Premixed direct injection nozzle for highly reactive fuels
Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang
2013-09-24
A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
Apparatus for mixing fuel in a gas turbine
Uhm, Jong Ho; Johnson, Thomas Edward
2015-04-21
A combustor nozzle includes an inlet surface and an outlet surface downstream from the inlet surface, wherein the outlet surface has an indented central portion. A plurality of fuel channels are arranged radially outward of the indented central portion, wherein the plurality of fuel channels extend through the outlet surface.
Locking support for nuclear fuel assemblies
Ledin, Eric
1980-01-01
A locking device for supporting and locking a nuclear fuel assembly within a cylindrical bore formed by a support plate, the locking device including a support and locking sleeve having upwardly extending fingers forming wedge shaped contact portions arranged for interaction between an annular tapered surface on the fuel assembly and the support plate bore as well as downwardly extending fingers having wedge shaped contact portions arranged for interaction between an annularly tapered surface on the support plate bore and the fuel assembly whereby the sleeve tends to support and lock the fuel assembly in place within the bore by its own weight while facilitating removal and/or replacement of the fuel assembly.
Current conducting end plate of fuel cell assembly
Walsh, Michael M.
1999-01-01
A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.
Dimpled/grooved face on a fuel injection nozzle body for flame stabilization and related method
Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo; Zuo, Baifang
2013-08-20
A fuel injection head for a fuel nozzle used in a gas turbine combustor includes a substantially hollow body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween. A plurality of pre-mix tubes or passages extend axially through the hollow body with inlets at the upstream end face and outlets at the downstream end face. An exterior surface of the downstream end face is formed with three-dimensional surface features that increase a total surface area of the exterior surface as compared to a substantially flat, planar downstream end face.
Fuel injection nozzle and method of manufacturing the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monaghan, James Christopher; Johnson, Thomas Edward; Ostebee, Heath Michael
A fuel injection head for use in a fuel injection nozzle comprises a monolithic body portion comprising an upstream face, an opposite downstream face, and a peripheral wall extending therebetween. A plurality of pre-mix tubes are integrally formed with and extend axially through the body portion. Each of the pre-mix tubes comprises an inlet adjacent the upstream face, an outlet adjacent the downstream face, and a channel extending between the inlet and the outlet. Each pre-mix tube also includes at least one fuel injector that at least partially extends outward from an exterior surface of the pre-mix tube, wherein themore » fuel injector is integrally formed with the pre-mix tube and is configured to facilitate fuel flow between the body portion and the channel.« less
Lean-rich axial stage combustion in a can-annular gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laster, Walter R.; Szedlacsek, Peter
2016-06-14
An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustionmore » in the gas turbine engine (10) is also presented.« less
Combustor assembly for use in a turbine engine and methods of assembling same
Uhm, Jong Ho; Johnson, Thomas Edward
2013-05-14
A fuel nozzle assembly for use with a turbine engine is described herein. The fuel nozzle assembly includes a plurality of fuel nozzles positioned within an air plenum defined by a casing. Each of the plurality of fuel nozzles is coupled to a combustion liner defining a combustion chamber. Each of the plurality of fuel nozzles includes a housing that includes an inner surface that defines a cooling fluid plenum and a fuel plenum therein, and a plurality of mixing tubes extending through the housing. Each of the mixing tubes includes an inner surface defining a flow channel extending between the air plenum and the combustion chamber. At least one mixing tube of the plurality of mixing tubes including at least one cooling fluid aperture for channeling a flow of cooling fluid from the cooling fluid plenum to the flow channel.
Air-cooled, hydrogen-air fuel cell
NASA Technical Reports Server (NTRS)
Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)
1999-01-01
An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.
Apparatus for mixing fuel in a gas turbine nozzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Carl Robert
A fuel nozzle in a combustion turbine engine that includes: a fuel plenum defined between an circumferentially extending shroud and axially by a forward tube-sheet and an aft tube-sheet; and a mixing-tube that extends across the fuel plenum that defines a passageway connecting an inlet formed through the forward tube-sheet and an outlet formed through the aft tube-sheet, the mixing-tube comprising one or more fuel ports that fluidly communicate with the fuel plenum. The mixing-tube may include grooves on an outer surface, and be attached to the forward tube-sheet by a connection having a fail-safe leakage path.
Battery Power Management in Heavy-duty HEVs based on the Estimated Critical Surface Charge
2011-03-01
health prospects without any penalty on fuel efficiency. Keywords: Lithium - ion battery ; power management; critical surface charge; Lithium-ion...fuel efficiency. 15. SUBJECT TERMS Lithium - ion battery ; power management; critical surface charge; Lithium-ion concentration; estimation; extended...Di Domenico, D., Fiengo, G., and Stefanopoulou, A. (2008) ’ Lithium - ion battery state of charge estimation with a kalman filter based on a
Nuclear reactor fuel element having improved heat transfer
Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.
1982-03-03
A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.
Electrical contact structures for solid oxide electrolyte fuel cell
Isenberg, Arnold O.
1984-01-01
An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.
Fuel nozzle assembly for use in turbine engines and methods of assembling same
Uhm, Jong Ho; Johnson, Thomas Edward
2015-02-03
A fuel nozzle for use with a turbine engine is described herein. The fuel nozzle includes a housing that is coupled to a combustor liner defining a combustion chamber. The housing includes an endwall that at least partially defines the combustion chamber. A plurality of mixing tubes extends through the housing for channeling fuel to the combustion chamber. Each mixing tube of the plurality of mixing tubes includes an inner surface that extends between an inlet portion and an outlet portion. The outlet portion is oriented adjacent the housing endwall. At least one of the plurality of mixing tubes includes a plurality of projections that extend outwardly from the outlet portion. Adjacent projections are spaced a circumferential distance apart such that a groove is defined between each pair of circumferentially-apart projections to facilitate enhanced mixing of fuel in the combustion chamber.
Grossman, Leonard N.; Kaznoff, Alexis I.
1979-01-01
A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.
Hollow-Wall Heat Shield for Fuel Injector Component
NASA Technical Reports Server (NTRS)
Hanson, Russell B. (Inventor)
2018-01-01
A fuel injector component includes a body, an elongate void and a plurality of bores. The body has a first surface and a second surface. The elongate void is enclosed by the body and is integrally formed between portions of the body defining the first surface and the second surface. The plurality of bores extends into the second surface to intersect the elongate void. A process for making a fuel injector component includes building an injector component body having a void and a plurality of ports connected to the void using an additive manufacturing process that utilizes a powdered building material, and removing residual powdered building material from void through the plurality of ports.
Zhang, Ji-Li; Liu, Bo-Fei; Chu, Teng-Fei; Di, Xue-Ying; Jin, Sen
2012-06-01
A laboratory burning experiment was conducted to measure the fire spread speed, residual time, reaction intensity, fireline intensity, and flame length of the ground surface fuels collected from a Korean pine (Pinus koraiensis) and Mongolian oak (Quercus mongolica) mixed stand in Maoer Mountains of Northeast China under the conditions of no wind, zero slope, and different moisture content, load, and mixture ratio of the fuels. The results measured were compared with those predicted by the extended Rothermel model to test the performance of the model, especially for the effects of two different weighting methods on the fire behavior modeling of the mixed fuels. With the prediction of the model, the mean absolute errors of the fire spread speed and reaction intensity of the fuels were 0.04 m X min(-1) and 77 kW X m(-2), their mean relative errors were 16% and 22%, while the mean absolute errors of residual time, fireline intensity and flame length were 15.5 s, 17.3 kW X m(-1), and 9.7 cm, and their mean relative errors were 55.5%, 48.7%, and 24%, respectively, indicating that the predicted values of residual time, fireline intensity, and flame length were lower than the observed ones. These errors could be regarded as the lower limits for the application of the extended Rothermel model in predicting the fire behavior of similar fuel types, and provide valuable information for using the model to predict the fire behavior under the similar field conditions. As a whole, the two different weighting methods did not show significant difference in predicting the fire behavior of the mixed fuels by extended Rothermel model. When the proportion of Korean pine fuels was lower, the predicted values of spread speed and reaction intensity obtained by surface area weighting method and those of fireline intensity and flame length obtained by load weighting method were higher; when the proportion of Korean pine needles was higher, the contrary results were obtained.
Carburetor for internal combustion engines
Csonka, John J.; Csonka, Albert B.
1978-01-01
A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.
Interface ring for gas turbine fuel nozzle assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Timothy A.; Schilp, Reinhard
A gas turbine combustor assembly including a combustor liner and a plurality of fuel nozzle assemblies arranged in an annular array extending within the combustor liner. The fuel nozzle assemblies each include fuel nozzle body integral with a swirler assembly, and the swirler assemblies each include a bellmouth structure to turn air radially inwardly for passage into the swirler assemblies. A radially outer removed portion of each of the bellmouth structures defines a periphery diameter spaced from an inner surface of the combustor liner, and an interface ring is provided extending between the combustor liner and the removed portions ofmore » the bellmouth structures at the periphery diameter.« less
High performance internal reforming unit for high temperature fuel cells
Ma, Zhiwen [Sandy Hook, CT; Venkataraman, Ramakrishnan [New Milford, CT; Novacco, Lawrence J [Brookfield, CT
2008-10-07
A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.
Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; ...
2015-04-10
In this study, the nanoscale morphology of highly active Pt 3Ni 7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure playsmore » in surface area, activity, and durability.« less
Ducted combustion chamber for direct injection engines and method
Mueller, Charles
2015-03-03
An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.
Nuclear breeder reactor fuel element with silicon carbide getter
Christiansen, David W.; Karnesky, Richard A.
1987-01-01
An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.
Myerhoff, Alfred
1984-01-01
The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.
System and method for reducing combustion dynamics in a combustor
Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David
2015-09-01
A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend from the upstream surface through the downstream surface. A divider inside a tube bundle defines a diluent passage that extends axially through the downstream surface, and a diluent supply in fluid communication with the divider provides diluent flow to the diluent passage. A method for reducing combustion dynamics in a combustor includes flowing a fuel through tube bundles, flowing a diluent through a diluent passage inside a tube bundle, wherein the diluent passage extends axially through at least a portion of the end cap into a combustion chamber, and forming a diluent barrier in the combustion chamber between the tube bundle and at least one other adjacent tube bundle.
The use of fuel breaks in landscape fire management
Agee, James K.; Bahro, Berni; Finney, Mark A.; Omi, Philip N.; Sapsis, David B.; Skinner, Carl N.; Van Wagtendonk, Jan W.; Weatherspoon, C. Phillip
2000-01-01
Shaded fuelbreaks and larger landscape fuel treatments, such as prescribed fire, are receiving renewed interest as forest protection strategies in the western United States. The effectiveness of fuelbreaks remains a subject of debate because of differing fuelbreak objectives, prescriptions for creation and maintenance, and their placement in landscapes with differing fire regimes. A well-designed fuelbreak will alter the behavior of wildland fire entering the fuel-altered zone. Both surface and crown fire behavior may be reduced. Shaded fuelbreaks must be created in the context of the landscape within which they are placed. No absolute standards for fuelbreak width or fuel reduction are possible, although recent proposals for forested fuelbreaks suggest 400 m wide bands where surface fuels are reduced and crown fuels are thinned. Landscape-level treatments such as prescribed fire can use shaded fuelbreaks as anchor points, and extend the zone of altered fire behavior to larger proportions of the landscape. Coupling fuelbreaks with area-wide fuel treatments can reduce the size, intensity, and effects of wildland fires.
Laminar Soot Processes (Lsp) Experiment: Findings From Ground-Based Measurements
NASA Technical Reports Server (NTRS)
Kim, C. H.; El-Leathy, A. M.; Faeth, G. M.; Xu, F.
2003-01-01
Processes of soot formation and oxidation must be understood in order to achieve reliable computational combustion calculations for nonpremixed (diffusion) flames involving hydrocarbon fuels. Motivated by this observation, the present investigation extended earlier work on soot formation and oxidation in laminar jet ethylene/air and methane/oxygen premixed and acetylene-nitrogen/air diffusion flames at atmospheric pressure in this laboratory, emphasizing soot surface growth and early soot surface oxidation in laminar diffusion flames fueled with a variety of hydrocarbons at pressures in the range 0.1 - 1.0 atm.
NASA Technical Reports Server (NTRS)
Bhattacharjee, Subrata; Altenkirch, Robert A.; Worley, Regis; Tang, Lin; Bundy, Matt; Sacksteder, Kurt; Delichatsios, Michael A.
1997-01-01
The effort described here is a reflight of the Solid Surface Combustion Experiment (SSCE), with extension of the flight matrix first and then experiment modification. The objectives of the reflight are to extend the understanding of the interplay of the radiative processes that affect the flame spread mechanisms.
System and method for reducing combustion dynamics in a combustor
Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David
2013-08-20
A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.
Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.
As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of themore » cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to model stress concentrations induced by fuel fractures at the fuel/cladding interface during pellet cladding mechanical interaction (PCMI). This is accomplished by enhancing the thermal and mechanical contact enforcement algorithms employed by BISON to permit their use in conjunction with XFEM. The results from this methodology are demonstrated to be equivalent to those from using meshed discrete cracks. While the results of the two methods are equivalent for the case of a stationary crack, it is demonstrated that XFEM provides the additional flexibility of allowing arbitrary crack initiation and propagation during the analysis, and minimizes model setup effort for cases with stationary cracks.« less
Fuel rod assembly to manifold attachment
Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.
1980-01-01
A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.
Fuel cell plates with skewed process channels for uniform distribution of stack compression load
Granata, Jr., Samuel J.; Woodle, Boyd M.
1989-01-01
An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.
Axially staged combustion system for a gas turbine engine
Bland, Robert J [Oviedo, FL
2009-12-15
An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.
Multi-tube thermal fuse for nozzle protection from a flame holding or flashback event
Lacy, Benjamin Paul; Davis, Jr., Lewis Berkley; Johnson, Thomas Edward; York, William David
2012-07-03
A protection system for a pre-mixing apparatus for a turbine engine, includes: a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish a fuel delivery plenum; and a plurality of fuel mixing tubes that extend through at least a portion of the fuel delivery plenum, each of the plurality of fuel mixing tubes including at least one fuel feed opening fluidly connected to the fuel delivery plenum; at least one thermal fuse disposed on an exterior surface of at least one tube, the at least one thermal fuse including a material that will melt upon ignition of fuel within the at least one tube and cause a diversion of fuel from the fuel feed opening to at least one bypass opening. A method and a turbine engine in accordance with the protection system are also provided.
Fuel cell stack with internal manifolds for reactant gases
Schnacke, Arthur W.
1985-01-01
A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.
Fuel cell stack with internal manifolds for reactant gases
Schnacke, A.W.
1983-10-12
A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belsom, Keith Cletus; McMahan, Kevin Weston; Thomas, Larry Lou
A fuel nozzle for a gas turbine generally includes a main body having an upstream end axially separated from a downstream end. The main body at least partially defines a fuel supply passage that extends through the upstream end and at least partially through the main body. A fuel distribution manifold is disposed at the downstream end of the main body. The fuel distribution manifold includes a plurality of axially extending passages that extend through the fuel distribution manifold. A plurality of fuel injection ports defines a flow path between the fuel supply passage and each of the plurality ofmore » axially extending passages.« less
Spurrier, Francis R.; Pierce, Bill L.; Wright, Maynard K.
1986-01-01
A plate for a fuel cell has an arrangement of ribs defining an improved configuration of process gas channels and slots on a surface of the plate which provide a modified serpentine gas flow pattern across the plate surface. The channels are generally linear and arranged parallel to one another while the spaced slots allow cross channel flow of process gas in a staggered fashion which creates a plurality of generally mini-serpentine flow paths extending transverse to the longitudinal gas flow along the channels. Adjacent pairs of the channels are interconnected to one another in flow communication. Also, a bipolar plate has the aforementioned process gas channel configuration on one surface and another configuration on the opposite surface. In the other configuration, there are not slots and the gas flow channels have a generally serpentine configuration.
Extended characterization of M-Area settling basin and vicinity. Technical data summary. Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, J B
1985-10-01
The Savannah River Plant M-Area settling basin, an unlined surface impoundment, has received process effluents from the M-Area fuel and target fabrication facilities since 1958. The waste effluents have contained metal degreasing agents (chlorinated hydrocarbons), acids, caustics, and heavy metals. Data analyses are provided.
Apparatus for premixing in a gas turbine engine
McCormick, Keith Alan; Smith, Duane A.
2002-01-01
An apparatus for mixing fuel with oxidizing agent is disclosed comprising an outer body and an inner body. The outer body has an interior surface extending between an inlet end toward an outlet end. The interior surface includes a first plurality of openings. The inner body has an exterior surface extending between the first end and the second end of the inner body. The exterior surface of the inner body includes a second plurality of openings. At least a portion of the exterior surface of the inner body is positioned within the outer body to define a mixing channel between the exterior surface of the inner body and the interior surface of the outer body. In one form the first and second plurality of openings substantially longitudinally span at least one of the outer body and the inner body. In another form the first and second plurality of openings are substantially radially oriented. In yet another form the first and second plurality of openings are offset from one another.
Systems for delivering liquified natural gas to an engine
Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.
2000-01-01
A fuel delivery system includes a fuel tank configured to receive liquid natural gas. A first conduit extends from a vapor holding portion of the fuel tank to an economizer valve. A second conduit extends from a liquid holding portion of the fuel tank to the economizer valve. Fluid coupled to the economizer valve is a vaporizer which is heated by coolant from the engine and is positioned below the fuel tank. The economizer valve selectively withdraws either liquid natural gas or vaporized natural gas from the fuel tank depending on the pressure within the vapor holding portion of the fuel tank. A delivery conduit extends from the vaporizer to the engine. A return conduit having a check valve formed therein extends from the delivery conduit to the vapor holding portion of the fuel tank for pressurizing the fuel tank.
Monolithic fuel injector and related manufacturing method
Ziminsky, Willy Steve [Greenville, SC; Johnson, Thomas Edward [Greenville, SC; Lacy, Benjamin [Greenville, SC; York, William David [Greenville, SC; Stevenson, Christian Xavier [Greenville, SC
2012-05-22
A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.
Gardner, Timothy J.; Manginelli, Ronald P.; Lewis, Patrick R.; Frye-Mason, Gregory C.; Colburn, Chris
2004-09-07
A microcombustor comprises a microhotplate and a catalyst for sustained combustion on the microscale. The microhotplate has very low heat capacity and thermal conductivity that mitigate large heat losses arising from large surface-to-volume ratios typical of the microdomain. The heated catalyst enables flame ignition and stabilization, permits combustion with lean fuel/air mixtures, extends a hydrocarbon's limits of flammability, and lowers the combustion temperature. The reduced operating temperatures enable a longer microcombustor lifetime and the reduced fuel consumption enables smaller fuel supplies, both of which are especially important for portable microsystems applications. The microcombustor can be used for on-chip thermal management and for sensor applications, such as heating of a micro gas chromatography column and for use as a micro flame ionization detector.
Future directions: Integrated resource planning
NASA Astrophysics Data System (ADS)
Bauer, D. C.; Eto, J.
Integrated resource planning or IRP is the process for integrating supply- and demand-side resources to provide energy services at a cost that balances the interests of all stakeholders. It now is the resource planning process used by electric utilities in over 30 states. The goals of IRP have evolved from least cost planning and encouragement of demand-side management to broader, more complex issues including core competitive business activity, risk management and sharing, accounting for externalities, and fuel switching between gas and electricity. IRP processes are being extended to other interior regions of the country, to non-investor owned utilities, and to regional (rather than individual utility) planning bases, and to other fuels (natural gas). The comprehensive, multi-valued, and public reasoning characteristics of IRP could be extended to applications beyond energy, e.g., transportation, surface water management, and health care in ways suggested.
Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.
2013-03-05
Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.
Flow Range of Centrifugal Compressor Being Extended
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2001-01-01
General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.
Bursting Bubbles from Combustion of Thermoplastic Materials in Microgravity
NASA Technical Reports Server (NTRS)
Butler, K. B.
1999-01-01
Many thermoplastic materials in common use for a wide range of applications, including spacecraft, develop bubbles internally as they burn due to chemical reactions taking place within the bulk. These bubbles grow and migrate until they burst at the surface, forceably ejecting volatile gases and, occasionally, molten fuel. In experiments in normal gravity, Kashiwagi and Ohlemiller observed vapor jets extending a few centimeters from the surface of a radiatively heated polymethylmethacrylate (PMMA) sample, with some molten material ejected into the gas phase. These physical phenomena complicated the combustion process considerably. In addition to the non-steady release of volatiles, the depth of the surface layer affected by oxygen was increased, attributed to the roughening of the surface by bursting events. The ejection of burning droplets in random directions presents a potential fire hazard unique to microgravity. In microgravity combustion experiments on nylon Velcro fasteners and on polyethylene wire insulation, the presence of bursting fuel vapor bubbles was associated with the ejection of small particles of molten fuel as well as pulsations of the flame. For the nylon fasteners, particle velocities were higher than 30 cm/sec. The droplets burned robustly until all fuel was consumed, demonstrating the potential for the spread of fire in random directions over an extended distance. The sequence of events for a bursting bubble has been photographed by Newitt et al.. As the bubble reaches the fluid surface, the outer surface forms a dome while the internal bubble pressure maintains a depression at the inner interface. Liquid drains from the dome until it breaks into a cloud of droplets on the order of a few microns in size. The bubble gases are released rapidly, generating vortices in the quiescent surroundings and transporting the tiny droplets. The depression left by the escaping gases collapses into a central jet, which rises with a high velocity and may break up, releasing one or more relatively large drops (on the order of a millimeter in these experiments). A better understanding of bubble development and bursting processes, the effects of bursting behavior on burning rate of the bulk material, and the circumstances under which large droplets are expelled, as well as their trajectories, sizes, and burning rates, is sought through computer modeling compared with experiment.
Cryogenic and Simulated Fuel Jet Breakup in Argon, Helium and Nitrogen Gas Flows
NASA Technical Reports Server (NTRS)
Ingebo, Robert D.
1995-01-01
Two-phase flow atomization of liquid nitrogen jets was experimentally investigated. They were co-axially injected into high-velocity gas flows of helium, nitrogen and argon, respectively, and atomized internally inside a two-fluid fuel nozzle. Cryogenic sprays with relatively high specific surface areas were produced, i.e., ratios of surface area to volume were fairly high. This was indicated by values of reciprocal Sauter mean diameters, RSMD's, as measured with a scattered- light scanning instrument developed at NASA Lewis Research Center. Correlating expressions were derived for the three atomizing gases over a gas temperature range of 111 to 422 K. Also, the correlation was extended to include waterjet breakup data that had been previously obtained in simulating fuel jet breakup in sonic velocity gas flow. The final correlating expression included a new dimensionless molecular-scale acceleration group. It was needed to correlate RSMD data, for LN2 and H2O sprays, with the fluid properties of the liquid jets and atomizing gases used in this investigation.
Modeling 3D PCMI using the Extended Finite Element Method with higher order elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, W.; Spencer, Benjamin W.
2017-03-31
This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the formmore » Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.« less
Premixed direct injection disk
York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho
2013-04-23
A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
Methods and systems to enhance flame holding in a gas turbine engine
Zuo, Baifang [Simpsonville, SC; Lacy, Benjamin Paul [Greer, SC; Stevenson, Christian Xavier [Inman, SC
2012-01-31
A fuel nozzle including a swirler assembly that includes a shroud, a hub, and a plurality of vanes extending between the shroud and the hub. Each vane includes a pressure sidewall and an opposite suction sidewall coupled to the pressure sidewall at a leading edge and at a trailing edge. At least one suction side fuel injection orifice is formed adjacent to the leading edge and extends from a first fuel supply passage to the suction sidewall. A fuel injection angle is oriented with respect to the suction sidewall. The suction side fuel injection orifice is configured to discharge fuel outward from the suction sidewall. At least one pressure side fuel injection orifice extends from a second fuel supply passage to the pressure sidewall and is substantially parallel to the trailing edge. The pressure side fuel injection orifice is configured to discharge fuel tangentially from the trailing edge.
Air/fuel supply system for use in a gas turbine engine
Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico
2014-06-17
A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.
Irradiation of TZM: Uranium dioxide fuel pin at 1700 K
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.
1973-01-01
A fuel pin clad with TZM and containing solid pellets of uranium dioxide was fission heated in a static helium-cooled capsule at a maximum surface temperature of 1700 K for approximately 1000 hr and to a total burnup of 2.0 percent of the uranium-235. The results of the postirradiation examination indicated: (1) A transverse, intergranular failure of the fuel pin occurred when the fuel pin reached 2.0-percent burnup. This corresponds to 1330 kW-hr/cu cm, where the volume is the sum of the fuel, clad, and void volumes in the fuel region. (2) The maximum swelling of the fuel pin was less than 1.5 percent on the fuel-pin diameter. (3) There was no visible interaction between the TZM clad and the UO2. (4) Irradiation at 1700 K produced a course-grained structure, with an average grain diameter of 0.02 centimeter and with some of the grains extending one-half of the thickness of the clad. (5) Below approximately 1500 K, the irradiation of the clad produced a moderately fine-grained structure, with an average grain diameter of 0.004 centimeter.
Combustor with fuel preparation chambers
NASA Technical Reports Server (NTRS)
Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)
2001-01-01
An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.
Means for supporting fuel elements in a nuclear reactor
Andrews, Harry N.; Keller, Herbert W.
1980-01-01
A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively
Bohn, Mark S.; Anselmo, Mark
2001-01-01
Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.
REDUCTION OF THE MOMENTUM OF FALLING BODIES
Kendall, J.W.; Morrison, I.H.
1954-09-21
A means for catching free falling bodies that may be damaged upon impact is given. Several layers of floating gas-filled rubber balls are contained within a partially compartmented tank of liquid. The compartment extends from beneath the surface of the liquid to that height necessary to contain the desired number of layers of the balls. The balls and the liquid itself break the force of the fall by absorbing the kinetic energy of falling body. The body may then be retrieved from the floor of the tank by a rake that extends from outside of the tank through the free surface area and underneath the compartment wall. This arrangement is particularly useful in collecting irradiated atomic fuel rods that are discharged from a reactor at considerable height without damaging the thin aluminum jacket of the rods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cihlar, David William; Melton, Patrick Benedict
A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.
Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.
1960-03-22
An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.
Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes
Talmud, Fred M.; Garcia-Mallol, Juan-Antonio
1980-01-01
A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.
Multi-tube arrangement for combustor and method of making the multi-tube arrangement
Ziminsky, Willy Steve [Simpsonville, SC
2012-07-31
A fuel injector tube includes a one piece, unitary, polygonal tube having an inlet end and an outlet end. The fuel injector tube further includes a fuel passage extending from the inlet end to the outlet end along a longitudinal axis of the polygonal tube, a plurality of air passages extending from the inlet end to the outlet end and surrounding the fuel passage, and a plurality of fuel holes. Each fuel hole connects an air passage with the fuel passage. The inlet end of the polygonal tube is formed into a fuel tube. A fuel injector includes a plurality of fuel injector tubes and a plate. The plurality of fuel tubes are connected to the plate adjacent the inlet ends of the plurality of fuel injector tubes.
Fabrication of fuel cell electrodes and other catalytic structures
Smith, J.L.
1987-02-11
A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.
Fabrication of catalytic electrodes for molten carbonate fuel cells
Smith, James L.
1988-01-01
A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.
Deposit formation and heat transfer in hydrocarbon rocket fuels
NASA Technical Reports Server (NTRS)
Giovanetti, A. J.; Spadaccini, L. J.; Szetela, E. J.
1983-01-01
An experimental research program was undertaken to investigate the thermal stability and heat transfer characteristics of several hydrocarbon fuels under conditions that simulate high-pressure, rocket engine cooling systems. The rates of carbon deposition in heated copper and nickel-plated copper tubes were determined for RP-1, propane, and natural gas using a continuous flow test apparatus which permitted independent variation and evaluation of the effect on deposit formation of wall temperature, fuel pressure, and fuel velocity. In addition, the effects of fuel additives and contaminants, cryogenic fuel temperatures, and extended duration testing with intermittent operation were examined. Parametric tests to map the thermal stability characteristics of RP-1, commercial-grade propane, and natural gas were conducted at pressures of 6.9 to 13.8 MPa, bulk fuel velocities of 30 to 90 m/s, and tube wall temperatures in the range of 230 to 810 K. Also, tests were run in which propane and natural gas fuels were chilled to 230 and 160 K, respectively. Corrosion of the copper tube surface was detected for all fuels tested. Plating the inside of the copper tubes with nickel reduced deposit formation and eliminated tube corrosion in most cases. The lowest rates of carbon deposition were obtained for natural gas, and the highest rates were obtained for propane. For all fuels tested, the forced-convection heat transfer film coefficients were satisfactorily correlated using a Nusselt-Reynolds-Prandtl number equation.
Grain Size and Phase Purity Characterization of U 3Si 2 Pellet Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoggan, Rita E.; Tolman, Kevin R.; Cappia, Fabiola
Characterization of U 3Si 2 fresh fuel pellets is important for quality assurance and validation of the finished product. Grain size measurement methods, phase identification methods using scanning electron microscopes equipped with energy dispersive spectroscopy and x-ray diffraction, and phase quantification methods via image analysis have been developed and implemented on U 3Si 2 pellet samples. A wide variety of samples have been characterized including representative pellets from an initial irradiation experiment, and samples produced using optimized methods to enhance phase purity from an extended fabrication effort. The average grain size for initial pellets was between 16 and 18 µm.more » The typical average grain size for pellets from the extended fabrication was between 20 and 30 µm with some samples exhibiting irregular grain growth. Pellets from the latter half of extended fabrication had a bimodal grain size distribution consisting of coarsened grains (>80 µm) surrounded by the typical (20-30 µm) grain structure around the surface. Phases identified in initial uranium silicide pellets included: U 3Si 2 as the main phase composing about 80 vol. %, Si rich phases (USi and U 5Si 4) composing about 13 vol. %, and UO 2 composing about 5 vol. %. Initial batches from the extended U 3Si 2 pellet fabrication had similar phases and phase quantities. The latter half of the extended fabrication pellet batches did not contain Si rich phases, and had between 1-5% UO 2: achieving U 3Si 2 phase purity between 95 vol. % and 98 vol. % U 3Si 2. The amount of UO 2 in sintered U 3Si 2 pellets is correlated to the length of time between U 3Si 2 powder fabrication and pellet formation. These measurements provide information necessary to optimize fabrication efforts and a baseline for future work on this fuel compound.« less
Fuel burner and combustor assembly for a gas turbine engine
Leto, Anthony
1983-01-01
A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.
High temperature solar thermal receiver
NASA Technical Reports Server (NTRS)
1979-01-01
A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.
Risk Assessment of Structural Integrity of Transportation Casks after Extended Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra, Luis; Medina, Ricardo; Yang, Haori
This study assessed the risk of loss of structural integrity of transportation casks and fuel cladding after extended storage. Although it is known that fuel rods discharged from NPPs have a small percentage of rod cladding defects, the behavior of fuel cladding and the structural elements of assemblies during transportation after long-term storage is not well understood. If the fuel degrades during extended storage, it could be susceptible to damage from vibration and impact loads during transport operations, releasing fission-product gases into the canister or the cask interior (NWTRB 2010). Degradation of cladding may occur due to mechanisms associated withmore » hydrogen embrittlement, delayed hydride cracking, low temperature creep, and stress corrosion cracking (SCC) that may affect fuel cladding and canister components after extended storage of hundreds of years. Over extended periods at low temperatures, these mechanisms affect the ductility, strength, and fracture toughness of the fuel cladding, which becomes brittle. For transportation purposes, the fuel may be transferred from storage to shipping casks, or dual-purpose casks may be used for storage and transportation. Currently, most of the transportation casks will be the former case. A risk assessment evaluation is conducted based on results from experimental tests and simulations with advanced numerical models. A novel contribution of this study is the evaluation of the combined effect of component aging and vibration/impact loads in transportation scenarios. The expected levels of deterioration will be obtained from previous and current studies on the effect of aging on fuel and cask components. The emphasis of the study is placed on the structural integrity of fuel cladding and canisters.« less
UFD Storage and Transportation - Transportation Working Group Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, Steven J.; Ross, Steven B.
2011-08-01
The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references suchmore » as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report« less
Fay, J A
2006-08-21
A two zone entrainment model of pool fires is proposed to depict the fluid flow and flame properties of the fire. Consisting of combustion and plume zones, it provides a consistent scheme for developing non-dimensional scaling parameters for correlating and extrapolating pool fire visible flame length, flame tilt, surface emissive power, and fuel evaporation rate. The model is extended to include grey gas thermal radiation from soot particles in the flame zone, accounting for emission and absorption in both optically thin and thick regions. A model of convective heat transfer from the combustion zone to the liquid fuel pool, and from a water substrate to cryogenic fuel pools spreading on water, provides evaporation rates for both adiabatic and non-adiabatic fires. The model is tested against field measurements of large scale pool fires, principally of LNG, and is generally in agreement with experimental values of all variables.
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wisander, D. W.
1973-01-01
High-purity copper specimens and a copper-aluminum (10%) alloy specimen were subjected to sliding against Type 440 C in cryogenic fuel environments. It was found that virtually all wear occurred by the plastic deformation of a recrystallized layer extending to about 10 micrometers below the wear scar surface of the copper or copper alloy. The wear debris was in the form of a layered structure adhering to the exit region of the wear scar. Measurements on the high purity copper specimens indicated that the wear rate was proportional to the applied load and to the sliding velocity squared. A physical model of the wear process is proposed to account for these observations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... refiner gasoline sulfur standards be extended for a small refiner of motor vehicle diesel fuel? 80.553... small refiner gasoline sulfur standards be extended for a small refiner of motor vehicle diesel fuel? (a) A refiner that has been approved by EPA for small refiner gasoline sulfur standards under § 80.240...
Code of Federal Regulations, 2011 CFR
2011-07-01
... refiner gasoline sulfur standards be extended for a small refiner of motor vehicle diesel fuel? 80.553... small refiner gasoline sulfur standards be extended for a small refiner of motor vehicle diesel fuel? (a) A refiner that has been approved by EPA for small refiner gasoline sulfur standards under § 80.240...
Apparatus and filtering systems relating to combustors in combustion turbine engines
Johnson, Thomas Edward [Greer, SC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC
2012-07-24
A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.
Fuel cell technology for lunar surface operations
NASA Technical Reports Server (NTRS)
Deronck, Henry J.
1992-01-01
Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.
Fuel cell technology for lunar surface operations
NASA Astrophysics Data System (ADS)
Deronck, Henry J.
1992-02-01
Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.
NASA Technical Reports Server (NTRS)
Shelley, Richard; Ross, William L., Sr.
1993-01-01
The Auxiliary Power Unit (APU) fuel (hydrazine) tanks were removed from the Columbia Shuttle during major modification of the vehicle, because of long-term hydrazine compatibility concerns. The three tanks had been in service for 11 years. As part of an effort to determine whether the useful life of the fuel tanks can be extended, examination of the ethylene propylene rubber (EPR) diaphragm and the metal casing from one of the APU tanks was required. NASA Johnson Space Center Propulsion and Power Division requested the NASA Johnson Space Center White Sands Test Facility to examine the EPR diaphragm for signs of degradation that might limit the life of its function in the APU tank and to examine the metal casing for signs of surface corrosion. No appreciable degradation of the EPR diaphragm was noted. A decrease in the tensile properties was found, but tensile failure is considered unlikely because the metal casing constrains the diaphragm, preventing it from elongating more than a few percent. The titanium casing showed no evidence of surface corrosion.
Alia, Shaun M.; Ngo, Chilan; Shulda, Sarah; ...
2017-04-11
For the first time, extended nanostructured catalysts are demonstrated with both high specific activity (>6000 μA cm Pt –2 at 0.9 V) and high surface areas (>90 m 2 g Pt –1). Platinum–nickel (Pt—Ni) nanowires, synthesized by galvanic displacement, have previously produced surface areas in excess of 90 m 2 g Pt –1, a significant breakthrough in and of itself for extended surface catalysts. Unfortunately, these materials were limited in terms of their specific activity and durability upon exposure to relevant electrochemical test conditions. Through a series of optimized postsynthesis steps, significant improvements were made to the activity (3-fold increasemore » in specific activity), durability (21% mass activity loss reduced to 3%), and Ni leaching (reduced from 7 to 0.3%) of the Pt—Ni nanowires. Finally, these materials show more than a 10-fold improvement in mass activity compared to that of traditional carbon-supported Pt nanoparticle catalysts and offer significant promise as a new class of electrocatalysts in fuel cell applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alia, Shaun M.; Ngo, Chilan; Shulda, Sarah
For the first time, extended nanostructured catalysts are demonstrated with both high specific activity (>6000 μA cm Pt –2 at 0.9 V) and high surface areas (>90 m 2 g Pt –1). Platinum–nickel (Pt—Ni) nanowires, synthesized by galvanic displacement, have previously produced surface areas in excess of 90 m 2 g Pt –1, a significant breakthrough in and of itself for extended surface catalysts. Unfortunately, these materials were limited in terms of their specific activity and durability upon exposure to relevant electrochemical test conditions. Through a series of optimized postsynthesis steps, significant improvements were made to the activity (3-fold increasemore » in specific activity), durability (21% mass activity loss reduced to 3%), and Ni leaching (reduced from 7 to 0.3%) of the Pt—Ni nanowires. Finally, these materials show more than a 10-fold improvement in mass activity compared to that of traditional carbon-supported Pt nanoparticle catalysts and offer significant promise as a new class of electrocatalysts in fuel cell applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-10-01
The primary objective of this program is to develop and demonstrate an improved PWR fuel assembly design capable of batch average burnups of 45,000-50,000 MWd/mtU. To accomplish this, a number of technical areas must be investigated to verify acceptable extended-burnup fuel performance. This report is the first semi-annual progress report for the program, and it describes work performed during the July-December 1978 time period. Efforts during this period included the definition of a preliminary design for a high-burnup fuel rod, physics analyses of extended-burnup fuel cycles, studies of the physics characteristics of changes in fuel assembly metal-to-water ratios, and developmentmore » of a design concept for post-irradiation examination equipment to be utilized in examining high-burnup lead-test assemblies.« less
Integrated fuel cell stack shunt current prevention arrangement
Roche, Robert P.; Nowak, Michael P.
1992-01-01
A fuel cell stack includes a plurality of fuel cells juxtaposed with one another in the stack and each including a pair of plate-shaped anode and cathode electrodes that face one another, and a quantity of liquid electrolyte present at least between the electrodes. A separator plate is interposed between each two successive electrodes of adjacent ones of the fuel cells and is unified therewith into an integral separator plate. Each integral separator plate is provided with a circumferentially complete barrier that prevents flow of shunt currents onto and on an outer peripheral surface of the separator plate. This barrier consists of electrolyte-nonwettable barrier members that are accommodated, prior to the formation of the integral separator plate, in corresponding edge recesses situated at the interfaces between the electrodes and the separator plate proper. Each barrier member extends over the entire length of the associated marginal portion and is flush with the outer periphery of the integral separator plate. This barrier also prevents cell-to-cell migration of any electrolyte that may be present at the outer periphery of the integral separator plate while the latter is incorporated in the fuel cell stack.
Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne; Burke, Kenneth; Jakupca, Ian
2012-01-01
This presentation describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover at the NASA Glenn Research Center. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the SCARAB rover s hotel loads. The power system, including the non-flow-through fuel cell technology, successfully demonstrated its goal as a range extender by powering hotel loads on the SCARAB rover, making this demonstration the first to use the non-flow-through fuel cell technology on a mobile platform.
Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation.
Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong
2017-08-01
Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H 2 -assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration-corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications.
Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation
Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong
2017-01-01
Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H2-assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration–corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications. PMID:28875160
APU diaphragm testing. Test plan
NASA Technical Reports Server (NTRS)
Shelley, Richard
1992-01-01
Auxiliary Power Unit (APU) fuel (hydrazine) tanks have had to be removed from the Columbia Shuttle (OV-102) because they have been in service for 11 years, which is the limit of their useful life. As part of an effort to determine whether the useful life of the fuel tanks can be extended, examination of the ethylene propylene rubber (EPR) diaphragm and the metal from one of the APU tanks is required. The JSC Propulsion and Power Division has requested White Sands Test Facility (WSTF) to examine the EPR diaphragm thoroughly and the metal casing generally from one tank. The objective is to examine the EPR diaphragm for signs of degradation that may limit the life of its function in the APU propellant tank. The metal casing will also be examined for signs of surface corrosion.
Extinction Criteria for Opposed-Flow Flame Spread in a Microgravity Environment
NASA Technical Reports Server (NTRS)
Bhattacharjee, Subrata; Paolini, Chris; Wakai, Kazunori; Takahashi, Shuhei
2003-01-01
A simplified analysis is presented to extend a previous work on flame extinction in a quiescent microgravity environment to a more likely situation of a mild opposing flow. The energy balance equation, that includes surface re-radiation, is solved to yield a closed form spread rate expression in terms of its thermal limit, and a radiation number that can be evaluated from the known parameters of the problem. Based on this spread rate expression, extinction criterions for a flame over solid fuels, both thin and thick, have been developed that are qualitatively verified with experiments conducted at the MGLAB in Japan. Flammability maps with oxygen level, opposing flow velocity and fuel thickness as independent variables are extracted from the theory that explains the well-established trends in the existing experimental data.
Minimizing or eliminating refueling of nuclear reactor
Doncals, Richard A.; Paik, Nam-Chin; Andre, Sandra V.; Porter, Charles A.; Rathbun, Roy W.; Schwallie, Ambrose L.; Petras, Diane S.
1989-01-01
Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.
Dynamic, Hot Surface Ignition of Aircraft Fuels and Hydraulic Fluids
1980-10-01
fuels on a heated stainless steel surface. Higher local surface air speeds necessitated higher surface temperatures for ignition of an applied fluid._-7...Aircraft Fuels ( stainless steel surface) 8. Air Speed and Surface Material Effects on Hot Surface 21 Ignition Temperature of Aircraft Fuels (Titanium...Material Effects on Hot Surface 26 Ignition Temperature of Aircraft Hydraulic Fluids ( Stainless steel surface) 11. Air Speed and Surface Material
Method and apparatus for igniting an in situ oil shale retort
Burton, Robert S.; Rundberg, Sten I.; Vaughn, James V.; Williams, Thomas P.; Benson, Gregory C.
1981-01-01
A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of the end structures of a rail vehicle that extend vertically from the underframe to which they are... body structure of a locomotive. Fuel tank, internal means a fuel containment vessel that does not extend outside the car body structure of a locomotive. High voltage means an electrical potential of more...
Combustor with two stage primary fuel tube with concentric members and flow regulating
Parker, David Marchant; Whidden, Graydon Lane; Zolyomi, Wendel
1999-01-01
A combustor for a gas turbine having a centrally located fuel nozzle and inner, middle and outer concentric cylindrical liners, the inner liner enclosing a primary combustion zone. The combustor has an air inlet that forms two passages for pre-mixing primary fuel and air to be supplied to the primary combustion zone. Each of the pre-mixing passages has a circumferential array of swirl vanes. A plurality of primary fuel tube assemblies extend through both pre-mixing passages, with each primary fuel tube assembly located between a pair of swirl vanes. Each primary fuel tube assembly is comprised of two tubular members. The first member supplies fuel to the first pre-mixing passage, while the second member, which extends through the first member, supplies fuel to the second pre-mixing passage. An annular fuel manifold is divided into first and second chambers by a circumferentially extending baffle. The proximal end of the first member is attached to the manifold itself while the proximal end of the second member is attached to the baffle. The distal end of the first member is attached directly to the second member at around its mid-point. The inlets of the first and second members are in flow communication with the first and second manifold chambers, respectively. Control valves separately regulate the flow of fuel to the two chambers and, therefore, to the two members of the fuel tube assemblies, thereby allowing the flow of fuel to the first and second pre-mixing passages to be separately controlled.
Solid oxide fuel cell generator
Di Croce, A. Michael; Draper, Robert
1993-11-02
A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.
Solid oxide fuel cell generator
Di Croce, A.M.; Draper, R.
1993-11-02
A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.
Mariani, Robert Dominick
2014-09-09
Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.
Young, G.
1963-01-01
This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors
Fuel or irradiation subassembly
Seim, O.S.; Hutter, E.
1975-12-23
A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greiner, Miles
Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding ismore » likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.« less
Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States
NASA Astrophysics Data System (ADS)
Zhou, Yuyu; Gurney, Kevin Robert
2011-09-01
Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.
Integrated Fuel Injection and Mixing System with Impingement Cooling Face
NASA Technical Reports Server (NTRS)
Mansour, Adel B. (Inventor); Harvey, Rex J. (Inventor); Tacina, Robert R. (Inventor); Laing, Peter (Inventor)
2003-01-01
An atomizing injector includes a metering set having a swirl chamber, a spray orifice and one or more feed slots etched in a thin plate. The swirl chamber is etched in a first side of the plate and the spray orifice is etched through a second side to the center of the swirl chamber. Fuel feed slots extend non-radially to the swirl chamber. The injector also includes integral swirler structure. The swirler structure includes a cylindrical air swirler passage, also shaped by etching, through at least one other thin plate. The cylindrical air swirler passage is located in co-axial relation to the spray orifice of the plate of the fuel metering set such that fuel directed through the spray orifice passes through the air swirler passage and swirling air is imparted to the fuel such that the fuel has a swirling component of motion. At least one air feed slot is provided in fluid communication with the air swirler passage and extends in non-radial relation thereto. Air supply passages extend through the plates of the metering set and the swirler structure to feed the air feed slot in each plate of the swirler structure.
14 CFR 29.1553 - Fuel quantity indicator.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Placards § 29.1553 Fuel quantity indicator. If the unusable fuel supply for any tank exceeds one gallon, or... extending from the calibrated zero reading to the lowest reading obtainable in level flight. ...
14 CFR 25.1553 - Fuel quantity indicator.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Placards § 25.1553 Fuel quantity indicator. If the unusable fuel supply for any tank exceeds one gallon, or... extending from the calibrated zero reading to the lowest reading obtainable in level flight. ...
System for supporting a bundled tube fuel injector within a combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold
A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that ismore » in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.« less
The relationship of post-fire white ash cover to surface fuel consumption
Andrew T. Hudak; Roger D. Ottmar; Robert E. Vihnanek; Nolan W. Brewer; Alistair M. S. Smith; Penelope Morgan
2013-01-01
White ash results from the complete combustion of surface fuels, making it a logically simple retrospective indicator of surface fuel consumption. However, the strength of this relationship has been neither tested nor adequately demonstrated with field measurements. We measured surface fuel loads and cover fractions of white ash and four other surface materials (green...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmand, Maryam
2013-05-19
The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopymore » (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.« less
Using Fuel Cells to Increase the Range of Battery Electric Vehicles | News
| NREL Using Fuel Cells to Increase the Range of Battery Electric Vehicles Using Fuel Cells to potential cost-effective scenarios for using small fuel cell power units to increase the range of medium fuel for range extension when necessary. By using hydrogen as a range-extending fuel, the BEV can
Jiang, Xian; Yan, Xiaoxiao; Ren, Wangyu; Jia, Yufeng; Chen, Jianian; Sun, Dongmei; Xu, Lin; Tang, Yawen
2016-11-16
For direct formic acid fuel cells (DFAFCs), the dehydrogenation pathway is a desired reaction pathway, to boost the overall cell efficiency. Elaborate composition tuning and nanostructure engineering provide two promising strategies to design efficient electrocatalysts for DFAFCs. Herein, we present a facile synthesis of porous AgPt bimetallic nanooctahedra with enriched Pt surface (denoted as AgPt@Pt nanooctahedra) by a selective etching strategy. The smart integration of geometric and electronic effect confers a substantial enhancement of desired dehydrogenation pathway as well as electro-oxidation activity for the formic acid oxidation reaction (FAOR). We anticipate that the obtained nanocatalyst may hold great promises in fuel cell devices, and furthermore, the facile synthetic strategy demonstrated here can be extendable for the fabrication of other multicomponent nanoalloys with desirable morphologies and enhanced electrocatalytic performances.
Non-catalytic recuperative reformer
Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry
2015-12-22
A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Means, Gregory Scott; Boardman, Gregory Allen; Berry, Jonathan Dwight
A combustor for a gas turbine generally includes a radial flow fuel nozzle having a fuel distribution manifold, and a fuel injection manifold axially separated from the fuel distribution manifold. The fuel injection manifold generally includes an inner side portion, an outer side portion, and a plurality of circumferentially spaced fuel ports that extend through the outer side portion. A plurality of tubes provides axial separation between the fuel distribution manifold and the fuel injection manifold. Each tube defines a fluid communication path between the fuel distribution manifold and the fuel injection manifold.
Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.
1987-11-24
A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.
Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.
1989-10-03
A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.
Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.
1989-01-01
A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.
System and method for injecting fuel
Uhm, Jong Ho; Johnson, Thomas Edward
2012-12-04
According to various embodiments, a system includes a staggered multi-nozzle assembly. The staggered multi-nozzle assembly includes a first fuel nozzle having a first axis and a first flow path extending to a first downstream end portion, wherein the first fuel nozzle has a first non-circular perimeter at the first downstream end portion. The staggered multi-nozzle assembly also includes a second fuel nozzle having a second axis and a second flow path extending to a second downstream end portion, wherein the first and second downstream end portions are axially offset from one another relative to the first and second axes. The staggered multi-nozzle assembly further includes a cap member disposed circumferentially about at least the first and second fuel nozzles to assemble the staggered multi-nozzle assembly.
Method and apparatus for reading lased bar codes on shiny-finished fuel rod cladding tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldenfield, M.P.; Lambert, D.V.
1990-10-02
This patent describes, in a nuclear fuel rod identification system, a method of reading a bar code etched directly on a surface of a nuclear fuel rod. It comprises: defining a pair of light diffuser surfaces adjacent one another but in oppositely inclined relation to a beam of light emitted from a light reader; positioning a fuel rod, having a cylindrical surface portion with a bar code etched directly thereon, relative to the light diffuser surfaces such that the surfaces are disposed adjacent to and in oppositely inclined relation along opposite sides of the fuel rod surface portion and themore » fuel rod surface portion is aligned with the beam of light emitted from the light reader; directing the beam of light on the bar code on fuel rod cylindrical surface portion such that the light is reflected therefrom onto one of the light diffuser surfaces; and receiving and reading the reflected light from the bar code via the one of the light diffuser surfaces to the light reader.« less
Stack configurations for tubular solid oxide fuel cells
Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.
2010-08-31
A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.
Multiple tube premixing device
Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David
2013-08-13
The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.
Multiple tube premixing device
Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David
2012-12-11
The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.
Fuel properties of biodiesel/ultra-low sulfur diesel (ULSD) blends
USDA-ARS?s Scientific Manuscript database
Biodiesel is an alternative fuel and fuel extender easily derived from vegetable oil or animal fat. In 2006, the U.S. Environmental Protection Agency mandated that maximum sulfur content of diesel fuels be reduced to 15 ppm to protect catalysts employed in exhaust after-treatment devices. Processi...
Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyu; Gurney, Kevin R.
2011-07-01
Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are drivenmore » by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy« less
Laser ablation based fuel ignition
Early, J.W.; Lester, C.S.
1998-06-23
There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.
Laser ablation based fuel ignition
Early, James W.; Lester, Charles S.
1998-01-01
There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.
Fuel cell powered small unmanned aerial systems (UASs) for extended endurance flights
NASA Astrophysics Data System (ADS)
Chu, Deryn; Jiang, R.; Dunbar, Z.; Grew, Kyle; McClure, J.
2015-05-01
Small unmanned aerial systems (UASs) have been used for military applications and have additional potential for commercial applications [1-4]. For the military, these systems provide valuable intelligence, surveillance, reconnaissance and target acquisition (ISRTA) capabilities for units at the infantry, battalion, and company levels. The small UASs are light-weight, manportable, can be hand-launched, and are capable of carrying payloads. Currently, most small UASs are powered by lithium-ion or lithium polymer batteries; however, the flight endurance is usually limited less than two hours and requires frequent battery replacement. Long endurance small UAS flights have been demonstrated through the implementation of a fuel cell system. For instance, a propane fueled solid oxide fuel cell (SOFC) stack has been used to power a small UAS and shown to extend mission flight time. The research and development efforts presented here not only apply to small UASs, but also provide merit to the viability of extending mission operations for other unmanned systems applications.
Open end protection for solid oxide fuel cells
Zafred, Paolo R.; Dederer, Jeffrey T.; Tomlins, Gregory W.; Toms, James M.; Folser, George R.; Schmidt, Douglas S.; Singh, Prabhakar; Hager, Charles A.
2001-01-01
A solid oxide fuel cell (40) having a closed end (44) and an open end (42) operates in a fuel cell generator (10) where the fuel cell open end (42) of each fuel cell contains a sleeve (60, 64) fitted over the open end (42), where the sleeve (60, 64) extends beyond the open end (42) of the fuel cell (40) to prevent degradation of the interior air electrode of the fuel cell by fuel gas during operation of the generator (10).
FuelCalc: A Method for Estimating Fuel Characteristics
Elizabeth Reinhardt; Duncan Lutes; Joe Scott
2006-01-01
This paper describes the FuelCalc computer program. FuelCalc is a tool to compute surface and canopy fuel loads and characteristics from inventory data, to support fuel treatment decisions by simulating effects of a wide range of silvicultural treatments on surface fuels and canopy fuels, and to provide linkages to stand visualization, fire behavior and fire effects...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brownlow, D.T.; Escude, S.; Johanneson, O.H.
The 1500 Area at Kelly Air Force Base (AFB) was the site of a subsurface release of approximately 1,000 gallons of JP-4 jet fuel. Preliminary studies found evidence of hydrocarbon contamination extending from 10 feet below ground surface (bgs) down to the shallow water table, at 20 to 25 feet bgs. In June of 1993, Kelly AFB authorized the installation and evaluation of a bioventing system at this site to aid in the cleanup of the hydrocarbon contaminated soils. The purpose of the bioventing system is to aerate subsurface soils within and immediately surrounding the release area, in order tomore » stimulate in-situ biological activity and enhance the natural bioremediation capacity of the soil. Augmenting oxygen to the indigenous soil microorganisms promotes the aerobic metabolism of fuel hydrocarbons in the soil. In vadose zone soils exhibiting relatively good permeability, bioventing has proven to be a highly cost effective remediation technology for treating fuel contaminated soils. In November, 1993, a Start-Up Test program consisting of an In-Situ Respiration Test (ISRT) and an Air Permeability Test was performed at the 1500 Area Spill Site.« less
Post-fire surface fuel dynamics in California forests across three burn severity classes
Bianca N. I. Eskelson; Vicente J. Monleon
2018-01-01
Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...
Risse, John T.; Taggart, James C.
1976-01-01
A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.
77 FR 75676 - Standard Review Plan for Review of Fuel Cycle Facility License Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0220] Standard Review Plan for Review of Fuel Cycle... Review of a License Application for a Fuel Cycle Facility.'' The NRC is extending the public comment... of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards. [FR Doc. 2012...
14 CFR 27.1553 - Fuel quantity indicator.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel quantity indicator. 27.1553 Section 27... § 27.1553 Fuel quantity indicator. If the unusable fuel supply for any tank exceeds one gallon, or five percent of the tank capacity, whichever is greater, a red arc must be marked on its indicator extending...
14 CFR 27.1553 - Fuel quantity indicator.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel quantity indicator. 27.1553 Section 27... § 27.1553 Fuel quantity indicator. If the unusable fuel supply for any tank exceeds one gallon, or five percent of the tank capacity, whichever is greater, a red arc must be marked on its indicator extending...
49 CFR 393.65 - All fuel systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...
49 CFR 393.65 - All fuel systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...
49 CFR 393.65 - All fuel systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...
49 CFR 393.65 - All fuel systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... towing it while the combination of vehicles is in motion; and (6) No part of the fuel system of a bus... enclosed in a protective housing must not extend more than 2 inches below the fuel tank or its sump. Diesel...
Metcalf, H.E.; Johnson, H.W.
1961-04-01
BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.
Micro thrust and heat generator
Garcia, Ernest J.
1998-01-01
A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).
Micro thrust and heat generator
Garcia, E.J.
1998-11-17
A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.
NASA Astrophysics Data System (ADS)
Wiegand, Andrew L.
The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and cooling requirements.
2008-05-16
VANDENBERG AIR FORCE BASE, Calif. – Another look at the Ocean Surface Topography Mission, or OSTM/Jason 2, spacecraft from the opposite side before its fueling, encapsulation and transfer to the launch pad. The launch of the OSTM/Jason 2 aboard a Delta II rocket is scheduled for Friday, June 20, from Vandenberg Air Force Base in California. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity. Photo credit: NASA
2008-05-16
VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason 2, spacecraft is being wrapped, or bagged, before fueling, encapsulation and transfer to the launch pad. The launch of the OSTM/Jason 2 aboard a Delta II rocket is scheduled for Friday, June 20, from Vandenberg Air Force Base in California. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity. Photo credit: NASA
Hydrocarbon reforming catalyst material and configuration of the same
Singh, Prabhakar; Shockling, Larry A.; George, Raymond A.; Basel, Richard A.
1996-01-01
A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.
Hydrocarbon reforming catalyst material and configuration of the same
Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.
1996-06-18
A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.
Advanced technology for extended endurance alkaline fuel cells
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Martin, R. A.
1987-01-01
Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.
Post-fire logging reduces surface woody fuels up to four decades following wildfire
David W. Peterson; Erich Kyle Dodson; Richy J. Harrod
2015-01-01
Severe wildfires create pulses of dead trees that influence future fuel loads, fire behavior, and fire effects as they decay and deposit surface woody fuels. Harvesting fire-killed trees may reduce future surface woody fuels and related fire hazards, but the magnitude and timing of post-fire logging effects on woody fuels have not been fully assessed. To address this...
Numerical modeling of laboratory-scale surface-to-crown fire transition
NASA Astrophysics Data System (ADS)
Castle, Drew Clayton
Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed ignition which closely matched the trends reported in the laboratory experiments.
System and method having multi-tube fuel nozzle with differential flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Johnson, Thomas Edward; Berry, Jonathan Dwight
A system includes a multi-tube fuel nozzle with a fuel nozzle body and a plurality of tubes. The fuel nozzle body includes a nozzle wall surrounding a chamber. The plurality of tubes extend through the chamber, wherein each tube of the plurality of tubes includes an air intake portion, a fuel intake portion, and an air-fuel mixture outlet portion. The multi-tube fuel nozzle also includes a differential configuration of the air intake portions among the plurality of tubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Erik
Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.
Aarons, Jolyon; Jones, Lewys; Varambhia, Aakash; MacArthur, Katherine E; Ozkaya, Dogan; Sarwar, Misbah; Skylaris, Chris-Kriton; Nellist, Peter D
2017-07-12
Many studies of heterogeneous catalysis, both experimental and computational, make use of idealized structures such as extended surfaces or regular polyhedral nanoparticles. This simplification neglects the morphological diversity in real commercial oxygen reduction reaction (ORR) catalysts used in fuel-cell cathodes. Here we introduce an approach that combines 3D nanoparticle structures obtained from high-throughput high-precision electron microscopy with density functional theory. Discrepancies between experimental observations and cuboctahedral/truncated-octahedral particles are revealed and discussed using a range of widely used descriptors, such as electron-density, d-band centers, and generalized coordination numbers. We use this new approach to determine the optimum particle size for which both detrimental surface roughness and particle shape effects are minimized.
Premixed direct injection nozzle
Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC
2011-02-15
An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.
Tian, Pei; Liu, Di; Li, Kexun; Yang, Tingting; Wang, Junjie; Liu, Yi; Zhang, Song
2017-11-01
Metal-organic framework Cu 3 (BTC) 2 , prepared by an easy hydrothermal method, was used as the oxygen-based catalyst in microbial fuel cell (MFC). The maximum power density of Cu 3 (BTC) 2 modified air-cathode MFC was 1772±15mWm -2 , almost 1.8 times higher than the control. BET results disclosed high specific surface area of 2159.7m 2 g -1 and abundant micropores structure. Regular octahedron and porous surface of Cu 3 (BTC) 2 were observed in SEM. XPS testified the existence of divalent copper in the extended 3D frameworks, which importantly acted as the Lewis-acid sites or redox centers in ORR. Additionally, the total resistance decreased by 42% from 17.60 to 10.24Ω compared with bare AC electrode. The rotating disk electrode test results showed a four-electron transfer pathway for Cu 3 (BTC) 2 , which was crucial for electrochemical catalytic activity. All the structural and electrochemical advantages make Cu 3 (BTC) 2 a promising catalyst for ORR in MFC. Copyright © 2017. Published by Elsevier Ltd.
Erin K. Noonan-Wright; Nicole M. Vaillant; Alicia L. Reiner
2014-01-01
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after...
Thomson, Wallace B.
2004-03-16
A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, C.A.W.; Watts, K.C.
Engine results using biofuels have varied considerably in the reported literature. This article addresses two potential sources of this variation, atomization differences and impurities due to lack of quality control during production. Atomization is the first process encountered during the combustion of fuels in a compression ignition engine and is largely determined by the fuel's viscosity and surface tension. Previous work using five experimentally produced methyl ester biodiesel fuels showed that the viscosity and surface tension could be predicted from their fatty acid ester composition, and the atomization characteristics in turn could be predicted from their viscosity and surface tension.more » This article utilizes the results of that work to give a quantitative comparison of the atomization characteristics of fifteen biodiesel fuel types using the fuel's viscosity and surface tension, predicted directly from the fatty acid composition of the fuels. Except for coconut and rapeseed biodiesel fuels, all of the rest of the 15 biodiesel fuels had similar atomization characteristics. Since the most likely contaminant in the fuel from the processing was residual glycerides, their effect on viscosity and surface tension was studied experimentally and their effect on the atomization characteristics was computed.« less
Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells
NASA Technical Reports Server (NTRS)
Kinder, James D.
2005-01-01
Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.
2011-02-04
Solid Oxide fuel cell and Lithium Ion battery (~150 watts) • Enables extended mission durations • 12 hours of full power; 30 hours of silent watch...Hybrid fuel cell system is designed to replace the existing lead-acid batteries with an upgraded Solid Oxide fuel cell and Lithium Ion battery (~250
Nelson, Kellen N; Turner, Monica G; Romme, William H; Tinker, Daniel B
2016-12-01
Escalating wildfire in subalpine forests with stand-replacing fire regimes is increasing the extent of early-seral forests throughout the western USA. Post-fire succession generates the fuel for future fires, but little is known about fuel loads and their variability in young post-fire stands. We sampled fuel profiles in 24-year-old post-fire lodgepole pine (Pinus contorta var. latifolia) stands (n = 82) that regenerated from the 1988 Yellowstone Fires to answer three questions. (1) How do canopy and surface fuel loads vary within and among young lodgepole pine stands? (2) How do canopy and surface fuels vary with pre- and post-fire lodgepole pine stand structure and environmental conditions? (3) How have surface fuels changed between eight and 24 years post-fire? Fuel complexes varied tremendously across the landscape despite having regenerated from the same fires. Available canopy fuel loads and canopy bulk density averaged 8.5 Mg/ha (range 0.0-46.6) and 0.24 kg/m 3 (range: 0.0-2.3), respectively, meeting or exceeding levels in mature lodgepole pine forests. Total surface-fuel loads averaged 123 Mg/ha (range: 43-207), and 88% was in the 1,000-h fuel class. Litter, 1-h, and 10-h surface fuel loads were lower than reported for mature lodgepole pine forests, and 1,000-h fuel loads were similar or greater. Among-plot variation was greater in canopy fuels than surface fuels, and within-plot variation was greater than among-plot variation for nearly all fuels. Post-fire lodgepole pine density was the strongest positive predictor of canopy and fine surface fuel loads. Pre-fire successional stage was the best predictor of 100-h and 1,000-h fuel loads in the post-fire stands and strongly influenced the size and proportion of sound logs (greater when late successional stands had burned) and rotten logs (greater when early successional stands had burned). Our data suggest that 76% of the young post-fire lodgepole pine forests have 1,000-h fuel loads that exceed levels associated with high-severity surface fire potential, and 63% exceed levels associated with active crown fire potential. Fire rotations in Yellowstone National Park are predicted to shorten to a few decades and this prediction cannot be ruled out by a lack of fuels to carry repeated fires. © 2016 by the Ecological Society of America.
Bright, Benjamin C.; Hudak, Andrew T.; Meddens, Arjan J.H.; Hawbaker, Todd J.; Briggs, Jenny S.; Kennedy, Robert E.
2017-01-01
Wildfire behavior depends on the type, quantity, and condition of fuels, and the effect that bark beetle outbreaks have on fuels is a topic of current research and debate. Remote sensing can provide estimates of fuels across landscapes, although few studies have estimated surface fuels from remote sensing data. Here we predicted and mapped field-measured canopy and surface fuels from light detection and ranging (lidar) and Landsat time series explanatory variables via random forest (RF) modeling across a coniferous montane forest in Colorado, USA, which was affected by mountain pine beetles (Dendroctonus ponderosae Hopkins) approximately six years prior. We examined relationships between mapped fuels and the severity of tree mortality with correlation tests. RF models explained 59%, 48%, 35%, and 70% of the variation in available canopy fuel, canopy bulk density, canopy base height, and canopy height, respectively (percent root-mean-square error (%RMSE) = 12–54%). Surface fuels were predicted less accurately, with models explaining 24%, 28%, 32%, and 30% of the variation in litter and duff, 1 to 100-h, 1000-h, and total surface fuels, respectively (%RMSE = 37–98%). Fuel metrics were negatively correlated with the severity of tree mortality, except canopy base height, which increased with greater tree mortality. Our results showed how bark beetle-caused tree mortality significantly reduced canopy fuels in our study area. We demonstrated that lidar and Landsat time series data contain substantial information about canopy and surface fuels and can be used for large-scale efforts to monitor and map fuel loads for fire behavior modeling at a landscape scale.
Enhanced methanol utilization in direct methanol fuel cell
Ren, Xiaoming; Gottesfeld, Shimshon
2001-10-02
The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.
Reduced size fuel cell for portable applications
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor); Frank, Harvey A. (Inventor)
2004-01-01
A flat pack type fuel cell includes a plurality of membrane electrode assemblies. Each membrane electrode assembly is formed of an anode, an electrolyte, and an cathode with appropriate catalysts thereon. The anode is directly into contact with fuel via a wicking element. The fuel reservoir may extend along the same axis as the membrane electrode assemblies, so that fuel can be applied to each of the anodes. Each of the fuel cell elements is interconnected together to provide the voltage outputs in series.
Fuel Regression Characteristics of Cascaded Multistage Impinging-Jet (CAMUI) Type Hybrid Rocket
NASA Astrophysics Data System (ADS)
Itoh, Mitsunori; Maeda, Takenori; Kakikura, Akihito; Kaneko, Yudai; Mori, Kazuhiro; Nakashima, Takuji; Wakita, Masashi; Uematsu, Tsutomu; Totani, Tsuyoshi; Oshima, Nobuyuki; Nagata, Harunori
A series of lab-scale firing tests was conducted to investigate the fuel regression characteristics of Cascaded Multistage Impinging-jet (CAMUI) type hybrid rocket. The alternative fuel grain used in this rocket consists of a number of cylindrical fuel blocks with two ports, which were aligned along the axis of the combustion chamber with a small gap. The ports are aligned staggered with respect to ones of neighboring blocks so that the combustion gas flow impinges on the forward-end surface of each block. In this fuel grain, forward-end surfaces, back-end surfaces and ports of fuel blocks contribute as burning surfaces. Polyethylene and LOX were used as a propellant, and the tests were conducted at the chamber pressure of 0.5 2MPa and the mass flux of 50 200kg/m2s. Main results obtained in this study are in the followings: The regression rate of each surface was obtained as a function of the propellant mass flux and local equivalent ratio of the combustion gas. At back-end surfaces the regression rate has a high sensitivity on the gap height of neighboring fuel blocks. These fuel regression characteristics will contribute as fundamental data to improve the optimum design of the fuel grain.
Liu, Zhi-Hua; Chang, Yu; Chen, Hong-Wei; Zhou, Rui; Jing, Guo-Zhi; Zhang, Hong-Xin; Zhang, Chang-Meng
2008-03-01
By using geo-statistics and based on time-lag classification standard, a comparative study was made on the land surface dead combustible fuels in Huzhong forest area in Great Xing'an Mountains. The results indicated that the first level land surface dead combustible fuel, i. e., 1 h time-lag dead fuel, presented stronger spatial auto-correlation, with an average of 762.35 g x m(-2) and contributing to 55.54% of the total load. Its determining factors were species composition and stand age. The second and third levels land surface dead combustible fuel, i. e., 10 h and 100 h time-lag dead fuels, had a sum of 610.26 g x m(-2), and presented weaker spatial auto-correlation than 1 h time-lag dead fuel. Their determining factor was the disturbance history of forest stand. The complexity and heterogeneity of the factors determining the quality and quantity of forest land surface dead combustible fuels were the main reasons for the relatively inaccurate interpolation. However, the utilization of field survey data coupled with geo-statistics could easily and accurately interpolate the spatial pattern of forest land surface dead combustible fuel loads, and indirectly provide a practical basis for forest management.
Energy Efficiency and Renewable Energy Legislation in the 109th Congress
2006-08-14
law November 19. H.R. 2498 ( Hulshof )/S. 1076 (Lincoln) Extends through December 31, 2010, the tax credit for biodiesel used as fuel and the excise...Resources. H.R. 5650 ( Hulshof ) Renewable Fuels and Energy Independence Promotion Act of 2006. The bill would make permanent certain tax incentives for...Committee on Armed Services. Includes $60 million authorization. Reported (S.Rept. 109-69) May 17. S. 1076 (Lincoln)/H.R. 2498 ( Hulshof ) Extends
A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.
Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong
2015-01-01
The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.
A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles
Hwang, Jenn-Jiang; Lin, Chih-Hong
2015-01-01
The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility. PMID:26236771
Extended duration orbiter study: CO2 removal and water recovery
NASA Technical Reports Server (NTRS)
Marshall, R. D.; Ellis, G. S.; Schubert, F. H.; Wynveen, R. A.
1979-01-01
Two electrochemical depolarized carbon dioxide concentrator subsystems were evaluated against baseline lithium hydroxide for (1) the baseline orbiter when expanded to accommodate a crew of seven (mission option one), (2) an extended duration orbiter with a power extension package to reduce fuel cell expendables (mission option two), and (3) an extended duration orbiter with a full capability power module to eliminate fuel cell expendables (mission option three). The electrochemical depolarized carbon dioxide concentrator was also compared to the solid amine regenerable carbon dioxide removal concept. Water recovery is not required for Mission Option One since sufficient water is generated by the fuel cells. The vapor compression distillation subsystem was evaluated for mission option two and three only. Weight savings attainable using the vapor compression distillation subsystem for water recovery versus on-board water storage were determined. Combined carbon dioxide removal and water recovery was evaluated to determine the effect on regenerable carbon dioxide removal subsystem selection.
Surface fuel litterfall and decomposition in the northern Rocky Mountains, U.S.A.
Robert E. Keane
2008-01-01
Surface fuel deposition and decomposition rates are important to fire management and research because they can define the longevity of fuel treatments in time and space and they can be used to design, build, test, and validate complex fire and ecosystem models useful in evaluating management alternatives. We determined rates of surface fuel litterfall and decomposition...
Joe H. Scott; Robert E. Burgan
2005-01-01
This report describes a new set of standard fire behavior fuel models for use with Rothermel's surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.
Radial lean direct injection burner
Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier
2012-09-04
A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.
STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR
Busey, H.M.
1958-06-01
A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.
Liquid Hydrogen Fuel System for Small Unmanned Air Vehicles
2013-01-07
the Office of Naval Research for support of this research. VII. References 1 R. Stroman, J.C. Kellogg, K. Swider-Lyons, “Testing of a PEM Fuel Cell ...energy storage system. The Naval Research Laboratory has been extending the duration of electric UAVs through the use of hydrogen fuel cells , which...take advantage of both the high energy of H2 fuel in combination with the high efficiency (~50%) of polymer fuel cells . In this paper, we describe
Fuel handling apparatus for a nuclear reactor
Hawke, Basil C.
1987-01-01
Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2013-01-01
Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel...
NASA Technical Reports Server (NTRS)
Mcelroy, J. F.
1990-01-01
Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.
An Innovative Carbonate Fuel Cell Matrix, Abstract #188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi
2015-05-28
The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix designmore » that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.« less
Alternative Fuels Data Center: Natural Gas Vehicle Maintenance and Safety
and delivery systems for road vehicles. Oil-Change Intervals Cleaner-burning fuels have a direct impact on extending the useful life of the engine's lubricating oil. In conventionally fueled vehicles , engine oil degrades as a result of soot and other impurities from the combustion process that get
TRACE/PARCS Analysis of ATWS with Instability for a MELLLA+BWR/5
L. Y. Cheng; Baek, J. S.; Cuadra, A.; ...
2016-06-06
A TRACE/PARCS model has been developed to analyze anticipated transient without SCRAM (ATWS) events for a boiling water reactor (BWR) operating in the maximum extended load line limit analysis-plus (MELLLA+) expanded operating domain. The MELLLA+ domain expands allowable operation in the power/flow map of a BWR to low flow rates at high power conditions. Such operation exacerbates the likelihood of large amplitude power/flow oscillations during certain ATWS scenarios. The analysis shows that large amplitude power/flow oscillations, both core-wide and out-of-phase, arise following the establishment of natural circulation flow in the reactor pressure vessel (RPV) after the trip of the recirculationmore » pumps and an increase in core inlet subcooling. The analysis also indicates a mechanism by which the fuel may experience heat-up that could result in localized fuel damage. TRACE predicts the heat-up to occur when the cladding surface temperature exceeds the minimum stable film boiling temperature after periodic cycles of dryout and rewet; and the fuel becomes “locked” into a film boiling regime. Further, the analysis demonstrates the effectiveness of the simulated manual operator actions to suppress the instability.« less
In situ X-ray probing reveals fingerprints of surface platinum oxide.
Friebel, Daniel; Miller, Daniel J; O'Grady, Christopher P; Anniyev, Toyli; Bargar, John; Bergmann, Uwe; Ogasawara, Hirohito; Wikfeldt, Kjartan Thor; Pettersson, Lars G M; Nilsson, Anders
2011-01-07
In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.
Physical and chemical behavior of flowing endothermic jet fuels
NASA Astrophysics Data System (ADS)
Ward, Thomas Arthur
Hydrocarbon fuels have been used as cooling media for aircraft jet engines for decades. However, modern aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through a series of pyrolytic chemical reactions. However, many of the physical and chemical processes involved in endothermic fuel degradation are not well understood. The purpose of this dissertation is to study different characteristics of endothermic fuels using experiments and computational models. In the first section, data from three flow experiments using heated Jet-A fuel and additives were analyzed (with the aid of CFD calculations) to study the effects of treated surfaces on surface deposition. Surface deposition is the primary impediment in creating an operational endothermic fuel heat exchanger system, because deposits can obstruct fuel pathways causing a catastrophic system failure. As heated fuel flows through a fuel system, trace species within the fuel react with dissolved O2 to form surface deposits. At relatively higher fuel temperatures, the dissolved O2 is depleted, and pyrolytic chemistry becomes dominant (at temperatures greater than ˜500 °C). In the first experiment, the dissolved O2 consumption of heated fuel was measured on different surface types over a range of temperatures. It is found that use of treated tubes significantly delays oxidation of the fuel. In the second experiment, the treated length of tubing was progressively increased, which varied the characteristics of the thermal-oxidative deposits formed. In the third experiment, pyrolytic surface deposition in either fully treated or untreated tubes is studied. It is found that the treated surface significantly reduced the formation of surface deposits for both thermal oxidative and pyrolytic degradation mechanisms. Moreover, it is found that the chemical reactions resulting in pyrolytic deposition on the untreated surface are more sensitive to pressure level than those causing pyrolytic deposition on the treated surface. The second section describes the development of a two-dimensional computational model of the heat and mass transport associated with a flowing fuel using a unique global chemical kinetics model. This model calculates the changing flow properties of a supercritical reacting fuel by use of experimentally derived proportional product distributions. The third section studies the effects of pressure on flowing; mildly-cracked, supercritical n-decane. The experimental results are studied with the aid of the computational model described in section 2, expanded to deal with variable pressures. The experiments indicate that increasing pressure enhances the processes in which n-decane converts to (C5--C9) n-alkane products instead of decomposing into lower molecular weight products (C1--C4): Increasing pressure also increases the overall conversion rate of supercritical n-decane flowing through a reactor. Computational modeling of the experiment shows how the flow properties are influenced by pressure. (Abstract shortened by UMI.)
Assessment/Review of Methanol Technology and Utilization as a Fuel.
1982-07-01
1981. 32. Owens, E.C., Naegeli , D.W., "Use of Low Molecular Weight Alcohols as Diesel Fuel Extenders (Proposal)," U.S. Army Fuels and Lubricants...34Potential Funding of R&D on Use of Alcohol as Aircraft Fuel," February 4, 1981. 38. Naegeli , D.W., "Dissociated Methanol as an Engine Fuel," Southwest...825-828, 1974. 41. Marbach, H.W., Jr., Owens, E.C., Ryan, T.W., Frame, E.A., Naegeli , D.W., "Evaluation of the effects of Alcohol Fuels on Spark
NASA Technical Reports Server (NTRS)
Walker, R. D., Jr.
1973-01-01
Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.
West, J.M.; Schumar, J.F.
1958-06-10
Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.
FUEL ELEMENT FOR NUCLEAR REACTORS
Bassett, C.H.
1961-05-16
A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for a motor vehicle diesel fuel volume baseline for the purpose of extending their gasoline sulfur... a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the purpose of... duration of the GPA standards under § 80.540 must apply for a motor vehicle diesel fuel volume baseline by...
Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts
2015-01-01
Conspectus Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this Account, we demonstrate that the sol–gel process represents a powerful “bottom-up” strategy for creating nanostructured materials that tackles the problems mentioned above. Aerogels are unique solid materials with ultralow densities, large open pores, and ultimately high inner surface areas. They magnify the specific properties of nanomaterials to the macroscale via self-assembly, which endow them with superior properties. Despite numerous investigations of metal oxide aerogels, the investigation of metal aerogels is in the early stage. Recently, aerogels including Fe, Co, Ni, Sn, and Cu have been obtained by nanosmelting of hybrid polymer–metal oxide aerogels. We report here exclusively on mono-, bi- and multimetallic noble metal aerogels consisting of Ag, Au, Pt, and Pd and their application as electrocatalysts. PMID:25611348
A fully coupled 3D transport model in SPH for multi-species reaction-diffusion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adami, Stefan; Hu, X. Y.; Adams, N. A.
2011-08-23
Abstract—In this paper we present a fully generalized transport model for multiple species in complex two and threedimensional geometries. Based on previous work [1] we have extended our interfacial reaction-diffusion model to handle arbitrary numbers of species allowing for coupled reaction models. Each species is tracked independently and we consider different physics of a species with respect to the bulk phases in contact. We use our SPH model to simulate the reaction-diffusion problem on a pore-scale level of a solid oxide fuel cell (SOFC) with special emphasize on the effect of surface diffusion.
U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage ...
U.S. Naval Base, Pearl Harbor, Red Hill Underground Fuel Storage System, Linear underground system extending from North Road to Icarus Way, Joint Base Pearl Harbor-Hickam, Honolulu, Honolulu County, HI
Methods of conditioning direct methanol fuel cells
Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon
2005-11-08
Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.
High-freezing-point fuel studies
NASA Technical Reports Server (NTRS)
Tolle, F. F.
1980-01-01
Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.
Brett Davis; Jan van Wagtendonk; Jen Beck; Kent van Wagtendonk
2009-01-01
Surface fuels data are of critical importance for supporting fire incident management, risk assessment, and fuel management planning, but the development of surface fuels data can be expensive and time consuming. The data development process is extensive, generally beginning with acquisition of remotely sensed spatial data such as aerial photography or satellite...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, A.P.; Crowther, R.L. Jr.
1992-02-18
This patent describes improvement in a boiling water reactor core having a plurality of vertically upstanding fuel bundles; each fuel bundle containing longitudinally extending sealed rods with fissile material therein; the improvement comprises the fissile material including a mixture of uranium and recovered plutonium in rods of the fuel bundle at locations other than the corners of the fuel bundle; and, neutron absorbing material being located in rods of the fuel bundle at rod locations adjacent the corners of the fuel bundles whereby the neutron absorbing material has decreased shielding from the plutonium and maximum exposure to thermal neutrons formore » shaping the cold reactivity shutdown zone in the fuel bundle.« less
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Appropriate types of thinning and surface fuel treatments are clearly useful in reducing surface and crown fire hazards under a wide range of fuels and topographic situations. This paper provides well-established scientific principles and simulation tools that can be used to adjust fuel treatments to attain specific risk levels.
Robert E. Keane; Laura J. Dickinson
2007-01-01
Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...
Yeast surface display of dehydrogenases in microbial fuel-cells.
Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital
2016-12-01
Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Fuel cell membranes and crossover prevention
Masel, Richard I [Champaign, IL; York, Cynthia A [Newington, CT; Waszczuk, Piotr [White Bear Lake, MN; Wieckowski, Andrzej [Champaign, IL
2009-08-04
A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.
NASA Astrophysics Data System (ADS)
Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich
2016-01-01
Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.
NASA Technical Reports Server (NTRS)
Cheung, Albert K. (Inventor); Hoke, James B. (Inventor); McKinney, Randal G. (Inventor)
2017-01-01
A combustor is provided. The combustor may include an axial fuel injection system, and a radial fuel injection system aft of the axial fuel injection system. The axial fuel injection system includes a mixer having a bluff body at an exit port of the mixer, and a fuel injector disposed within the mixer. A fuel and air mixer is also provided and comprises an outer housing with an exit port and a bluff body. The bluff body extends across the exit port of the outer housing. A fuel injection system is also provided. The systems comprise a mixer having a bluff body at an exit port of the mixer and a fuel injector disposed within the mixer.
Yang, Wulin; Rossi, Ruggero; Tian, Yushi; Kim, Kyoung-Yeol; Logan, Bruce E
2018-02-01
Microbial fuel cell (MFC) cathodes rapidly foul when treating domestic wastewater, substantially reducing power production over time. Here a wipe separator was chemically bonded to an activated carbon air cathode using polyvinylidene fluoride (PVDF) to mitigate cathode fouling and extend cathode performance over time. MFCs with separator-bonded cathodes produced a maximum power density of 190 ± 30 mW m -2 after 2 months of operation using domestic wastewater, which was ∼220% higher than controls (60 ± 50 mW m -2 ) with separators that were not chemically bonded to the cathode. Less biomass (protein) was measured on the bonded separator surface than the non-bonded separator, indicating chemical bonding reduced external bio-fouling. Salt precipitation that contributed to internal fouling was also reduced using separator-bonded cathodes. Overall, the separator-bonded cathodes showed better performance over time by mitigating both external bio-fouling and internal salt fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electrophoretic deposition of bi-layered LSM/LSM-YSZ cathodes for solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Itagaki, Yoshiteru; Watanabe, Shinji; Yamaji, Tsuyoshi; Asamoto, Makiko; Yahiro, Hidenori; Sadaoka, Yoshihiko
2012-09-01
Bi-layered cathodes with the LSM/LSM-YSZ structure for solid oxide fuel cells were successfully formed on the carbon-sputtered surface of a YSZ sheet by electrophoretic deposition (EPD). The thicknesses of the first layer of LSM-YSZ (LY) and the second layer of La0.8Sr0.2MnO3 (LSM) could be controlled by adjusting the deposition time in the EPD process. The cathodic properties of the bi-layered structures were superior to those of the mono-layered structures, and were dependent on the thickness of each layer. Decreasing the thickness of the first layer and increasing that of the second layer tended to reduce both polarization and ohmic resistances. The optimal thickness of the first layer at the operating temperature of 600 °C was 4 μm, suggesting that an effective three-phase boundary was extended from the interface between the electrolyte and cathode film to around 4 μm thickness.
Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi
2014-09-17
Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.
NASA Astrophysics Data System (ADS)
Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi
2014-09-01
Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.
Fuel cell anode configuration for CO tolerance
Uribe, Francisco A.; Zawodzinski, Thomas A.
2004-11-16
A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.
Stabilizing platinum in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Remick, R. J.
1982-01-01
Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.
Repair Types, Procedures - Part 2
2010-05-01
completely severed or severely damaged fuel lines, cut away the damaged section and use a piece of fuel- resistant rubber hose with an inner diameter...equal to the existing fuel line outer diameter to replace the damaged section. Ensure the repair hose extends far enough on each side of the damage to...accommodate two hose clamps, oriented 180° from one another. Flare the ends of the existing fuel line to improve the seal and prevent leakage
Inviscid Analysis of Extended Formation Flight
NASA Technical Reports Server (NTRS)
Kless, James; Aftosmis, Michael J.; Ning, Simeon Andrew; Nemec, Marian
2012-01-01
Flying airplanes in extended formations, with separation distances of tens of wingspans, significantly improves safety while maintaining most of the fuel savings achieved in close formations. The present study investigates the impact of roll trim and compressibility at fixed lift coefficient on the benefits of extended formation flight. An Euler solver with adjoint-based mesh refinement combined with a wake propagation model is used to analyze a two-body echelon formation at a separation distance of 30 spans. Two geometries are examined: a simple wing and a wing-body geometry. Energy savings, quantified by both formation drag fraction and span efficiency factor, are investigated at subsonic and transonic speeds for a matrix of vortex locations. The results show that at fixed lift and trimmed for roll, the optimal location of vortex impingement is about 10% inboard of the trailing airplane s wing-tip. Interestingly, early results show the variation in drag fraction reduction is small in the neighborhood of the optimal position. Over 90% of energy benefits can be obtained with a 5% variation in transverse and 10% variation in crossflow directions. Early results suggest control surface deflections required to achieve trim reduce the benefits of formation flight by 3-5% at subsonic speeds. The final paper will include transonic effects and trim on extended formation flight drag benefits.
The Rothermel surface fire spread model and associated developments: A comprehensive explanation
Patricia L. Andrews
2018-01-01
The Rothermel surface fire spread model, with some adjustments by Frank A. Albini in 1976, has been used in fire and fuels management systems since 1972. It is generally used with other models including fireline intensity and flame length. Fuel models are often used to define fuel input parameters. Dynamic fuel models use equations for live fuel curing. Models have...
X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abney, Carter W.; Nan, Yue; Tavlarides, Lawrence L.
Capture of radioactive iodine is a significant consideration during reprocessing of spent nuclear fuel and disposal of legacy wastes. While silver-exchanged mordenite (AgZ) is widely regarded as a benchmark material for assessing iodine adsorption performance, previous research efforts have largely focused on bulk material properties rather than the underpinning molecular interactions that achieve effective iodine capture. As a result, the fundamental understanding necessary to identify and mitigate deactivation pathways for the recycle of AgZ is not available. In this paper, we applied X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate AgZ following activation, adsorption of iodine, regeneration, and recycle, observingmore » no appreciable degradation in performance due to the highly controlled conditions under which the AgZ was maintained. Fits of the extended XAFS (EXAFS) data reveal complete formation of Ag 0 nanoparticles upon treatment with H 2, and confirm the formation of α-AgI within the mordenite channels in addition to surface γ/β-AgI nanoparticles following iodine exposure. Analysis of the nanoparticle size and fractional composition of α-AgI to γ/β-AgI supports ripening of surface nanoparticles as a function of recycle. Finally, this work provides a foundation for future investigation of AgZ deactivation under conditions relevant to spent nuclear fuel reprocessing.« less
X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite
Abney, Carter W.; Nan, Yue; Tavlarides, Lawrence L.
2017-03-29
Capture of radioactive iodine is a significant consideration during reprocessing of spent nuclear fuel and disposal of legacy wastes. While silver-exchanged mordenite (AgZ) is widely regarded as a benchmark material for assessing iodine adsorption performance, previous research efforts have largely focused on bulk material properties rather than the underpinning molecular interactions that achieve effective iodine capture. As a result, the fundamental understanding necessary to identify and mitigate deactivation pathways for the recycle of AgZ is not available. In this paper, we applied X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate AgZ following activation, adsorption of iodine, regeneration, and recycle, observingmore » no appreciable degradation in performance due to the highly controlled conditions under which the AgZ was maintained. Fits of the extended XAFS (EXAFS) data reveal complete formation of Ag 0 nanoparticles upon treatment with H 2, and confirm the formation of α-AgI within the mordenite channels in addition to surface γ/β-AgI nanoparticles following iodine exposure. Analysis of the nanoparticle size and fractional composition of α-AgI to γ/β-AgI supports ripening of surface nanoparticles as a function of recycle. Finally, this work provides a foundation for future investigation of AgZ deactivation under conditions relevant to spent nuclear fuel reprocessing.« less
CO Emission from an Impinging Non-Premixed Flame
Chien, Y.C.; Escofet-Martin, D.; Dunn-Rankin, D.
2017-01-01
Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels. While CO can be desirable in some syngas processes, it is a dangerous emission from fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction prevents complete oxidation of fuel to carbon dioxide and water, particularly when the reaction is interrupted by interaction with relatively cool solid boundaries. This research examines the physico-thermo-chemical processes responsible for carbon monoxide release from a small laminar non-premixed methane/air flame impinging on a nearby surface. We measure the changes in CO emission as correlated with variations in flame structure observed using planar laser induced fluorescence (PLIF of OH and 2-photon CO), and two-line OH PLIF thermometry, as a function of burner-to-plate distance. In particular, this work combines the use of OH and CO PLIF, and PLIF thermometry to describe the relative locations of the CO rich region, the peak heat release zone as indicated by chemiluminescence and OH gradients, and the extended oxidative zone in the impinging flames. The results show that CO release correlates strongly with stagnating flow-driven changes in the location and extent of high concentration regions of OH in surface-impinging diffusion flames. PMID:28989179
NASA Astrophysics Data System (ADS)
Ziehn, T.; Nickless, A.; Rayner, P. J.; Law, R. M.; Roff, G.; Fraser, P.
2014-09-01
This paper describes the generation of optimal atmospheric measurement networks for determining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian inverse modelling framework to calculate the relationship between weekly surface fluxes, comprising contributions from the biosphere and fossil fuel combustion, and hourly concentration observations for the Australian continent. Meteorological driving fields are provided by the regional version of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km resolution at an hourly timescale. Prior uncertainties are derived on a weekly timescale for biosphere fluxes and fossil fuel emissions from high-resolution model runs using the Community Atmosphere Biosphere Land Exchange (CABLE) model and the Fossil Fuel Data Assimilation System (FFDAS) respectively. The influence from outside the modelled domain is investigated, but proves to be negligible for the network design. Existing ground-based measurement stations in Australia are assessed in terms of their ability to constrain local flux estimates from the land. We find that the six stations that are currently operational are already able to reduce the uncertainties on surface flux estimates by about 30%. A candidate list of 59 stations is generated based on logistic constraints and an incremental optimisation scheme is used to extend the network of existing stations. In order to achieve an uncertainty reduction of about 50%, we need to double the number of measurement stations in Australia. Assuming equal data uncertainties for all sites, new stations would be mainly located in the northern and eastern part of the continent.
Numerical study of supersonic combustors by multi-block grids with mismatched interfaces
NASA Technical Reports Server (NTRS)
Moon, Young J.
1990-01-01
A three dimensional, finite rate chemistry, Navier-Stokes code was extended to a multi-block code with mismatched interface for practical calculations of supersonic combustors. To ensure global conservation, a conservative algorithm was used for the treatment of mismatched interfaces. The extended code was checked against one test case, i.e., a generic supersonic combustor with transverse fuel injection, examining solution accuracy, convergence, and local mass flux error. After testing, the code was used to simulate the chemically reacting flow fields in a scramjet combustor with parallel fuel injectors (unswept and swept ramps). Computational results were compared with experimental shadowgraph and pressure measurements. Fuel-air mixing characteristics of the unswept and swept ramps were compared and investigated.
Alkaline fuel cells for the regenerative fuel cell energy storage system
NASA Technical Reports Server (NTRS)
Martin, R. E.
1983-01-01
The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.
Developing a laser shockwave model for characterizing diffusion bonded interfaces
NASA Astrophysics Data System (ADS)
Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.
2015-03-01
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.
Spits, Christine; Wallace, Luke; Reinke, Karin
2017-04-20
Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential.
Formic acid fuel cells and catalysts
Masel, Richard I.; Larsen, Robert; Ha, Su Yun
2010-06-22
An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.
2014-05-27
TiN(100) surface (Pt/TiN) could be a promising catalyst for proton exchange membrane fuel cells ( PEM FCs). The adsorption properties of molecules on Pt...under both acidic and basic operation conditions in PEM FCs. 15. SUBJECT TERMS Catalysis, fuel cells , density functional theory, density functional...poisoning on functionalized Pt/TiN surfaces under both acidic and basic operation conditions in PEM FCs. 15. SUBJECT TERMS Catalysis, fuel cells
Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay
2014-01-01
We report a unique and highly stable electrocatalyst—platinum (Pt) supported on titanium–ruthenium oxide (TRO)—for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile—namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst—Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm−2 at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm−2 for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern. PMID:24367118
Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay
2014-01-07
We report a unique and highly stable electrocatalyst-platinum (Pt) supported on titanium-ruthenium oxide (TRO)-for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile-namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst-Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm(-2) at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm(-2) for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern.
Emma Vakili; Chad M. Hoffman; Robert E. Keane; Wade T. Tinkham; Yvette Dickinson
2016-01-01
There is growing consensus that spatial variability in fuel loading at scales down to 0.5 m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels treatment in the...
2012-12-01
Navy’s Ships Renewable Fuels Evaluation, 2011) ..25 Table 4. Diesel Injector Component Testing (From U.S. Navy Biofuel Test and Qualification Update...components, including shipboard quality assurance instruments, fuel injector nozzles , fuel nozzle atomization, fuel nozzle fouling, carbon deposition...Leung, Turgeon, & Williams, 2011, p. 7). Table 4 lists the results from component testing conducted on various diesel engine fuel injectors using
Benjamin C. Bright; Andrew T. Hudak; Arjan J. H. Meddens; Todd J. Hawbaker; Jennifer S. Briggs; Robert E. Kennedy
2017-01-01
Wildfire behavior depends on the type, quantity, and condition of fuels, and the effect that bark beetle outbreaks have on fuels is a topic of current research and debate. Remote sensing can provide estimates of fuels across landscapes, although few studies have estimated surface fuels from remote sensing data. Here we predicted and mapped field-measured canopy and...
2015-12-21
SECURITY CLASSIFICATION OF: The overall goal of this project is to determine how electrode surface chemistry can be rationally designed to decrease...2015 Approved for Public Release; Distribution Unlimited Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for...ABSTRACT Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer
Rotary distributor type fuel injection pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopfer, K.H.; Dordjevic, I.; Higgins, M.C.
1993-07-20
In a fuel injection pump having a pump body and distributor rotor in coaxial alignment, the pump body is described having a pumping chamber provided by an annular arrangement of pumping plunger bores with axes extending generally radially outwardly from the axis of the distributor rotor, a pumping plunger mounted in each plunger bore for reciprocation, annular cam means surrounding the annular arrangement of plunger bores for reciprocating the pumping plungers to provide alternating intake and pumping strokes thereof for respectively supplying intake charges of fuel to the pumping chamber and delivering high pressure charges of fuel from the pumpingmore » chamber for fuel injection, a distributor head with a plurality of distributor outlets, the distributor rotor being rotatably mounted in the distributor head for distributing the high pressure charges of fuel to the distributor outlets; the improvement wherein the pump body and distributor rotor have a central coaxial bore extending there through and providing a valve bore intersecting the annular arrangement of plunger bores, the pump body providing an annular valve seat around the central bore between one end thereof away from the distributor rotor and the intersection of the valve bore and annular arrangement of plunger bores, an elongated valve member mounted in the valve bore having a sealing head at one end thereof engageable with the annular valve seat and extending from the sealing head toward the other end of the central bore, a fuel supply chamber connected to the one end of the central bore for supplying fuel to the pumping chamber, valve actuating means comprising an electromagnet at the other end of the valve member from the sealing head and operable when energized to shift the valve member in one axial direction thereof to one of its the positions, and means for shifting the valve member in the opposite axial direction thereof to its other position when the electromagnet is deenergized.« less
Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle
Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul
2013-12-17
A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.
Support grid for fuel elements in a nuclear reactor
Finch, Lester M.
1977-01-01
A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.
Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels
M.B. Dickinson; E.A. Johnson; R. Artiaga
2013-01-01
Although fuel characteristics are assumed to have an important impact on fire regimes through their effects on extinction dynamics, limited capabilities exist for predicting whether a fire will spread in mixedwood boreal forest surface fuels. To improve predictive capabilities, we conducted 347 no-wind, laboratory test burns in surface fuels collected from the mixed-...
Jamie M. Lydersen; Brandon M. Collins; Eric E. Knapp; Gary B. Roller; Scott Stephens
2015-01-01
Although knowledge of surface fuel loads is critical for evaluating potential fire behaviour and effects, their inherent variability makes these difficult to quantify. Several studies relate fuel loads to vegetation type, topography and spectral imaging, but little work has been done examining relationships between forest overstorey variables and surface fuel...
High-resolution observations of combustion in heterogeneous surface fuels
E. Louise Loudermilk; Gary L. Achtemeier; Joseph J. O' Brien; J. Kevin Hiers; Benjamin S. Hornsby
2014-01-01
In ecosystems with frequent surface fires, fire and fuel heterogeneity at relevant scales have been largely ignored. This could be because complete burns give an impression of homogeneity, or due to the difficulty in capturing fine-scale variation in fuel characteristics and fire behaviour. Fire movement between patches of fuel can have implications for modelling fire...
Analysis of Water Surplus at the Lunar Outpost
NASA Technical Reports Server (NTRS)
Santiago-Maldonado, Edgardo; Bagdigian, Robert M.; George, Patrick J.; Plachta, David W.; Fincannon, Homer J.; Jefferies, Sharon A.; Keyes, Jennifer P.; Reeves, David M.; Shyface, Hilary R.
2010-01-01
This paper evaluates the benefits to the lunar architecture and outpost of having a surplus of water, or a surplus of energy in the form of hydrogen and oxygen, as it has been predicted by Constellation Program's Lunar Surface System analyses. Assumptions and a scenario are presented leading to the water surplus and the revolutionary surface element options for improving the lunar exploration architecture and mission objectives. For example, some of the elements that can benefit from a water surplus are: the power system energy storage can minimize the use of battery systems by replacing batteries with higher energy density fuel cell systems; battery packs on logistics pallets can also be minimized; mobility asset power system mass can be reduced enabling more consumables and extended roving duration and distance; small robotic vehicles (hoppers) can be used to increase the science exploration range by sending round-trip robotic missions to anywhere on the Moon using in-situ produced propellants.
Tan, Chuan Fu; Su Su Zin, Aung Kyi; Chen, Zhihui; Liow, Chi Hao; Phan, Huy Thong; Tan, Hui Ru; Xu, Qing-Hua; Ho, Ghim Wei
2018-05-22
One-dimensional (1D) metallic nanocrystals constitute an important class of plasmonic materials for localization of light into subwavelength dimensions. Coupled with their intrinsic conductive properties and extended optical paths for light absorption, metallic nanowires are prevalent in light-harnessing applications. However, the transverse surface plasmon resonance (SPR) mode of traditional multiply twinned nanowires often suffers from weaker electric field enhancement due to its low degree of morphological curvature in comparison to other complex anisotropic nanocrystals. Herein, simultaneous anisotropic stellation and excavation of multiply twinned nanowires are demonstrated through a site-selective galvanic reaction for a pronounced manipulation of light-matter interaction. The introduction of longitudinal extrusions and cavitation along the nanowires leads to a significant enhancement in plasmon field with reduced quenching of localized surface plasmon resonance (LSPR). The as-synthesized multimetallic nanostartubes serve as a panchromatic plasmonic framework for incorporation of photocatalytic materials for plasmon-assisted solar fuel production.
Ding, Yuchen; Nagpal, Prashant
2016-10-14
Several strategies are currently being investigated for conversion of incident sunlight into renewable sources of energy, and photocatalytic or photoelectrochemical production of solar fuels can provide an important alternative. Titanium dioxide (TiO 2 ) has been heavily investigated as a material of choice due to its excellent optoelectronic properties and stability, and anion-doping proposed as a pathway to improve light absorption as well as improving the efficiency of oxygen production. While several studies have used morphological tuning, elemental doping, and surface engineering in TiO 2 to extend its absorption, there is a need to optimize simultaneously charge transport and improve interfacial chemical reaction kinetics. Here we show anion-doped (nitrogen, carbon) standalone TiO 2 nanotube membranes that absorb visible light for the water-splitting reaction, using both wireless (photocatalysis) and wired (photoelectrochemical) solar-to-fuel conversion (STFC) cells. Using simulated solar radiation, we show generation of hydrogen as a solar fuel using visible light photocatalysis. Furthermore, using a model we elucidate detailed photophysics and photoelectrochemical properties of these nanotubes, and explain the kinetics of photogenerated charge carriers following light absorption. We show that while visible light induces a superlinear photoresponse for catalytic reduction and may benefit from higher incident light intensity, ultraviolet light shows a linear photoresponse and saturation with higher light flux due to trapping of photogenerated charges (mainly electrons). These results can have important implications for design of other metal-oxide membranes for solar fuel generation, and appropriate design of dopants and induced energy levels in these photocatalysts.
Flexible fuel cell gas manifold system
Cramer, Michael; Shah, Jagdish; Hayes, Richard P.; Kelley, Dana A.
2005-05-03
A fuel cell stack manifold system in which a flexible manifold body includes a pan having a central area, sidewall extending outward from the periphery of the central area, and at least one compound fold comprising a central area fold connecting adjacent portions of the central area and extending between opposite sides of the central area, and a sidewall fold connecting adjacent portions of the sidewall. The manifold system further includes a rail assembly for attachment to the manifold body and adapted to receive pins by which dielectric insulators are joined to the manifold assembly.
Preventing CO poisoning in fuel cells
Gottesfeld, Shimshon
1990-01-01
Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.
Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions
Holland, Troy; Fletcher, Thomas H.
2017-02-22
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less
Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Troy; Fletcher, Thomas H.
Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less
Spits, Christine; Wallace, Luke; Reinke, Karin
2017-01-01
Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential. PMID:28425957
Developing a laser shockwave model for characterizing diffusion bonded interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacy, Jeffrey M., E-mail: Jeffrey.Lacy@inl.gov; Smith, James A., E-mail: Jeffrey.Lacy@inl.gov; Rabin, Barry H., E-mail: Jeffrey.Lacy@inl.gov
2015-03-31
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengthsmore » in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.« less
Building a flagellum in biological outer space.
Evans, Lewis D B; Hughes, Colin; Fraser, Gillian M
2014-02-01
Flagella, the rotary propellers on the surface of bacteria, present a paradigm for how cells build and operate complex molecular 'nanomachines'. Flagella grow at a constant rate to extend several times the length of the cell, and this is achieved by thousands of secreted structural subunits transiting through a central channel in the lengthening flagellum to incorporate into the nascent structure at the distant extending tip. A great mystery has been how flagella can assemble far outside the cell where there is no conventional energy supply to fuel their growth. Recent work published by Evans et al. [ Nature (2013) 504: 287-290], has gone some way towards solving this puzzle, presenting a simple and elegant transit mechanism in which growth is powered by the subunits them selves as they link head-to-tail in a chain that is pulled through the length of the growing structure to the tip. This new mechanism answers an old question and may have resonance in other assembly processes.
Paul R. Hood; Kellen N. Nelson; Charles C. Rhoades; Daniel B. Tinker
2017-01-01
Widespread tree mortality from mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) outbreaks has prompted forest management activities to reduce crown fire hazard in the Rocky Mountain region. However, little is known about how beetle-related salvage logging and biomass utilization options affect woody surface fuel loads and fuel moisture dynamics. We compared...
Surface fuel changes after severe disturbances in northern Rocky Mountain ecosystems
Chris Stalling; Robert E. Keane; Molly Retzlaff
2017-01-01
It is generally assumed that severe disturbances predispose damaged forests to high fire hazard by creating heavy fuel loading conditions. Of special concern is the perception that surface fuel loadings become high as recently killed trees deposit foliage and woody material on the ground and that these high fuel loadings may cause abnormally severe fires. This study...
Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric
2011-10-15
Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for modification is easy to control and can be optimized and implemented for many carbon materials currently used in microbial fuel cells and other bioelectrochemical systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Treshow, M.
1958-08-19
A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.
Christopher W. Woodall; Bruce Leutscher
2005-01-01
The sampling design for the Forest Inventory and Analysis (FIA) program of the U.S. Department of Agriculture Forest Service allows intensification of fuel inventory sampling in areas of ?special interest? and implementation of fuel sampling protocol by non-FIA personnel. The objective of this study is to evaluate the contribution of sampling intensification/extension...
Solids feed nozzle for fluidized bed
Zielinski, Edward A.
1982-01-01
The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.
Advanced Ignition in Supersonic Airflow by Tunable Plasma System
NASA Astrophysics Data System (ADS)
Firsov, A. A.; Dolgov, E. V.; Leonov, S. B.; Yarantsev, D. A.
2017-10-01
The plasma-based technique was studied for ignition and flameholding in a supersonic airflow in different laboratories for a long time. It was shown that flameholding of gaseous and liquid hydrocarbon fuel is feasible by means of surface DC discharge without employing mechanical flameholders in a supersonic combustion chamber. However, a high power consumption may limit application of this method in a real apparatus. This experimental and computational work explores a distributed plasma system, which allows reducing the total energy consumption and extending the life cycle of the electrode system. Due to the circuit flexibility, this approach may be potentially enriched with feedbacks for design of a close loop control system.
Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S
Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents themore » analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.« less
Testing and COBRA-SFS analysis of the VSC-17 ventilated concrete, spent fuel storage cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.
1992-04-01
A performance test of a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask loaded with 17 canisters of consolidated PWR spent fuel generating approximately 15 kW was conducted. The performance test included measuring the cask surface, concrete, air channel surface, and fuel temperatures, as well as cask surface gamma and neutron dose rates. Testing was performed using vacuum, nitrogen, and helium backfill environments. Pretest predictions of cask thermal performance were made using the COBRA-SFS computer code. Analysis results were within 15{degrees}C of measured peak fuel temperature. Peak fuel temperature for normal operation was 321{degrees}C. In general, the surface dose ratesmore » were less than 30 mrem/h on the side of the cask and 40 mrem/h on the top of the cask.« less
NASA Astrophysics Data System (ADS)
Hodille, E. A.; Ghiorghiu, F.; Addab, Y.; Založnik, A.; Minissale, M.; Piazza, Z.; Martin, C.; Angot, T.; Gallais, L.; Barthe, M.-F.; Becquart, C. S.; Markelj, S.; Mougenot, J.; Grisolia, C.; Bisson, R.
2017-07-01
Fusion fuel retention (trapping) and release (desorption) from plasma-facing components are critical issues for ITER and for any future industrial demonstration reactors such as DEMO. Therefore, understanding the fundamental mechanisms behind the retention of hydrogen isotopes in first wall and divertor materials is necessary. We developed an approach that couples dedicated experimental studies with modelling at all relevant scales, from microscopic elementary steps to macroscopic observables, in order to build a reliable and predictive fusion reactor wall model. This integrated approach is applied to the ITER divertor material (tungsten), and advances in the development of the wall model are presented. An experimental dataset, including focused ion beam scanning electron microscopy, isothermal desorption, temperature programmed desorption, nuclear reaction analysis and Auger electron spectroscopy, is exploited to initialize a macroscopic rate equation wall model. This model includes all elementary steps of modelled experiments: implantation of fusion fuel, fuel diffusion in the bulk or towards the surface, fuel trapping on defects and release of trapped fuel during a thermal excursion of materials. We were able to show that a single-trap-type single-detrapping-energy model is not able to reproduce an extended parameter space study of a polycrystalline sample exhibiting a single desorption peak. It is therefore justified to use density functional theory to guide the initialization of a more complex model. This new model still contains a single type of trap, but includes the density functional theory findings that the detrapping energy varies as a function of the number of hydrogen isotopes bound to the trap. A better agreement of the model with experimental results is obtained when grain boundary defects are included, as is consistent with the polycrystalline nature of the studied sample. Refinement of this grain boundary model is discussed as well as the inclusion in the model of a thin defective oxide layer following the experimental observation of the presence of an oxygen layer on the surface even after annealing to 1300 K.
Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel
2016-10-01
Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.
Effect of Light Truck Design Variables on Top Speed, Performance, and Fuel Economy, 1981
DOT National Transportation Integrated Search
1981-11-01
The effect of vehicle weight, rolling resistance, aerodynamic drag, and drive-line configuration on fuel economy and performance for light duty trucks is examined. The effect of lockup and extended gear ratio range is also investigated. The assessmen...
Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach
NASA Technical Reports Server (NTRS)
Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.
2003-01-01
"Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.
Multi-stage internal gear/turbine fuel pump
Maier, Eugen; Raney, Michael Raymond
2004-07-06
A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbins, James
2012-12-19
The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmutemore » minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Curtis; Patterson, Brad; Perdue, Jayson
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through themore » solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.« less
Owsianiak, Mikołaj; Szulc, Alicja; Chrzanowski, Łukasz; Cyplik, Paweł; Bogacki, Mariusz; Olejnik-Schmidt, Agnieszka K; Heipieper, Hermann J
2009-09-01
In this study, we elucidated the role of cell surface hydrophobicity (microbial adhesion to hydrocarbons method, MATH) and the effect of anionic rhamnolipids and nonionic Triton X-100 surfactants on biodegradation of diesel fuel employing 218 microbial consortia isolated from petroleum-contaminated soils. Applied enrichment procedure with floating diesel fuel as a sole carbon source in liquid cultures resulted in consortia of varying biodegradation potential and diametrically different cell surface properties, suggesting that cell surface hydrophobicity is a conserved parameter. Surprisingly, no correlations between cell surface hydrophobicity and biodegradation of diesel fuel were found. Nevertheless, both surfactants altered cell surface hydrophobicity of the consortia in similar manner: increased for the hydrophilic and decreased for the hydrophobic cultures. In addition to this, the surfactants exhibited similar influence on diesel fuel biodegradation: Increase was observed for initially slow-degrading cultures and the opposite for fast degraders. This indicates that in the surfactant-mediated biodegradation, effectiveness of surfactants depends on the specification of microorganisms and not on the type of surfactant. In contrary to what was previously reported for pure strains, cell surface hydrophobicity, as determined by MATH, is not a good descriptor of biodegrading potential for mixed cultures.
Frame-mounted wire management device
Grushkowitz, Tyler; Fischer, Kevin; Danning, Matthew
2016-09-20
A wire management device is disclosed. The device comprises a clip comprising an upper planar member and a lower planar member, each planar member having an inner and outer surface, wherein the inner surface of the upper planar member includes a post extending toward the inner surface of the lower planar member, a stem extending from the outer surface of the lower planar member, the stem including two outwardly-extending flanges, each of the first and second outwardly-extending flanges including an edge portion extending toward the outer surface of the lower planar member, and a transverse passage extending along the outer surface of the lower planar member, the transverse passage extending across the stem, wherein the stem has a recessed portion along the transverse passage.
Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.
1997-08-05
A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.
Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.
1997-01-01
A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.
Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model
NASA Technical Reports Server (NTRS)
Friedman, R.; Stockemer, F. J.
1980-01-01
Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.
Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.
Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P
2016-02-08
This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.
Extending Spent Fuel Storage until Transport for Reprocessing or Disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsen, Brett; Chiguer, Mustapha; Grahn, Per
Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years untilmore » reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on storage of SF from commercial operation, the principles described are equally applicable to SF from research and production reactors as well as high-level radioactive waste.« less
Two-phase pressure drop reduction BWR assembly design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dix, G.E.; Crowther, R.L.; Colby, M.J.
1992-05-12
This patent describes a boiling water reactor having discrete bundles of fuel rods confined within channel enclosed fuel assemblies, an improvement to a fuel bundle assembly for placement in the reactor. It comprises a fuel channel having vertically extending walls forming a continuous channel around a fuel assembly volume, the channel being open at the bottom end for engagement to a lower tie plate and open at the upper end for engagement to an upper tie plate; rods for placement within the chamber, each the rod containing fissile material for producing nuclear reaction when in the presence of sufficient moderatedmore » neutron flux; a lower tie plate for supporting the bundle of rods within the channel, the lower tie plate for supporting the bundle of rods within the channel, the lower tie plate joining the bottom of the channel to close the bottom end of the channel, the lower tie plate providing defined apertures for the inflow of water in the channel between the rods for the generating of steam during the nuclear reaction; the plurality of fuel rods extending from the lower tie plate wherein a single phase region of the water in the bundle is defined to an upward portion of the bundle wherein a two phase region of the water and steam in the bundle is defined during nuclear steam generating reaction in the fuel bundle.« less
Advanced thermopower wave in novel ZnO nanostructures/fuel composite.
Lee, Kang Yeol; Hwang, Hayoung; Choi, Wonjoon
2014-09-10
Thermopower wave is a new concept of energy conversion from chemical to thermal to electrical energy, produced from the chemical reaction in well-designed hybrid structures between nanomaterials and combustible fuels. The enhancement and optimization of energy generation is essential to make it useful for future applications. In this study, we demonstrate that simple solution-based synthesized zinc oxide (ZnO) nanostructures, such as nanorods and nanoparticles are capable of generating high output voltage from thermopower waves. In particular, an astonishing improvement in the output voltage (up to 3 V; average 2.3 V) was achieved in a ZnO nanorods-based composite film with a solid fuel (collodion, 5% nitrocellulose), which generated an exothermic chemical reaction. Detailed analyses of thermopower waves in ZnO nanorods- and cube-like nanoparticles-based hybrid composites have been reported in which nanostructures, output voltage profile, wave propagation velocities, and surface temperature have been characterized. The average combustion velocities for a ZnO nanorods/fuel and a ZnO cube-like nanoparticles/fuel composites were 40.3 and 30.0 mm/s, while the average output voltages for these composites were 2.3 and 1.73 V. The high output voltage was attributed to the amplified temperature in intermixed composite of ZnO nanostructures and fuel due to the confined diffusive heat transfer in nanostructures. Moreover, the extended interfacial areas between ZnO nanorods and fuel induced large amplification in the dynamic change of the chemical potential, and it resulted in the enhanced output voltage. The differences of reaction velocity and the output voltage between ZnO nanorods- and ZnO cube-like nanoparticles-based composites were attributed to variations in electron mobility and grain boundary, as well as thermal conductivities of ZnO nanorods and particles. Understanding this astonishing increase and the variation of the output voltage and reaction velocity, precise ZnO nanostructures, will help in formulating specific strategies for obtaining enhanced energy generation from thermopower waves.
Combustion of solid fuel slabs with gaseous oxygen in a hybrid motor analog
NASA Technical Reports Server (NTRS)
Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.
1995-01-01
Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with gaseous oxygen (GOX) under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from plus or minus 20% of the localized mean pressure to an acceptable range of plus or minus 1.5%. Embedded fine--wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse echo techniques were used to determine the instantaneous web thicknesses and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented. Several tests were conducted using, simultaneously, one translucent fuel slab and one fuel slab processed with carbon black powder. The addition of carbon black did not affect the measured regression rates or surface temperatures in comparison to the translucent fuel slabs.
Characterizing hand-piled fuels
Clinton S. Wright; Paige C. Eagle; Cameron S. Balog
2010-01-01
Land managers throughout the West pile and burn surface fuels to mitigate fire hazard in dry forests. Whereas piling was historically conducted with heavy machinery following commercial harvesting operations, land managers are increasingly prescribing the use of hand piling and burning to treat surface fuels created by thinning and brush cutting. An estimate of the...
NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION
Wigner, E.P.; Ohlinger, L.A.
1958-11-18
Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.
Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model
Robert Ziel; W. Matt Jolly
2009-01-01
In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...
Combustion-based power source for Venus surface missions
NASA Astrophysics Data System (ADS)
Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.
2016-10-01
The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.
Low NOx nozzle tip for a pulverized solid fuel furnace
Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P
2014-04-22
A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.
Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC
2011-08-30
A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.
Monte Carlo Shielding Comparative Analysis Applied to TRIGA HEU and LEU Spent Fuel Transport
NASA Astrophysics Data System (ADS)
Margeanu, C. A.; Margeanu, S.; Barbos, D.; Iorgulis, C.
2010-12-01
The paper is a comparative study of LEU and HEU fuel utilization effects for the shielding analysis during spent fuel transport. A comparison against the measured data for HEU spent fuel, available from the last stage of spent fuel repatriation fulfilled in the summer of 2008, is also presented. All geometrical and material data for the shipping cask were considered according to NAC-LWT Cask approved model. The shielding analysis estimates radiation doses to shipping cask wall surface, and in air at 1 m and 2 m, respectively, from the cask, by means of 3D Monte Carlo MORSE-SGC code. Before loading into the shipping cask, TRIGA spent fuel source terms and spent fuel parameters have been obtained by means of ORIGEN-S code. Both codes are included in ORNL's SCALE 5 programs package. The actinides contribution to total fuel radioactivity is very low in HEU spent fuel case, becoming 10 times greater in LEU spent fuel case. Dose rates for both HEU and LEU fuel contents are below regulatory limits, LEU spent fuel photon dose rates being greater than HEU ones. Comparison between HEU spent fuel theoretical and measured dose rates in selected measuring points shows a good agreement, calculated values being greater than the measured ones both to cask wall surface (about 34% relative difference) and in air at 1 m distance from cask surface (about 15% relative difference).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; McConnaughhay, Johnie Franklin
A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.
NASA Astrophysics Data System (ADS)
Baqué, Laura C.; Soldati, Analía L.; Teixeira-Neto, Erico; Troiani, Horacio E.; Schreiber, Anja; Serquis, Adriana C.
2017-01-01
The modification of surface composition after long-term operation is one of the most reported degradation mechanisms of (La,Sr)(Co,Fe)O3-δ (LSCFO) cathodes for Solid Oxide Fuel Cells (SOFCs). Nevertheless, its effect on the oxygen reduction reaction kinetics of porous LSCFO cathodes has not been yet reliably established. In this work, La- and Sr-enrichment at the LSCFO surface of porous cathodes has been induced after 50 h aging at 800 °C under air. Such cation redistribution can extend up to ∼400 nm depth under the LSCFO surface as detected by high resolution Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy maps acquired inside the cathode pores. The observed surface chemical changes hamper the oxygen surface exchange reaction at the LSCFO/gas interface. Accordingly, a suitable Electrochemical Impedance Spectroscopy analysis revealed that the oxygen ion conductivity remains practically unaltered during the aging treatment while the oxygen surface exchange resistance increases up to 1.8 times. As a result, the cathode impedance response deteriorates within the 10-0.1 Hz frequency range during the aging treatment, resulting in a total cathode area specific resistance increase of 150%. The methodology adopted has demonstrated to be very valuable for studying the degradation of SOFC cathodes produced by the modification of surface composition.
SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY
Schluderberg, D.C.; Ryon, J.W.
1962-05-01
A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)
NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR
Szilard, L.; Young, G.J.
1958-03-01
This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.
CuPt and CuPtRu Nanostructures for Ammonia Oxidation Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manso, R H.; Song, L.; Liang, Z.
Liquid fuels, such as methanol, ethanol, and ammonia, are attractive alternative to hydrogen for fuel cells due to their lower costs for storage and distribution. However, lack of sufficiently active catalysts for their oxidation reactions is a roadblock. Our previous study found that Pt 3Cu nanodendrites yielded higher activity and durability than Pt nanoparticles for methanol oxidation reaction (MOR) in acid. In this study, we synthesized two types of nanostructures of CuPt and CuPtRu catalysts via seed-mediated growth of Pt and Ru on Cu and tested their performance for ammonia oxidation reaction (AOR) in alkaline solution. Unlike for MOR, themore » nanodendrites do not promote AOR activity - CuPt performs similar to Pt and CuPtRu is less active than Pt. Interestingly, the AOR peak current is increased by 64% on CuPt nanowires and 330% on CuPtRu nanowires as compared to Pt nanoparticles. These results suggest that AOR prefers extended surface on long nanowires, distinctly differing from MOR. This can be contributed to two factors: NH 3 oxidization to N 2 involves dimerization of two N-containing intermediates to form the N-N bond and diffusion batters for adsorbed intermediates are generally lower on terrace than at low-coordination sites. This demonstrated strong effect of surface morphology will be further studied and utilized in developing advanced AOR nanocatalysts.« less
CuPt and CuPtRu Nanostructures for Ammonia Oxidation Reaction
Manso, R H.; Song, L.; Liang, Z.; ...
2018-04-01
Liquid fuels, such as methanol, ethanol, and ammonia, are attractive alternative to hydrogen for fuel cells due to their lower costs for storage and distribution. However, lack of sufficiently active catalysts for their oxidation reactions is a roadblock. Our previous study found that Pt 3Cu nanodendrites yielded higher activity and durability than Pt nanoparticles for methanol oxidation reaction (MOR) in acid. In this study, we synthesized two types of nanostructures of CuPt and CuPtRu catalysts via seed-mediated growth of Pt and Ru on Cu and tested their performance for ammonia oxidation reaction (AOR) in alkaline solution. Unlike for MOR, themore » nanodendrites do not promote AOR activity - CuPt performs similar to Pt and CuPtRu is less active than Pt. Interestingly, the AOR peak current is increased by 64% on CuPt nanowires and 330% on CuPtRu nanowires as compared to Pt nanoparticles. These results suggest that AOR prefers extended surface on long nanowires, distinctly differing from MOR. This can be contributed to two factors: NH 3 oxidization to N 2 involves dimerization of two N-containing intermediates to form the N-N bond and diffusion batters for adsorbed intermediates are generally lower on terrace than at low-coordination sites. This demonstrated strong effect of surface morphology will be further studied and utilized in developing advanced AOR nanocatalysts.« less
Effects of Fuel Temperature on Injection Process and Combustion of Dimethyl Ether Engine.
Guangxin, Gao; Zhulin, Yuan; Apeng, Zhou; Shenghua, Liu; Yanju, Wei
2013-12-01
To investigate the effects of fuel temperature on the injection process in the fuel-injection pipe and the combustion characteristics of compression ignition (CI) engine, tests on a four stroke, direct injection dimethyl ether (DME) engine were conducted. Experimental results show that as the fuel temperature increases from 20 to 40 °C, the sound speed is decreased by 12.2%, the peak line pressure at pump and nozzle sides are decreased by 7.2% and 5.6%, respectively. Meanwhile, the injection timing is retarded by 2.2 °CA and the injection duration is extended by 0.8 °CA. Accordingly, the ignition delay and the combustion duration are extended by 0.7 °CA and 4.0 °CA, respectively. The cylinder peak pressure is decreased by 5.4%. As a result, the effective thermal efficiency is decreased, especially for temperature above 40 °C. Before beginning an experiment, the fuel properties of DME, including the density, the bulk modulus, and the sound speed were calculated by "ThermoData." The calculated result of sound speed is consistent with the experimental results.
Ravella, Uday K; Liu, Jingjing; Corbel, Gwenaël; Skinner, Stephen J; Lacorre, Philippe
2016-08-23
Among standard high-temperature cathode materials for solid oxide fuel cells, La0.8 Sr0.2 MnO3-δ (LSM) displays the least reactivity with the oxide-ion conductor La2 Mo2 O9 (LMO), yet a reaction is observed at high processing temperatures, identified by using XRD and focused ion beam secondary-ion mass spectrometry (FIB-SIMS) after annealing at 1050 and 1150 °C. Additionally, Sr and Mn solutions were deposited and annealed on LMO pellets, as well as a Mo solution on a LSM pellet. From these studies several reaction products were identified by using XRD and located by using FIB-SIMS on the surface of pelletised samples. We used depth profiling to show that the reactivity extended up to ∼10 μm from the surface region. If Sr was present, a SrMoO4 -type scheelite phase was always observed as a reaction product, and if Mn was present, LaMnO3+δ single crystals were observed on the surface of the LMO pellets. Additional phases such as La2 MoO6 and La6 MoO12 were also detected depending on the configuration and annealing temperature. Reaction mechanisms and detailed reaction formulae are proposed to explain these observations. The strongest driving force for cationic diffusion appears to originate from Mo(6+) and Mn(3+) cations, rather than from Sr(2+) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NUCLEAR REACTOR SLUG PROVIDED WITH THERMOCOUPLE
Kanne, W.R.
1958-10-14
A temperature measuring apparatus is described for use in a reactor. In this invention a cylindrlcal fuel slug is provided with an axial bore in which is disposed a thermocouple. The lead wires extend to a remote indicating device which indicates the temperature in the fuel element measured by the thermocouple.
Combustor and combustor screech mitigation methods
Kim, Kwanwoo; Johnson, Thomas Edward; Uhm, Jong Ho; Kraemer, Gilbert Otto
2014-05-27
The present application provides for a combustor for use with a gas turbine engine. The combustor may include a cap member and a number of fuel nozzles extending through the cap member. One or more of the fuel nozzles may be provided in a non-flush position with respect to the cap member.
NASA Technical Reports Server (NTRS)
Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly
2005-01-01
This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.
Aaron D. Stottlemyer; Thomas A. Waldrop; G. Geoff Wang
2015-01-01
Surface fuels were characterized in loblolly pine (Pinus taeda L.) plantations severely impacted by southern pine beetle (Dendroctonus frontalis Ehrh.) (SPB) outbreaks in the upper South Carolina Piedmont. Prescribed burning and mastication were then tested as fuel reduction treatments in these areas. Prescribed burning reduced...
Integrating stand density management with fuel reduction
Joseph W. Sherlock
2007-01-01
The widespread effort to reduce fuel hazards in western forested ecosystems places significant emphasis on surface and small ladder fuels. Changes in canopy density, for purposes of either reducing potential crown fire impacts or insect/pathogen-related mortality, are less frequently considered. Providing a sound basis for treating more than surface and small ladder...
Experimental modeling of crown fire initiation in open and closed shrubland systems
W. Tachajapong; S. Lozano; S. Mahalingam; D.R. Weise
2014-01-01
The transition of surface fire to live shrub crown fuels was studied through a simplified laboratory experiment using an open-topped wind tunnel. Respective surface and crown fuels used were excelsior (shredded Populus tremuloides wood) and live chamise (Adenostoma fasciculatum, including branches and foliage). A high crown fuel...
78 FR 16198 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... determine if wires touch the upper surface of the center upper auxiliary fuel tank, and marking the location, as necessary; inspecting all wire bundles above the center upper auxiliary fuel tank for splices and... requires inspecting to determine if wires touch the upper surface of the center upper auxiliary fuel tank...
Bayesian techniques for surface fuel loading estimation
Kathy Gray; Robert Keane; Ryan Karpisz; Alyssa Pedersen; Rick Brown; Taylor Russell
2016-01-01
A study by Keane and Gray (2013) compared three sampling techniques for estimating surface fine woody fuels. Known amounts of fine woody fuel were distributed on a parking lot, and researchers estimated the loadings using different sampling techniques. An important result was that precise estimates of biomass required intensive sampling for both the planar intercept...
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress
2009-07-17
thorium -liquid fueled nuclear reactors for Navy surface ships. Section 1012 of the FY2010 defense authorization bill (S. 1390) as reported by the Senate...to the congressional defense committees a study on the use of thorium -liquid fueled nuclear reactors for Navy surface ships. The text of Section...STUDY ON THORIUM -LIQUID FUELED REACTORS FOR NAVAL FORCES. (a) Study Required- The Secretary of Defense and the Chairman of the Joint Chiefs of Staff
Cawley, William E.; Warnick, Robert F.
1982-01-01
1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.
Fuel cell with interdigitated porous flow-field
Wilson, Mahlon S.
1997-01-01
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.
Fuel cell with interdigitated porous flow-field
Wilson, M.S.
1997-06-24
A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.
Performance testing and analyses of the VSC-17 ventilated concrete cask. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.
1992-05-01
This document details performance test which was conducted on a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask configured for pressurized-water reactor (PWR) spent fuel. The performance test consisted of loading the VSC-17 cask with 17 canisters of consolidated PWR spent fuel from Virginia Power`s Surry and Florida Power & Light Turkey Point reactors. Cask surface, concrete, air channel surfaces, and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in a vertical cask orientation. Data on spent fuel integrity were also obtained.
Process for vaporizing a liquid hydrocarbon fuel
Szydlowski, Donald F.; Kuzminskas, Vaidotas; Bittner, Joseph E.
1981-01-01
The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.
Effect of hydrocarbon fuel type on fuel
NASA Technical Reports Server (NTRS)
Wong, E. L.; Bittker, D. A.
1982-01-01
A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels.
Structural tests and development of a laminar flow control wing surface composite chordwise joint
NASA Technical Reports Server (NTRS)
Lineberger, L. B.
1984-01-01
The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.
Ultra low injection angle fuel holes in a combustor fuel nozzle
York, William David
2012-10-23
A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.
A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts.
Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen
2012-01-01
Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO₃ and MnO₂, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm⁻² has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.
1996-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Fox, Timothy; Schilp, Reinhard
2012-09-25
A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.
Wind tunnel experiments to study chaparral crown fires
Jeanette Cobian-Iñiguez; AmirHessam Aminfar; Joey Chong; Gloria Burke; Albertina Zuniga; David R. Weise; Marko Princevac
2017-01-01
The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer...
Effects of fire and fuels management on water quality in eastern North America
R. K. Kolka
2012-01-01
Fuels management, especially prescribed fire, can have direct impacts on aquatic resources through deposition of ash to surface waters. On the terrestrial side, fuels management leads to changes in vegetative structure and potentially soil properties that affect ecosystem cycling of water and inorganic and organic constituents. Because surface water systems (streams,...
Micellar Polymer Encapsulation of Enzymes.
Besic, Sabina; Minteer, Shelley D
2017-01-01
Although enzymes are highly efficient and selective catalysts, there have been problems incorporating them into fuel cells. Early enzyme-based fuel cells contained enzymes in solution rather than immobilized on the electrode surface. One problem utilizing an enzyme in solution is an issue of transport associated with long diffusion lengths between the site of bioelectrocatalysis and the electrode. This issue drastically decreases the theoretical overall power output due to the poor electron conductivity. On the other hand, enzymes immobilized at the electrode surface have eliminated the issue of poor electron conduction due to close proximity of electron transfer between electrode and the biocatalyst. Another problem is inefficient and short term stability of catalytic activity within the enzyme that is suspended in free flowing solution. Enzymes in solutions are only stable for hours to days, whereas immobilized enzymes can be stable for weeks to months and now even years. Over the last decade, there has been substantial research on immobilizing enzymes at electrode surfaces for biofuel cell and sensor applications. The most commonly used techniques are sandwich or wired. Sandwich techniques are powerful and successful for enzyme immobilization; however, the enzymes optimal activity is not retained due to the physical distress applied by the polymer limiting its applications as well as the non-uniform distribution of the enzyme and the diffusion of analyte through the polymer is slowed significantly. Wired techniques have shown to extend the lifetime of an enzyme at the electrode surface; however, this technique is very hard to master due to specific covalent bonding of enzyme and polymer which changes the three-dimensional configuration of enzyme and with that decreases the optimal catalytic activity. This chapter details encapsulation techniques where an enzyme will be immobilized within the pores/pockets of the hydrophobically modified micellar polymers such as Nafion ® and chitosan. This strategy has been shown to safely immobilize enzymes at electrode surfaces with storage and continuous operation lifetime of more than 2 years.
NASA Astrophysics Data System (ADS)
West, B.; Green, J. B.
1994-07-01
The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO(x)) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demuth, Scott Francis; Sprinkle, James K.
As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout ofmore » Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.« less
Nieh, Sen; Fu, Tim T.
1992-01-01
An apparatus for burning coal water fuel, dry ultrafine coal, pulverized l and other liquid and gaseous fuels including a vertically extending outer wall and an inner, vertically extending cylinder located concentrically within the outer wall, the annnular space between the outer wall and the inner cylinder defining a combustion chamber and the all space within the inner cylinder defining an exhaust chamber. Fuel and atomizing air are injected tangentially near the bottom of the combustion chamber and secondary air is introduced at selected points along the length of the combustion chamber. Combustion occurs along the spiral flow path in the combustion chamber and the combined effects of centrifugal, gravitational and aerodynamic forces cause particles of masses or sizes greater than the threshold to be trapped in a stratified manner until completely burned out. Remaining ash particles are then small enough to be entrained by the flue gas and exit the system via the exhaust chamber in the opposite direction.
NASA Astrophysics Data System (ADS)
Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.
Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.
Fuel injection assembly for use in turbine engines and method of assembling same
Uhm, Jong Ho; Johnson, Thomas Edward
2015-03-24
A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes a plurality of tube assemblies, wherein each of the tube assemblies includes an upstream portion and a downstream portion. Each tube assembly includes a plurality of tubes that extend from the upstream portion to the downstream portion or from the upstream portion through the downstream portion. At least one injection system is coupled to at least one tube assembly of the plurality of tube assemblies. The injection system includes a fluid supply member that extends from a fluid source to the downstream portion of the tube assembly. The fluid supply member includes a first end portion located in the downstream portion of the tube assembly, wherein the first end portion has at least one first opening for channeling fluid through the tube assembly to facilitate reducing a temperature therein.
HEAVY WATER MODERATED NEUTRONIC REACTOR
Szilard, L.
1958-04-29
A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.
Synthesis of biodiesel fuel additives from glycerol using green chemistry and supercritical fluids
USDA-ARS?s Scientific Manuscript database
For every 3 moles of fatty acid esters produced, 1 mole of glycerol remains, ~11% of the biodiesel volume. One new method of glycerol use could be as a biodiesel fuel additive/extender using eco-friendly heterogeneous catalysts and supercritical fluids (SFs). SFs have advantages such as greater diff...
NUCLEAR REACTOR COMPENENT CLADDING MATERIAL
Draley, J.E.; Ruther, W.E.
1959-01-27
Fuel elements and coolant tubes used in nuclear reactors of the heterogeneous, water-cooled type are described, wherein the coolant tubes extend through the moderator and are adapted to contain the fuel elements. The invention comprises forming the coolant tubes and the fuel element cladding material from an alloy of aluminum and nickel, or an alloy of aluminum, nickel, alloys are selected to prevent intergranular corrosion of these components by water at temperatures up to 35O deg C.
Experimental Study of Cavity-Strut Combustion in Supersonic Flow (Postprint)
2007-07-01
locally fuel-rich region. When air is directly injected into the cavity, the flame appears to be more intense with reduced flame length behind the...2. At a moderate upstream strut fueling (FST1), the increased combustion zone behind the struts is evident, especially with regard to the flame ... length . At the same cavity and strut fueling condition, the strut flame appears to extend farther downstream in the Strut 2 and Strut 3 configurations
From Extended Nanofluidics to an Autonomous Solar-Light-Driven Micro Fuel-Cell Device.
Pihosh, Yuriy; Uemura, Jin; Turkevych, Ivan; Mawatari, Kazuma; Kazoe, Yutaka; Smirnova, Adelina; Kitamori, Takehiko
2017-07-03
Autonomous micro/nano mechanical, chemical, and biomedical sensors require persistent power sources scaled to their size. Realization of autonomous micro-power sources is a challenging task, as it requires combination of wireless energy supply, conversion, storage, and delivery to the sensor. Herein, we realized a solar-light-driven power source that consists of a micro fuel cell (μFC) and a photocatalytic micro fuel generator (μFG) integrated on a single microfluidic chip. The μFG produces hydrogen by photocatalytic water splitting under solar light. The hydrogen fuel is then consumed by the μFC to generate electricity. Importantly, the by-product water returns back to the photocatalytic μFG via recirculation loop without losses. Both devices rely on novel phenomena in extended-nano-fluidic channels that ensure ultra-fast proton transport. As a proof of concept, we demonstrate that μFG/μFC source achieves remarkable energy density of ca. 17.2 mWh cm -2 at room temperature. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.; Neutzler, Jay K.
1997-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
CY2013 Annual Report for DOE-ITU INERI 2010-006-E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J. Rory; Rondinella, Vincenzo V.
2014-12-01
New concepts for nuclear energy development are considered in both the USA and Europe within the framework of the Generation-IV International Forum (GIF) as well as in various US-DOE programs (e.g. the Fuel Cycle Research and Development - FCRD) and as part of the European Sustainable Nuclear Energy Technology Platform (SNE-TP). Since most new fuel cycle concepts envisage the adoption of a closed nuclear fuel cycle employing fast reactors, the fuel behavior characteristics of the various proposed advanced fuel forms must be effectively investigated using state of the art experimental techniques before implementation. More rapid progress can be achieved ifmore » effective synergy with advanced (multi-scale) modeling efforts can be achieved. The fuel systems to be considered include minor actinide (MA) transmutation fuel types such as advanced MOX, advanced metal alloy, inert matrix fuel (IMF), and other ceramic fuels like nitrides, carbides, etc., for fast neutronic spectrum conditions. Most of the advanced fuel compounds have already been the object of past examination programs, which included irradiations in research reactors. The knowledge derived from previous experience constitutes a significant, albeit incomplete body of data. New or upgraded experimental tools are available today that can extend the scientific and technological knowledge towards achieving the objectives associated with the new generation of nuclear reactors and fuels. The objectives of this project will be three-fold: (1) to extend the available knowledge on properties and irradiation behavior of high burnup and minor actinide bearing advanced fuel systems; (2) to establish a synergy with multi-scale and code development efforts in which experimental data and expertise on the irradiation behavior of nuclear fuels is properly conveyed for the upgrade/development of advanced modeling tools; (3) to promote the effective use of international resources to the characterization of irradiated fuel through exchange of expertise and information among leading experimental facilities. The priorities in this project will be set according to the down selection procedure of U.S. and European development programs.« less
Identification of failed fuel element
Fryer, Richard M.; Matlock, Robert G.
1976-06-22
A passive fission product gas trap is provided in the upper portion of each fuel subassembly in a nuclear reactor. The gas trap consists of an inverted funnel of less diameter than the subassembly having a valve at the apex thereof. An actuating rod extends upwardly from the valve through the subassembly to a point where it can be contacted by the fuel handling mechanism for the reactor. Interrogation of the subassembly for the presence of fission products is accomplished by lowering the fuel handling machine onto the subassembly to press down on the actuating rod and open the valve.
The Multiple Use Plug Hybrid for NanoSats (MUPHyN) Miniature Thruster
NASA Technical Reports Server (NTRS)
Eilers, Shannon D.; Whitmore, Stephen A.
2012-01-01
The Multiple Use Plug Hybrid (for) Nanosats is a prototype thruster is being developed to fill a niche application for NanoSat-scale spacecraft propulsion. When fully developed, the MUPHyN thruster will provide an effective and low-risk propulsive capability that could enable multiple NanoSats to be independently re-positioned after deployment from a parent launch vehicle. Because the environmentally benign, chemically-stable propellants are mixed only within the combustion chamber after ignition and the flow rate of the fuel is determined by a pyrolysis mechanism that is nearly independent of pressure or fuel grain defects, the system is inherently safe and can be piggy-backed near a secondary payload with little or no overall mission risk increase to the primary payload. The MUPHyN thruster uses safe-handling and inexpensive nitrous oxide (N2O) and acrylonitrile-butadiene-styrene (ABS) as propellants. Fused Deposition Modeling (FDM), a direct digital manufacturing process, is used to fabricate short-form-factor solid fuel grains with multiple helical combustion ports from ABS thermoplastic. This manufacturing process allows for the rapid development and manufacture of complex fuel grain geometries that are not possible to extrude or cast using conventional methods. This technology enables the construction of fuel grains with length-to-diameter ratios appropriate for incorporation into CubeSats while maintaining high surface areas and regression rates that allow the system to maintain a near optimal oxidizer to fuel ratio. The MUPHyN system provides attitude control torques by using secondary-injection thrust vectoring on a truncated aerospike nozzle. This configuration allows large impulse delta V burns and small impulse attitude control firings to be performed with the same system. To ensure survivability during extend duration burns, the MUPHyN incorporates a novel regenerative cooling design where the N2O oxidizer flows through a cooling path embedded in the aerospike nozzle before being injected into the combustion chamber near the nozzle base.
NASA Astrophysics Data System (ADS)
Torija, Sergio; Prieto-Sanchez, Laura; Ashton, Sean J.
2016-09-01
The ability to evaluate the electrochemically active surface area (ECSA) of fuel cell electrodes is crucial toward characterising designs and component suites in-situ, particularly when evaluating component durability in endurance testing, since it is a measure of the electrode area available to take part in the fuel cell reactions. Conventional methods to obtain the ECSA using cyclic voltammetry, however, rely on potentiostats that cannot be easily scaled to simultaneously evaluate all cells in a fuel cell stack of practical size, which is desirable in fuel cell development. In-situ diagnostics of an open-cathode fuel cell stack are furthermore challenging because the cells do not each possess an enclosed cathode compartment; instead, the cathodes are rather open to the environment. Here we report on a diagnostic setup that allows the electrochemically active surface area of each cell anode or cathode in an open-cathode fuel cell stack to be evaluated in-situ and simultaneously, with high resolution and reproducibility, using an easily scalable chronopotentiometry methodology and a gas-tight stack enclosure.
Variable area fuel cell cooling
Kothmann, Richard E.
1982-01-01
A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.
Y.S. Valachovic; C.A. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo
2011-01-01
We compared stand structure and fuel loading in northwestern California forests invaded by Phytophthora ramorum, the cause of sudden oak death, to assess whether the continued presence of this pathogen alters surface fuel loading and potential fire behavior in ways that may encumber future firefighting response. To attempt to account for these...
Experimental and numerical modeling of shrub crown fire initiation
Watcharapong Tachajapong; Jesse Lozano; Shakar Mahalingam; Xiangyang Zhou; David Weise
2009-01-01
The transition of fire from dry surface fuels to wet shrub crown fuels was studied using laboratory experiments and a simple physical model to gain a better understanding of the transition process. In the experiments, we investigated the effects of varying vertical distances between surface and crown fuels (crown base height), and of the wind speed on crown fire...
Marek K. Jakubowksi; Qinghua Guo; Brandon Collins; Scott Stephens; Maggi Kelly
2013-01-01
We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m
Robert E. Keane; Pamela G. Sikkink; Theresa B. Jain
2018-01-01
Mastication is a wildland fuel treatment technique that is rapidly becoming the preferred method for many fire hazard reduction projects, especially in areas where reducing fuels with prescribed fire is particularly challenging. Mastication is the process of mechanically modifying the live and dead surface and canopy biomass by chopping and shredding vegetation to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, P.; Sindelar, R.; Duncan, A.
2014-04-07
A multipurpose canister (MPC) made of austenitic stainless steel is loaded with used nuclear fuel assemblies and is part of the transfer cask system to move the fuel from the spent fuel pool to prepare for storage, and is part of the storage cask system for on-site dry storage. This weld-sealed canister is also expected to be part of the transportation package following storage. The canister may be subject to service-induced degradation especially if exposed to aggressive environments during possible very long-term storage period if the permanent repository is yet to be identified and readied. Stress corrosion cracking may bemore » initiated on the canister surface in the welds or in the heat affected zone because the construction of MPC does not require heat treatment for stress relief. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic Inservice Inspection. The external loading cases include thermal accident scenarios and cask drop conditions with the contribution from the welding residual stresses. The determination of acceptable flaw size is based on the procedure to evaluate flaw stability provided by American Petroleum Institute (API) 579 Fitness-for-Service (Second Edition). The material mechanical and fracture properties for base and weld metals and the stress analysis results are obtained from the open literature such as NUREG-1864. Subcritical crack growth from stress corrosion cracking (SCC), and its impact on inspection intervals and acceptance criteria, is not addressed.« less
Development of helium electron cyclotron wall conditioning on TCV
NASA Astrophysics Data System (ADS)
Douai, D.; Goodman, T.; Isayama, A.; Fukumoto, M.; Wauters, T.; Sozzi, C.; Coda, S.; Blanchard, P.; Figini, L.; Garavaglia, S.; Miyata, Y.; Moro, A.; Ricci, D.; Silva, M.; Theiler, C.; Vartanian, S.; Verhaegh, K.; the EUROfusion MST1 Team; the TCV Team
2018-02-01
JT-60SA envisions electron cyclotron wall conditioning (ECWC), as wall conditioning method in the presence of the toroidal field to control fuel and impurity recycling and to improve plasma performance and reproducibility. This paper reports on Helium ECWC experiments on TCV in support of JT-60SA operation. Nearly sixty Helium conditioning discharges have been successfully produced in TCV, at a toroidal field B T = 1.3 or 1.54 T, with gyrotrons at 82.7 GHz in X2 mode, mimicking ECWC operation in JT-60SA at the second harmonic of the EC wave. Discharge parameters were tuned in order to (i) minimize the time for the onset of ECWC plasmas, thus minimizing absorption of stray radiation by in-vessel components, (ii) improve discharge homogeneity by extending the discharge vertically and radially, and wall coverage, in particular of inboard surfaces where JT-60SA plasmas will be initiated, (iii) assess the efficiency of He-ECWC to deplete carbon walls from fuel. An optimized combination of vertical and radial magnetic fields, with amplitudes typically 0.1 to 0.6% of that of B T, has been determined, which resulted in lowest breakdown time, improved wall coverage and enhanced fuel removal. A standard ohmic D 2-plasma could be then sustained, whereas it would not have been possible without He-ECWC.
Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becknell, Nigel; Son, Yoonkook; Kim, Dohyung
Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive elpment, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed similar to 10 times higher specific and similar tomore » 6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.« less
Cheon, Jae Yeong; Kim, Taeyoung; Choi, YongMan; Jeong, Hu Young; Kim, Min Gyu; Sa, Young Jin; Kim, Jaesik; Lee, Zonghoon; Yang, Tae-Hyun; Kwon, Kyungjung; Terasaki, Osamu; Park, Gu-Gon; Adzic, Radoslav R.; Joo, Sang Hoon
2013-01-01
The high cost of the platinum-based cathode catalysts for the oxygen reduction reaction (ORR) has impeded the widespread application of polymer electrolyte fuel cells. We report on a new family of non-precious metal catalysts based on ordered mesoporous porphyrinic carbons (M-OMPC; M = Fe, Co, or FeCo) with high surface areas and tunable pore structures, which were prepared by nanocasting mesoporous silica templates with metalloporphyrin precursors. The FeCo-OMPC catalyst exhibited an excellent ORR activity in an acidic medium, higher than other non-precious metal catalysts. It showed higher kinetic current at 0.9 V than Pt/C catalysts, as well as superior long-term durability and MeOH-tolerance. Density functional theory calculations in combination with extended X-ray absorption fine structure analysis revealed a weakening of the interaction between oxygen atom and FeCo-OMPC compared to Pt/C. This effect and high surface area of FeCo-OMPC appear responsible for its significantly high ORR activity. PMID:24056308
Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J; Bowman, Stephen M; Gauld, Ian C
2015-01-01
[Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, andmore » it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades are inserted in various locations and at varying degrees during BWR operation based on the reload design. The presence of control blades during depletion hardens the neutron spectrum locally due to both moderator displacement and introduction of a thermal neutron absorber. The reactivity impact of control blade presence is investigated herein, as well as the effect of multiple (continuous and intermittent) exposure periods. The coupled effects of control blade presence on power density, void profile, or burnup profile have not been considered to date but will be addressed in future work.« less
NASA Astrophysics Data System (ADS)
Hudak, A. T.; Dickinson, M. B.; Kremens, R.; Loudermilk, L.; O'Brien, J.; Satterberg, K.; Strand, E. K.; Ottmar, R. D.
2013-12-01
Longleaf pine stand structure and function are dependent on frequent fires, so fire managers maintain healthy longleaf pine ecosystems by frequently burning surface fuels with prescribed fires. Eglin Air Force Base (AFB) in the Florida panhandle boasts the largest remnant of longleaf pine forest, providing a productive setting for fire scientists to make multi-scale measurements of fuels, fire behavior, and fire effects in collaboration with Eglin AFB fire managers. Data considered in this analysis were collected in five prescribed burn units: two forested units burned in 2011 and a forested unit and two grassland units burned in 2012. Our objective was to demonstrate the linear relationship between biomass and fire energy that has been shown in the laboratory, but using two independent remotely sensed airborne datasets collected at the unit level: 1) airborne lidar flown over the burn units immediately prior to the burns, and 2) thermal infrared image time series flown over the burn units at 2-3 minute intervals. Airborne lidar point cloud data were reduced to 3 m raster metrics of surface vegetation height and cover, which were in turn used to map surface fuel loads at 3 m resolution. Plot-based measures of prefire surface fuels were used for calibration/validation. Preliminary results based on 2011 data indicate airborne lidar can explain ~30% of variation in surface fuel loads. Multi-temporal thermal infrared imagery (WASP) collected at 3 m resolution were calibrated to units of fire radiative power (FRP), using simultaneous FRP measures from ground-based radiometers, and then temporally integrated to estimate fire radiative energy (FRE) release at the unit level. Prior to AGU, FRP and FRE will be compared to estimates of the same variables derived from ground-based FLIR thermal infrared imaging cameras, each deployed with a nadir view from a tripod, at three sites per burn unit. A preliminary proof-of-concept, comparing FRE derived from a tripod-based FLIR (3.2 MW), to another FLIR deployed with an oblique view from atop a 36 m boom lift (2.1 MW), demonstrated reasonable agreement. Unit-level estimates of FRE will also be compared to estimates of surface fuel consumption (~5 Mg/ha) that were summarized at the unit level from pre- and post-fire clip plots of surface fuel biomass. At AGU, we will also compare predictions of surface fuel loads to estimates of energy release, as mapped at 3 m resolution from these independent remotely sensed data sources. These results will serve to demonstrate our ability to remotely measure and relate fuel loads to fire behavior at a landscape level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, E.; Wang, L.; Gonder, J.
2013-10-01
Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range ofmore » battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.« less
Singh, Ajay V; Gollner, Michael J
2016-06-01
Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.
Singh, Ajay V.; Gollner, Michael J.
2016-01-01
Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O.K.; Diercks, D.; Fabian, R.
The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a periodmore » not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that could affect the safe storage of the used fuel. The information contained in the license and CoC renewal applications will require NRC review to verify that the aging effects on the SSCs in DCSSs/ ISFSIs are adequately managed for the period of extended operation. To date, all of the ISFSIs located across the United States with more than 1,500 dry casks loaded with used fuel have initial license terms of 20 years; three ISFSIs (Surry, H.B. Robinson and Oconee) have received their renewed licenses for 20 years, and two other ISFSIs (Calvert Cliffs and Prairie Island) have applied for license renewal for 40 years. This report examines issues related to managing aging effects on the SSCs in DCSSs/ISFSIs for extended long-term storage and transportation of used fuels, following an approach similar to that of the Generic Aging Lessons Learned (GALL) report, NUREG-1801, for the aging management and license renewal of nuclear power plants. The report contains five chapters and an appendix on quality assurance for aging management programs for used-fuel dry storage systems. Chapter I of the report provides an overview of the ISFSI license renewal process based on 10 CFR 72 and the guidance provided in NUREG-1927. Chapter II contains definitions and terms for structures and components in DCSSs, materials, environments, aging effects, and aging mechanisms. Chapter III and Chapter IV contain generic TLAAs and AMPs, respectively, that have been developed for managing aging effects on the SSCs important to safety in the dry cask storage system designs described in Chapter V. The summary descriptions and tabulations of evaluations of AMPs and TLAAs for the SSCs that are important to safety in Chapter V include DCSS designs (i.e., NUHOMS{reg_sign}, HI-STORM 100, Transnuclear (TN) metal cask, NAC International S/T storage cask, ventilated storage cask (VSC-24), and the Westinghouse MC-10 metal dry storage cask) that have been and continue to be used by utilities across the country for dry storage of used fuel to date. The goal of this report is to help establish the technical basis for extended long-term storage and transportation of used fuel.« less
Fuel decomposition and boundary-layer combustion processes of hybrid rocket motors
NASA Technical Reports Server (NTRS)
Chiaverini, Martin J.; Harting, George C.; Lu, Yeu-Cherng; Kuo, Kenneth K.; Serin, Nadir; Johnson, David K.
1995-01-01
Using a high-pressure, two-dimensional hybrid motor, an experimental investigation was conducted on fundamental processes involved in hybrid rocket combustion. HTPB (Hydroxyl-terminated Polybutadiene) fuel cross-linked with diisocyanate was burned with GOX under various operating conditions. Large-amplitude pressure oscillations were encountered in earlier test runs. After identifying the source of instability and decoupling the GOX feed-line system and combustion chamber, the pressure oscillations were drastically reduced from +/-20% of the localized mean pressure to an acceptable range of +/-1.5% Embedded fine-wire thermocouples indicated that the surface temperature of the burning fuel was around 1000 K depending upon axial locations and operating conditions. Also, except near the leading-edge region, the subsurface thermal wave profiles in the upstream locations are thicker than those in the downstream locations since the solid-fuel regression rate, in general, increases with distance along the fuel slab. The recovered solid fuel slabs in the laminar portion of the boundary layer exhibited smooth surfaces, indicating the existence of a liquid melt layer on the burning fuel surface in the upstream region. After the transition section, which displayed distinct transverse striations, the surface roughness pattern became quite random and very pronounced in the downstream turbulent boundary-layer region. Both real-time X-ray radiography and ultrasonic pulse-echo techniques were used to determine the instantaneous web thickness burned and instantaneous solid-fuel regression rates over certain portions of the fuel slabs. Globally averaged and axially dependent but time-averaged regression rates were also obtained and presented.
Electrolytes for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fergus, Jeffrey W.
The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.
A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts
Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen
2012-01-01
Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm−2 has been achieved at 65°C, which increases by a factor of 1.7–3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC. PMID:22880160
Brea, Oriana; Luna, Alberto; Díaz, Cristina; Corral, Inés
2018-06-05
Hydrogen has been proposed as a long-term non-fossil fuel to be used in a future ideal carbon-neutral energetic economy. However, its low volumetric energy density hinders its storage and transportation. Metal-organic frameworks (MOFs) represent very promising materials for this purpose due to their very extended surface areas. Azolates, in particular tetrazolates, are - together with carboxylate functionalities - very common organic linkers connecting metallic secondary building units in MOFs. This study addresses, from a theoretical perspective, the H 2 adsorptive properties of tetrazolate linkers at the molecular level, following a size-progressive approach. Specifically, we have investigated how the physisorption energies and geometries are affected when changing the environment of the linker by considering the azolates in the gas phase, immersed in a finite cluster, or being part of an infinite extended crystal material. Furthermore, we also study the H 2 adsorptive capacity of these linkers within the cluster model. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A multiphase interfacial model for the dissolution of spent nuclear fuel
NASA Astrophysics Data System (ADS)
Jerden, James L.; Frey, Kurt; Ebert, William
2015-07-01
The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary calculations to demonstrate the application and value of the model.
NASA Astrophysics Data System (ADS)
Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin
2015-10-01
Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.
Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method
NASA Astrophysics Data System (ADS)
Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei
The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.
Combustion of coal gas fuels in a staged combustor
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.
1982-01-01
Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.
Bramblett, Richard L.; Preskitt, Charles A.
1987-03-03
Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.
Kurt H. Mackes
2001-01-01
The Holnam Company currently operates a cement plant north of Laporte, CO. The plant is attempting to use wood as an alternate fuel to coal and natural gas. The principal objective of this project is to investigate the extended use of wood as an alternate fuel at the plant. Tests conducted at Holnam indicate that wood is suitable for use at the plant and Holnam could...
Energy Efficiency for Military Aircraft and Operations: Surveillance, Reconnaissance, Tanker
2009-06-01
overall sense (alluding to Exergy ) with reference to Logistics and Mobility considerations. In military aircraft operations, depending on the mission...stores at TOW: 10,000, WP:3000, Fuel: 3000, the Reaper has an endurance of 32 hrs at 50,000 ft. If the wings are extended to 86 ft span, internal fuel...Guided Bomb capability. Stores are carried externally on up to six wing pylons (31,500 lb max, Ref.22). Internal fuel capacity is 33,550 lb and
Methods and systems to thermally protect fuel nozzles in combustion systems
Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul
2013-12-17
A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.
Experimental Study of the Stability of Aircraft Fuels at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Vranos, A.; Marteney, P. J.
1980-01-01
An experimental study of fuel stability was conducted in an apparatus which simulated an aircraft gas turbine fuel system. Two fuels were tested: Jet A and Number 2 Home Heating oil. Jet A is an aircraft gas turbine fuel currently in wide use. No. 2HH was selected to represent the properties of future turbine fuels, particularly experimental Reference Broad Specification, which, under NASA sponsorship, was considered as a possible next-generation fuel. Tests were conducted with varying fuel flow rates, delivery pressures and fuel pretreatments (including preheating and deoxygenation). Simulator wall temperatures were varied between 422K and 672K at fuel flows of 0.022 to 0.22 Kg/sec. Coking rate was determined at four equally-spaced locations along the length of the simulator. Fuel samples were collected for infrared analysis. The dependence of coking rate in Jet A may be correlated with surface temperature via an activation energy of 9 to 10 kcal/mole, although the results indicate that both bulk fluid and surface temperature affect the rate of decomposition. As a consequence, flow rate, which controls bulk temperature, must also be considered. Taken together, these results suggest that the decomposition reactions are initiated on the surface and continue in the bulk fluid. The coking rate data for No. 2 HH oil are very highly temperature dependent above approximately 533K. This suggests that bulk phase reactions can become controlling in the formation of coke.
14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)
Code of Federal Regulations, 2014 CFR
2014-01-01
... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...
14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)
Code of Federal Regulations, 2010 CFR
2010-01-01
... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...
14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)
Code of Federal Regulations, 2013 CFR
2013-01-01
... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...
14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)
Code of Federal Regulations, 2012 CFR
2012-01-01
... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...
Federal Register and fact sheet for EPA's proposed rule which would extend the federal summertime low volatility requirements to those portions of the Denver-Boulder-Greeley-Fort Collins-Loveland, Colorado, 1997 8-hour Ozone Nonattainment area are here.
Not Getting Burned: The Importance of Fire
Gregory S. Amacher; Arun S. Malik; Robert G. Haight
2005-01-01
We extend existing stand-level models of forest landowner behavior in the presence of fire risk to include the level and timing of fuel management activities. These activities reduce losses if a stand ignites. Based on simulations, we find the standard result that fire risk reduces the optimal rotation age does not hold when landowners use fuel management. Instead,...
46 CFR 34.15-5 - Quantity, pipe sizes, and discharge rates-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., paint lockers, and similar spaces. (1) Except as provided in paragraph (d)(4) of this section, the..., internal combustion propelling machinery, or fuel oil installations subject to the discharge pressure of the fuel oil service pump extend into such space, in which case the volume shall be taken to the top...
46 CFR 34.15-5 - Quantity, pipe sizes, and discharge rates-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., paint lockers, and similar spaces. (1) Except as provided in paragraph (d)(4) of this section, the..., internal combustion propelling machinery, or fuel oil installations subject to the discharge pressure of the fuel oil service pump extend into such space, in which case the volume shall be taken to the top...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... adversely affect plant safety, and would have no adverse effect on the probability of any accident. For the accidents that involve damage or melting of the fuel in the reactor core, fuel rod integrity has been shown to be unaffected by extended burnup under consideration; therefore, the probability of an accident...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-23
... adversely affect plant safety, and would have no adverse effect on the probability of any accident. For the accidents that involve damage or melting of the fuel in the reactor core, fuel rod integrity has been shown to be unaffected by extended burnup under consideration; therefore, the consequences of an accident...
Alternatives to the motor fuel tax : final report.
DOT National Transportation Integrated Search
2001-11-01
The National Highway Cooperative Research Program (NCHRP) published its Report 377, Alternatives to Motor Fuel Taxes for Financing Surface Transportation Improvements, in 1995. Increased fuel efficiency and the use of alternative fuels were seen as p...
Some methods for achieving more efficient performance of fuel assemblies
NASA Astrophysics Data System (ADS)
Boltenko, E. A.
2014-07-01
More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.
Becky L. Estes; Eric E. Knapp; Carl N. Skinner; Fabian C. C. Uzoh
2012-01-01
Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer...
Heterogeneous fuel for hybrid rocket
NASA Technical Reports Server (NTRS)
Stickler, David B. (Inventor)
1996-01-01
Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.
Calvillo, Laura; Valero-Vidal, Carlos; Agnoli, Stefano; Sezen, Hikmet; Rüdiger, Celine; Kunze-Liebhäuser, Julia; Granozzi, Gaetano
2016-08-03
Active and stable non-noble metal materials, able to substitute Pt as catalyst or to reduce the Pt amount, are vitally important for the extended commercialization of energy conversion technologies, such as fuel cells and electrolyzers. Here, we report a fundamental study of nonstoichiometric tungsten carbide (WxC) and its interaction with titanium oxycarbide (TiOxCy) under electrochemical working conditions. In particular, the electrochemical activity and stability of the WxC/TiOxCy system toward the ethanol electrooxidation reaction (EOR) and hydrogen evolution reaction (HER) are investigated. The chemical changes caused by the applied potential are established by combining photoemission spectroscopy and electrochemistry. WxC is not active toward the ethanol electrooxidation reaction at room temperature but it is highly stable under these conditions thanks to the formation of a passive thin film on the surface, consisting mainly of WO2 and W2O5, which prevents the full oxidation of WxC. In addition, WxC is able to adsorb ethanol, forming ethoxy groups on the surface, which constitutes the first step for the ethanol oxidation. The interaction between WxC and TiOxCy plays an important role in the electrochemical stability of WxC since specific orientations of the substrate are able to stabilize WxC and prevent its corrosion. The beneficial interaction with the substrate and the specific surface chemistry makes tungsten carbide a good electrocatalyst support or cocatalyst for direct ethanol fuel cells. However, WxC is active toward the HER and chemically stable under hydrogen reduction conditions, since no changes in the chemical composition or dissolution of the film are observed. This makes tungsten carbide a good candidate as electrocatalyst support or cocatalyst for the electrochemical production of hydrogen.
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance costs prevents you from meeting the requirements of this subpart by the required compliance date... compliance deadlines for manufacturers under hardship? 59.663 Section 59.663 Protection of Environment... Fuel Containers Special Compliance Provisions § 59.663 What are the provisions for extending compliance...
Battery and Fuel Cell Development Goals for the Lunar Surface and Lander
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.
2008-01-01
NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.
Battery and Fuel Cell Development for NASA's Constellation Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2009-01-01
NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.
Battery and Fuel Cell Development for NASA's Exploration Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Reid, Concha M.
2009-01-01
NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.
Automated brush plating process for solid oxide fuel cells
Long, Jeffrey William
2003-01-01
A method of depositing a metal coating (28) on the interconnect (26) of a tubular, hollow fuel cell (10) contains the steps of providing the fuel cell (10) having an exposed interconnect surface (26); contacting the inside of the fuel cell (10) with a cathode (45) without use of any liquid materials; passing electrical current through a contacting applicator (46) which contains a metal electrolyte solution; passing the current from the applicator (46) to the cathode (45) and contacting the interconnect (26) with the applicator (46) and coating all of the exposed interconnect surface.
Spatial variability of wildland fuel characteristics in northern Rocky Mountain ecosystems
Robert E. Keane; Kathy Gray; Valentina Bacciu
2012-01-01
We investigated the spatial variability of a number of wildland fuel characteristics for the major fuel components found in six common northern Rocky Mountain ecosystems. Surface fuel characteristics of loading, particle density, bulk density, and mineral content were measured for eight fuel components - four downed dead woody fuel size classes (1, 10, 100, 1000 hr),...
33 CFR 183.518 - Fuel tank openings.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Fire hazard reflects the potential fire behavior and magnitude of effects as a function of fuel conditions. This fact sheet discusses crown fuels, surface fuels, and ground fuels and their contribution and involvement in wildland fire.Other publications in this series...
33 CFR 183.518 - Fuel tank openings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank openings. 183.518...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.518 Fuel tank openings. Each opening into the fuel tank must be at or above the topmost surface of the tank. ...
Ignition of deuterium-trtium fuel targets
Musinski, Donald L.; Mruzek, Michael T.
1991-01-01
A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.
Ignition of deuterium-tritium fuel targets
Musinski, D.L.; Mruzek, M.T.
1991-08-27
Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.
Fermi, E.; Szilard, L.
1958-05-27
A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.
NASA Technical Reports Server (NTRS)
Piltch, Nancy D.; Pettegrew, Richard D.; Ferkul, Paul; Sacksteder, K. (Technical Monitor)
2001-01-01
Surface radiometry is an established technique for noncontact temperature measurement of solids. We adapt this technique to the study of solid surface combustion where the solid fuel undergoes physical and chemical changes as pyrolysis proceeds, and additionally may produce soot. The physical and chemical changes alter the fuel surface emissivity, and soot contributes to the infrared signature in the same spectral band as the signal of interest. We have developed a measurement that isolates the fuel's surface emissions in the presence of soot, and determine the surface emissivity as a function of temperature. A commercially available infrared camera images the two-dimensional surface of ashless filter paper burning in concurrent flow. The camera is sensitive in the 2 to 5 gm band, but spectrally filtered to reduce the interference from hot gas phase combustion products. Results show a strong functional dependence of emissivity on temperature, attributed to the combined effects of thermal and oxidative processes. Using the measured emissivity, radiance measurements from several burning samples were corrected for the presence of soot and for changes in emissivity, to yield quantitative surface temperature measurements. Ultimately the results will be used to develop a full-field, non-contact temperature measurement that will be used in spacebased combustion investigations.
A surface fuel classification for estimating fire effects
Duncan C. Lutes; Robert E. Keane; John F. Caratti
2009-01-01
We present a classification of duff, litter, fine woody debris, and logs that can be used to stratify a project area into sites with fuel loading that yield significantly different emissions and maximum soil surface temperature. Total particulate matter smaller than 2.5?m in diameter and maximum soil surface temperature were simulated using the First...
Tuning Energetic Material Reactivity Using Surface Functionalization of Aluminum Fuels
2012-10-30
analysis of three different thermites consisting of aluminum (Al) particles with and without surface functionalization combined with molybdenum...of thermites , aluminum synthesis, aluminum fluoropolymer combustion, acid coatings Keerti S. Kappagantula, Cory Farley, Michelle L. Pantoya, Jillian...Reactivity Using Surface Functionalization of Aluminum Fuels Report Title ABSTRACT Combustion analysis of three different thermites consisting of aluminum (Al
Nanoporous gold membranes: From morphological control to fuel cell catalysis
NASA Astrophysics Data System (ADS)
Ding, Yi
Porous noble metals are particularly attractive for scientific research and industrial applications such as catalysis, sensing, and filtration. In this thesis, I will discuss the fabrication, characterization, and application of a new class of porous metals, called nanoporous metals (NPM). NPM is made during selective dissolution (also called dealloying) of reactive components (e.g., silver) from multi-component alloys (e.g., Ag/Au alloy). Commercially available white gold leaf (Ag65Au35) can, for example, be etched into nanoporous gold (NPG) membrane by simply floating the leaf on concentrated nitric acid for periods of a few minutes. NPG leaf adopts a single crystal porous structure within individual grains. The microstructure of NPG, such as the pore size, is tunable between a few nanometers to sub-micron length scale by either thermal annealing or post-treatment in nitric acid for extended period of time. A new gas-liquid-solid interface electroless plating technique is developed to uniformly cover the NPG surface with other metals, such as silver and platinum. This technique allows new opportunities of making functionalized nanostructures. We show that a combination of silver plating and dealloying can be used to make multimodal porous metals, which are expected to have application in sensing field. Electroless platinum plating onto NPG shows very usual growth mode. TEM observation indicates that the platinum layer on NPG surface takes a novel form of layer-islanding growth (Stranski-Krastanov growth). Annealing the Pt/NPG composite smoothens the Pt islands and forms a 1 nm coherent Pt layer on the NPG backbone, possibly with dislocation formation at the Pt/Au interface. Furthermore, it was found that we could dissolve the gold away in aqueous gold etchant, leaving behind the 1 nm-thick Pt shell, a structure we call nanotubular mesoporous platinum (NMP). Pt plated NPG has a series of unique structural properties, such as high active surface area, thermally stable, low Pt usage, and better tolerance to CO poisoning. We incorporated it as a membrane electrode into a working proton exchange membrane fuel cells (PEMFC). Preliminary results show that Pt/NPG has very good fuel cell performance at a very low platinum loading.
NASA Astrophysics Data System (ADS)
Walker, C. T.; Goll, W.; Matsumura, T.
1997-06-01
The fuel investigated was manufactured by Siemens-KWU and irradiated at low rating in the KWO reactor in Germany. The MOX agglomerates in the cold outer region of the fuel shared several common features with the high burn-up structure at the rim of UO 2 fuel. It is proposed that in both cases the mechanism producing the microstructure change is recrystallisation. Further, it is shown that surface MOX agglomerates do not noticeably retard cladding creepdown although they swell into the gap. The contracting cladding appears able to push the agglomerates back into the fuel. The thickness of the oxide layer on the inner cladding surface increased at points where contact with surface MOX agglomerates had occurred. Despite this, the mean thickness of the oxide did not differ significantly from that found in UO 2 fuel rods of like design. It is judged that the high burn-up structure will form in the UO 2 matrix when the local burn-up there reaches 60 to 80 GWd/tM. Limiting the MOX scrap addition in the UO 2 matrix will delay its formation.
Flashback detection sensor for lean premix fuel nozzles
Thornton, Jimmy Dean [Morgantown, WV; Richards, George Alan [Morgantown, WV; Straub, Douglas L [Morgantown, WV; Liese, Eric Arnold [Morgantown, WV; Trader, Jr., John Lee; Fasching, George Edward [Morgantown, WV
2002-08-06
A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360.degree. detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.
Research on rechargeable oxygen electrodes
NASA Technical Reports Server (NTRS)
Giner, J.; Malachesky, P. A.; Holleck, G.
1971-01-01
Studies were carried out on a number of factors which may influence the behavior of the platinum electrocatalyst of oxygen electrodes for use in rechargeable metal-oxygen batteries or hydrogen-oxygen fuel cells. The effects of pretreatments for various potentials and added ionic species, which could be present in such systems, were studied with reguard to: (1) the state of surface oxidation, (2) platinum dissolution, (3) the kinetics of oxygen evolution and reduction (including the role of hydrogen peroxide), and (4) changes in porous electrode structure. These studies were carried out on smooth platinum, platinized platinum, and Teflon-bonded platinum black electrodes in carefully purified electrolyte solutions. The main factors which appear to affect rechargeable oxygen electrode performance and life are: (1) the buildup of a refractory anodic layer on extended cycling, and (2) the dissolution of platinum.
High Density Methane Storage in Nanoporous Carbon
NASA Astrophysics Data System (ADS)
Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team
2014-03-01
Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friebel, Daniel
In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at highmore » electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.« less
Makiel, Joseph M.
1985-01-01
A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber.
NASA Technical Reports Server (NTRS)
Lauer, J. L.; Vogel, P.
1984-01-01
Deposits laid down in patches on metal strips in a high pressure/high temperature fuel system simulator operated with aerated fuel at varying flow rates were analyzed by emission FTIR in terms of functional groups. Significant differences were found in the spectra and amounts of deposits derived from fuels to which small concentrations of oxygen-, nitrogen-, or sulfur-containing heterocyclics or metal naphthenates were added. The spectra of deposits generated on strips by heating fuels and air in a closed container were very different from those of the flowing fluid deposits. One such closed-container dodecane deposit on silver gave a strong surface-enhanced Raman spectrum.
Shaping electrocatalysis through tailored nanomaterials
Kang, Yijin; Yang, Peidong; Markovic, Nenad M.; ...
2016-09-21
Electrocatalysis is a subclass of heterogeneous catalysis that is aimed towards increase of the electrochemical reaction rates that are taking place at the surface of electrodes. Real-world electrocatalysts are usually based on precious metals in the form of nanoparticles due to their high surface-to-volume ratio, which enables better utilization of employed materials. Ability to tailor nanostructure of an electrocatalyst is critical in order to tune their electrocatalytic properties. Over the last decade, that has mainly been achieved through implementation of fundamental studies performed on well-defined extended surfaces with distinct single crystalline and polycrystalline structures. Based on these studies, it hasmore » been demonstrated that performance of an electrocatalyst could be significantly changed through the control of size, composition, morphology and architecture of employed nanomaterials. Here, this review outlines the following steps in the process of rational development of an efficient electrocatalyst: 1) electrochemical properties of well-defined surfaces, 2) synthesis and characterization of different classes of electrocatalysts, and 3) correlation between physical properties (size, shape, composition and morphology) and electrochemical behavior (adsorption, electrocatalytic activity and durability) of electrocatalyst. In addition, this is a brief summary of the novel research platforms in the development of functional nano materials for energy conversion and storage applications such as fuel cells electrolyzers and batteries.« less
Schultz, A.B.
1959-08-01
A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.
30 CFR 75.1905-1 - Diesel fuel piping systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated... spillage of fuel and that activates an alarm system. (b) All piping, valves and fittings must be— (1...
Experimental investigation of burning rates of pure ethanol and ethanol blended fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parag, Shintre; Raghavan, Vasudevan
2009-05-15
A fundamental experimental study to determine the burning rates of ethanol and ethanol-blended fossil fuels is presented. Pure liquid ethanol or its blends with liquid fossil fuels such as gasoline or diesel, has been transpired to the surface a porous sphere using an infusion pump. Burning of the fuel takes place on the surface of the porous sphere, which is placed in an air stream blowing upwards with a uniform velocity at atmospheric pressure and temperature under normal gravity conditions. At low air velocities, when ignited, a flame envelopes the sphere. For each sphere size, air stream velocity and fuelmore » type, the fuel feed rate will vary and the same is recorded as the burning rate for that configuration. The flame stand-off distances from the sphere surface are measured by post-processing the digital image of the flame photograph using suitable imaging software. The transition velocity at which the flame moves and establishes itself at the wake region of the sphere has been determined for different diameters and fuel types. Correlations of these parameters are also presented. (author)« less
NASA Astrophysics Data System (ADS)
Mao, Lei; Jackson, Lisa; Jackson, Tom
2017-09-01
This paper investigates the polymer electrolyte membrane (PEM) fuel cell internal behaviour variation at different operating condition, with characterization test data taken at predefined inspection times, and uses the determined internal behaviour evolution to predict the future PEM fuel cell performance. For this purpose, a PEM fuel cell behaviour model is used, which can be related to various fuel cell losses. By matching the model to the collected polarization curves from the PEM fuel cell system, the variation of fuel cell internal behaviour can be obtained through the determined model parameters. From the results, the source of PEM fuel cell degradation during its lifetime at different conditions can be better understood. Moreover, with determined fuel cell internal behaviour, the future fuel cell performance can be obtained by predicting the future model parameters. By comparing with prognostic results using adaptive neuro fuzzy inference system (ANFIS), the proposed prognostic analysis can provide better predictions for PEM fuel cell performance at dynamic condition, and with the understanding of variation in PEM fuel cell internal behaviour, mitigation strategies can be designed to extend the fuel cell performance.
Hydrogen suppresses UO 2 corrosion
NASA Astrophysics Data System (ADS)
Carbol, Paul; Fors, Patrik; Gouder, Thomas; Spahiu, Kastriot
2009-08-01
Release of long-lived radionuclides such as plutonium and caesium from spent nuclear fuel in deep geological repositories will depend mainly on the dissolution rate of the UO 2 fuel matrix. This dissolution rate will, in turn, depend on the redox conditions at the fuel surface. Under oxidative conditions UO 2 will be oxidised to the 1000 times more soluble UO 2.67. This may occur in a repository as the reducing deep groundwater becomes locally oxidative at the fuel surface under the effect of α-radiolysis, the process by which α-particles emitted from the fuel split water molecules. On the other hand, the groundwater corrodes canister iron generating large amounts of hydrogen. The role of molecular hydrogen as reductant in a deep bedrock repository is questioned. Here we show evidence of a surface-catalysed reaction, taking place in the H 2-UO 2-H 2O system where molecular hydrogen is able to reduce oxidants originating from α-radiolysis. In our experiment the UO 2 surface remained stoichiometric proving that the expected oxidation of UO 2.00 to UO 2.67 due to radiolytic oxidants was absent. As a consequence, the dissolution of UO 2 stopped when equilibrium was reached between the solid phase and U 4+ species in the aqueous phase. The steady-state concentration of uranium in solution was determined to be 9 × 10 -12 M, about 30 times lower than previously reported for reducing conditions. Our findings show that fuel dissolution is suppressed by H 2. Consequently, radiotoxic nuclides in spent nuclear fuel will remain immobilised in the UO 2 matrix. A mechanism for the surface-catalysed reaction between molecular hydrogen and radiolytic oxidants is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedrick, J.; Buchholtz, B.; Ward, P.
1991-01-01
Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, spacemore » connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium. Helium can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.« less
NASA Technical Reports Server (NTRS)
Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric
1991-01-01
Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.
Review of PWR fuel rod waterside corrosion behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzarolli, F.; Jorde, D.; Manzel, R.
Waterside corrosion of Zircaloy has generally not been a problem under normal PWR operating conditions, although some instances of accelerated corrosion have been reported. However, an incentive exists to extend the average fuel rod discharge burnups to about 50,000 MWd/MTU. To minimize corrosion at these extended burnups, the factors which influence Zircaloy corrosion need to be better understood. A data base of Zircaloy corrosion behavior under PWR operating conditions has been established. The data are compiled previously published reports as well as from new Kraftwerk Union examinations. A non-destructive eddy-current technique is used to measure the oxide layer thickness onmore » fuel rods. Comparisons of measuremnts made using this eddy-current technique with those made by usual metallographic methods indicate good agreement. The data were evaluated by defining a fitting factor F which describes the increase in corrosion rate observed in-reactor over that observed from measurements of ex-reactor corrosion coupons.« less
Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.
Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu
2011-04-07
Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst.
NASA Astrophysics Data System (ADS)
Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung
2015-09-01
Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.
Particle agglomeration and fuel decomposition in burning slurry droplets
NASA Astrophysics Data System (ADS)
Choudhury, P. Roy; Gerstein, Melvin
In a burning slurry droplet the particles tend to agglomerate and produce large clusters which are difficult to burn. As a consequence, the combustion efficiency is drastically reduced. For such a droplet the nonlinear D2- t behavior associated with the formation of hard to burn agglomerates can be explained if the fuel decomposes on the surface of the particles. This paper deals with analysis and experiments with JP-10 and Diesel #2 slurries prepared with inert SiC and Al 2O 3 particles. It provides direct evidence of decomposed fuel residue on the surface of the particles heated by flame radiation. These decomposed fuel residues act as bonding agents and appear to be responsible for the observed agglomeration of particles in a slurry. Chemical analysis, scanning electron microscope photographs and finally micro-analysis by electron scattering clearly show the presence of decomposed fuel residue on the surface of the particles. Diesel #2 is decomposed relatively easily and therefore leaves a thicker deposit on SiC and forms larger agglomerates than the more stable JP-10. A surface reaction model with particles heated by flame radiation is able to describe the observed trend of the diameter history of the slurry fuel. Additional experiments with particles of lower emissivity (Al 2O 3) and radiation absorbing dye validate the theoretical model of the role of flame radiation in fuel decomposition and the formation of agglomerates in burning slurry droplets.
NASA Astrophysics Data System (ADS)
Bao, JianEr; Krishnan, Gopala N.; Jayaweera, Palitha; Lau, Kai-Hung; Sanjurjo, Angel
The poisoning effects of various trace contaminants in the coal-derived syngas stream at ppm and sub-ppm level on the performance of Ni-YSZ/YSZ/LSM solid oxide fuel cells were studied at extended duration. The thermochemical nature of impurities such as PH 3(g) and CH 3Cl(g) in presence and absence of water steam was analyzed by a high temperature mass spectrometer. Only less than half of PH 3(g) is hydrolyzed, and CH 3Cl(g) also co-exist with HCl(g). After a certain duration of exposure, 1 ppm AsH 3(g), 0.5 ppm PH 3(g), and 2.5 ppm CH 3Cl(g) all caused some degree of degradation to the power density at 750 °C. Whereas 1 ppm of H 2S(g) resulted in immediate performance loss. The mechanisms of degradation are mainly divided into two categories: surface adsorption effect (for S and Cl) and bulk reaction effect (for As and P). The controversies regarding the poisoning effect and mechanism of S are also discussed with the aid of thermodynamic equilibrium composition calculation.
Combustor nozzles in gas turbine engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman
2017-09-12
A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, Eric Benton
This report serves as a comprehensive overview of the Extended Storage of Used Nuclear Fuel work performed for the Material Protection, Accounting and Control Technologies campaign under the Department of Energy Office of Nuclear Energy. This paper describes a signature based on the source and fissile material distribution found within a population of used fuel assemblies combined with the neutron absorbers found within cask design that is unique to a specific cask with its specific arrangement of fuel. The paper describes all the steps used in producing and analyzing this signature from the beginning to the project end.
Multishell inertial confinement fusion target
Holland, James R.; Del Vecchio, Robert M.
1984-01-01
A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.
Multishell inertial confinement fusion target
Holland, James R.; Del Vecchio, Robert M.
1987-01-01
A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.
NASA Astrophysics Data System (ADS)
Zaccaria, V.; Tucker, D.; Traverso, A.
2016-09-01
Solid oxide fuel cells are characterized by very high efficiency, low emissions level, and large fuel flexibility. Unfortunately, their elevated costs and relatively short lifetimes reduce the economic feasibility of these technologies at the present time. Several mechanisms contribute to degrade fuel cell performance during time, and the study of these degradation modes and potential mitigation actions is critical to ensure the durability of the fuel cell and their long-term stability. In this work, localized degradation of a solid oxide fuel cell is modeled in real-time and its effects on various cell parameters are analyzed. Profile distributions of overpotential, temperature, heat generation, and temperature gradients in the stack are investigated during degradation. Several causes of failure could occur in the fuel cell if no proper control actions are applied. A local analysis of critical parameters conducted shows where the issues are and how they could be mitigated in order to extend the life of the cell.
Morris C. Johnson; Jessica E. Halofsky; David L. Peterson
2013-01-01
We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-...
NASA Astrophysics Data System (ADS)
Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. E.
2013-10-01
In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Senor, David J.; Casella, Andrew M.
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO2-stainless steel dispersion fuels and used currently available thermal-mechanical property information for the materials ofmore » interest in the current proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the 235U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the yield strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of interaction layer formation and can extend the performance of a fuel plate under a certain set of irradiation conditions, primarily moderate heat flux and burnup. Increasing the dispersed fuel particle diameter may also be effective, but only when combined with other parameters, e.g., lower enrichment and increased Si concentration. The model may serve as a valuable tool in initial experimental design.« less
A comparison of five sampling techniques to estimate surface fuel loading in montane forests
Pamela G. Sikkink; Robert E. Keane
2008-01-01
Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...
Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.
Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U
2005-09-01
This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.
Bedward, Michael; Penman, Trent D.; Doherty, Michael D.; Weber, Rodney O.; Gill, A. Malcolm; Cary, Geoffrey J.
2016-01-01
The influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information. Our fully specified model had a mean absolute error 3.8 times smaller than the otherwise identical surface fuel model (p < 0.01), and correctly predicted the height of larger (≥1 m) flames 12 times more often (p < 0.001). We conclude that the primary endogenous drivers of fire severity are the species of plants present rather than the surface fuel load, and demonstrate the accuracy and versatility of the model for quantifying this. PMID:27529789
Zylstra, Philip; Bradstock, Ross A; Bedward, Michael; Penman, Trent D; Doherty, Michael D; Weber, Rodney O; Gill, A Malcolm; Cary, Geoffrey J
2016-01-01
The influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information. Our fully specified model had a mean absolute error 3.8 times smaller than the otherwise identical surface fuel model (p < 0.01), and correctly predicted the height of larger (≥1 m) flames 12 times more often (p < 0.001). We conclude that the primary endogenous drivers of fire severity are the species of plants present rather than the surface fuel load, and demonstrate the accuracy and versatility of the model for quantifying this.
76 FR 43575 - Amendment of Class E Airspace; Staunton, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... airspace extending upward from 700 feet above the surface at Shenandoah Valley Regional Airport, Staunton... airspace extending upward from 700 feet above the surface to support new SIAPs developed at Shenandoah... E airspace areas extending upward from 700 feet or more above the surface of the earth...
Predicting the Spatial Variability of Fuel Moisture Content in Mountainous Eucalyptus Forests
NASA Astrophysics Data System (ADS)
Sheridan, G. J.; Nyman, P.; Lane, P. N. J.; Metzen, D.
2014-12-01
In steep mountainous landscapes, topographic aspect can play a significant role in small-scale (ie. scales in the order of 10's ha) variability in surface fuel moisture. Experimental sites for monitoring microclimate variables and moisture content in litter and in near-surface soils were established at a control site and on four contrasting aspects (north, south, east and west) in southeast Australia. At each of the four microclimate sites sensors are arranged to measure the soil moisture (2 replicates), surface fuel moisture at 2.5cm depth (12 replicates), precipitation throughfall (3 replicates), radiation (3 replicates), and screen level relative humidity, air temperature, leaf wetness, and wind speed (1 replicate of each). Temperature and relative humidity are also measured within the dead fine surface fuel using Ibutton's (4 replicates). All measurements are logged continuously at 15 min intervals. The moisture content of the surface fuel is estimated using a novel method involving high-replication of low-cost continuous soil moisture sensors placed at the centre of a 5cm deep sample of fine dead surface fuel, referred to here as "litter-packs". The litter-packs were constructed from fuels collected from the area surrounding the microclimate site. The initial results show the moisture regime on the forest floor was highly sensitive to the incoming shortwave radiation, which was up to 6 times higher in the north-facing (equatorial) slopes due to slope orientation and the sparse vegetation compared to vegetation on the south-facing (polar facing) slopes. Differences in shortwave radiation resulted in peak temperatures within the litter that were up to 2 times higher on the equatorial-facing site than those on the polar-facing site. For instance, on a day in November 2013 with maximum open air temperature of 35o C, the temperatures within the litter layer at the north-facing and south-facing sites were 54o C and 32o C, respectively, despite air temperature at the two sites differing by less than 2o C. The minimum gravimetric water content in the litter layer on the same day was 21% on the equatorial-facing slope and 85% on the polar-facing slope. The experimental data has been used to calibrate a topographic downscaling algorithm, yielding estimates of surface fuel moisture at 20m resolution.
Understanding Kelvin-Helmholtz instability in paraffin-based hybrid rocket fuels
NASA Astrophysics Data System (ADS)
Petrarolo, Anna; Kobald, Mario; Schlechtriem, Stefan
2018-04-01
Liquefying fuels show higher regression rates than the classical polymeric ones. They are able to form, along their burning surface, a low viscosity and surface tension liquid layer, which can become unstable (Kelvin-Helmholtz instability) due to the high velocity gas flow in the fuel port. This causes entrainment of liquid droplets from the fuel surface into the oxidizer gas flow. To better understand the droplets entrainment mechanism, optical investigations on the combustion behaviour of paraffin-based hybrid rocket fuels in combination with gaseous oxygen have been conducted in the framework of this research. Combustion tests were performed in a 2D single-slab burner at atmospheric conditions. High speed videos were recorded and analysed with two decomposition techniques. Proper orthogonal decomposition (POD) and independent component analysis (ICA) were applied to the scalar field of the flame luminosity. The most excited frequencies and wavelengths of the wave-like structures characterizing the liquid melt layer were computed. The fuel slab viscosity and the oxidizer mass flow were varied to study their influence on the liquid layer instability process. The combustion is dominated by periodic, wave-like structures for all the analysed fuels. Frequencies and wavelengths characterizing the liquid melt layer depend on the fuel viscosity and oxidizer mass flow. Moreover, for very low mass flows, no wavelength peaks are detected for the higher viscosity fuels. This is important to better understand and predict the onset and development of the entrainment process, which is connected to the amplification of the longitudinal waves.
Fuel cell elements with improved water handling capacity
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor); Lee, Albany (Inventor)
2001-01-01
New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.
Molina, Juan Ramón; García, Juan Pedro; Fernández, Juan José; Rodríguez Y Silva, Francisco
2018-01-15
Socioeconomic changes, climate change, rural migration and fire exclusion have led to a high woody biomass accumulation increasing potential wildfire severity. Mechanical thinning and prescribed burning practices are commonly used to prevent large fires. The purpose of this study was to assess burning treatment effectiveness following mechanical thinning from biomass harvesting. Prescribed burning to reduce residue removal could help mitigate fire behavior, mainly in strategic management or critical focal points. Field samplings were conducted before and immediately after burnings on different environmental scenarios where fuel load was classified by categories. Prescribed fires reduced available fuel in all fuel categories, mainly in surface litter layer. Total fuel load reduction ranged from 59.07% to 86.18%. In this sense, fuel reduction effects were more pronounced when burns were conducted fewer than 10% on surface litter moisture. The difference in fuel consumption among scenarios was higher for most all woody fuel components and decomposition litter layer than for surface litter layer. Managers can use this information to design technical prescription to achieve the targets while decomposed litter retention maintaining the soil properties and biodiversity. Understanding the most effective "burn window" should help better plan prescribed burning, both in term of fire behavior and fuel consumption, without altering ecosystem properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Davis, Brett; Van Wagtendonk, Jan W.; Beck, Jen; van Wagtendonk, Kent A.
2009-01-01
Surface fuels data are of critical importance for supporting fire incident management, risk assessment, and fuel management planning, but the development of surface fuels data can be expensive and time consuming. The data development process is extensive, generally beginning with acquisition of remotely sensed spatial data such as aerial photography or satellite imagery (Keane and others 2001). The spatial vegetation data are then crosswalked to a set of fire behavior fuel models that describe the available fuels (the burnable portions of the vegetation) (Anderson 1982, Scott and Burgan 2005). Finally, spatial fuels data are used as input to tools such as FARSITE and FlamMap to model current and potential fire spread and behavior (Finney 1998, Finney 2006). The capture date of the remotely sensed data defines the period for which the vegetation, and, therefore, fuels, data are most accurate. The more time that passes after the capture date, the less accurate the data become due to vegetation growth and processes such as fire. Subsequently, the results of any fire simulation based on these data become less accurate as the data age. Because of the amount of labor and expense required to develop these data, keeping them updated may prove to be a challenge. In this article, we describe the Sierra Nevada Fuel Succession Model, a modeling tool that can quickly and easily update surface fuel models with a minimum of additional input data. Although it was developed for use by Yosemite, Sequoia, and Kings Canyon National Parks, it is applicable to much of the central and southern Sierra Nevada. Furthermore, the methods used to develop the model have national applicability.
Effects of Jet Fuel Spills on the Microbial Community of Soil †
Song, Hong-Gyu; Bartha, Richard
1990-01-01
Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138
Hybrid radiator cooling system
France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.
2016-03-15
A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.
Delineation of ground-water contamination using soil-gas analyses near Jackson, Tennessee
Lee, R.W.
1991-01-01
An investigation of the ground-water resources near Jackson, West Tennessee, was conducted during 1988-89. The study included determination of the occurrence of contaminants in the shallow aquifer using soil-gas analyses in the unsaturated zone. Between 1980 and 1988, an underground fuel-storage tank leaked about 3,000 gallons of unleaded fuel to the water table about 4 feet below land surface. A survey of soil gas using a gas chromatograph equipped with a photoionization detector showed concentrations of volatile organic compounds greater than IO, 000 parts per million near the leak These compounds were detected in an area about 240 feet long and 110 feet wide extending west from the point source. The chromatograms provided two distinct 'fingerprints' of volatile organic compounds. The first revealed the presence of benzene, toluene, andxylenes, which are constituents of unleaded fuel, in addition to other volatile compounds, in soil gas in the area near the leak The second did not reveal any detectable benzene, toluene, or xylenes in the soil-gas samples, but showed the presence of other unidentified volatile organic compounds in soil gas north of the storage tank. The distribution of total concentrations of volatile organic compounds in the unsaturated zone indicated that a second plume about 200 feet long and 90 feet wide was present about 100 feet north of the storage tank The second plume could have been the result of previous activities at this site during the 1950's or earlier. Activities at the site are believed to have included storage of solvents used at the nearby railyard and flushing of tanks containing tar onto a gravel-covered parking area. The delineation of these plumes has shown that soil-gas analyses can be a useful technique for identifying areas of contamination with volatile organic compounds in shallow water-table aquifers and may have broad applications in similar situations where the water table is relatively close to the surface.
Near-Limit Flamelet Phenomena in Buoyant Low Stretch Diffusion Flames Beneath a Solid Fuel
NASA Technical Reports Server (NTRS)
Olson, S. L.; Tien, J. S.
2000-01-01
A unique near-limit low stretch multidimensional stable flamelet phenomena has been observed for the first time which extends the material flammability limit beyond the one-dimensional low stretch flammability limit to lower burning rates and higher relative heat losses than is possible with uniform flame coverage. During low stretch experiments burning the underside of very large radii (greater than or = 75 cm stretch rate less than or = 3/s) cylindrical cast PMMA samples, multidimensional flamelets were observed, in contrast with a one-dimensional flame that was found to blanket the surface for smaller radii samples ( higher stretch rate). Flamelets were observed by decreasing the stretch rate or by increasing the conductive heat loss from the flame. Flamelets are defined as flames that cover only part of the burning sample at any given time, but persist for many minutes. Flamelet phenomena is viewed as the flame's method of enhancing oxygen flow to the flame, through oxygen transport into the edges of the flamelet. Flamelets form as heat losses (surface radiation and solid-phase conduction) become large relative to the weakened heat release of the low stretch flame. While heat loss rates remain fairly constant, the limiting factor in the heat release of the flame is hypothesized to be the oxygen transport to the flame in this low stretch (low convective) environment. Flamelet extinction is frequently caused by encroachment of an adjacent flamelet. Large-scale whole-body flamelet oscillations at 1.2 - 1.95 Hz are noted prior to extinction of a flamelet. This oscillation is believed to be due a repeated process of excess fuel leakage through the dark channels between the flamelets, fuel premixing with slow incoming oxidizer, and subsequent rapid flame spread and retreat of the flamelet through the premixed layer. The oscillation frequency is driven by gas-phase diffusive time scales.
High power density fuel cell comprising an array of microchannels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopchak, David A; Morse, Jeffrey D; Upadhye, Ravindra S
2014-05-06
A phosphoric acid fuel cell according to one embodiment includes an array of microchannels defined by a porous electrolyte support structure extending between bottom and upper support layers, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and air electrodes formed along other of the microchannels. A method of making a phosphoric acid fuel cell according to one embodiment includes etching an array of microchannels in a substrate, thereby forming walls between the microchannels; processing the walls to make the walls porous, thereby forming a porous electrolyte support structure; forming anode electrodes along somemore » of the walls; forming cathode electrodes along other of the walls; and filling the porous electrolyte support structure with a phosphoric acid electrolyte. Additional embodiments are also disclosed.« less
NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY
Stengel, F.G.
1963-12-24
A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)
Roger D. Ottmar; Andrew T. Hudak; Susan J. Prichard; Clinton S. Wright; Joseph C. Restaino; Maureen C. Kennedy; Robert E. Vihnanek
2016-01-01
A lack of independent, quality-assured data prevents scientists from effectively evaluating predictions and uncertainties in fire models used by land managers. This paper presents a summary of pre-fire and post-fire fuel, fuel moisture and surface cover fraction data that can be used for fire model evaluation and development. The data were collected in the...
Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress
2009-12-23
congressional defense committees a study on the use of thorium -liquid fueled nuclear reactors for Navy surface ships. The text of Section 246 is as follows...carry out a study on the use of thorium -liquid fueled nuclear reactors for naval power needs pursuant to section 1012, of the National Defense...force— (1) compare and contrast thorium -liquid fueled reactor concept to the 2005 Quick Look, 2006 Navy Alternative Propulsion Study, and the navy CG
SHAPED FISSIONABLE METAL BODIES
Wigner, E.P.; Williamson, R.R.; Young, G.J.
1958-10-14
A technique is presented for grooving the surface of fissionable fuel elements so that expansion can take place without damage to the interior structure of the fuel element. The fissionable body tends to develop internal stressing when it is heated internally by the operation of the nuclear reactor and at the same time is subjected to surface cooling by the circulating coolant. By producing a grooved or waffle-like surface texture, the annular lines of tension stress are disrupted at equally spaced intervals by the grooves, thereby relieving the tension stresses in the outer portions of the body while also facilitating the removal of accumulated heat from the interior portion of the fuel element.
Nonlinear Control of a Reusable Rocket Engine for Life Extension
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok
1998-01-01
This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.
Develop an piezoelectric sensing based on SHM system for nuclear dry storage system
NASA Astrophysics Data System (ADS)
Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu
2016-04-01
In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.
Schwilk, D.W.; Keeley, J.E.; Knapp, E.E.; Mciver, J.; Bailey, J. D.; Fettig, C.J.; Fiedler, C.E.; Harrod, R.J.; Moghaddas, J.J.; Outcalt, K.W.; Skinner, C.N.; Stephens, S.L.; Waldrop, T.A.; Yaussy, D.A.; Youngblood, A.
2009-01-01
Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction treatments and their effect on ecological parameters we used an informationtheoretic approach on a suite of 12 variables representing the overstory (basal area and live tree, sapling, and snag density), the understory (seedling density, shrub cover, and native and alien herbaceous species richness), and the most relevant fuel parameters for wildfire damage (height to live crown, total fuel bed mass, forest floor mass, and woody fuel mass). In the short term (one year after treatment), mechanical treatments were more effective at reducing overstory tree density and basal area and at increasing quadratic mean tree diameter. Prescribed fire treatments were more effective at creating snags, killing seedlings, elevating height to live crown, and reducing surface woody fuels. Overall, the response to fuel reduction treatments of the ecological variables presented in this paper was generally maximized by the combined mechanical plus burning treatment. If the management goal is to quickly produce stands with fewer and larger diameter trees, less surface fuel mass, and greater herbaceous species richness, the combined treatment gave the most desirable results. However, because mechanical plus burning treatments also favored alien species invasion at some sites, monitoring and control need to be part of the prescription when using this treatment. ?? 2009 by the Ecological Society of America.
Electrolysis cell for reprocessing plutonium reactor fuel
Miller, William E.; Steindler, Martin J.; Burris, Leslie
1986-01-01
An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals, the cell including a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket and the anode basket being extendable into the lower pool to dissolve at least some metallic contaminants, the anode basket containing the spent fuel acting as a second anode when in the electrolyte.
Electrolysis cell for reprocessing plutonium reactor fuel
Miller, W.E.; Steindler, M.J.; Burris, L.
1985-01-04
An electrolytic cell for refining a mixture of metals including spent fuel containing U and Pu contaminated with other metals is claimed. The cell includes a metallic pot containing a metallic pool as one anode at a lower level, a fused salt as the electrolyte at an intermediate level and a cathode and an anode basket in spaced-apart positions in the electrolyte with the cathode and anode being retractable to positions above the electrolyte during which spent fuel may be added to the anode basket. The anode basket is extendable into the lower pool to dissolve at least some metallic contaminants; the anode basket contains the spent fuel acting as a second anode when in the electrolyte.
Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover
NASA Technical Reports Server (NTRS)
Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.
2012-01-01
This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.
Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun
2010-10-19
A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.
Laser Diagnostic Analyses of Sooting Flames.
1984-11-29
flame front as expected. However the fuel flame length is considerably shorter than the luminous height, and the flame surface must cross the soot surface...very useful in understanding this behaviour and the fact that the fuel flame length increases only slightly on addition of diluent--while the visible
NASA Technical Reports Server (NTRS)
Olson, S. L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.
2013-01-01
The effect of low velocity forced flow on microgravity flame spread is examined using quantitative analysis of infrared video imaging. The objective of the quantitative analysis is to provide insight into the mechanisms of flame spread in microgravity where the flame is able to spread from a central location on the fuel surface, rather than from an edge. Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained along with a color video of the surface view and color images of the edge view using 35 mm color film at 2 Hz. The cellulose fuel samples were mounted in the center of a 12 cm wide by 16 cm tall flow duct and were ignited in microgravity using a straight hot wire across the center of the 7.5 cm wide by 14 cm long samples. Four cases, at 1 atm. 35%O2 in N2, at forced flows from 2 cm/s to 20 cm/s are presented here. This flow range captures flame spread from strictly upstream spread at low flows, to predominantly downstream spread at high flow. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths and pyrolysis lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel. Surface radiative loss and gas-phase radiation from soot are measured relative to the net heat feedback from the flame. At high surface heat loss relative to heat feedback, the downstream flame spread does not occur.
Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J
NASA Technical Reports Server (NTRS)
El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2003-01-01
The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.
Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B
NASA Technical Reports Server (NTRS)
El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.
30 CFR 75.1905-1 - Diesel fuel piping systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... storage facility. (h) The diesel fuel piping system must not be located in a borehole with electric power... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated...) Capable of withstanding working pressures and stresses; (2) Capable of withstanding four times the static...
30 CFR 57.6309 - Fuel oil requirements for ANFO.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fuel oil requirements for ANFO. 57.6309 Section 57.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon fuels...
30 CFR 57.6309 - Fuel oil requirements for ANFO.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel oil requirements for ANFO. 57.6309 Section 57.6309 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Transportation-Surface and Underground § 57.6309 Fuel oil requirements for ANFO. (a) Liquid hydrocarbon fuels...
40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) Evaporative Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1207-96 Sampling and analytical systems..., the enclosure shall be gas tight in accordance with § 86.1217-96. Interior surfaces must be...
40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) Evaporative Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1207-96 Sampling and analytical systems..., the enclosure shall be gas tight in accordance with § 86.1217-96. Interior surfaces must be...
NASA Technical Reports Server (NTRS)
Cable, Thomas L. (Inventor); Setlock, John A. (Inventor); Farmer, Serene C. (Inventor)
2014-01-01
The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which an electrolyte layer is supported between porous electrodes. The porous electrodes may be made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze-drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that, subsequent to sintering, is made into either an anode or a cathode. The electrode scaffold comprising the anode includes a layer of liquid metal. The pores of the electrode scaffolds gradually increase in diameter as the layer extends away from the electrolyte layer. As a result of this diameter increase, any forces that would tend to pull the liquid metal away from the electrolyte are reduced while maintaining a diffusion path for the fuel. Advantageously, the fuel cell of the invention may utilize a hydrocarbon fuel without pre-processing to remove sulfur.
Fuel injection assembly for use in turbine engines and method of assembling same
Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho
2015-12-15
A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.
The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eccleston, G.W.; Menlove, H.O.; Abhold, M.
1998-12-31
The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 tomore » 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.« less
Exergy analysis of a solid oxide fuel cell micropowerplant
NASA Astrophysics Data System (ADS)
Hotz, Nico; Senn, Stephan M.; Poulikakos, Dimos
In this paper, an analytical model of a micro solid oxide fuel cell (SOFC) system fed by butane is introduced and analyzed in order to optimize its exergetic efficiency. The micro SOFC system is equipped with a partial oxidation (POX) reformer, a vaporizer, two pre-heaters, and a post-combustor. A one-dimensional (1D) polarization model of the SOFC is used to examine the effects of concentration overpotentials, activation overpotentials, and ohmic resistances on cell performance. This 1D polarization model is extended in this study to a two-dimensional (2D) fuel cell model considering convective mass and heat transport along the fuel cell channel and from the fuel cell to the environment. The influence of significant operational parameters on the exergetic efficiency of the micro SOFC system is discussed. The present study shows the importance of an exergy analysis of the fuel cell as part of an entire thermodynamic system (transportable micropowerplant) generating electric power.
Phillips, John R.; Halbig, James K.; Menlove, Howard O.; Klosterbuer, Shirley F.
1985-01-01
A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.
Fuel-flexible burner apparatus and method for fired heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zink, Darton J.; Isaacs, Rex K.; Jamaluddin, A. S.
A burner apparatus for a fired heating system and a method of burner operation. The burner provides stable operation when burning gas fuels having heating values ranging from low to high and accommodates sudden wide changes in the Wobbe value of the fuel delivered to the burner. The burner apparatus includes a plurality of exterior fuel ejectors and has an exterior notch which extends around the burner wall for receiving and combusting a portion of the gas fuel. At least a portion of the hot combustion product gas produced in the exterior notch is delivered through channels formed in themore » burner wall to the combustion area at the forward end of the burner. As the Wobbe value of the gas fuel decreases, one or more outer series of addition ejectors can be automatically activated as needed to maintain the amount of heat output desired.« less
40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...
40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...
40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...
40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...
40 CFR 1051.515 - How do I test my fuel tank for permeation emissions?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test my fuel tank for... Procedures § 1051.515 How do I test my fuel tank for permeation emissions? Measure permeation emissions by... make sure not to overestimate the surface area. (3) Fill the fuel tank with the test fuel specified in...
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2015-01-01
Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...
Study of Rapid-Regression Liquefying Hybrid Rocket Fuels
NASA Technical Reports Server (NTRS)
Zilliac, Greg; DeZilwa, Shane; Karabeyoglu, M. Arif; Cantwell, Brian J.; Castellucci, Paul
2004-01-01
A report describes experiments directed toward the development of paraffin-based hybrid rocket fuels that burn at regression rates greater than those of conventional hybrid rocket fuels like hydroxyl-terminated butadiene. The basic approach followed in this development is to use materials such that a hydrodynamically unstable liquid layer forms on the melting surface of a burning fuel body. Entrainment of droplets from the liquid/gas interface can substantially increase the rate of fuel mass transfer, leading to surface regression faster than can be achieved using conventional fuels. The higher regression rate eliminates the need for the complex multi-port grain structures of conventional solid rocket fuels, making it possible to obtain acceptable performance from single-port structures. The high-regression-rate fuels contain no toxic or otherwise hazardous components and can be shipped commercially as non-hazardous commodities. Among the experiments performed on these fuels were scale-up tests using gaseous oxygen. The data from these tests were found to agree with data from small-scale, low-pressure and low-mass-flux laboratory tests and to confirm the expectation that these fuels would burn at high regression rates, chamber pressures, and mass fluxes representative of full-scale rocket motors.
Combustor and method for purging a combustor
Berry, Jonathan Dwight; Hughes, Michael John
2015-06-09
A combustor includes an end cap. The end cap includes a first surface and a second surface downstream from the first surface, a shroud that circumferentially surrounds at least a portion of the first and second surfaces, a plate that extends radially within the shroud, a plurality of tubes that extend through the plate and the first and second surfaces, and a first purge port that extends through one or more of the plurality of tubes, wherein the purge port is axially aligned with the plate.
Nanowire mesh solar fuels generator
Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin
2016-05-24
This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.
Overview of thermal barrier coatings in diesel engines
NASA Technical Reports Server (NTRS)
Yonushonis, Thomas M.
1995-01-01
An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.
Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M
2015-01-01
Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technicalmore » basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in various locations and at varying degrees during BWR operation based on the core loading pattern. When present during depletion, control blades harden the neutron spectrum locally because they displace the moderator and absorb thermal neutrons. The investigation of the effect of control blades on post operational cask reactivity is documented herein, as is the effect of multiple (continuous and intermittent) exposure periods with control blades inserted. The coupled effects of control blade presence on power density, void profile, or burnup profile will be addressed in future work.« less
Johnson, Carl E.; Crouthamel, Carl E.
1980-01-01
A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.
A Materials Compatibility and Thermal Stability Analysis of Common Hydrocarbon Fuels
NASA Technical Reports Server (NTRS)
Meyer, M. L.; Stiegemeier, B. R.
2005-01-01
A materials compatibility and thermal stability investigation was conducted using five common liquid hydrocarbon fuels and two structural materials. The tests were performed at the NASA Glenn Research Center Heated Tube Facility under environmental conditions similar to those encountered in regeneratively cooled rocket engines. Scanning-electron microscopic analysis in conjunction with energy dispersive spectroscopy (EDS) was utilized to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion that was formed during selected runs. Results show that the carbon deposition process in stainless steel tubes was relatively insensitive to fuel type or test condition. The deposition rates were comparable for all fuels and none of the stainless steel test pieces showed any signs of corrosion. For tests conducted with copper tubing, the sulfur content of the fuel had a significant impact on both the condition of the tube wall and carbon deposition rates. Carbon deposition rates for the lowest sulfur fuels (2 ppm) were slightly higher than those recorded in the stainless steel tubes with no corrosion observed on the inner wall surface. For slightly higher sulfur content (25 ppm) fuels, nodules that intruded into the flow area were observed to form on the inner wall surface. These nodules induced moderate tube pressure drop increases. The highest sulfur content fuels (400 ppm) produced extensive wall pitting and dendritic copper sulfide growth that was continuous along the entire tube wall surface. The result of this tube degradation was the inability to maintain flow rate due to rapidly increasing test section pressure drops. Accompanying this corrosion were carbon deposition rates an order of magnitude greater than those observed in comparable stainless steel tests. The results of this investigation indicate that trace impurities in fuels (i.e. sulfur) can significantly impact the carbon deposition process and produce unacceptable corrosion levels in copper based structural materials.
Method and apparatus for automatically tracking a workpiece surface. [Patents
Not Available
1981-02-03
Laser cutting concepts and apparatus have been developed for cutting the shroud of the core fuel subassemblies. However, much care must be taken in the accuracy of the cutting since the fuel rods within the shroud often become warped and are forced into direct contact with the shroud in random regions. Thus, in order to cut the nuclear fuel rod shroud accurately so as not to puncture the cladding of the fuel rods, and to insure optimal cutting efficiency and performance, the focal point of beam need be maintained accurately at the workpiece surface. It becomes necessary to detect deviations in the level of the workpiece surface accurately in connection with the cutting process. Therefore, a method and apparatus for tracking the surface of a workpiece being cut by a laser beam coming from a focus head assembly is disclosed which includes two collimated laser beams directed onto the work-piece surface at spaced points by beam directing optics in generally parallel planes of incidence. A shift in spacing between the two points is detected by means of a video camera system and processed by a computer to yield a workpiece surface displacement signal which is input to a motor which raises or lowers the beam focus head accordingly.
Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melissa C. Teague; Brian P. Gorman; Steven L. Hayes
2013-10-01
High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column weremore » observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.« less
NEUTRONIC REACTOR FUEL ELEMENT
Horning, W.A.; Lanning, D.D.; Donahue, D.J.
1959-10-01
A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.
Russell, Harold C.
1979-01-01
This disclosure describes a device for repeatably scribing a V-shaped scratch having sharply defined dimensions on the interior surface of a nuclear reactor fuel rod tube. A cutting tool having a V-shaped cutting tip is supported within the fuel rod tube so that the V-shaped cutting tip can be pivoted about an axis and scribe a scratch on the interior surface of the fuel rod tube. Lengthwise the scratch runs parallel to a line drawn through the axis of the fuel rod tube and is in the shape of an arc, and widthwise the scratch is V-shaped. This shape is used because the dimensions of the scratch can be plugged into appropriate formulas to calculate stress intensity of cracks in fuel rod tubes. Since the fuel rod tubes which are to be scribed may be radioactive, the scratching assembly is designed for use in a fixture which allows it to be operated in a cave by remote control handling devices.
DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL
Buyers, A.G.; Rosen, F.D.; Motta, E.E.
1959-12-22
A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.
Chen, Qihong; Long, Rong; Quan, Shuhai
2014-01-01
This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206
Oxidation and formation of deposit precursors in hydrocarbon fuels
NASA Technical Reports Server (NTRS)
Buttrill, S. E., Jr.; Mayo, F. R.; Lan, B.; St.john, G. A.; Dulin, D.
1982-01-01
A practical fuel, home heating oil no. 2 (Fuel C), and the pure hydrocarbon, n-dodecane, were subjected to mild oxidation at 130 C and the resulting oxygenated reaction products, deposit precursors, were analyzed using field ionization mass spectrometry. Results for fuel C indicated that, as oxidation was initially extended, certain oxygenated reaction products of increasing molecular weights in the form of monomers, dimers and some trimers were produced. Further oxidation time increase resulted in further increase in monomers but a marked decrease in dimers and trimers. This suggests that these larger molecular weight products have proceeded to form deposit and separated from the fuel mixture. Results for a dodecane indicated that yields for dimers and trimers were very low. Dimers were produced as a result of interaction between oxygenated products with each other rather than with another fuel molecule. This occurred even though fuel molecule concentration was 50 times, or more greater than that for these oxygenated reaction products.
Performance analysis of a SOFC under direct internal reforming conditions
NASA Astrophysics Data System (ADS)
Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf
This paper presents the performance analysis of a planar solid-oxide fuel cell (SOFC) under direct internal reforming conditions. A detailed solid-oxide fuel cell model is used to study the influences of various operating parameters on cell performance. Significant differences in efficiency and power density are observed for isothermal and adiabatic operational regimes. The influence of air number, specific catalyst area, anode thickness, steam to carbon (s/c) ratio of the inlet fuel, and extend of pre-reforming on cell performance is analyzed. In all cases except for the case of pre-reformed fuel, adiabatic operation results in lower performance compared to isothermal operation. It is further discussed that, though direct internal reforming may lead to cost reduction and increased efficiency by effective utilization of waste heat, the efficiency of the fuel cell itself is higher for pre-reformed fuel compared to non-reformed fuel. Furthermore, criteria for the choice of optimal operating conditions for cell stacks operating under direct internal reforming conditions are discussed.
High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects
NASA Astrophysics Data System (ADS)
Gannon, Paul; Amendola, Roberta
2012-12-01
High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.
Evaluation of thermal loading on a methane injector at high pressure and temperature
NASA Technical Reports Server (NTRS)
Harvin, Stephen F.
1990-01-01
Experimental and numerical analyses are conducted to determine the surface temperature on a methane fuel injector used to produce a high enthalpy test stream for a combustion-fed subscale wind tunnel facility. It was found that the ratio of the methane fuel injection velocity to the air stream velocity is a significant factor in the production of high injector surface temperatures which lead to rapid deterioration of the fuel injector structure. The numerical code utilized for the computational analysis was found to be representative of the experimentally measured data since the experimental trends were reproduced by the numerical simulation. The quantitative accuracy of the numerical predictions could not be assessed from the data gathered because of the difficulty of making a noninterfering injector surface temperature measurement. The numerical code can be used for parametric evaluation of combustor parameters and thus will serve as an important tool in the design of such fuel injector systems.
Electrocatalyst for alcohol oxidation at fuel cell anodes
Adzic, Radoslav [East Setauket, NY; Kowal, Andrzej [Cracow, PL
2011-11-02
In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.
Surface recrystallization of polyethylene extended-chain crystals.
Wunderlich, B; Melillo, L
1966-12-09
Rough fracture surfaces of extended-chain polyethylene crystals become unstable at temperatures below the bulk melting point. There is no way for the extended chains, which are up to 20,000 methylene units long, to change position without collapse. As a result, the rough surfaces smooth out on heating by covering themselves with oriented folded-chain lamellae.
Electrochemical cell and separator plate thereof
Baker, Bernard S.; Dharia, Dilip J.
1979-10-02
A fuel cell includes a separator plate having first and second flow channels extending there through contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are supplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material. 10 figs.
Controlling soot formation with filtered EGR for diesel and biodiesel fuelled engines.
Gill, S S; Turner, D; Tsolakis, A; York, A P E
2012-04-03
Although exhaust gas recirculation (EGR) is an effective strategy for controlling the levels of nitrogen oxides (NO(X)) emitted from a diesel engine, the full potential of EGR in NO(X)/PM trade-off and engine performance (i.e., fuel economy) has not fully been exploited. Significant work into the cause and control of particulate matter (PM) has been made over the past decade with new cleaner fuels and after-treatment devices emerging to comply with the current and forthcoming emission regulations. In earlier work, we demonstrated that engine operation with oxygenated fuels (e.g., biodiesel) reduces the PM emissions and extends the engine tolerance to EGR before it reaches smoke-limited conditions. The same result has also been reported when high cetane number fuels such as gas-to-liquid (GTL) are used. To further our understanding of the relationship between EGR and PM formation, a diesel particulate filter (DPF) was integrated into the EGR loop to filter the recirculated soot particulates. The control of the soot recirculation penalty through filtered EGR (FEGR) resulted in a 50% engine-out soot reduction, thus showing the possibility of extending the maximum EGR limit or being able to run at the same level of EGR with an improved NO(X)/soot trade-off.
Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haori; Hayward, Jason; Chichester, David
The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-sitemore » wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.« less
Novel Architectures for Achieving Direct Electron Transfer in Enzymatic Biofuel Cells
NASA Astrophysics Data System (ADS)
Blaik, Rita A.
Enzymatic biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving direct electron transfer with high enzyme concentrations in a simple system. In this dissertation, methods of constructing electrodes consisting of enzymes attached to nanoparticle-enhanced substrates that serve as high surface area templates are evaluated. In the first method described, glucose oxidase is covalently attached to gold nanoparticles that are assembled onto genetically engineered M13 bacteriophage. The resulting anodes achieve a high peak current per area and a significant improvement in enzyme surface coverage. In the second system, fructose dehydrogenase, a membrane-bound enzyme that has the natural ability to achieve direct electron transfer, is immobilized into a matrix consisting of binders and carbon nanotubes to extend the lifetime of the anode. For the cathode, bilirubin oxidase is immobilized in a carbon nanotube and sol-gel matrix to achieve direct electron transfer. Finally, a full fuel cell consisting of both an anode and cathode is constructed and evaluated with each system described.
Potential Use of Passive Sampling for Environmental Monitoring of Petroleum E&P Operations
Traditional environmental monitoring relies on water or soil samples being taken at various time increments and sent to offsite laboratories for analysis. Reliance on grab samples generally captures limited “snapshots” of environmental contaminant concentrations, is time intensive, costly, and generates residual waste from excess sample and/or reagents used in the analysis procedures. As an alternative, we are evaluating swellable organosilica sorbents to create passive sampling systems for monitoring applications. Previous work has focused on absorption and detection of fuels, chlorinated solvents, endocrine disruptors, explosives, pesticides, fluorinated chemicals, and metals including Ba, Sr, Hg, Pb, Fe, Cu, and Zn. The advantages of swellable organosilica are that the material cancapture target compounds for an extended periods of time, does not absorb natural organic matter, and resists biofilm formation since the sorbent possesses an animated surface morphology.
30 CFR 75.1905-1 - Diesel fuel piping systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel fuel piping systems. 75.1905-1 Section... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905-1 Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated...
NASA Technical Reports Server (NTRS)
Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir
1995-01-01
The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.
NASA Astrophysics Data System (ADS)
Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir
The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.
Spatial fuel data products of the LANDFIRE Project
Reeves, M.C.; Ryan, K.C.; Rollins, M.G.; Thompson, T.G.
2009-01-01
The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50 states. Here we describe development of the LANDFIRE wildland fuels data layers for the conterminous 48 states: surface fire behavior fuel models, canopy bulk density, canopy base height, canopy cover, and canopy height. Surface fire behavior fuel models are mapped by developing crosswalks to vegetation structure and composition created by LANDFIRE. Canopy fuels are mapped using regression trees relating field-referenced estimates of canopy base height and canopy bulk density to satellite imagery, biophysical gradients and vegetation structure and composition data. Here we focus on the methods and data used to create the fuel data products, discuss problems encountered with the data, provide an accuracy assessment, demonstrate recent use of the data during the 2007 fire season, and discuss ideas for updating, maintaining and improving LANDFIRE fuel data products.
Alicia L. Reiner; Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott N. Dailey
2009-01-01
Due to increases in tree density and hazardous fuel loading in Sierra Nevadan forests, land management is focusing on fuel reduction treatments to moderate the risk of catastrophic fires. Fuel treatments involving mechanical and prescribed fire methods can reduce surface as well as canopy fuel loads. Mastication is a mechanical method which shreds smaller trees and...
Dylan W. Schwilk; Jon E. Keeley; Eric E. Knapp; James Mciver; John D. Bailey; Christopher J. Fettig; Carl E. Fiedler; Richy J. Harrod; Jason J. Moghaddas; Kenneth W. Outcalt; Carl N. Skinner; Scott L. Stephens; Thomas A. Waldrop; Daniel A. Yaussy; Andrew Youngblood
2009-01-01
Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction...
NASA Astrophysics Data System (ADS)
Ziehn, T.; Nickless, A.; Rayner, P. J.; Law, R. M.; Roff, G.; Fraser, P.
2014-03-01
This paper describes the generation of optimal atmospheric measurement networks for determining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian inverse modelling framework to calculate the relationship between weekly surface fluxes and hourly concentration observations for the Australian continent. Meteorological driving fields are provided by the regional version of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km resolution at an hourly time scale. Prior uncertainties are derived on a weekly time scale for biosphere fluxes and fossil fuel emissions from high resolution BIOS2 model runs and from the Fossil Fuel Data Assimilation System (FFDAS), respectively. The influence from outside the modelled domain is investigated, but proves to be negligible for the network design. Existing ground based measurement stations in Australia are assessed in terms of their ability to constrain local flux estimates from the land. We find that the six stations that are currently operational are already able to reduce the uncertainties on surface flux estimates by about 30%. A candidate list of 59 stations is generated based on logistic constraints and an incremental optimization scheme is used to extend the network of existing stations. In order to achieve an uncertainty reduction of about 50% we need to double the number of measurement stations in Australia. Assuming equal data uncertainties for all sites, new stations would be mainly located in the northern and eastern part of the continent.
Thermal shields for gas turbine rotor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Christopher W.; Acar, Bulent
A turbomachine including a rotor having an axis and a plurality of disks positioned adjacent to each other in the axial direction, each disk including opposing axially facing surfaces and a circumferentially extending radially facing surface located between the axially facing surfaces. At least one row of blades is positioned on each of the disks, and the blades include an airfoil extending radially outward from the disk A non-segmented circumferentially continuous ring structure includes an outer rim defining a thermal barrier extending axially in overlapping relation over a portion of the radially facing surface of at least one disk, andmore » extending to a location adjacent to a blade on the disk A compliant element is located between a radially inner circumferential portion of the ring structure and a flange structure that extends axially from an axially facing surface of the disk.« less
Cold weather effects on Dresden Unit 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anagnostopoulos, H.
1995-03-01
Dresden Unit 1 is in the final stages of a decommissioning effort directed at preparing the unit to enter a SAFSTOR status. Following an extended sub-zero cold wave, about 55,000 gallons of water were discovered in the lowest elevation of the spherical reactor enclosure. Cold weather had caused the freezing and breaking of several service water lines that had not been completely isolated. Two days later, at a regularly scheduled decommissioning meeting, the event was communicated to the decommissioning team, who quickly recognized the potential for freezing of a 42 inches diameter Fuel Transfer Tube that connects the sphere tomore » the Spent Fuel Pool. The team directed that the pool gates between the adjacent Spent Fuel Pool and the Fuel Transfer Pool be installed, and a portable source of heat was installed on the Fuel Transfer Tube. It was later determined that, with the fuel pool gates removed, and with a worst case freeze break at the 502 elevation on the Fuel Transfer Tube (in the Sphere), the fuel in the Spent Fuel Pool could be uncovered to a level 3 below the top of active fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderfer, R.R.; Futa, P.W.
This patent describes a fuel system for an engine having a filter through which fuel from a pump passes to a regulator in response to an operator input. The regulator controls the flow of fuel presented to a combustion chamber in the engine, the regulator having a feedback apparatus to provide an operator with a signal indicative of the fuel supplied to the combustion chamber. It comprises: bypass means having a housing with a chamber therein, the chamber having an entrance port connected to the pump and an exit port connected to the regulator; piston means located in the chambermore » for separating the entrance port from the exit port, the piston having a face with a projection extending therefrom; stop means located in the chamber; resilient means located is the chamber for urging the piston means toward the stop means to prevent the flow of fuel from the pump through the housing to the regulator; and indicator means having a body retained in the housing with a first end which extends through the housing into the from a full-open position at which the closed circuit is fully opened to a full-closed position at which the closed circuit is fully blocked; ratio detecting means which detects the speed reduction ratio to find if the speed reduction ratio becomes substantially 1; and valve position detecting means which detects position of the direct clutch valve to find if the direct clutch valve is moved to a slight-open position at which the closed circuit is slightly opened.« less
Ignition of combustible fluids by heated surfaces
NASA Astrophysics Data System (ADS)
Bennett, Joseph Michael
The ignition of flammable fluids leaking onto hot machinery components is a common cause of fires and property loss to society. For example, the U.S. Air Force has over 100 engine fires per year. There is a comparable number in the civilian air fleet. Many of these fires are due to ruptured fuel, oil or hydraulic lines impinging on hot engine components. Also, over 500,000 vehicle fires occur each year on U.S. roads. Many of these are due to leaking fluids onto hot exhaust manifolds or other exhaust components. The design of fire protection systems for aircraft and road vehicles must take into account the problems of hot surface ignition as well as re-ignition that can occur once the fire is initially extinguished. The lack of understanding of ignition and re-ignition results in heavy, high-capacity fire extinguishers to address the fire threat. It is desired to better understand the mechanisms that control this phenomenon, and exploit this understanding in producing machinery designs that can mitigate this threat. The purpose of this effort is to gain a fundamental understanding of ignition by heated surfaces. This is done by performing experimental measurements on the impingement of vertical streams of combustible fluids onto horizontal heated surfaces, and then determine the mechanisms that control the process, in terms of physical, controllable parameters (such as fuel type, flow rate and surface temperature). An initial exhaustive review of the literature revealed a small sample of pertinent findings of previous investigators, focused on droplet ignition. Boiling modes present during contact with the heated surface were also shown to control evaporation rates and ignition delays, in addition to surface temperatures and fluid properties. An experimental apparatus was designed and constructed to create the scenario of interest in a controllable fashion, with a 20 cm horizontal heated plate with variable heating supply. Fuels were applied as streams ranging from 0.67 ml/sec to 9.5 ml/sec. Heptane, hexadecane, dodecane and kerosene were the fuels investigated in the study, and experiments were performed over a range of surface temperatures. Of the 388 fuel impingement experiments performed, 226 resulted in ignition events. Of these, 124 were classified as "airborne" ignitions, where spontaneous ignition occurred up to 60 cm above the surface. A model was derived as a predictor of ignition delays observed in these experiments, based upon a fuel evaporation rate-dominated process. This model, which utilized information derived from prior Nusselt number heat transfer correlations and simple plume models, exhibited a high degree of successful correlation with experimental data. This model was sufficiently robust to be applied to all the fuels studied, and all boiling modes (nucleate, transition and boiling) and flow rates. This facilitated a means of predicting ignition delay times based upon fundamental operating parameters of fuel type, flow rate and surface temperature, and assist in the design of fire-safe systems.
Development of advanced fuel cell system
NASA Technical Reports Server (NTRS)
Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.
1978-01-01
An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.
NASA Technical Reports Server (NTRS)
Gordon, Sanford
1991-01-01
The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.
Design and realization of a 300 W fuel cell generator on an electric bicycle
NASA Astrophysics Data System (ADS)
Cardinali, Luciano; Santomassimo, Saverio; Stefanoni, Marco
At ENEA Casaccia Research Center (Rome, Italy) a 300 W NUVERA fuel cell stack has been utilized for the construction of a range extender generator on a commercial electric bicycle. The generator is fully automated with a programmable logic controller (PLC) safely operating start-up, shut-down and emergencies; a volumetric compressor supplies air to the cathode, a dc/dc converter transfers energy from the stack to the battery. All ancillary equipment are commercial; only the cell voltage sensors have been developed in order to obtain miniaturized and low consumption components. With this generator the bicycle nominal range of 25 km (utilizing only the Ni-Mh battery) is extended to over 120 km, by installing a 200 bar, 5 l bottle of hydrogen.
Microfabrication of microchannels for fuel cell plates.
Jang, Ho Su; Park, Dong Sam
2010-01-01
Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.
Microfabrication of Microchannels for Fuel Cell Plates
Jang, Ho Su; Park, Dong Sam
2010-01-01
Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating. PMID:22315533
Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth
NASA Technical Reports Server (NTRS)
Kim, Inchul; Sirignano, William A.
1999-01-01
This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.
NASA Astrophysics Data System (ADS)
Lydersen, Jamie M.; Collins, Brandon M.; Ewell, Carol M.; Reiner, Alicia L.; Fites, Jo Ann; Dow, Christopher B.; Gonzalez, Patrick; Saah, David S.; Battles, John J.
2014-03-01
Inventories of greenhouse gas (GHG) emissions from wildfire provide essential information to the state of California, USA, and other governments that have enacted emission reductions. Wildfires can release a substantial amount of GHGs and other compounds to the atmosphere, so recent increases in fire activity may be increasing GHG emissions. Quantifying wildfire emissions however can be difficult due to inherent variability in fuel loads and consumption and a lack of field data of fuel consumption by wildfire. We compare a unique set of fuel data collected immediately before and after six wildfires in coniferous forests of California to fuel consumption predictions of the first-order fire effects model (FOFEM), based on two different available fuel characterizations. We found strong regional differences in the performance of different fuel characterizations, with FOFEM overestimating the fuel consumption to a greater extent in the Klamath Mountains than in the Sierra Nevada. Inaccurate fuel load inputs caused the largest differences between predicted and observed fuel consumption. Fuel classifications tended to overestimate duff load and underestimate litter load, leading to differences in predicted emissions for some pollutants. When considering total ground and surface fuels, modeled consumption was fairly accurate on average, although the range of error in estimates of plot level consumption was very large. These results highlight the importance of fuel load input to the accuracy of modeled fuel consumption and GHG emissions from wildfires in coniferous forests.
High regression rate hybrid rocket fuel grains with helical port structures
NASA Astrophysics Data System (ADS)
Walker, Sean D.
Hybrid rockets are popular in the aerospace industry due to their storage safety, simplicity, and controllability during rocket motor burn. However, they produce fuel regression rates typically 25% lower than solid fuel motors of the same thrust level. These lowered regression rates produce unacceptably high oxidizer-to-fuel (O/F) ratios that produce a potential for motor instability, nozzle erosion, and reduced motor duty cycles. To achieve O/F ratios that produce acceptable combustion characteristics, traditional cylindrical fuel ports are fabricated with very long length-to-diameter ratios to increase the total burning area. These high aspect ratios produce further reduced fuel regression rate and thrust levels, poor volumetric efficiency, and a potential for lateral structural loading issues during high thrust burns. In place of traditional cylindrical fuel ports, it is proposed that by researching the effects of centrifugal flow patterns introduced by embedded helical fuel port structures, a significant increase in fuel regression rates can be observed. The benefits of increasing volumetric efficiencies by lengthening the internal flow path will also be observed. The mechanisms of this increased fuel regression rate are driven by enhancing surface skin friction and reducing the effect of boundary layer "blowing" to enhance convective heat transfer to the fuel surface. Preliminary results using additive manufacturing to fabricate hybrid rocket fuel grains from acrylonitrile-butadiene-styrene (ABS) with embedded helical fuel port structures have been obtained, with burn-rate amplifications up to 3.0x than that of cylindrical fuel ports.
NASA Astrophysics Data System (ADS)
Sheridan, Gary; nyman, petter; Duff, Tom; Baillie, Craig; Bovill, William; Lane, Patrick; Tolhurst, Kevin
2015-04-01
The prediction of fuel moisture content is important for estimating the rate of spread of wildfires, the ignition probability of firebrands, and for the efficient scheduling of prescribed fire. The moisture content of fine surface fuels varies spatially at large scales (10's to 100's km) due to variation in meteorological variables (eg. temperature, relative humidity, precipitation). At smaller scales (100's of metres) in steep topography spatial variability is attributed to topographic influences that include differences in radiation due to aspect and slope, differences in precipitation, temperature and relative humidity due to elevation, and differences in soil moisture due to hillslope drainage position. Variable forest structure and canopy shading adds further to the spatial variability in surface fuel moisture. In this study we aim to combine daily 5km resolution gridded weather data with 20m resolution DEM and vegetation structure data to predict the spatial variability of fine surface fuels in steep topography. Microclimate stations were established in south east Australia to monitor surface fine fuel moisture continuously (every 15 minutes) using newly developed instrumented litter packs, in addition to temperature and relative humidity measurements inside the litter pack, and measurement of precipitation and energy inputs above and below the forest canopy. Microclimate stations were established across a gradient of aspect (5 stations), drainage position (7 stations), elevation (15 stations), and canopy cover conditions (6 stations). The data from this extensive network of microclimate stations across a broad spectrum of topographic conditions is being analysed to enable the downscaling of gridded weather data to spatial scales that are relevant to the connectivity of wildfire fuels and to the scheduling and outcome of prescribed fires. The initial results from the first year of this study are presented here.
Handbook for inventorying surface fuels and biomass in the Interior West
James K. Brown; Rick D. Oberheu; Cameron M. Johnston
1982-01-01
Presents comprehensive procedures for inventorying weight per unit area of living and dead surface vegetation, to facilitate estimation of biomass and appraisal of fuels. Provides instructions for conducting fieldwork and calculating estimates of downed woody material, forest floor litter and duff, herbaceous vegetation, shrubs, and small conifers. Procedures produce...
Regenerative Fuel Cell Power Systems for Lunar and Martian Surface Exploration
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Jakupca, Ian J.; Gilligan, Ryan P.; Bennett, William R.; Smith, Phillip J.; Fincannon, James
2017-01-01
This paper presents the preliminary results of a recent National Aeronautics and Space Administration (NASA) study funded under the Advanced Exploration Systems (AES) Modular Power Systems (AMPS) project. This study evaluated multiple surface locations on both the Moon and Mars, with the goal of establishing a common approach towards technology development and system design for surface power systems that use Regenerative Fuel Cell (RFC) energy storage methods. One RFC design may not be applicable to all surface locations; however, AMPS seeks to find a unified architecture, or series of architectures, that leverages a single development approach to answer the technology need for RFC systems. Early system trades were performed to select the most effective fuel cell and electrolyzer architectures based on current state-of-the-art technology, whereas later trades will establish a detailed system design to enable a near-term ground (non-flight) demonstration. This paper focuses on the initial trade studies, presents the selected fuel cell and electrolyzer architectures for follow-on system design studies, and suggests areas for further technology investment.
Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.
1961-05-01
A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.
Sankovich, M. F.; Mumm, J. F.; North, Jr, D. C.; Rock, H. R.; Gestson, D. K.
1961-05-01
A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)
Acetylene fuel from atmospheric CO2 on Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Linne, Diane L.
1992-01-01
The Mars mission scenario proposed by Baker and Zubrin (1990) intended for an unmanned preliminary mission is extended to maximize the total impulse of fuel produced with a minimum mass of hydrogen from Earth. The hydrogen along with atmospheric carbon dioxide is processed into methane and oxygen by the exothermic reaction in an atmospheric processing module. Use of simple chemical reactions to produce acetylene/oxygen rocket fuel on Mars from hydrogen makes it possible to produce an amount of fuel that is nearly 100 times the mass of hydrogen brought from earth. If such a process produces the return propellant for a manned Mars mission, the required mission mass in LEO is significantly reduced over a system using all earth-derived propellants.