas P.; Young, Erick T.
1989-01-01
The equilibrium process dust emission in the Rho Ophiuchi dark cloud is studied. The luminosity of the cloud is found to closely match the luminosity of the clouds's known embedded and external radiation sources. There is no evidence for a large population of undetected low-luminosity sources within the cloud and unknown external heating is also only a minor source of energy. Most of the cloud's luminosity is emitted in the mid-to-far-IR. Dust temperature maps indicate that the dust is not hot enough to heat the gas to observed temperatures. A simple cloud model with a radiation field composed of flux HD 147889, S1, and Sco OB2 associations predicts the observed IRAS 60 to 100 micron in-band flux ratios for a mean cloud density n(H2) = 1400. Flattened 12 and 25 micron observations show much extended emission in these bands, suggesting stochastic heating of very small grains or large molecules.
Taking a 3-D Slice of Hurricane Maria's Cloud Structure
2017-09-20
NASA's CloudSat satellite flew over Hurricane Maria on Sept. 17, 2017, at 1:23 p.m. EDT (17:23 UTC) as the storm had just strengthened into a hurricane in the Atlantic Ocean. Hurricane Maria contained estimated maximum sustained winds of 75 miles per hour (65 knots) and had a minimum barometric pressure of 986 millibars. CloudSat flew over Maria through the center of the rapidly intensifying storm, directly through an overshooting cloud top (a dome-shaped protrusion that shoots out of the top of the anvil cloud of a thunderstorm). CloudSat reveals the vertical extent of the overshooting cloud top, showing the estimated height of the cloud to be 11 miles (18 kilometers). Areas of high reflectivity with deep red and pink colors extend well above 9 miles (15 kilometers) in height, showing large amounts of water being drawn upward high into the atmosphere. A movie is available at https://photojournal.jpl.nasa.gov/catalog/PIA21961
Resolving the substructure of molecular clouds in the LMC
NASA Astrophysics Data System (ADS)
Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Remy; Wojciechowski, Evan; Bandurski, Jeffrey; MC3 Collaboration
2018-01-01
We present recent wide-field CO and 13CO mapping of giant molecular clouds in the Large Magellanic Cloud with ALMA. Our sample exhibits diverse star-formation properties, and reveals comparably diverse molecular cloud properties including surface density and velocity dispersion at a given scale. We first present the results of a recent study comparing two GMCs at the extreme ends of the star formation activity spectrum. Our quiescent cloud exhibits 10 times lower surface density and 5 times lower velocity dispersion than the active 30 Doradus cloud, yet in both clouds we find a wide range of line widths at the smallest resolved scales, spanning nearly the full range of line widths seen at all scales. This suggests an important role for feedback on sub-parsec scales, while the energetics on larger scales are dominated by clump-to-clump relative velocities. We then extend our analysis to four additional clouds that exhibit intermediate levels of star formation activity.
NASA Technical Reports Server (NTRS)
Mcdougal, David S. (Editor)
1990-01-01
FIRE (First ISCCP Regional Experiment) is a U.S. cloud-radiation research program formed in 1984 to increase the basic understanding of cirrus and marine stratocumulus cloud systems, to develop realistic parameterizations for these systems, and to validate and improve ISCCP cloud product retrievals. Presentations of results culminating the first 5 years of FIRE research activities were highlighted. The 1986 Cirrus Intensive Field Observations (IFO), the 1987 Marine Stratocumulus IFO, the Extended Time Observations (ETO), and modeling activities are described. Collaborative efforts involving the comparison of multiple data sets, incorporation of data measurements into modeling activities, validation of ISCCP cloud parameters, and development of parameterization schemes for General Circulation Models (GCMs) are described.
Validation of the Two-Layer Model for Correcting Clear Sky Reflectance Near Clouds
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Evans, K. Frank; Vamal, Tamas
2014-01-01
A two-layer model was developed in our earlier studies to estimate the clear sky reflectance enhancement near clouds. This simple model accounts for the radiative interaction between boundary layer clouds and molecular layer above, the major contribution to the reflectance enhancement near clouds for short wavelengths. We use LES/SHDOM simulated 3D radiation fields to valid the two-layer model for reflectance enhancement at 0.47 micrometer. We find: (a) The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; and (b) The magnitude of the 2-layer modeled enhancement agree reasonably well with the "truth" with some expected underestimation. We further extend our model to include cloud-surface interaction using the Poisson model for broken clouds. We found that including cloud-surface interaction improves the correction, though it can introduced some over corrections for large cloud albedo, large cloud optical depth, large cloud fraction, large cloud aspect ratio. This over correction can be reduced by excluding scenes (10 km x 10km) with large cloud fraction for which the Poisson model is not designed for. Further research is underway to account for the contribution of cloud-aerosol radiative interaction to the enhancement.
ERIC Educational Resources Information Center
Bhatiasevi, Veera; Naglis, Michael
2016-01-01
This research is one of the first few to investigate the adoption and usage of cloud computing in higher education in the context of developing countries, in this case Thailand. It proposes extending the technology acceptance model to integrate subjective norm, perceived convenience, trust, computer self-efficacy, and software functionality in…
Lee, Tian-Fu; Wang, Zeng-Bo
2017-01-01
The security is a critical issue for business purposes. For example, the cloud meeting must consider strong security to maintain the communication privacy. Considering the scenario with cloud meeting, we apply extended chaotic map to present passwordless group authentication key agreement, termed as Passwordless Group Authentication Key Agreement (PL-GAKA). PL-GAKA improves the computation efficiency for the simple group password-based authenticated key agreement (SGPAKE) proposed by Lee et al. in terms of computing the session key. Since the extended chaotic map has equivalent security level to the Diffie–Hellman key exchange scheme applied by SGPAKE, the security of PL-GAKA is not sacrificed when improving the computation efficiency. Moreover, PL-GAKA is a passwordless scheme, so the password maintenance is not necessary. Short-term authentication is considered, hence the communication security is stronger than other protocols by dynamically generating session key in each cloud meeting. In our analysis, we first prove that each meeting member can get the correct information during the meeting. We analyze common security issues for the proposed PL-GAKA in terms of session key security, mutual authentication, perfect forward security, and data integrity. Moreover, we also demonstrate that communicating in PL-GAKA is secure when suffering replay attacks, impersonation attacks, privileged insider attacks, and stolen-verifier attacks. Eventually, an overall comparison is given to show the performance between PL-GAKA, SGPAKE and related solutions. PMID:29207509
NASA Astrophysics Data System (ADS)
Watmough, Gary R.; Atkinson, Peter M.; Hutton, Craig W.
2011-04-01
The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.
OT1_mputman_1: ASCII: All Sky observations of Galactic CII
NASA Astrophysics Data System (ADS)
Putman, M.
2010-07-01
The Milky Way and other galaxies require a significant source of ongoing star formation fuel to explain their star formation histories. A new ubiquitous population of discrete, cold clouds have recently been discovered at the disk-halo interface of our Galaxy that could potentially provide this source of fuel. We propose to observe a small sample of these disk-halo clouds with HIFI to determine if the level of [CII] emission detected suggests they represent the cooling of warm clouds at the interface between the star forming disk and halo. These cooling clouds are predicted by simulations of warm clouds moving into the disk-halo interface region. We target 5 clouds in this proposal for which we have high resolution HI maps and can observe the densest core of the cloud. The results of our observations will also be used to interpret the surprisingly high detections of [CII] for low HI column density clouds in the Galactic Plane by the GOT C+ Key Program by extending the clouds probed to high latitude environments.
Effects of addition of sodium lauryl sulfate on frozen-thawed canine spermatozoa.
Hori, Tatsuya; Kaseki, Hanae; Fukuhara, Youko; Oba, Hiromichi; Mizutani, Tatsuji; Kawakami, Eiichi; Tsutsui, Toshihiko
2006-10-01
The addition of Orvus ES paste (OEP) to extender may be essential for preparing frozen dog semen. The major ingredient of OEP is sodium lauryl sulfate (SLS). In this study, we compared the effect of SLS on frozen dog semen with that of OEP. There were no significant differences between the 2-mg/ml SLS group and OEP group concerning sperm motility, viability and the percentage of viable sperm with intact acrosomes after freeze-thawing. These results suggest that the effectiveness of frozen dog semen extender containing 2 mg/ml of SLS is similar effective to that demonstrated for OEP.
NASA Technical Reports Server (NTRS)
Wang, Pi-Huan; Minnis, Patrick; McCormick, M. Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Young, David F.; Skeens, Kristi M.
1998-01-01
The tropical cloud data obtained by the satellite instrument of the Stratospheric Aerosol and Gas Experiment (SAGE) II from October 1984 to May 1991 have been used to study cloud vertical distribution, including thickness and multilayer structure, and to estimate cloud optical depth. The results indicate that the SAGE-II-observed clouds are generally optically thin clouds, corresponding to a range of optical depth between approximately 8 x 10(exp -4) and 3 x 10(exp -1) with a mean of about 0.035. Two-thirds are classified as subvisual cirrus and one-third thin cirrus. Clouds between 2- to 3-km thick occur most frequently. Approximately 30% of the SAGE II cloud measurements are isolated single-layer clouds, while 65% are high clouds contiguous with an underlying opaque cloud that terminates the SAGE II profile. Thin clouds above detached opaque clouds at altitudes greater than 6.5 km occur less often. Only about 3% of the SAGE II single-layer clouds are located above the tropopause, while 58% of the cloud layers never reach the tropopause. More than one-third of the clouds appear at the tropopause. This study also shows that clouds occur more frequently and extend higher above the tropopause over the western Pacific than than over the eastern Pacific, especially during northern winter. The uncertainty of the derived results due to the SAGE II sampling constraints, data processing, and cloud characteristics is discussed.
NASA Astrophysics Data System (ADS)
Deming, Drake; Brown, Timothy M.; Charbonneau, David; Harrington, Joseph; Richardson, L. Jeremy
2005-04-01
We have revisited the search for carbon monoxide absorption features in transmission during the transit of the extrasolar planet HD 209458b. In 2002 August-September we acquired a total of 1077 high-resolution spectra (λ/δλ~25,000) in the K-band (2 μm) wavelength region using NIRSPEC on the Keck II telescope during three transits. These data are more numerous and of better quality than the data analyzed in an initial search by Brown et al. Our analysis achieves a sensitivity sufficient to test the degree of CO absorption in the first-overtone bands during transit on the basis of plausible models of the planetary atmosphere. We analyze our observations by comparison with theoretical tangent geometry absorption spectra, computed by adding height-invariant ad hoc temperature perturbations to the model atmosphere of Sudarsky et al. and by treating cloud height as an adjustable parameter. We do not detect CO absorption. The strong 2-0 R-branch lines between 4320 and 4330 cm-1 have depths during transit less than 1.6 parts in 104 in units of the stellar continuum (3 σ limit) at a spectral resolving power of 25,000. Our analysis indicates a weakening similar to that found in the case of sodium, suggesting that a general masking mechanism is at work in the planetary atmosphere. Under the interpretation that this masking is provided by high clouds, our analysis defines the maximum cloud-top pressure (i.e., minimum height) as a function of the model atmospheric temperature. For the relatively hot model used by Charbonneau et al. to interpret their sodium detection, our CO limit requires cloud tops at or above 3.3 mbar, and these clouds must be opaque at a wavelength of 2 μm. High clouds comprised of submicron-sized particles are already present in some models but may not provide sufficient opacity to account for our CO result. Cooler model atmospheres, having smaller atmospheric scale heights and lower CO mixing ratios, may alleviate this problem to some extent. However, even models 500 K cooler than the Sudarsky et al. model require clouds above the 100 mbar level to be consistent with our observations. Our null result therefore requires clouds to exist at an observable level in the atmosphere of HD 209458b, unless this planet is dramatically colder than current belief. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Biodegradation of resin acid sodium salts
Richard W. Hemingway; H. Greaves
1973-01-01
The sodium salts of resin acids were readily degraded by microflora from two types of river water and from an activated sewage sludge. A lag phase with little or no resin acid salt degradation but rapid bacterial development occurred which was greatly extended by a decrease in incubation temperature. After this initial lag phase, the resin acid salts were rapidly...
Cirrus Cloud Optical and Morphological Variations within a Mesoscale Volume
NASA Technical Reports Server (NTRS)
Wolf, Walter W.
1996-01-01
Cirrus cloud optical and structural properties were measured above southern Wisconsin in two time segments between 18:07 and 21:20 GMT on December 1, 1989 by the volume imaging lidar (VIL) and the High Spectral Resolution Lidar (HSRL) and the visible infrared spin scan radiometer (VISSR) atmospheric sounder (VAS) on GOES. A new technique was used to calculate the cirrus cloud visible aerosol backscatter cross sections for a single channel elastic backscatter lidar. Cirrus clouds were viewed simultaneously by the VIL and the HSRL. This allowed the HSRL aerosol backscatter cross sections to be directly compared to the VIL single channel backscattered signal. This first attempt resulted in an adequate calibration. The calibration was extended to all the cirrus clouds in the mesoscale volume imaged by the VIL.
Dynamic Extension of a Virtualized Cluster by using Cloud Resources
NASA Astrophysics Data System (ADS)
Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter
2012-12-01
The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.
Using PVDF to locate the debris cloud impact position
NASA Astrophysics Data System (ADS)
Pang, Baojun; Liu, Zhidong
2010-03-01
With the increase of space activities, space debris environment has deteriorated. Space debris impact shields of spacecraft creates debris cloud, the debris cloud is a threat to module wall. In order to conduct an assessment of spacecraft module wall damage impacted by debris cloud, the damage position must be known. In order to design a light weight location system, polyvinylidene fluoride (PVDF) has been studied. Hyper-velocity impact experiments were conducted using two-stage light gas gun, the experimental results indicate that: the virtual wave front location method can be extended to debris cloud impact location, PVDF can be used to locate the damage position effectively, the signals gathered by PVDF from debris cloud impact contain more high frequency components than the signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.
TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Nicole D.; Basu, Shantanu, E-mail: nwityk@uwo.ca, E-mail: basu@uwo.ca
2012-12-10
Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds shows that molecular clouds exhibit a preferred length scale for collapse that depends on the mass-to-flux ratio and neutral-ion collision time within the cloud. We extend this linear analysis to the context of clustered star formation. By combining the results of the linear analysis with a realistic ionization profile for the cloud, we find that a molecular cloud may evolve through two fragmentation events in the evolution toward the formation of stars. Our model suggests that the initial fragmentation into clumps occurs for a transcritical cloud onmore » parsec scales while the second fragmentation can occur for transcritical and supercritical cores on subparsec scales. Comparison of our results with several star-forming regions (Perseus, Taurus, Pipe Nebula) shows support for a two-stage fragmentation model.« less
NASA Technical Reports Server (NTRS)
Davis, Anthony B.; Frakenbert, Christian
2012-01-01
Success in three aspects of OCO-2 mission is threatened by unaccounted spa,al variability effects, all involving atmospheric scattering: 1. Low/moderately opaque clouds can escape the prescreening by mimicking a brighter surface. 2. Prescreening does not account for long-range radia,ve impact (adjacency effect) of nearby clouds. Need for extended cloud masking? 3. Oblique looks in target mode are highly exposed to surface adjacency and aerosol variability effects.We'll be covering all three bases!
Long-term evolution of Oort Cloud comets: capture of comets
NASA Astrophysics Data System (ADS)
Nurmi, P.; Valtonen, M. J.; Zheng, J. Q.; Rickman, H.
2002-07-01
We test different possibilities for the origin of short-period comets captured from the Oort Cloud. We use an efficient Monte Carlo simulation method that takes into account non-gravitational forces, Galactic perturbations, observational selection effects, physical evolution and tidal splittings of comets. We confirm previous results and conclude that the Jupiter family comets cannot originate in the spherically distributed Oort Cloud, since there is no physically possible model of how these comets can be captured from the Oort Cloud flux and produce the observed inclination and Tisserand constant distributions. The extended model of the Oort Cloud predicted by the planetesimal theory consisting of a non-randomly distributed inner core and a classical Oort Cloud also cannot explain the observed distributions of Jupiter family comets. The number of comets captured from the outer region of the Solar system are too high compared with the observations if the inclination distribution of Jupiter family comets is matched with the observed distribution. It is very likely that the Halley-type comets are captured mainly from the classical Oort Cloud, since the distributions in inclination and Tisserand value can be fitted to the observed distributions with very high confidence. Also the expected number of comets is in agreement with the observations when physical evolution of the comets is included. However, the solution is not unique, and other more complicated models can also explain the observed properties of Halley-type comets. The existence of Jupiter family comets can be explained only if they are captured from the extended disc of comets with semimajor axes of the comets a<5000au. The original flattened distribution of comets is conserved as the cometary orbits evolve from the outer Solar system era to the observed region.
The variability of California summertime marine stratus: impacts on surface air temperatures
Iacobellis, Sam F.; Cayan, Daniel R.
2013-01-01
This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.
Observations and Modeling of the Green Ocean Amazon 2014/15. CHUVA Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machado, L. A. T.
2016-03-01
The physical processes inside clouds are one of the most unknown components of weather and climate systems. A description of cloud processes through the use of standard meteorological parameters in numerical models has to be strongly improved to accurately describe the characteristics of hydrometeors, latent heating profiles, radiative balance, air entrainment, and cloud updrafts and downdrafts. Numerical models have been improved to run at higher spatial resolutions where it is necessary to explicitly describe these cloud processes. For instance, to analyze the effects of global warming in a given region it is necessary to perform simulations taking into account allmore » of the cloud processes described above. Another important application that requires this knowledge is satellite precipitation estimation. The analysis will be performed focusing on the microphysical evolution and cloud life cycle, different precipitation estimation algorithms, the development of thunderstorms and lightning formation, processes in the boundary layer, and cloud microphysical modeling. This project intends to extend the knowledge of these cloud processes to reduce the uncertainties in precipitation estimation, mainly from warm clouds, and, consequently, improve knowledge of the water and energy budget and cloud microphysics.« less
Global CALIPSO Observations of Aerosol Changes Near Clouds
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2011-01-01
Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.
H2 emission as a tracer of molecular hydrogen: Large-scale observations of Orion
NASA Technical Reports Server (NTRS)
Luhman, M. L.; Jaffe, D. T.; Keller, L. D.; Pak, Soojong
1994-01-01
We have detected extremely extended (greater than 1.5 deg, or 12 pc) near-infrared H2 line emission from the Orion A molecular cloud. We have mapped emission in the 1.601 micrometer(s) upsilon = 6 - 4 Q(1) and 2.121 micrometer(s) upsilon = 1 - 0 S(1) lines of H2 along a approx. 2 deg R.A. cut and from a 6' x 6' region near theta(sup 1) Ori C. The surface brightness of the extended H2 line emission is 10(exp -6) to 10(exp -5) ergs/s/sq. cm/sr. Based on the distribution and relative strengths of the H2 lines, we conclude that UV fluorescene is most likely the dominant H2 emission mechanism in the outer parts of the Orion cloud. Shock-heated gas does not make a major contribution to the H2 emission in this region. The fluorescent component of the total H2 upsilon = 1 - 0 S(1) luminosity from Orion is 30-40 solar luminosity. Molecular hydrogen excited by UV radiation from nearby OB stars contributes 98%-99% of the global H2 line emission from the Orion molecular cloud, even though this cloud has a powerful shock-excited H2 source in its core. The ability to detect large-scale H2 directly opens up new possibilities for the study of molecular clouds.
NASA Astrophysics Data System (ADS)
Dipu, Sudhakar; Quaas, Johannes; Wolke, Ralf; Stoll, Jens; Mühlbauer, Andreas; Sourdeval, Odran; Salzmann, Marc; Heinold, Bernd; Tegen, Ina
2017-06-01
The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (MUSCAT) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25° × 0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5 %, and the cloud droplet number concentration is reduced by 21.5 %.
Organic Aerosols as Cloud Condensation Nuclei
NASA Astrophysics Data System (ADS)
Hudson, J. G.
2002-05-01
The large organic component of the atmospheric aerosol contributes to both natural and anthropogenic cloud condensation nuclei (CCN). Moreover, some organic substances may reduce droplet surface tension (Facchini et al. 1999), while others may be partially soluble (Laaksonen et al. 1998), and others may inhibit water condensation. The interaction of organics with water need to be understood in order to better understand the indirect aerosol effect. Therefore, laboratory CCN spectral measurements of organic aerosols are presented. These are measurements of the critical supersaturation (Sc), the supersaturation needed to produce an activated cloud droplet, as a function of the size of the organic particles. Substances include sodium lauryl (dodecyl) sulfate, oxalic, adipic, pinonic, hexadecanedioic, glutaric, stearic, succinic, phthalic, and benzoic acids. These size-Sc relationships are compared with theoretical and measured size-Sc relationships of common inorganic compounds (e.g., NaCl, KI, ammonium and calcium sulfate). Unlike most inorganics some organics display variations in solubility per unit mass as a function of particle size. Those showing relatively greater solubility at smaller sizes may be attributable to surface tension reduction, which is greater for less water dilution, as is the case for smaller particles, which are less diluted at the critical sizes. This was the case for sodium dodecyl sulfate, which does reduce surface tension. Relatively greater solubility for larger particles may be caused by greater dissolution at the higher dilutions that occur with larger particles; this is partial solubility. Measurements are also presented of internal mixtures of various organic and inorganic substances. These measurements were done with two CCN spectrometers (Hudson 1989) operating simultaneously. These two instruments usually displayed similar results in spite of the fact that they have different flow rates and supersaturation profiles. The degree of agreement between these cloud chambers then tests and defines the limits of possible alterations of conventional Kohler theory (e.g., Kulmala et al. 1993).
Harvey, Steven P.; Aguiar, Jeffery A.; Hacke, Peter; ...
2016-09-19
Here, we investigated potential-induced degradation (PID) in silicon mini-modules that were subjected to accelerated stressing to induce PID conditions. Shunted areas on the cells were identified with photoluminescence and dark lock-in thermography (DLIT) imaging. The identical shunted areas were then analyzed via time-of-flight secondary-ion mass spectrometry (TOFSIMS) imaging, 3-D tomography, and high-resolution transmission electron microscopy. The TOF-SIMS imaging indicates a high concentration of sodium in the shunted areas, and 3-D tomography reveals that the sodium extends more than 2 um from the surface below shunted regions. Transmission electron microscopy investigation reveals that a stacking fault is present at an areamore » identified as shunted by DLIT imaging. After the removal of surface sodium, tomography reveals persistent sodium present around the junction depth of 300 nm and a drastic difference in sodium content at the junction when comparing shunted and nonshunted regions.« less
Photolysis frequency and cloud dynamics during DC3 and SEAC4RS
NASA Astrophysics Data System (ADS)
Hall, S. R.; Ullmann, K.; Madronich, S.; Hair, J. W.; Butler, C. F.; Fenn, M. A.
2013-12-01
Cloud shading plays a critical role in extending the lifetime of short-lived chemical species. During convection, photochemistry is reduced such that short-lived species may be transported from the boundary layer to the upper troposphere/ lower stratosphere. In the anvil outflow, shading continues within and below the cloud. However, near the highly scattering cloud top, the chemistry is greatly accelerated. In this rapidly evolving environment, accurate photolysis frequencies are required to study photochemical evolution of the complex composition. During the Deep Convective Clouds and Chemistry (DC3, 2012) and the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, 2013) campaigns, photolysis frequencies were determined by measurement of spectrally resolved actinic flux by the Charge-coupled device Actinic Flux Spectroradiometer (CAFS) on the NASA DC-8 and the HIAPER Airborne Radiation Package (HARP) on the NCAR G-V aircraft. Vertical flight profiles allowed in situ characterization of the radiation environment. Input of geometrical cloud characteristics into the Tropospheric Ultraviolet and Visible (TUV) Radiation was used to constrain cloud optical depths for more spatially and temporally stable conditions.
An Architecture for Cross-Cloud System Management
NASA Astrophysics Data System (ADS)
Dodda, Ravi Teja; Smith, Chris; van Moorsel, Aad
The emergence of the cloud computing paradigm promises flexibility and adaptability through on-demand provisioning of compute resources. As the utilization of cloud resources extends beyond a single provider, for business as well as technical reasons, the issue of effectively managing such resources comes to the fore. Different providers expose different interfaces to their compute resources utilizing varied architectures and implementation technologies. This heterogeneity poses a significant system management problem, and can limit the extent to which the benefits of cross-cloud resource utilization can be realized. We address this problem through the definition of an architecture to facilitate the management of compute resources from different cloud providers in an homogenous manner. This preserves the flexibility and adaptability promised by the cloud computing paradigm, whilst enabling the benefits of cross-cloud resource utilization to be realized. The practical efficacy of the architecture is demonstrated through an implementation utilizing compute resources managed through different interfaces on the Amazon Elastic Compute Cloud (EC2) service. Additionally, we provide empirical results highlighting the performance differential of these different interfaces, and discuss the impact of this performance differential on efficiency and profitability.
NASA Technical Reports Server (NTRS)
Ragent, Boris
1993-01-01
The purpose of this study is to attempt to find correlations between data taken by experiments aboard the Pioneer-Venus Orbiter (PVO) and those obtained from Earth-based near-infrared (NIR) measurements of Venus during periods near inferior conjunction. Since the NIR measurements have been found to provide data on the middle atmosphere cloud morphology and motion, it is assumed that any correlations will also indicate that the PVO experiments are also documenting cloud behavior. If such correlations are found, then a further task is to attempt to study the long term behavior of the cloud features implied by the correlations. Many PVO data have been obtained over an extended period extending from 1978 until the PV demise in 1992. There exists a long, somewhat ill-conditioned time series of data that may contain valuable information on the long time, as well as short term behavior of the clouds, and, derivatively from cloud motion, atmospheric dynamics and wave activity in the Venus atmosphere. For example, determination of the zonal velocities of any OCPP (Cloud Photopolarimeter) 0.935 micron features could then be used for comparisons with data from other sources to attempt to fix the altitude region in which such features existed. A further task of this study is to attempt to correlate any features found in simultaneously obtained data, for example, the OCPP 0.365 and 0.935 micron data. The existence of such correlations may imply that data was obtained in overlapping altitude regions of the atmosphere.
NASA Astrophysics Data System (ADS)
Güdel, M.
2008-02-01
The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST) is a survey of the nearest large star-forming region, the Taurus Molecular Cloud (TMC), making use of all instruments on board the XMM-Newton X-ray observatory. The survey, presently still growing, has provided unprecedented spectroscopic results from nearly every observed T Tauri star, and from ≈50% of the studied brown dwarfs and protostars. The survey includes the first coherent statistical sample of high-resolution spectra of T Tauri stars, and is accompanied by an U-band/ultraviolet imaging photometric survey of the TMC. XEST led to the discovery of new, systematic X-ray features not possible before with smaller samples, in particular the X-ray soft excess in classical T Tauri stars and the Two-Absorber X-ray (TAX) spectra of jet-driving T Tauri stars. This paper summarizes highlights from XEST and reviews the key role of this large project.
NASA Technical Reports Server (NTRS)
Zhang, Yan
2012-01-01
Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.
A Cloud Microphysics Model for the Gas Giant Planets
NASA Astrophysics Data System (ADS)
Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler
2016-10-01
Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303-326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141-156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.
Observational Signatures of Cloud-Cloud Collision in the Extended Star-forming Region S235
NASA Astrophysics Data System (ADS)
Dewangan, L. K.; Ojha, D. K.
2017-11-01
We present a multi-wavelength data analysis of the extended star-forming region S235 (hereafter E-S235), where two molecular clouds are present. In E-S235, using the 12CO (1-0) and 13CO (1-0) line data, a molecular cloud linked with the site “S235main” is traced in a velocity range [-24, -18] km s-1, while the other one containing the sites S235A, S235B, and S235C (hereafter “S235ABC”) is depicted in a velocity range [-18, -13] km s-1. In the velocity space, these two clouds are separated by ˜4 km s-1, and are interconnected by a lower-intensity intermediate velocity emission, tracing a broad bridge feature. In the velocity channel maps, a possible complementary molecular pair at [-21, -20] km s-1 and [-16, -15] km s-1 is also evident. The sites, “S235ABC,” east 1, and south-west, are spatially seen in the interface of two clouds. Together, these observed features are consistent with the predictions of numerical models of the cloud-cloud collision (CCC) process, favoring the onset of the CCC in E-S235 about 0.5 Myr ago. Deep UKIDSS near-infrared photometric analysis of point-like sources reveals significant clustering of young stellar populations toward the sites located at the junction, and the “S235main.” The sites “S235ABC” harbor young compact H II regions with dynamical ages of ˜0.06-0.22 Myr, and these sites (including south-west and east 1) also contain dust clumps (having M clump ˜ 40 to 635 {M}⊙ ). Our observational findings suggest that the star formation activities (including massive stars) appear to be influenced by the CCC mechanism at the junction.
Over the last decade electrodialysis has emerged as an effective technique for removing accumulated reactant counterions (sodium and sulfate) and reaction products (orthophosphite) that interfere with the electroless nickel plating process, thus extending bath life by up to 50 me...
NASA Astrophysics Data System (ADS)
Maureira-Fredes, Cristián; Goicovic, Felipe G.; Amaro-Seoane, Pau; Sesana, Alberto
2018-05-01
Massive black hole binaries (MBHBs) represent an unavoidable outcome of hierarchical galaxy formation, but their dynamical evolution at sub-parsec scales is poorly understood. In gas rich environments, an extended, steady circumbinary gaseous disc could play an important role in the MBHB evolution, facilitating its coalescence. However, how gas on galactic scales is transported to the nuclear region to form and maintain such a stable structure is unclear. In the aftermath of a galaxy merger, cold turbulent gas condenses into clumps and filaments that can be randomly scattered towards the nucleus. This provides a natural way of feeding the binary with intermittent pockets of gas. The aim of this work is to investigate the gaseous structures arising from this interaction. We employ a suite of smoothed-particle-hydrodynamic simulations to study the influence of the infall rate and angular momentum distribution of the incoming clouds on the formation and evolution of structures around the MBHB. We find that the continuous supply of discrete clouds is a double-edge sword, resulting in intermittent formation and disruption of circumbinary structures. Anisotropic cloud distributions featuring an excess of co-rotating events generate more prominent co-rotating circumbinary discs. Similar structures are seen when mostly counter-rotating clouds are fed to the binary, even though they are more compact and less stable. In general, our simulations do not show the formation of extended smooth and stable circumbinary discs, typically assumed in analytical and numerical investigations of the the long term evolution of MBHBs.
Motion Estimation System Utilizing Point Cloud Registration
NASA Technical Reports Server (NTRS)
Chen, Qi (Inventor)
2016-01-01
A system and method of estimation motion of a machine is disclosed. The method may include determining a first point cloud and a second point cloud corresponding to an environment in a vicinity of the machine. The method may further include generating a first extended gaussian image (EGI) for the first point cloud and a second EGI for the second point cloud. The method may further include determining a first EGI segment based on the first EGI and a second EGI segment based on the second EGI. The method may further include determining a first two dimensional distribution for points in the first EGI segment and a second two dimensional distribution for points in the second EGI segment. The method may further include estimating motion of the machine based on the first and second two dimensional distributions.
Roy, Gilles; Roy, Nathalie
2008-03-20
A multiple-field-of-view (MFOV) lidar is used to characterize size and optical depth of low concentration of bioaerosol clouds. The concept relies on the measurement of the forward scattered light by using the background aerosols at various distances at the back of a subvisible cloud. It also relies on the subtraction of the background aerosol forward scattering contribution and on the partial attenuation of the first-order backscattering. The validity of the concept developed to retrieve the effective diameter and the optical depth of low concentration bioaerosol clouds with good precision is demonstrated using simulation results and experimental MFOV lidar measurements. Calculations are also done to show that the method presented can be extended to small optical depth cloud retrieval.
NASA Technical Reports Server (NTRS)
Toth, L. V.; Mattila, K.; Haikala, L.; Balazs, L. G.
1992-01-01
The spectra of the 21cm HI radiation from the direction of L1780, a small high-galactic latitude dark/molecular cloud, were analyzed by multivariate methods. Factor analysis was performed on HI (21cm) spectra in order to separate the different components responsible for the spectral features. The rotated, orthogonal factors explain the spectra as a sum of radiation from the background (an extended HI emission layer), and from the L1780 dark cloud. The coefficients of the cloud-indicator factors were used to locate the HI 'halo' of the molecular cloud. Our statistically derived 'background' and 'cloud' spectral profiles, as well as the spatial distribution of the HI halo emission distribution were compared to the results of a previous study which used conventional methods analyzing nearly the same data set.
Radial and azimuthal distribution of Io's oxygen neutral cloud observed by Hisaki/EXCEED
NASA Astrophysics Data System (ADS)
Koga, R.; Tsuchiya, F.; Kagitani, M.; Sakanoi, T.; Yoneda, M.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kimura, T.; Smith, H. T.
2017-12-01
We report the spatial distributions of oxygen neural cloud surrounding Jupiter's moon Io and along Io's orbit observed by the HISAKI satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exobase and move to corona (< 5.8 Io radii, the boundary where Jupiter's gravity begins to dominate) and neutral clouds (> 5.8 Io radii) mainly due to atmospheric sputtering. Io plasma torus is formed by ionization of these atoms by electron impact and charge exchange processes. It is essential to examine the dominant source of Io plasma torus, particularly in the vicinity of Io (<5.8 Io radii; atmosphere and corona) or the region away from Io (>5.8 Io radii; extended neutral clouds). The spatial distribution of oxygen and sulfur neutral clouds is important to understand the source. The extreme ultraviolet spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Hisaki satellite observed Io plasma torus continuously in 2014-2015, and we carried out the monitoring of the distribution of atomic oxygen emission at 130.4 nm. The emission averaged over the distance range of 4.5-6.5 Jovian radii on the dawn and dusk sides strongly depends on the Io phase angle (IPA), and has a emission peak between IPA of 60-90 degrees on the dawn side, and between 240-270 degrees on the dusk side, respectively. It also shows the asymmetry with respect to Io's position: the intensity averaged for IPA 60-90 degrees (13.3 Rayleighs (R)) is 1.2 times greater than that for IPA 90-120 degrees (11.1 R) on the dawn side. The similar tendency is found on the dusk side. Weak atomic oxygen emission (4 R) uniformly distributes in every IPA. We also examined the radial distribution of the oxygen neutral cloud during the same period and found the emission peak near Io's orbit with decreasing the intensity toward 8.0 Jupiter radii. The results show the high density component of the oxygen neutral cloud is concentrated around Io and extends mainly toward leading side of Io. In addition, the low density neutrals uniformly exist along Io's orbit. Both components extend radially outward up to 8 Jovian radii with decreasing the density. In the presentation, we give the estimation of spatial distribution of oxygen neutral density and the oxygen ion source rate in the Io plasma torus.
Dark Matter and Extragalactic Gas Clouds in the NGC 4532/DDO 137 System
NASA Technical Reports Server (NTRS)
Hoffman, G. L.; Lu, N. Y.; Salpeter, E. E.; Connell, B. M.
1998-01-01
H I synthesis mapping of NGC 4532 and DDO 137, a pair of Sm galaxies on the edge of the Virgo cluster, is used to determine rotation curves for each of the galaxies and to resolve the structure and kinematics of three extragalactic H I clouds embedded in an extended envelope of diffuse HI discovered in earlier Arecibo studies of the system.
DETERMINING THE NATURE OF THE EXTENDED H I STRUCTURE AROUND LITTLE THINGS DWARF GALAXY NGC 1569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Megan, E-mail: mjohnson@nrao.edu; National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24915
2013-06-15
This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9 Degree-Sign Multiplication-Sign 2 Degree-Sign region in H I line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569.more » A large, half-degree diameter H I cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1. Degree-Sign 5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0. Degree-Sign 5 H I cloud, filaments, and main body of the galaxy. The 0. Degree-Sign 5 H I cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H I bridge but more data are needed to determine if this is the case.« less
Could cirrus clouds have warmed early Mars?
NASA Astrophysics Data System (ADS)
Ramirez, Ramses M.; Kasting, James F.
2017-01-01
The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.
1999-01-01
Successful operation of the Mars Global Surveyor spacecraft beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg
Clouds off the Aleutian Islands
2017-12-08
March 23, 2010 - Clouds off the Aleutian Islands Interesting cloud patterns were visible over the Aleutian Islands in this image, captured by the MODIS on the Aqua satellite on March 14, 2010. Turbulence, caused by the wind passing over the highest points of the islands, is producing the pronounced eddies that swirl the clouds into a pattern called a vortex "street". In this image, the clouds have also aligned in parallel rows or streets. Cloud streets form when low-level winds move between and over obstacles causing the clouds to line up into rows (much like streets) that match the direction of the winds. At the point where the clouds first form streets, they're very narrow and well-defined. But as they age, they lose their definition, and begin to spread out and rejoin each other into a larger cloud mass. The Aleutians are a chain of islands that extend from Alaska toward the Kamchatka Peninsula in Russia. For more information related to this image go to: modis.gsfc.nasa.gov/gallery/individual.php?db_date=2010-0... For more information about Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html
NASA Technical Reports Server (NTRS)
Kidder, Stanley Q.; Hafner, Jan
2001-01-01
The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.
Nazar, Muhammad Faizan; Shah, Syed Sakhawat; Eastoe, Julian; Khan, Asad Muhammad; Shah, Afzal
2011-11-15
A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo
The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg{sup 2} of the SMC with 1 σ noise levels of 5–12 mJy beam{sup −1}, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μ m, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500more » μ m). The 1.1 mm objects show dust temperatures of 17–45 K and gas masses of 4 × 10{sup 3}–3 × 10{sup 5} M {sub ⊙}, assuming single-temperature thermal emission from the cold dust with an emissivity index, β , of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μ m and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μ m flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs.« less
NASA Astrophysics Data System (ADS)
Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Komugi, Shinya; Kohno, Kotaro; Tosaki, Tomoka; Sorai, Kazuo; Muller, Erik; Mizuno, Norikazu; Kawamura, Akiko; Onishi, Toshikazu; Fukui, Yasuo; Ezawa, Hajime; Oshima, Tai; Scott, Kimberly S.; Austermann, Jason E.; Matsuo, Hiroshi; Aretxaga, Itziar; Hughes, David H.; Kawabe, Ryohei; Wilson, Grant W.; Yun, Min S.
2017-01-01
The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg2 of the SMC with 1σ noise levels of 5-12 mJy beam-1, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μm, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500 μm). The 1.1 mm objects show dust temperatures of 17-45 K and gas masses of 4 × 103-3 × 105 M⊙, assuming single-temperature thermal emission from the cold dust with an emissivity index, β, of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μm and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μm flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Astrophysics Data System (ADS)
Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.
2008-04-01
The global aerosol-climate model ECHAM5-HAM has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme. Transfer, production, and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation, and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland). Although the single-column simulations cannot be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when assuming nonequilibrium conditions.
Drizzle formation in stratocumulus clouds: Effects of turbulent mixing
Magaritz-Ronen, L.; Pinsky, M.; Khain, A.
2016-02-17
The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less
Drizzle formation in stratocumulus clouds: Effects of turbulent mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magaritz-Ronen, L.; Pinsky, M.; Khain, A.
The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less
THE LAUNCHING OF COLD CLOUDS BY GALAXY OUTFLOWS. II. THE ROLE OF THERMAL CONDUCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brüggen, Marcus; Scannapieco, Evan
2016-05-01
We explore the impact of electron thermal conduction on the evolution of radiatively cooled cold clouds embedded in flows of hot and fast material as it occurs in outflowing galaxies. Performing a parameter study of three-dimensional adaptive mesh refinement hydrodynamical simulations, we show that electron thermal conduction causes cold clouds to evaporate, but it can also extend their lifetimes by compressing them into dense filaments. We distinguish between low column-density clouds, which are disrupted on very short times, and high-column density clouds with much longer disruption times that are set by a balance between impinging thermal energy and evaporation. Wemore » provide fits to the cloud lifetimes and velocities that can be used in galaxy-scale simulations of outflows in which the evolution of individual clouds cannot be modeled with the required resolution. Moreover, we show that the clouds are only accelerated to a small fraction of the ambient velocity because compression by evaporation causes the clouds to present a small cross-section to the ambient flow. This means that either magnetic fields must suppress thermal conduction, or that the cold clouds observed in galaxy outflows are not formed of cold material carried out from the galaxy.« less
O the Size Dependence of the Chemical Properties of Cloud Droplets: Exploratory Studies by Aircraft
NASA Astrophysics Data System (ADS)
Twohy, Cynthia H.
1992-09-01
Clouds play an important role in the climate of the earth and in the transport and transformation of chemical species, but many questions about clouds remain unanswered. In particular, the chemical properties of droplets may vary with droplet size, with potentially important consequences. The counterflow virtual impactor (CVI) separates droplets from interstitial particles and gases in a cloud and also can collect droplets in discrete size ranges. As such, the CVI is a useful tool for investigating the chemical components present in droplets of different sizes and their potential interactions with cloud processes. The purpose of this work is twofold. First, the sampling characteristics of the airborne CVI are investigated, using data from a variety of experiments. A thorough understanding of CVI properties is necessary in order to utilize the acquired data judiciously and effectively. Although the impaction characteristics of the CVI seem to be predictable by theory, the airborne instrument is subject to influences that may result in a reduced transmission efficiency for droplets, particularly if the inlet is not properly aligned. Ways to alleviate this problem are being investigated, but currently the imperfect sampling efficiency must be taken into account during data interpretation. Relationships between the physical and chemical properties of residual particles from droplets collected by the CVI and droplet size are then explored in both stratiform and cumulus clouds. The effects of various cloud processes and measurement limitations upon these relationships are discussed. In one study, chemical analysis of different -sized droplets sampled in stratiform clouds showed a dependence of chemical composition on droplet size, with larger droplets containing higher proportions of sodium than non-sea-salt sulfate and ammonium. Larger droplets were also associated with larger residual particles, as expected from simple cloud nucleation theory. In a study of marine cumulus clouds, the CVI was combined with a cloud condensation nucleus spectrometer to study the supersaturation spectra of residual particles from droplets. The median critical supersaturation of the droplet residual particles was consistently less than or equal to the median critical supersaturation of ambient particles except at cloud top, where residual particles exhibited a variety of critical supersaturations.
Bailey, James A; Casanova, Ruby S; Bufkin, Kim
2006-07-01
In using infrared or infrared-enhanced photography to examine gunshot residue (GSR) on dark-colored clothing, the GSR particles are microscopically examined directly on the fabric followed by the modified Griess test (MGT) for nitrites. In conducting the MGT, the GSR is transferred to treated photographic paper for visualization. A positive reaction yields an orange color on specially treated photographic paper. The examiner also evaluates the size of the powder pattern based on the distribution of nitrite reaction sites or density. A false-positive reaction can occur using the MGT due to contaminants or dyes that produce an orange cloud reaction as well. A method for enhancing visualization of the pattern produced by burned and partially unburned powder is by treatment of the fabric with a solution of sodium hypochlorite. In order to evaluate the results of sodium hypochlorite treatment for GSR visualization, the MGT was used as a reference pattern. Enhancing GSR patterns on dark or multicolored clothing was performed by treating the fabric with an application of 5.25% solution of sodium hypochlorite. Bleaching the dyes in the fabric enhances visualization of the GSR pattern by eliminating the background color. Some dyes are not affected by sodium hypochlorite; therefore, bleaching may not enhance the GSR patterns in some fabrics. Sodium hypochlorite provides the investigator with a method for enhancing GSR patterns directly on the fabric. However, this study is not intended to act as a substitute for the MGT or Sodium Rhodizonate test.
The impact of galactic disc environment on star-forming clouds
NASA Astrophysics Data System (ADS)
Nguyen, Ngan K.; Pettitt, Alex R.; Tasker, Elizabeth J.; Okamoto, Takashi
2018-03-01
We explore the effect of different galactic disc environments on the properties of star-forming clouds through variations in the background potential in a set of isolated galaxy simulations. Rising, falling, and flat rotation curves expected in halo-dominated, disc-dominated, and Milky Way-like galaxies were considered, with and without an additional two-arm spiral potential. The evolution of each disc displayed notable variations that are attributed to different regimes of stability, determined by shear and gravitational collapse. The properties of a typical cloud were largely unaffected by the changes in rotation curve, but the production of small and large cloud associations was strongly dependent on this environment. This suggests that while differing rotation curves can influence where clouds are initially formed, the average bulk properties are effectively independent of the global environment. The addition of a spiral perturbation made the greatest difference to cloud properties, successfully sweeping the gas into larger, seemingly unbound, extended structures and creating large arm-interarm contrasts.
Motion-Compensated Compression of Dynamic Voxelized Point Clouds.
De Queiroz, Ricardo L; Chou, Philip A
2017-05-24
Dynamic point clouds are a potential new frontier in visual communication systems. A few articles have addressed the compression of point clouds, but very few references exist on exploring temporal redundancies. This paper presents a novel motion-compensated approach to encoding dynamic voxelized point clouds at low bit rates. A simple coder breaks the voxelized point cloud at each frame into blocks of voxels. Each block is either encoded in intra-frame mode or is replaced by a motion-compensated version of a block in the previous frame. The decision is optimized in a rate-distortion sense. In this way, both the geometry and the color are encoded with distortion, allowing for reduced bit-rates. In-loop filtering is employed to minimize compression artifacts caused by distortion in the geometry information. Simulations reveal that this simple motion compensated coder can efficiently extend the compression range of dynamic voxelized point clouds to rates below what intra-frame coding alone can accommodate, trading rate for geometry accuracy.
A proposed study of multiple scattering through clouds up to 1 THz
NASA Technical Reports Server (NTRS)
Gerace, G. C.; Smith, E. K.
1992-01-01
A rigorous computation of the electromagnetic field scattered from an atmospheric liquid water cloud is proposed. The recent development of a fast recursive algorithm (Chew algorithm) for computing the fields scattered from numerous scatterers now makes a rigorous computation feasible. A method is presented for adapting this algorithm to a general case where there are an extremely large number of scatterers. It is also proposed to extend a new binary PAM channel coding technique (El-Khamy coding) to multiple levels with non-square pulse shapes. The Chew algorithm can be used to compute the transfer function of a cloud channel. Then the transfer function can be used to design an optimum El-Khamy code. In principle, these concepts can be applied directly to the realistic case of a time-varying cloud (adaptive channel coding and adaptive equalization). A brief review is included of some preliminary work on cloud dispersive effects on digital communication signals and on cloud liquid water spectra and correlations.
Discrete clouds of neutral gas between the galaxies M31 and M33.
Wolfe, Spencer A; Pisano, D J; Lockman, Felix J; McGaugh, Stacy S; Shaya, Edward J
2013-05-09
Spiral galaxies must acquire gas to maintain their observed level of star formation beyond the next few billion years. A source of this material may be the gas that resides between galaxies, but our understanding of the state and distribution of this gas is incomplete. Radio observations of the Local Group of galaxies have revealed hydrogen gas extending from the disk of the galaxy M31 at least halfway to M33. This feature has been interpreted to be the neutral component of a condensing intergalactic filament, which would be able to fuel star formation in M31 and M33, but simulations suggest that such a feature could also result from an interaction between both galaxies within the past few billion years (ref. 5). Here we report radio observations showing that about 50 per cent of this gas is composed of clouds, with the rest distributed in an extended, diffuse component. The clouds have velocities comparable to those of M31 and M33, and have properties suggesting that they are unrelated to other Local Group objects. We conclude that the clouds are likely to be transient condensations of gas embedded in an intergalactic filament and are therefore a potential source of fuel for future star formation in M31 and M33.
Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud
NASA Technical Reports Server (NTRS)
Drlica-Wagner, Alex; Gomez-Vargas, German A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi
2014-01-01
Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (approximately 3 x 10 (sup -26) cubic centimeters per second) for dark matter masses less than or approximately 30 gigaelectronvolts annihilating via the B/B- bar oscillation or tau/antitau channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.
Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.
Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen
2013-01-01
Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.
More Frequent Cloud Free Sky and Less Surface Solar Radiation in China from 1955-2000
NASA Technical Reports Server (NTRS)
Qian, Yun; Kaiser, Dale P.; Leung, L. Ruby; Xu, Ming
2006-01-01
In this study, we used newly available data frorn extended weather stations and time period to reveal that much of China has experienced significant decreases in cloud cover over the last half of the Twentieth century. This conclusion is supported by analysis of the more reliably observed frequency of cloud-free sky and overcast sky. We estimated that the total cloud cover and low cloud cover in China have decreased 0.88% and 0.33% per decade, respectively, and cloud-free days have increased 0.60% and overcast days decreased 0.78% per decade from 1954-2001. Meanwhile, both solar radiation and pan evaporation have decreased in China, with'solar radiation decreasing 3.1 w/square m and pan evaporation decreasing 39 mm per decade. Combining these results with findings of previous studies, we speculated that increased air pollution may have produced a fog-like haze that reflected/absorbed radiation from the sun and resulted in less solar radiation reaching the surface, despite concurrent increasing trends in cloud-free sky over China.
Searching For Dark Matter Annihilation In The Smith High-Velocity Cloud
Drlica-Wagner, Alex; Gómez-Vargas, Germán A.; Hewitt, John W.; ...
2014-06-27
Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use γ-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant γ-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation crossmore » section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (~3 × 10 -26 cm3 s -1) for dark matter masses . 30 GeV annihilating via the b¯b or τ⁺τ⁻ channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.« less
NASA Astrophysics Data System (ADS)
Niedermeier, Dennis; Voigtländer, Jens; Siebert, Holger; Desai, Neel; Shaw, Raymond; Chang, Kelken; Krueger, Steven; Schumacher, Jörg; Stratmann, Frank
2017-11-01
Turbulence - cloud droplet interaction processes have been investigated primarily through numerical simulation and field measurements over the last ten years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions, and are able to measure for extended times under statistically stationary and repeatable conditions. Therefore, the newly built turbulent wind tunnel LACIS-T (Turbulent Leipzig Aerosol Cloud Interaction Simulator) is an ideal facility for pursuing mechanistic understanding of these processes. Within the tunnel we are able to adjust precisely controlled turbulent temperature and humidity fields so as to achieve supersaturation levels allowing for detailed investigations of the interactions between cloud microphysical processes (e.g., cloud droplet activation) and the turbulent flow, under well-defined and reproducible laboratory conditions. We will present the fundamental operating principle, first results from ongoing characterization efforts, numerical simulations as well as first droplet activation experiments.
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.
1986-01-01
The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Kirk; Smith, William L., Jr.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Hong, Gang; Ayers, Jeffrey Kirk; Smith, William L.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol M.;
2012-01-01
Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared
NASA Astrophysics Data System (ADS)
Qin, Yi; Lin, Yanluan; Xu, Shiming; Ma, Hsi-Yen; Xie, Shaocheng
2018-02-01
Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.
ORIGINS OF SCATTER IN THE RELATIONSHIP BETWEEN HCN 1-0 AND DENSE GAS MASS IN THE GALACTIC CENTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Elisabeth A. C.; Battersby, Cara, E-mail: elisabeth.mills@sjsu.edu
We investigate the correlation of HCN 1-0 with gas mass in the central 300 pc of the Galaxy. We find that on the ∼10 pc size scale of individual cloud cores, HCN 1-0 is well correlated with dense gas mass when plotted as a log–log relationship. There is ∼0.75 dex of scatter in this relationship from clouds like Sgr B2, which has an integrated HCN 1-0 intensity of a cloud less than half its mass, and others that have HCN 1-0 enhanced by a factor of 2–3 relative to clouds of comparable mass. We identify the two primary sources ofmore » scatter to be self-absorption and variations in HCN abundance. We also find that the extended HCN 1-0 emission is more intense per unit mass than in individual cloud cores. In fact the majority (80%) of HCN 1-0 emission comes from extended gas with column densities below 7 × 10{sup 22} cm{sup −2}, accounting for 68% of the total mass. We find variations in the brightness of HCN 1-0 would only yield a ∼10% error in the dense gas mass inferred from this line in the Galactic center. However, the observed order of magnitude HCN abundance variations, and the systematic nature of these variations, warn of potential biases in the use of HCN as dense gas mass tracer in more extreme environments such as an active galactic nucleus and shock-dominated regions. We also investigate other 3 mm tracers, finding that HNCO is better correlated with mass than HCN, and might be a better tracer of cloud mass in this environment.« less
Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow
NASA Astrophysics Data System (ADS)
Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin
2018-03-01
We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| < 10^\\circ with an effective angular resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.
The heliospheric sector boundary as a distented magnetic cloud
NASA Technical Reports Server (NTRS)
Crooker, N. U.; Intriligator, D. S.
1995-01-01
A magnetic cloud was detected both near Earth and by Pioneer 11 located 43 deg east of Earth at 4.8 AU. The magnetic field within the cloud rotated smoothly from toward to away polarity, marking sector boundary passage. Interpreted as a flux rope, the cloud had a vertical axis, implying that its cylindrical cross-section in the ecliptic plane was distended along the sector boundary by at least 43, forming an extensive occlusion in the heliospheric current sheet. At 1 AU the cloud had plasma signatures typical of a fast coronal mass ejection with low temperature and a leading shock. In contrast, at 4.8 AU, only the cloud signature remained. Its radial dimension was the same at both locations, consistent with little expansion beyond 1 AU. Energetic particle data at 4.8 AU show high fluxes preceding the cloud but not extending forward to the corotating shock that marked entry into the interaction region containing the cloud. The streaming direction was antisunward, consistent with possible acceleration in a low-beta region of field line draping around the cloud's western (upstream) end. The fluxes dropped upon entry into the cloud and became essentially isotropic one third of the way through it. On the basis of sector boundary characteristics published in the past, we suggest that distended clouds may be common heliospheric current sheet occlusions.
The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor
NASA Astrophysics Data System (ADS)
Loyola, Diego G.; Gimeno García, Sebastián; Lutz, Ronny; Argyrouli, Athina; Romahn, Fabian; Spurr, Robert J. D.; Pedergnana, Mattia; Doicu, Adrian; Molina García, Víctor; Schüssler, Olena
2018-01-01
This paper presents the operational cloud retrieval algorithms for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Space Agency Sentinel-5 Precursor (S5P) mission scheduled for launch in 2017. Two algorithms working in tandem are used for retrieving cloud properties: OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks). OCRA retrieves the cloud fraction using TROPOMI measurements in the ultraviolet (UV) and visible (VIS) spectral regions, and ROCINN retrieves the cloud top height (pressure) and optical thickness (albedo) using TROPOMI measurements in and around the oxygen A-band in the near infrared (NIR). Cloud parameters from TROPOMI/S5P will be used not only for enhancing the accuracy of trace gas retrievals but also for extending the satellite data record of cloud information derived from oxygen A-band measurements, a record initiated with the Global Ozone Monitoring Experiment (GOME) on board the second European Remote-Sensing Satellite (ERS-2) over 20 years ago. The OCRA and ROCINN algorithms are integrated in the S5P operational processor UPAS (Universal Processor for UV/VIS/NIR Atmospheric Spectrometers), and we present here UPAS cloud results using the Ozone Monitoring Instrument (OMI) and GOME-2 measurements. In addition, we examine anticipated challenges for the TROPOMI/S5P cloud retrieval algorithms, and we discuss the future validation needs for OCRA and ROCINN.
A Numerical Study of Convection in a Condensing CO2 Atmosphere under Early Mars-Like Conditions
NASA Astrophysics Data System (ADS)
Nakajima, Kensuke; Yamashita, Tatsuya; Odaka, Masatsugu; Sugiyama, Ko-ichiro; Ishiwatari, Masaki; Nishizawa, Seiya; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki
2017-10-01
Cloud convection of a CO2 atmosphere where the major constituent condenses is numerically investigated under a setup idealizing a possible warm atmosphere of early Mars, utilizing a two-dimensional cloud-resolving model forced by a fixed cooling profile as a substitute for a radiative process. The authors compare two cases with different critical saturation ratios as condensation criteria and also examine sensitivity to number mixing ratio of condensed particles given externally.When supersaturation is not necessary for condensation, the entire horizontal domain above the condensation level is continuously covered by clouds irrespective of number mixing ratio of condensed particles. Horizontal-mean cloud mass density decreases exponentially with height. The circulations below and above the condensation level are dominated by dry cellular convection and buoyancy waves, respectively.When 1.35 is adopted as the critical saturation ratio, clouds appear exclusively as intense, short-lived, quasi-periodic events. Clouds start just above the condensation level and develop upward, but intense updrafts exist only around the cloud top; they do not extend to the bottom of the condensation layer. The cloud layer is rapidly warmed by latent heat during the cloud events, and then the layer is slowly cooled by the specified thermal forcing, and supersaturation gradually develops leading to the next cloud event. The periodic appearance of cloud events does not occur when number mixing ratio of condensed particles is large.
The role of sodium bicarbonate in the nucleation of noctilucent clouds
NASA Astrophysics Data System (ADS)
Plane, J. M. C.
2000-07-01
It is proposed that a component of meteoric smoke, sodium bicarbonate (NaHCO3), provides particularly effective condensation nuclei for noctilucent clouds. This assertion is based on three conditions being met. The first is that NaHCO3 is present at sufficient concentration (+/-104 cm-3) in the upper mesosphere between 80 and 90 km. It is demonstrated that there is strong evidence for this based on recent laboratory measurements coupled with atmospheric modelling. The second condition is that the thermodynamics of NaHCO3(H2O)n cluster formation allow spontaneous nucleation to occur under mesospheric conditions at temperatures below 140 K. The Gibbs free energy changes for forming clusters with n = 1 and 2 were computed from quantum calculations using hybrid density functional/Hartree-Fock (B3LYP) theory and a large basis set with added polarization and diffuse functions. The results were then extrapolated to higher n using an established dependence of the free energy on cluster size and the free energy for the sublimation of H2O to bulk ice. A 1-dimensional model of sodium chemistry was then employed to show that spontaneous nucleation to form ice particles (n >100) should occur between 84 and 89 km in the high-latitude summer mesosphere. The third condition is that other metallic components of meteoric smoke are less effective condensation nuclei, so that the total number of potential nuclei is small relative to the amount of available H2O. Quantum calculations indicate that this is probably the case for major constituents such as Fe(OH)2, FeO3 and MgCO3.
Ongoing cosmic ray acceleration in the supernova remnant W51C revealed with the MAGIC telescopes
NASA Astrophysics Data System (ADS)
Krause, J.; Reichardt, I.; Carmona, E.; Gozzini, S. R.; Jankowski, F.; MAGIC Collaboration
2012-12-01
The supernova remnant (SNR) W51C interacts with the molecular clouds of the star-forming region W51B, making the W51 complex one of the most promising targets to study cosmic ray acceleration. Gamma-ray emission from this region was discovered by Fermi/LAT and H.E.S.S., although its location was compatible with the SNR shell, the molecular cloud (MC) and a pulsar wind nebula (PWN) candidate. The modeling of the spectral energy distribution presented by the Fermi/LAT collaboration suggests a hadronic emission mechanism. Furthermore indications of an enhanced flux of low energy cosmic rays in the interaction region between SNR and MC have been reported based on ionization measurements in the mm regime. MAGIC conducted deep observations of W51, yielding a detection of an extended emission with more than 11 standard deviations. We extend the spectrum from the highest Fermi/LAT energies to ~5 TeV and find that it follows a single power law with an index of 2.58+/-0.07stat+/-0.22syst. We restrict the main part of the emission region to the zone where the SNR interacts with the molecular clouds. We also find a tail extending towards the PWN candidate CXO J192318.5+140305, possibly contributing up to 20% of the total flux. The broad band spectral energy distribution can be explained with a hadronic model that implies proton acceleration at least up to 50 TeV. This result, together with the morphology of the source, suggests that we observe ongoing acceleration of ions in the interaction zone between the SNR and the cloud.
Pediatric drug formulation of sodium benzoate extended-release granules.
Combescot, E; Morat, G; de Lonlay, P; Boudy, V
2016-01-01
Urea cycle disorders are a group of inherited orphan diseases leading to hyperammonemia. Current therapeutic strategy includes high doses of sodium benzoate leading to three or four oral intakes per day. As this drug is currently available in capsules or in solution, children are either unable to swallow the capsule or reluctant to take the drug due to its strong bitter taste. The objective of the present study was to develop solid, multiparticulate formulations of sodium benzoate, which are suitable for pediatric patients (i.e. flavor-masked, easy to swallow and with a dosing system). Drug layering and coating in a fluidized bed were applied for preparing sustained-release granules. Two types of inert cores (GalenIQ® and Suglets®) and three different polymers (Kollicoat®, Aquacoat® and Eudragit®) were tested in order to select the most appropriate polymer and starter core for our purpose. Physical characteristics and drug release profiles of the pellets were evaluated. A Suglets® core associated with a Kollicoat® coating seems to be the best combination for an extended release of sodium benzoate. A curing period of 8 h was necessary to complete film formation and the resulting drug release pattern was found to be dependent of the acidity of the release medium.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.
1999-01-01
Successful operation of the Mars Global Surveyor spacecraft, beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg less than L(sub s) less than 28 deg). Initially, thin (normal optical depth less than 0.06 at 825/ cm) ice clouds and hazes were widespread, showing a latitudinal gradient. With the onset of a regional dust storm at L(sub s) = 224 deg, ice clouds essentially vanished in the southern hemisphere, to reappear gradually after the decay of the storm. The thickest clouds (optical depth approx. 0.6) were associated with major volcanic features. At L(exp s) = 318 deg, the cloud at Ascraeus Mons was observed to disappear between 21:30 and 09:30, consistent with historically recorded diurnal behavior for clouds of this type. Limb observations showed extended optically thin (depth less than 0.04) stratiform clouds at altitudes up to 55 km. A water ice haze was present in the north polar night at altitudes up to 40 km; this probably provided heterogeneous nucleation sites for the formation of CO2 clouds at altitudes below the 1 mbar pressure level, where atmospheric temperatures dropped to the condensation point of CO2.
Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat
NASA Technical Reports Server (NTRS)
Hence, Deanna A.; Houze, Robert A.
2011-01-01
A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6 8 and 1 3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.
Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat
NASA Technical Reports Server (NTRS)
Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.
2011-01-01
A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.
Satellite observations of the impact of weak volcanic activity on marine clouds
NASA Astrophysics Data System (ADS)
Gassó, Santiago
2008-07-01
Because emissions from weak volcanic eruptions tend to remain in the low troposphere, they may have a significant radiative impact through the indirect effect on clouds. However, this type of volcanic activity is underreported and its global impact has been assessed only by model simulations constrained with very limited observations. First observations of the impact of high-latitude active volcanoes on marine boundary layer clouds are reported here. These observations were made using a combination of standard derived products and visible images from the MODIS, AMSR-E and GOES detectors. Two distinctive effects are identified. When there is an existing boundary layer cloud deck, an increase in cloud brightness and a decrease in both cloud effective radius and liquid water content were observed immediately downwind of the volcanoes. The visible appearance of these "volcano tracks" resembles the effect of man-made ship tracks. When synoptic conditions favor low cloudiness, the volcano plume (or volcano cloud) increases significantly the cloud cover downwind. The volcano cloud can extend for hundreds of kilometers until mixing with background clouds. Unlike violent eruptions, the volcano clouds reported here (the Aleutian Islands in the North Pacific and the South Sandwich Islands in the South Atlantic) have retrieved microphysical properties similar to those observed in ship tracks. However, when comparing the volcano clouds from these two regions, liquid water content can decrease, increase or remain unchanged with respect to nearby unperturbed clouds. These differences suggest that composition at the source, type of eruption and meteorological conditions influence the evolution of the cloud.
Interannual variability of high ice cloud properties over the tropics
NASA Astrophysics Data System (ADS)
Tamura, S.; Iwabuchi, H.
2015-12-01
The El Niño/Southern Oscillation (ENSO) affects atmospheric conditions and cloud physical properties such as cloud fraction (CF) and cloud top height (CTH). However, an impact of the ENSO on physical properties in high-ice cloud is not well known. Therefore, this study attempts to reveal relationship between variability of ice cloud physical properties and ENSO. Ice clouds are inferred with the multiband IR method in this study. Ice clouds are categorized in terms of cloud optical thickness (COT) as thin (0.1< COT <0.3), opaque (0.3< COT <3.6), thick (3.6< COT <11), and deep convective (DC) (11< COT) clouds, and relationship between ENSO and interannual variability of cloud physical properties is investigated for each category during the period from January 2003 to December 2014. The deseasonalized anomalies of CF and CTH in all categories correlate well with Niño3.4 index, with positive anomaly over the eastern Pacific and negative anomaly over the western Pacific during El Niño condition. However, the global distribution of these correlation coefficients is different by cloud categories. For example, CF of DC correlates well with Niño3.4 index over the convergence zone, while, that of thin cloud shows high correlation extending to high latitude from convergence zone, suggesting a connection with cloud formation. The global distributions of average rate of change differ by cloud category, because the different associate with ENSO and gradual trend toward La Niña condition had occurred over the analysis period. In this conference, detailed results and relationship between variability of cloud physical properties and atmospheric conditions will be shown.
Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean
NASA Astrophysics Data System (ADS)
Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin; Cho, Nayeong; Tan, Jackson
2018-03-01
The co-variability of cloud and precipitation in the extended tropics (35° N-35° S) is investigated using contemporaneous data sets for a 13-year period. The goal is to quantify potential relationships between cloud type fractions and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in 1° grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) data set aggregated to the same grid.
It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with weak
(i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.
Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail
2014-11-12
Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost, natural abundance of sodium. Here, we report a novel graphene nanosheets-wrapped phosphorus composite as an anode for high performance sodium-ion batteries though a facile ball-milling of red phosphorus and graphene nanosheets. Not only can the graphene nanosheets significantly improve the electrical conductivity, but they also serve as a buffer layer to accommodate the large volume change of phosphorus in the charge-discharge process. As a result, the graphene wrapped phosphorus composite anode delivers a high reversible capacity of 2077 mAh/g with excellent cycling stability (1700more » mAh/g after 60 cycles) and high Coulombic efficiency (>98%). This simple synthesis approach and unique nanostructure can potentially extend to other electrode materials with unstable solid electrolyte interphases in sodium-ion batteries.« less
CALANDRIA TYPE SODIUM GRAPHITE REACTOR
Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.
1964-02-11
A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Steven P.; Aguiar, Jeffery A.; Hacke, Peter
Here, we investigated potential-induced degradation (PID) in silicon mini-modules that were subjected to accelerated stressing to induce PID conditions. Shunted areas on the cells were identified with photoluminescence and dark lock-in thermography (DLIT) imaging. The identical shunted areas were then analyzed via time-of-flight secondary-ion mass spectrometry (TOFSIMS) imaging, 3-D tomography, and high-resolution transmission electron microscopy. The TOF-SIMS imaging indicates a high concentration of sodium in the shunted areas, and 3-D tomography reveals that the sodium extends more than 2 um from the surface below shunted regions. Transmission electron microscopy investigation reveals that a stacking fault is present at an areamore » identified as shunted by DLIT imaging. After the removal of surface sodium, tomography reveals persistent sodium present around the junction depth of 300 nm and a drastic difference in sodium content at the junction when comparing shunted and nonshunted regions.« less
Feasibility study of launch vehicle ground cloud neutralization
NASA Technical Reports Server (NTRS)
Vanderarend, P. C.; Stoy, S. T.; Kranyecz, T. E.
1976-01-01
The distribution of hydrogen chloride in the cloud was analyzed as a function of launch pad geometry and rate of rise of the vehicle during the first 24 sec of burn in order to define neutralization requirements. Delivery systems of various types were developed in order to bring the proposed chemical agents in close contact with the hydrogen chloride. Approximately one-third of the total neutralizing agent required can be delivered from a ground installed system at the launch pad; concentrated sodium carbonate solution is the preferred choice of agent for this launch pad system. Two-thirds of the neutralization requirement appears to need delivery by aircraft. Only one chemical agent (ammonia) may be reasonably considered for delivery by aircraft, because weight and bulk of all other agents are too large.
Stars caught in the braking stage in young Magellanic Cloud clusters
NASA Astrophysics Data System (ADS)
D'Antona, Francesca; Milone, Antonino P.; Tailo, Marco; Ventura, Paolo; Vesperini, Enrico; di Criscienzo, Marcella
2017-08-01
The colour-magnitude diagrams of many Magellanic Cloud clusters (with ages up to 2 billion years) display extended turnoff regions where the stars leave the main sequence, suggesting the presence of multiple stellar populations with ages that may differ even by hundreds of millions of years 1,2,3 . A strongly debated question is whether such an extended turnoff is instead due to populations with different stellar rotations3,4,5,6 . The recent discovery of a 'split' main sequence in some younger clusters (~80-400 Myr) added another piece to this puzzle. The blue side of the main sequence is consistent with slowly rotating stellar models, and the red side consistent with rapidly rotating models7,8,9,10. However, a complete theoretical characterization of the observed colour-magnitude diagram also seemed to require an age spread9. We show here that, in the three clusters so far analysed, if the blue main-sequence stars are interpreted with models in which the stars have always been slowly rotating, they must be ~30% younger than the rest of the cluster. If they are instead interpreted as stars that were initially rapidly rotating but have later slowed down, the age difference disappears, and this 'braking' also helps to explain the apparent age differences of the extended turnoff. The age spreads in Magellanic Cloud clusters are thus a manifestation of rotational stellar evolution. Observational tests are suggested.
1979-07-03
Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot from Voyager 2, shows the equator to the southern polar latitudes, near the Great Red Spot. The white oval that appears here is different from the one seen in a similiar position when voyager 1 passed years before. The region of white clouds now extends from east of The Red Spot and around it's northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of The Red Spot has also changed since Voyager1. It shows more small scale structure and cloud vortices being formed out of the wave structures.
Navy Tactical Applications Guide. Volume 2. Environmental Phenomena and Effects
1979-01-01
usually distinguished: the polar-front jet stream, associated with extratropical frontal systems; and the subtropical jet stream, overlying the poleward...patterns have formed in the cold air behind a frontal cloud band which extends from North Africa into Southern Europe . Note that the cellular cloud field...but because of the future potential of such areas for rapid storm " , development. (See Case 3 for the further development of these vorticity centers
Tornadoes are nature's most violent storms. They are rotating, funnel-shaped clouds that extend from a thunderstorm ... over a mile wide and 50 miles long. Tornadoes can also accompany tropical storms and hurricanes as ...
A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c.
de Wit, Julien; Wakeford, Hannah R; Gillon, Michaël; Lewis, Nikole K; Valenti, Jeff A; Demory, Brice-Olivier; Burgasser, Adam J; Burdanov, Artem; Delrez, Laetitia; Jehin, Emmanuël; Lederer, Susan M; Queloz, Didier; Triaud, Amaury H M J; Van Grootel, Valérie
2016-09-01
Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1 (ref. 3). The nature of these planets has yet to be determined, as their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range, from depleted to extended hydrogen-dominated atmospheres. Here we report observations of the combined transmission spectrum of the two inner planets during their simultaneous transits on 4 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at ≥10σ levels; TRAPPIST-1 b and c are therefore unlikely to have an extended gas envelope as they occupy a region of parameter space in which high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum-from a cloud-free water-vapour atmosphere to a Venus-like one.
NASA Astrophysics Data System (ADS)
Gruber, Simon; Unterstrasser, Simon; Bechtold, Jan; Vogel, Heike; Jung, Martin; Pak, Henry; Vogel, Bernhard
2018-05-01
A high-resolution regional-scale numerical model was extended by a parameterization that allows for both the generation and the life cycle of contrails and contrail cirrus to be calculated. The life cycle of contrails and contrail cirrus is described by a two-moment cloud microphysical scheme that was extended by a separate contrail ice class for a better representation of the high concentration of small ice crystals that occur in contrails. The basic input data set contains the spatially and temporally highly resolved flight trajectories over Central Europe derived from real-time data. The parameterization provides aircraft-dependent source terms for contrail ice mass and number. A case study was performed to investigate the influence of contrails and contrail cirrus on the shortwave radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enabled the model to simulate high clouds that were otherwise missing on this day. The effect of these extra clouds was to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.
The study of AGN variability using extended emission line regions
NASA Astrophysics Data System (ADS)
Sartori, Lia
2018-01-01
The study of AGN variability on different timescales can provide important information about black hole accretion physics, as well as the black hole – host galaxy interaction and coevolution. The discovery of an extended AGN photoionised cloud associated with the nearby galaxy IC 2497, the so-called “Hanny’s Voorwerp” (HV), provided us with a laboratory to study AGN variability over 100 kyr timescales. HV was illuminated by a strong quasar, but the quasar in IC 2497 dropped in luminosity in the last 200 kyrs. Because of its recent change we can now explore the host galaxy unimpeded by the presence of a quasar dominating the observations. On the other hand, the photoionised cloud preserves the echoes of its past activity. Citizen scientists taking part in the Galaxy Zoo project assembled a sample of low-redshift galaxies showing AGN photoionised clouds similar to HV. I will show how these objects can help us understand what happens when a quasar changes in luminosity and accretion state, and ultimately what is the physics driving AGN variability.
NASA Astrophysics Data System (ADS)
Maheskumar, R. S.; Padmakumari, B.; Konwar, Mahen; Morwal, S. B.; Deshpande, C. G.
2018-06-01
In-situ observations of cloud microphysical properties, carried out over different parts of Indian sub-continent using an instrumented research aircraft during Phase-I of Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) from June to September 2009, were studied. Different cloud probes were used to characterize the hydrometeor and precipitation types in the monsoon clouds. The results revealed that all liquid phase hydrometeors were present at temperatures -12 °C to 15 °C. Most of the presence of rain drops were found in the liquid water content (LWC) range from 0.5 to 2 g/m3. In general, rain drops are initiated when the droplet effective radius (Re) exceeded 12 μm. Rain dominated at the tops of young growing convective clouds even at temperatures colder than -10 °C. Mixed phase hydrometeors were present at temperatures from -2 °C to -18 °C. The cases where mixed phase precipitation occurred at temperatures warmer than about -7 °C were associated with influx of transported dust aerosol at the upper (supercooled) region of these cloud systems. Ice only hydrometeors were found at temperatures extending from -10 °C to -22 °C. Most of the monsoon rain is produced by warm and cold cloud/mixed-phase processes in the cloud. The combined Re from two different cloud probes is useful for validation of satellite derived cloud microphysical parameter.
NASA Astrophysics Data System (ADS)
Lawson, P.; Stamnes, K.; Stamnes, J.; Zmarzly, P.; O'Connor, D.; Koskulics, J.; Hamre, B.
2008-12-01
A tethered balloon system specifically designed to collect microphysical data in mixed-phase clouds was deployed in Arctic stratus clouds during May 2008 near Ny-Alesund, Svalbard, at 79 degrees North Latitude. This is the first time a tethered balloon system with a cloud particle imager (CPI) that records high-resolution digital images of cloud drops and ice particles has been operated in cloud. The custom tether supplies electrical power to the instrument package, which in addition to the CPI houses a 4-pi short-wavelength radiometer and a met package that measures temperature, humidity, pressure, GPS position, wind speed and direction. The instrument package was profiled vertically through cloud up to altitudes of 1.6 km. Since power was supplied to the instrument package from the ground, it was possible to keep the balloon package aloft for extended periods of time, up to 9 hours at Ny- Ålesund, which was limited only by crew fatigue. CPI images of cloud drops and the sizes, shapes and degree of riming of ice particles are shown throughout vertical profiles of Arctic stratus clouds. The images show large regions of mixed-phase cloud from -8 to -2 C. The predominant ice crystal habits in these regions are needles and aggregates of needles. The amount of ice in the mixed-phase clouds varied considerably and did not appear to be a function of temperature. On some occasions, ice was observed near cloud base at -2 C with supercooled cloud above to - 8 C that was devoid of ice. Measurements of shortwave radiation are also presented. Correlations between particle distributions and radiative measurements will be analyzed to determine the effect of these Arctic stratus clouds on radiative forcing.
Analytic Closed-Form Solution of a Mixed Layer Model for Stratocumulus Clouds
NASA Astrophysics Data System (ADS)
Akyurek, Bengu Ozge
Stratocumulus clouds play an important role in climate cooling and are hard to predict using global climate and weather forecast models. Thus, previous studies in the literature use observations and numerical simulation tools, such as large-eddy simulation (LES), to solve the governing equations for the evolution of stratocumulus clouds. In contrast to the previous works, this work provides an analytic closed-form solution to the cloud thickness evolution of stratocumulus clouds in a mixed-layer model framework. With a focus on application over coastal lands, the diurnal cycle of cloud thickness and whether or not clouds dissipate are of particular interest. An analytic solution enables the sensitivity analysis of implicitly interdependent variables and extrema analysis of cloud variables that are hard to achieve using numerical solutions. In this work, the sensitivity of inversion height, cloud-base height, and cloud thickness with respect to initial and boundary conditions, such as Bowen ratio, subsidence, surface temperature, and initial inversion height, are studied. A critical initial cloud thickness value that can be dissipated pre- and post-sunrise is provided. Furthermore, an extrema analysis is provided to obtain the minima and maxima of the inversion height and cloud thickness within 24 h. The proposed solution is validated against LES results under the same initial and boundary conditions. Then, the proposed analytic framework is extended to incorporate multiple vertical columns that are coupled by advection through wind flow. This enables a bridge between the micro-scale and the mesoscale relations. The effect of advection on cloud evolution is studied and a sensitivity analysis is provided.
NASA Astrophysics Data System (ADS)
Chen, Dandan; Guo, Jianping; Wang, Hongqing; Li, Jian; Min, Min; Zhao, Wenhui; Yao, Dan
2018-04-01
Clouds, as one of the most uncertain factors in climate system, have been intensively studied as satellites with advanced instruments emerged in recent years. However, few studies examine the vertical distributions of cloud top and their temporal variations over East Asia based on geostationary satellite data. In this study, the vertical structures of cloud top and its diurnal variations in summer of 2016 are analyzed using the Advanced Himawari Imager/Himawari-8 cloud products. Results show that clouds occur most frequently over the southern Tibetan Plateau and the Bay of Bengal. We find a steep gradient of cloud occurrence frequency extending from southwest to northeast China and low-value centers over the eastern Pacific and the Inner Mongolia Plateau. The vertical structures of cloud top are highly dependent on latitude, in addition to the nonnegligible roles of both terrain and land-sea thermal contrast. In terms of the diurnal cycle, clouds tend to occur more often in the afternoon, peaking around 1700 local time over land and ocean. The amplitude of cloud diurnal variation over ocean is much smaller than that over land, and complex terrain tends to be linked to larger amplitude. In vertical, the diurnal cycle of cloud frequency exhibits bimodal pattern over both land and ocean. The high-level peaks occur at almost the same altitude over land and ocean. In contrast, the low-level peaks over ocean mainly reside in the boundary layer, much lower than those over land, which could be indicative of the frequent occurrence of marine boundary layer clouds.
NASA Technical Reports Server (NTRS)
Platt, C. M. R.; Winker, D. M.; Vaughan, M. A.; Miller, S. D.
1999-01-01
Cloud-integrated attenuated backscatter from observations with the Lidar In-Space Technology Experiment (LITE) was studied over a range of cirrus clouds capping some extensive mesoscale convective systems (MCSS) in the Tropical West Pacific. The integrated backscatter when the cloud is completely attenuating, and when corrected for multiple scattering, is a measure of the cloud particle backscatter phase function. Four different cases of MCS were studied. The first was very large, very intense, and fully attenuating, with cloud tops extending to 17 km and a maximum lidar pulse penetration of about 3 km. It also exhibited the highest integrated attenuated isotropic backscatter, with values in the 532-nm channel of up to 2.5 near the center of the system, falling to 0.6 near the edges. The second MCS had cloud tops that extended to 14.8 km. Although MCS2 was almost fully attenuating, the pulse penetration into the cloud was up to 7 km and the MCS2 had a more diffuse appearance than MCS1. The integrated backscatter values were much lower in this system but with some systematic variations between 0.44 and 0.75. The third MCS was Typhoon Melissa. Values of integrated backscatter in tt-ds case varied from 1.64 near the eye of the typhoon to between 0.44 and 1.0 in the areas of typhoon outflow and in the 532-nm channel. Mean pulse penetration through the cloud top was 2-3 km, the lowest penetration of any of the systems. The fourth MCS consisted of a region of outflow from Typhoon Melissa. The cloud was semitransparent for more than half of the image time. During that time, maximum cloud depth was about 7 km. The integrated backscatter varied from about 0.38 to 0.63 in the 532-nm channel when the cloud was fully attenuating. In some isolated cirrus between the main systems, a plot of integrated backscatter against one minus the two-way transmittance gave a linear dependence with a maximum value of 0.35 when the clouds were fully attenuating. The effective backscatter-to-extinction ratios, when allowing for different multiple-scattering factors from space, were often within the range of those observed with ground-based lidar. Exceptions occurred near the centers of the most intense convection, where values were measured that were considerably higher than those in cirrus observed from the surface. In this case, the values were more compatible with theoretical values for perfectly formed hexagonal columns or plates. The large range in theoretically calculated back- scatter-to-extinction ratio and integrated multiple-scattering factor precluded a closer interpretation in terms of cloud microphysics.
NASA Technical Reports Server (NTRS)
Ragent, Boris
1998-01-01
The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.
Study of Star Formation Regions with Molecular Hydrogen Emission Lines
NASA Astrophysics Data System (ADS)
Pak, Soojong
The goal of my dissertation is to understand the large-scale, near-infrared (near-IR) H2 emission from the central kiloparsec (kpc) regions of galaxies, and to study the structure and physics of photon-dominated regions (or photodissociation regions, hereafter PDRs). In order to explore the near-IR H2 lines, our group built the University of Texas near-IR Fabry-Perot Spectrometer optimized for observations of extended, low surface brightness sources. In this instrument project, I designed and built a programmable high voltage DC amplifier for the Fabry-Perot piezoelectric transducers, a temperature-controlled cooling box for the Fabry-Perot etalon, instrument control software, and data reduction software. With this instrument, we observed H2 emission lines in the inner 400 pc of the Galaxy, the central ~1 kpc of NGC 253 and M82, and the star formation regions in the Magellanic Clouds. We also observed the Magellanic Clouds in the CO J=1/to0 line. We found that the H2 emission is very extended in the central kpc of the galaxies and is mostly UV-excited. The ratios of the H2 (1,0) S(1) luminosities to the far-IR continuum luminosities in the central kpc regions do not change from the Galactic center to starburst galaxies and to ultraluminous IR bright galaxies. Using the data from the Magellanic Clouds, we studied the microscopic structure of star forming clouds. We compiled data sets including our H2 (1,0) S(1) and CO J=1/to0 results and published (C scII) and far-IR data from the Magellanic Clouds, and compared these observations with models we made using a PDR code and a radiative transfer code. Assuming the cloud is spherical, we derived the physical sizes of H2, (C scII), and CO emission regions. The average cloud size appears to increase as the metallicity decreases. Our results agree with the theory of photoionization-regulated star formation in which the interplay between the ambipolar diffusion and ionization by far-UV photons determines the size of stable clouds.
NASA Technical Reports Server (NTRS)
Goodman,Jindra; Ragent, Boris
1998-01-01
The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.
Saponification reaction system: a detailed mass transfer coefficient determination.
Pečar, Darja; Goršek, Andreja
2015-01-01
The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.
EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.
2012-12-10
We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction inmore » Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.« less
NASA Astrophysics Data System (ADS)
Wang, Dong; Ding, Hao; Singh, Vijay P.; Shang, Xiaosan; Liu, Dengfeng; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing
2015-05-01
For scientific and sustainable management of water resources, hydrologic and meteorologic data series need to be often extended. This paper proposes a hybrid approach, named WA-CM (wavelet analysis-cloud model), for data series extension. Wavelet analysis has time-frequency localization features, known as "mathematics microscope," that can decompose and reconstruct hydrologic and meteorologic series by wavelet transform. The cloud model is a mathematical representation of fuzziness and randomness and has strong robustness for uncertain data. The WA-CM approach first employs the wavelet transform to decompose the measured nonstationary series and then uses the cloud model to develop an extension model for each decomposition layer series. The final extension is obtained by summing the results of extension of each layer. Two kinds of meteorologic and hydrologic data sets with different characteristics and different influence of human activity from six (three pairs) representative stations are used to illustrate the WA-CM approach. The approach is also compared with four other methods, which are conventional correlation extension method, Kendall-Theil robust line method, artificial neural network method (back propagation, multilayer perceptron, and radial basis function), and single cloud model method. To evaluate the model performance completely and thoroughly, five measures are used, which are relative error, mean relative error, standard deviation of relative error, root mean square error, and Thiel inequality coefficient. Results show that the WA-CM approach is effective, feasible, and accurate and is found to be better than other four methods compared. The theory employed and the approach developed here can be applied to extension of data in other areas as well.
NASA Astrophysics Data System (ADS)
Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine
A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.
Unique sodium phosphosilicate glasses designed through extended topological constraint theory.
Zeng, Huidan; Jiang, Qi; Liu, Zhao; Li, Xiang; Ren, Jing; Chen, Guorong; Liu, Fude; Peng, Shou
2014-05-15
Sodium phosphosilicate glasses exhibit unique properties with mixed network formers, and have various potential applications. However, proper understanding on the network structures and property-oriented methodology based on compositional changes are lacking. In this study, we have developed an extended topological constraint theory and applied it successfully to analyze the composition dependence of glass transition temperature (Tg) and hardness of sodium phosphosilicate glasses. It was found that the hardness and Tg of glasses do not always increase with the content of SiO2, and there exist maximum hardness and Tg at a certain content of SiO2. In particular, a unique glass (20Na2O-17SiO2-63P2O5) exhibits a low glass transition temperature (589 K) but still has relatively high hardness (4.42 GPa) mainly due to the high fraction of highly coordinated network former Si((6)). Because of its convenient forming and manufacturing, such kind of phosphosilicate glasses has a lot of valuable applications in optical fibers, optical amplifiers, biomaterials, and fuel cells. Also, such methodology can be applied to other types of phosphosilicate glasses with similar structures.
Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse.
Mendillo, M; Baumgardner, J
1995-10-05
The properties of the Moon's rarefied atmosphere, which can be traced through observations of sodium and potassium, provide important insights into the formation and maintenance of atmospheres on other primitive Solar System bodies. The lunar atmosphere is believed to be composed of atoms from the surface rocks and soil, which might have been sputtered by micrometeorites, by ions in the solar wind, or by photons. It might also form by the evaporation of atoms from the hot, illuminated surface. Here we report the detection of sodium emission from the Moon's atmosphere during a total lunar eclipse (which occurs when the Moon is full). The sodium atmosphere is considerably more extended at full Moon than expected--it extends to at least nine lunar radii--and its brightness distribution is incompatible with sources involving either solar-wind or micrometeorite sputtering. This leaves photon sputtering or thermal desorption as the preferred explanations for the lunar atmosphere, and suggests that sunlight might also be responsible for the transient atmospheres of other primitive bodies (such as Mercury).
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M. H.; Potter, G. L.; Alekseev, V.; Barker, H. W.; Bony, S.; Colman, R. A.; Dazlich, D. A.; DelGenio, A. D.; Deque, M.;
1997-01-01
We compare seasonal changes in cloud-radiative forcing (CRF) at the top of the atmosphere from 18 atmospheric general circulation models, and observations from the Earth Radiation Budget Experiment (ERBE). To enhance the CRF signal and suppress interannual variability, we consider only zonal mean quantities for which the extreme months (January and July), as well as the northern and southern hemispheres, have been differenced. Since seasonal variations of the shortwave component of CRF are caused by seasonal changes in both cloudiness and solar irradiance, the latter was removed. In the ERBE data, seasonal changes in CRF are driven primarily by changes in cloud amount. The same conclusion applies to the models. The shortwave component of seasonal CRF is a measure of changes in cloud amount at all altitudes, while the longwave component is more a measure of upper level clouds. Thus important insights into seasonal cloud amount variations of the models have been obtained by comparing both components, as generated by the models, with the satellite data. For example, in 10 of the 18 models the seasonal oscillations of zonal cloud patterns extend too far poleward by one latitudinal grid.
Arctic Clouds Infrared Imaging Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, J. A.
2016-03-01
The Infrared Cloud Imager (ICI), a passive thermal imaging system, was deployed at the North Slope of Alaska site in Barrow, Alaska, from July 2012 to July 2014 for measuring spatial-temporal cloud statistics. Thermal imaging of the sky from the ground provides high radiometric contrast during night and polar winter when visible sensors and downward-viewing thermal sensors experience low contrast. In addition to demonstrating successful operation in the Arctic for an extended period and providing data for Arctic cloud studies, a primary objective of this deployment was to validate novel instrument calibration algorithms that will allow more compact ICI instrumentsmore » to be deployed without the added expense, weight, size, and operational difficulty of a large-aperture onboard blackbody calibration source. This objective was successfully completed with a comparison of the two-year data set calibrated with and without the onboard blackbody. The two different calibration methods produced daily-average cloud amount data sets with correlation coefficient = 0.99, mean difference = 0.0029 (i.e., 0.29% cloudiness), and a difference standard deviation = 0.054. Finally, the ICI instrument generally detected more thin clouds than reported by other ARM cloud products available as of late 2015.« less
Impact of Antarctic mixed-phase clouds on climate.
Lawson, R Paul; Gettelman, Andrew
2014-12-23
Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.
The Radiative Effects of Martian Water Ice Clouds on the Local Atmospheric Temperature Profile
NASA Technical Reports Server (NTRS)
Colaprete, Anthony; Toon, Owen B.
2000-01-01
Mars Pathfinder made numerous discoveries, one of which was a deep temperature inversion that extended from about 15 km down to 8 km above the surface. It has been suggested by Haberle et al. (1999. J. Geophys. Res. 104, 8957-8974.) that radiative cooling by a water ice cloud may generate such an inversion. Clouds can strongly affect the local air temperature due to their ability to radiate efficiently in the infrared and due to the low air mass of the martian atmosphere, which allows the temperature to change during the relatively short lifetime of a cloud. We utilize a time-dependent microphysical aerosol model coupled to a radiative--convective model to explore the effects water ice clouds have on the local martian temperature profile. We constrain the dust and water vapor abundance using data from the Viking Missions and Mars Pathfinder. Water t ice clouds with visible optical depths of r > 0.1 form readily in these simulations. These clouds alter the local air temperature directly, through infrared cooling, and indirectly, by redistributing atmospheric dust. With this model we are able to reproduce the temperature inversions observed by Mars Pathfinder and Mars Global t Surveyor 2000 Academic Press
Impact of Antarctic mixed-phase clouds on climate
Lawson, R. Paul; Gettelman, Andrew
2014-01-01
Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm−2, and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than −20 °C. PMID:25489069
Major substructure in the M31 outer halo: the South-West Cloud
NASA Astrophysics Data System (ADS)
Bate, N. F.; Conn, A. R.; McMonigal, B.; Lewis, G. F.; Martin, N. F.; McConnachie, A. W.; Veljanoski, J.; Mackey, A. D.; Ferguson, A. M. N.; Ibata, R. A.; Irwin, M. J.; Fardal, M.; Huxor, A. P.; Babul, A.
2014-02-01
We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ˜100 kpc from the centre of M31 and extends for at least ˜50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793^{+45}_{-45} kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 ± 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 ± 0.15. We measure a brightness for the Cloud of MV = -12.1 mag; this is ˜75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.
Influence of carbon dioxide clouds on early martian climate.
Mischna, M A; Kasting, J F; Pavlov, A; Freedman, R
2000-06-01
Recent studies have shown that clouds made of carbon dioxide ice may have warmed the surface of early Mars by reflecting not only incoming solar radiation but upwelling IR radiation as well. However, these studies have not treated scattering self-consistently in the thermal IR. Our own calculations, which treat IR scattering properly, confirm these earlier calculations but show that CO2 clouds can also cool the surface, especially if they are low and optically thick. Estimating the actual effect of CO2 clouds on early martian climate will require three-dimensional models in which cloud location, height, and optical depth, as well as surface temperature and pressure, are determined self-consistently. Our calculations further confirm that CO2 clouds should extend the outer boundary of the habitable zone around a star but that there is still a finite limit beyond which above-freezing surface temperatures cannot be maintained by a CO2-H2O atmosphere. For our own Solar System, the absolute outer edge of the habitable zone is at approximately 2.4 AU.
2015-06-01
Hadoop Distributed File System (HDFS) without any integration with Accumulo-based Knowledge Stores based on OWL/RDF. 4. Cloud Based The Apache Software...BTW, 7(12), pp. 227–241. Godin, A. & Akins, D. (2014). Extending DCGS-N naval tactical clouds from in-storage to in-memory for the integrated fires...VISUALIZATIONS: A TOOL TO ACHIEVE OPTIMIZED OPERATIONAL DECISION MAKING AND DATA INTEGRATION by Paul C. Hudson Jeffrey A. Rzasa June 2015 Thesis
Evaluation of wind field statistics near and inside clouds using a coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Lottman, Brian Todd
1998-09-01
This work proposes advanced techniques for measuring the spatial wind field statistics near and inside clouds using a vertically pointing solid state coherent Doppler lidar on a fixed ground based platform. The coherent Doppler lidar is an ideal instrument for high spatial and temporal resolution velocity estimates. The basic parameters of lidar are discussed, including a complete statistical description of the Doppler lidar signal. This description is extended to cases with simple functional forms for aerosol backscatter and velocity. An estimate for the mean velocity over a sensing volume is produced by estimating the mean spectra. There are many traditional spectral estimators, which are useful for conditions with slowly varying velocity and backscatter. A new class of estimators (novel) is introduced that produces reliable velocity estimates for conditions with large variations in aerosol backscatter and velocity with range, such as cloud conditions. Performance of traditional and novel estimators is computed for a variety of deterministic atmospheric conditions using computer simulated data. Wind field statistics are produced for actual data for a cloud deck, and for multi- layer clouds. Unique results include detection of possible spectral signatures for rain, estimates for the structure function inside a cloud deck, reliable velocity estimation techniques near and inside thin clouds, and estimates for simple wind field statistics between cloud layers.
Silicon photonics cloud (SiCloud)
NASA Astrophysics Data System (ADS)
DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram
2015-02-01
We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.
Extended outlook: description, utilization, and daily applications of cloud technology in radiology.
Gerard, Perry; Kapadia, Neil; Chang, Patricia T; Acharya, Jay; Seiler, Michael; Lefkovitz, Zvi
2013-12-01
The purpose of this article is to discuss the concept of cloud technology, its role in medical applications and radiology, the role of the radiologist in using and accessing these vast resources of information, and privacy concerns and HIPAA compliance strategies. Cloud computing is the delivery of shared resources, software, and information to computers and other devices as a metered service. This technology has a promising role in the sharing of patient medical information and appears to be particularly suited for application in radiology, given the field's inherent need for storage and access to large amounts of data. The radiology cloud has significant strengths, such as providing centralized storage and access, reducing unnecessary repeat radiologic studies, and potentially allowing radiologic second opinions more easily. There are significant cost advantages to cloud computing because of a decreased need for infrastructure and equipment by the institution. Private clouds may be used to ensure secure storage of data and compliance with HIPAA. In choosing a cloud service, there are important aspects, such as disaster recovery plans, uptime, and security audits, that must be considered. Given that the field of radiology has become almost exclusively digital in recent years, the future of secure storage and easy access to imaging studies lies within cloud computing technology.
Subvisual-thin cirrus lidar dataset for satellite verification and climatological research
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Cho, Byung S.
1992-01-01
A polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day-night visual appearance; base, top, and optical midcloud heights and temperatures; measured physical and estimated optical cloud thicknesses; integrated linear depolarization ratios; and derived k/2 eta ratios. A subset of the data supporting 30 NOAA polar-orbiting satellite overpasses is given in tabular form to provide investigators with the means to test cloud retrieval algorithms and establish the limits of cirrus detectability from satellite measurements under various conditions. Climatologically, subvisual-thin cirrus appear to be higher, colder, and more strongly depolarizing than previously reported multilatitude cirrus, although similar k/2 eta that decrease with height and temperature are found.
Noctilucent cloud polarimetry: Twilight measurements in a wide range of scattering angles
NASA Astrophysics Data System (ADS)
Ugolnikov, Oleg S.; Maslov, Igor A.; Kozelov, Boris V.; Dlugach, Janna M.
2016-06-01
Wide-field polarization measurements of the twilight sky background during several nights with bright and extended noctilucent clouds in central and northern Russia in 2014 and 2015 are used to build the phase dependence of the degree of polarization of sunlight scattered by cloud particles in a wide range of scattering angles (from 40° to 130°). This range covers the linear polarization maximum near 90° and large-angle slope of the curve. The polarization in this angle range is most sensitive to the particle size. The method of separation of scattering on cloud particles from the twilight background is presented. Results are compared with T-matrix simulations for different sizes and shapes of ice particles; the best-fit model radius of particles (0.06 μm) and maximum radius (about 0.1 μm) are estimated.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Annotated image of Tharsis Limb Cloud 7 September 2005 This composite of red and blue Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired on 6 July 2005 shows an isolated water ice cloud extending more than 30 kilometers (more than 18 miles) above the martian surface. Clouds such as this are common in late spring over the terrain located southwest of the Arsia Mons volcano. Arsia Mons is the dark, oval feature near the limb, just to the left of the 'T' in the 'Tharsis Montes' label. The dark, nearly circular feature above the 'S' in 'Tharsis' is the volcano, Pavonis Mons, and the other dark circular feature, above and to the right of 's' in 'Montes,' is Ascraeus Mons. Illumination is from the left/lower left. Season: Northern Autumn/Southern SpringAre ship tracks useful analogs for studying the aerosol indirect effect?
NASA Astrophysics Data System (ADS)
Christensen, M.; Toll, V.; Stephens, G. L.
2017-12-01
Vessels transiting the ocean sometimes leave their mark on the clouds - leaving behind reflective cloud lines, known as ship tracks. Ship tracks have been looked upon by some as a possible Rosetta Stone connecting the effects of changing aerosol over the ocean and cloud albedo effects on climate (Porch et al. 1990, Atmos. Enviorn., 1051-1059). In this research, we establish whether ship tracks, and volcano tracks - a natural analog, can be used to relate these cloud-scale perturbations to the aerosol effects occurring at larger regional-scales. Two databases containing over 1,500 ship and 900 volcano tracks, all carefully hand-selected from satellite imagery, are utilized; showing that ship tracks exhibit very similar cloud albedo effect responses to that of volcano tracks. For comparison, our global dataset utilises over 7 million CloudSat profiles consisting of single-layer marine warm cloud in which the retrievals are co-located with the MODerate Imaging Spectroradiometer (MODIS) product so that statistical relationships between aerosol and cloud can be computed over 4x4 degree regions. All datasets show the same key physical processes that govern the cloud-aerosol indirect effect, namely, the strong negative responses in cloud droplet size and the bidirectional responses in liquid water path and cloud albedo depending on the meteorological conditions. Finally, this analysis is extended to a comparison against several general circulation models where it is suggested that key processes such as cloud-top entrainment and evaporation that regulates against strong liquid water path responses are likely underrepresented in most models.
On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs
McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.; ...
2016-05-06
In this study, it is shown that CMIP5 global climate models (GCMs) that convert supercooled water to ice at relatively warm temperatures tend to have a greater mean-state cloud fraction and more negative cloud feedback in the middle and high latitude Southern Hemisphere. We investigate possible reasons for these relationships by analyzing the mixed-phase parameterizations in 26 GCMs. The atmospheric temperature where ice and liquid are equally prevalent (T5050) is used to characterize the mixed-phase parameterization in each GCM. Liquid clouds have a higher albedo than ice clouds, so, all else being equal, models with more supercooled liquid water wouldmore » also have a higher planetary albedo. The lower cloud fraction in these models compensates the higher cloud reflectivity and results in clouds that reflect shortwave radiation (SW) in reasonable agreement with observations, but gives clouds that are too bright and too few. The temperature at which supercooled liquid can remain unfrozen is strongly anti-correlated with cloud fraction in the climate mean state across the model ensemble, but we know of no robust physical mechanism to explain this behavior, especially because this anti-correlation extends through the subtropics. A set of perturbed physics simulations with the Community Atmospheric Model Version 4 (CAM4) shows that, if its temperature-dependent phase partitioning is varied and the critical relative humidity for cloud formation in each model run is also tuned to bring reflected SW into agreement with observations, then cloud fraction increases and liquid water path (LWP) decreases with T5050, as in the CMIP5 ensemble.« less
A Laboratory Study on the Phase Transition for Polar Stratospheric Cloud Particles
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.
1997-01-01
The nucleation and growth of different phases of simulated polar stratospheric cloud (PSC) particles were investigated in the laboratory. Solutions and mixtures of solutions at concentrations 1 to 5 m (molality) of ammonium sulfate, ammonium bisulfate, sodium chloride, sulfuric acid, and nitric acid were supercooled to prescribed temperatures below their equilibrium melting point. These solutions were contained in small diameter glass tubing of volumes ranging from 2.6 to 0.04 ml. Samples were nucleated by insertion of an ice crystal, or in some cases by a liquid nitrogen cooled wire. Crystallization velocities were determined by timing the crystal growth front passages along the glass tubing. Solution mixtures containing aircraft exhaust (soot) were also examined. Crystallization rates increased as deltaT2, where deltaT is the supercooling for weak solutions (2 m or less). The higher concentrated solutions (greater than 3 m) showed rates significantly less than deltaT2. This reduced rate suggested an onset of a glass phase. Results were applied to the nucleation of highly concentrated solutions at various stages of polar stratospheric cloud development within the polar stratosphere.
Structure and extent of the giant molecular cloud near M17
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, B.G.; Lada, C.J.; Dickinson, D.F.
1979-06-01
Carbon monoxide emission at ..nu../sub LSR/ = 20 +- 2 km s/sup -1/ is found to extend 4/sup 0/ (approx.170 pc) southwest of M17, and is studied in an attempt to understand the internal structure and dynamics of a giant molecular cloud complex. The region contains two primary clouds. The first has at least 2 x 10/sup 5/ M/sub sun/ of molecular gas and extends for 1./sup 0/8 (72 pc) parallel to, but below the galactic plane southwest of M17. The second, located above the plane approximately 2./sup 0/5 southwest of M17, is about 1./sup 0/7 in extent, but containsmore » considerably less molecular mass (> or approx. =3 x 10/sup 4/ M/sub sun/). Between these two clouds is a 1/sup 0/ long region of relatively low intensity, clumpy CO emission which appears to bridge the two main clouds. The molecular mass within this bridge is estimated to be 2 x 10/sup 4/ M/sub sun/. The cloud associated with M17 is itself divided into four discrete fragments of approximately equal mass (4 x 10/sup 4/ M/sub sun/). The /sup 12/CO and /sup 13/CO line widths are higher in these four fragments than they are between the fragments. OB star formation is active only in the northeastern two of these fragments. The /sup 13/CO line widths in the discrete fragments satisfy the virial theorem for the derived masses. (b) The /sup 13/CO velocity structure in the large complex containing M17 shows a gradual change from regularity in the northeast to irregularity and occasionally multipeaked profiles in the southwest. This change corresponds to a gradient in the degree of compactness and intensity of star formation in the four fragments. A massive (10/sup 5/ M/sub sun/) molecular cloud complex associated with M16, 2/sup 0/ north of M17, and the two clouds southwest of M17, form a pattern of equally spaced star-forming clouds whose positions alternate above and below the galactic plane. Patchy CO emission is found between these three objects. The entire region of molecular emission is approx.250 pc long.« less
Added Value of Far-Infrared Radiometry for Ice Cloud Remote Sensing
NASA Astrophysics Data System (ADS)
Libois, Q.; Blanchet, J. P.; Ivanescu, L.; S Pelletier, L.; Laurence, C.
2017-12-01
Several cloud retrieval algorithms based on satellite observations in the infrared have been developed in the last decades. However, most of these observations only cover the midinfrared (MIR, λ < 15 μm) part of the spectrum, and none are available in the far-infrared (FIR, λ ≥ 15 μm). Recent developments in FIR sensors technology, though, now make it possible to consider spaceborne remote sensing in the FIR. Here we show that adding a few FIR channels with realistic radiometric performances to existing spaceborne narrowband radiometers would significantly improve their ability to retrieve ice cloud radiative properties. For clouds encountered in the polar regions and the upper troposphere, where the atmosphere above clouds is sufficiently transparent in the FIR, using FIR channels would reduce by more than 50% the uncertainties on retrieved values of optical thickness, effective particle diameter, and cloud top altitude. This would somehow extend the range of applicability of current infrared retrieval methods to the polar regions and to clouds with large optical thickness, where MIR algorithms perform poorly. The high performance of solar reflection-based algorithms would thus be reached in nighttime conditions. Using FIR observations is a promising venue for studying ice cloud microphysics and precipitation processes, which is highly relevant for cirrus clouds and convective towers, and for investigating the water cycle in the driest regions of the atmosphere.
Ammonia Observations of NGC 6334 I(N)
NASA Technical Reports Server (NTRS)
Kuiper, T. B. H.; Peters, W. L., III; Foster, J. R.; Gardner, F. F.; Whiteoak, J. B.
1995-01-01
Coincident with the far-infrared source NGC 6334 I(N) and water maser source E is a massive dense cloud which has the most intense ammonia (1, 1) emission of any known interstellar cloud. We have mapped the (3, 3) emission and find the cloud is extended 0.8 pc in the direction parallel to the Galactic plane, and 0.5 pc perpendicular to it. It has a velocity gradient of 1 km/s.pc perpendicular to the Galactic plane. The gas kinetic temperature is about 30 K and the density is greater than 10(exp 6)/cc. The mass of the cloud is about 3000 solar mass, 3 times greater than previously estimated. The para-ammonia column density is 6 - 8 x 10(exp 15)/sq cm. An ammonia abundance of 0.5 - 1.5 x 10(exp -8) is inferred, where the larger number assumes an early time ortho/para ratio. This suggests either a cloud age of less than approximately 10(exp 6) yr, or substantial depletion of ammonia.
Comparison of the far-infrared and carbon monoxide emission in Heiles' Cloud 2 and B18
NASA Technical Reports Server (NTRS)
Snell, Ronald L.; Schloerb, F. Peter; Heyer, Mark H.
1989-01-01
A comparison is made of the far-IR emission detected by IRAS at 60 and 100 microns and the emission from C(-13)O in B18 and Heiles' Cloud 2. The results show that both these clouds have extended emission at the studied wavelengths and that this emission is correlated with the integrated intensity of (C-13)O emission. The dust temperature and optical depth, the gas column density, the mass of gas and dust, and the far-IR luminosity are derived and presented. The analysis shows that the dust optical depth is much better correlated with the gas column density than with the far-IR intensity. The dust temperature is found to be anticorrelated with the gas column density, suggesting that these clouds are externally heated by the interstellar radiation field. The far-IR luminosity-to-mass ratios for the clouds are substantially less than the average for the inner Galaxy.
Homogeneous Aerosol Freezing in the Tops of High-Altitude Tropical Cumulonimbus Clouds
NASA Technical Reports Server (NTRS)
Jensen, E. J.; Ackerman, A. S.
2006-01-01
Numerical simulations of deep, intense continental tropical convection indicate that when the cloud tops extend more than a few kilometers above the liquid water homogeneous freezing level, ice nucleation due to freezing of entrained aqueous sulfate aerosols generates large concentrations of small crystals (diameters less than approx. equal to 20 micrometers). The small crystals produced by aerosol freezing have the largest impact on cloud-top ice concentration for convective clouds with strong updrafts but relatively low aerosol concentrations. An implication of this result is that cloud-top ice concentrations in high anvil cirrus can be controlled primarily by updraft speeds in the tops of convective plumes and to a lesser extent by aerosol concentrations in the uppermost troposphere. While larger crystals precipitate out and sublimate in subsaturated air below, the population of small crystals can persist in the saturated uppermost troposphere for many hours, thereby prolonging the lifetime of remnants from anvil cirrus in the tropical tropopause layer.
Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Stuart; Hacker, Jorg M.; Cole, Jason N.
2007-03-01
Nauru, a small island in the tropical pacific, generates plumes of clouds that may grow to several hundred km length. This study uses observations to examine the mesoscale disturbance of the marine atmospheric boundary layer by the island that produces these cloud streets. Observations of the surface layer were made from two ships in the vicinity of Nauru and from instruments on the island. The structure of the atmospheric boundary layer over the island was investigated using aircraft flights. Cloud production over Nauru was examined using remote sensing instruments. During the day the island surface layer was warmer than themore » marine surface layer and wind speed was lower than over the ocean. Surface heating forced the growth of a thermal internal boundary layer, above which a street of cumulus clouds formed. The production of clouds resulted in reduced downwelling shortwave irradiance at the island surface. A plume of warm-dry air was observed over the island which extended 15 – 20 km downwind.« less
An origin of arc structures deeply embedded in dense molecular cloud cores
NASA Astrophysics Data System (ADS)
Matsumoto, Tomoaki; Onishi, Toshikazu; Tokuda, Kazuki; Inutsuka, Shu-ichiro
2015-04-01
We investigated the formation of arc-like structures in the infalling envelope around protostars, motivated by the recent Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the high-density molecular cloud core, MC27/L1521F. We performed self-gravitational hydrodynamical numerical simulations with an adaptive mesh refinement code. A filamentary cloud with a 0.1 pc width fragments into cloud cores because of perturbations due to weak turbulence. The cloud core undergoes gravitational collapse to form multiple protostars, and gravitational torque from the orbiting protostars produces arc structures extending up to a 1000 au scale. As well as on a spatial extent, the velocity ranges of the arc structures, ˜0.5 km s-1, are in agreement with the ALMA observations. We also found that circumstellar discs are often misaligned in triple system. The misalignment is caused by the tidal interaction between the protostars when they undergo close encounters because of a highly eccentric orbit of the tight binary pair.
SO 2 oxidation in an entraining cloud model with explicit microphysics
NASA Astrophysics Data System (ADS)
Bower, K. N.; Hill, T. A.; Coe, H.; Choularton, T. W.
A model of the chemical evolution of the droplets in a hill-cap cloud is presented. The chemistry of individual droplets forming on cloud condensation nuclei of differing size and chemical composition is considered, and the take-up of species from the gas phase by the droplets is treated explicity for the droplet population. Oxidation of S(IV) dissolved in cloud droplets is assumed to be dominated by hydrogen peroxide and ozone. Hydrogen peroxide is normally found to be the dominant oxidant for the oxidation of sulphur dioxide (except in the presence of substantial concentrations of ammonia gas, which increases droplet pH and the contribution made by the oxidant ozone). The entrainment of hydrogen peroxide from above the cloud top increases the amount of sulphate produced in conditions where the reaction is otherwise oxidant limited by the availability hydrogen peroxide. These conditions occur when there are high concentrations of sulphur dioxide accompanied by low cloudwater pH values. Within droplets formed on sodium chloride aerosol, reduced levels of acidity lead to an increase in sulphate production as a result of an enhanced reaction between SO 2 and the oxidant ozone. This results in an overall higher increase in cloudwater sulphate than would be expected assuming an even distribution of all reactants amongst the droplets. In addition, concentrations of the hydrogen sulphite ion predicted to occur in the cloudwater can be substantially in excess of those predicted from the bulk cloudwater pH. This is consistent with recent observations.
NASA Astrophysics Data System (ADS)
Sromovsky, L. A.; Baines, K. H.; Fry, P. M.
2018-03-01
A 5° latitude band on Saturn centered near planetocentric latitude 36°S is known as "Storm Alley" because it has been for several extended periods a site of frequent lightning activity and associated thunderstorms, first identified by Porco et al. (2005). The thunderstorms appeared as bright clouds at short and long continuum wavelengths, and over a period of a week or so transformed into dark ovals (Dyudina et al., 2007). The ovals were found to be dark over a wide spectral range, which led Baines et al. (2009) to suggest the possibility that a broadband absorber such as soot produced by lightning could play a significant role in darkening the clouds relative to their surroundings. Here we show that an alternative explanation, which is that the clouds are less reflective because of reduced optical depth, provides an excellent fit to near infrared spectra of similar features obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) in 2008, and leads to a plausible scenario for cloud evolution. We find that the background clouds and the oval clouds are both dominated by the optical properties of a ubiquitous upper cloud layer, which has the same particle size in both regions, but about half the optical depth and physical thickness in the dark oval regions. The dark oval regions are also marked by enhanced emissions in the 5-μm window region, a result of lower optical depth of the deep cloud layer near 3.1-3.8 bar, presumably composed of ammonium hydrosulfide (NH4SH). The bright storm clouds completely block this deep thermal emission with a thick layer of ammonia (NH3) clouds extending from the middle of the main visible cloud layer probably as deep as the 1.7-bar NH3 condensation level. Other condensates might also be present at higher pressures, but are obscured by the NH3 cloud. The strong 3-μm spectral absorption that was displayed by Saturn's Great Storm of 2010-2011 (Sromovsky et al., 2013) is weaker in these storms because the contrast is muted by the overlying cloud deck that these less intense storms do not fully penetrate. Our speculated evolutionary scenario that seems consistent with these results is that deep convection produces lightning and bright clouds of large ammonia particles that rise up into the mid level of the overlying visible deck, pushing out the particles in that layer with the outflow at the top of the convective towers. When the convective pulse subsides, these large particles fall out of the column within a week or so, leaving behind less optical depth than background clouds, making them appear darker because they are less reflective. However, this simple picture does not explain all details of the phenomenon, e.g. the irregular morphology of the bright convective regions and the stable regular shapes of the dark ovals that are formed in their wake.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Architecture
NASA Astrophysics Data System (ADS)
Xiao, J.; Yu, C.; Cui, C.; He, B.; Li, C.; Fan, D.; Hong, Z.; Yin, S.; Wang, C.; Cao, Z.; Fan, Y.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Zhang, H.
2015-09-01
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). The ultimate goal of this project is to provide a comprehensive end-to-end astronomy research environment where several independent systems seamlessly collaborate to support the full lifecycle of the modern observational astronomy based on big data, from proposal submission, to data archiving, data release, and to in-situ data analysis and processing. In this paper, the architecture and key designs of the AstroCloud platform are introduced, including data access middleware, access control and security framework, extendible proposal workflow, and system integration mechanism.
Analytical study of the effects of clouds on the light produced by lightning
NASA Technical Reports Server (NTRS)
Phanord, Dieudonne D.
1990-01-01
Researchers consider the scattering of visible and infrared light due to lightning by cubic, cylindrical and spherical clouds. The researchers extend to cloud physics the work by Twersky for single and multiple scattering of electromagnetic waves. They solve the interior problem separately to obtain the bulk parameters for the scatterer equivalent to the ensemble of spherical droplets. With the interior solution or the equivalent medium approach, the multiple scattering problem is reduced to that of a single scatterer in isolation. Hence, the computing methods of Wiscombe or Bohren specialized to Mie scattering with the possibility for absorption were used to generate numerical results in short computer time.
Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms.
Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel
2014-01-01
With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies.
Photographer : JPL Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot
NASA Technical Reports Server (NTRS)
1979-01-01
Photographer : JPL Range : 6 Million km. ( 3.72 million miles ) This photograph of Jupiter, shot from Voyager 2, shows the equator to the southern polar latitudes, near the Great Red Spot. The white oval that appears here is different from the one seen in a similiar position when voyager 1 passed years before. The region of white clouds now extends from east of The Red Spot and around it's northern boundary, preventing small cloud vortices from circling the feature. The disturbed region west of The Red Spot has also changed since Voyager1. It shows more small scale structure and cloud vortices being formed out of the wave structures.
A study of the large-scale infrared emission from a selected dark cloud
NASA Technical Reports Server (NTRS)
Young, Erick T.
1993-01-01
An investigation of the infrared emission energetics and embedded population in the rho Ophiuchi dark cloud is summarized. With a distance of approximately 140 pc, the rho Ophiuchi cloud is one of the closest regions of recent star formation. It is also one of the best studied such regions with numerous observations at all wavelengths. The Infrared Astronomy Satellite (IRAS) data of the cloud provided a new glimpse of the overall structure of the cloud. In particular, the interaction of radiation from the Sco-Oph OB Association on the external heating of the cloud was very evident on Skyflux and Survey CO-Add images produced by IRAS. The infrared survey also revealed a number of new embedded sources in the cloud which have subsequently been observed from the ground. In earlier study, the overall energies of the cloud using the IRAS data was explored. The main conclusions of that work were: (1) the overall luminosity of the cloud is well explained by the emission of the known B-stars, HD 147889, SR-3, and S1, along with a 15 percent contribution from the external radiation field; (2) the dust physical temperatures were significantly lower than the observed CO gas temperatures; and (3) dust grains are heated to only 10 percent to 20 percent of the total depth into the cloud. This analysis was extended by drawing on data from large-scale CO maps of Loren (1989) and from near-infrared surveys of the embedded population.
NASA Astrophysics Data System (ADS)
Oschlisniok, J.; Tellmann, S.; Pätzold, M.; Häusler, B.; Andert, T.; Bird, M.; Remus, S.
2012-09-01
The planet Venus is shrouded within a roughly 20 km thick cloud layer, which extends from the lower to the middle atmosphere (ca. 50 - 70 km). While the clouds are mostly composed of sulfuric acid droplets, a haze layer of sulfuric acid vapor exists below the clouds. Within the cloud and the sub - cloud region Radio signal strength variations (intensity scintillations) caused by atmospheric waves and a decrease in the signal intensity caused by absorption by H2SO4 are observed by radio occultation experiments. The Venus Express spacecraft is orbiting Venus since 2006. The Radio Science Experiment VeRa probes the atmosphere with radio signals at 3.6 cm (XBand) and 13 cm (S-Band) wavelengths. The disturbance of the radio signal intensity is used to investigate the cloud region with respect to atmospheric waves. The absorption of the signal is used to determine the abundance of H2SO4 near the cloud base. This way a detailed study of the H2SO4 abundance within the cloud and sub - cloud region is possible. Results from the intensity scintillations within the cloud deck are presented and compared with gravity wave studies based on temperature variations inferred from VeRa soundings. Vertical absorptivity profiles and resulting sulfuric acid vapor profiles are presented and compared with previous missions. A distinct latitudinal dependence and a southern northern symmetry are clearly visible.
An Uncertainty Data Set for Passive Microwave Satellite Observations of Warm Cloud Liquid Water Path
NASA Astrophysics Data System (ADS)
Greenwald, Thomas J.; Bennartz, Ralf; Lebsock, Matthew; Teixeira, João.
2018-04-01
The first extended comprehensive data set of the retrieval uncertainties in passive microwave observations of cloud liquid water path (CLWP) for warm oceanic clouds has been created for practical use in climate applications. Four major sources of systematic errors were considered over the 9-year record of the Advanced Microwave Scanning Radiometer-EOS (AMSR-E): clear-sky bias, cloud-rain partition (CRP) bias, cloud-fraction-dependent bias, and cloud temperature bias. Errors were estimated using a unique merged AMSR-E/Moderate resolution Imaging Spectroradiometer Level 2 data set as well as observations from the Cloud-Aerosol Lidar with Orthogonal Polarization and the CloudSat Cloud Profiling Radar. To quantify the CRP bias more accurately, a new parameterization was developed to improve the inference of CLWP in warm rain. The cloud-fraction-dependent bias was found to be a combination of the CRP bias, an in-cloud bias, and an adjacent precipitation bias. Globally, the mean net bias was 0.012 kg/m2, dominated by the CRP and in-cloud biases, but with considerable regional and seasonal variation. Good qualitative agreement between a bias-corrected AMSR-E CLWP climatology and ship observations in the Northeast Pacific suggests that the bias estimates are reasonable. However, a possible underestimation of the net bias in certain conditions may be due in part to the crude method used in classifying precipitation, underscoring the need for an independent method of detecting rain in warm clouds. This study demonstrates the importance of combining visible-infrared imager data and passive microwave CLWP observations for estimating uncertainties and improving the accuracy of these observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kyo-Sun Sunny; Riihimaki, Laura; Comstock, Jennifer M.
A new cloud-droplet number concentration (NDROP) value added product (VAP) has been produced at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site for the 13 years from January 1998 to January 2011. The retrieval is based on surface radiometer measurements of cloud optical depth from the multi-filter rotating shadow-band radiometer (MFRSR) and liquid water path from the microwave radiometer (MWR). It is only applicable for single-layered warm clouds. Validation with in situ aircraft measurements during the extended-term aircraft field campaign, Routine ARM Aerial Facility (AAF) CLOWD Optical Radiative Observations (RACORO), shows that the NDROP VAP robustly reproduces themore » primary mode of the in situ measured probability density function (PDF), but produces a too wide distribution, primarily caused by frequent high cloud-droplet number concentration. Our analysis shows that the error in the MWR retrievals at low liquid water paths is one possible reason for this deficiency. Modification through the diagnosed liquid water path from the coordinate solution improves not only the PDF of the NDROP VAP but also the relationship between the cloud-droplet number concentration and cloud-droplet effective radius. Consideration of entrainment effects rather than assuming an adiabatic cloud improves the values of the NDROP retrieval by reducing the magnitude of cloud-droplet number concentration. Aircraft measurements and retrieval comparisons suggest that retrieving the vertical distribution of cloud-droplet number concentration and effective radius is feasible with an improvement of the parameter representing the mixing effects between environment and clouds and with a better understanding of the effect of mixing degree on cloud properties.« less
Sputtering of sodium on the planet Mercury
NASA Technical Reports Server (NTRS)
Mcgrath, M. A.; Johnson, R. E.; Lanzerotti, L. J.
1986-01-01
It is shown here that ion sputtering cannot account for the observed neutral sodium vapor column density on Mercury, but that it is an important loss mechanism for Na. Photons are likely to be the dominant stimulus, both directly through photodesorption and indirectly through thermal desorption of absorbed Na. It is concluded that the atmosphere produced is characterized by the planet's surface temperature, with the ion-sputtered Na contributing to a lesser, but more extended, component of the atmosphere.
Ion selectivity of the Vibrio alginolyticus flagellar motor.
Liu, J Z; Dapice, M; Khan, S
1990-01-01
The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight. PMID:2394685
Sodium Atoms in the Lunar Exotail: Observed Velocity and Spatial Distributions
NASA Technical Reports Server (NTRS)
Line, Michael R.; Mierkiewicz, E. J.; Oliversen, R. J.; Wilson, J. K.; Haffner, L. M.; Roesler, F. L.
2011-01-01
The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations determined the average radial velocity of sodium atoms moving down the lunar tail beyond Earth along the Sun-Moon-Earth line (i.e., the anti-lunar point) to be 12.4 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 x times 15 deg region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights around new moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3 degrees east along the ecliptic per night. Preliminary modeling results suggest that the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution and that observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days.
MOLA Science Team A Mars' Year of Topographic Mapping with the Mars Orbiter Laser Altimeter
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.
2001-01-01
Mars Orbiter Laser Altimeter (MOLA) has operated at Mars for a full Mars year and provided a new geodetic and geophysical view of the planet. As the spacecraft enters into the Extended Mission, MOLA will concentrate its observations on the seasonal variability of the icecaps and martian clouds. Additional information is contained in the original extended abstract.
Dust Ejection Induced by Small Meteoroids Impacting Martian Surface
NASA Technical Reports Server (NTRS)
Shuvalov, Valery
2001-01-01
The objective of this study is numerical modeling of meteoroid impact on the martian surface and determination of the resulting dust cloud parameters. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Mcdougal, David S. (Editor); Wagner, H. Scott (Editor)
1990-01-01
FIRE (First ISCCP Regional Experiment) is a U.S. cloud-radiation program that seeks to address the issues of a basic understanding and parameterizations of cirrus and marine stratocumulus cloud systems and ISCCP data products. The papers describe research analysis of data collected at the 1986 Cirrus Intensive Field Observations (IFO), the 1987 Marine Stratocumulus IFO, and the Extended Time Observations. The papers are grouped into sessions on satellite studies, lidar/radiative properties/microphysical studies, radiative properties, thermodynamic and dynamic properties, case studies, and large scale environment and modeling studies.
Cloud Thickness from Offbeam Returns (THOR) Validation Campaign on NASA's P3B Over the ARM/SGP
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)
2002-01-01
Physical thickness of a cloud layer, sometimes multiple cloud layers, is a crucial controller of solar heating of the Earth- atmosphere system, which drives the convective processes that produce storm systems. Yet clouds of average optical thickness are opaque to conventional lidar, so their thickness is well estimated only by combining a lidar above and another below cloud, or a radar and lidar on the same side, dual facilities not widely available. Here we report initial observations of a new airborne multiple field of view lidar, capable of determining physical thickness of cloud layers from time signatures of off-beam returns from a I kHz micropulse lidar at 540 rim. For a single layer, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. This halo method requires cloud optical thickness exceeding 2, and improves with cloud thickness, thus complimenting conventional lidar, which cannot penetrate thick clouds. Results are presented from March 25, 2002, when THOR flew a butterfly pattern over the ARM site at 8.3 km, above a thin ice cloud at 5 km, and a thick boundary-layer stratus deck with top at 1.3 km, as shown by THOR channel 1, and a base at about 0.3 km as shown by the ground-based MPL. Additional information is included in the original extended abstract.
Observation of Neutral Sodium Above Mercury During the Transit of November 8, 2006
NASA Technical Reports Server (NTRS)
Potter, A. E.; Killen, R. M.; Reardon, Kevin P.; Bida, T. A.
2013-01-01
We mapped the absorption of sunlight by sodium vapor in the exosphere of Mercury during the transit of Mercury on November 8, 2006, using the IBIS Interferometric BIdimensional Spectrometer at the Dunn Solar Telescope operated by the National Solar Observatory at Sunspot, New Mexico. The measurements were reduced to line-of-sight equivalent widths for absorption at the sodium D2 line around the shadow of Mercury. The sodium absorption fell off exponentially with altitude up to about 600 km. However there were regions around north and south polar-regions where relatively uniform sodium absorptions extended above 1000 km. We corrected the 0-600 km altitude profiles for seeing blur using the measured point spread function. Analysis of the corrected altitude distributions yielded surface densities, zenith column densities, temperatures and scale heights for sodium all around the planet. Sodium absorption on the dawn side equatorial terminator was less than on the dusk side, different from previous observations of the relative absorption levels. We also determined Earthward velocities for sodium atoms, and line widths for the absorptions. Earthward velocities resulting from radiation pressure on sodium averaged 0.8 km/s, smaller than a prediction of 1.5 km/s. Most line widths were in the range of 20 mA after correction for instrumental broadening, corresponding to temperatures in the range of 1000 K.
Lee, S; McAuliffe, D J; Kollias, N; Flotte, T J; Doukas, A G
2001-01-01
Photomechanical waves render the stratum corneum permeable and allow macromolecules to diffuse into the epidermis and dermis. The aim of this study was to investigate the combined action of photomechanical waves and sodium lauryl sulfate, an anionic surfactant, for transdermal delivery. A single photomechanical wave was applied to the skin of rats in the presence of sodium lauryl sulfate. The sodium lauryl sulfate solution was removed and aqueous solutions of rhodamine-B dextran (40 kDa molecular weight) were applied to the skin at time points 2, 30, and 60 minutes post-exposure. The presence of rhodamine-B dextran in the skin was measured by fluorescence emission spectroscopy in vivo and fluorescence microscopy of frozen biopsies. The use of sodium lauryl sulfate delayed the recovery of the stratum corneum barrier and extended the time available for the diffusion of dextran through it. The combination of photomechanical waves and surfactants can enhance transdermal drug delivery. Copyright 2001 Wiley-Liss, Inc.
Shadike, Zulipiya; Zhou, Yong -Ning; Chen, Lan -Li; ...
2017-08-30
The intercalation compounds with various electrochemically active or inactive elements in the layered structure have been the subject of increasing interest due to their high capacities, good reversibility, simple structures and ease of synthesis. However, their reversible intercalation/deintercalation redox chemistries in all previous compounds involve a single cationic redox reaction or a cumulative cationic and anionic redox reaction. Here we report an anionic redox only chemistry and structural stabilization of layered sodium chromium sulfide. It is discovered that sulfur in sodium chromium sulfide is electrochemical active undergoing oxidation/reduction of sulfur rather than chromium. Significantly, sodium ions can successfully move outmore » and into without changing its lattice parameter c, which is explained in terms of the occurrence of chromium/sodium vacancy antisite during desodiation and sodiation processes. Here, our present work not only enriches the electrochemistry of layered intercalation compounds, but also extends the scope of investigation on high-capacity electrodes.« less
Studies of Inhibition of Intestinal Absorption of Radioactive Strontium
Skoryna, Stanley C.; Paul, T. M.; Waldron-Edward, Deirdre
1965-01-01
A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, allowing calcium to be available to the body. Studies were carried out on the inhibitory effect of various amounts of sodium alginate and the dose-response relationship of Sr89 and bone uptake. The results obtained indicated that under laboratory conditions sodium alginate effectively reduces Sr89 uptake in a constant proportion. This effect was observed at the three levels of administration of 1.4%, 12% and 24% of sodium alginate. The linear relationship between the dosage of the radioisotope and the bone uptake in the presence of sodium alginate suggests that the same proportion is maintained at the lower levels of intake of radioactive strontium. Previous studies with small constant doses of sodium alginate were extended in rats to a period corresponding approximately to three years of human life span. Low doses were sufficient to reduce appreciably bone uptake of radiostrontium. PMID:14341649
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadike, Zulipiya; Zhou, Yong -Ning; Chen, Lan -Li
The intercalation compounds with various electrochemically active or inactive elements in the layered structure have been the subject of increasing interest due to their high capacities, good reversibility, simple structures and ease of synthesis. However, their reversible intercalation/deintercalation redox chemistries in all previous compounds involve a single cationic redox reaction or a cumulative cationic and anionic redox reaction. Here we report an anionic redox only chemistry and structural stabilization of layered sodium chromium sulfide. It is discovered that sulfur in sodium chromium sulfide is electrochemical active undergoing oxidation/reduction of sulfur rather than chromium. Significantly, sodium ions can successfully move outmore » and into without changing its lattice parameter c, which is explained in terms of the occurrence of chromium/sodium vacancy antisite during desodiation and sodiation processes. Here, our present work not only enriches the electrochemistry of layered intercalation compounds, but also extends the scope of investigation on high-capacity electrodes.« less
Ong, Keat G.; Paulose, Maggie; Grimes, Craig A.
2003-01-01
A wireless, passive, remote-query sensor for monitoring sodium hypochlorite (bleach) solutions is reported. The sensor is comprised of a magnetically-soft ferromagnetic ribbon, coated with a layer of polyurethane and alumina, having a large and nonlinear permeability that supports higher-order harmonics in response to a time varying magnetic field. The hypochlorite ions induce swelling in the coating, with the resultant stress altering the harmonic signature of the sensor from which the sodium hypochlorite concentration can be determined. The wireless, passive nature of the sensor platform enables long-term monitoring of bleach concentrations in the environment. The sensor platform can be extended to other chemical analytes of interest as desired.
NASA Technical Reports Server (NTRS)
Heyer, Mark H.; Terebey, S.
1998-01-01
Panoramic images of 12CO J = 1-0 and thermal dust emissions from the W3-W4-W5 region of the outer Galaxy are presented. These data and recently published H I 21 cm line emission images provide an approximate 1' resolution perspective to the dynamics and thermal energy content of the interstellar gas and dust components contained within a 9 deg. arc of the Perseus spiral arm. We tabulate the molecular properties of 1560 clouds identified as closed surfaces within the l-b-v CO data cube at a threshold of 0.9 K T* (sub R). Relative surface densities of the molecular (28:1) and atomic (2.5:1) gas components determined within the arm and interarm velocity intervals demonstrate that the gas component that enters the spiral arm is predominantly atomic. Molecular clouds must necessarily condense from the compressed atomic material that enters the spiral arm and are likely short lived within the interarm regions. From the distribution of centroid velocities of clouds, we determine a random cloud-to-cloud velocity dispersion of 4 km s (exp. -1) over the width of the spiral arm but find no clear evidence within the molecular gas for streaming motions induced by the spiral potential. The far-infrared images are analyzed with the CO J = 1-0 and H I 21 cm line emission. The enhanced UV (Ultraviolet) radiation field from members of the Cas OB6 association and embedded newborn stars provide a significant source of heating to the extended dust component within the Perseus arm relative to the quiescent cirrus regions. Much of the measured far-infrared flux (69% at 60 micrometers and 47% at 100 micrometers) originates from regions associated with star formation rather than the extended, infrared cirrus component.
NASA Technical Reports Server (NTRS)
Heyer, Mark H.; Terebey, S.; Oliversen, R. (Technical Monitor)
1998-01-01
Panoramic images of (sup l2)CO J = 1-0 and thermal dust emissions from the W3-W4-W5 region of the outer Galaxy are presented. These data and recently published H (sub I) 21 cm line emission images provide an approx. 1 min resolution perspective to the dynamics and thermal energy content of the interstellar gas and dust components contained within a 9 deg arc of the Perseus spiral arm. We tabulate the molecular properties of 1560 clouds identified as closed surfaces within the l-b-v CO data cube at a threshold of 0.9 K T(sup *)(sub R). Relative surface densities of the molecular (28:1) and atomic (2.5: 1) gas components determined within the arm and interarm velocity intervals demonstrate that the gas component that enters the spiral arm is predominantly atomic. Molecular clouds must necessarily condense from the compressed atomic material that enters the spiral arm and are likely short lived within the interarm regions. From the distribution of centroid velocities of clouds, we determine a random cloud-to-cloud velocity dispersion of 4 km/s over the width of the spiral arm but find no clear evidence within the molecular gas for streaming motions induced by the spiral potential. The far-infrared images are analyzed with the CO J = 1-0 and H (sub I) 21 cm line emission. The enhanced UV radiation field from members of the Cas OB6 association and embedded newborn stars provide a significant source of heating to the extended dust component within the Perseus arm relative to the quiescent cirrus regions. Much of the measured far-infrared flux (69% at 60 microns and 47% at 100 microns) originates from regions associated with star formation rather than the extended, infrared cirrus component.
VELOCITY-RESOLVED [C ii] EMISSION AND [C ii]/FIR MAPPING ALONG ORION WITH HERSCHEL *,**
Goicoechea, Javier R.; Teyssier, D.; Etxaluze, M.; Goldsmith, P.F.; Ossenkopf, V.; Gerin, M.; Bergin, E.A.; Black, J.H.; Cernicharo, J.; Cuadrado, S.; Encrenaz, P.; Falgarone, E.; Fuente, A.; Hacar, A.; Lis, D.C.; Marcelino, N.; Melnick, G.J.; Müller, H.S.P.; Persson, C.; Pety, J.; Röllig, M.; Schilke, P.; Simon, R.; Snell, R.L.; Stutzki, J.
2015-01-01
We present the first ~7.5′×11.5′ velocity-resolved (~0.2 km s−1) map of the [C ii] 158 μm line toward the Orion molecular cloud 1 (OMC 1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41α hydrogen recombination and CO J=2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C ii] luminosity (~85 %) is from the extended, FUV-illuminated face of the cloud (G0>500, nH>5×103 cm−3) and from dense PDRs (G≳104, nH≳105 cm−3) at the interface between OMC 1 and the H ii region surrounding the Trapezium cluster. Around ~15 % of the [C ii] emission arises from a different gas component without CO counterpart. The [C ii] excitation, PDR gas turbulence, line opacity (from [13C ii]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[C ii]/LFIR and LFIR/MGas ratios and show that L[C ii]/LFIR decreases from the extended cloud component (~10−2–10−3) to the more opaque star-forming cores (~10−3–10−4). The lowest values are reminiscent of the “[C ii] deficit” seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C ii]/LFIR ratio correlates better with the column density of dust through the molecular cloud than with LFIR/MGas. We conclude that the [C ii] emitting column relative to the total dust column along each line of sight is responsible for the observed L[C ii]/LFIR variations through the cloud. PMID:26568638
NASA Astrophysics Data System (ADS)
Timm, S.; Cooper, G.; Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Grassano, D.; Tiradani, A.; Krishnamurthy, R.; Vinayagam, S.; Raicu, I.; Wu, H.; Ren, S.; Noh, S.-Y.
2017-10-01
The Fermilab HEPCloud Facility Project has as its goal to extend the current Fermilab facility interface to provide transparent access to disparate resources including commercial and community clouds, grid federations, and HPC centers. This facility enables experiments to perform the full spectrum of computing tasks, including data-intensive simulation and reconstruction. We have evaluated the use of the commercial cloud to provide elasticity to respond to peaks of demand without overprovisioning local resources. Full scale data-intensive workflows have been successfully completed on Amazon Web Services for two High Energy Physics Experiments, CMS and NOνA, at the scale of 58000 simultaneous cores. This paper describes the significant improvements that were made to the virtual machine provisioning system, code caching system, and data movement system to accomplish this work. The virtual image provisioning and contextualization service was extended to multiple AWS regions, and to support experiment-specific data configurations. A prototype Decision Engine was written to determine the optimal availability zone and instance type to run on, minimizing cost and job interruptions. We have deployed a scalable on-demand caching service to deliver code and database information to jobs running on the commercial cloud. It uses the frontiersquid server and CERN VM File System (CVMFS) clients on EC2 instances and utilizes various services provided by AWS to build the infrastructure (stack). We discuss the architecture and load testing benchmarks on the squid servers. We also describe various approaches that were evaluated to transport experimental data to and from the cloud, and the optimal solutions that were used for the bulk of the data transport. Finally, we summarize lessons learned from this scale test, and our future plans to expand and improve the Fermilab HEP Cloud Facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, S.; Cooper, G.; Fuess, S.
The Fermilab HEPCloud Facility Project has as its goal to extend the current Fermilab facility interface to provide transparent access to disparate resources including commercial and community clouds, grid federations, and HPC centers. This facility enables experiments to perform the full spectrum of computing tasks, including data-intensive simulation and reconstruction. We have evaluated the use of the commercial cloud to provide elasticity to respond to peaks of demand without overprovisioning local resources. Full scale data-intensive workflows have been successfully completed on Amazon Web Services for two High Energy Physics Experiments, CMS and NOνA, at the scale of 58000 simultaneous cores.more » This paper describes the significant improvements that were made to the virtual machine provisioning system, code caching system, and data movement system to accomplish this work. The virtual image provisioning and contextualization service was extended to multiple AWS regions, and to support experiment-specific data configurations. A prototype Decision Engine was written to determine the optimal availability zone and instance type to run on, minimizing cost and job interruptions. We have deployed a scalable on-demand caching service to deliver code and database information to jobs running on the commercial cloud. It uses the frontiersquid server and CERN VM File System (CVMFS) clients on EC2 instances and utilizes various services provided by AWS to build the infrastructure (stack). We discuss the architecture and load testing benchmarks on the squid servers. We also describe various approaches that were evaluated to transport experimental data to and from the cloud, and the optimal solutions that were used for the bulk of the data transport. Finally, we summarize lessons learned from this scale test, and our future plans to expand and improve the Fermilab HEP Cloud Facility.« less
Remote sensing of severe convective storms over Qinghai-Xizang Plateau
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liu, J. M.; Tsao, D. Y.; Smith, R. E.
1984-01-01
The American satellite, GOES-1 was moved to the Indian Ocean at 58 deg E during the First GARP Global Experiment (FGGE). The Qinghai-Xizang Plateau significantly affects the initiation and development of heavy rainfall and severe storms in China, just as the Rocky Mountains influence the local storms in the United States. Satelite remote sensing of short-lived, meso-scale convective storms is particularly important for covering a huge area of a high elevation with a low population density, such as the Qinghai-Xizang Plateau. Results of this study show that a high growth rate of the convective clouds, followed by a rapid collapse of the cloud top, is associated with heavy rainfall in the area. The tops of the convective clouds developed over the Plateau lie between the altitudes of the two tropopauses, while the tops of convective clouds associated with severe storms in the United States usually extend much above the tropopause.
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing.
Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang
2017-07-24
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient.
Observations of Cirrus Clouds over the Pacific Region by the NASA Multiwavelength Lidar System
NASA Technical Reports Server (NTRS)
Ismail, Syed; Browell, Edward V.; Fenn, Marta A.; Nowicki, Greg D.
1992-01-01
As part of the Pacific Exploratory Mission-West Campaign that took place during 16 Sep. - 21 Oct. 1991, lidar measurements were made from the ARC DC-8 aircraft at an altitude of approximately 9 km. This mission provided a unique opportunity to make cirrus cloud observations around the Pacific region covering the latitude range from 5 to 55 deg N and the longitude range from -114 to 120 deg E. Cirrus clouds were observed on most of these flights providing a unique data base. The latitudinal coverage of cirrus observations was further extended to -5 deg S from observations on 30 Jan. 1992 as part of the Airborne Arctic Stratospheric Expedition 2. During this latter mission, aerosol depolarizations at 622 and 1064 nm were also measured. The optical characteristics and statistics related to these cirrus cloud observations are summarized.
A dynamic access control method based on QoS requirement
NASA Astrophysics Data System (ADS)
Li, Chunquan; Wang, Yanwei; Yang, Baoye; Hu, Chunyang
2013-03-01
A dynamic access control method is put forward to ensure the security of the sharing service in Cloud Manufacturing, according to the application characteristics of cloud manufacturing collaborative task. The role-based access control (RBAC) model is extended according to the characteristics of cloud manufacturing in this method. The constraints are considered, which are from QoS requirement of the task context to access control, based on the traditional static authorization. The fuzzy policy rules are established about the weighted interval value of permissions. The access control authorities of executable service by users are dynamically adjusted through the fuzzy reasoning based on the QoS requirement of task. The main elements of the model are described. The fuzzy reasoning algorithm of weighted interval value based QoS requirement is studied. An effective method is provided to resolve the access control of cloud manufacturing.
A Green Bank Telescope 21cm survey of HI clouds in the Milky Way's nuclear wind
NASA Astrophysics Data System (ADS)
Denbo, Sara; Endsley, Ryan; Lockman, Felix J.; Ford, Alyson
2015-01-01
Feedback processes such as large-scale galactic winds are thought to be responsible for distributing enriched gas throughout a galaxy and even into the IGM. Such winds have been found in many galaxies with active star formation near their center, and the Fermi bubbles provide evidence for such a nuclear wind in our own Milky Way. A recent 21 cm HI survey by the Australia Telescope Compact Array discovered a population of compact, isolated clouds surrounding the Galactic Center that may be entrained in the Fermi bubble wind. We present data from a survey of 21cm HI over an extended region around the Galactic Center using the Green Bank Telescope. These observations provide more strict constraints on neutral clouds in the Fermi bubble wind, and a more robust description of the parameters of HI clouds (i.e., mass, column density, and lifetime) near the Galactic Center.
Cloud patterns lee of Hawaii Island: A synthesis of satellite observations and numerical simulation
NASA Astrophysics Data System (ADS)
Yang, Yang; Xie, Shang-Ping; Hafner, Jan
2008-08-01
Standing well above the trade wind inversion, Hawaii Island (maximum elevation ˜4.2 km) splits the northeast trade winds and induces a westerly reverse flow in the wake. Satellite observations and regional model simulations are used to investigate circulation effects on lee cloud formation during summer. Over the island, the cloud distribution is consistent with orographic-induced vertical motions. Over the lee ocean, our analysis reveals a cloud band that extends southwestward over a few tens of kilometers from the southwest coast of the island. This southwest lee cloud band is most pronounced in the afternoon, anchored by strong convergence and maintained by in situ cloud production in the upward motion. Such an offshore cloud band is not found off the northwest coast, an asymmetry possibly due to the Coriolis effect on the orographic flow. Off the Kona coast, the dynamically induced westerly reverse flow keeps the wake cool and nearly free of clouds during the day. Along the Kona coast, clouds are blown offshore from the island by the easterly trades in the afternoon in a layer above the reverse flow. Deprived of in situ production, these afternoon Kona coast clouds dissipate rapidly offshore. At night, the offshore land/valley breezes converge onto the onshore reverse flow, and a cloud deck forms on and off the Kona coast, bringing nighttime rain as observed at land stations. To illustrate the circulation effect, lee cloud formation is compared between tall Hawaii and short Kauai/Oahu Islands, which feature the flow-around and flow-over regimes, respectively. Effects of trade wind strength on the leeside cloudiness are also studied.
NASA Astrophysics Data System (ADS)
Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.; Herich, H.
2007-12-01
The global aerosol-climate model ECHAM5-HAM (Stier et al., 2005) has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme (Lohmann et al., 2007). Transfer, production and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland) (Verheggen et al, 2007). Although the single-column simulations can not be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when forcing non-equilibrium conditions. References: U. Lohmann et al., Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys. 7, 3425-3446 (2007) P. Stier et al., The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys. 5, 1125-1156 (2005) B. Verheggen et al., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, Accepted for publication in J. Geophys. Res. (2007)
NASA Technical Reports Server (NTRS)
Khaiyer, M. M.; Rapp, A. D.; Doelling, D. R.; Nordeen, M. L.; Minnis, P.; Smith, W. L., Jr.; Nguyen, L.
2001-01-01
While the various instruments maintained at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) Central Facility (CF) provide detailed cloud and radiation measurements for a small area, satellite cloud property retrievals provide a means of examining the large-scale properties of the surrounding region over an extended period of time. Seasonal and inter-annual climatological trends can be analyzed with such a dataset. For this purpose, monthly datasets of cloud and radiative properties from December 1996 through November 1999 over the SGP region have been derived using the layered bispectral threshold method (LBTM). The properties derived include cloud optical depths (ODs), temperatures and albedos, and are produced on two grids of lower (0.5 deg) and higher resolution (0.3 deg) centered on the ARM SGP CF. The extensive time period and high-resolution of the inner grid of this dataset allows for comparison with the suite of instruments located at the ARM CF. In particular, Whole-Sky Imager (WSI) and the Active Remote Sensing of Clouds (ARSCL) cloud products can be compared to the cloud amounts and heights of the LBTM 0.3 deg grid box encompassing the CF site. The WSI provides cloud fraction and the ARSCL computes cloud fraction, base, and top heights using the algorithms by Clothiaux et al. (2001) with a combination of Belfort Laser Ceilometer (BLC), Millimeter Wave Cloud Radar (MMCR), and Micropulse Lidar (MPL) data. This paper summarizes the results of the LBTM analysis for 3 years of GOES-8 data over the SGP and examines the differences between surface and satellite-based estimates of cloud fraction.
NASA Astrophysics Data System (ADS)
Luo, Zhengzhao Johnny; Anderson, Ricardo C.; Rossow, William B.; Takahashi, Hanii
2017-06-01
Although Tropical Rainfall Measuring Mission (TRMM) and CloudSat/CALIPSO fly in different orbits, they frequently cross each other so that for the period between 2006 and 2010, a total of 15,986 intersect lines occurred within 20 min of each other from 30°S to 30°N, providing a rare opportunity to study tropical cloud and precipitation regimes and their internal vertical structure from near-simultaneous measurements by these active sensors. A k-means cluster analysis of TRMM and CloudSat matchups identifies three tropical cloud and precipitation regimes: the first two regimes correspond to, respectively, organized deep convection with heavy rain and cirrus anvils with moderate rain; the third regime is a convectively suppressed regime that can be further divided into three subregimes, which correspond to, respectively, stratocumulus clouds with drizzle, cirrus overlying low clouds, and nonprecipitating cumulus. Inclusion of CALIPSO data adds to the dynamic range of cloud properties and identifies one more cluster; subcluster analysis further identifies a thin, midlevel cloud regime associated with tropical mountain ranges. The radar-lidar cloud regimes are compared with the International Satellite Cloud Climatology Project (ISCCP) weather states (WSs) for the extended tropics. Focus is placed on the four convectively active WSs, namely, WS1-WS4. ISCCP WS1 and WS2 are found to be counterparts of Regime 1 and Regime 2 in radar-lidar observations, respectively. ISCCP WS3 and WS4, which are mainly isolated convection and broken, detached cirrus, do not have a strong association with any individual radar and lidar regimes, a likely effect of the different sampling strategies between ISCCP and active sensors and patchy cloudiness of these WSs.
NASA Astrophysics Data System (ADS)
Tonttila, J.; Romakkaniemi, S.; Kokkola, H.; Maalick, Z.; Korhonen, H.; Liqing, H.
2015-12-01
A new cloud-resolving model setup for studying aerosol-cloud interactions, with a special emphasis on partitioning and wet deposition of semi-volatile aerosol species, is presented. The model is based on modified versions of two well-established model components: the Large-Eddy Simulator (LES) UCLALES, and the sectional aerosol model SALSA, previously employed in the ECHAM climate model family. Implementation of the UCLALES-SALSA is described in detail. As the basis for this work, SALSA has been extended to include a sectional representation of the size distributions of cloud droplets and precipitation. Microphysical processes operating on clouds and precipitation have also been added. Given our main motivation, the cloud droplet size bins are defined according to the dry particle diameter. The droplet wet diameter is solved dynamically through condensation equations, but represents an average droplet diameter inside each size bin. This approach allows for accurate tracking of the aerosol properties inside clouds, but minimizes the computational cost. Since the actual cloud droplet diameter is not fully resolved inside the size bins, processes such as precipitation formation rely on parameterizations. For realistic growth of drizzle drops to rain, which is critical for the aerosol wet deposition, the precipitation size bins are defined according to the actual drop size. With these additions, the implementation of the SALSA model replaces most of the microphysical and thermodynamical components within the LES. The cloud properties and aerosol-cloud interactions simulated by the model are analysed and evaluated against detailed cloud microphysical boxmodel results and in-situ aerosol-cloud interaction observations from the Puijo measurement station in Kuopio, Finland. The ability of the model to reproduce the impacts of wet deposition on the aerosol population is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emin, David, E-mail: emin@unm.edu; Akhtari, Massoud; Ellingson, B. M.
We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.
Walker, Jim S; Wills, Jon B; Reid, Jonathan P; Wang, Liangyu; Topping, David O; Butler, Jason R; Zhang, Yun-Hong
2010-12-09
Holographic optical tweezers are used to make comparative measurements of the hygroscopic properties of single component aqueous aerosol containing sodium chloride and ammonium sulfate over a range of relative humidity from 84% to 96%. The change in RH over the course of the experiment is monitored precisely using a sodium chloride probe droplet with accuracy better than ±0.09%. The measurements are used to assess the accuracy of thermodynamic treatments of the relationship between water activity and solute mass fraction with particular attention focused on the dilute solute limit approaching saturation vapor pressure. The consistency of the frequently used Clegg-Brimblecombe-Wexler (CBW) treatment for predicting the hygroscopic properties of sodium chloride and ammonium sulfate aerosol is confirmed. Measurements of the equilibrium size of ammonium sulfate aerosol are found to agree with predictions to within an uncertainty of ±0.2%. Given the accuracy of treating equilibrium composition, the inconsistencies highlighted in recent calibration measurements of critical supersaturations of sodium chloride and ammonium sulfate aerosol cannot be attributed to uncertainties associated with the thermodynamic predictions and must have an alternative origin. It is concluded that the CBW treatment can allow the critical supersaturation to be estimated for sodium chloride and ammonium sulfate aerosol with an accuracy of better than ±0.002% in RH. This corresponds to an uncertainty of ≤1% in the critical supersaturation for typical supersaturations of 0.2% and above. This supports the view that these systems can be used to accurately calibrate instruments that measure cloud condensation nuclei concentrations at selected supersaturations. These measurements represent the first study in which the equilibrium properties of two particles of chemically distinct composition have been compared simultaneously and directly alongside each other in the same environment.
NASA Astrophysics Data System (ADS)
Rusli, Stephanie P.; Donovan, David P.; Russchenberg, Herman W. J.
2017-12-01
Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES) output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC). From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud-drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent with what is derived using the three independent methods.
NASA Astrophysics Data System (ADS)
Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo
2018-05-01
We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0 > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.
NASA Astrophysics Data System (ADS)
Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo
2018-01-01
We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R3-2/1-0 > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.
NASA Astrophysics Data System (ADS)
Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo
2018-05-01
We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0} > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.
Impact of Antarctic mixed-phase clouds on climate
Lawson, R. Paul; Gettelman, Andrew
2014-12-08
Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. In this paper, we modify the National Center for Atmospheric Research (NCAR) Community Earthmore » System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm –2, and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. Finally, these sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than –20 °C.« less
Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.
Trudgian, David C; Mirzaei, Hamid
2012-12-07
We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.
2011-12-01
Figure 2. Picture of the spark discharge with Ga electrodes. dgap superconducting transition temperature would cause a jump in the AEM current ...failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE...materials such as gold, sodium, and aluminum will not form a sufficiently concentrated vapor cloud from a current -carrying wire to form aerosol
NASA Technical Reports Server (NTRS)
Poultney, S. K.
1973-01-01
In a study of particulate matter and metallic atoms in the vicinity of the mesopause, three areas have received the most effort. These areas are: the significance of cometary dust influxes to the earth's atmosphere; the relation of nightglows to atmospheric motions and aerosols; and the feasibility of using an airborne resonant scatter lidar to study polar noctilucent clouds, the sodium layer, and fireball dust.
A modeling analysis program for the JPL table mountain Io sodium cloud data
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Goldberg, B. A.
1984-01-01
A detailed review of 110 of the 263 Region B/C images of the 1981 data set is undertaken and a preliminary assessment of 39 images of the 1976-79 data set is presented. The basic spatial characteristics of these images are discussed. Modeling analysis of these images after further data processing will provide useful information about Io and the planetary magnetosphere. Plans for data processing and modeling analysis are outlined. Results of very preliminary modeling activities are presented.
Improving Scene Classifications with Combined Active/Passive Measurements
NASA Astrophysics Data System (ADS)
Hu, Y.; Rodier, S.; Vaughan, M.; McGill, M.
The uncertainties in cloud and aerosol physical properties derived from passive instruments such as MODIS are not insignificant And the uncertainty increases when the optical depths decrease Lidar observations do much better for the thin clouds and aerosols Unfortunately space-based lidar measurements such as the one onboard CALIPSO satellites are limited to nadir view only and thus have limited spatial coverage To produce climatologically meaningful thin cloud and aerosol data products it is necessary to combine the spatial coverage of MODIS with the highly sensitive CALIPSO lidar measurements Can we improving the quality of cloud and aerosol remote sensing data products by extending the knowledge about thin clouds and aerosols learned from CALIPSO-type of lidar measurements to a larger portion of the off-nadir MODIS-like multi-spectral pixels To answer the question we studied the collocated Cloud Physics Lidar CPL with Modis-Airborne-Simulation MAS observations and established an effective data fusion technique that will be applied in the combined CALIPSO MODIS cloud aerosol product algorithms This technique performs k-mean and Kohonen self-organized map cluster analysis on the entire swath of MAS data as well as on the combined CPL MAS data at the nadir track Interestingly the clusters generated from the two approaches are almost identical It indicates that the MAS multi-spectral data may have already captured most of the cloud and aerosol scene types such as cloud ice water phase multi-layer information aerosols
Cederwall, R T; Peterson, K R
1990-11-01
A three-dimensional atmospheric transport and diffusion model is used to calculate the arrival and deposition of fallout from 13 selected nuclear tests at the Nevada Test Site (NTS) in the 1950s. Results are used to extend NTS fallout patterns to intermediate downwind distances (300 to 1200 km). The radioactive cloud is represented in the model by a population of Lagrangian marker particles, with concentrations calculated on an Eulerian grid. Use of marker particles, with fall velocities dependent on particle size, provides a realistic simulation of fallout as the debris cloud travels downwind. The three-dimensional wind field is derived from observed data, adjusted for mass consistency. Terrain is represented in the grid, which extends up to 1200 km downwind of NTS and has 32-km horizontal resolution and 1-km vertical resolution. Ground deposition is calculated by a deposition-velocity approach. Source terms and relationships between deposition and exposure rate are based on work by Hicks. Uncertainty in particle size and vertical distributions within the debris cloud (and stem) allow for some model "tuning" to better match measured ground-deposition values. Particle trajectories representing different sizes and starting heights above ground zero are used to guide source specification. An hourly time history of the modeled fallout pattern as the debris cloud moves downwind provides estimates of fallout arrival times. Results for event HARRY illustrate the methodology. The composite deposition pattern for all 13 tests is characterized by two lobes extending out to the north-northeast and east-northeast, respectively, at intermediate distances from NTS. Arrival estimates, along with modeled deposition values, augment measured deposition data in the development of data bases at the county level; these data bases are used for estimating radiation exposure at intermediate distances downwind of NTS. Results from a study of event TRINITY are also presented.
Short Term Exogenic Climate Change Forcing
NASA Astrophysics Data System (ADS)
Krahenbuhl, Daniel
Several short term exogenic forcings affecting Earth's climate are but recently identified. Lunar nutation periodicity has implications for numerical meteorological prediction. Abrupt shifts in solar wind bulk velocity, particle density, and polarity exhibit correlation with terrestrial hemispheric vorticity changes, cyclonic strengthening and the intensification of baroclinic disturbances. Galactic Cosmic ray induced tropospheric ionization modifies cloud microphysics, and modulates the global electric circuit. This dissertation is constructed around three research questions: (1): What are the biweekly declination effects of lunar gravitation upon the troposphere? (2): How do United States severe weather reports correlate with heliospheric current sheet crossings? and (3): How does cloud cover spatially and temporally vary with galactic cosmic rays? Study 1 findings show spatial consistency concerning lunar declination extremes upon Rossby longwaves. Due to the influence of Rossby longwaves on synoptic scale circulation, our results could theoretically extend numerical meteorological forecasting. Study 2 results indicate a preference for violent tornadoes to occur prior to a HCS crossing. Violent tornadoes (EF3+) are 10% more probable to occur near, and 4% less probable immediately after a HCS crossing. The distribution of hail and damaging wind reports do not mirror this pattern. Polarity is critical for the effect. Study 3 results confirm anticorrelation between solar flux and low-level marine-layer cloud cover, but indicate substantial regional variability between cloud cover altitude and GCRs. Ultimately, this dissertation serves to extend short term meteorological forecasting, enhance climatological modeling and through analysis of severe violent weather and heliospheric events, protect property and save lives.
Characteristics and generation of secondary jets and secondary gigantic jets
NASA Astrophysics Data System (ADS)
Lee, Li-Jou; Huang, Sung-Ming; Chou, Jung-Kung; Kuo, Cheng-Ling; Chen, Alfred B.; Su, Han-Tzong; Hsu, Rue-Rou; Frey, Harald U.; Takahashi, Yukihiro; Lee, Lou-Chuang
2012-06-01
Secondary transient luminous events (TLEs) recorded by the ISUAL-FORMOSAT2 mission can either be secondary jets or secondary gigantic jets (GJs), depending on their terminal altitudes. The secondary jets emerge from the cloud top beneath the preceding sprites and extend upward to the base of the sprites at ˜50 km. The secondary jets likely are negative electric discharges with vertically straight luminous columns, morphologically resembling the trailing jet of the type-I GJs. The number of luminous columns in a secondary jet seems to be affected by the size of the effective capacitor plate formed near the base of the preceding sprites and the charge distribution left behind by the sprite-inducing positive cloud-to-ground discharges. The secondary GJs originate from the cloud top under the shielding area of the preceding sprites, and develop upward to reach the lower ionosphere at ˜90 km. The observed morphology of the secondary GJs can either be the curvy shifted secondary GJs extending outside the region occupied by the preceding sprites or the straight pop-through secondary GJs developing through the center of the preceding circular sprites. A key factor in determining the terminal height of the secondary TLEs appears to be the local ionosphere boundary height that established by the preceding sprites. The abundance and the distribution of the negative charge in the thundercloud following the sprite-inducing positive cloud-to-ground discharges may play important role in the generation of the secondary TLEs.
Theoretical overview and modeling of the sodium and potassium atmospheres of the moon
NASA Technical Reports Server (NTRS)
Smyth, William H.; Marconi, M. L.
1995-01-01
A general theoretical overview for the sources, sinks, gas-surface interactions, and transport dynamics of sodium and potassium in the exospheric atmosphere of the Moon is given. These four factors, which control the spatial distribution of these two alkali-group gases about the Moon, are incorporated in numerical models. The spatial nature and relative importance of the initial source atoms atmosphere (which must be nonthermal to explain observational data) and the ambient (ballistic hopping) atom atmosphere are examined. The transport dynamics, atmospheric structure, and lunar escape of the nonthermal source atoms are time variable with season of the year and lunar phase because of their dependence on the radiation acceleration experienced by sodium and potassium atoms as they resonantly scatter solar photons. The dynamic transport time of fully thermally accomodated ambient atoms along the surface because of solar radiation acceleration (only several percent of surface gravity) is larger than the photoionization lifetimes and hence unimportant in determining the local density, although for potassium the situation is borderline. The sodium model was applied to analyze sodium observations of the sunward brightness profiles acquired near last quarter by Potter & Morgan (1988b) extending from the surface to an altitude of 1200 km, and near first quarter by Mendillo, Baumgardner, & Flynn (1991), extending in altitude from approximately 1430 to approximately 7000 km. The observations at larger altitudes could be fitted only for source atoms having a velocity distribution with a tail that is mildly nonthermal (like an approximately 1000 K Maxwell-Boltzmann distribution). Solar wind sputtering appears to a be a viable source atom mechanism for the sodium observations with photon-simulated desorption also possible but highly uncertain, although micrometeoroid impact vaporization appears to have a source that is too small and too hot, with likely an incorrect angular distribution about the Moon.
Thunderstorm observations from Space Shuttle
NASA Technical Reports Server (NTRS)
Vonnegut, B.; Vaughan, O. H., Jr.; Brook, M.
1983-01-01
Results of the Nighttime/Daytime Optical Survey of Lightning (NOSL) experiments done on the STS-2 and STS-4 flights are covered. During these two flights of the Space Shuttle Columbia, the astronaut teams of J. Engle and R. Truly, and K. Mattingly II and H. Hartsfield took motion pictures of thunderstorms with a 16 mm cine camera. Film taken during daylight showed interesting thunderstorm cloud formations, where individual frames taken tens of seconds apart, when viewed as stereo pairs, provided information on the three-dimensional structure of the cloud systems. Film taken at night showed clouds illuminated by lightning with discharges that propagated horizontally at speeds of up to 10 to the 5th m/sec and extended for distances on the order of 60 km or more.
Workflow as a Service in the Cloud: Architecture and Scheduling Algorithms
Wang, Jianwu; Korambath, Prakashan; Altintas, Ilkay; Davis, Jim; Crawl, Daniel
2017-01-01
With more and more workflow systems adopting cloud as their execution environment, it becomes increasingly challenging on how to efficiently manage various workflows, virtual machines (VMs) and workflow execution on VM instances. To make the system scalable and easy-to-extend, we design a Workflow as a Service (WFaaS) architecture with independent services. A core part of the architecture is how to efficiently respond continuous workflow requests from users and schedule their executions in the cloud. Based on different targets, we propose four heuristic workflow scheduling algorithms for the WFaaS architecture, and analyze the differences and best usages of the algorithms in terms of performance, cost and the price/performance ratio via experimental studies. PMID:29399237
Wu, Xuehai; Zhou, Xiaolan; Gao, Liang; Wu, Xing; Fei, Li; Mao, Ying; Hu, Jin; Zhou, Liangfu
2016-04-01
Combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury (TBI) is rare, is characterized by massive polyuria leading to severe water and electrolyte disturbances, and usually is associated with very high mortality mainly as a result of delayed diagnosis and improper management. We retrospectively reviewed the clinical presentation, management, and outcomes of 11 patients who developed combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury to define distinctive features for timely diagnosis and proper management. The most typical clinical presentation was massive polyuria (10,000 mL/24 hours or >1000 mL/hour) refractory to vasopressin alone but responsive to vasopressin plus cortisone acetate. Other characteristic presentations included low central venous pressure, high brain natriuretic peptide precursor level without cardiac dysfunction, high 24-hour urine sodium excretion and hypovolemia, and much higher urine than serum osmolarity; normal serum sodium level and urine specific gravity can also be present. Timely and adequate infusion of sodium chloride was key in treatment. Of 11 patients, 5 had a good prognosis 3 months later (Extended Glasgow Outcome Scale score ≥6), 1 had an Extended Glasgow Outcome Scale score of 4, 2 died in the hospital of brain hernia, and 3 developed a vegetative state. For combined diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury, massive polyuria is a major typical presentation, and intensive monitoring of fluid and sodium status is key for timely diagnosis. To achieve a favorable outcome, proper sodium chloride supplementation and cortisone acetate and vasopressin coadministration are key. Copyright © 2016 Elsevier Inc. All rights reserved.
High-energy radiation from collisions of high-velocity clouds and the Galactic disc
NASA Astrophysics Data System (ADS)
del Valle, Maria V.; Müller, A. L.; Romero, G. E.
2018-04-01
High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.
Added value of far-infrared radiometry for remote sensing of ice clouds
NASA Astrophysics Data System (ADS)
Libois, Quentin; Blanchet, Jean-Pierre
2017-06-01
Several cloud retrieval algorithms based on satellite observations in the infrared have been developed in the last decades. However, these observations only cover the midinfrared (MIR, λ < 15 μm) part of the spectrum, and none are available in the far-infrared (FIR, λ≥ 15 μm). Using the optimal estimation method, we show that adding a few FIR channels to existing spaceborne radiometers would significantly improve their ability to retrieve ice cloud radiative properties. For clouds encountered in the polar regions and the upper troposphere, where the atmosphere is sufficiently transparent in the FIR, using FIR channels would reduce by more than 50% the uncertainties on retrieved values of optical thickness, effective particle diameter, and cloud top altitude. Notably, this would extend the range of applicability of current retrieval methods to the polar regions and to clouds with large optical thickness, where MIR algorithms perform poorly. The high performance of solar reflection-based algorithms would thus be reached in nighttime conditions. Since the sensitivity of ice cloud thermal emission to effective particle diameter is approximately 5 times larger in the FIR than in the MIR, using FIR observations is a promising venue for studying ice cloud microphysics and precipitation processes. This is highly relevant for cirrus clouds and convective towers. This is also essential to study precipitation in the driest regions of the atmosphere, where strong feedbacks are at play between clouds and water vapor. The deployment in the near future of a FIR spaceborne radiometer is technologically feasible and should be strongly supported.
External Influences on Modeled and Observed Cloud Trends
NASA Technical Reports Server (NTRS)
Marvel, Kate; Zelinka, Mark; Klein, Stephen A.; Bonfils, Celine; Caldwell, Peter; Doutriaux, Charles; Santer, Benjamin D.; Taylor, Karl E.
2015-01-01
Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 (Coupled Model Intercomparison Project - Phase 5) model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP (International Satellite Cloud Climatology Project) and PATMOS-x (Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres - Extended). The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.
Studies of Physicochemical Processes in Atmospheric Particles and Acid Deposition.
NASA Astrophysics Data System (ADS)
Pandis, Spyros N.
A comprehensive chemical mechanism for aqueous -phase atmospheric chemistry was developed and its detailed sensitivity analysis was performed. The main aqueous-phase reaction pathways for the system are the oxidation of S(IV) to S(VI) by H_2O_2 , OH, O_2 (catalysed by Fe ^{3+} and Mn^ {2+}), O_3 and HSO_sp{5}{-}. The gas-phase concentrations of SO_2, H_2O_2, HO _2, OH, O_3 HCHO, NH_3, HNO_3 and HCl and the liquid water content of the cloud are of primary importance. The Lagrangian model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO_2 , HNO_3, and NH_3 , pH, aqueous-phase concentrations of SO _sp{4}{2-}, NH _sp{4}{+} and NO _sp{3}{-}, and finally deposition rates of the above ions match well the observed values. A third model was developed to study the distribution of acidity and solute concentration among the various droplet sizes in a fog or a cloud. Significant solute concentration differences can occur in aqueous droplets inside a fog or a cloud. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations, but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium as well as in the total aerosol mass concentration. The sulfate producd during fog episodes favors the aerosol particles that have access to most of the fog liquid water. Aerosol scavenging efficiencies of around 80% were calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition. Isoprene and beta-pinene, at concentration levels ranging from a few ppb to a few ppm were reacted photochemically with NO_ {x} in the Caltech outdoor smog chamber facility. Aerosol formation from the isoprene photooxidation was found to be negligible even under extreme ambient conditions due to the relatively high vapor pressure of its condensable products. Aerosol carbon yield from the beta -pinene photooxidation is as high as 8% and depends strongly on the initial HC/NO_{x} ratio. Monoterpene photooxidation can be a significant source of secondary aerosol in rural environments and in urban areas with extended natural vegetation. (Abstract shortened with permission of author.).
Lidar Remote Sensing for Industry and Environment Monitoring
NASA Technical Reports Server (NTRS)
Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)
2000-01-01
Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space Station. 13. Space lidar II: Using coherent Doppler lidar to estimate river discharge. 14. Poster session: Lidar technology, optics for lidar. Laser for lidar. Middle atmosphere observations. Tropospheric observations (aerosols, clouds). Boundary layer, urban pollution. Differential absorption lidar. Doppler lidar. and Space lidar.
NASA Astrophysics Data System (ADS)
Chambers, L. H.; Taylor, J.; Ellis, T. D.; McCrea, S.; Rogerson, T. M.; Falcon, P.
2016-12-01
In 1997, NASA's Clouds and the Earth's Radiant Energy System (CERES) team began engaging K-12 schools as ground truth observers of clouds. CERES seeks to understand cloud effects on Earth's energy budget; thus accurate detection and characterization of clouds is key. While satellite remote sensing provides global information about clouds, it is limited in time and resolution. Ground observers, on the other hand, can observe clouds at any time of day (and sometimes night), and can see small and thin clouds that are challenging to detect from space. In 2006, two active sensing satellites, CloudSat and CALIPSO, were launched into the A-Train, which already contained 2 CERES instruments on the Aqua spacecraft. The CloudSat team also engaged K-12 schools to observe clouds, through The GLOBE Program, with a specialized observation protocol customized for the narrow radar swath. While providing valuable data for satellite assessment, these activities also engage participants in accessible, authentic science that gets people outdoors, helps them develop observation skills, and is friendly to all ages. The effort has evolved substantially since 1997, adopting new technology to provide a more compelling experience to citizen observers. Those who report within 15 minutes of the passage of a wide range of satellites (Terra, Aqua, CloudSat, CALIPSO, NPP, as well as a number of geostationary satellites) are sent a satellite image centered on their location and are invited to extend the experience beyond simple observation to include analysis of the two different viewpoints. Over the years these projects have collected large amounts of cloud observations from every continent and ocean basin on Earth. A number of studies have been conducted comparing the ground observations to the satellite results. This presentation will provide an overview of those results and also describe plans for a coordinated, thematic cloud observation and data analysis activity going forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Dong; Schwartz, Stephen E.; Yu, Dantong
Clouds are a central focus of the U.S. Department of Energy (DOE)’s Atmospheric System Research (ASR) program and Atmospheric Radiation Measurement (ARM) Climate Research Facility, and more broadly are the subject of much investigation because of their important effects on atmospheric radiation and, through feedbacks, on climate sensitivity. Significant progress has been made by moving from a vertically pointing (“soda-straw”) to a three-dimensional (3D) view of clouds by investing in scanning cloud radars through the American Recovery and Reinvestment Act of 2009. Yet, because of the physical nature of radars, there are key gaps in ARM's cloud observational capabilities. Formore » example, cloud radars often fail to detect small shallow cumulus and thin cirrus clouds that are nonetheless radiatively important. Furthermore, it takes five to twenty minutes for a cloud radar to complete a 3D volume scan and clouds can evolve substantially during this period. Ground-based stereo-imaging is a promising technique to complement existing ARM cloud observation capabilities. It enables the estimation of cloud coverage, height, horizontal motion, morphology, and spatial arrangement over an extended area of up to 30 by 30 km at refresh rates greater than 1 Hz (Peng et al. 2015). With fine spatial and temporal resolution of modern sky cameras, the stereo-imaging technique allows for the tracking of a small cumulus cloud or a thin cirrus cloud that cannot be detected by a cloud radar. With support from the DOE SunShot Initiative, the Principal Investigator (PI)’s team at Brookhaven National Laboratory (BNL) has developed some initial capability for cloud tracking using multiple distinctly located hemispheric cameras (Peng et al. 2015). To validate the ground-based cloud stereo-imaging technique, the cloud stereo-imaging field campaign was conducted at the ARM Facility’s Southern Great Plains (SGP) site in Oklahoma from July 15 to December 24. As shown in Figure 1, the cloud stereo-imaging system consisted of two inexpensive high-definition (HD) hemispheric cameras (each cost less than $1,500) and ARM’s Total Sky Imager (TSI). Together with other co-located ARM instrumentation, the campaign provides a promising opportunity to validate stereo-imaging-based cloud base height and, more importantly, to examine the feasibility of cloud thickness retrieval for low-view-angle clouds.« less
Atmospheric Science Data Center
2017-12-22
... in conjunction with the Surface Heat Budget of the Arctic Ocean (SHEBA) Experiment. The FIRE-ACE focused on all aspects of Arctic cloud ... Alaska with measurements extending well over the Arctic Ocean (ship and aircraft). Guide Documents: FIRE Project ...
The distribution of interstellar dust in the solar neighborhood
NASA Technical Reports Server (NTRS)
Gaustad, John E.; Van Buren, Dave
1993-01-01
We surveyed the IRAS data base at the positions of the 1808 O6-B9.5 stars in The Bright Star Catalog for extended objects with excess emission at 60 microns, indicating the presence of interstellar dust at the location of the star. Within 400 pc the filling factor of the interstellar medium, for dust clouds with a density greater than 0.5/cu cm is 14.6 + or - 2.4%. Above a density of 1.0/cu cm, the density distribution function appears to follow a power law index - 1.25. When the dust clouds are mapped onto the galactic plane, the sun appears to be located in a low-density region of the interstellar medium of width about 60 pc extending at least 500 pc in the direction of longitudes 80 deg - 260 deg, a feature we call the 'local trough'.
An Indoor Slam Method Based on Kinect and Multi-Feature Extended Information Filter
NASA Astrophysics Data System (ADS)
Chang, M.; Kang, Z.
2017-09-01
Based on the frame of ORB-SLAM in this paper the transformation parameters between adjacent Kinect image frames are computed using ORB keypoints, from which priori information matrix and information vector are calculated. The motion update of multi-feature extended information filter is then realized. According to the point cloud data formed by depth image, ICP algorithm was used to extract the point features of the point cloud data in the scene and built an observation model while calculating a-posteriori information matrix and information vector, and weakening the influences caused by the error accumulation in the positioning process. Furthermore, this paper applied ORB-SLAM frame to realize autonomous positioning in real time in interior unknown environment. In the end, Lidar was used to get data in the scene in order to estimate positioning accuracy put forward in this paper.
NASA Astrophysics Data System (ADS)
Schmid-Burgk, J.; Densing, R.; Krugel, E.; Nett, H.; Roser, H. P.; Schafer, F.; Schwaab, G.; van der Wal, P.; Wattenbach, R.
1989-05-01
Observations of a 6 x 8-arcmin region at the core of Orion molecular cloud 1 are reported. Data obtained in the 806-GHz line of CO using the NASA Kuiper Airborne Observatory on September 15 and 17, 1986 are presented graphically and analyzed in detail. The results indicate a region of density 10,000/cu cm or greater and temperature of about 50 K extending several arcmin from the core; the total luminosities due to CO (J = 7-6) and to dust are estimated as 10 and 100,000 solar luminosities, respectively. Particular attention is given to the dust-embedded IR cluster BN-KL (with high-velocity outflow suggesting small optical depths) and a second more prominent feature about 2 arcmin to the south (with outflow of about 1 solar mass of material at 500-1000 K, radiating about 0.25 solar luminosity in CO 7-6).
Phase-partitioning in mixed-phase clouds - An approach to characterize the entire vertical column
NASA Astrophysics Data System (ADS)
Kalesse, H.; Luke, E. P.; Seifert, P.
2017-12-01
The characterization of the entire vertical profile of phase-partitioning in mixed-phase clouds is a challenge which can be addressed by synergistic profiling measurements with ground-based polarization lidars and cloud radars. While lidars are sensitive to small particles and can thus detect supercooled liquid (SCL) layers, cloud radar returns are dominated by larger particles (like ice crystals). The maximum lidar observation height is determined by complete signal attenuation at a penetrated optical depth of about three. In contrast, cloud radars are able to penetrate multiple liquid layers and can thus be used to expand the identification of cloud phase to the entire vertical column beyond the lidar extinction height, if morphological features in the radar Doppler spectrum can be related to the existence of SCL. Relevant spectral signatures such as bimodalities and spectral skewness can be related to cloud phase by training a neural network appropriately in a supervised learning scheme, with lidar measurements functioning as supervisor. The neural network output (prediction of SCL location) derived using cloud radar Doppler spectra can be evaluated with several parameters such as liquid water path (LWP) detected by microwave radiometer (MWR) and (liquid) cloud base detected by ceilometer or Raman lidar. The technique has been previously tested on data from Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) instruments in Barrow, Alaska and is in this study utilized for observations from the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. Comparisons to supercooled-liquid layers as classified by CLOUDNET are provided.
Satellite Estimation of Spectral Surface UV Irradiance. 2; Effect of Horizontally Homogeneous Clouds
NASA Technical Reports Server (NTRS)
Krothov, N.; Herman, J. R.; Bhartia, P. K.; Ahmad, Z.a; Fioletov, V.
1998-01-01
The local variability of UV irradiance at the Earth's surface is mostly caused by clouds in addition to the seasonal variability. Parametric representations of radiative transfer RT calculations are presented for the convenient solution of the transmission T of ultraviolet radiation through plane parallel clouds over a surface with reflectivity R(sub s). The calculations are intended for use with the Total Ozone Mapping Spectrometer (TOMS) measured radiances to obtain the calculated Lambert equivalent scene reflectivity R for scenes with and without clouds. The purpose is to extend the theoretical analysis of the estimation of UV irradiance from satellite data for a cloudy atmosphere. Results are presented for a range of cloud optical depths and solar zenith angles for the cases of clouds over a low reflectivity surface R(sub s) less than 0.1, over a snow or ice surface R(sub s) greater than 0.3, and for transmission through a non-conservative scattering cloud with single scattering albedo omega(sub 0) = 0.999. The key finding for conservative scattering is that the cloud-transmission function C(sub T), the ratio of cloudy-to clear-sky transmission, is roughly C(sub T) = 1 - R(sub c) with an error of less than 20% for nearly overhead sun and snow-free surfaces. For TOMS estimates of UV irradiance in the presence of both snow and clouds, independent information about snow albedo is needed for conservative cloud scattering. For non-conservative scattering with R(sub s) greater than 0.5 (snow) the satellite measured scene reflectance cannot be used to estimate surface irradiance. The cloud transmission function has been applied to the calculation of UV irradiance at the Earth's surface and compared with ground-based measurements.
NASA Astrophysics Data System (ADS)
Coddington, Odele; Platnick, Steven; Pilewskie, Peter; Schmidt, Sebastian
2016-04-01
The NASA Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Science Definition Team (SDT) report released in 2012 defined imager stability requirements for the Ocean Color Instrument (OCI) at the sub-percent level. While the instrument suite and measurement requirements are currently being determined, the PACE SDT report provided details on imager options and spectral specifications. The options for a threshold instrument included a hyperspectral imager from 350-800 nm, two near-infrared (NIR) channels, and three short wave infrared (SWIR) channels at 1240, 1640, and 2130 nm. Other instrument options include a variation of the threshold instrument with 3 additional spectral channels at 940, 1378, and 2250 nm and the inclusion of a spectral polarimeter. In this work, we present cloud retrieval information content studies of optical thickness, droplet effective radius, and thermodynamic phase to quantify the potential for continuing the low cloud climate data record established by the MOderate Resolution and Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) missions with the PACE OCI instrument (i.e., non-polarized cloud reflectances and in the absence of midwave and longwave infrared channels). The information content analysis is performed using the GEneralized Nonlinear Retrieval Analysis (GENRA) methodology and the Collection 6 simulated cloud reflectance data for the common MODIS/VIIRS algorithm (MODAWG) for Cloud Mask, Cloud-Top, and Optical Properties. We show that using both channels near 2 microns improves the probability of cloud phase discrimination with shortwave-only cloud reflectance retrievals. Ongoing work will extend the information content analysis, currently performed for dark ocean surfaces, to different land surface types.
NASA Technical Reports Server (NTRS)
Grund, C. J.; Eloranta, E. W.
1996-01-01
During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1.
Role of Gravity Waves in Determining Cirrus Cloud Properties
NASA Technical Reports Server (NTRS)
OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong
2008-01-01
Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).
2010-06-16
ISS024-E-006136 (16 June 2010) --- Polar mesospheric clouds, illuminated by an orbital sunrise, are featured in this image photographed by an Expedition 24 crew member on the International Space Station. Polar mesospheric, or noctilucent (?night shining?), clouds are observed from both Earth?s surface and in orbit by crew members aboard the space station. They are called night-shining clouds as they are usually seen at twilight. Following the setting of the sun below the horizon and darkening of Earth?s surface, these high clouds are still briefly illuminated by sunlight. Occasionally the ISS orbital track becomes nearly parallel to Earth?s day/night terminator for a time, allowing polar mesospheric clouds to be visible to the crew at times other than the usual twilight due to the space station altitude. This unusual photograph shows polar mesospheric clouds illuminated by the rising, rather than setting, sun at center right. Low clouds on the horizon appear yellow and orange, while higher clouds and aerosols are illuminated a brilliant white. Polar mesospheric clouds appear as light blue ribbons extending across the top of the image. These clouds typically occur at high latitudes of both the Northern and Southern Hemispheres, and at fairly high altitudes of 76?85 kilometers (near the boundary between the mesosphere and thermosphere atmospheric layers). The ISS was located over the Greek island of Kos in the Aegean Sea (near the southwestern coastline of Turkey) when the image was taken at approximately midnight local time. The orbital complex was tracking northeastward, nearly parallel to the terminator, making it possible to observe an apparent ?sunrise? located almost due north. A similar unusual alignment of the ISS orbit track, terminator position, and seasonal position of Earth?s orbit around the sun allowed for striking imagery of polar mesospheric clouds over the Southern Hemisphere earlier this year.
NIM gas controlled sodium heat pipe
NASA Astrophysics Data System (ADS)
Yan, X.; Zhang, J. T.; Merlone, A.; Duan, Y.; Wang, W.
2013-09-01
Gas controlled heat pipes (GCHPs) provide a uniform, stable and reproducible temperature zone to calibrate thermometers and thermocouples, and to realize defining fixed points using a calorimetric method. Therefore, to perform such investigations, a GCHP furnace using sodium as its working fluid was constructed at the National Institute of Metrology (NIM), China. Also, investigations into the thermal characteristics of the NIM gas controlled sodium heat pipe were carried out. The temperature stability over 5 hours was better than ±0.25 mK while controlling the pressure at 111250 Pa. The temperature uniformity within 14 cm from the bottom of the thermometer well was within 0.3 mK. While keeping the pressure stable at the same value, 17 temperature determinations were performed over 14 days, obtaining a temperature reproducibility of 1.27 mK. Additionally, the NIM gas controlled sodium heat pipe was compared with the sodium heat pipe produced by INRiM. The temperature in the INRiM sodium heat pipe operating at 111250 Pa was determined, obtaining a difference of 21 mK with respect to the NIM GCHP. This difference was attributed to sodium impurities, pressure controller capabilities and reproducibility, and instabilities of high temperature standard platinum resistance thermometers (HTSPRTs). Further investigations will be carried out on extending the pressure/temperature range and connecting both GCHPs to the same pressure line.
NASA Astrophysics Data System (ADS)
Potter, A. E.; Morgan, T. H.
1997-07-01
In the course of mapping the sodium emission from Mercury, we found that the sodium exosphere appears to extend to considerable altitudes above the planet (Potter and Morgan, 1997). This suggests that some of the sodium is at a high temperature, but blurring of the data by atmospheric seeing makes it difficult to estimate a temperature from the altitude dependence of the emission. Another way to estimate temperature is to measure the broadening of the emission line caused by thermal motions. We attempted this approach earlier (Potter and Morgan, 1987), but the signal-to-noise in the spectrum was low, and the result was somewhat questionable. We have repeated the measurement,using a modern CCD detector, and obtained a spectrum with excellent signal-to- noise at a spectral resolution of about 600,000. The resulting line profile clearly shows a temperature in excess of a thousand degrees. We are initiating detailed analysis of the line profile, and expect that it will provide new insights into the processes that produce sodium in the exosphere of Mercury. Potter, A.E. and T.H. Morgan, 1987, Variation of sodium on Mercury with solar radiation pressure. Icarus 71, 472-477 Potter, A.E. and T.H. Morgan, 1997, Evidence for suprathermal sodium on Mercury. Presented 31st COSPAR meeting, July 14-21, 1996. To be published, Advances in Space Research.
Negative charge emission due to excimer laser bombardment of sodium trisilicate glass
NASA Astrophysics Data System (ADS)
Langford, S. C.; Jensen, L. C.; Dickinson, J. T.; Pederson, L. R.
1990-10-01
We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na2Oṡ3SiO2) with 248-nm excimer laser light at fluences on the order of 2 J/cm2 per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na+. Using combinations of E and B fields in conjunction with time-of-flight methods, the negative ions were successfully separated from the plume and tentatively identified as O-, Si-, NaO-, and perhaps NaSi-. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.
Ejection of sodium from sodium sulfide by the sputtering of the surface of Io
NASA Technical Reports Server (NTRS)
Chrisey, D. B.; Johnson, R. E.; Boring, J. W.; Phipps, J. A.
1988-01-01
The mechanism by which Na is removed from the surface of Io prior to its injection into the plasma torus is investigated experimentally. Na2S films of thickness 3-8 microns were produced by spray coating an Ni substrate in a dry N2 atmosphere and subjected to sputtering by 34-keV Ar(+), Ne(+), Kr(+), or Xe(+) ions up to total doses of about 5 x 10 to the 18th ions/sq cm. The sputtering yields and mass spectra are found to be consistent with ejection of only small amounts of atomic Na and somewhat larger amounts of Na-containing molecules. It is concluded that the amount of Na ejected by magnetospheric-ion sputtering of Na2S would be insufficient to account for the amounts observed in the Io neutral cloud. A scenario involving sputtering of larger polysulfide molecules is considered.
NASA Astrophysics Data System (ADS)
Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.
2017-08-01
We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.
The Sulfur Dioxide Plume from the February 26, 2000 Eruption of Mt. Hekla, Iceland
NASA Technical Reports Server (NTRS)
Krueger, Arlin J.; Krotkov, N. A.; Einaudi, Franco (Technical Monitor)
2000-01-01
The February 2000 fissure eruption of Mt. Hekla, Iceland was captured in sulfur dioxide data from the Earth Probe TOMS. A special algorithm is used to discriminate sulfur dioxide from ozone. The eruption began at 18:19 GMT on February 26, 2000 and was first viewed by TOMS at 09:55 GMT on February 27. The volcanic cloud at that time appeared as a very long and narrow arc extending west from the volcano in southern Iceland, then north across Greenland, and finally east towards Norway. The cloud altitude was reported from aircraft sightings and data to be above 10 km. The circulation of a ridge located north of Iceland produced the large arc shaped cloud. As the eruption is non-explosive the high altitude cloud contains little ash. Almost all the ash from the eruption fell out locally across Iceland. By February 29, the sulfur dioxide cloud had drifted eastward in a band along the Barents Sea coast of Norway and Russia. The analysis includes an assessment of the initial sulfur dioxide content and its rate of conversion to sulfate.
Characteristics of magnetised plasma flow around stationary and expanding magnetic clouds
NASA Astrophysics Data System (ADS)
Dalakishvili, Giorgi
Studies of interplanetary magnetic clouds have shown that the characteristics of the region ahead of these objects, which are moving away from the Sun in the solar wind, play a role in determining their geo-efficiency, i.e. the kind and the degree of their effects on the Earth environment. Therefore, our main goal is to model and study the plasma parameters in the vicinity of interplanetary magnetic clouds. To this end we present a model in which the magnetic clouds are immersed in a magnetised plasma flow with a homogeneous magnetic field. We first calculate the resulting distortion of the external magnetic field and then determine the plasma velocity by employing the frozen-in condition. Subsequently, the plasma density and pressure are expressed as functions of the magnetic field and the velocity field. The plasma flow parameters are determined by solving the time-independent ideal MHD equations for both the stationary regime and for the case of an expand-ing cylindrical magnetic cloud, thus extending previous results that appeared in the literature.
Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey
2014-02-01
We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.
Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey
2014-01-01
We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.
Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing
NASA Technical Reports Server (NTRS)
Norris, Joel
2005-01-01
The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean, but comparison with EMS all-sky reflected shortwave radiation during 1985-1997 suggests this decrease may be underestimated.
NASA Astrophysics Data System (ADS)
Chow, L. C.; Hahn, O. J.; Nguyen, H. X.
1992-08-01
This report presents the description of a liquid sodium heat transfer facility (sodium loop) constructed to support the study of transient response of heat pipes. The facility, consisting of the loop itself, a safety system, and a data acquisition system, can be safely operated over a wide range of temperature and sodium flow rate. The transient response of a heat pipe to pulse heat load at the condenser section was experimentally investigated. A 0.457 m screen wick, sodium heat pipe with an outer diameter of 0.127 m was tested under different heat loading conditions. A major finding was that the heat pipe reversed under a pulse heat load applied at the condenser. The time of reversal was approximately 15 to 25 seconds. The startup of the heat pipe from frozen state was also studied. It was found that during the startup process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all of the working fluid in the heat pipe was molten.
Midwestern United States as seen from STS-58
1993-10-30
STS058-102-018 (18 Oct-1 Nov 1993) --- A cloud-free, wide-angle view from above western Tennessee to the northern edge of Lake Michigan. The view extends from Saint Louis, Missouri near the lower left-hand corner, past Evansville, Indiana and Louisville, Kentucky to Cincinnati, Ohio. A range of hills covered by trees in Fall foliage extends from the Ohio River toward Lake Michigan, ending just southwest of Indianapolis, Indiana.
MAVEN Spacecraft Returns First Mars Observations
2014-09-25
NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has obtained its first observations of the extended upper atmosphere surrounding Mars. The Imaging Ultraviolet Spectrograph (IUVS) instrument obtained these false-color images eight hours after the successful completion of Mars orbit insertion by the spacecraft at 10:24 p.m. EDT Sunday, Sept. 21, after a 10-month journey. The image shows the planet from an altitude of 36,500 km in three ultraviolet wavelength bands. Blue shows the ultraviolet light from the sun scattered from atomic hydrogen gas in an extended cloud that goes to thousands of kilometers above the planet’s surface. Green shows a different wavelength of ultraviolet light that is primarily sunlight reflected off of atomic oxygen, showing the smaller oxygen cloud. Red shows ultraviolet sunlight reflected from the planet’s surface; the bright spot in the lower right is light reflected either from polar ice or clouds. The oxygen gas is held close to the planet by Mars’ gravity, while lighter hydrogen gas is present to higher altitudes and extends past the edges of the image. These gases derive from the breakdown of water and carbon dioxide in Mars’ atmosphere. Over the course of its one-Earth-year primary science mission, MAVEN observations like these will be used to determine the loss rate of hydrogen and oxygen from the Martian atmosphere. These observations will allow us to determine the amount of water that has escaped from the planet over time. MAVEN is the first spacecraft dedicated to exploring the tenuous upper atmosphere of Mars. Read more: 1.usa.gov/1oj2Av3
1981-08-23
Range : 2.3 million km. ( 1.4 million miles ) P-24067C This Voyager 2 photograph of Titan, a satellite of Saturn, shows some detail in the cloud systems. The southern hemisphere appears lighter in contrast, a well defined band is seen near the equator, and a dark collar is evident at the north pole. All these bands are associated with the cloud circulation in titan's atmosphere. The extended haze, composed of of sub-micron size particles, is seen clearly around the satellite's limb. This image was composed from blue, green, and violet frames.
Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass
NASA Astrophysics Data System (ADS)
Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard
2013-06-01
The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant CQ ∝ |Vzz| and the asymmetry parameter ηQ that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.
Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.
Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard
2013-06-26
The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.
1999-12-15
An amazing edge-on view of a spiral galaxy 55 million light years from Earth has been captured by the Hubble Space Telescope. The image reveals in great detail huge clouds of dust and gas extending along and above the galaxy main disk.
Mechanistic Insights into the Allosteric Modulation of Opioid Receptors by Sodium Ions
2015-01-01
The idea of sodium ions altering G-protein-coupled receptor (GPCR) ligand binding and signaling was first suggested for opioid receptors (ORs) in the 1970s and subsequently extended to other GPCRs. Recently published ultra-high-resolution crystal structures of GPCRs, including that of the δ-OR subtype, have started to shed light on the mechanism underlying sodium control in GPCR signaling by revealing details of the sodium binding site. Whether sodium accesses different receptor subtypes from the extra- or intracellular sides, following similar or different pathways, is still an open question. Earlier experiments in brain homogenates suggested a differential sodium regulation of ligand binding to the three major OR subtypes, in spite of their high degree of sequence similarity. Intrigued by this possibility, we explored the dynamic nature of sodium binding to δ-OR, μ-OR, and κ-OR by means of microsecond-scale, all-atom molecular dynamics (MD) simulations. Rapid sodium permeation was observed exclusively from the extracellular milieu, and following similar binding pathways in all three ligand-free OR systems, notwithstanding extra densities of sodium observed near nonconserved residues of κ-OR and δ-OR, but not in μ-OR. We speculate that these differences may be responsible for the differential increase in antagonist binding affinity of μ-OR by sodium resulting from specific ligand binding experiments in transfected cells. On the other hand, sodium reduced the level of binding of subtype-specific agonists to all OR subtypes. Additional biased and unbiased MD simulations were conducted using the δ-OR ultra-high-resolution crystal structure as a model system to provide a mechanistic explanation for this experimental observation. PMID:25073009
Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions.
Shang, Yi; LeRouzic, Valerie; Schneider, Sebastian; Bisignano, Paola; Pasternak, Gavril W; Filizola, Marta
2014-08-12
The idea of sodium ions altering G-protein-coupled receptor (GPCR) ligand binding and signaling was first suggested for opioid receptors (ORs) in the 1970s and subsequently extended to other GPCRs. Recently published ultra-high-resolution crystal structures of GPCRs, including that of the δ-OR subtype, have started to shed light on the mechanism underlying sodium control in GPCR signaling by revealing details of the sodium binding site. Whether sodium accesses different receptor subtypes from the extra- or intracellular sides, following similar or different pathways, is still an open question. Earlier experiments in brain homogenates suggested a differential sodium regulation of ligand binding to the three major OR subtypes, in spite of their high degree of sequence similarity. Intrigued by this possibility, we explored the dynamic nature of sodium binding to δ-OR, μ-OR, and κ-OR by means of microsecond-scale, all-atom molecular dynamics (MD) simulations. Rapid sodium permeation was observed exclusively from the extracellular milieu, and following similar binding pathways in all three ligand-free OR systems, notwithstanding extra densities of sodium observed near nonconserved residues of κ-OR and δ-OR, but not in μ-OR. We speculate that these differences may be responsible for the differential increase in antagonist binding affinity of μ-OR by sodium resulting from specific ligand binding experiments in transfected cells. On the other hand, sodium reduced the level of binding of subtype-specific agonists to all OR subtypes. Additional biased and unbiased MD simulations were conducted using the δ-OR ultra-high-resolution crystal structure as a model system to provide a mechanistic explanation for this experimental observation.
Extended atmospheres of outer planet satellites and comets
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1985-01-01
Model analysis of the extended atmospheres of outer planet satellites and comets are discussed. Understanding the neutral hydrogen distribution in the Saturn system concentrated on assessing the spatial dependence of the lifetime of hydrogen atoms and on obtaining appropriately sorted Lyman ALPHA data from the Voyager 1 UVS instrument. Progress in the area of the extended cometary atmospheres included analysis of Pioneer Venus Layman alpha observations of Comet P/Encke with the fully refined hydrogen cloud model, development of the basic carbon and oxygen models, and planning for the Pioneer Venus UVS observations of Comets P/Giacobini-Zinner and P/Halley.
Adeola, Abiodun A; Aworh, Ogugua C
2014-01-01
The effect of sodium benzoate on the quality attributes of improved tamarind beverage during storage was investigated. Tamarind beverages were produced according to a previously reported improved method, with or without chemical preservatives (100 mg/100 mL sodium benzoate). Tamarind beverage produced according to traditional processing method served as the control. The tamarind beverages were stored for 4 months at room (29 ± 2°C) and refrigerated (4-10°C) temperatures. Samples were analyzed, at regular intervals, for chemical, sensory, and microbiological qualities. Appearance of coliforms or overall acceptability score of 5.9 was used as deterioration index. The control beverages deteriorated by 2nd and 10th days at room and refrigerated temperatures, respectively. Improved tamarind beverage produced without the inclusion of sodium benzoate was stable for 3 and 5 weeks at room and refrigerated temperatures, respectively. Sodium benzoate extended the shelf life of the improved tamarind beverage to 6 and 13 weeks, respectively, at room and refrigerated temperatures.
NASA Astrophysics Data System (ADS)
Sumargo, E.; Cayan, D. R.; Iacobellis, S.
2014-12-01
Obtaining accurate solar radiation input to snowmelt runoff models remains a fundamental challenge for water supply forecasters in the mountainous western U.S. The variability of cloud cover is a primary source of uncertainty in estimating surface radiation, especially given that ground-based radiometer networks in mountain terrains are sparse. Thus, remote sensed cloud properties provide a way to extend in situ observations and more importantly, to understand cloud variability in montane environment. We utilize 17 years of NASA/NOAA GOES visible albedo product with 4 km spatial and half-hour temporal resolutions to investigate daytime cloud variability in the western U.S. at elevations above 800 m. REOF/PC analysis finds that the 5 leading modes account for about two-thirds of the total daily cloud albedo variability during the whole year (ALL) and snowmelt season (AMJJ). The AMJJ PCs are significantly correlated with de-seasonalized snowmelt derived from CDWR CDEC and NRCS SNOTEL SWE data and USGS stream discharge across the western conterminous states. The sum of R2 from 7 days prior to the day of snowmelt/discharge amounts to as much as ~52% on snowmelt and ~44% on discharge variation. Spatially, the correlation patterns take on broad footprints, with strongest signals in regions of highest REOF weightings. That the response of snowmelt and streamflow to cloud variation is spread across several days indicates the cumulative effect of cloud variation on the energy budget in mountain catchments.
Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei
2017-06-01
A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.
NASA Astrophysics Data System (ADS)
Tosca, M. G.; Diner, D. J.; Garay, M. J.; Kalashnikova, O. V.
2012-12-01
Fire-emitted aerosols modify cloud and precipitation dynamics by acting as cloud condensation nuclei in what is known as the first and second aerosol indirect effect. The cloud response to the indirect effect varies regionally and is not well understood in the highly convective tropics. We analyzed nine years (2003-2011) of aerosol data from the Multi-angle Imaging SpectroRadiometer (MISR), and fire emissions data from the Global Fire Emissions Database, version 3 (GFED3) over southeastern tropical Asia (Indonesia), and identified scenes that contained both a high atmospheric aerosol burden and large surface fire emissions. We then collected scenes from the Cloud Profiling Radar (CPR) on board the CLOUDSAT satellite that corresponded both spatially and temporally to the high-burning scenes from MISR, and identified differences in convective cloud dynamics over areas with varying aerosol optical depths. Differences in overpass times (MISR in the morning, CLOUDSAT in the afternoon) improved our ability to infer that changes in cloud dynamics were a response to increased or decreased aerosol emissions. Our results extended conclusions from initial studies over the Amazon that used remote sensing techniques to identify cloud fraction reductions in high burning areas (Koren et al., 2004; Rosenfeld, 1999) References Koren, I., Y.J. Kaufman, L.A. Remer and J.V. Martins (2004), Measurement of the effect of Amazon smoke on inhibition of cloud formation, Science, 303, 1342-1345 Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Gephys. Res. Lett., 26, 3105.
IceCube: CubeSat 883-GHz Radiometry for Future Ice Cloud Remote Sensing
NASA Technical Reports Server (NTRS)
Wu, Dongliang; Esper, Jaime; Ehsan, Negar; Johnson, Thomas; Mast, William; Piepmeier, Jeffery R.; Racette, Paul E.
2015-01-01
Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Accurate observations of global cloud ice and its distribution have been a challenge from space, and require good instrument sensitivities to both cloud mass and microphysical properties. Despite great advances from recent spaceborne radar and passive sensors, uncertainty of current ice water path (IWP) measurements is still not better than a factor of 2. Submillimeter (submm) wave remote sensing offers great potential for improving cloud ice measurements, with simultaneous retrievals of cloud ice and its microphysical properties. The IceCube project is to enable this cloud ice remote sensing capability in future missions, by raising 874-GHz receiver technology TRL from 5 to 7 in a spaceflight demonstration on 3-U CubeSat in a low Earth orbit (LEO) environment. The NASAs Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes Inc (VDI) on the 874-GHz receiver through its Vector Network Analyzer (VNA) extender module product line, to develop an instrument with precision of 0.2 K over 1-second integration and accuracy of 2.0 K or better. IceCube is scheduled to launch to and subsequent release from the International Space Station (ISS) in mid-2016 for nominal operation of 28 plus days. We will present the updated design of the payload and spacecraft systems, as well as the operation concept. We will also show the simulated 874-GHz radiances from the ISS orbits and cloud scattering signals as expected for the IceCube cloud radiometer.
Improving Pixel Level Cloud Optical Property Retrieval using Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Marshak, Alexander; Cahalan, Robert F.
1999-01-01
The accurate pixel-by-pixel retrieval of cloud optical properties from space is influenced by radiative smoothing due to high order photon scattering and radiative roughening due to low order scattering events. Both are caused by cloud heterogeneity and the three-dimensional nature of radiative transfer and can be studied with the aid of computer simulations. We use Monte Carlo simulations on variable 1-D and 2-D model cloud fields to seek for dependencies of smoothing and roughening phenomena on single scattering albedo, solar zenith angle, and cloud characteristics. The results are discussed in the context of high resolution satellite (such as Landsat) retrieval applications. The current work extends the investigation on the inverse NIPA (Non-local Independent Pixel Approximation) as a tool for removing smoothing and improving retrievals of cloud optical depth. This is accomplished by: (1) Delineating the limits of NIPA applicability; (2) Exploring NIPA parameter dependences on cloud macrostructural features, such as mean cloud optical depth and geometrical thickness, degree of extinction and cloud top height variability. We also compare parameter values from empirical and theoretical considerations; (3) Examining the differences between applying NIPA on radiation quantities vs direct application on optical properties; (4) Studying the radiation budget importance of the NIPA corrections as a function of scale. Finally, we discuss fundamental adjustments that need to be considered for successful radiance inversion at non-conservative wavelengths and oblique Sun angles. These adjustments are necessary to remove roughening signatures which become more prominent with increasing absorption and solar zenith angle.
Trade cumulus clouds embedded in a deep regional haze: Results from Indian Ocean CARDEX experiment
NASA Astrophysics Data System (ADS)
Wilcox, E. M.; Thomas, R. M.; Praveen, P. S.; Pistone, K.; Bender, F.; Feng, Y.; Ramanathan, V.
2013-12-01
During the winter monsoon, trade cumulus clouds over the North Indian Ocean are embedded within a deep regional haze described as an atmospheric brown cloud. While the trade-cu clouds are largely confined to the marine boundary layer, the sooty brown cloud extends from the boundary layer to as high as 3 km; well above the tops of the cumulus. The boundary layer pollution is persistent and limits drizzle in the cumulus over a period of greater than a month at the Maldives Climate Observatory located at Hanimaadhoo Island. The elevated haze from 1 to 3 km altitude is episodic and strongly modulated by synoptic variability in the 700 hPa flow. The elevated plume enhances heating above the marine boundary layer through daytime absorption of sunlight by the haze particles. The interplay between the microphysical modification of clouds by boundary layer pollution and the episodic elevated heating by the atmospheric brown cloud are explored in in-situ observations from UAVs and surface remote sensing during the CARDEX field campaign of winter 2012 and supported by multi-year analysis of satellite remote sensing observations. These observations document the variability in pollution at the surface and above the marine boundary layer and the effects of pollution on the microphysics of the trade-cu clouds, the depth of the marine boundary layer, the liquid water path of trade-cu clouds, and the profile of turbulent moisture flux through the boundary layer. The consequences of these effects for the radiative forcing of regional climate will be discussed.
NASA Astrophysics Data System (ADS)
Makowski Giannoni, Sandro; Trachte, Katja; Rollenbeck, Ruetger; Lehnert, Lukas; Fuchs, Julia; Bendix, Joerg
2016-08-01
Sea salt (NaCl) has recently been proven to be of the utmost importance for ecosystem functioning in Amazon lowland forests because of its impact on herbivory, litter decomposition and, thus, carbon cycling. Sea salt deposition should generally decline as distance from its marine source increases. For the Amazon, a negative east-west gradient of sea salt availability is assumed as a consequence of the barrier effect of the Andes Mountains for Pacific air masses. However, this generalized pattern may not hold for the tropical mountain rainforest in the Andes of southern Ecuador. To analyse sea salt availability, we investigated the deposition of sodium (Na+) and chloride (Cl-), which are good proxies of sea spray aerosol. Because of the complexity of the terrain and related cloud and rain formation processes, sea salt deposition was analysed from both, rain and occult precipitation (OP) along an altitudinal gradient over a period between 2004 and 2009. To assess the influence of easterly and westerly air masses on the deposition of sodium and chloride over southern Ecuador, sea salt aerosol concentration data from the Monitoring Atmospheric Composition and Climate (MACC) reanalysis data set and back-trajectory statistical methods were combined. Our results, based on deposition time series, show a clear difference in the temporal variation of sodium and chloride concentration and Na+ / Cl- ratio in relation to height and exposure to winds. At higher elevations, sodium and chloride present a higher seasonality and the Na+ / Cl- ratio is closer to that of sea salt. Medium- to long-range sea salt transport exhibited a similar seasonality, which shows the link between our measurements at high elevations and the sea salt synoptic transport. Although the influence of the easterlies was predominant regarding the atmospheric circulation, the statistical analysis of trajectories and hybrid receptor models revealed a stronger impact of the north equatorial Atlantic, Caribbean, and Pacific sea salt sources on the atmospheric sea salt concentration in southern Ecuador. The highest concentration in rain and cloud water was found between September and February when air masses originated from the north equatorial Atlantic, the Caribbean Sea and the equatorial Pacific. Together, these sources accounted for around 82.4 % of the sea salt budget over southern Ecuador.
Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)
NASA Astrophysics Data System (ADS)
Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick
2018-02-01
The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.
Electroscavenging and Inferred Effects on Precipitation Efficiency
NASA Astrophysics Data System (ADS)
Tinsley, B. A.
2002-12-01
The evaporation of charged droplets leaves charged aerosol particles that can act as cloud condensation nuclei and ice forming nuclei. New calculations of scavenging of such charged particles by droplets have been made, that now include the effects of inertia and variable particle density, and variable cloud altitudes ranging into the stratosphere. They show that the Greenfield Gap closes for particles of low density, or for high altitude clouds, or for a few hundred elementary charges on the particles. A few tens of elementary charges on the particles gives collision efficiencies typically an order of magnitude greater than that due to phoretic forces alone. The numerical integrations show that electroscavenging of ice forming nuclei leading to contact ice nucleation is competitive with deposition ice nucleation, for cloud top temperatures in the range 0§C to -15§C and droplet size distributions extending past 10-15 mm radius. This implies that for marine stratocumulus or nimbostratus clouds with tops just below freezing temperature, where precipitation is initiated by the Wegener-Bergeron-Findeisen process, the precipitation efficiency can be affected by the amount of charge on the ice-forming nuclei. This in turn depends on the extent of the (weak) electrification of the cloud. Similarly, electroscavenging of condensation nuclei can increase the average droplet size in successive cycles of cloud evaporation and formation, and can also affect precipitation efficiency.
Photometric Metallicities of the Small and Large Magellanic Clouds
NASA Astrophysics Data System (ADS)
Miller, Amy Elizabeth
2018-06-01
In the field of astronomy, the study of galaxies is vitally important to understanding the structure and evolution of the universe. Within the study of galaxies, of particular interest are the Small and Large Magellanic Clouds (SMC and LMC, respectively), two of the Milky Way’s closest and most massive satellite galaxies. Their close proximity make them ideal candidates for understanding astrophysical processes such as galaxy interactions. In order to fully understand the Magellanic Clouds, it is imperative that the metallicity of the clouds be mapped in detail. In order to accomplish this task, I will use data from the Survey of Magellanic Stellar History (SMASH) which is a deep, multi-band (ugriz) photometric survey of the Magellanic Clouds that contains approximately 400 million objects in 197 fully-calibrated fields. SMASH is an extensive and deep photometric data set that enables the full-scale study of the galactic structure in the Clouds. The SMASH u-band is sensitive to metallicity for main-sequence turn-off stars which we calibrate using SDSS spectroscopy in overlapping regions (mainly standard star fields). The final steps will be to make metallicity maps of the main bodies and peripheries of the LMC and SMC. Ultimately, these metallicity maps will help us trace out population gradients in the Clouds and uncover the origin of their very extended stellar peripheries.
Progress towards MODIS and VIIRS Cloud Optical Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Meyer, K.; Platnick, S. E.; Wind, G.; Amarasinghe, N.; Holz, R.; Ackerman, S. A.; Heidinger, A. K.
2016-12-01
The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting Earth observations, and its VIIRS imager provides an opportunity to extend the 15+ year climate data record of MODIS EOS. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals, and there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06); the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm. To account for the different channel sets of MODIS and VIIRS, each algorithm nominally uses a subset of channels common to both imagers. Data granule and aggregated examples for the current version of the continuity algorithm (MODAWG) will be shown. In addition, efforts to reconcile apparent radiometric biases between analogous channels of the two imagers, a critical consideration for obtaining inter-sensor climate data record continuity, will be discussed.
The MSG-SEVIRI-based cloud property data record CLAAS-2
NASA Astrophysics Data System (ADS)
Benas, Nikos; Finkensieper, Stephan; Stengel, Martin; van Zadelhoff, Gerd-Jan; Hanschmann, Timo; Hollmann, Rainer; Fokke Meirink, Jan
2017-07-01
Clouds play a central role in the Earth's atmosphere, and satellite observations are crucial for monitoring clouds and understanding their impact on the energy budget and water cycle. Within the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF), a new cloud property data record was derived from geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) measurements for the time frame 2004-2015. The resulting CLAAS-2 (CLoud property dAtAset using SEVIRI, Edition 2) data record is publicly available via the CM SAF website (https://doi.org/10.5676/EUM_SAF_CM/CLAAS/V002). In this paper we present an extensive evaluation of the CLAAS-2 cloud products, which include cloud fractional coverage, thermodynamic phase, cloud top properties, liquid/ice cloud water path and corresponding optical thickness and particle effective radius. Data validation and comparisons were performed on both level 2 (native SEVIRI grid and repeat cycle) and level 3 (daily and monthly averages and histograms) with reference datasets derived from lidar, microwave and passive imager measurements. The evaluation results show very good overall agreement with matching spatial distributions and temporal variability and small biases attributed mainly to differences in sensor characteristics, retrieval approaches, spatial and temporal samplings and viewing geometries. No major discrepancies were found. Underpinned by the good evaluation results, CLAAS-2 demonstrates that it is fit for the envisaged applications, such as process studies of the diurnal cycle of clouds and the evaluation of regional climate models. The data record is planned to be extended and updated in the future.
Research on multi-user encrypted search scheme in cloud environment
NASA Astrophysics Data System (ADS)
Yu, Zonghua; Lin, Sui
2017-05-01
Aiming at the existing problems of multi-user encrypted search scheme in cloud computing environment, a basic multi-user encrypted scheme is proposed firstly, and then the basic scheme is extended to an anonymous hierarchical management authority. Compared with most of the existing schemes, the scheme not only to achieve the protection of keyword information, but also to achieve the protection of user identity privacy; the same time, data owners can directly control the user query permissions, rather than the cloud server. In addition, through the use of a special query key generation rules, to achieve the hierarchical management of the user's query permissions. The safety analysis shows that the scheme is safe and that the performance analysis and experimental data show that the scheme is practicable.
STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, J; Matrosov, S; Shupe, M
2010-09-29
During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phasemore » will begin nominally on 1 November 2010 and extend to approximately early April 2011.« less
Assessment of 3D cloud radiative transfer effects applied to collocated A-Train data
NASA Astrophysics Data System (ADS)
Okata, M.; Nakajima, T.; Suzuki, K.; Toshiro, I.; Nakajima, T. Y.; Okamoto, H.
2017-12-01
This study investigates broadband radiative fluxes in the 3D cloud-laden atmospheres using a 3D radiative transfer (RT) model, MCstar, and the collocated A-Train cloud data. The 3D extinction coefficients are constructed by a newly devised Minimum cloud Information Deviation Profiling Method (MIDPM) that extrapolates CPR radar profiles at nadir into off-nadir regions within MODIS swath based on collocated information of MODIS-derived cloud properties and radar reflectivity profiles. The method is applied to low level maritime water clouds, for which the 3D-RT simulations are performed. The radiative fluxes thus simulated are compared to those obtained from CERES as a way to validate the MIDPM-constructed clouds and our 3D-RT simulations. The results show that the simulated SW flux agrees with CERES values within 8 - 50 Wm-2. One of the large biases occurred by cyclic boundary condition that was required to pose into our computational domain limited to 20km by 20km with 1km resolution. Another source of the bias also arises from the 1D assumption for cloud property retrievals particularly for thin clouds, which tend to be affected by spatial heterogeneity leading to overestimate of the cloud optical thickness. These 3D-RT simulations also serve to address another objective of this study, i.e. to characterize the "observed" specific 3D-RT effects by the cloud morphology. We extend the computational domain to 100km by 100km for this purpose. The 3D-RT effects are characterized by errors of existing 1D approximations to 3D radiation field. The errors are investigated in terms of their dependence on solar zenith angle (SZA) for the satellite-constructed real cloud cases, and we define two indices from the error tendencies. According to the indices, the 3D-RT effects are classified into three types which correspond to different simple three morphologies types, i.e. isolated cloud type, upper cloud-roughened type and lower cloud-roughened type. These 3D-RT effects linked to cloud morphologies are also visualized in the form of the RGB composite maps constructed from MODIS/Aqua three channels, which show cloud optical thickness and cloud height information. Such a classification offers a novel insight into 3D-RT effect in a manner that directly relates to cloud morphology.
Jupiter's atmospheric jet streams extend thousands of kilometres deep.
Kaspi, Y; Galanti, E; Hubbard, W B; Stevenson, D J; Bolton, S J; Iess, L; Guillot, T; Bloxham, J; Connerney, J E P; Cao, H; Durante, D; Folkner, W M; Helled, R; Ingersoll, A P; Levin, S M; Lunine, J I; Miguel, Y; Militzer, B; Parisi, M; Wahl, S M
2018-03-07
The depth to which Jupiter's observed east-west jet streams extend has been a long-standing question. Resolving this puzzle has been a primary goal for the Juno spacecraft, which has been in orbit around the gas giant since July 2016. Juno's gravitational measurements have revealed that Jupiter's gravitational field is north-south asymmetric, which is a signature of the planet's atmospheric and interior flows. Here we report that the measured odd gravitational harmonics J 3 , J 5 , J 7 and J 9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000 kilometres. By inverting the measured gravity values into a wind field, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J 8 and J 10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter's total mass.
Saturn -- Ribbon-like Wave Structure in Atmosphere
1999-08-30
A view of Saturn clouds extending from 40 N latitude shows a ribbon-like wave structure in the south with small convective features marking a westward jet in the north. This image was obtained on November 10, 1980 by NASA Voyager 1.
Validation of VIIRS Cloud Base Heights at Night Using Ground and Satellite Measurements over Alaska
NASA Astrophysics Data System (ADS)
NOH, Y. J.; Miller, S. D.; Seaman, C.; Forsythe, J. M.; Brummer, R.; Lindsey, D. T.; Walther, A.; Heidinger, A. K.; Li, Y.
2016-12-01
Knowledge of Cloud Base Height (CBH) is critical to describing cloud radiative feedbacks in numerical models and is of practical significance to aviation communities. We have developed a new CBH algorithm constrained by Cloud Top Height (CTH) and Cloud Water Path (CWP) by performing a statistical analysis of A-Train satellite data. It includes an extinction-based method for thin cirrus. In the algorithm, cloud geometric thickness is derived with upstream CTH and CWP input and subtracted from CTH to generate the topmost layer CBH. The CBH information is a key parameter for an improved Cloud Cover/Layers product. The algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft. Nighttime cloud optical properties for CWP are retrieved from the nighttime lunar cloud optical and microphysical properties (NLCOMP) algorithm based on a lunar reflectance model for the VIIRS Day/Night Band (DNB) measuring nighttime visible light such as moonlight. The DNB has innovative capabilities to fill the polar winter and nighttime gap of cloud observations which has been an important shortfall from conventional radiometers. The CBH products have been intensively evaluated against CloudSat data. The results showed the new algorithm yields significantly improved performance over the original VIIRS CBH algorithm. However, since CloudSat is now operational during daytime only due to a battery anomaly, the nighttime performance has not been fully assessed. This presentation will show our approach to assess the performance of the CBH algorithm at night. VIIRS CBHs are retrieved over the Alaska region from October 2015 to April 2016 using the Clouds from AVHRR Extended (CLAVR-x) processing system. Ground-based measurements from ceilometer and micropulse lidar at the Atmospheric Radiation Measurement (ARM) site on the North Slope of Alaska are used for the analysis. Local weather conditions are checked using temperature and precipitation observations at the site. CALIPSO data with near-simultaneous colocation are added for multi-layered cloud cases which may have high clouds aloft beyond the ground measurements. Multi-month statistics of performance and case studies will be shown. Additional efforts for algorithm refinements will be also discussed.
Massive superclusters as a probe of the nature and amplitude of primordial density fluctuations
NASA Technical Reports Server (NTRS)
Kaiser, N.; Davis, M.
1985-01-01
It is pointed out that correlation studies of galaxy positions have been widely used in the search for information about the large-scale matter distribution. The study of rare condensations on large scales provides an approach to extend the existing knowledge of large-scale structure into the weakly clustered regime. Shane (1975) provides a description of several apparent massive condensations within the Shane-Wirtanen catalog, taking into account the Serpens-Virgo cloud and the Corona cloud. In the present study, a description is given of a model for estimating the frequency of condensations which evolve from initially Gaussian fluctuations. This model is applied to the Corona cloud to estimate its 'rareness' and thereby estimate the rms density contrast on this mass scale. An attempt is made to find a conflict between the density fluctuations derived from the Corona cloud and independent constraints. A comparison is conducted of the estimate and the density fluctuations predicted to arise in a universe dominated by cold dark matter.
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing
Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang
2017-01-01
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient. PMID:28737733
Old Stellar Populations as Structural Tracer of the Magellanic Cloud Complex
NASA Astrophysics Data System (ADS)
Saha, A.; Olszewski, E. W.
2015-05-01
We present results from the the NOAO Outer Limits Survey (OLS) in the context of the new paradigm that the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are approaching the Galaxy for the first time, and are not, as previously thought, orbiting quasi-periodically. The OLS identifies old and intermediate stellar populations associated with the LMC and SMC to unprecedented distances outside these galaxies. The distribution of these older stars are a fossil record of the interaction history of both Magellanic Clouds, both between themselves and with the Milky Way. A stable extended disk to beyond 12 scale lengths has been identified in the LMC, which is unlikely to have survived multiple approaches to the Galaxy. An extra-tidal distribution of stars around the SMC, however, are consistent with tidal disruption due to interactions with the LMC. We show that the Magellanic Bridge contains old stars, consistent with it being a tidal feature due to LMC-SMC interaction.
NASA Technical Reports Server (NTRS)
Short, David A.; Lane, Robert E., Jr.; Winters, Katherine A.; Madura, John T.
2004-01-01
Clouds are highly effective in obscuring optical images of the Space Shuttle taken during its ascent by ground-based and airborne tracking cameras. Because the imagery is used for quick-look and post-flight engineering analysis, the Columbia Accident Investigation Board (CAIB) recommended the return-to-flight effort include an upgrade of the imaging system to enable it to obtain at least three useful views of the Shuttle from lift-off to at least solid rocket booster (SRB) separation (NASA 2003). The lifetimes of individual cloud elements capable of obscuring optical views of the Shuttle are typically 20 minutes or less. Therefore, accurately observing and forecasting cloud obscuration over an extended network of cameras poses an unprecedented challenge for the current state of observational and modeling techniques. In addition, even the best numerical simulations based on real observations will never reach "truth." In order to quantify the risk that clouds would obscure optical imagery of the Shuttle, a 3D model to calculate probabilistic risk was developed. The model was used to estimate the ability of a network of optical imaging cameras to obtain at least N simultaneous views of the Shuttle from lift-off to SRB separation in the presence of an idealized, randomized cloud field.
A framework for expanding aqueous chemistry in the ...
This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ordinary differential equations (ODEs) that describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ's standard cloud chemistry module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of microphysical parameters on cloud chemistry. Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted concentrations for a range of scenarios. Month-long CMAQ simulations for winter and summer periods over the US reveal the changes in model predictions due to these cloud module updates within the full chemical transport model. While monthly average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM − KMT, hourly concentration differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from bio
An integrated multi-sensors approach for volcanic cloud retrievals and source characterization
NASA Astrophysics Data System (ADS)
Corradini, Stefano; Merucci, Luca
2017-04-01
Volcanic eruptions are one the most important sources of natural pollution. In particular the volcanic clouds represent a severe threat for aviation safety. Worldwide the volcanic activity is monitored by using satellite and ground-based instruments working at different spectral ranges, with different spatial resolutions and sensitivities. Here the complementarity between geostationary and polar satellites and ground based measurements is exploited, in order to significantly improve the volcanic cloud detection and retrievals and to fully characterize the eruption source. The integration procedure named MACE (Multi-platform volcanic Ash Cloud Estimation), has been developed during the EU-FP7 APhoRISM project aimed to develop innovative products to support the management and mitigation of the volcanic and the seismic crisis. The proposed method integrates in a novel manner the volcanic ash retrievals at the space-time scale of typical geostationary observations using both the polar satellite estimations and in-situ measurements. On MACE the typical volcanic cloud retrievals in the thermal infrared are integrated by using a wider spectral range from visible to microwave. Moreover the volcanic cloud detection is extended in case of cloudy atmosphere or steam plumes. As example, the integrated approach is tested on different recent eruptions, occurred on Etna (Italy) in 2013 and 2015 and on Calbuco (Chile) in 2015.
NASA Technical Reports Server (NTRS)
Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Harvey, Paul M.; Gutermuth, Robert A.; Huard, Tracy L.; Tothill, Nicholas F. H.; Nutter, David; Bourke, Tyler L.; DiFrancesco, James; Jorgensen, Jes K.;
2014-01-01
We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micrometers observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg(exp 2) with IRAC and 10.47 deg2 with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkH(alpha) 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.
Clouds in ECMWF's 30 KM Resolution Global Atmospheric Forecast Model (TL639)
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Morcrette, J. J.
1999-01-01
Global models of the general circulation of the atmosphere resolve a wide range of length scales, and in particular cloud structures extend from planetary scales to the smallest scales resolvable, now down to 30 km in state-of-the-art models. Even the highest resolution models do not resolve small-scale cloud phenomena seen, for example, in Landsat and other high-resolution satellite images of clouds. Unresolved small-scale disturbances often grow into larger ones through non-linear processes that transfer energy upscale. Understanding upscale cascades is of crucial importance in predicting current weather, and in parameterizing cloud-radiative processes that control long term climate. Several movie animations provide examples of the temporal and spatial variation of cloud fields produced in 4-day runs of the forecast model at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, at particular times and locations of simultaneous measurement field campaigns. model resolution is approximately 30 km horizontally (triangular truncation TL639) with 31 vertical levels from surface to stratosphere. Timestep of the model is about 10 minutes, but animation frames are 3 hours apart, at timesteps when the radiation is computed. The animations were prepared from an archive of several 4-day runs at the highest available model resolution, and archived at ECMWF. Cloud, wind and temperature fields in an approximately 1000 km X 1000 km box were retrieved from the archive, then approximately 60 Mb Vis5d files were prepared with the help of Graeme Kelly of ECMWF, and were compressed into MPEG files each less than 3 Mb. We discuss the interaction of clouds and radiation in the model, and compare the variability of cloud liquid as a function of scale to that seen in cloud observations made in intensive field campaigns. Comparison of high-resolution global runs to cloud-resolving models, and to lower resolution climate models is leading to better understanding of the upscale cascade and suggesting new cloud-radiation parameterizations for climate models.
NASA Astrophysics Data System (ADS)
Pearl, John C.; Smith, Michael D.; Conrath, Barney J.; Bandfield, Joshua L.; Christensen, Philip R.
2001-06-01
Successful operation of the Mars Global Surveyor spacecraft, beginning in September 1997 (Ls=184°), has permitted extensive observations over more than a Martian year. Initially, thin (normal optical depth <0.06 at 825 cm-1) ice clouds and hazes were widespread, showing a distinct latitudinal gradient. With the onset of a regional dust storm at Ls=224°, ice clouds vanished in the southern hemisphere, to reappear gradually after the decay of the storm. The zonally averaged cloud opacities show little difference between the beginning and end of the first Martian year. A broad low-latitude cloud belt with considerable longitudinal structure was present in early northern summer. Apparently characteristic of the northern summer season, it vanished between Ls=140° and 150°. The latitudinal extent of this feature is apparently controlled by the ascending branch of the Hadley circulation. The most opaque clouds (optical depth ~0.6) were found above the summits of major volcanic features; these showed spatial structure possibly associated with wave activity. Variety among low-lying late morning clouds suggests localized differences in circulation and microclimates. Limb observations showed extensive optically thin (optical depth <0.04) stratiform clouds at altitudes up to 55 km. Considerable latitude and altitude variations were evident in ice clouds in early northern spring (Ls=25°) near 30 km, thin clouds extended from just north of the equator to ~45°N, nearly to the north polar vortex. A water ice haze was present in the north polar night (Ls=30°) at altitudes up to 40 km. Because little dust was present this probably provided heterogeneous nucleation sites for the formation of CO2 clouds and snowfall at altitudes below ~20 km, where atmospheric temperatures dropped to the CO2 condensation point. The relatively invariant spectral shape of the water ice cloud feature over space and time indicates that ice particle radii are generally between 1 and 4 μm.
NASA Astrophysics Data System (ADS)
Ohama, Akio; Kohno, Mikito; Fujita, Shinji; Tsutsumi, Daichi; Hattori, Yusuke; Torii, Kazufumi; Nishimura, Atsushi; Sano, Hidetoshi; Yamamoto, Hiroaki; Tachihara, Kengo; Fukui, Yasuo
2018-05-01
Young H II regions are an important site for the study of O star formation based on distributions of ionized and molecular gas. We reveal that two molecular clouds at ˜48 km s-1 and ˜53 km s-1 are associated with the H II regions G018.149-00.283 in RCW 166 by using the JCMT CO High-Resolution Survey (COHRS) of the 12CO(J = 3-2) emission. G018.149-00.283 comprises a bright ring at 8 μm and an extended H II region inside the ring. The ˜48 km s-1 cloud delineates the ring, and the ˜53 km s-1 cloud is located within the ring, indicating a complementary distribution between the two molecular components. We propose a hypothesis that high-mass stars within G018.149-00.283 were formed by triggering during cloud-cloud collision at a projected velocity separation of ˜5 km s-1. We argue that G018.149-00.283 is in an early evolutionary stage, ˜0.1 Myr after the collision according to the scheme detailed by Habe and Ohta (1992, PASJ, 44, 203), which will be followed by a bubble formation stage like RCW 120. We also suggest that nearby H II regions N21 and N22 are candidates for bubbles possibly formed by cloud-cloud collision. Inoue and Fukui (2013, ApJ, 774, L31) showed that the interface gas becomes highly turbulent and realizes a high-mass accretion rate of 10-3-10-4 M⊙ yr-1 by magnetohydrodynamical numerical simulations, which offers an explanation of the O-star formation. The fairly high frequency of cloud-cloud collision in RCW 166 is probably due to the high cloud density in this part of the Scutum arm.
Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.
Magnet, C; Kuzhir, P; Bossis, G; Meunier, A; Nave, S; Zubarev, A; Lomenech, C; Bashtovoi, V
2014-03-01
When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces-the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α≥2), the Brownian motion seems not to affect the cloud behavior.
Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields
NASA Astrophysics Data System (ADS)
Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Nave, S.; Zubarev, A.; Lomenech, C.; Bashtovoi, V.
2014-03-01
When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces—the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α ≥2), the Brownian motion seems not to affect the cloud behavior.
Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Microwave 89Ghz imageFigure 2: Visible/near infrared sensor Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday. These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama. This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red. The microwave image (figure 2) reveals where the heaviest precipitation in Ivan is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through. The image shows that the largest area of intense convection/precipitation is in the NE quadrant, centered near New Orleans. There is a smaller but still quite intense area in the SE quadrant trailing the center of the storm that might impact the Alabama coast. Image Journal [figure removed for brevity, see original site] September 7, Tuesday, 1:30 am. - infrared, 12micron The infrared signal does not penetrate through clouds, so the purple color reveals the cool cloud tops of the hurricane. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Ivan becomes better organized as it approaches the Windward Islands. The center of the storm is 170 miles (275 km) southeast of Barbados and moving west at 21 mph (33 km/hr). Maximum sustained winds near 105 mph which extend outward at this force for 70 miles (110 km). [figure removed for brevity, see original site] September 7, Tuesday, 1:30 am. - microwave, 89GHz [figure removed for brevity, see original site] September 8, Wednesday, 1:30 am. - infrared, 12micron The infrared signal does not penetrate through clouds, so the purple color reveals the cool cloud tops of the hurricane. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Ivan becomes better organized as it approaches the Windward Islands. The center of the storm is 170 miles (275 km) southeast of Barbados and moving west at 21 mph (33 km/hr). Maximum sustained winds near 105 mph which extend outward at this force for 70 miles (110 km). [figure removed for brevity, see original site] September 8, Wednesday, 1:30 am. - microwave, 89GHz [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - infrared, 12micron Ivan closes in on Jamaica. With only 85 miles between the storm and the island, Ivan's winds at category 4 are sustained at 145 mph (230 km/hr). Hurricane-strength winds extend up to 60 miles from the center of Ivan, and tropical-storm force winds are up to 175 miles from the center. Ivan is now better organized and has a well-defined eye. After Ivan leaves Jamaica, it is expected to hit western Cuba, probably making landfall later Sunday as a CAT 4 hurricane. [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - microwave, 89GHz [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - visible/near-infrared [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - infrared, 12micron Ivan's winds at category 5 strength are sustained at 160 mph (260 km/hr) and extend out to 105 miles from the center. Tropical-storm force winds are up to 205 miles from the center. The infrared image shows that the eye has grown quite large - perhaps 40 km (25 miles) across - which is sometimes an indication of weakening but may not be in this case. The surface pressure at the time of this image was estimated by the National Hurricane Center at 915 mb and falling - consistent with a very intense and strengthening hurricane. [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - microwave, 89GHz The microwave image shows that Ivan has again developed two distinct convective centers, separated by about 250 km. That pattern developed on September 5 and persisted for 4 days. It disappeared while the storm was passing over Jamaica, but it has now re-formed. [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - visible/near-infrared The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Sodium Velocity Maps on Mercury
NASA Technical Reports Server (NTRS)
Potter, A. E.; Killen, R. M.
2011-01-01
The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.
Cegielska-Radziejewska, Renata; Pikul, Jan
2004-03-01
The aim of this study was to determine the effect of sodium lactate addition on shelf-life extension of sliced poultry sausage packaged both in air and nitrogen atmospheres and stored in refrigerated conditions. Basic chemical composition, pH, and malonaldehyde content were assayed and color measurement using the reflection method was carried out. Microbiological examination consisted of determination of total number of aerobic psychrotrophic bacteria and number of lactic acid bacteria. Sensory evaluation of products was performed. Microbiological and sensory quality of sliced poultry meat sausage was dependent on the addition during production of sodium lactate and the composition of gases (air or nitrogen) used in packaging. Slices of poultry sausage with 1% as well as 2% of sodium lactate maintained their initial quality of evaluated sensory attributes longer, irrespective of the applied gases. Sodium lactate inhibited growth of aerobic psychrotrophic bacteria and lactic acid bacteria during refrigerated storage. Sodium lactate also inhibited the formation of malonaldehyde in sliced poultry sausage during refrigerated storage. The effectiveness of this process depended on the concentration of sodium lactate addition. It was concluded that 1% as well as 2% addition of sodium lactate could extend the shelf life of sliced poultry sausage packaged in air atmosphere and stored at 5 to 7 degrees C by 3 or 4 times, respectively. Sliced poultry sausage treated with 2% sodium lactate packed in nitrogen had the longest (35-day) shelf life. This was a sevenfold increase in the shelf life of sliced poultry sausage compared with the control.
Validation of CERES-MODIS Arctic cloud properties using CloudSat/CALIPSO and ARM NSA observations
NASA Astrophysics Data System (ADS)
Giannecchini, K.; Dong, X.; Xi, B.; Minnis, P.; Kato, S.
2011-12-01
The traditional passive satellite studies of cloud properties in the Arctic are often affected by the complex surface features present across the region. Nominal visual and thermal contrast exists between Arctic clouds and the snow- and ice-covered surfaces beneath them, which can lead to difficulties in satellite retrievals of cloud properties. However, the addition of active sensors to the A-Train constellation of satellites has increased the availability of validation sources for cloud properties derived from passive sensors in the data-sparse high-latitude regions. In this study, Arctic cloud fraction and cloud heights derived from the NASA CERES team (CERES-MODIS) have been compared with CloudSat/CALIPSO and DOE ARM NSA radar-lidar observations over Barrow, AK, for the two-year period from 2007 to 2008. An Arctic-wide comparison of cloud fraction and height between CERES-MODIS and CloudSat/CALIPSO was then conducted for the same time period. The CERES-MODIS cloud properties, which include cloud fraction and cloud effective heights, were retrieved using the 4-channel VISST (Visible Infrared Solar-Infrared Split-window Technique) [Minnis et al.,1995]. CloudSat/CALIPSO cloud fraction and cloud-base and -top heights were from version RelB1 data products determined by both the 94 GHz radar onboard CloudSat and the lidar on CALIPSO with a vertical resolution of 30 m below 8.2 km and 60 m above. To match the surface and satellite observations/retrievals, the ARM surface observations were averaged into 3-hour intervals centered at the time of the satellite overpass, while satellite observations were averaged within a 3°x3° grid box centered on the Barrow site. The preliminary results have shown that all observed CFs have peaks during April-May and September-October, and dips during winter months (January-February) and summer months (June-July) during the study period of 2007-2008. ARM radar-lidar and CloudSat/CALIPSO show generally good agreement in CF (0.79 vs. 0.74), while CERES-MODIS derived values are much lower (0.60). CERES-MODIS derived cloud effective height (2.7 km) falls between the CloudSat/CALIPSO derived cloud base (0.6 km) and top (6.4 km) and the ARM ceilometers and MMCR derived cloud base (0.9 km) and radar derived cloud top (5.8 km). When extended to the entire Arctic, although the CERES-MODIS and Cloudsat/CALIPSO derived annual mean CFs agree within a few percents, there are significant differences over several regions, and the maximum cloud heights derived from CloudSat/CALIPSO (13.4 km) and CERES-MODIS (10.7 km) show the largest disagreement during early spring.
Hurricane Ivan as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS
2004-09-15
Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday. These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama. This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red. http://photojournal.jpl.nasa.gov/catalog/PIA00431
Titan's Stratospheric Condensibles at High Northern Latitudes During Northern Winter
NASA Technical Reports Server (NTRS)
Anderson, Carrie; Samuelson, R.; Achterberg, R.
2012-01-01
The Infrared Interferometer Spectrometer (IRIS) instrument on board Voyager 1 caught the first glimpse of an unidentified particulate feature in Titan's stratosphere that spectrally peaks at 221 per centimeter. Until recently, this feature that we have termed 'the haystack,' has been seen persistently at high northern latitudes with the Composite Infrared Spectrometer (CIRS) instrument onboard Cassini, The strength of the haystack emission feature diminishes rapidly with season, becoming drastically reduced at high northern latitudes, as Titan transitions from northern winter into spring, In contrast to IRIS whose shortest wavenumber was 200 per centimeter, CIRS extends down to 10 per centimeter, thus revealing an entirely unexplored spectral region in which nitrile ices have numerous broad lattice vibration features, Unlike the haystack, which is only found at high northern latitudes during northern winter/early northern spring, this geometrically thin nitrile cloud pervades Titan's lower stratosphere, spectrally peaking at 160 per centimeter, and is almost global in extent spanning latitudes 85 N to 600 S, The inference of nitrile ices are consistent with the highly restricted altitude ranges over which these features are observed, and appear to be dominated by a mixture of HCN and HC3N, The narrow range in altitude over which the nitrile ices extend is unlike the haystack, whose vertical distribution is significantly broader, spanning roughly 70 kilometers in altitude in Titan's lower stratosphere, The nitrile clouds that CIRS observes are located in a dynamically stable region of Titan's atmosphere, whereas CH4 clouds, which ordinarily form in the troposphere, form in a more dynamically unstable region, where convective cloud systems tend to occur. In the unusual situation where Titan's tropopause cools significantly from the HASI 70.5K temperature minimum, CH4 should condense in Titan's lower stratosphere, just like the aforementioned nitrile clouds, although in significantly larger abundances. We will present the spectral and vertical distribution of Titan's stratospheric particulates during northern winter on Titan. The drastically changing abundance of the haystack over a small latitude range will be highlighted, specifically comparing the IRIS and CIRS epochs, Finally, we will discuss the situation in which CH4 condenses in Titan's lower stratosphere, forming an unexpected quasi steady-state stratospheric Ice cloud.
Nandi, Gouranga; Nandi, Amit Kumar; Khan, Najim Sarif; Pal, Souvik; Dey, Sibasish
2018-07-15
Development of tamarind seed gum (TSG)-hydrolyzed polymethacrylamide-g-gellan (h-Pmaa-g-GG) composite beads for extended release of diclofenac sodium using 3 2 full factorial design is the main purpose of this study. The ratio of h-Pmaa-g-GG and TSG and concentration of cross-linker CaCl 2 were taken as independent factors with three different levels of each. Effects of polymer ratio and CaCl 2 on drug entrapment efficiency (DEE), drug release, bead size and swelling were investigated. Responses such as DEE and different drug release parameters were statistically analyzed by 3 2 full factorial design using Design-Expert software and finally the formulation factors were optimized to obtain USP-reference release profile. Drug release rate was found to decrease with decrease in the ratio of h-Pmaa-g-GG:TSG and increase in the concentration of Ca 2+ ions in cross-linking medium. The optimized formulation showed DEE of 93.25% and an extended drug release profile over a period of 10h with f 2 =80.13. Kinetic modeling unveiled case-I-Fickian diffusion based drug release mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Simmons, W.R.; Koch, L.J.
1962-04-17
A heat exchanger comprising a tank for hot liquid and a plurality of concentric, double tubes for cool liquid extending vertically through the tank is described. These tubes are bonded throughout most of their length but have an unbonded portion at both ends. The inner tubes extend between headers located above and below the tanmk and the outer tubes are welded into tube sheets forming the top and bottom of the tank at locations in the unbonded portions of the tubes. (AEC)
A Dwarf Galaxy Star Bar and Dusty Wing
2012-01-10
In combined data from ESA Herschel and NASA Spitzer telescopes, irregular distribution of dust in the Small Magellanic Cloud becomes clear. A stream of dust extends to left, known as the galaxy wing, and a bar of star formation appears to right.
NASA Astrophysics Data System (ADS)
Kalesse, H.; Myagkov, A.; Seifert, P.; Buehl, J.
2015-12-01
Cloud radar Doppler spectra offer much information about cloud processes. By analyzing millimeter radar Doppler spectra from cloud-top to -base in mixed-phase clouds in which super-cooled liquid-layers are present we try to tell the microphysical evolution story of particles that are present by disentangling the contributions of the solid and liquid particles to the total radar returns. Instead of considering vertical profiles, dynamical effects are taken into account by following the particle population evolution along slanted paths which are caused by horizontal advection of the cloud. The goal is to identify regions in which different microphysical processes such as new particle formation (nucleation), water vapor deposition, aggregation, riming, or sublimation occurr. Cloud radar measurements are supplemented by Doppler lidar and Raman lidar observations as well as observations with MWR, wind profiler, and radio sondes. The presence of super-cooled liquid layers is identified by positive liquid water paths in MWR measurements, the vertical location of liquid layers (in non-raining systems and below lidar extinction) is derived from regions of high-backscatter and low depolarization in Raman lidar observations. In collocated cloud radar measurements, we try to identify cloud phase in the cloud radar Doppler spectrum via location of the Doppler peak(s), the existence of multi-modalities or the spectral skewness. Additionally, within the super-cooled liquid layers, the radar-identified liquid droplets are used as air motion tracer to correct the radar Doppler spectrum for vertical air motion w. These radar-derived estimates of w are validated by independent estimates of w from collocated Doppler lidar measurements. A 35 GHz vertically pointing cloud Doppler radar (METEK MIRA-35) in linear depolarization (LDR) mode is used. Data is from the deployment of the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. There, another MIRA-35 was operated in simultaneous transmission and simultaneous reception (STSR) mode for obtaining measurements of differential reflectivity (ZDR) and correlation coefficient ρhv.
Hildebrand, Viet; Laschewsky, André; Zehm, Daniel
2014-01-01
A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious.
Occurence and prediction of sigma phase in fuel cladding alloys for breeder reactors. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anantatmula, R.P.
1982-01-01
In sodium-cooled fast reactor systems, fuel cladding materials will be exposed for several thousand hours to liquid sodium. Satisfactory performance of the materials depends in part on the sodium compatibility and phase stability of the materials. This paper mainly deals with the phase stability aspect, with particular emphasis on sigma phase formation of the cladding materials upon extended exposures to liquid sodium. A new method of predicting sigma phase formation is proposed for austenitic stainless steels and predictions are compared with the experimental results on fuel cladding materials. Excellent agreement is obtained between theory and experiment. The new method ismore » different from the empirical methods suggested for superalloys and does not suffer from the same drawbacks. The present method uses the Fe-Cr-Ni ternary phase diagram for predicting the sigma-forming tendencies and exhibits a wide range of applicability to austenitic stainless steels and heat-resistant Fe-Cr-Ni alloys.« less
He, Jianjiang; Wang, Ning; Cui, Zili; Du, Huiping; Fu, Lin; Huang, Changshui; Yang, Ze; Shen, Xiangyan; Yi, Yuanping; Tu, Zeyi; Li, Yuliang
2017-10-27
Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g -1 for lithium ion batteries and 650 mAh g -1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.
Pereira, Alban; Cao, Zhengyu; Murray, Thomas F.; Gerwick, William H.
2009-01-01
Summary Hoiamide A, a novel bioactive cyclic depsipeptide, was isolated from an environmental assemblage of the marine cyanobacteria Lyngbya majuscula and Phormidium gracile collected in Papua New Guinea. This stereochemically complex metabolite possesses a highly unusual structure which likely derives from a mixed peptide-polyketide biogenetic origin, and includes a peptidic section featuring an acetate extended and S-adenosyl methionine modified isoleucine moiety, a triheterocyclic fragment bearing two a-methylated thiazolines and one thiazole, as well as a highly oxygenated and methylated C15-polyketide substructure. Pure hoiamide A potently inhibited [3H]batrachotoxin binding to voltage-gated sodium channels (IC50 = 92.8 nM) and activated sodium influx (EC50 = 1.73 μM) in mouse neocortical neurons, as well as exhibited modest cytotoxicity to cancer cells. Further investigation revealed that hoiamide A is a partial agonist of site 2 on the voltage gated sodium channel. PMID:19716479
NASA Astrophysics Data System (ADS)
Powell, Ronald; Wei, Hanying; Cowee, Misa; Russell, Christopher; Leisner, Jared; Dougherty, Michele
2014-05-01
The southern plume of Enceladus releases a significant amount of neutrals, ions and dust into the inner magnetosphere of Saturn, thus it plays a critical role in the dynamics of plasma transport. The moon is also considered to be the ultimate source for the dusty E-ring and the extended neutral cloud from 3.5 to 6.5 Saturn radii. The mass loading rate from the plume can not only be directly measured from plasma instruments, but can also be obtained from the magnetic signatures produced by the plume and the properties of ion-cyclotron waves (ICW) generated by pickup ions from the plume. The ICWs grow from the free energy of the highly anisotropic distribution of the pickup ions, and their powers are proportional to the density and energy of the pickup ions. At Enceladus, ICWs are detected by Cassini not only near the moon but throughout the extended neutral cloud in all local times. However, the wave power is largely enhanced near the moon's longitude rather than far away from it. This indicates that on top of the relatively azimuthally symmetric mass-loading source of the neutral cloud, there is a much denser cloud of neutrals centered on the moon and rotating with it. The latter source is the instantaneous mass loading from Enceladus' plume, which leads to asymmetry and dynamics in the magnetosphere. From hybrid simulations, we study the ICW generation and understand the relationship between wave power and pickup ion densities. From observations, we obtain the spatial profiles of the ICW power near and far from the moon. Through comparison with waves at longitudes far away from the moon, we investigate how significant is the plume's mass-loading with respect to the neutral cloud mass-loading. We also compare the waves along several groups of identical trajectories and find that the temporal variability of the plume is within a factor of two.
NASA Astrophysics Data System (ADS)
Russell, C. T.; Dougherty, Michele K.; Cowee, Misa M.; Wei, Hanying; Leisner, Jared; Powell, Ronald
The southern plume of Enceladus releases a significant amount of neutrals, ions and dust into the inner magnetosphere of Saturn, thus it plays a critical role in the dynamics of plasma transport. The moon is also considered to be the ultimate source for the dusty E-ring and the extended neutral cloud from 3.5 to 6.5 Saturn radii. The mass loading rate from the plume can not only be directly measured from plasma instruments, but can also be obtained from the magnetic signatures produced by the plume and the properties of ion-cyclotron waves (ICW) generated by pickup ions from the plume. The ICWs grow from the free energy of the highly anisotropic distribution of the pickup ions, and their powers are proportional to the density and energy of the pickup ions. At Enceladus, ICWs are detected by Cassini not only near the moon but throughout the extended neutral cloud in all local times. However, the wave power is largely enhanced near the moon’s longitude rather than far away from it. This indicates that on top of the relatively azimuthally symmetric mass-loading source of the neutral cloud, there is a much denser cloud of neutrals centered on the moon and rotating with it. The latter source is the instantaneous mass loading from Enceladus’ plume, which leads to asymmetry and dynamics in the magnetosphere. From hybrid simulations, we study the ICW generation and understand the relationship between wave power and pickup ion densities. From observations, we obtain the spatial profiles of the ICW power near and far from the moon. Through comparison with waves at longitudes far away from the moon, we investigate how significant is the plume’s mass-loading with respect to the neutral cloud mass-loading. We also compare the waves along several groups of identical trajectories and find that the temporal variability of the plume is within a factor of two.
FY 2017-Progress Report on the Design and Construction of the Sodium Loop SMT-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Momozaki, Y.
This report provides an update on the design of a forced-convection sodium loop to be used for the evaluation of sodium compatibility of advanced Alloy 709 with emphasis on long term exposures of tensile, creep, fatigue, creep fatigue, and fracture toughness ASTM-size specimens in support of ASME Code qualification and NRC licensing. The report is a deliverable (Level 4) in FY17 (M4AT-17AN1602094), under the Work Package AT-17AN160209, “Sodium Compatibility” performed by Argonne National Laboratory (ANL), as part of the Advanced Materials Program for the Advanced Reactor Technology. This work package enables the development of advanced structural materials by providing corrosion,more » microstructure, and mechanical property data from the standpoint of sodium compatibility of advanced structural alloys. The first sodium loop (SMT-1) with a single tank was constructed in 2011 at ANL and has been in operation for exposure of subsize sheet specimens of advanced alloys at a single temperature. The second sodium loop with dual tanks (SMT-2) was constructed in 2013 and has been in operation for the exposure of subsize sheet specimens of advanced alloys at two different temperatures. The current loop (SMT-3) has been designed to incorporate sufficient chamber capacity to expose a large number of ASTM-size specimens to evaluate the sodium effects on tensile, creep, fatigue, creep-fatigue, and fracture toughness properties, in support of ASME Code Qualification and USNRC Licensing. The design of individual components for the third sodium loop SMT-3 is almost complete. The design also has been sent to an outside vendor for piping analysis to be in compliance with ASME Code. A purchase order has been placed with an outside vendor for the fabrication of major components such as the specimen exposure tanks. However, we have contracted with another vendor to establish the piping design in compliance with ASME design codes. The piping design was completed in FY2017 and the information is being transmitted to the tank fabricator. The SMT-3 loop will be located in Building 206 adjacent to the currently operating SMT-2 loop. In addition, we have demolished the aged power supply system in Building 206 and installed a new transformer, wiring, and power panels for the new loop. Procurement of some of the long lead items such as valves, EM pumps, EM flowmeters, etc. is in progress and will continue in FY 2018. The construction of components such as cold trap, economizers, piping arrangement etc. will be performed in the central shops at ANL. About 150 liters of sodium for the loop will be procured in early FY2018. The loop system is designed to circulate sodium through the sample tanks and the associated loop without an operator for an extended period of time. With the three sodium loops (with single-tank, dual-tank and four–tanks), materials can be tested at different sodium temperatures, and large tensile, creep, fatigue, creep-fatigue, and fracture toughness specimens can be exposed to sodium for extended periods of time and generate data on mechanical properties in support of ASME Code Qualification and USNRC Licensing of advanced Alloy 709 for use as a structural material in SFRs.« less
The cloud radiation impact from optics simulation and airborne observation
NASA Astrophysics Data System (ADS)
Melnikova, Irina; Kuznetsov, Anatoly; Gatebe, Charles
2017-02-01
The analytical approach of inverse asymptotic formulas of the radiative transfer theory is used for solving inverse problems of cloud optics. The method has advantages because it does not impose strict constraints, but it is tied to the desired solution. Observations are accomplished in extended stratus cloudiness, above a homogeneous ocean surface. Data from NASA`s Cloud Absorption Radiometer (CAR) during two airborne experiments (SAFARI-2000 and ARCTAS-2008) were analyzed. The analytical method of inverse asymptotic formulas was used to retrieve cloud optical parameters (optical thickness, single scattering albedo and asymmetry parameter of the phase function) and ground albedo in all 8 spectral channels independently. The method is free from a priori restrictions and there is no links to parameters, and it has been applied to data set of different origin and geometry of observations. Results obtained from different airborne, satellite and ground radiative experiments appeared consistence and showed common features of values of cloud parameters and its spectral dependence (Vasiluev, Melnikova, 2004; Gatebe et al., 2014). Optical parameters, retrieved here, are used for calculation of radiative divergence, reflected and transmitted irradiance and heating rates in cloudy atmosphere, that agree with previous observational data.
Design Patterns to Achieve 300x Speedup for Oceanographic Analytics in the Cloud
NASA Astrophysics Data System (ADS)
Jacob, J. C.; Greguska, F. R., III; Huang, T.; Quach, N.; Wilson, B. D.
2017-12-01
We describe how we achieve super-linear speedup over standard approaches for oceanographic analytics on a cluster computer and the Amazon Web Services (AWS) cloud. NEXUS is an open source platform for big data analytics in the cloud that enables this performance through a combination of horizontally scalable data parallelism with Apache Spark and rapid data search, subset, and retrieval with tiled array storage in cloud-aware NoSQL databases like Solr and Cassandra. NEXUS is the engine behind several public portals at NASA and OceanWorks is a newly funded project for the ocean community that will mature and extend this capability for improved data discovery, subset, quality screening, analysis, matchup of satellite and in situ measurements, and visualization. We review the Python language API for Spark and how to use it to quickly convert existing programs to use Spark to run with cloud-scale parallelism, and discuss strategies to improve performance. We explain how partitioning the data over space, time, or both leads to algorithmic design patterns for Spark analytics that can be applied to many different algorithms. We use NEXUS analytics as examples, including area-averaged time series, time averaged map, and correlation map.
ALMA CO(3-2) Observations of Star-forming Filaments in a Gas-poor Dwarf Spheroidal Galaxy
NASA Astrophysics Data System (ADS)
Consiglio, S. Michelle; Turner, Jean L.; Beck, Sara; Meier, David S.; Silich, Sergiy; Zhao, Jun-Hui
2017-11-01
We report ALMA observations of 12CO(3-2) and 13CO(3-2) in the gas-poor dwarf galaxy NGC 5253. These 0.″3(5.5 pc) resolution images reveal small, dense molecular gas clouds that are located in kinematically distinct extended filaments. Some of the filaments appear to be falling into the galaxy and may be fueling its current star formation. The most intense CO(3-2) emission comes from the central ˜100 pc region centered on the luminous radio-infrared H II region known as the supernebula. The CO(3-2) clumps within the starburst region are anti-correlated with Hα on ˜5 pc scales, but are well-correlated with radio free-free emission. Cloud D1, which enshrouds the supernebula, has a high 12CO/13CO ratio, as does another cloud within the central 100 pc starburst region, possibly because the clouds are hot. CO(3-2) emission alone does not allow determination of cloud masses as molecular gas temperature and column density are degenerate at the observed brightness, unless combined with other lines such as 13CO.
Overview of the DACCIWA ground-based field campaign in southern West Africa
NASA Astrophysics Data System (ADS)
Lohou, Fabienne; Kalthoff, Norbert; Brooks, Barbara; Jegede, Gbenga; Adler, Bianca; Ajao, Adewale; Ayoola, Muritala; Babić, Karmen; Bessardon, Geoffrey; Delon, Claire; Dione, Cheikh; Handwerker, Jan; Jambert, Corinne; Kohler, Martin; Lothon, Marie; Pedruzo-Bagazgoitia, Xabier; Smith, Victoria; Sunmonu, Lukman; Wieser, Andreas; Derrien, Solène
2017-04-01
During June and July 2016, a ground-based field campaign took place in southern West Africa within the framework of the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) project. In the investigated region, extended low-level stratus clouds form very frequently during night-time and persist long into the following day influencing the diurnal cycle of the atmospheric boundary layer and, hence, the regional climate. The motivation for the measurements was to identify the meteorological controls on the whole process chain from the formation of nocturnal stratus clouds, via the daytime transition to convective clouds and the formation of deep precipitating clouds. During the measurement period, extensive remote sensing and in-situ measurements were performed at three supersites in Kumasi (Ghana), Savè (Benin) and Ile-Ife (Nigeria). The gathered observations included the energy-balance components at the Earth's surface, the mean and turbulent conditions in the nocturnal and daytime ABL as well as the de- and entrainment processes between the ABL and the free troposphere. The meteorological measurements were supplemented by aerosol and air-chemistry observations. We will give an overview of the conducted measurements including instrument availability and strategy during intensive observation periods.
NASA Astrophysics Data System (ADS)
Subramanian, Smitha; Rubele, Stefano; Sun, Ning-Chen; Girardi, Léo; de Grijs, Richard; van Loon, Jacco Th.; Cioni, Maria-Rosa L.; Piatti, Andrés E.; Bekki, Kenji; Emerson, Jim; Ivanov, Valentin D.; Kerber, Leandro; Marconi, Marcella; Ripepi, Vincenzo; Tatton, Benjamin L.
2017-05-01
We study the luminosity function of intermediate-age red clump stars using deep, near-infrared photometric data covering ˜20 deg2 located throughout the central part of the Small Magellanic Cloud (SMC), comprising the main body and the galaxy's eastern wing, based on observations obtained with the VISTA Survey of the Magellanic Clouds (VMC). We identified regions that show a foreground population (˜11.8 ± 2.0 kpc in front of the main body) in the form of a distance bimodality in the red clump distribution. The most likely explanation for the origin of this feature is tidal stripping from the SMC rather than the extended stellar haloes of the Magellanic Clouds and/or tidally stripped stars from the Large Magellanic Cloud. The homogeneous and continuous VMC data trace this feature in the direction of the Magellanic Bridge and, particularly, identify (for the first time) the inner region (˜2-2.5 kpc from the centre) from where the signatures of interactions start becoming evident. This result provides observational evidence of the formation of the Magellanic Bridge from tidally stripped material from the SMC.
Soft X-ray observations of pre-main sequence stars in the chamaeleon dark cloud
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.; Kriss, Gerard A.
1987-01-01
Einstein IPC observations of the nearby Chamaeleon I star forming cloud show 22 well-resolved soft X-ray sources in a 1x2 deg region. Twelve are associated with H-alpha emission line pre-main sequence (PMS) stars, and four with optically selected PMS stars. Several X-ray sources have two or more PMS stars in their error circles. Optical spectra were obtained at CTIO of possible stellar counterparts of the remaining X-ray sources. They reveal 5 probable new cloud members, K7-MO stars with weak or absent emission lines. These naked X-ray selected PMS stars are similar to those found in the Taurus-Auriga cloud. The spatial distributions and H-R diagrams of the X-ray and optically selected PMS stars in the cloud are very similar. Luminosity functions indicate the Chamaeleon stars are on average approximately 5 times more X-ray luminous than Pleiad dwarfs. A significant correlation between L sub x and optical magnitude suggests this trend may continue within the PMS phase of stellar evolution. The relation of increasing X-ray luminosity with decreasing stellar ages is thus extended to stellar ages as young as 1 million years.
Silva, Luís A Bastião; Costa, Carlos; Oliveira, José Luis
2013-05-01
Healthcare institutions worldwide have adopted picture archiving and communication system (PACS) for enterprise access to images, relying on Digital Imaging Communication in Medicine (DICOM) standards for data exchange. However, communication over a wider domain of independent medical institutions is not well standardized. A DICOM-compliant bridge was developed for extending and sharing DICOM services across healthcare institutions without requiring complex network setups or dedicated communication channels. A set of DICOM routers interconnected through a public cloud infrastructure was implemented to support medical image exchange among institutions. Despite the advantages of cloud computing, new challenges were encountered regarding data privacy, particularly when medical data are transmitted over different domains. To address this issue, a solution was introduced by creating a ciphered data channel between the entities sharing DICOM services. Two main DICOM services were implemented in the bridge: Storage and Query/Retrieve. The performance measures demonstrated it is quite simple to exchange information and processes between several institutions. The solution can be integrated with any currently installed PACS-DICOM infrastructure. This method works transparently with well-known cloud service providers. Cloud computing was introduced to augment enterprise PACS by providing standard medical imaging services across different institutions, offering communication privacy and enabling creation of wider PACS scenarios with suitable technical solutions.
NASA Astrophysics Data System (ADS)
Vijay Singh, Ran; Agilandeeswari, L.
2017-11-01
To handle the large amount of client’s data in open cloud lots of security issues need to be address. Client’s privacy should not be known to other group members without data owner’s valid permission. Sometime clients are fended to have accessing with open cloud servers due to some restrictions. To overcome the security issues and these restrictions related to storing, data sharing in an inter domain network and privacy checking, we propose a model in this paper which is based on an identity based cryptography in data transmission and intermediate entity which have client’s reference with identity that will take control handling of data transmission in an open cloud environment and an extended remote privacy checking technique which will work at admin side. On behalf of data owner’s authority this proposed model will give best options to have secure cryptography in data transmission and remote privacy checking either as private or public or instructed. The hardness of Computational Diffie-Hellman assumption algorithm for key exchange makes this proposed model more secure than existing models which are being used for public cloud environment.
NASA Astrophysics Data System (ADS)
Fabbiano, G.; Paggi, A.; Karovska, M.; Elvis, M.; Maksym, W. P.; Risaliti, G.; Wang, Junfeng
2018-03-01
We present a deep Chandra spectral and spatial study of the kpc-scale diffuse X-ray emission of the Compton-thick (CT) active galactic nucleus (AGN) ESO 428-G014. The entire spectrum is best fit with composite photoionization + thermal models. The diffuse emission is more extended at lower energies (<3 keV). The smaller extent of the hard continuum and Fe Kα profiles implies that the optically thicker clouds responsible for this scattering may be relatively more prevalent closer to the nucleus. These clouds must not prevent soft ionizing X-rays from the AGN escaping to larger radii, in order to have photoionized ISM at larger radii. This suggests that at smaller radii, there may be a larger population of molecular clouds to scatter the hard X-rays, as in the Milky Way. The diffuse emission is also significantly extended in the cross-cone direction, where the AGN emission would be mostly obscured by the torus in the standard AGN model. Our results suggest that the transmission of the obscuring region in the cross-cone direction is ∼10% of that in the cone direction. In the 0.3–1.5 keV band, the ratio of cross-cone to cone photons increases to ∼84%, suggesting an additional soft diffuse emission component disjoint from the AGN. This could be due to hot ISM trapped in the potential of the galaxy. The luminosity of this component, ∼5 × 1038 erg s‑1, is roughly consistent with the thermal component suggested by the spectral fits in the 170–900 pc annulus.
Warming early Mars with carbon dioxide clouds that scatter infrared radiation.
Forget, F; Pierrehumbert, R T
1997-11-14
Geomorphic evidence that Mars was warm enough to support flowing water about 3.8 billion years ago presents a continuing enigma that cannot be explained by conventional greenhouse warming mechanisms. Model calculations show that the surface of early Mars could have been warmed through a scattering variant of the greenhouse effect, resulting from the ability of the carbon dioxide ice clouds to reflect the outgoing thermal radiation back to the surface. This process could also explain how Earth avoided an early irreversible glaciation and could extend the size of the habitable zone on extrasolar planets around stars.
The impactor flux in the Pluto-Charon system
NASA Technical Reports Server (NTRS)
Weissman, Paul R.; Stern, S. Alan
1994-01-01
Current impact rates of comets on Pluto and Charon are estimated. It is shown that the dominant sources of impactors are comets from the Kuiper belt and the inner Oort cloud, each of whose perihelion distribution extends across Pluto's orbit. In contrast, long-period comets from the outer Oort cloud are a negligible source of impactors. The total predicted number of craters is not sufficient to saturate the surface areas of either Pluto of Charon over the age of the Solar System. However, heavy cratering may have occurred early in the Solar System's history during clearing of planetesimals from the outer planets' zone.
The multiple infrared source GL 437
NASA Technical Reports Server (NTRS)
Wynn-Williams, C. G.; Becklin, E. E.; Beichman, C. A.; Capps, R.; Shakeshaft, J. R.
1981-01-01
Infrared and radio continuum observations of the multiple infrared source GL 437 show that it consists of a compact H II region plus two objects which are probably early B stars undergoing rapid mass loss. The group of sources appears to be a multiple system of young stars that have recently emerged from the near side of a molecular cloud. Emission in the unidentified 3.3 micron feature is associated with, but more extended than, the emission from the compact H II region; it probably arises from hot dust grains at the interface between the H II region and the molecular cloud.
Colour computer-generated holography for point clouds utilizing the Phong illumination model.
Symeonidou, Athanasia; Blinder, David; Schelkens, Peter
2018-04-16
A technique integrating the bidirectional reflectance distribution function (BRDF) is proposed to generate realistic high-quality colour computer-generated holograms (CGHs). We build on prior work, namely a fast computer-generated holography method for point clouds that handles occlusions. We extend the method by integrating the Phong illumination model so that the properties of the objects' surfaces are taken into account to achieve natural light phenomena such as reflections and shadows. Our experiments show that rendering holograms with the proposed algorithm provides realistic looking objects without any noteworthy increase to the computational cost.
Simulation of the Upper Clouds and Hazes of Venus Using a Microphysical Cloud Model
NASA Astrophysics Data System (ADS)
McGouldrick, K.
2012-12-01
Several different microphysical and chemical models of the clouds of Venus have been developed in attempts to reproduce the in situ observations of the Venus clouds made by Pioneer Venus, Venera, and Vega descent probes (Turco et al., 1983 (Icarus 53:18-25), James et al, 1997 (Icarus 129:147-171), Imamura and Hashimoto, 2001 (J. Atm. Sci. 58:3597-3612), and McGouldrick and Toon, 2007 (Icarus 191:1-24)). The model of McGouldrick and Toon has successfully reproduced observations within the condensational middle and lower cloud decks of Venus (between about 48 and 57 km altitude, experiencing conditions similar to Earth's troposphere) and it now being extended to also simulate the microphysics occurring in the upper cloud deck (between altitudes of about 57 km and 70 km, experiencing conditions similar to Earth's stratosphere). In the upper clouds, aerosols composed of a solution of sulfuric acid in water are generated from the reservoir of available water vapor and sulfuric acid vapor that is photochemically produced. The manner of particle creation (e.g., activation of cloud condensation nuclei, or homogeneous or heterogeneous nucleation) is still incompletely understood, and the atmospheric environment has been measured to be not inconsistent with frozen aerosol particles (either sulfuric acid monohydrate or water ice). The material phase, viscosity, and surface tension of the aerosols (which are strongly dependent up on the local temperature and water vapor concentration) can affect the coagulation efficiencies of the aerosol, leading to variations in the size distributions, and other microphysical and radiative properties. Here, I present recent work exploring the effects of nucleation rates and coalescence efficiencies on the simulated Venus upper clouds.
An Uncertainty Data Set for Passive Microwave Satellite Observations of Warm Cloud Liquid Water Path
Bennartz, Ralf; Lebsock, Matthew; Teixeira, João
2018-01-01
Abstract The first extended comprehensive data set of the retrieval uncertainties in passive microwave observations of cloud liquid water path (CLWP) for warm oceanic clouds has been created for practical use in climate applications. Four major sources of systematic errors were considered over the 9‐year record of the Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E): clear‐sky bias, cloud‐rain partition (CRP) bias, cloud‐fraction‐dependent bias, and cloud temperature bias. Errors were estimated using a unique merged AMSR‐E/Moderate resolution Imaging Spectroradiometer Level 2 data set as well as observations from the Cloud‐Aerosol Lidar with Orthogonal Polarization and the CloudSat Cloud Profiling Radar. To quantify the CRP bias more accurately, a new parameterization was developed to improve the inference of CLWP in warm rain. The cloud‐fraction‐dependent bias was found to be a combination of the CRP bias, an in‐cloud bias, and an adjacent precipitation bias. Globally, the mean net bias was 0.012 kg/m2, dominated by the CRP and in‐cloud biases, but with considerable regional and seasonal variation. Good qualitative agreement between a bias‐corrected AMSR‐E CLWP climatology and ship observations in the Northeast Pacific suggests that the bias estimates are reasonable. However, a possible underestimation of the net bias in certain conditions may be due in part to the crude method used in classifying precipitation, underscoring the need for an independent method of detecting rain in warm clouds. This study demonstrates the importance of combining visible‐infrared imager data and passive microwave CLWP observations for estimating uncertainties and improving the accuracy of these observations. PMID:29938146
Compression and ablation of the photo-irradiated molecular cloud the Orion Bar.
Goicoechea, Javier R; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo
2016-09-08
The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H 2 vibrational emission (delineating the H/H 2 transition) and the edge of the observed CO and HCO + emission. This implies that the H/H 2 and C + /C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.
A microphysical pathway analysis to investigate aerosol effects on convective clouds
NASA Astrophysics Data System (ADS)
Heikenfeld, Max; White, Bethan; Labbouz, Laurent; Stier, Philip
2017-04-01
The impact of aerosols on ice- and mixed-phase processes in convective clouds remains highly uncertain, which has strong implications for estimates of the role of aerosol-cloud interactions in the climate system. The wide range of interacting microphysical processes are still poorly understood and generally not resolved in global climate models. To understand and visualise these processes and to conduct a detailed pathway analysis, we have added diagnostic output of all individual process rates for number and mass mixing ratios to two commonly-used cloud microphysics schemes (Thompson and Morrison) in WRF. This allows us to investigate the response of individual processes to changes in aerosol conditions and the propagation of perturbations throughout the development of convective clouds. Aerosol effects on cloud microphysics could strongly depend on the representation of these interactions in the model. We use different model complexities with regard to aerosol-cloud interactions ranging from simulations with different levels of fixed cloud droplet number concentration (CDNC) as a proxy for aerosol, to prognostic CDNC with fixed modal aerosol distributions. Furthermore, we have implemented the HAM aerosol model in WRF-chem to also perform simulations with a fully interactive aerosol scheme. We employ a hierarchy of simulation types to understand the evolution of cloud microphysical perturbations in atmospheric convection. Idealised supercell simulations are chosen to present and test the analysis methods for a strongly confined and well-studied case. We then extend the analysis to large case study simulations of tropical convection over the Amazon rainforest. For both cases we apply our analyses to individually tracked convective cells. Our results show the impact of model uncertainties on the understanding of aerosol-convection interactions and have implications for improving process representation in models.
NASA Astrophysics Data System (ADS)
Cura, Rémi; Perret, Julien; Paparoditis, Nicolas
2017-05-01
In addition to more traditional geographical data such as images (rasters) and vectors, point cloud data are becoming increasingly available. Such data are appreciated for their precision and true three-Dimensional (3D) nature. However, managing point clouds can be difficult due to scaling problems and specificities of this data type. Several methods exist but are usually fairly specialised and solve only one aspect of the management problem. In this work, we propose a comprehensive and efficient point cloud management system based on a database server that works on groups of points (patches) rather than individual points. This system is specifically designed to cover the basic needs of point cloud users: fast loading, compressed storage, powerful patch and point filtering, easy data access and exporting, and integrated processing. Moreover, the proposed system fully integrates metadata (like sensor position) and can conjointly use point clouds with other geospatial data, such as images, vectors, topology and other point clouds. Point cloud (parallel) processing can be done in-base with fast prototyping capabilities. Lastly, the system is built on open source technologies; therefore it can be easily extended and customised. We test the proposed system with several billion points obtained from Lidar (aerial and terrestrial) and stereo-vision. We demonstrate loading speeds in the ˜50 million pts/h per process range, transparent-for-user and greater than 2 to 4:1 compression ratio, patch filtering in the 0.1 to 1 s range, and output in the 0.1 million pts/s per process range, along with classical processing methods, such as object detection.
Comparative exoplanetology with consistent retrieval methods
NASA Astrophysics Data System (ADS)
Barstow, Joanna Katy; Aigrain, Suzanne; Irwin, Patrick Gerard Joseph; Sing, David
2016-10-01
The number of hot Jupiters with broad wavelength spectroscopic data has finally become large enough to make comparative planetology a reasonable proposition. New results presented by Sing et al. (2016) showcase ten hot Jupiters with spectra from the Hubble Space Telescope and photometry from Spitzer, providing insights into the presence of clouds and hazes.Spectral retrieval methods allow interpretation of exoplanet spectra using simple models, with minimal prior assumptions. This is particularly useful for exotic exoplanets, for which we may not yet fully understand the physical processes responsible for their atmospheric characteristics. Consistent spectral retrieval of a range of exoplanets can allow robust comparisons of their derived atmospheric properties.I will present a retrieval analysis using the NEMESIS code (Irwin et al. 2008) of the ten hot Jupiter spectra presented by Sing et al. (2016). The only distinctive aspects of the model for each planet are the mass and radius, and the temperature range explored. All other a priori model parameters are common to all ten objects. We test a range of cloud and haze scenarios, which include: Rayleigh-dominated and grey clouds; different cloud top pressures; and both vertically extended and vertically confined clouds.All ten planets, with the exception of WASP-39b, can be well represented by models with at least some haze or cloud. Our analysis of cloud properties has uncovered trends in cloud top pressure, vertical extent and particle size with planet equilibrium temperature. Taken together, we suggest that these trends indicate condensation and sedimentation of at least two different cloud species across planets of different temperatures, with condensates forming higher up in hotter atmospheres and moving progressively further down in cooler planets.Sing, D. et al. (2016), Nature, 529, 59Irwin, P. G. J. et al. (2008), JQSRT, 109, 1136
Compression and ablation of the photo-irradiated molecular cloud the Orion Bar
NASA Astrophysics Data System (ADS)
Goicoechea, Javier R.; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo
2016-09-01
The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H2 vibrational emission (delineating the H/H2 transition) and the edge of the observed CO and HCO+ emission. This implies that the H/H2 and C+/C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.
NASA Astrophysics Data System (ADS)
Arko, S. A.; Hogenson, R.; Geiger, A.; Herrmann, J.; Buechler, B.; Hogenson, K.
2016-12-01
In the coming years there will be an unprecedented amount of SAR data available on a free and open basis to research and operational users around the globe. The Alaska Satellite Facility (ASF) DAAC hosts, through an international agreement, data from the Sentinel-1 spacecraft and will be hosting data from the upcoming NASA ISRO SAR (NISAR) mission. To more effectively manage and exploit these vast datasets, ASF DAAC has begun moving portions of the archive to the cloud and utilizing cloud services to provide higher-level processing on the data. The Hybrid Pluggable Processing Pipeline (HyP3) project is designed to support higher-level data processing in the cloud and extend the capabilities of researchers to larger scales. Built upon a set of core Amazon cloud services, the HyP3 system allows users to request data processing using a number of canned algorithms or their own algorithms once they have been uploaded to the cloud. The HyP3 system automatically accesses the ASF cloud-based archive through the DAAC RESTful application programming interface and processes the data on Amazon's elastic compute cluster (EC2). Final products are distributed through Amazon's simple storage service (S3) and are available for user download. This presentation will provide an overview of ASF DAAC's activities moving the Sentinel-1 archive into the cloud and developing the integrated HyP3 system, covering both the benefits and difficulties of working in the cloud. Additionally, we will focus on the utilization of HyP3 for higher-level processing of SAR data. Two example algorithms, for sea-ice tracking and change detection, will be discussed as well as the mechanism for integrating new algorithms into the pipeline for community use.
NASA Astrophysics Data System (ADS)
Twohy, C. H.; Anderson, B. E.; Ferrare, R. A.; Sauter, K. E.; L'Ecuyer, T. S.; van den Heever, S. C.; Heymsfield, A. J.; Ismail, S.; Diskin, G. S.
2017-08-01
Dry aerosol size distributions and scattering coefficients were measured on 10 flights in 32 clear-air regions adjacent to tropical storm anvils over the eastern Atlantic Ocean. Aerosol properties in these regions were compared with those from background air in the upper troposphere at least 40 km from clouds. Median values for aerosol scattering coefficient and particle number concentration >0.3 μm diameter were higher at the anvil edges than in background air, showing that convective clouds loft particles from the lower troposphere to the upper troposphere. These differences are statistically significant. The aerosol enhancement zones extended 10-15 km horizontally and 0.25 km vertically below anvil cloud edges but were not due to hygroscopic growth since particles were measured under dry conditions. Number concentrations of particles >0.3 μm diameter were enhanced more for the cases where Saharan dust layers were identified below the clouds with airborne lidar. Median number concentrations in this size range increased from 100 l-1 in background air to 400 l-1 adjacent to cloud edges with dust below, with larger enhancements for stronger storm systems. Integration with satellite cloud frequency data indicates that this transfer of large particles from low to high altitudes by convection has little impact on dust concentrations within the Saharan Air Layer itself. However, it can lead to substantial enhancement in large dust particles and, therefore, heterogeneous ice nuclei in the upper troposphere over the Atlantic. This may induce a cloud/aerosol feedback effect that could impact cloud properties in the region and downwind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning
We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less
Lidar Measurements of Wind and Cloud Around Venus from an Orbiting or Floating/flying Platform
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Limaye, Sanjay; Emmitt, George D.; Refaat, Tamer F.; Kavaya, Michael J.; Yu, Jirong; Petros, Mulugeta
2015-01-01
Given the presence of clouds and haze in the upper portion of the Venus atmosphere, it is reasonable to consider a Doppler wind lidar (DWL) for making remote measurements of the 3-dimensional winds within the tops of clouds and the overlying haze layer. Assuming an orbit altitude of 250 kilometers and cloud tops at 60 kilometers (within the upper cloud layer), an initial performance assessment of an orbiting DWL was made using a numerical instrument and atmospheres model developed for both Earth and Mars. It is reasonable to expect vertical profiles of the 3-dimensional wind speed with 1 kilometer vertical resolution and horizontal spacing of 25 kilometers to several 100 kilometers depending upon the desired integration times. These profiles would begin somewhere just below the tops of the highest clouds and extend into the overlying haze layer to some to-be-determined height. Getting multiple layers of cloud returns is also possible with no negative impact on velocity measurement accuracy. The knowledge and expertise for developing coherent Doppler wind lidar technologies and techniques, for Earth related mission at NASA Langley Research Center is being leveraged to develop an appropriate system suitable for wind measurement around Venus. We are considering a fiber-laser-based lidar system of high efficiency and smaller size and advancing the technology level to meet the requirements for DWL system for Venus from an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus.
Water Ice Clouds in the Martian Atmosphere: A View from MGS TES
NASA Technical Reports Server (NTRS)
Hale, A. S.; Tamppari, L. K.; Christensen, P. R.; Smith, M. D.; Bass, Deborah; Qu, Zheng; Pearl, J. C.
2005-01-01
We use the method of Tamppari et al. to map water ice clouds in the Martian atmosphere. This technique was originally developed to analyze the broadband Viking IRTM channels and we have now applied it to the TES data. To do this, the TES spectra are convolved to the IRTM bandshapes and spatial resolutions, enabling use of the same processing techniques as were used in Tamppari et al.. This retrieval technique relies on using the temperature difference recorded in the 20 micron and 11 micron IRTM bands (or IRTM convolved TES bands) to map cold water ice clouds above the warmer Martian surface. Careful removal of surface contributions to the observed radiance is therefore necessary, and we have used both older Viking-derived basemaps of the surface emissivity and albedo, and new MGS derived basemaps in order the explore any possible differences on cloud retrieval due to differences in surface contribution removal. These results will be presented in our poster. Our previous work has concentrated primarily on comparing MGS TES to Viking data; that work saw that large-scale cloud features, such as the aphelion cloud belt, are quite repeatable from year to year, though small scale behavior shows some variation. Comparison of Viking and MGS era cloud maps will be presented in our poster. In the current stage of our study, we have concentrated our efforts on close analysis of water ice cloud behavior in the northern summer of the three MGS mapping years on relatively small spatial scales, and present our results below. Additional information is included in the original extended abstract.
Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning; ...
2016-10-27
We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less
The Impact of a Laki-style Eruption on Cloud Drops, Indirect Radiative Forcing and Air Quality
NASA Astrophysics Data System (ADS)
Carslaw, K.; Schmidt, A.; Mann, G.; Pringle, K. J.; Forster, P.; Wilson, M.; Thordarson, T.
2010-12-01
We assess the impact of 1783-1784 Laki eruption on changes in cloud drop number concentrations and the aerosol indirect (cloud) radiative forcing using an advanced global aerosol microphysics model. We further extend these simulations to quantify the impact of a modern-day Laki on air quality. Our results suggest that the first aerosol indirect effect is of similar magnitude as the direct forcing calculated in previous assessments of the Laki eruption, but has a different spatial pattern. We estimate that northern hemisphere mean cloud drop concentrations in low-level clouds increased by a factor 2.7 in the 3 months after the onset of the eruption, with peak changes exceeding a factor 10. The calculated northern hemisphere mean aerosol indirect effect peaks at -5.2 W/m2 in the month after the eruption and remains larger than -2 W/m2 for 6 months. From our understanding of anthropogenic aerosol effects on modern-day clouds, the calculated changes in cloud drop concentrations after Laki are likely to have caused substantial changes in pecipitation and cloud dynamics. Our results also show that a modern-day Laki-style volcanic air pollution event would be a severe health hazard, increasing excess mortality in Europe on a scale that is at least comparable with excess mortality due to seasonal flu. Investigating the potential impact of such an eruption is crucial in order to inform policy makers and society about the potential impact of such an event so that precautionary measures can be taken.
WindCam and MSPI: two cloud and aerosol instrument concepts derived from Terra/MISR heritage
NASA Astrophysics Data System (ADS)
Diner, David J.; Mischna, Michael; Chipman, Russell A.; Davis, Ab; Cairns, Brian; Davies, Roger; Kahn, Ralph A.; Muller, Jan-Peter; Torres, Omar
2008-08-01
The Multi-angle Imaging SpectroRadiometer (MISR) has been acquiring global cloud and aerosol data from polar orbit since February 2000. MISR acquires moderately high-resolution imagery at nine view angles from nadir to 70.5°, in four visible/near-infrared spectral bands. Stereoscopic parallax, time lapse among the nine views, and the variation of radiance with angle and wavelength enable retrieval of geometric cloud and aerosol plume heights, height-resolved cloud-tracked winds, and aerosol optical depth and particle property information. Two instrument concepts based upon MISR heritage are in development. The Cloud Motion Vector Camera, or WindCam, is a simplified version comprised of a lightweight, compact, wide-angle camera to acquire multiangle stereo imagery at a single visible wavelength. A constellation of three WindCam instruments in polar Earth orbit would obtain height-resolved cloud-motion winds with daily global coverage, making it a low-cost complement to a spaceborne lidar wind measurement system. The Multiangle SpectroPolarimetric Imager (MSPI) is aimed at aerosol and cloud microphysical properties, and is a candidate for the National Research Council Decadal Survey's Aerosol-Cloud-Ecosystem (ACE) mission. MSPI combines the capabilities of MISR with those of other aerosol sensors, extending the spectral coverage to the ultraviolet and shortwave infrared and incorporating high-accuracy polarimetric imaging. Based on requirements for the nonimaging Aerosol Polarimeter Sensor on NASA's Glory mission, a degree of linear polarization uncertainty of 0.5% is specified within a subset of the MSPI bands. We are developing a polarization imaging approach using photoelastic modulators (PEMs) to accomplish this objective.
Cloud masking and removal in remote sensing image time series
NASA Astrophysics Data System (ADS)
Gómez-Chova, Luis; Amorós-López, Julia; Mateo-García, Gonzalo; Muñoz-Marí, Jordi; Camps-Valls, Gustau
2017-01-01
Automatic cloud masking of Earth observation images is one of the first required steps in optical remote sensing data processing since the operational use and product generation from satellite image time series might be hampered by undetected clouds. The high temporal revisit of current and forthcoming missions and the scarcity of labeled data force us to cast cloud screening as an unsupervised change detection problem in the temporal domain. We introduce a cloud screening method based on detecting abrupt changes along the time dimension. The main assumption is that image time series follow smooth variations over land (background) and abrupt changes will be mainly due to the presence of clouds. The method estimates the background surface changes using the information in the time series. In particular, we propose linear and nonlinear least squares regression algorithms that minimize both the prediction and the estimation error simultaneously. Then, significant differences in the image of interest with respect to the estimated background are identified as clouds. The use of kernel methods allows the generalization of the algorithm to account for higher-order (nonlinear) feature relations. After the proposed cloud masking and cloud removal, cloud-free time series at high spatial resolution can be used to obtain a better monitoring of land cover dynamics and to generate more elaborated products. The method is tested in a dataset with 5-day revisit time series from SPOT-4 at high resolution and with Landsat-8 time series. Experimental results show that the proposed method yields more accurate cloud masks when confronted with state-of-the-art approaches typically used in operational settings. In addition, the algorithm has been implemented in the Google Earth Engine platform, which allows us to access the full Landsat-8 catalog and work in a parallel distributed platform to extend its applicability to a global planetary scale.
NASA Astrophysics Data System (ADS)
Nishi, N.; Hamada, A.; Hirose, H.; Hotta, S.; Suzuki, J.
2016-12-01
We have made a quantitative research of the clouds and precipitation during Baiu: the rainy season within the East Asia, using recent satellite observation datasets. As the precipitation dataset, we utilized the Global Satellite Mapping of Precipitation (GSMaP), whose primary source is passive microwave observations. As the cloud dataset, we used our original database CTOP, in which the cloud top height and optical depth are estimated only with the infrared split-window channels of the geostationary satellites. Lookup tables are made by training the infrared observations with the direct cloud observation by CloudSat and CALIPSO. This technique was originally developed only for the tropics but we extended it to the mid-latitude by estimating temperature at the cloud top instead of the height. We analyzed the properties of northward shift of the Baiu precipitation zone over the East China Sea. Abrupt northward shift in mid-June has already been reported. We showed here that the abrupt shift is limited to the western half of the East China Sea. We also analyzed the zonal difference of the precipitation amount in the East China Sea. In the central latitudinal range (30-33N), the amount is larger in the eastern part of the sea. There is no significant zonal contrast in both the activity of the low pressure and the front, while the sea surface temperature in the eastern part is slightly larger than in the western part. The zonal gradient is much smaller than that in the southern region near the Kuroshio Current, but may possibly affect the zonal contrast of the precipitation. By using CTOP cloud top data, we also calculated the occurrence ratio of the cloud with various thresholds of the top height. The ratio of clouds with the tops higher than 12 km in the East China Sea is clearly lower than those over the Continental area and the main Japanese islands.
Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity
NASA Astrophysics Data System (ADS)
Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.
2017-12-01
The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for obtaining inter-sensor climate data record continuity.
Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; ...
2009-07-23
Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less
Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; ...
2015-01-09
A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar tomore » observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO 2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.« less
Warm neutral halos around molecular clouds. VI - Physical and chemical modeling
NASA Technical Reports Server (NTRS)
Andersson, B.-G.; Wannier, P. G.
1993-01-01
A combined physical and chemical modeling of the halos around molecular clouds is presented, with special emphasis on the H-to-H2 transition. On the basis of H I 21 cm observations, it is shown that the halos are extended. A physical model is employed in conjunction with a chemistry code to provide a self-consistent description of the gas. The radiative transfer code provides a check with H I, CO, and OH observations. It is concluded that the warm neutral halos are not gravitationally bound to the underlying molecular clouds and are isobaric. It is inferred from the observed extent of the H I envelopes and the large observed abundance of OH in them that the generally accepted rate for H2 information on grains is too large by a factor of two to three.
NASA Technical Reports Server (NTRS)
Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Shinozuka, Y.; Schmid, B.
2015-01-01
Absorbing smoke or mineral dust aerosols above clouds (AAC) are a frequent occurrence in certain regions and seasons. Operational aerosol retrievals from sensors like MODIS omit AAC because they are designed to work only over cloud-free scenes. However, AAC can in principle be quantified by these sensors in some situations (e.g. Jethva et al., 2013; Meyer et al., 2013). We present a summary of some analyses of the potential of MODIS-like instruments for this purpose, along with two case studies using airborne observations from the Ames Airborne Tracking Sunphotometer (AATS; http://geo.arc.nasa.gov/sgg/AATS-website/) as a validation data source for a preliminary AAC algorithm applied to MODIS measurements. AAC retrievals will eventually be added to the MODIS Deep Blue (Hsu et al., 2013) processing chain.
Ocean-atmosphere science from the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission
NASA Astrophysics Data System (ADS)
Werdell, J.
2016-12-01
The new NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is a strategic climate continuity activity that will not only extend key heritage ocean color, cloud, and aerosol data records, but also enable new insight into oceanographic and atmospheric responses to Earth's changing climate. The primary PACE instrument will be a spectroradiometer that spans the ultraviolet to shortwave infrared region at 5 nm resolution with a ground sample distance of 1 km at nadir. This payload will likely be complemented by a multi-angle polarimeter with a similar spectral range. Scheduled for launch in 2022, this PACE instrument pair will revolutionize studies of global biogeochemistry and carbon cycles in the ocean-atmosphere system. Here, I present a PACE mission overview, with focus on instrument characteristics, core and advanced data products, and overarching science objectives.
NASA Astrophysics Data System (ADS)
Miyakawa, Tomoki
2017-04-01
The global cloud/cloud-system resolving model NICAM and its new fully-coupled version NICOCO is run on one of the worlds top-tier supercomputers, the K computer. NICOCO couples the full-3D ocean component COCO of the general circulation model MIROC using a general-purpose coupler Jcup. We carried out multiple MJO simulations using NICAM and the new ocean-coupled version NICOCO to examine their extended-range MJO prediction skills and the impact of ocean coupling. NICAM performs excellently in terms of MJO prediction, maintaining a valid skill up to 27 days after the model is initialized (Miyakawa et al 2014). As is the case in most global models, ocean coupling frees the model from being anchored by the observed SST and allows the model climate to drift away further from reality compared to the atmospheric version of the model. Thus, it is important to evaluate the model bias, and in an initial value problem such as the seasonal extended-range prediction, it is essential to be able to distinguish the actual signal from the early transition of the model from the observed state to its own climatology. Since NICAM is a highly resource-demanding model, evaluation and tuning of the model climatology (order of years) is challenging. Here we focus on the initial 100 days to estimate the early drift of the model, and subsequently evaluate MJO prediction skills of NICOCO. Results show that in the initial 100 days, NICOCO forms a La-Nina like SST bias compared to observation, with a warmer Maritime Continent warm pool and a cooler equatorial central Pacific. The enhanced convection over the Maritime Continent associated with this bias project on to the real-time multi-variate MJO indices (RMM, Wheeler and Hendon 2004), and contaminates the MJO skill score. However, the bias does not appear to demolish the MJO signal severely. The model maintains a valid MJO prediction skill up to nearly 4 weeks when evaluated after linearly removing the early drift component estimated from the 54 simulations. Furthermore, NICOCO outperforms NICAM by far if we focus on events associated with large oceanic signals.
Cassini limb images of hazes in Saturn’s northern hemisphere
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, Agustin M.; Garcia, Daniel; del Rio-Gaztelurrutia, Teresa; Garcia-Muñoz, Antonio; Perez-Hoyos, Santiago; Hueso, Ricardo
2017-10-01
We have used high resolution Cassini ISS images of the limb of Saturn to study the vertical distribution, altitude location, thickness and optical properties of the haze layers in the northern hemisphere (1°S to 82°N) in 2013 and 2015. The images cover an ample spectral range from the ultraviolet (UV1 filter, 264 nm) to the near infrared (CB3 filter, 938 nm) including methane absorption bands at 619 nm, 724 nm and 890 nm. Spatial resolution ranges from 1.6 to 13 km/pixel depending on wavelength and latitude. Three latitude bands were selected for the analysis according to the background zonal wind profile measured at cloud level and known dynamical activity: (a) North Polar Region encompassing the Hexagon latitude (74°N) (b) Mid-latitudes (45°N-52°N), and (3) Equator (1°N-3°S). The best defined haze structures and most extended haze layers were found at the latitude of the Hexagon. Up to 6-8 haze layers extending up to 400 km in altitude above clouds (in the pressure range from about 0.7 bar to 0.1 mbar) were detected. The vertical thickness of the layers is in the range 3-15 km compared to the scale height which is about 40 km. The spectral reflectivity is relatively uniform between the layers in the blue and red continuum wavelengths coming from the backward light scattering from the haze particles, while the brightness in the methane bands (relative to red continuum) and in the ultraviolet shows the effects of methane absorption and Rayleigh scattering by the gas, respectively. At mid-latitudes 3-4 haze layers are found spanning up to altitudes 200 km above the clouds. At the Equator 5-6 layers are found extending up to altitudes 250 km above the clouds (up to 2 mbar in pressure level) in a region of great dynamical interest because of the particular structure of the zonal winds and their known oscillations. We comment on the possible nature of the haze layers on the basis of condensing species and photochemistry.
Contaminant transport in wetland flows with bulk degradation and bed absorption
NASA Astrophysics Data System (ADS)
Wang, Ping; Chen, G. Q.
2017-09-01
Ecological degradation and absorption are ubiquitous and exert considerable influence on the contaminant transport in natural and constructed wetland flows. It creates an increased demand on models to accurately characterize the spatial concentration distribution of the transport process. This work extends a method of spatial concentration moments by considering the non-uniform longitudinal solute displacements along the vertical direction, and analytically determines the spatial concentration distribution in the very initial stage since source release with effects of bulk degradation and bed absorption. The present method is demonstrated to bear a more accurate prediction especially in the initial stage through convergence analysis of Hermite polynomials. Results reveal that contaminant cloud shows to be more contracted and reformed by bed absorption with increasing damping factor of wetland flows. Tremendous vertical concentration variation especially in the downstream of the contaminant cloud remains great even at asymptotic large times. Spatial concentration evolution by the extended method other than the mean by previous studies is potential for various implements associated with contaminant transport with strict environmental standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, Daniel; Chemke, Rei; DeMott, Paul J.
The formation of highly supercooled rain was documented by aircraft observations in clouds at a wide range of conditions near the coastal region of the western United States. Several case studies are described in detail using combined cloud and aerosol measurements to document both the highly super-cooled condition and the relatively pristine aerosol conditions under which it forms. The case studies include: (1) Marine convective clouds over the coastal waters of northern California, as measured by cloud physics probes flown on a Gulfstream-1 aircraft during the CALWATER campaign in February and early March 2011. The clouds had extensive drizzle inmore » their tops, which extended downward to the 0°C isotherm as supercooled rain. Ice multiplication was observed only in mature parts of the clouds where cloud water was already depleted. (2) Orographically triggered convective clouds in marine air mass over the foothills of the Sierra Nevada to the east of Sacramento, as measured in CALWATER. Supercooled rain was observed down to -21°C. No indications for ice multiplication were evident. (3) Orographic layer clouds over Yosemite National Park, also measured in CALWATER. The clouds had extensive drizzle at -21°C, which intensified with little freezing lower in the cloud, and (4) Supercooled drizzle drops in layer clouds near Juneau, Alaska, as measured by the Wyoming King Air as part of a FAA project to study aircraft icing in this region. Low concentrations of CCN was a common observation in all these clouds, allowing for the formation of clouds with small concentration of large drops that coalesced into supercooled drizzle and raindrops. Another common observation was the absence of ice nuclei and/or ice crystals in measurable concentrations was associated with the persistent supercooled drizzle and rain. Average ice crystal concentrations were 0.007 l-1 at the top of convective clouds at -12°C and 0.03 l-1 in the case of layer clouds at -21°C. In combination these two conditions provide ideal conditions for the formation of highly supercooled drizzle and rain. These results help explain the anomalously high incidences of aircraft icing at cold temperatures in U.S. west coast clouds (Bernstein et al., 2004) and highlight the need to include aerosol effects when simulating aircraft icing with cloud models. These case studies can also serve as benchmarks for explicit cloud microphysics models attempting to simulate the formation of precipitation in these types of pristine conditions.« less
Zhao, Wen; Zitzow, Jeremiah D; Weaver, Yi; Ehresman, David J; Chang, Shu-Ching; Butenhoff, John L; Hagenbuch, Bruno
2017-03-01
Perfluoroalkyl sulfonates (PFSAs) such as perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) have very long serum elimination half-lives in humans, and preferentially distribute to serum and liver. The enterohepatic circulation of PFHxS and PFOS likely contributes to their extended elimination half-lives. We previously demonstrated that perfluorobutane sulfonate (PFBS), PFHxS, and PFOS are transported into hepatocytes both in a sodium-dependent and a sodium-independent manner. We identified Na+/taurocholate cotransporting polypeptide (NTCP) as the responsible sodium-dependent transporter. Furthermore, we demonstrated that the human apical sodium-dependent bile salt transporter (ASBT) contributes to the intestinal reabsorption of PFOS. However, so far no sodium-independent uptake transporters for PFSAs have been identified in human hepatocytes or enterocytes. In addition, perfluoroalkyl carboxylates (PFCAs) with 8 and 9 carbons were shown to preferentially distribute to the liver of rodents; however, no rat or human liver uptake transporters are known to transport these PFCAs. Therefore, we tested whether PFBS, PFHxS, PFOS, and PFCAs with 7-10 carbons are substrates of organic anion transporting polypeptides (OATPs). We used CHO and HEK293 cells to demonstrate that human OATP1B1, OATP1B3, and OATP2B1 can transport PFBS, PFHxS, PFOS, and the 2 PFCAs (C8 and C9). In addition, we show that rat OATP1A1, OATP1A5, OATP1B2, and OATP2B1 transport all 3 PFSAs. In conclusion, our results suggest that besides NTCP and ASBT, OATPs also are capable of contributing to the enterohepatic circulation and extended human serum elimination half-lives of the tested perfluoroalkyl acids. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Marin-Guzman, J; Mahan, D C; Whitmoyer, R
2000-06-01
Three experiments evaluated the effects of dietary Se and vitamin E on the ultrastructure of spermatozoa, ATP concentration of spermatozoa, and the effects of adding sodium selenite to semen extenders on subsequent sperm motility. The experiment was a 2 x 2 arrangement of treatments in a randomized complete block design. A total of 10 mature boars were fed from weaning to 18 mo of age diets fortified with two levels of supplemental Se (0 or .5 ppm) or vitamin E (0 or 220 IU/kg diet). The nonfortified diets contained .06 ppm Se and 4.4 IU vitamin E/kg. In Exp. 1, the spermatozoa from all boars were examined by electron microscopy. Vitamin E had no effect on structural abnormalities in the spermatozoa. When the low-Se diet was fed the acrosome or nuclei of the spermatozoa was unaffected, but the mitochondria in the tail midpiece were more oval with wider gaps between organelles. The plasma membrane connection to the tail midpiece was not tightly bound as when boars were fed Se. Immature spermatozoa with cytoplasmic droplets were more numerous when boars were fed the low-Se diet, but the occurrence of midpiece abnormalities occurred in boars fed diets with or without Se or vitamin E. Our results suggest that Se may enhance spermatozoa maturation in the epididymis and may reduce the number of sperm with cytoplasmic droplets. In Exp. 2, the concentration of ATP in the spermatozoa was evaluated in the semen of all treatment boars. When the low-Se diet was fed, ATP concentration was lower (P < .01), whereas vitamin E had no effect on ATP concentration. Experiment 3 investigated the effect of diluting boar semen with a semen extender with sodium selenite added at 0, .3, .6, or .9 ppm Se. Three ejaculates from each boar were used to evaluate these effects on sperm motility to 48 h after dilution. Sperm motility declined (P < .01) when Se was added to the extender, and this decline was exacerbated as the concentration of added Se increased (P < .01). The added Se was demonstrated to be tightly adhered to the spermatozoa. Overall, these results suggest that low Se-diets fed to boars resulted in abnormal spermatozoal mitochondria, a lower ATP concentration in the spermatozoa, and a loose apposition of the plasma membrane to the helical coil of the tail midpiece, but no effect from inadequate vitamin E was demonstrated. Adding sodium selenite to the semen extender reduced sperm cell motility.
Pressure-induced structural transformations of the Zintl phase sodium silicide
NASA Astrophysics Data System (ADS)
Cabrera, Raúl Quesada; Salamat, Ashkan; Barkalov, Oleg I.; Leynaud, Olivier; Hutchins, Peter; Daisenberger, Dominik; Machon, Denis; Sella, Andrea; Lewis, Dewi W.; McMillan, Paul F.
2009-09-01
The high-pressure behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, suggesting the formation of Si-Si bonds with oxidation of the Si - species and reduction of Na + to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure.
Zhang, Liping; Ng, Chee M; List, James F; Pfister, Marc
2010-09-01
Advances in experimental medicine and technological innovation during the past century have brought tremendous progress in modern medicine and generated an ever-increasing amount of data from bench and bedside. The desire to extend scientific knowledge motivates effective data integration. Technological innovation makes this possible, which in turn accelerates the advancement in science. This mutually beneficial interaction is illustrated by the development of an expanded mechanism-based model for understanding a novel mechanism, sodium-glucose cotransporter-2 SGLT2 inhibition for potential treatment of type 2 diabetes mellitus.
Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.
Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho
2017-08-16
Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.
Io's Sodium Cloud (Clear Filter)
NASA Technical Reports Server (NTRS)
1997-01-01
This image of Jupiter's moon Io and its surrounding sky is shown in false color. It was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft, using a clear filter whose wavelength range was approximately 400 to 1100 nanometers. This picture differs in two main ways from the green-yellow filter image of the same scene which was released yesterday.
First, the sky around Io is brighter, partly because the wider wavelength range of the clear filter lets in more scattered light from Io's illuminated crescent and from Prometheus' sunlit plume. Nonetheless, the overall sky brightness in this frame is comparable to that seen through the green-yellow filter, indicating that even here much of the diffuse sky emission is coming from the wavelength range of the green-yellow filter (i.e., from Io's Sodium Cloud).The second major difference is that a quite large roundish spot has appeared in Io's southern hemisphere. This spot -- which has been colored red -- corresponds to thermal emission from the volcano Pele. The green-yellow filter image bears a much smaller trace of this emission because the clear filter is far more sensitive to those relatively long wavelengths where thermal emission is strongest.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Observational and modeling studies of chemical species concentrations as a function of raindrop size
NASA Astrophysics Data System (ADS)
Wai, K. M.; Tam, C. W. F.; Tanner, P. A.
The Guttalgor method has been used to determine the chemical species concentrations in size-selected raindrops in nine rain events at Hong Kong from 1999 to 2001. The curve (concentration against raindrop radius) patterns for all the species are similar but depend on the starting time of sampling within a rain event. In these plots, the maximum concentration occurs at the same range of droplet radius, irrespective of the species, and this indicates the importance of coalescence and breakup processes. The maximum is located at a smaller droplet radius than was found in previous studies in Germany. All results show almost constant concentrations with size for large raindrops, and these indicate the in-cloud contributions. The pH of raindrops of similar size is linearly correlated with a function of the sulfate, nitrate, acetate, formate, calcium and ammonium ion species concentrations. Within a single raindrop, chloride depletion is not significant, and sulfate, ammonium and hydrogen ions are found in ratios compatible with the precursor solid-phase mixture of ammonium sulfate and ammonium bisulphate. When simulated by a below-cloud model, good agreement between the modeled and measured sodium and sulfate concentrations has been found. Below-cloud sulfur dioxide scavenging contributes at most 60% of the sulfate concentration in a single raindrop.
Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements
NASA Astrophysics Data System (ADS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron
2015-10-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.
Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements
NASA Astrophysics Data System (ADS)
Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael
2015-04-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.
Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron
2015-01-01
Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.
The equilibrium of atmospheric sodium. [in atmospheres of Earth, Io, Mercury and Moon
NASA Technical Reports Server (NTRS)
Hunten, Donald M.
1992-01-01
We now have four examples of planetary objects with detectable sodium (and potassium) in their atmospheres: Earth, Io, Mercury and the moon. After a summary of the observational data, this survey discusses proposed sources and sinks. It appears that Io's surface material is rich in frozen SO2, but with around 1 percent of some sodium compound. The Io plasma torus contains ions of S, O and Na, also with at least one molecular ion containing Na. In turn, impact by these ions probably sustains the torus, as well as an extended neutral corona. A primary source for the Earth, Mercury and the moon is meteoroidal bombardment; at Mercury and perhaps the moon it may be supplemented by degassing of atoms from the regolith. Photoionization is important everywhere, although hot electrons are dominant at Io.
View of cold water eddies in Falkland Current off southern Argentina
1973-12-14
SL4-137-3608 (14 Dec. 1973) --- A view of cold water eddies in the Falkland Current off the South Atlantic coast of southern Argentina as seen from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crewmen using a hand-held 70mm Hasselblad camera. This land area (left corner) extends south along the coast from Puerto Deseado (center left border) for about 50 miles. Within the ocean, several light blue areas are visible and represent the occurrence of plankton with the Falkland Current. Over the ocean, the cold water eddies are identified by the circular cloud-free areas within the cloud street pattern and bordered by cumulus cloud buildup (white). The cloud streets indicate the wind is from the southwest and do not form over eddies because energy form the atmosphere is absorbed by the cold ocean water. On the downwind side of the eddies, cumulus clouds tend to form as the cold moist air flows over the warmer water. Similar cloud and eddy features have been observed by the Skylab 4 crewmen in the Yucatan Current off Yucatan Peninsula and in some parts of the South Pacific. Studies are underway by Dr. George Maul, NOAA, and Dr. Robert Stevenson, ONR, to determine the significance of the cold water eddies to ocean dynamics. Photo credit: NASA
Cuenca-Alba, Jesús; Del Cano, Laura; Gómez Blanco, Josué; de la Rosa Trevín, José Miguel; Conesa Mingo, Pablo; Marabini, Roberto; S Sorzano, Carlos Oscar; Carazo, Jose María
2017-10-01
New instrumentation for cryo electron microscopy (cryoEM) has significantly increased data collection rate as well as data quality, creating bottlenecks at the image processing level. Current image processing model of moving the acquired images from the data source (electron microscope) to desktops or local clusters for processing is encountering many practical limitations. However, computing may also take place in distributed and decentralized environments. In this way, cloud is a new form of accessing computing and storage resources on demand. Here, we evaluate on how this new computational paradigm can be effectively used by extending our current integrative framework for image processing, creating ScipionCloud. This new development has resulted in a full installation of Scipion both in public and private clouds, accessible as public "images", with all the required preinstalled cryoEM software, just requiring a Web browser to access all Graphical User Interfaces. We have profiled the performance of different configurations on Amazon Web Services and the European Federated Cloud, always on architectures incorporating GPU's, and compared them with a local facility. We have also analyzed the economical convenience of different scenarios, so cryoEM scientists have a clearer picture of the setup that is best suited for their needs and budgets. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Evolution of the Far-Infrared Cloud at Titan's South Pole
NASA Technical Reports Server (NTRS)
Jennings, Donald E.; Achterberg, R. K.; Cottini, V.; Anderson, C. M.; Flasar, F. M.; Nixon, C. A.; Bjoraker, G. L.; Kunde, V. G.; Carlson, R. C.; Guandique, E.;
2015-01-01
A condensate cloud on Titan identified by its 220 cm (sup -1) far-infrared signature continues to undergo seasonal changes at both the north and south poles. In the north the cloud, which extends from 55 North to the pole, has been gradually decreasing in emission intensity since the beginning of the Cassini mission with a half-life of 3.8 years. The cloud in the south did not appear until 2012 but its intensity has increased rapidly, doubling every year. The shape of the cloud at the South Pole is very different from that in the north. Mapping in December 2013 showed that the condensate emission was confined to a ring with a maximum at 80 South. The ring was centered 4 degrees from Titan's pole. The pattern of emission from stratospheric trace gases like nitriles and complex hydrocarbons (mapped in January 2014) was also offset by 4 degrees, but had a central peak at the pole and a secondary maximum in a ring at about 70 South with a minimum at 80 South. The shape of the gas emissions distribution can be explained by abundances that are high at the atmospheric pole and diminish toward the equator, combined with correspondingly increasing temperatures. We discuss possible causes for the condensate ring. The present rapid build up of the condensate cloud at the South Pole is likely to transition to a gradual decline during 2015-16.
The direct assimilation of cloud-affected satellite infrared radiance in the NCEP 3D-Hybrid system
NASA Astrophysics Data System (ADS)
Zhang, X.
2016-12-01
A function has been developed in NCEP 3D-Hybrid system to make use of Infrared radiances from Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat-10(MSG-10) satellite in overcast cloudy conditions where effective cloud fractions were greater than 0.9. These cloudy radiances provide new information that currently assimilated in clear-sky condition from SEVIRI MSG-10. The model state vector is locally extended at observation locations, to include cloud top pressure as cloud parameters. This parameter describing a single-layer cloud are simultaneously estimated together with temperature and humidity inside the main analysis. Assimilation experiments have been run with the new scheme in which overcast radiance from SEVIRI MSG-10 are used in addition to the available clear-sky data. Two water vapor channels ( 6.2 and 7.3μm) and window channels (8.5, 11.2, 12.3 and 13.3μm) from SEVIRI MSG-10 are assimilated in the experiments. The overcast data locations typically represent 10% or less of the total due to the application of stringent quality control. However, The extra data that are used give rise to modified increments (largest for temperature and humidity) at and above the diagnosed cloud top. Also it improves the analysis fit to independent radiosonde observations and results in some small, but statistically significant, improvements in forecast quality.
Nucleation and growth of sodium colloids in NaCl under irradiation: theory and experiment
NASA Astrophysics Data System (ADS)
Dubinko, V. I.; Turkin, A. A.; Abyzov, A. S.; Sugonyako, A. V.; Vainshtein, D. I.; den Hartog, H. W.
2005-01-01
A mechanism of radiation-induced emission of Schottky defects from extended defects proposed originally for metals has recently been applied to ionic crystals, where it is based on interactions of excitons with extended defects such as dislocations and colloids. Exciton trapping and decay at colloids may result in the emission of F centers and consequent shrinkage of the colloid. In the present paper, the radiation-induced emission of F centers is taken into account in the modeling of nucleation and growth of sodium colloids and chlorine bubbles in NaCl exposed to electron or gamma irradiation. The evolution of colloid and bubble number densities and volume fractions with increasing irradiation dose is modeled in the framework of a modified rate theory and compared with experimental data. Experimental values of the colloid volume fractions and number densities have been estimated on the basis of latent heat of melting of metallic Na obtained with combined differential scanning calorimetry experiments and atomic force microscopy investigations of metallic clusters.
Spatially Resolved Metal Gas Clouds
NASA Astrophysics Data System (ADS)
Péroux, C.; Rahmani, H.; Arrigoni Battaia, F.; Augustin, R.
2018-05-01
We now have mounting evidences that the circumgalactic medium (CGM) of galaxies is polluted with metals processed through stars. The fate of these metals is however still an open question and several findings indicate that they remain poorly mixed. A powerful tool to study the low-density gas of the CGM is offered by absorption lines in quasar spectra, although the information retrieved is limited to 1D along the sightline. We report the serendipitous discovery of two close-by bright zgal=1.148 extended galaxies with a fortuitous intervening zabs=1.067 foreground absorber. MUSE IFU observations spatially probes kpc-scales in absorption in the plane of the sky over a total area spanning ˜30 kpc-2. We identify two [O II] emitters at zabs down to 21 kpc with SFR˜2 M⊙/yr. We measure small fractional variations (<30%) in the equivalent widths of Fe II and Mg II cold gas absorbers on coherence scales of 8kpc but stronger variation on larger scales (25kpc). We compute the corresponding cloud gas mass <2 × 109M⊙. Our results indicate a good efficiency of the metal mixing on kpc-scales in the CGM of a typical z˜1 galaxy. This study show-cases new prospects for mapping the distribution and sizes of metal clouds observed in absorption against extended background sources with 3D spectroscopy.
NASA Technical Reports Server (NTRS)
Lada, C. J.; Thronson, H. A., Jr.; Smith, H. A.; Schwartz, P. R.; Glaccum, W.
1984-01-01
The results of infrared photometry from 2 to 160 microns of AFGL and CO(12) observations of its associated molecular cloud and high velocity molecular outflow are presented and discussed. The observed solar luminosity is 6.7 x 10(4) at a distance of 2 kpc. The spectrum of AFGL 2591 is interpreted in the context of a model in which a single embedded object is the dominant source of the infrared luminosity. This object is determined to be surrounded by a compact, optically thick dust shell with a temperature in excess of several hundred degrees kelvin. The extinction to this source is estimated to be between 26 and 50 visual magnitudes. The absolute position of the infrared sources at 10 microns was determined to an accuracy of + or in. This indicates for the first time that the IR source and H2O source are not coincident. The CO(12) observations show the high-velocity molecular flow near AFGL 2591 to be extended, bipolar and roughly centered on the infrared emission. The observations suggest that the red-shifted flow component extends beyond the boundary of the ambient cloud within which AFGL 2591 is embedded. The CO(12) observations also show that AFGL 2591 is embedded in a molecular cloud with an LSR velocity of -5 km/s.
Instability analysis of cosmic viscoelastic gyro-gravitating clouds in the presence of dark matter
NASA Astrophysics Data System (ADS)
Karmakar, Pralay Kumar; Das, Papari
2017-08-01
A classical formalism for the weakly nonlinear instability analysis of a gravitating rotating viscoelastic gaseous cloud in the presence of gyratory dark matter is presented on the cosmic Jeans flat scales of space and time. The constituent neutral gaseous fluid (NGF) and dark matter fluid (DMF) are inter-coupled frictionally via mutual gravity alone. Application of standard nonlinear perturbation techniques over the complex gyro-gravitating clouds results in a unique conjugated pair of viscoelastic forced Burgers (VFB) equations. The VFB pair is conjointly twinned by correlational viscoelastic effects. There is no regular damping term here, unlike, in the conventional Burgers equation for the luminous (bright) matter solely. Instead, an interesting linear self-consistent derivative force-term naturalistically appears. A numerical illustrative platform is provided to reveal the micro-physical insights behind the weakly non-linear natural diffusive eigen-modes. It is fantastically seen that the perturbed NGF evolves as extended compressive solitons and compressive shock-like structures. In contrast, the perturbed DMF grows as rarefactive extended solitons and hybrid shocks. The latter is micro-physically composed of rarefactive solitons and compressive shocks. The consistency and reliability of the results are validated in the panoptic light of the existing reports based on the preeminent nonlinear advection-diffusion-based Burgers fabric. At the last, we highlight the main implications and non-trivial futuristic applications of the explored findings.
Negative charge emission due to excimer laser bombardment of sodium trisilicate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langford, S.C.; Jensen, L.C.; Dickinson, J.T.
We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na{sub 2}O{center dot}3SiO{sub 2}) with 248-nm excimer laser light at fluences on the order of 2 J/cm{sup 2} per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na{sup +}. Using combinations of {bold E} and {bold B} fields in conjunction with time-of-flight methods,more » the negative ions were successfully separated from the plume and tentatively identified as O{sup {minus}}, Si{sup {minus}}, NaO{sup {minus}}, and perhaps NaSi{sup {minus}}. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.« less
Jupiter’s atmospheric jet streams extend thousands of kilometres deep
NASA Astrophysics Data System (ADS)
Kaspi, Y.; Galanti, E.; Hubbard, W. B.; Stevenson, D. J.; Bolton, S. J.; Iess, L.; Guillot, T.; Bloxham, J.; Connerney, J. E. P.; Cao, H.; Durante, D.; Folkner, W. M.; Helled, R.; Ingersoll, A. P.; Levin, S. M.; Lunine, J. I.; Miguel, Y.; Militzer, B.; Parisi, M.; Wahl, S. M.
2018-03-01
The depth to which Jupiter’s observed east–west jet streams extend has been a long-standing question. Resolving this puzzle has been a primary goal for the Juno spacecraft, which has been in orbit around the gas giant since July 2016. Juno’s gravitational measurements have revealed that Jupiter’s gravitational field is north–south asymmetric, which is a signature of the planet’s atmospheric and interior flows. Here we report that the measured odd gravitational harmonics J3, J5, J7 and J9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000 kilometres. By inverting the measured gravity values into a wind field, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J8 and J10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter’s total mass.
Mapping the Asymmetric Thick Disk. II. Distance, Size, and Mass of the Hercules Thick Disk Cloud
NASA Astrophysics Data System (ADS)
Larsen, Jeffrey A.; Cabanela, Juan E.; Humphreys, Roberta M.
2011-04-01
The Hercules Thick Disk Cloud was initially discovered as an excess in the number of faint blue stars between Quadrants 1 and 4 of the Galaxy. The origin of the Cloud could be an interaction with the disk bar, a triaxial Thick Disk, or a merger remnant or stream. To better map the spatial extent of the Cloud along the line of sight, we have obtained multi-color UBVR photometry for 1.2 million stars in 63 fields each of approximately 1 deg2. Our analysis of the fields beyond the apparent boundaries of the excess has already ruled out a triaxial Thick Disk as a likely explanation. In this paper, we present our results for the star counts over all of our fields, determine the spatial extent of the overdensity across and along the line of sight, and estimate the size and mass of the Cloud. Using photometric parallaxes, the stars responsible for the excess are between 1 and 6 kpc from the Sun, 0.5-4 kpc above the Galactic plane, and extend approximately 3-4 kpc across our line of sight. The Cloud is thus a major substructure in the Galaxy. The distribution of the excess along our sight lines corresponds with the density contours of the bar in the Disk, and its most distant stars are directly over the bar. We also see through the Cloud to its far side. Over the entire 500 deg2 of the sky containing the Cloud, we estimate more than 5.6 million stars and 1.9 million solar masses of material. If the overdensity is associated with the bar, it would exceed 1.4 billion stars and more than 50 million solar masses. Finally, we argue that the Hercules-Aquila Cloud is actually the Hercules Thick Disk Cloud.
Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx
Zuidema, P.; Leon, D.; Pazmany, A.; ...
2012-01-05
Routine liquid water path measurements and water vapor path are valuable for process studies of the cloudy marine boundary layer and for the assessment of large-scale models. The VOCALS Regional Experiment respected this goal by including a small, inexpensive, upwardpointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the Gband (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of the free-tropospheric water vapor path (WVP). Retrieved free-tropospheric (abovecloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to twomm and nearcoastal values reaching tenmm. The VOCALS-REx free troposphere wasmore » drier than that of previous years. Cloud liquid water paths (LWPs) were retrieved from the sub-cloud and cloudbase aircraft legs through a combination of the GVR, remotely-sensed cloud boundary information, and insitu thermodynamic data. The absolute (between-leg) and relative (within-leg) accuracy of the LWP retrievals at 1 Hz (≈100 m) resolution was estimated at 20 gm -2 and 3 gm -2 respectively for well-mixed conditions, and 25 gm -2 absolute uncertainty for decoupled conditions where the input WVP specification was more uncertain. Retrieved liquid water paths matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset was the extended information on the thin clouds, with 62% (28 %) of the retrieved LWPs <100 (40) gm -2. Coastal LWPs values were lower than those offshore. For the four dedicated 20° S flights, the mean (median) coastal LWP was 67 (61) gm -2, increasing to 166 (120) gm -2 1500 km offshore. Finally, the overall LWP cloud fraction from thirteen research flights was 63 %, higher than that of adiabatic LWPs at 40 %, but lower than the lidar-determined cloud cover of 85 %, further testifying to the frequent occurrence of thin clouds.« less
MAPPING THE ASYMMETRIC THICK DISK. II. DISTANCE, SIZE, AND MASS OF THE HERCULES THICK DISK CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Jeffrey A.; Cabanela, Juan E.; Humphreys, Roberta M., E-mail: larsen@usna.edu, E-mail: cabanela@mnstate.edu, E-mail: roberta@umn.edu
2011-04-15
The Hercules Thick Disk Cloud was initially discovered as an excess in the number of faint blue stars between Quadrants 1 and 4 of the Galaxy. The origin of the Cloud could be an interaction with the disk bar, a triaxial Thick Disk, or a merger remnant or stream. To better map the spatial extent of the Cloud along the line of sight, we have obtained multi-color UBVR photometry for 1.2 million stars in 63 fields each of approximately 1 deg{sup 2}. Our analysis of the fields beyond the apparent boundaries of the excess has already ruled out a triaxialmore » Thick Disk as a likely explanation. In this paper, we present our results for the star counts over all of our fields, determine the spatial extent of the overdensity across and along the line of sight, and estimate the size and mass of the Cloud. Using photometric parallaxes, the stars responsible for the excess are between 1 and 6 kpc from the Sun, 0.5-4 kpc above the Galactic plane, and extend approximately 3-4 kpc across our line of sight. The Cloud is thus a major substructure in the Galaxy. The distribution of the excess along our sight lines corresponds with the density contours of the bar in the Disk, and its most distant stars are directly over the bar. We also see through the Cloud to its far side. Over the entire 500 deg{sup 2} of the sky containing the Cloud, we estimate more than 5.6 million stars and 1.9 million solar masses of material. If the overdensity is associated with the bar, it would exceed 1.4 billion stars and more than 50 million solar masses. Finally, we argue that the Hercules-Aquila Cloud is actually the Hercules Thick Disk Cloud.« less
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
NASA Astrophysics Data System (ADS)
Sullivan, Sylvia; Hoose, Corinna; Nenes, Athanasios
2016-04-01
Measurements of in-cloud ice crystal number concentrations can be three or four orders of magnitude greater than the in-cloud ice nuclei number concentrations. This discrepancy can be explained by various secondary ice formation processes, which occur after initial ice nucleation, but the relative importance of these processes, and even the exact physics of each, is still unclear. A simple bin microphysics model (2IM) is constructed to investigate these knowledge gaps. 2IM extends the time-lag collision parameterization of Yano and Phillips, 2011 to include rime splintering, ice-ice aggregation, and droplet shattering and to incorporate the aspect ratio evolution as in Jensen and Harrington, 2015. The relative contribution of the secondary processes under various conditions are shown. In particular, temperature-dependent efficiencies are adjusted for ice-ice aggregation versus collision around -15°C, when rime splintering is no longer active, and the effect of aspect ratio on the process weighting is explored. The resulting simulations are intended to guide secondary ice formation parameterizations in larger-scale mixed-phase cloud schemes.