Sample records for extended time scale

  1. Hamilton-Jacobi-Bellman equations and approximate dynamic programming on time scales.

    PubMed

    Seiffertt, John; Sanyal, Suman; Wunsch, Donald C

    2008-08-01

    The time scales calculus is a key emerging area of mathematics due to its potential use in a wide variety of multidisciplinary applications. We extend this calculus to approximate dynamic programming (ADP). The core backward induction algorithm of dynamic programming is extended from its traditional discrete case to all isolated time scales. Hamilton-Jacobi-Bellman equations, the solution of which is the fundamental problem in the field of dynamic programming, are motivated and proven on time scales. By drawing together the calculus of time scales and the applied area of stochastic control via ADP, we have connected two major fields of research.

  2. Determining long time-scale hyporheic zone flow paths in Antarctic streams

    USGS Publications Warehouse

    Gooseff, M.N.; McKnight, Diane M.; Runkel, R.L.; Vaughn, B.H.

    2003-01-01

    In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross-section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near-stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time-scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream-water exchange between the streams and extended hyporheic zones over long time-scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11??? D and 2.2??? 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occured owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time-scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (??) generally an order magnitude lower (10-5 s-1) than those determined using stream-tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near-stream zones of rapid stream-water exchange, where 'fast' biogeochemical reactions may influence water chemistry, and extended hyporheic zones, in which slower biogeochemical reaction rates may affect stream-water chemistry at longer time-scales. Copyright ?? 2003 John Wiley & Sons, Ltd.

  3. Extended "Timed Up and Go" assessment as a clinical indicator of cognitive state in Parkinson's disease.

    PubMed

    Evans, Tess; Jefferson, Alexa; Byrnes, Michelle; Walters, Sue; Ghosh, Soumya; Mastaglia, Frank L; Power, Brian; Anderton, Ryan S

    2017-04-15

    To evaluate a modified extended Timed Up and Go (extended-TUG) assessment against a panel of validated clinical assessments, as an indicator of Parkinson's disease (PD) severity and cognitive impairment. Eighty-seven participants with idiopathic PD were sequentially recruited from a Movement Disorders Clinic. An extended-TUG assessment was employed which required participants to stand from a seated position, walk in a straight line for 7m, turn 180° and then return to the start, in a seated position. The extended-TUG assessment duration was correlated to a panel of clinical assessments, including the Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Quality of Life (PDQ-39), Scales for Outcomes in Parkinson's Disease (SCOPA-Cog), revised Addenbrooke's Cognitive Index (ACE-R) and Barratt's Impulsivity Scale 11 (BIS-11). Extended-TUG time was significantly correlated to MDS-UPDRS III score and to SCOPA-Cog, ACE-R (p<0.001) and PDQ-39 scores (p<0.01). Generalized linear models determined the extended-TUG to be a sole variable in predicting ACE-R or SCOPA-Cog scores. Patients in the fastest extended-TUG tertile were predicted to perform 8.3 and 13.4 points better in the SCOPA-Cog and ACE-R assessments, respectively, than the slowest group. Patients who exceeded the dementia cut-off scores with these instruments exhibited significantly longer extended-TUG times. Extended-TUG performance appears to be a useful indicator of cognition as well as motor function and quality of life in PD, and warrants further evaluation as a first line assessment tool to monitor disease severity and response to treatment. Poor extended-TUG performance may identify patients without overt cognitive impairment form whom cognitive assessment is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Extended AIC model based on high order moments and its application in the financial market

    NASA Astrophysics Data System (ADS)

    Mao, Xuegeng; Shang, Pengjian

    2018-07-01

    In this paper, an extended method of traditional Akaike Information Criteria(AIC) is proposed to detect the volatility of time series by combining it with higher order moments, such as skewness and kurtosis. Since measures considering higher order moments are powerful in many aspects, the properties of asymmetry and flatness can be observed. Furthermore, in order to reduce the effect of noise and other incoherent features, we combine the extended AIC algorithm with multiscale wavelet analysis, in which the newly extended AIC algorithm is applied to wavelet coefficients at several scales and the time series are reconstructed by wavelet transform. After that, we create AIC planes to derive the relationship among AIC values using variance, skewness and kurtosis respectively. When we test this technique on the financial market, the aim is to analyze the trend and volatility of the closing price of stock indices and classify them. And we also adapt multiscale analysis to measure complexity of time series over a range of scales. Empirical results show that the singularity of time series in stock market can be detected via extended AIC algorithm.

  5. Agent based reasoning for the non-linear stochastic models of long-range memory

    NASA Astrophysics Data System (ADS)

    Kononovicius, A.; Gontis, V.

    2012-02-01

    We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.

  6. Role of enhanced synoptic activity and its interaction with intra-seasonal oscillations on the lower extended range prediction skill during 2015 monsoon season

    NASA Astrophysics Data System (ADS)

    Abhilash, S.; Mandal, R.; Dey, A.; Phani, R.; Joseph, S.; Chattopadhyay, R.; De, S.; Agarwal, N. K.; Sahai, A. K.; Devi, S. Sunitha; Rajeevan, M.

    2018-01-01

    Indian summer monsoon of 2015 was deficient with prominence of short-lived (long-lived) active (break) spells. The real-time extended range forecasts disseminated by Indian Institute of Tropical Meteorology using an indigenous ensemble prediction system (EPS) based on National Center for Environmental Predictions's climate forecast system could broadly predict these intraseasonal fluctuations at shorter time leads (i.e. up to 10 days), but failed to predict at longer leads (15-20 days). Considering the multi-scale nature of Indian Summer Monsoon system, this particular study aims to examine the inability of the EPS in predicting the active/break episodes at longer leads from the perspective of non-linear scale interaction between the synoptic, intraseasonal and seasonal scale. It is found that the 2015 monsoon season was dominated by synoptic scale disturbances that can hinder the prediction on extended range. Further, the interaction between synoptic scale disturbances and low frequency mode was prominent during the season, which might have contributed to the reduced prediction skill at longer leads.

  7. Extended-Range Forecasts at Climate Prediction Center: Current Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Kumar, A.

    2016-12-01

    Motivated by a user need to provide forecast information on extended-range time-scales (i.e., weeks 2-4), in recent years Climate Prediction Center (CPC) has made considerable efforts towards developing and testing the feasibility for developing the required forecasts. The forecasts targeting this particular time-scale face a unique challenge in that while the forecast skill due to atmospheric initial conditions is small (because of rapid decay in the memory associated with the atmospheric initial conditions), short time averages for which forecasts are made do not benefit from skill associated with anomalous boundary conditions either. Despite these challenges, CPC has embarked on providing an experimental outlook for weeks 3-4 average. The talk will summarize the current status of CPC's current suite of extended-range forecast products, and further, will discuss some future plans.

  8. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications

    PubMed Central

    Mathur, Rohit; Xing, Jia; Gilliam, Robert; Sarwar, Golam; Hogrefe, Christian; Pleim, Jonathan; Pouliot, George; Roselle, Shawn; Spero, Tanya L.; Wong, David C.; Young, Jeffrey

    2018-01-01

    The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled processes were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution-climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency. PMID:29681922

  9. Surface Transient Binding-Based Fluorescence Correlation Spectroscopy (STB-FCS), a Simple and Easy-to-Implement Method to Extend the Upper Limit of the Time Window to Seconds.

    PubMed

    Peng, Sijia; Wang, Wenjuan; Chen, Chunlai

    2018-05-10

    Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.

  10. Scale-Limited Lagrange Stability and Finite-Time Synchronization for Memristive Recurrent Neural Networks on Time Scales.

    PubMed

    Xiao, Qiang; Zeng, Zhigang

    2017-10-01

    The existed results of Lagrange stability and finite-time synchronization for memristive recurrent neural networks (MRNNs) are scale-free on time evolvement, and some restrictions appear naturally. In this paper, two novel scale-limited comparison principles are established by means of inequality techniques and induction principle on time scales. Then the results concerning Lagrange stability and global finite-time synchronization of MRNNs on time scales are obtained. Scaled-limited Lagrange stability criteria are derived, in detail, via nonsmooth analysis and theory of time scales. Moreover, novel criteria for achieving the global finite-time synchronization are acquired. In addition, the derived method can also be used to study global finite-time stabilization. The proposed results extend or improve the existed ones in the literatures. Two numerical examples are chosen to show the effectiveness of the obtained results.

  11. Slow speed—fast motion: time-lapse recordings in physics education

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2018-05-01

    Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s-1, allowing us to study transient physics phenomena happening too fast for the naked eye. Here we want to extend the range of phenomena which may be studied by video analysis in the opposite direction by focusing on much longer time scales ranging from minutes, hours to many days or even months. We discuss this time-lapse method, needed equipment and give a few hints of how to produce respective recordings for two specific experiments.

  12. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  13. Time scales of supercooled water and implications for reversible polyamorphism

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Chandler, David

    2015-09-01

    Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.

  14. Dynamical quantum phase transitions in extended transverse Ising models

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  15. USE OF REMOTE SENSING AIR QUALITY INFORMATION IN REGIONAL SCALE AIR POLLUTION MODELING: CURRENT USE AND REQUIREMENTS

    EPA Science Inventory

    In recent years the applications of regional air quality models are continuously being extended to address atmospheric pollution phenomenon from local to hemispheric spatial scales over time scales ranging from episodic to annual. The need to represent interactions between physic...

  16. Resolution, Scales and Predictability: Is High Resolution Detrimental To Predictability At Extended Forecast Times?

    NASA Astrophysics Data System (ADS)

    Mesinger, F.

    The traditional views hold that high-resolution limited area models (LAMs) down- scale large-scale lateral boundary information, and that predictability of small scales is short. Inspection of various rms fits/errors has contributed to these views. It would follow that the skill of LAMs should visibly deteriorate compared to that of their driver models at more extended forecast times. The limited area Eta Model at NCEP has an additional handicap of being driven by LBCs of the previous Avn global model run, at 0000 and 1200 UTC estimated to amount to about an 8 h loss in accuracy. This should make its relative skill compared to that of the Avn deteriorate even faster. These views are challenged by various Eta results including rms fits to raobs out to 84 h. It is argued that it is the largest scales that contribute the most to the skill of the Eta relative to that of the Avn.

  17. Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind.

    PubMed

    Lalescu, Cristian C; Shi, Yi-Kang; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander

    2015-07-10

    In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.

  18. Reaching extended length-scales with accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Hubartt, Bradley; Shim, Yunsic; Amar, Jacques

    2012-02-01

    While temperature-accelerated dynamics (TAD) has been quite successful in extending the time-scales for non-equilibrium simulations of small systems, the computational time increases rapidly with system size. One possible solution to this problem, which we refer to as parTAD^1 is to use spatial decomposition combined with our previously developed semi-rigorous synchronous sublattice algorithm^2. However, while such an approach leads to significantly better scaling as a function of system-size, it also artificially limits the size of activated events and is not completely rigorous. Here we discuss progress we have made in developing an alternative approach in which localized saddle-point searches are combined with parallel GPU-based molecular dynamics in order to improve the scaling behavior. By using this method, along with the use of an adaptive method to determine the optimal high-temperature^3, we have been able to significantly increase the range of time- and length-scales over which accelerated dynamics simulations may be carried out. [1] Y. Shim et al, Phys. Rev. B 76, 205439 (2007); ibid, Phys. Rev. Lett. 101, 116101 (2008). [2] Y. Shim and J.G. Amar, Phys. Rev. B 71, 125432 (2005). [3] Y. Shim and J.G. Amar, J. Chem. Phys. 134, 054127 (2011).

  19. The evolving block universe and the meshing together of times.

    PubMed

    Ellis, George F R

    2014-10-01

    It has been proposed that spacetime should be regarded as an evolving block universe, bounded to the future by the present time, which continually extends to the future. This future boundary is defined at each time by measuring proper time along Ricci eigenlines from the start of the universe. A key point, then, is that physical reality can be represented at many different scales: hence, the passage of time may be seen as different at different scales, with quantum gravity determining the evolution of spacetime itself at the Planck scale, but quantum field theory and classical physics determining the evolution of events within spacetime at larger scales. The fundamental issue then arises as to how the effective times at different scales mesh together, leading to the concepts of global and local times. © 2014 New York Academy of Sciences.

  20. Drought Predictability and Prediction in a Changing Climate: Assessing Current Predictive Knowledge and Capabilities, User Requirements and Research Priorities

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2011-01-01

    Drought is fundamentally the result of an extended period of reduced precipitation lasting anywhere from a few weeks to decades and even longer. As such, addressing drought predictability and prediction in a changing climate requires foremost that we make progress on the ability to predict precipitation anomalies on subseasonal and longer time scales. From the perspective of the users of drought forecasts and information, drought is however most directly viewed through its impacts (e.g., on soil moisture, streamflow, crop yields). As such, the question of the predictability of drought must extend to those quantities as well. In order to make progress on these issues, the WCRP drought information group (DIG), with the support of WCRP, the Catalan Institute of Climate Sciences, the La Caixa Foundation, the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the National Science Foundation, has organized a workshop to focus on: 1. User requirements for drought prediction information on sub-seasonal to centennial time scales 2. Current understanding of the mechanisms and predictability of drought on sub-seasonal to centennial time scales 3. Current drought prediction/projection capabilities on sub-seasonal to centennial time scales 4. Advancing regional drought prediction capabilities for variables and scales most relevant to user needs on sub-seasonal to centennial time scales. This introductory talk provides an overview of these goals, and outlines the occurrence and mechanisms of drought world-wide.

  1. Probing the Time Scale of FPOP (Fast Photochemical Oxidation of Proteins): Radical Reactions Extend Over Tens of Milliseconds

    NASA Astrophysics Data System (ADS)

    Vahidi, Siavash; Konermann, Lars

    2016-07-01

    Hydroxyl radical (ṡOH) labeling with mass spectrometry detection reports on protein conformations and interactions. Fast photochemical oxidation of proteins (FPOP) involves ṡOH production via H2O2 photolysis by UV laser pulses inside a flow tube. The experiments are conducted in the presence of a scavenger (usually glutamine) that shortens the ṡOH lifetime. The literature claims that FPOP takes place within 1 μs. This ultrafast time scale implies that FPOP should be immune to labeling-induced artifacts that may be encountered with other techniques. Surprisingly, the FPOP time scale has never been validated in direct kinetic measurements. Here we employ flash photolysis for probing oxidation processes under typical FPOP conditions. Bleaching of the reporter dye cyanine-5 (Cy5) served as readout of the time-dependent radical milieu. Surprisingly, Cy5 oxidation extends over tens of milliseconds. This time range is four orders of magnitude longer than expected from the FPOP literature. We demonstrate that the glutamine scavenger generates metastable secondary radicals in the FPOP solution, and that these radicals lengthen the time frame of Cy5 oxidation. Cy5 and similar dyes are widely used for monitoring the radical dose experienced by proteins in solution. The measured Cy5 kinetics thus strongly suggest that protein oxidation in FPOP extends over a much longer time window than previously thought (i.e., many milliseconds instead of one microsecond). The optical approach developed here should be suitable for assessing the performance of future FPOP-like techniques with improved temporal labeling characteristics.

  2. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  3. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems

    NASA Astrophysics Data System (ADS)

    Olson, Mitchell R.; Sale, Tom C.

    2015-06-01

    Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (> 96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (< 4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (> 10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to > 99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time.

  4. Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    "Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.

  5. "Extended" antipsychotic dosing in the maintenance treatment of schizophrenia: a double-blind, placebo-controlled trial.

    PubMed

    Remington, Gary; Seeman, Philip; Feingold, Alan; Mann, Steve; Shammi, Chekkera; Kapur, Shitij

    2011-08-01

    In the treatment of schizophrenia, all currently available oral antipsychotics are administered at least once daily, with strict adherence strongly encouraged to minimize risk of relapse. Based on a better understanding of the brain kinetics of antipsychotics, we have proposed a variation of this approach, "extended" dosing, which allows for intermittent but regular dosing. We carried out a randomized, double-blind, placebo-controlled trial evaluating 35 individuals with DSM-IV-defined schizophrenia who had been stabilized on antipsychotic therapy. Over a 6-month interval, 18 subjects received their medication as usual (daily), while 17 received their antipsychotic therapy every second day (extended). Outcome measures included clinical scales to assess symptoms (Brief Psychiatric Rating Scale [the primary outcome measure], Calgary Depression Scale), illness severity (Clinical Global Impressions-Severity of Illness scale), and relapse (ie, rehospitalization) rates. Side effects were also assessed, including movement disorders (Barnes Akathisia Scale, Simpson-Angus Scale, Abnormal Involuntary Movement Scale) and weight. The study was conducted from February 2003 to July 2007. Individuals in the extended dosing group were not at greater risk of symptom exacerbation, relapse, or rehospitalization; indeed, more rehospitalizations occurred in those receiving regular dosing. At the same time, though, there was no indication that side effects were significantly reduced in the extended dosing group. These results challenge the long-standing dogma that oral antipsychotics must be administered daily in stabilized patients with schizophrenia. Further studies with larger samples are needed to replicate these findings, as well as to elucidate whether postulated clinical advantages can be established and determined to outweigh potential risks. clinicaltrials.gov Identifier: NCT00431574. © Copyright 2011 Physicians Postgraduate Press, Inc.

  6. Modeling of copper sorption onto GFH and design of full-scale GFH adsorbers.

    PubMed

    Steiner, Michele; Pronk, Wouter; Boller, Markus A

    2006-03-01

    During rain events, copper wash-off occurring from copper roofs results in environmental hazards. In this study, columns filled with granulated ferric hydroxide (GFH) were used to treat copper-containing roof runoff. It was shown that copper could be removed to a high extent. A model was developed to describe this removal process. The model was based on the Two Region Model (TRM), extended with an additional diffusion zone. The extended model was able to describe the copper removal in long-term experiments (up to 125 days) with variable flow rates reflecting realistic runoff events. The four parameters of the model were estimated based on data gained with specific column experiments according to maximum sensitivity for each parameter. After model validation, the parameter set was used for the design of full-scale adsorbers. These full-scale adsorbers show high removal rates during extended periods of time.

  7. Extended time observations of California marine stratocumulus clouds from GOES for July 1983-1987

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Harrison, Edwin F.; Young, David F.

    1990-01-01

    One of the goals of the First ISCCP Regional Experiment (FIRE) is to relate the relatively small scale (spatial and temporal) Intensive Field Observations (IFO) to larger time and space domains embodied in the Extended Time Observations (ETO) phase of the experiment. The data analyzed as part of the ETO are to be used to determine some climatological features of the limited area which encompasses the Marine Stratocumulus IFO which took place between 29 June and 19 July 1987 off the coast of southern California.

  8. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems.

    PubMed

    Olson, Mitchell R; Sale, Tom C

    2015-01-01

    Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (<4 days) in the columns. Subsequently, modeling was conducted to scale up column results. By scaling up to field-relevant system sizes (>10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. From Research to Clinical Settings: Validation of the Affect in Play Scale – Preschool Brief Version in a Sample of Preschool and School Aged Italian Children

    PubMed Central

    Di Riso, Daniela; Salcuni, Silvia; Lis, Adriana; Delvecchio, Elisa

    2017-01-01

    Affect in Play Scale-Preschool (APS-P) is one of the few standardized tools to measure pretend play. APS-P is an effective measure of symbolic play, able to detect both cognitive and affective dimensions which classically designated play in children, but often are evaluated separately and are scarcely integrated. The scale uses 5 min standardized play task with a set of toys. Recently the scale was extended from 6 to 10 years old and validated in Italy preschool and school-aged children. Some of the main limitations of this measure are that it requires videotaping, verbatim transcripts, and an extensive scoring training, which could compromise its clinical utility. For these reasons, a Brief version of the measure was developed by the original authors. This paper will focus on an APS-P Brief Version and its Extended Version through ages (6–10 years), which consists “in vivo” coding. This study aimed to evaluate construct and external validity of this APS-P Brief Version and its Extended Version in a sample of 538 Italian children aged 4-to-10 years. Confirmatory factor analysis yielded a two correlated factor structure including an affective and a cognitive factor. APS-P-BR and its Extended Version factor scores strongly related to APS-P Extended Version factor scores. Significant relationships were found with a divergent thinking task. Results suggest that the APS-P-BR and its Extended Version is an encouraging brief measure assessing pretend play using toys. It would easily substitute the APS-P and its Extended Version in clinical and research settings, reducing time and difficulties in scoring procedures and maintaining the same strengths. PMID:28553243

  10. Time-calibrated Milankovitch cycles for the late Permian.

    PubMed

    Wu, Huaichun; Zhang, Shihong; Hinnov, Linda A; Jiang, Ganqing; Feng, Qinglai; Li, Haiyan; Yang, Tianshui

    2013-01-01

    An important innovation in the geosciences is the astronomical time scale. The astronomical time scale is based on the Milankovitch-forced stratigraphy that has been calibrated to astronomical models of paleoclimate forcing; it is defined for much of Cenozoic-Mesozoic. For the Palaeozoic era, however, astronomical forcing has not been widely explored because of lack of high-precision geochronology or astronomical modelling. Here we report Milankovitch cycles from late Permian (Lopingian) strata at Meishan and Shangsi, South China, time calibrated by recent high-precision U-Pb dating. The evidence extends empirical knowledge of Earth's astronomical parameters before 250 million years ago. Observed obliquity and precession terms support a 22-h length-of-day. The reconstructed astronomical time scale indicates a 7.793-million year duration for the Lopingian epoch, when strong 405-kyr cycles constrain astronomical modelling. This is the first significant advance in defining the Palaeozoic astronomical time scale, anchored to absolute time, bridging the Palaeozoic-Mesozoic transition.

  11. Effects of Time-Extended Marathon Group Experiences on Personality Characteristics

    ERIC Educational Resources Information Center

    Young, Edward R.; Jacobson, Leonard I.

    1970-01-01

    Pretest and posttest scores on the Edwards and the Marlowe Crowne Social Desirability scales and the 12 scales of the Personal Orientation Inventory were administered four days before and four days after participation. Participants demonstrated a significant decrease in defensiveness and constriction and showed change in the direction of more…

  12. Large Eddy Simulation in the Computation of Jet Noise

    NASA Technical Reports Server (NTRS)

    Mankbadi, R. R.; Goldstein, M. E.; Povinelli, L. A.; Hayder, M. E.; Turkel, E.

    1999-01-01

    Noise can be predicted by solving Full (time-dependent) Compressible Navier-Stokes Equation (FCNSE) with computational domain. The fluctuating near field of the jet produces propagating pressure waves that produce far-field sound. The fluctuating flow field as a function of time is needed in order to calculate sound from first principles. Noise can be predicted by solving the full, time-dependent, compressible Navier-Stokes equations with the computational domain extended to far field - but this is not feasible as indicated above. At high Reynolds number of technological interest turbulence has large range of scales. Direct numerical simulations (DNS) can not capture the small scales of turbulence. The large scales are more efficient than the small scales in radiating sound. The emphasize is thus on calculating sound radiated by large scales.

  13. Time-scale effects on the gain-loss asymmetry in stock indices

    NASA Astrophysics Data System (ADS)

    Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán

    2016-08-01

    The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2 % , and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.

  14. Extending the length and time scales of Gram-Schmidt Lyapunov vector computations

    NASA Astrophysics Data System (ADS)

    Costa, Anthony B.; Green, Jason R.

    2013-08-01

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram-Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram-Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard-Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram-Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.

  15. Driving extreme variability: the evolving corona and evidence for jet launching in Markarian 335

    NASA Astrophysics Data System (ADS)

    Wilkins, D. R.; Gallo, L. C.

    2015-05-01

    Variations in the X-ray emission from the narrow-line Seyfert 1 galaxy, Markarian 335, are studied on both long and short time-scales through observations made between 2006 and 2013 with XMM-Newton, Suzaku and NuSTAR. Changes in the geometry and energetics of the corona that give rise to this variability are inferred through measurements of the relativistically blurred reflection seen from the accretion disc. On long time-scales, we find that during the high-flux epochs the corona has expanded, covering the inner regions of the accretion disc out to a radius of 26_{-7}^{+10} rg. The corona contracts to within 12rg and 5rg in the intermediate- and low-flux epochs, respectively. While the earlier high-flux observation made in 2006 is consistent with a corona extending over the inner part of the accretion disc, a later high-flux observation that year revealed that the X-ray source had become collimated into a vertically extended jet-like corona and suggested relativistic motion of material upwards. On short time-scales, we find that an X-ray flare during a low-flux epoch in 2013 corresponded to a reconfiguration from a slightly extended corona to one much more compact, within just 2 ˜ 3rg of the black hole. There is evidence that during the flare itself, the spectrum softened and the corona became collimated and slightly extended vertically as if a jet-launching event was aborted. Understanding the evolution of the X-ray emitting corona may reveal the underlying mechanism by which the luminous X-ray sources in AGN are powered.

  16. Population shuffling between ground and high energy excited states

    PubMed Central

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-01-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a “top-down” temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche− rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. PMID:26316263

  17. Population shuffling between ground and high energy excited states.

    PubMed

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-11-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a "top-down" temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche - rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. © 2015 The Protein Society.

  18. Extending the Administration Time of the Letter Fluency Test Increases Sensitivity to Cognitive Status in Aging

    PubMed Central

    Holtzer, R.; Goldin, Y.; Donovick, P.J.

    2010-01-01

    We examined whether extending the administration time of letter fluency from one minute per letter trial (standard administration) to two minutes increased the sensitivity of this test to cognitive status in aging. Participants (mean age = 84.6) were assigned to cognitive impairment (n=20) and control (n=40) groups. Pearson correlations and scatter plot analyses showed that associations between the Dementia Rating Scale scores and letter fluency were higher and less variable when performance on the latter was extended to two minutes. ANOVA showed that the cognitive impairment group generated fewer words in the second minute of the letter fluency task compared to the control group. Finally, discriminant function analyses revealed that extending the letter fluency trials to two minutes increased discrimination between the control and cognitive impairment groups. PMID:19449244

  19. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.

  20. Atomic Structure and Properties of Extended Defects in Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buczko, R.; Chisholm, M.F.; Kaplan, T.

    1998-10-15

    The Z-contrast technique represents a new approach to high-resolution electron microscopy allowing for the first time incoherent imaging of materials on the atomic scale. The key advantages of the technique, an intrinsically higher resolution limit and directly interpretable, compositionally sensitive imaging, allow a new level of insight into the atomic configurations of extended defects in silicon. This experimental technique has been combined with theoretical calculations (a combination of first principles, tight binding, and classical methods) to extend this level of insight by obtaining the energetic and electronic structure of the defects.

  1. The Magnetic Reconnection Code: an AMR-based fully implicit simulation suite

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Bhattacharjee, A.; Ng, C.-S.

    2006-12-01

    Extended MHD models, which incorporate two-fluid effects, are promising candidates to enhance understanding of collisionless reconnection phenomena in laboratory, space and astrophysical plasma physics. In this paper, we introduce two simulation codes in the Magnetic Reconnection Code suite which integrate reduced and full extended MHD models. Numerical integration of these models comes with two challenges: Small-scale spatial structures, e.g. thin current sheets, develop and must be well resolved by the code. Adaptive mesh refinement (AMR) is employed to provide high resolution where needed while maintaining good performance. Secondly, the two-fluid effects in extended MHD give rise to dispersive waves, which lead to a very stringent CFL condition for explicit codes, while reconnection happens on a much slower time scale. We use a fully implicit Crank--Nicholson time stepping algorithm. Since no efficient preconditioners are available for our system of equations, we instead use a direct solver to handle the inner linear solves. This requires us to actually compute the Jacobian matrix, which is handled by a code generator that calculates the derivative symbolically and then outputs code to calculate it.

  2. Brownian motion or Lévy walk? Stepping towards an extended statistical mechanics for animal locomotion.

    PubMed

    Gautestad, Arild O

    2012-09-07

    Animals moving under the influence of spatio-temporal scaling and long-term memory generate a kind of space-use pattern that has proved difficult to model within a coherent theoretical framework. An extended kind of statistical mechanics is needed, accounting for both the effects of spatial memory and scale-free space use, and put into a context of ecological conditions. Simulations illustrating the distinction between scale-specific and scale-free locomotion are presented. The results show how observational scale (time lag between relocations of an individual) may critically influence the interpretation of the underlying process. In this respect, a novel protocol is proposed as a method to distinguish between some main movement classes. For example, the 'power law in disguise' paradox-from a composite Brownian motion consisting of a superposition of independent movement processes at different scales-may be resolved by shifting the focus from pattern analysis at one particular temporal resolution towards a more process-oriented approach involving several scales of observation. A more explicit consideration of system complexity within a statistical mechanical framework, supplementing the more traditional mechanistic modelling approach, is advocated.

  3. Drought and Heat Waves: The Role of SST and Land Surface Feedbacks

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2011-01-01

    Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. At the shortest time scales it is often associated with heat waves that last only several weeks to a few months but nevertheless can have profound detrimental impacts on society (e.g., heat-related impacts on human health, desiccation of croplands, increased fire hazard), while at the longest time scales it can extend over decades and can lead to long term structural changes in many aspects of society (e.g., agriculture, water resources, wetlands, tourism, population shifts). There is now considerable evidence that sea surface temperatures (SSTs) play a leading role in the development of drought world-wide, especially at seasonal and longer time scales, though land-atmosphere feedbacks can also play an important role. At shorter (subseasonal) time scales, SSTs are less important, but land feedbacks can play a critical role in maintaining and amplifying the atmospheric conditions associated with heat waves and short-term droughts. This talk reviews our current understanding of the physical mechanisms that drive precipitation and temperature variations on subseasonal to centennial time scales. This includes an assessment of predictability, prediction skill, and user needs at all time scales.

  4. Development of measures from the theory of planned behavior applied to leisure-time physical activity.

    PubMed

    Kerner, Matthew S

    2005-06-01

    Using the theory of planned behavior as a conceptual framework, scales assessing Attitude to Leisure-time Physical Activity, Expectations of Others, Perceived Control, and Intention to Engage in Leisure-time Physical Activity were developed for use among middle-school students. The study sample included 349 boys and 400 girls, 10 to 14 years of age (M=11.9 yr., SD=.9). Unipolar and bipolar scales with seven response choices were developed, with each scale item phrased in a Likert-type format. Following revisions, 22 items were retained in the Attitude to Leisure-time Physical Activity Scale, 10 items in the Expectations of Others Scale, 3 items in the Perceived Control Scale, and 17 items in the Intention to Engage in Leisure-time Physical Activity Scale. Adequate internal consistency was indicated by standardized coefficients alpha ranging from .75 to .89. Current results must be extended to assess discriminant and predictive validities and to check various reliabilities with new samples, then evaluation of intervention techniques for promotion of positive attitudes about leisure-time physical activity, including perception of control and intentions to engage in leisure-time physical activity.

  5. Assessing Sustainability When Data Availability Limits Real-Time Estimates: Using Near-Time Indicators to Extend Sustainability Metrics

    EPA Science Inventory

    We produced a scientifically defensible methodology to assess whether a regional system is on a sustainable path. The approach required readily available data, metrics applicable to the relevant scale, and results useful to decision makers. We initiated a pilot project to test ...

  6. Molecular dynamics on diffusive time scales from the phase-field-crystal equation.

    PubMed

    Chan, Pak Yuen; Goldenfeld, Nigel; Dantzig, Jon

    2009-03-01

    We extend the phase-field-crystal model to accommodate exact atomic configurations and vacancies by requiring the order parameter to be non-negative. The resulting theory dictates the number of atoms and describes the motion of each of them. By solving the dynamical equation of the model, which is a partial differential equation, we are essentially performing molecular dynamics simulations on diffusive time scales. To illustrate this approach, we calculate the two-point correlation function of a fluid.

  7. Finite-Size Scaling for the Baxter-Wu Model Using Block Distribution Functions

    NASA Astrophysics Data System (ADS)

    Velonakis, Ioannis N.; Hadjiagapiou, Ioannis A.

    2018-05-01

    In the present work, we present an alternative way of applying the well-known finite-size scaling (FSS) theory in the case of a Baxter-Wu model using Binder-like blocks. Binder's ideas are extended to estimate phase transition points and the corresponding scaling exponents not only for magnetic but also for energy properties, saving computational time and effort. The vast majority of our conclusions can be easily generalized to other models.

  8. Predicting Regional Drought on Sub-Seasonal to Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Suarez, Max; Koster, Randal

    2011-01-01

    Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. It is driven foremost by an extended period of reduced precipitation, but it is the impacts on such quantities as soil moisture, streamflow and crop yields that are often most important from a users perspective. While recognizing that different users have different needs for drought information, it is nevertheless important to understand that progress in predicting drought and satisfying such user needs, largely hinges on our ability to improve predictions of precipitation. This talk reviews our current understanding of the physical mechanisms that drive precipitation variations on subseasonal to decadal time scales, and the implications for predictability and prediction skill. Examples are given highlighting the phenomena and mechanisms controlling precipitation on monthly (e.g., stationary Rossby waves, soil moisture), seasonal (ENSO) and decadal time scales (PD and AMO).

  9. Short-term dynamics of the high-latitude auroral distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphree, J.S.; Elphinstone, R.D.; Cogger, L.L.

    During two consecutive orbits of the Viking satellite on March 24, 1986, UV observations of the northern hemisphere auroral distribution revealed rapid growth and decay of large-scale polar arcs. Evolution of these features occurred from the nightside auroral distribution (to which they are optically connected) toward the dayside. The connection on the dayside was short-lived ({approx} 2 min) and the arc retreated at similar speeds to its development ({approx} 5 km/s). Time scales for growth (at least to the level of the sensitivity of the instrument) can also be less than 1 min. Examples of arc occurrences during a half-hourmore » time period show that arcs can extend from the nightside to the dayside and disappear and another extended arc can appear at a widely separated position. These types of dynamic polar features appear consistent with the dynamic energization and precipitation of boundary layer electrons at high latitudes.« less

  10. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Anthony B., E-mail: acosta@northwestern.edu; Green, Jason R., E-mail: jason.green@umb.edu; Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 betweenmore » Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamanini, Nicola; Wright, Matthew, E-mail: nicola.tamanini@cea.fr, E-mail: matthew.wright.13@ucl.ac.uk

    We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energymore » models.« less

  12. Scaling properties of marathon races

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, Jose; Rodriguez, Eduardo

    2006-06-01

    Some regularities in popular marathon races are identified in this paper. It is found for high-performance participants (i.e., racing times in the range [2:15,3:15] h), the average velocity as a function of the marathoner's ranking behaves as a power-law, which may be suggesting the presence of critical phenomena. Elite marathoners with racing times below 2:15 h can be considered as outliers with respect to this behavior. For the main marathon pack (i.e., racing times in the range [3:00,6:00] h), the average velocity as a function of the marathoner's ranking behaves linearly. For this racing times, the interpersonal velocity, defined as the difference of velocities between consecutive runners, displays a continuum of scaling behavior ranging from uncorrelated noise for small scales to correlated 1/f-noise for large scales. It is a matter of fact that 1/f-noise is characterized by correlations extended over a wide range of scales, a clear indication of some sort of cooperative effect.

  13. Particle Acceleration in Mildly Relativistic Shearing Flows: The Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ruo-Yu; Rieger, F. M.; Aharonian, F. A., E-mail: ruoyu@mpi-hd.mpg.de, E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: aharon@mpi-hd.mpg.de

    The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parametersmore » applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker–Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.« less

  14. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  15. An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified Representation of Subgrid-Scale Turbulence and Convection

    NASA Astrophysics Data System (ADS)

    Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Schneider, Tapio; Teixeira, João.

    2018-03-01

    Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass-flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle.

  16. Solar Environmental Disturbances

    DTIC Science & Technology

    2007-11-02

    like stars were examined, extending the previous 7–12 year time series to 13–20 years by combining Strömgren b, y photometry from Lowell Observatory...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...explanations for how these physical processes affect the production of solar activity, both on short and long time scales. Solar cycle variation

  17. Quantum-shutter approach to tunneling time scales with wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Norifumi; Garcia-Calderon, Gaston; Villavicencio, Jorge

    2005-07-15

    The quantum-shutter approach to tunneling time scales [G. Garcia-Calderon and A. Rubio, Phys. Rev. A 55, 3361 (1997)], which uses a cutoff plane wave as the initial condition, is extended to consider certain type of wave packet initial conditions. An analytical expression for the time-evolved wave function is derived. The time-domain resonance, the peaked structure of the probability density (as the function of time) at the exit of the barrier, originally found with the cutoff plane wave initial condition, is studied with the wave packet initial conditions. It is found that the time-domain resonance is not very sensitive to themore » width of the packet when the transmission process occurs in the tunneling regime.« less

  18. Examining Extreme Events Using Dynamically Downscaled 12-km WRF Simulations

    EPA Science Inventory

    Continued improvements in the speed and availability of computational resources have allowed dynamical downscaling of global climate model (GCM) projections to be conducted at increasingly finer grid scales and over extended time periods. The implementation of dynamical downscal...

  19. Distribution of fine-scale mantle heterogeneity from observations of Pdiff coda

    USGS Publications Warehouse

    Earle, P.S.; Shearer, P.M.

    2001-01-01

    We present stacked record sections of Global Seismic Network data that image the average amplitude and polarization of the high-frequency Pdiff coda and investigate their implications on the depth extent of fine-scale (~10 km) mantle heterogeneity. The extended 1-Hz coda lasts for at least 150 sec and is observed to a distance of 130??. The coda's polarization angle is about the same as the main Pdiff arrival (4.4 sec/deg) and is nearly constant with time. Previous studies show that multiple scattering from heterogeneity restricted to the lowermost mantle generates an extended Pdiff coda with a constant polarization. Here we present an alternative model that satisfies our Pdiff observations. The model consists of single scattering from weak (~1%) fine-scale (~2 km) structures distributed throughout the mantle. Although this model is nonunique, it demonstrates that Pdiff coda observations do not preclude the existence of scattering contributions from the entire mantle.

  20. Evolution of Controllability in Interbank Networks

    NASA Astrophysics Data System (ADS)

    Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido

    2013-04-01

    The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected ``hub'' institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies.

  1. Environment spectrum and coherence behaviours in a rare-earth doped crystal for quantum memory.

    PubMed

    Gong, Bo; Tu, Tao; Zhou, Zhong-Quan; Zhu, Xing-Yu; Li, Chuan-Feng; Guo, Guang-Can

    2017-12-21

    We theoretically investigate the dynamics of environment and coherence behaviours of the central ion in a quantum memory based on a rare-earth doped crystal. The interactions between the central ion and the bath spins suppress the flip-flop rate of the neighbour bath spins and yield a specific environment spectral density S(ω). Under dynamical decoupling pulses, this spectrum provides a general scaling for the coherence envelope and coherence time, which significantly extend over a range on an hour-long time scale. The characterized environment spectrum with ultra-long coherence time can be used to implement various quantum communication and information processing protocols.

  2. Time-Series Analysis of Embodied Interaction: Movement Variability and Complexity Matching As Dyadic Properties

    PubMed Central

    Zapata-Fonseca, Leonardo; Dotov, Dobromir; Fossion, Ruben; Froese, Tom

    2016-01-01

    There is a growing consensus that a fuller understanding of social cognition depends on more systematic studies of real-time social interaction. Such studies require methods that can deal with the complex dynamics taking place at multiple interdependent temporal and spatial scales, spanning sub-personal, personal, and dyadic levels of analysis. We demonstrate the value of adopting an extended multi-scale approach by re-analyzing movement time-series generated in a study of embodied dyadic interaction in a minimal virtual reality environment (a perceptual crossing experiment). Reduced movement variability revealed an interdependence between social awareness and social coordination that cannot be accounted for by either subjective or objective factors alone: it picks out interactions in which subjective and objective conditions are convergent (i.e., elevated coordination is perceived as clearly social, and impaired coordination is perceived as socially ambiguous). This finding is consistent with the claim that interpersonal interaction can be partially constitutive of direct social perception. Clustering statistics (Allan Factor) of salient events revealed fractal scaling. Complexity matching defined as the similarity between these scaling laws was significantly more pronounced in pairs of participants as compared to surrogate dyads. This further highlights the multi-scale and distributed character of social interaction and extends previous complexity matching results from dyadic conversation to non-verbal social interaction dynamics. Trials with successful joint interaction were also associated with an increase in local coordination. Consequently, a local coordination pattern emerges on the background of complex dyadic interactions in the PCE task and makes joint successful performance possible. PMID:28018274

  3. Satellite attitude prediction by multiple time scales method

    NASA Technical Reports Server (NTRS)

    Tao, Y. C.; Ramnath, R.

    1975-01-01

    An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.

  4. Estimation of surface heat and moisture fluxes over a prairie grassland. II - Two-dimensional time filtering and site variability

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Smith, Eric A.

    1992-01-01

    The behavior of in situ measurements of surface fluxes obtained during FIFE 1987 is examined by using correlative and spectral techniques in order to assess the significance of fluctuations on various time scales, from subdiurnal up to synoptic, intraseasonal, and annual scales. The objectives of this analysis are: (1) to determine which temporal scales have a significant impact on areal averaged fluxes and (2) to design a procedure for filtering an extended flux time series that preserves the basic diurnal features and longer time scales while removing high frequency noise that cannot be attributed to site-induced variation. These objectives are accomplished through the use of a two-dimensional cross-time Fourier transform, which serves to separate processes inherently related to diurnal and subdiurnal variability from those which impact flux variations on the longer time scales. A filtering procedure is desirable before the measurements are utilized as input with an experimental biosphere model, to insure that model based intercomparisons at multiple sites are uncontaminated by input variance not related to true site behavior. Analysis of the spectral decomposition indicates that subdiurnal time scales having periods shorter than 6 hours have little site-to-site consistency and therefore little impact on areal integrated fluxes.

  5. Brownian motion or Lévy walk? Stepping towards an extended statistical mechanics for animal locomotion

    PubMed Central

    Gautestad, Arild O.

    2012-01-01

    Animals moving under the influence of spatio-temporal scaling and long-term memory generate a kind of space-use pattern that has proved difficult to model within a coherent theoretical framework. An extended kind of statistical mechanics is needed, accounting for both the effects of spatial memory and scale-free space use, and put into a context of ecological conditions. Simulations illustrating the distinction between scale-specific and scale-free locomotion are presented. The results show how observational scale (time lag between relocations of an individual) may critically influence the interpretation of the underlying process. In this respect, a novel protocol is proposed as a method to distinguish between some main movement classes. For example, the ‘power law in disguise’ paradox—from a composite Brownian motion consisting of a superposition of independent movement processes at different scales—may be resolved by shifting the focus from pattern analysis at one particular temporal resolution towards a more process-oriented approach involving several scales of observation. A more explicit consideration of system complexity within a statistical mechanical framework, supplementing the more traditional mechanistic modelling approach, is advocated. PMID:22456456

  6. Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Gi-Heon; Smith, Kandler; Lawrence-Simon, Jake

    Complex physics and long computation time hinder the adoption of computer aided engineering models in the design of large-format battery cells and systems. A modular, efficient battery simulation model -- the multiscale multidomain (MSMD) model -- was previously introduced to aid the scale-up of Li-ion material and electrode designs to complete cell and pack designs, capturing electrochemical interplay with 3-D electronic current pathways and thermal response. Here, this paper enhances the computational efficiency of the MSMD model using a separation of time-scales principle to decompose model field variables. The decomposition provides a quasi-explicit linkage between the multiple length-scale domains andmore » thus reduces time-consuming nested iteration when solving model equations across multiple domains. In addition to particle-, electrode- and cell-length scales treated in the previous work, the present formulation extends to bus bar- and multi-cell module-length scales. We provide example simulations for several variants of GH electrode-domain models.« less

  7. Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD

    DOE PAGES

    Kim, Gi-Heon; Smith, Kandler; Lawrence-Simon, Jake; ...

    2017-03-24

    Complex physics and long computation time hinder the adoption of computer aided engineering models in the design of large-format battery cells and systems. A modular, efficient battery simulation model -- the multiscale multidomain (MSMD) model -- was previously introduced to aid the scale-up of Li-ion material and electrode designs to complete cell and pack designs, capturing electrochemical interplay with 3-D electronic current pathways and thermal response. Here, this paper enhances the computational efficiency of the MSMD model using a separation of time-scales principle to decompose model field variables. The decomposition provides a quasi-explicit linkage between the multiple length-scale domains andmore » thus reduces time-consuming nested iteration when solving model equations across multiple domains. In addition to particle-, electrode- and cell-length scales treated in the previous work, the present formulation extends to bus bar- and multi-cell module-length scales. We provide example simulations for several variants of GH electrode-domain models.« less

  8. Evaluating scale-up rules of a high-shear wet granulation process.

    PubMed

    Tao, Jing; Pandey, Preetanshu; Bindra, Dilbir S; Gao, Julia Z; Narang, Ajit S

    2015-07-01

    This work aimed to evaluate the commonly used scale-up rules for high-shear wet granulation process using a microcrystalline cellulose-lactose-based low drug loading formulation. Granule properties such as particle size, porosity, flow, and tabletability, and tablet dissolution were compared across scales using scale-up rules based on different impeller speed calculations or extended wet massing time. Constant tip speed rule was observed to produce slightly less granulated material at the larger scales. Longer wet massing time can be used to compensate for the lower shear experienced by the granules at the larger scales. Constant Froude number and constant empirical stress rules yielded granules that were more comparable across different scales in terms of compaction performance and tablet dissolution. Granule porosity was shown to correlate well with blend tabletability and tablet dissolution, indicating the importance of monitoring granule densification (porosity) during scale-up. It was shown that different routes can be chosen during scale-up to achieve comparable granule growth and densification by altering one of the three parameters: water amount, impeller speed, and wet massing time. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Relative Time-scale for Channeling Events Within Chaotic Terrains, Margaritifer Sinus, Mars

    NASA Technical Reports Server (NTRS)

    Janke, D.

    1985-01-01

    A relative time scale for ordering channel and chaos forming events was constructed for areas within the Margaritifer Sinus region of Mars. Transection and superposition relationships of channels, chaotic terrain, and the surfaces surrounding them were used to create the relative time scale; crater density studies were not used. Channels and chaos in contact with one another were treated as systems. These systems were in turn treated both separately (in order to understand internal relationships) and as members of the suite of Martian erosional forms (in order to produce a combined, master time scale). Channeling events associated with chaotic terrain development occurred over an extended geomorphic period. The channels can be divided into three convenient groups: those that pre-date intercrater plains development post-plains, pre-chasma systems; and those associated with the development of the Vallis Marineris chasmata. No correlations with cyclic climatic changes, major geologic events in other regions on Mars, or triggering phenomena (for example, specific impact events) were found.

  10. Slow Speed--Fast Motion: Time-Lapse Recordings in Physics Education

    ERIC Educational Resources Information Center

    Vollmer, Michael; Möllmann, Klaus-Peter

    2018-01-01

    Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s[superscript -1], allowing us to study transient physics phenomena happening…

  11. A scalable, fully implicit algorithm for the reduced two-field low-β extended MHD model

    DOE PAGES

    Chacon, Luis; Stanier, Adam John

    2016-12-01

    Here, we demonstrate a scalable fully implicit algorithm for the two-field low-β extended MHD model. This reduced model describes plasma behavior in the presence of strong guide fields, and is of significant practical impact both in nature and in laboratory plasmas. The model displays strong hyperbolic behavior, as manifested by the presence of fast dispersive waves, which make a fully implicit treatment very challenging. In this study, we employ a Jacobian-free Newton–Krylov nonlinear solver, for which we propose a physics-based preconditioner that renders the linearized set of equations suitable for inversion with multigrid methods. As a result, the algorithm ismore » shown to scale both algorithmically (i.e., the iteration count is insensitive to grid refinement and timestep size) and in parallel in a weak-scaling sense, with the wall-clock time scaling weakly with the number of cores for up to 4096 cores. For a 4096 × 4096 mesh, we demonstrate a wall-clock-time speedup of ~6700 with respect to explicit algorithms. The model is validated linearly (against linear theory predictions) and nonlinearly (against fully kinetic simulations), demonstrating excellent agreement.« less

  12. An Extended, Problem-Based Learning Laboratory Exercise on the Diagnosis of Infectious Diseases Suitable for Large Level 1 Undergraduate Biology Classes

    ERIC Educational Resources Information Center

    Tatner, Mary; Tierney, Anne

    2016-01-01

    The development and evaluation of a two-week laboratory class, based on the diagnosis of human infectious diseases, is described. It can be easily scaled up or down, to suit class sizes from 50 to 600 and completed in a shorter time scale, and to different audiences as desired. Students employ a range of techniques to solve a real-life and…

  13. Aerial dispersal and multiple-scale spread of epidemics

    USDA-ARS?s Scientific Manuscript database

    Disease spread has traditionally been described as a traveling wave of constant velocity. However, aerially dispersed pathogens capable of long distance dispersal (LDD) often have dispersal gradients with extended tails that could result in acceleration of the epidemic front over time and space. W...

  14. Comparison of experiment with calculations using curvature-corrected zero and two equation turbulence models for a two-dimensional U-duct

    NASA Astrophysics Data System (ADS)

    Monson, D. J.; Seegmiller, H. L.; McConnaughey, P. K.

    1990-06-01

    In this paper experimental measurements are compared with Navier-Stokes calculations using seven different turbulence models for the internal flow in a two-dimensional U-duct. The configuration is representative of many internal flows of engineering interst that experience strong curvature. In an effort to improve agreement, this paper tests several versions of the two-equation k-epsilon turbulence model including the standard version, an extended version with a production range time scale, and a version that includes curvature time scales. Each is tested in its high and low Reynolds number formulations. Calculations using these new models and the original mixing length model are compared here with measurements of mean and turbulence velocities, static pressure and skin friction in the U-duct at two Reynolds numbers. The comparisons show that only the low Reynolds number version of the extended k-epsilon model does a reasonable job of predicting the important features of this flow at both Reynolds numbers tested.

  15. Evolution of Controllability in Interbank Networks

    PubMed Central

    Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido

    2013-01-01

    The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected “hub” institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies. PMID:23568033

  16. Examining a scaled dynamical system of telomere shortening

    NASA Astrophysics Data System (ADS)

    Cyrenne, Benoit M.; Gooding, Robert J.

    2015-02-01

    A model of telomere dynamics is proposed and examined. Our model, which extends a previously introduced model that incorporates stem cells as progenitors of new cells, imposes the Hayflick limit, the maximum number of cell divisions that are possible. This new model leads to cell populations for which the average telomere length is not necessarily a monotonically decreasing function of time, in contrast to previously published models. We provide a phase diagram indicating where such results would be expected via the introduction of scaled populations, rate constants and time. The application of this model to available leukocyte baboon data is discussed.

  17. Consensus time and conformity in the adaptive voter model

    NASA Astrophysics Data System (ADS)

    Rogers, Tim; Gross, Thilo

    2013-09-01

    The adaptive voter model is a paradigmatic model in the study of opinion formation. Here we propose an extension for this model, in which conflicts are resolved by obtaining another opinion, and analytically study the time required for consensus to emerge. Our results shed light on the rich phenomenology of both the original and extended adaptive voter models, including a dynamical phase transition in the scaling behavior of the mean time to consensus.

  18. Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales

    NASA Astrophysics Data System (ADS)

    Han, Zhenlai; Sun, Shurong; Shi, Bao

    2007-10-01

    By means of Riccati transformation technique, we establish some new oscillation criteria for the second-order Emden-Fowler delay dynamic equationsx[Delta][Delta](t)+p(t)x[gamma]([tau](t))=0 on a time scale ; here [gamma] is a quotient of odd positive integers with p(t) real-valued positive rd-continuous functions defined on . To the best of our knowledge nothing is known regarding the qualitative behavior of these equations on time scales. Our results in this paper not only extend the results given in [R.P. Agarwal, M. Bohner, S.H. Saker, Oscillation of second-order delay dynamic equations, Can. Appl. Math. Q. 13 (1) (2005) 1-18] but also unify the oscillation of the second-order Emden-Fowler delay differential equation and the second-order Emden-Fowler delay difference equation.

  19. The length and time scales of water's glass transitions

    NASA Astrophysics Data System (ADS)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  20. The length and time scales of water's glass transitions.

    PubMed

    Limmer, David T

    2014-06-07

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  1. Stable time filtering of strongly unstable spatially extended systems

    PubMed Central

    Grote, Marcus J.; Majda, Andrew J.

    2006-01-01

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant–Friedrichs–Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection–diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system. PMID:16682626

  2. Stable time filtering of strongly unstable spatially extended systems.

    PubMed

    Grote, Marcus J; Majda, Andrew J

    2006-05-16

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and with physical instabilities on both large and small scale. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Because ensembles are extremely expensive to generate, one such issue is whether it is possible under appropriate circumstances to take long time steps in an explicit difference scheme and violate the classical Courant-Friedrichs-Lewy (CFL)-stability condition yet obtain stable accurate filtering by using the observations. These issues are explored here both through elementary mathematical theory, which provides simple guidelines, and the detailed study of a prototype model. The prototype model involves an unstable finite difference scheme for a convection-diffusion equation, and it is demonstrated below that appropriate observations can result in stable accurate filtering of this strongly unstable spatially extended system.

  3. Scaling laws from geomagnetic time series

    USGS Publications Warehouse

    Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.

    1998-01-01

    The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.

  4. Continuous-Time Random Walk with multi-step memory: an application to market dynamics

    NASA Astrophysics Data System (ADS)

    Gubiec, Tomasz; Kutner, Ryszard

    2017-11-01

    An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  5. A Time-Space Symmetry Based Cylindrical Model for Quantum Mechanical Interpretations

    NASA Astrophysics Data System (ADS)

    Vo Van, Thuan

    2017-12-01

    Following a bi-cylindrical model of geometrical dynamics, our study shows that a 6D-gravitational equation leads to geodesic description in an extended symmetrical time-space, which fits Hubble-like expansion on a microscopic scale. As a duality, the geodesic solution is mathematically equivalent to the basic Klein-Gordon-Fock equations of free massive elementary particles, in particular, the squared Dirac equations of leptons. The quantum indeterminism is proved to have originated from space-time curvatures. Interpretation of some important issues of quantum mechanical reality is carried out in comparison with the 5D space-time-matter theory. A solution of lepton mass hierarchy is proposed by extending to higher dimensional curvatures of time-like hyper-spherical surfaces than one of the cylindrical dynamical geometry. In a result, the reasonable charged lepton mass ratios have been calculated, which would be tested experimentally.

  6. Dynamics from Seconds to Hours in Hodgkin-Huxley Model with Time-Dependent Ion Concentrations and Buffer Reservoirs

    PubMed Central

    Hübel, Niklas; Dahlem, Markus A.

    2014-01-01

    The classical Hodgkin-Huxley (HH) model neglects the time-dependence of ion concentrations in spiking dynamics. The dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied by the resistance of the ion channels, and by the gating time constants. We study slow dynamics in an extended HH framework that includes time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the surroundings. Ion gain and loss of the system is identified as a bifurcation parameter whose essential importance was not realized in earlier studies. Our systematic study of the bifurcation structure and thus the phase space structure helps to understand activation and inhibition of a new excitability in ion homeostasis which emerges in such extended models. Also modulatory mechanisms that regulate the spiking rate can be explained by bifurcations. The dynamics on three distinct slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds), the buffer time constants (tens of seconds), and the slower backward buffering (minutes to hours). The modulatory dynamics and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity, and spreading depression in migraine aura and stroke, respectively. PMID:25474648

  7. Cosmogenic radionuclides as a synchronisation tool - present status

    NASA Astrophysics Data System (ADS)

    Muscheler, Raimund; Adolphi, Florian; Mekhaldi, Florian; Mellström, Anette; Svensson, Anders; Aldahan, Ala; Possnert, Göran

    2014-05-01

    Changes in the flux of galactic cosmic rays into Earth's atmosphere produce variations in the production rates of cosmogenic radionuclides. The resulting globally synchronous signal in cosmogenic radionuclide records can be used to compare time scales and synchronise climate records. The most prominent example is the 14C wiggle match dating approach where variations in the atmospheric 14C concentration are used to match climate records and the tree-ring based part of the 14C calibration record. This approach can be extended to other cosmogenic radionuclide records such as 10Be time series provided that the different geochemical behaviour of 10Be and 14C is taken into account. Here we will present some recent results that illustrate the potential of using cosmogenic radionuclide records for comparing and synchronising different time scales. The focus will be on the last 50000 years where we will show examples how geomagnetic field, solar activity and unusual short-term cosmic ray changes can be used for comparing ice core, tree ring and sediment time scales. We will discuss some unexpected offsets between Greenland ice core and 14C time scale and we will examine how far back in time solar induced 10Be and 14C variations presently can be used to reliably synchronise ice core and 14C time scales.

  8. Enhanced sampling by multiple molecular dynamics trajectories: carbonmonoxy myoglobin 10 micros A0-->A(1-3) transition from ten 400 picosecond simulations.

    PubMed

    Loccisano, Anne E; Acevedo, Orlando; DeChancie, Jason; Schulze, Brita G; Evanseck, Jeffrey D

    2004-05-01

    The utility of multiple trajectories to extend the time scale of molecular dynamics simulations is reported for the spectroscopic A-states of carbonmonoxy myoglobin (MbCO). Experimentally, the A0-->A(1-3) transition has been observed to be 10 micros at 300 K, which is beyond the time scale of standard molecular dynamics simulations. To simulate this transition, 10 short (400 ps) and two longer time (1.2 ns) molecular dynamics trajectories, starting from five different crystallographic and solution phase structures with random initial velocities centered in a 37 A radius sphere of water, have been used to sample the native-fold of MbCO. Analysis of the ensemble of structures gathered over the cumulative 5.6 ns reveals two biomolecular motions involving the side chains of His64 and Arg45 to explain the spectroscopic states of MbCO. The 10 micros A0-->A(1-3) transition involves the motion of His64, where distance between His64 and CO is found to vary up to 8.8 +/- 1.0 A during the transition of His64 from the ligand (A(1-3)) to bulk solvent (A0). The His64 motion occurs within a single trajectory only once, however the multiple trajectories populate the spectroscopic A-states fully. Consequently, multiple independent molecular dynamics simulations have been found to extend biomolecular motion from 5 ns of total simulation to experimental phenomena on the microsecond time scale.

  9. Reaching extended length-scales with temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Amar, Jacques G.; Shim, Yunsic

    2013-03-01

    In temperature-accelerated dynamics (TAD) a high-temperature molecular dynamics (MD) simulation is used to accelerate the search for the next low-temperature activated event. While TAD has been quite successful in extending the time-scales of simulations of non-equilibrium processes, due to the fact that the computational work scales approximately as the cube of the number of atoms, until recently only simulations of relatively small systems have been carried out. Recently, we have shown that by combining spatial decomposition with our synchronous sublattice algorithm, significantly improved scaling is possible. However, in this approach the size of activated events is limited by the processor size while the dynamics is not exact. Here we discuss progress in developing an alternate approach in which high-temperature parallel MD along with localized saddle-point (LSAD) calculations, are used to carry out TAD simulations without restricting the size of activated events while keeping the dynamics ``exact'' within the context of harmonic transition-state theory. In tests of our LSAD method applied to Ag/Ag(100) annealing and Cu/Cu(100) growth simulations we find significantly improved scaling of TAD, while maintaining a negligibly small error in the energy barriers. Supported by NSF DMR-0907399.

  10. Modeling of molecular diffusion and thermal conduction with multi-particle interaction in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Tai, Y.; Watanabe, T.; Nagata, K.

    2018-03-01

    A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.

  11. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  12. Performance of Extended Local Clustering Organization (LCO) for Large Scale Job-Shop Scheduling Problem (JSP)

    NASA Astrophysics Data System (ADS)

    Konno, Yohko; Suzuki, Keiji

    This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.

  13. Quantum gravity extension of the inflationary scenario.

    PubMed

    Agullo, Ivan; Ashtekar, Abhay; Nelson, William

    2012-12-21

    Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This preinflationary dynamics also opens a small window for novel effects, e.g., a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early Universe.

  14. Bacteria transport simulation using APEX model in the Toenepi watershed, New Zealand

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy/Environmental eXtender (APEX) model is a distributed, continuous, daily-time step small watershed-scale hydrologic and water quality model. In this study, the newly developed fecal-derived bacteria fate and transport subroutine was applied and evalated using APEX model. The e...

  15. Dynamic transport capacity in gravel-bed river systems

    Treesearch

    T. E. Lisle; B. Smith

    2003-01-01

    Abstract - Sediment transport capacity mediates the transfer and storage of bed material between alluvial reservoirs in a drainage system. At intermediate time scales corresponding to the evolution of sediment pulses, conditions governing bed-material transport capacity under the hydrologic regime respond to variations in storage and sediment flux as pulses extend,...

  16. SODIUM ABSORPTION SYSTEMS TOWARD SN Ia 2014J ORIGINATE ON INTERSTELLAR SCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, K.; Nogami, D.; Tajitsu, A.

    2016-01-10

    Na i D absorbing systems toward Type Ia supernovae (SNe Ia) have been intensively studied over the last decade with the aim of finding circumstellar material (CSM), which is an indirect probe of the progenitor system. However, it is difficult to deconvolve CSM components from non-variable, and often dominant, components created by interstellar material (ISM). We present a series of high-resolution spectra of SN Ia 2014J from before maximum brightness to ≳250 days after maximum brightness. The late-time spectrum provides unique information for determining the origin of the Na i D absorption systems. The deep late-time observation allows us to probe the environment around themore » SN at a large scale, extending to ≳40 pc. We find that a spectrum of diffuse light in the vicinity, but not directly in the line of sight, of the SN has absorbing systems nearly identical to those obtained for the “pure” SN line of sight. Therefore, basically all Na i D systems seen toward SN 2014J must originate from foreground material that extends to at least ∼40 pc in projection and none at the CSM scale. A fluctuation in the column densities at a scale of ∼20 pc is also identified. After subtracting the diffuse, “background” spectrum, the late-time Na i D profile along the SN line of sight is consistent with profiles near maximum brightness. The lack of variability on a ∼1 year timescale is consistent with the ISM interpretation for the gas.« less

  17. Adaptive switching of interaction potentials in the time domain: an extended Lagrangian approach tailored to transmute force field to QM/MM simulations and back.

    PubMed

    Böckmann, Marcus; Doltsinis, Nikos L; Marx, Dominik

    2015-06-09

    An extended Lagrangian formalism that allows for a smooth transition between two different descriptions of interactions during a molecular dynamics simulation is presented. This time-adaptive method is particularly useful in the context of multiscale simulation as it provides a sound recipe to switch on demand between different hierarchical levels of theory, for instance between ab initio ("QM") and force field ("MM") descriptions of a given (sub)system in the course of a molecular dynamics simulation. The equations of motion can be integrated straightforwardly using the usual propagators, such as the Verlet algorithm. First test cases include a bath of harmonic oscillators, of which a subset is switched to a different force constant and/or equilibrium position, as well as an all-MM to QM/MM transition in a hydrogen-bonded water dimer. The method is then applied to a smectic 8AB8 liquid crystal and is shown to be able to switch dynamically a preselected 8AB8 molecule from an all-MM to a QM/MM description which involves partition boundaries through covalent bonds. These examples show that the extended Lagrangian approach is not only easy to implement into existing code but that it is also efficient and robust. The technique moreover provides easy access to a conserved energy quantity, also in cases when Nosé-Hoover chain thermostatting is used throughout dynamical switching. A simple quadratic driving potential proves to be sufficient to guarantee a smooth transition whose time scale can be easily tuned by varying the fictitious mass parameter associated with the auxiliary variable used to extend the Lagrangian. The method is general and can be applied to time-adaptive switching on demand between two different levels of theory within the framework of hybrid scale-bridging simulations.

  18. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.

  19. Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory.

    PubMed

    De Giovannini, Umberto; Brunetto, Gustavo; Castro, Alberto; Walkenhorst, Jessica; Rubio, Angel

    2013-05-10

    Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experiment, provide additional information about electronic structure and dynamics that improve characterization of a system. As an extension of this approach, time-dependent 2D spectroscopy can also be simulated, in principle, for large-scale structures and extended systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Held, Eric D.

    2015-09-01

    Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.

  1. Line Scanning Thermography for Rapid Nondestructive Inspection of Large Scale Composites

    NASA Astrophysics Data System (ADS)

    Chung, S.; Ley, O.; Godinez, V.; Bandos, B.

    2011-06-01

    As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in2 per 1 second, and has a resolution of 0.05×0.03 in2. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.

  2. Halo Intrinsic Alignment: Dependence on Mass, Formation Time, and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Qianli; Kang, Xi; Wang, Peng

    In this paper we use high-resolution cosmological simulations to study halo intrinsic alignment and its dependence on mass, formation time, and large-scale environment. In agreement with previous studies using N -body simulations, it is found that massive halos have stronger alignment. For the first time, we find that for a given halo mass older halos have stronger alignment and halos in cluster regions also have stronger alignment than those in filaments. To model these dependencies, we extend the linear alignment model with inclusion of halo bias and find that the halo alignment with its mass and formation time dependence canmore » be explained by halo bias. However, the model cannot account for the environment dependence, as it is found that halo bias is lower in clusters and higher in filaments. Our results suggest that halo bias and environment are independent factors in determining halo alignment. We also study the halo alignment correlation function and find that halos are strongly clustered along their major axes and less clustered along the minor axes. The correlated halo alignment can extend to scales as large as 100 h {sup −1} Mpc, where its feature is mainly driven by the baryon acoustic oscillation effect.« less

  3. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait

    NASA Technical Reports Server (NTRS)

    Hausdorff, Jeffrey M.; Peng, C.-K.; Ladin, Zvi; Wei, Jeanne Y.; Goldberger, Ary L.

    1995-01-01

    Complex fluctuation of unknown origin appear in the normal gait pattern. These fluctuations might be described as being (1) uncorrelated white noise, (2) short-range correlations, or (3) long-range correlations with power-law scaling. To test these possibilities, the stride interval of 10 healthy young men was measured as they walked for 9 min at their usual rate. From these time series we calculated scaling indexes by using a modified random walk analysis and power spectral analysis. Both indexes indicated the presence of long-range self-similar correlations extending over hundreds of steps; the stride interval at any time depended on the stride interval at remote previous times, and this dependence decayed in a scale-free (fractallike) power-law fashion. These scaling indexes were significantly different from those obtained after random shuffling of the original time series, indicating the importance of the sequential ordering of the stride interval. We demonstrate that conventional models of gait generation fail to reproduce the observed scaling behavior and introduce a new type of central pattern generator model that sucessfully accounts for the experimentally observed long-range correlations.

  4. Modelling of Space-Time Soil Moisture in Savannas and its Relation to Vegetation Patterns

    NASA Astrophysics Data System (ADS)

    Rodriguez-Iturbe, I.; Mohanty, B.; Chen, Z.

    2017-12-01

    A physically derived space-time representation of the soil moisture field is presented. It includes the incorporation of a "jitter" process acting over the space-time soil moisture field and accounting for the short distance heterogeneities in topography, soil, and vegetation characteristics. The modelling scheme allows for the representation of spatial random fluctuations of soil moisture at small spatial scales and reproduces quite well the space-time correlation structure of soil moisture from a field study in Oklahoma. It is shown that the islands of soil moisture above different thresholds have sizes which follow power distributions over an extended range of scales. A discussion is provided about the possible links of this feature with the observed power law distributions of the clusters of trees in savannas.

  5. Fully-kinetic Ion Simulation of Global Electrostatic Turbulent Transport in C-2U

    NASA Astrophysics Data System (ADS)

    Fulton, Daniel; Lau, Calvin; Bao, Jian; Lin, Zhihong; Tajima, Toshiki; TAE Team

    2017-10-01

    Understanding the nature of particle and energy transport in field-reversed configuration (FRC) plasmas is a crucial step towards an FRC-based fusion reactor. The C-2U device at Tri Alpha Energy (TAE) achieved macroscopically stable plasmas and electron energy confinement time which scaled favorably with electron temperature. This success led to experimental and theoretical investigation of turbulence in C-2U, including gyrokinetic ion simulations with the Gyrokinetic Toroidal Code (GTC). A primary objective of TAE's new C-2W device is to explore transport scaling in an extended parameter regime. In concert with the C-2W experimental campaign, numerical efforts have also been extended in A New Code (ANC) to use fully-kinetic (FK) ions and a Vlasov-Poisson field solver. Global FK ion simulations are presented. Future code development is also discussed.

  6. Ultracompact Minihalos as Probes of Inflationary Cosmology.

    PubMed

    Aslanyan, Grigor; Price, Layne C; Adams, Jenni; Bringmann, Torsten; Clark, Hamish A; Easther, Richard; Lewis, Geraint F; Scott, Pat

    2016-09-30

    Cosmological inflation generates primordial density perturbations on all scales, including those far too small to contribute to the cosmic microwave background. At these scales, isolated ultracompact minihalos of dark matter can form well before standard structure formation, if the perturbations have sufficient amplitude. Minihalos affect pulsar timing data and are potentially bright sources of gamma rays. The resulting constraints significantly extend the observable window of inflation in the presence of cold dark matter, coupling two of the key problems in modern cosmology.

  7. Real-time monitoring of ultrasound imaging of clinical high intensity focused ultrasound (HIFU) exposures

    NASA Astrophysics Data System (ADS)

    Ter Haar, Gail; Kennedy, James; Leslie, Tom; Wu, Feng

    2005-09-01

    Currently, many clinical devices use the change in gray scale seen on a real-time ultrasound image for the assessment of the success of HIFU treatment. It has been shown previously that, for a single HIFU lesion, the presence of gray-scale change was indicative of successful ablation in 100% of cases for 1.6-MHz beams, and in 90% of cases for 0.8-MHz exposures. The absence of gray-scale change was a reliable indicator of lack of ablative damage only for 0.8-MHz exposures (80%) in 80% of exposures using 1.6-MHz beams there was a lesion even in the absence of gray-scale change. This study has been extended to more realistic clinical treatment protocols. The image appearance has been studied for the different volume ablation techniques that are used in the treatment of liver and kidney cancer. The results will be presented.

  8. Nonrelativistic fluids on scale covariant Newton-Cartan backgrounds

    NASA Astrophysics Data System (ADS)

    Mitra, Arpita

    2017-12-01

    The nonrelativistic covariant framework for fields is extended to investigate fields and fluids on scale covariant curved backgrounds. The scale covariant Newton-Cartan background is constructed using the localization of space-time symmetries of nonrelativistic fields in flat space. Following this, we provide a Weyl covariant formalism which can be used to study scale invariant fluids. By considering ideal fluids as an example, we describe its thermodynamic and hydrodynamic properties and explicitly demonstrate that it satisfies the local second law of thermodynamics. As a further application, we consider the low energy description of Hall fluids. Specifically, we find that the gauge fields for scale transformations lead to corrections of the Wen-Zee and Berry phase terms contained in the effective action.

  9. Leading-edge effects on boundary-layer receptivity

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B.; Kerschen, Edward J.

    1990-01-01

    Numerical calculations are presented for the incompressible flow over a parabolic cylinder. The computational domain extends from a region upstream of the body downstream to the region where the Blasius boundary-layer solution holds. A steady mean flow solution is computed and the results for the scaled surface vorticity, surface pressure and displacement thickness are compared to previous studies. The unsteady problem is then formulated as a perturbation solution starting with and evolving from the mean flow. The response to irrotational time harmonic pulsation of the free-stream is examined. Results for the initial development of the velocity profile and displacement thickness are presented. These calculations will be extended to later times to investigate the initiation of instability waves within the boundary-layer.

  10. Long pulse operation of the Kamaboko negative ion source on the MANTIS test bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramham, R.; Jacquot, C.; Riz, D.

    1998-08-20

    Advanced Tokamak concepts and steady state plasma scenarios require external plasma heating and current drive for extended time periods. This poses several problems for the neutral beam injection systems that are currently in use. The power loading of the ion source and accelerator are especially problematic. The Kamaboko negative ion source, a small scale model of the ITER arc source, is being prepared for extended operation of deuterium beams for up to 1000 seconds. The operating conditions of the plasma grid prove to be important for reducing electron power loading of the accelerator. Operation of deuterium beams for extended periodsmore » also poses radiation safety risks which must be addressed.« less

  11. Investigating Underlying Components of the ICT Indicators Measurement Scale: The Extended Version

    ERIC Educational Resources Information Center

    Akbulut, Yavuz

    2009-01-01

    This study aimed to investigate the underlying components constituting the extended version of the ICT Indicators Measurement Scale (ICTIMS), which was developed in 2007, and extended in the current study through the addition of 34 items. New items addressing successful ICT integration at education faculties were identified through the examination…

  12. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates.

    PubMed

    Xia, Li C; Steele, Joshua A; Cram, Jacob A; Cardon, Zoe G; Simmons, Sheri L; Vallino, Joseph J; Fuhrman, Jed A; Sun, Fengzhu

    2011-01-01

    The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa.

  13. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates

    PubMed Central

    2011-01-01

    Background The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. Results We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. Conclusions The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa. PMID:22784572

  14. Taking care of business in a flash: constraining the time-scale for low-mass satellite quenching with ELVIS

    NASA Astrophysics Data System (ADS)

    Fillingham, Sean P.; Cooper, Michael C.; Wheeler, Coral; Garrison-Kimmel, Shea; Boylan-Kolchin, Michael; Bullock, James S.

    2015-12-01

    The vast majority of dwarf satellites orbiting the Milky Way and M31 are quenched, while comparable galaxies in the field are gas rich and star forming. Assuming that this dichotomy is driven by environmental quenching, we use the Exploring the Local Volume in Simulations (ELVIS) suite of N-body simulations to constrain the characteristic time-scale upon which satellites must quench following infall into the virial volumes of their hosts. The high satellite quenched fraction observed in the Local Group demands an extremely short quenching time-scale (˜2 Gyr) for dwarf satellites in the mass range M⋆ ˜ 106-108 M⊙. This quenching time-scale is significantly shorter than that required to explain the quenched fraction of more massive satellites (˜8 Gyr), both in the Local Group and in more massive host haloes, suggesting a dramatic change in the dominant satellite quenching mechanism at M⋆ ≲ 108 M⊙. Combining our work with the results of complementary analyses in the literature, we conclude that the suppression of star formation in massive satellites (M⋆ ˜ 108-1011 M⊙) is broadly consistent with being driven by starvation, such that the satellite quenching time-scale corresponds to the cold gas depletion time. Below a critical stellar mass scale of ˜108 M⊙, however, the required quenching times are much shorter than the expected cold gas depletion times. Instead, quenching must act on a time-scale comparable to the dynamical time of the host halo. We posit that ram-pressure stripping can naturally explain this behaviour, with the critical mass (of M⋆ ˜ 108 M⊙) corresponding to haloes with gravitational restoring forces that are too weak to overcome the drag force encountered when moving through an extended, hot circumgalactic medium.

  15. Evaluating real-time Java for mission-critical large-scale embedded systems

    NASA Technical Reports Server (NTRS)

    Sharp, D. C.; Pla, E.; Luecke, K. R.; Hassan, R. J.

    2003-01-01

    This paper describes benchmarking results on an RT JVM. This paper extends previously published results by including additional tests, by being run on a recently available pre-release version of the first commercially supported RTSJ implementation, and by assessing results based on our experience with avionics systems in other languages.

  16. Informal Nature Experience on the School Playground

    ERIC Educational Resources Information Center

    Raith, Andreas

    2015-01-01

    In Germany, all-day care and all-day schooling are currently increasing on a large-scale. The extended time children spend in educational institutions could potentially result in limited access to nature experience for children. On the other hand, it could equally create opportunities for informal nature experience if school playgrounds have a…

  17. Divided-evolution-based pulse scheme for quantifying exchange processes in proteins: powerful complement to relaxation dispersion experiments.

    PubMed

    Bouvignies, Guillaume; Hansen, D Flemming; Vallurupalli, Pramodh; Kay, Lewis E

    2011-02-16

    A method for quantifying millisecond time scale exchange in proteins is presented based on scaling the rate of chemical exchange using a 2D (15)N, (1)H(N) experiment in which (15)N dwell times are separated by short spin-echo pulse trains. Unlike the popular Carr-Purcell-Meiboom-Gill (CPMG) experiment where the effects of a radio frequency field on measured transverse relaxation rates are quantified, the new approach measures peak positions in spectra that shift as the effective exchange time regime is varied. The utility of the method is established through an analysis of data recorded on an exchanging protein-ligand system for which the exchange parameters have been accurately determined using alternative approaches. Computations establish that a combined analysis of CPMG and peak shift profiles extends the time scale that can be studied to include exchanging systems with highly skewed populations and exchange rates as slow as 20 s(-1).

  18. Training set extension for SVM ensemble in P300-speller with familiar face paradigm.

    PubMed

    Li, Qi; Shi, Kaiyang; Gao, Ning; Li, Jian; Bai, Ou

    2018-03-27

    P300-spellers are brain-computer interface (BCI)-based character input systems. Support vector machine (SVM) ensembles are trained with large-scale training sets and used as classifiers in these systems. However, the required large-scale training data necessitate a prolonged collection time for each subject, which results in data collected toward the end of the period being contaminated by the subject's fatigue. This study aimed to develop a method for acquiring more training data based on a collected small training set. A new method was developed in which two corresponding training datasets in two sequences are superposed and averaged to extend the training set. The proposed method was tested offline on a P300-speller with the familiar face paradigm. The SVM ensemble with extended training set achieved 85% classification accuracy for the averaged results of four sequences, and 100% for 11 sequences in the P300-speller. In contrast, the conventional SVM ensemble with non-extended training set achieved only 65% accuracy for four sequences, and 92% for 11 sequences. The SVM ensemble with extended training set achieves higher classification accuracies than the conventional SVM ensemble, which verifies that the proposed method effectively improves the classification performance of BCI P300-spellers, thus enhancing their practicality.

  19. Resolving the substructure of molecular clouds in the LMC

    NASA Astrophysics Data System (ADS)

    Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Remy; Wojciechowski, Evan; Bandurski, Jeffrey; MC3 Collaboration

    2018-01-01

    We present recent wide-field CO and 13CO mapping of giant molecular clouds in the Large Magellanic Cloud with ALMA. Our sample exhibits diverse star-formation properties, and reveals comparably diverse molecular cloud properties including surface density and velocity dispersion at a given scale. We first present the results of a recent study comparing two GMCs at the extreme ends of the star formation activity spectrum. Our quiescent cloud exhibits 10 times lower surface density and 5 times lower velocity dispersion than the active 30 Doradus cloud, yet in both clouds we find a wide range of line widths at the smallest resolved scales, spanning nearly the full range of line widths seen at all scales. This suggests an important role for feedback on sub-parsec scales, while the energetics on larger scales are dominated by clump-to-clump relative velocities. We then extend our analysis to four additional clouds that exhibit intermediate levels of star formation activity.

  20. Application of global weather and climate model output to the design and operation of wind-energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Judith

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatorymore » environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.« less

  1. Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas

    NASA Astrophysics Data System (ADS)

    Cazenave, Pierre William; Torres, Ricardo; Allen, J. Icarus

    2016-06-01

    Shelf seas comprise approximately 7% of the world's oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometre-scale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.

  2. On the Role of Multi-Scale Processes in CO2 Storage Security and Integrity

    NASA Astrophysics Data System (ADS)

    Pruess, K.; Kneafsey, T. J.

    2008-12-01

    Consideration of multiple scales in subsurface processes is usually referred to the spatial domain, where we may attempt to relate process descriptions and parameters from pore and bench (Darcy) scale to much larger field and regional scales. However, multiple scales occur also in the time domain, and processes extending over a broad range of time scales may be very relevant to CO2 storage and containment. In some cases, such as in the convective instability induced by CO2 dissolution in saline waters, space and time scales are coupled in the sense that perturbations induced by CO2 injection will grow concurrently over many orders of magnitude in both space and time. In other cases, CO2 injection may induce processes that occur on short time scales, yet may affect large regions. Possible examples include seismicity that may be triggered by CO2 injection, or hypothetical release events such as "pneumatic eruptions" that may discharge substantial amounts of CO2 over a short time period. This paper will present recent advances in our experimental and modeling studies of multi-scale processes. Specific examples that will be discussed include (1) the process of CO2 dissolution-diffusion-convection (DDC), that can greatly accelerate the rate at which free-phase CO2 is stored as aqueous solute; (2) self- enhancing and self-limiting processes during CO2 leakage through faults, fractures, or improperly abandoned wells; and (3) porosity and permeability reduction from salt precipitation near CO2 injection wells, and mitigation of corresponding injectivity loss. This work was supported by the Office of Basic Energy Sciences and by the Zero Emission Research and Technology project (ZERT) under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy.

  3. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.

    PubMed

    Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi

    2017-10-11

    We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.

  4. Development of In Vitro-In Vivo Correlation for Potassium Chloride Extended Release Tablet Formulation Using Urinary Pharmacokinetic Data.

    PubMed

    Mittapalli, Rajendar K; Marroum, Patrick; Qiu, Yihong; Apfelbaum, Kathleen; Xiong, Hao

    2017-07-01

    To develop and validate a Level A in vitro-in vivo correlation (IVIVC) for potassium chloride extended-release (ER) formulations. Three prototype ER formulations of potassium chloride with different in vitro release rates were developed and their urinary pharmacokinetic profiles were evaluated in healthy subjects. A mathematical model between in vitro dissolution and in vivo urinary excretion, a surrogate for measuring in vivo absorption, was developed using time-scale and time-shift parameters. The IVIVC model was then validated based on internal and external predictability. With the established IVIVC model, there was a good correlation between the observed fraction of dose excreted in urine and the time-scaled and time-shifted fraction of the drug dissolved, and between the in vitro dissolution time and the in vivo urinary excretion time for the ER formulations. The percent prediction error (%PE) on cumulative urinary excretion over the 24 h interval (A e0-24h ) and maximum urinary excretion rate (R max ) was less than 15% for the individual formulations and less than 10% for the average of the two formulations used to develop the model. Further, the %PE values using external predictability were below 10%. A novel Level A IVIVC was successfully developed and validated for the new potassium chloride ER formulations using urinary pharmacokinetic data. This successful IVIVC may facilitate future development or manufacturing changes to the potassium chloride ER formulation.

  5. Galilean invariant resummation schemes of cosmological perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloso, Marco; Pietroni, Massimo, E-mail: peloso@physics.umn.edu, E-mail: massimo.pietroni@unipr.it

    2017-01-01

    Many of the methods proposed so far to go beyond Standard Perturbation Theory break invariance under time-dependent boosts (denoted here as extended Galilean Invariance, or GI). This gives rise to spurious large scale effects which spoil the small scale predictions of these approximation schemes. By using consistency relations we derive fully non-perturbative constraints that GI imposes on correlation functions. We then introduce a method to quantify the amount of GI breaking of a given scheme, and to correct it by properly tailored counterterms. Finally, we formulate resummation schemes which are manifestly GI, discuss their general features, and implement them inmore » the so called Time-Flow, or TRG, equations.« less

  6. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale

    NASA Astrophysics Data System (ADS)

    Hilgen, F. J.

    1991-06-01

    The astronomically calibrated age of the Olduvai Subchron is established by correlating the cyclic sapropel patterns in the Vrica section and in the sections of Semaforo (Italy), Singa (Italy), Punta Piccola (Sicily), and Francocastello (Crete) to the new astronomical solutions for the precession of the equinox and eccentricity of the earth's orbit, using inferred phase relationships between the sapropel cycles and orbital cycles. The resultant ages for the Olduvai and for older boundaries are then compared with conventional, as well as other orbitally tuned ages, for these polarity transitions. It is shown that this astronomically calibrated time scale can be extended back to the Miocene/Pliocene boundary.

  7. Biogeochemistry from Gliders at the Hawaii Ocean Times-Series

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.; Barone, B.; Karl, D. M.

    2016-02-01

    At the Hawaii Ocean Time-series (HOT) autonomous, underwater gliders equipped with biogeochemical sensors observe the oceans for months at a time, sampling spatiotemporal scales missed by the ship-based programs. Over the last decade, glider data augmented by a foundation of time-series observations have shed light on biogeochemical dynamics occuring spatially at meso- and submesoscales and temporally on scales from diel to annual. We present insights gained from the synergy between glider observations, time-series measurements and remote sensing in the subtropical North Pacific. We focus on diel variability observed in dissolved oxygen and bio-optics and approaches to autonomously quantify net community production and gross primary production (GPP) as developed during the 2012 Hawaii Ocean Experiment - DYnamics of Light And Nutrients (HOE-DYLAN). Glider-based GPP measurements were extended to explore the relationship between GPP and mesoscale context over multiple years of Seaglider deployments.

  8. The sensitivity of the atmospheric branch of the global water cycle to temperature fluctuations at synoptic to decadal time-scales in different satellite- and model-based products

    NASA Astrophysics Data System (ADS)

    Nogueira, Miguel

    2018-02-01

    Spectral analysis of global-mean precipitation, P, evaporation, E, precipitable water, W, and surface temperature, Ts, revealed significant variability from sub-daily to multi-decadal time-scales, superposed on high-amplitude diurnal and yearly peaks. Two distinct regimes emerged from a transition in the spectral exponents, β. The weather regime covering time-scales < 10 days with β ≥ 1; and the macroweather regime extending from a few months to a few decades with 0 <β <1. Additionally, the spectra showed a generally good statistical agreement amongst several different model- and satellite-based datasets. Detrended cross-correlation analysis (DCCA) revealed three important results which are robust across all datasets: (1) Clausius-Clapeyron (C-C) relationship is the dominant mechanism of W non-periodic variability at multi-year time-scales; (2) C-C is not the dominant control of W, P or E non-periodic variability at time-scales below about 6 months, where the weather regime is approached and other mechanisms become important; (3) C-C is not a dominant control for P or E over land throughout the entire time-scale range considered. Furthermore, it is suggested that the atmosphere and oceans start to act as a single coupled system at time-scales > 1-2 years, while at time-scales < 6 months they are not the dominant drivers of each other. For global-ocean and full-globe averages, ρDCCA showed large spread of the C-C importance for P and E variability amongst different datasets at multi-year time-scales, ranging from negligible (< 0.3) to high ( 0.6-0.8) values. Hence, state-of-the-art climate datasets have significant uncertainties in the representation of macroweather precipitation and evaporation variability and its governing mechanisms.

  9. A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows

    NASA Astrophysics Data System (ADS)

    Verma, Aman; Mahesh, Krishnan

    2012-08-01

    The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.

  10. The role of topography on catchment‐scale water residence time

    USGS Publications Warehouse

    McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.

    2005-01-01

    The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined topographic controls on residence time for seven catchments (0.085–62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment‐scale water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 < 0.01) but instead was correlated (r2 = 0.91) to catchment terrain indices representing the flow path distance and flow path gradient to the stream network. These results illustrate that landscape organization (i.e., topography) rather than basin area controls catchment‐scale transport. Results from this study may provide a framework for describing scale‐invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first‐order control on base flow residence time.

  11. The accurate particle tracer code

    NASA Astrophysics Data System (ADS)

    Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi; Yao, Yicun

    2017-11-01

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runaway electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world's fastest computer, the Sunway TaihuLight supercomputer, by supporting master-slave architecture of Sunway many-core processors. Based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.

  12. Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    Electric power systems represent complex systems involving many electrical components whoseoperation has to be planned, analyzed, monitored and controlled. The time-scale of tasks in electricpower systems extends from long term planning years ahead to milliseconds in the area of control. The behavior of power systems is highly non-linear. Monitoring and control involves several hundred variables which are only partly available by measurements.

  13. Does a House Divided Stand? Kinship and the Continuity of Shared Living Arrangements

    ERIC Educational Resources Information Center

    Glick, Jennifer E.; Van Hook, Jennifer

    2011-01-01

    Shared living arrangements can provide housing, economies of scale, and other instrumental support and may become an important resource in times of economic constraint. But the extent to which such living arrangements experience continuity or rapid change in composition is unclear. Previous research on extended-family households tended to focus on…

  14. A stochastic model of particle dispersion in turbulent reacting gaseous environments

    NASA Astrophysics Data System (ADS)

    Sun, Guangyuan; Lignell, David; Hewson, John

    2012-11-01

    We are performing fundamental studies of dispersive transport and time-temperature histories of Lagrangian particles in turbulent reacting flows. The particle-flow statistics including the full particle temperature PDF are of interest. A challenge in modeling particle motions is the accurate prediction of fine-scale aerosol-fluid interactions. A computationally affordable stochastic modeling approach, one-dimensional turbulence (ODT), is a proven method that captures the full range of length and time scales, and provides detailed statistics of fine-scale turbulent-particle mixing and transport. Limited results of particle transport in ODT have been reported in non-reacting flow. Here, we extend ODT to particle transport in reacting flow. The results of particle transport in three flow configurations are presented: channel flow, homogeneous isotropic turbulence, and jet flames. We investigate the functional dependence of the statistics of particle-flow interactions including (1) parametric study with varying temperatures, Reynolds numbers, and particle Stokes numbers; (2) particle temperature histories and PDFs; (3) time scale and the sensitivity of initial and boundary conditions. Flow statistics are compared to both experimental measurements and DNS data.

  15. Phase Transitions and Scaling in Systems Far from Equilibrium

    NASA Astrophysics Data System (ADS)

    Täuber, Uwe C.

    2017-03-01

    Scaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct nonequilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of nonstationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This review describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.

  16. Coherent anti-stokes Raman spectroscopy for detecting explosives in real time

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Pidwerbetsky, Alex

    2012-06-01

    We demonstrate real-time stand-off detection and imaging of trace explosives using collinear, backscattered Coherent Anti-Stokes Raman Spectroscopy (CARS). Using a hybrid time-resolved broad-band CARS we identify nanograms of explosives on the millisecond time scale. The broad-band excitation in the near-mid-infrared region excites the vibrational modes in the fingerprint region, and the time-delayed probe beam ensures the reduction of any non-resonant contributions to the CARS signal. The strong coherent enhancement allows for recording Raman spectra in real-time. We demonstrate stand-off detection by acquiring, analyzing, and identifying vibrational fingerprints in real-time with very high sensitivity and selectivity. By extending the focused region from a 100-micron sized spot to a 5mm long line we can obtain the spectral information from an extended region of the remote target with high spatial resolution. We demonstrate fast hyperspectral imaging by one-dimensional scanning of the Line-CARS. The three-dimensional data structure contains the vibrational spectra of the target at each sampled location, which allows for chemical mapping of the remote target.

  17. Scale size-dependent characteristics of the nightside aurora

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.

    2017-02-01

    We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nm auroral emissions. We report on a single event of nightside aurora (˜22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 min duration, images at 3.31 Hz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.

  18. Assessing age stereotypes in the German population in 1996 and 2011: socio-demographic correlates and shift over time.

    PubMed

    Spangenberg, Lena; Zenger, Markus; Glaesmer, Heide; Brähler, Elmar; Strauss, Bernhard

    2018-03-01

    The present study aimed to extend the knowledge regarding dimensionality, socio-demographic correlates and shifts in age stereotypes over the past 15 years using a time-sequential design. In 1996 and 2011, we assessed age stereotypes in two independent samples of the German population aged ≥ 45 years ( N  = 970 in sample 1, N  = 1545 in sample 2). Three scales with six items each were assessed. Two scales cover negative (i.e., rigidity/isolation, burden), and one scale covers positive age stereotypes (wisdom/experience). Dimensionality of the scale, associations with socio-demographic variables and whether the stereotypes have shifted were tested using confirmatory factor analyses, structural equation modeling and analyses of variances. Three dimensions were identified and replicated following an exploratory as well as a confirmatory approach. Age stereotypes did shift between 1996 and 2011 in the dimension burden (i.e., becoming more negative). Our results further underpin the finding that age stereotypes are multifaceted and suggest that dimensions do not change over time. Additionally, our data provide some evidence that societal age stereotypes partly change over time.

  19. Initiating Nutritional Support Before 72 Hours Is Associated With Favorable Outcome After Severe Traumatic Brain Injury in Children: A Secondary Analysis of a Randomized, Controlled Trial of Therapeutic Hypothermia.

    PubMed

    Meinert, Elizabeth; Bell, Michael J; Buttram, Sandra; Kochanek, Patrick M; Balasubramani, Goundappa K; Wisniewski, Stephen R; Adelson, P David

    2018-04-01

    To understand the relationship between the timing of initiation of nutritional support in children with severe traumatic brain injury and outcomes. Secondary analysis of a randomized, controlled trial of therapeutic hypothermia (Pediatric Traumatic Brain Injury Consortium: Hypothermia, also known as "the Cool Kids Trial" (NCT 00222742). Fifteen clinical sites in the United States, Australia, and New Zealand. Inclusion criteria included 1) age less than 18 years, 2) postresuscitation Glasgow Coma Scale less than or equal to 8, 3) Glasgow Coma Scale motor score less than 6, and 4) available to be randomized within 6 hours after injury. Exclusion criteria included normal head CT, Glasgow Coma Scale equals to 3, hypotension for greater than 10 minutes (< fifth percentile for age), uncorrectable coagulopathy, hypoxia (arterial oxygen saturation < 90% for > 30 min), pregnancy, penetrating injury, and unavailability of a parent or guardian to consent at centers without emergency waiver of consent. Therapeutic hypothermia (32-33°C for 48 hr) followed by slow rewarming for the primary study. For this analysis, the only intervention was the extraction of data regarding nutritional support from the existing database. Timing of initiation of nutritional support was determined and patients stratified into four groups (group 1-no nutritional support over first 7 d; group 2-nutritional support initiated < 48 hr after injury; group 3-nutritional support initiated 48 to < 72 hr after injury; group 4-nutritional support initiated 72-168 hr after injury). Outcomes were also stratified (mortality and Glasgow Outcomes Scale-Extended for Pediatrics; 1-4, 5-7, 8) at 6 and 12 months. Mixed-effects models were performed to define the relationship between nutrition and outcome. Children (n = 90, 77 randomized, 13 run-in) were enrolled (mean Glasgow Coma Scale = 5.8); the mortality rate was 13.3%. 57.8% of subjects received hypothermia Initiation of nutrition before 72 hours was associated with survival (p = 0.01), favorable 6 months Glasgow Outcomes Scale-Extended for Pediatrics (p = 0.03), and favorable 12 months Glasgow Outcomes Scale-Extended for Pediatrics (p = 0.04). Specifically, groups 2 and 3 had favorable outcomes versus group 1. Initiation of nutritional support before 72 hours after traumatic brain injury was associated with decreased mortality and favorable outcome in this secondary analysis. Although this provides a rationale to initiate nutritional support early after traumatic brain injury, definitive studies that control for important covariates (severity of injury, clinical site, calories delivered, parenteral/enteral routes, and other factors) are needed to provide definitive evidence on the optimization of the timing of nutritional support after severe traumatic brain injury in children.

  20. A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures

    NASA Astrophysics Data System (ADS)

    Kossieris, Panagiotis; Makropoulos, Christos; Onof, Christian; Koutsoyiannis, Demetris

    2018-01-01

    Many hydrological applications, such as flood studies, require the use of long rainfall data at fine time scales varying from daily down to 1 min time step. However, in the real world there is limited availability of data at sub-hourly scales. To cope with this issue, stochastic disaggregation techniques are typically employed to produce possible, statistically consistent, rainfall events that aggregate up to the field data collected at coarser scales. A methodology for the stochastic disaggregation of rainfall at fine time scales was recently introduced, combining the Bartlett-Lewis process to generate rainfall events along with adjusting procedures to modify the lower-level variables (i.e., hourly) so as to be consistent with the higher-level one (i.e., daily). In the present paper, we extend the aforementioned scheme, initially designed and tested for the disaggregation of daily rainfall into hourly depths, for any sub-hourly time scale. In addition, we take advantage of the recent developments in Poisson-cluster processes incorporating in the methodology a Bartlett-Lewis model variant that introduces dependence between cell intensity and duration in order to capture the variability of rainfall at sub-hourly time scales. The disaggregation scheme is implemented in an R package, named HyetosMinute, to support disaggregation from daily down to 1-min time scale. The applicability of the methodology was assessed on a 5-min rainfall records collected in Bochum, Germany, comparing the performance of the above mentioned model variant against the original Bartlett-Lewis process (non-random with 5 parameters). The analysis shows that the disaggregation process reproduces adequately the most important statistical characteristics of rainfall at wide range of time scales, while the introduction of the model with dependent intensity-duration results in a better performance in terms of skewness, rainfall extremes and dry proportions.

  1. Higher-order phase transitions on financial markets

    NASA Astrophysics Data System (ADS)

    Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.

    2010-08-01

    Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched exponential integral kernel. On this basis a simple practical hint for investors was formulated.

  2. Is there a place for extended assessments in addressing child sexual abuse allegations? How sensitivity and specificity impact professional perspectives.

    PubMed

    Williams, Javonda; Nelson-Gardell, Debra; Coulborn Faller, Kathleen; Tishelman, Amy; Cordisco-Steele, Linda

    2014-01-01

    Using data from a survey of perceptions of 932 child welfare professionals about the utility of extended assessments, the researchers constructed a scale to measure respondents' views about sensitivity (ensuring sexually abused children are correctly identified) and specificity (ensuring nonabused children are correctly identified) in child sexual abuse evaluations. On average, respondents scored high (valuing sensitivity) on the sensitivity versus specificity scale. Next, the researchers undertook bivariate analyses to identify independent variables significantly associated with the sensitivity versus specificity scale. Then those variables were entered into a multiple regression. Four independent variables were significantly related to higher sensitivity scores: encountering cases requiring extended assessments, valuing extended assessments among scarce resources, less concern about proving cases in court, and viewing the goal of extended assessments as understanding needs of child and family (adjusted R2 = .34).

  3. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Han, Y. S.; Wang, J. Y.

    2017-07-01

    The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  4. Action detection by double hierarchical multi-structure space-time statistical matching model

    NASA Astrophysics Data System (ADS)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-03-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  5. Phase ordering dynamics of reconstituting particles

    NASA Astrophysics Data System (ADS)

    Albarracín, F. A. Gómez; Rosales, H. D.; Grynberg, M. D.

    2017-06-01

    We consider the large-time dynamics of one-dimensional processes involving adsorption and desorption of extended hard-core particles (dimers, trimers, ..., k -mers), while interacting through their constituent monomers. Desorption can occur whether or not these latter adsorbed together, which leads to reconstitution of k -mers and the appearance of sectors of motion with nonlocal conservation laws for k ≥3 . Dynamic exponents of the sector including the empty chain are evaluated by finite-size scaling analyses of the relaxation times embodied in the spectral gaps of evolution operators. For attractive interactions it is found that in the low-temperature limit such time scales converge to those of the Glauber dynamics, thus suggesting a diffusive universality class for k ≥2 . This is also tested by simulated quenches down to T =0 , where a common scaling function emerges. By contrast, under repulsive interactions the low-temperature dynamics is characterized by metastable states which decay subdiffusively to a highly degenerate and partially jammed phase.

  6. Action detection by double hierarchical multi-structure space–time statistical matching model

    NASA Astrophysics Data System (ADS)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-06-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  7. Accurate and efficient calculation of response times for groundwater flow

    NASA Astrophysics Data System (ADS)

    Carr, Elliot J.; Simpson, Matthew J.

    2018-03-01

    We study measures of the amount of time required for transient flow in heterogeneous porous media to effectively reach steady state, also known as the response time. Here, we develop a new approach that extends the concept of mean action time. Previous applications of the theory of mean action time to estimate the response time use the first two central moments of the probability density function associated with the transition from the initial condition, at t = 0, to the steady state condition that arises in the long time limit, as t → ∞ . This previous approach leads to a computationally convenient estimation of the response time, but the accuracy can be poor. Here, we outline a powerful extension using the first k raw moments, showing how to produce an extremely accurate estimate by making use of asymptotic properties of the cumulative distribution function. Results are validated using an existing laboratory-scale data set describing flow in a homogeneous porous medium. In addition, we demonstrate how the results also apply to flow in heterogeneous porous media. Overall, the new method is: (i) extremely accurate; and (ii) computationally inexpensive. In fact, the computational cost of the new method is orders of magnitude less than the computational effort required to study the response time by solving the transient flow equation. Furthermore, the approach provides a rigorous mathematical connection with the heuristic argument that the response time for flow in a homogeneous porous medium is proportional to L2 / D , where L is a relevant length scale, and D is the aquifer diffusivity. Here, we extend such heuristic arguments by providing a clear mathematical definition of the proportionality constant.

  8. Multi-scale simulations of droplets in generic time-dependent flows

    NASA Astrophysics Data System (ADS)

    Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.

  9. The flip-flop nozzle extended to supersonic flows

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Hailye, Michael; Rice, Edward J.

    1992-01-01

    An experiment studying a fluidically oscillated rectangular jet flow was conducted. The Mach number was varied over a range from low subsonic to supersonic. Unsteady velocity and pressure measurements were made using hot wires and piezoresistive pressure transducers. In addition smoke flow visualization using high speed photography was used to document the oscillation of the jet. For the subsonic flip-flop jet it was found that the apparent time-mean widening of the jet was not accompanied by an increase in mass flux. It was found that it is possible to extend the operation of these devices to supersonic flows. Most of the measurements were made for a fixed nozzle geometry for which the oscillations ceased at a fully expanded Mach number of 1.58. By varying the nozzle geometry this limitation was overcome and operation was extended to Mach 1.8. The streamwise velocity perturbation levels produced by this device were much higher than the perturbation levels that could be produced using conventional excitation sources such as acoustic drivers. In view of this ability to produce high amplitudes, the potential for using small scale fluidically oscillated jet as an unsteady excitation source for the control of shear flows in full scale practical applications seems promising.

  10. The flip flop nozzle extended to supersonic flows

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Hailye, Michael; Rice, Edward J.

    1992-01-01

    An experiment studying a fluidically oscillated rectangular jet flow was conducted. The Mach number was varied over a range from low subsonic to supersonic. Unsteady velocity and pressure measurements were made using hot wires and piezoresistive pressure transducers. In addition smoke flow visualization using high speed photography was used to document the oscillation of the jet. For the subsonic flip-flop jet it was found that the apparent time-mean widening of the jet was not accompanied by an increase in mass flux. It was found that it is possible to extend the operation of these devices to supersonic flows. Most of the measurements were made for a fixed nozzle geometry for which the oscillations ceased at a fully expanded Mach number of 1.58. By varying the nozzle geometry this limitation was overcome and operation was extended to Mach 1.8. The streamwise velocity perturbation levels produced by this device were much higher than the perturbation levels that could be produced using conventional excitation sources such as acoustic drivers. In view of this ability to produce high amplitudes, the potential for using small scale fluidically oscillated jet as an unsteady excitation source for the control of shear flows in full scale practical applications seems promising.

  11. How the propagation of heat-flux modulations triggers E × B flow pattern formation.

    PubMed

    Kosuga, Y; Diamond, P H; Gürcan, O D

    2013-03-08

    We propose a novel mechanism to describe E×B flow pattern formation based upon the dynamics of propagation of heat-flux modulations. The E × B flows of interest are staircases, which are quasiregular patterns of strong, localized shear layers and profile corrugations interspersed between regions of avalanching. An analogy of staircase formation to jam formation in traffic flow is used to develop an extended model of heat avalanche dynamics. The extension includes a flux response time, during which the instantaneous heat flux relaxes to the mean heat flux, determined by symmetry constraints. The response time introduced here is the counterpart of the drivers' response time in traffic, during which drivers adjust their speed to match the background traffic flow. The finite response time causes the growth of mesoscale temperature perturbations, which evolve to form profile corrugations. The length scale associated with the maximum growth rate scales as Δ(2) ~ (v(thi)/λT(i))ρ(i)sqrt[χ(neo)τ], where λT(i) is a typical heat pulse speed, χ(neo) is the neoclassical thermal diffusivity, and τ is the response time of the heat flux. The connection between the scale length Δ(2) and the staircase interstep scale is discussed.

  12. Time-localized wavelet multiple regression and correlation

    NASA Astrophysics Data System (ADS)

    Fernández-Macho, Javier

    2018-02-01

    This paper extends wavelet methodology to handle comovement dynamics of multivariate time series via moving weighted regression on wavelet coefficients. The concept of wavelet local multiple correlation is used to produce one single set of multiscale correlations along time, in contrast with the large number of wavelet correlation maps that need to be compared when using standard pairwise wavelet correlations with rolling windows. Also, the spectral properties of weight functions are investigated and it is argued that some common time windows, such as the usual rectangular rolling window, are not satisfactory on these grounds. The method is illustrated with a multiscale analysis of the comovements of Eurozone stock markets during this century. It is shown how the evolution of the correlation structure in these markets has been far from homogeneous both along time and across timescales featuring an acute divide across timescales at about the quarterly scale. At longer scales, evidence from the long-term correlation structure can be interpreted as stable perfect integration among Euro stock markets. On the other hand, at intramonth and intraweek scales, the short-term correlation structure has been clearly evolving along time, experiencing a sharp increase during financial crises which may be interpreted as evidence of financial 'contagion'.

  13. Turbulent Superstructures in Rayleigh-Bénard convection at different Prandtl number

    NASA Astrophysics Data System (ADS)

    Schumacher, Jörg; Pandey, Ambrish; Ender, Martin; Westermann, Rüdiger; Scheel, Janet D.

    2017-11-01

    Large-scale patterns of the temperature and velocity field in horizontally extended cells can be considered as turbulent superstructures in Rayleigh-Bénard convection (RBC). These structures are obtained once the turbulent fluctuations are removed by a finite-time average. Their existence has been reported for example in Bailon-Cuba et al.. This large-scale order obeys a strong similarity with the well-studied patterns from the weakly nonlinear regime at lower Rayleigh number in RBC. In the present work we analyze the superstructures of RBC at different Prandtl number for Prandtl values between Pr = 0.005 for liquid sodium and 7 for water. The characteristic evolution time scales, the typical spatial extension of the rolls and the properties of the defects of the resulting superstructure patterns are analyzed. Data are obtained from well-resolved spectral element direct numerical simulations. The work is supported by the Priority Programme SPP 1881 of the Deutsche Forschungsgemeinschaft.

  14. Robust decentralized hybrid adaptive output feedback fuzzy control for a class of large-scale MIMO nonlinear systems and its application to AHS.

    PubMed

    Huang, Yi-Shao; Liu, Wel-Ping; Wu, Min; Wang, Zheng-Wu

    2014-09-01

    This paper presents a novel observer-based decentralized hybrid adaptive fuzzy control scheme for a class of large-scale continuous-time multiple-input multiple-output (MIMO) uncertain nonlinear systems whose state variables are unmeasurable. The scheme integrates fuzzy logic systems, state observers, and strictly positive real conditions to deal with three issues in the control of a large-scale MIMO uncertain nonlinear system: algorithm design, controller singularity, and transient response. Then, the design of the hybrid adaptive fuzzy controller is extended to address a general large-scale uncertain nonlinear system. It is shown that the resultant closed-loop large-scale system keeps asymptotically stable and the tracking error converges to zero. The better characteristics of our scheme are demonstrated by simulations. Copyright © 2014. Published by Elsevier Ltd.

  15. Molecular dynamics of conformational substates for a simplified protein model

    NASA Astrophysics Data System (ADS)

    Grubmüller, Helmut; Tavan, Paul

    1994-09-01

    Extended molecular dynamics simulations covering a total of 0.232 μs have been carried out on a simplified protein model. Despite its simplified structure, that model exhibits properties similar to those of more realistic protein models. In particular, the model was found to undergo transitions between conformational substates at a time scale of several hundred picoseconds. The computed trajectories turned out to be sufficiently long as to permit a statistical analysis of that conformational dynamics. To check whether effective descriptions neglecting memory effects can reproduce the observed conformational dynamics, two stochastic models were studied. A one-dimensional Langevin effective potential model derived by elimination of subpicosecond dynamical processes could not describe the observed conformational transition rates. In contrast, a simple Markov model describing the transitions between but neglecting dynamical processes within conformational substates reproduced the observed distribution of first passage times. These findings suggest, that protein dynamics generally does not exhibit memory effects at time scales above a few hundred picoseconds, but confirms the existence of memory effects at a picosecond time scale.

  16. Linear static structural and vibration analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.

    1993-01-01

    Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.

  17. Scaling up: Taking the Academic Pathways of People Learning Engineering Survey (APPLES) National. Research Brief

    ERIC Educational Resources Information Center

    Donaldson, Krista M.; Chen, Helen L.; Toye, George; Clark, Mia; Sheppard, Sheri D.

    2008-01-01

    The Academic Pathways of People Learning Engineering Survey (APPLES) was deployed for a second time in spring 2008 to undergraduate engineering students at 21 US universities. The goal of the second deployment of APPLES was to corroborate and extend findings from the Academic Pathways Study (APS; 2003-2007) and the first deployment of APPLES…

  18. AFT: Extending Solar Cycle Prediction with Data Assimilation

    NASA Astrophysics Data System (ADS)

    Upton, L.; Hathaway, D. H.

    2017-12-01

    The Advective Flux Transport (AFT) model is an innovative surface flux transport model that simulates the evolution of the radial magnetic field on the surface of the Sun. AFT was designed to be as realistic as possible by 1: incorporating the observed surface flows (meridional flow, differential rotation, and an explicit evolving convective pattern) and by 2: using data assimilation to incorporate the observed magnetic fields directly from line-of-sight (LOS) magnetograms. AFT has proven to be successful in simulating the evolution of the surface magnetic fields on both short time scales (days-weeks) as well as for long time scales (years). In particular, AFT has been shown to accurately predict the evolution of the Sun's dipolar magnetic field 3-5 years in advance. Since the Sun's polar magnetic field strength at solar cycle minimum is the best indicator of the amplitude of the next cycle, this has in turn extended our ability to make solar cycle predictions to 3-5 years before solar minimum occurs. Here, we will discuss some of the challenges of implementing data assimilation into AFT. We will also discuss the role of data assimilation in advancing solar cycle predictive capability.

  19. Monthly means of selected climate variables for 1985 - 1989

    NASA Technical Reports Server (NTRS)

    Schubert, S.; Wu, C.-Y.; Zero, J.; Schemm, J.-K.; Park, C.-K.; Suarez, M.

    1992-01-01

    Meteorologists are accustomed to viewing instantaneous weather maps, since these contain the most relevant information for the task of producing short-range weather forecasts. Climatologists, on the other hand, tend to deal with long-term means, which portray the average climate. The recent emphasis on dynamical extended-range forecasting and, in particular measuring and predicting short term climate change makes it important that we become accustomed to looking at variations on monthly and longer time scales. A convenient toll for researchers to familiarize themselves with the variability which occurs in selected parameters on these time scales is provided. The format of the document was chosen to help facilitate the intercomparison of various parameters and highlight the year-to-year variability in monthly means.

  20. Modified interferometric imaging condition for reverse-time migration

    NASA Astrophysics Data System (ADS)

    Guo, Xue-Bao; Liu, Hong; Shi, Ying

    2018-01-01

    For reverse-time migration, high-resolution imaging mainly depends on the accuracy of the velocity model and the imaging condition. In practice, however, the small-scale components of the velocity model cannot be estimated by tomographical methods; therefore, the wavefields are not accurately reconstructed from the background velocity, and the imaging process will generate artefacts. Some of the noise is due to cross-correlation of unrelated seismic events. Interferometric imaging condition suppresses imaging noise very effectively, especially the unknown random disturbance of the small-scale part. The conventional interferometric imaging condition is extended in this study to obtain a new imaging condition based on the pseudo-Wigner distribution function (WDF). Numerical examples show that the modified interferometric imaging condition improves imaging precision.

  1. Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab

    2016-01-01

    A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.

  2. A first-principles analytical theory for 2D magnetic reconnection in electron and Hall MHD.

    NASA Astrophysics Data System (ADS)

    Zocco, A.; Simakov, A. N.; Chacon, L.

    2007-11-01

    While the relevance of two-fluid effects in fast magnetic reconnection is well-known,ootnotetextJ. Birn et al., J. Geophys. Res., 106 (A3), pp. 3715--3719 (2001) a first-principles theory --akin to Sweet and Parker's in resistive MHD-- has been elusive. Here, we present such a first principles steady-state theory for electron MHD,ootnotetextL. Chac'on, A. N. Simakov, A. Zocco, Phys. Rev. Lett., submitted and its extension to Hall.ootnotetextA. N. Simakov, L. Chac'on, in preparation The theory discretizes the extended MHD equations at the reconnection site, leading to a set of time-dependent ODEs. Their steady-state analysis provides predictions for the scaling of relevant quantities with the dissipation coefficients (e.g, resistivity and hyper-resistivity) and other relevant parameters. In particular, we will show that EMHD admits both elongated and open-X point configurations of the reconnection region, and that the reconnection rate Ez can be shown not to scale explicitly with the dissipation parameters. This analytic result confirms earlier computational work on the possibility of fast (dissipation-independent) magnetic reconnection in EMHD. We have extended the EMHD results to Hall MHD, and have found a general scaling law for the reconnection rate (and associated length scales) that bridges the gap between resistive and EMHD.

  3. Newmark local time stepping on high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch

    In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less

  4. Critical dynamics on a large human Open Connectome network

    NASA Astrophysics Data System (ADS)

    Ódor, Géza

    2016-12-01

    Extended numerical simulations of threshold models have been performed on a human brain network with N =836 733 connected nodes available from the Open Connectome Project. While in the case of simple threshold models a sharp discontinuous phase transition without any critical dynamics arises, variable threshold models exhibit extended power-law scaling regions. This is attributed to fact that Griffiths effects, stemming from the topological or interaction heterogeneity of the network, can become relevant if the input sensitivity of nodes is equalized. I have studied the effects of link directness, as well as the consequence of inhibitory connections. Nonuniversal power-law avalanche size and time distributions have been found with exponents agreeing with the values obtained in electrode experiments of the human brain. The dynamical critical region occurs in an extended control parameter space without the assumption of self-organized criticality.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basumallick, Partha Pratim; Gupta, Nayantara, E-mail: basuparth314@gmail.com

    The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires anmore » extreme proton energy of 3.98 × 10{sup 21} eV and a high magnetic field of 1 mG of the extended jet with jet power ∼5 × 10{sup 48} erg s{sup −1} in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.« less

  6. Dataset on energy efficiency assessment and measurement method for child-friendly space in cold residential area.

    PubMed

    Ren, Kai; Xu, Leiqing

    2017-10-01

    The data related in this paper are related to "Environmental-behavior studies of sustainable construction of the third place - based on outdoor environment-behavior cross-feed symbiotic analysis and verification of selective activities" (Ren, 2017) [1]. The dataset was from a field sub-time extended investigation to children of Hohhot West Inner Mongolia Electric Power Community Residential Area in Inner Mongolia of China that belongs to cold region of ID area according to Chinese design code for buildings. This filed data provided descriptive statistics about outdoor time, behavior scale specificity, age exclusivity and self-centeredness for children in different ages (babies, preschool children, school age children). This data provided five measurement elements of child-friendly space and their weight ratio. The field data set is made publicly available to enable critical or extended analyzes.

  7. Equation-of-State Scaling Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-06-28

    Equation-of-State scaling factors are needed when using a tabular EOS in which the user de ned material isotopic fractions di er from the actual isotopic fractions used by the table. Additionally, if a material is dynamically changing its isotopic structure, then an EOS scaling will again be needed, and will vary in time and location. The procedure that allows use of a table to obtain information about a similar material with average atomic mass Ms and average atomic number Zs is described below. The procedure is exact for a fully ionized ideal gas. However, if the atomic number is replacemore » by the e ective ionization state the procedure can be applied to partially ionized material as well, which extends the applicability of the scaling approximation continuously from low to high temperatures.« less

  8. Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.

    PubMed

    Yu, T; Sejnowski, T J; Cauwenberghs, G

    2011-10-01

    We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.

  9. Constraints on a Proton Synchrotron Origin of VHE Gamma Rays from the Extended Jet of AP Librae

    NASA Astrophysics Data System (ADS)

    Pratim Basumallick, Partha; Gupta, Nayantara

    2017-07-01

    The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires an extreme proton energy of 3.98 × 1021 eV and a high magnetic field of 1 mG of the extended jet with jet power ˜5 × 1048 erg s-1 in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.

  10. Further We Travel the Faster We Go.

    PubMed

    Varga, Levente; Kovács, András; Tóth, Géza; Papp, István; Néda, Zoltán

    2016-01-01

    The average travelling speed increases in a nontrivial manner with the travel distance. This leads to scaling-like relations on quite extended spatial scales, for all mobility modes taken together and also for a given mobility mode in part. We offer a wide range of experimental results, investigating and quantifying this universal effect and its measurable causes. The increasing travelling speed with the travel distance arises from the combined effects of: choosing the most appropriate travelling mode; the structure of the travel networks; the travel times lost in the main hubs, starting or target cities; and the speed limit of roads and vehicles.

  11. Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance.

    PubMed

    Rotstein, Horacio G

    2014-01-01

    We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between the voltage and the gating variable, and they almost disappear when both equations evolve at comparable rates. In contrast, voltage responses are almost insensitive to nonlinearities located in the gating variable equation. The method we develop provides a framework for the investigation of the preferred frequency responses in three-dimensional and nonlinear neuronal models as well as simple models of coupled neurons.

  12. Observed evolution of drought episodes assessed with the Standardized Precipitation Evapotranspiration Index (SPEI) over the Czech Republic

    NASA Astrophysics Data System (ADS)

    Potop, V.; Boroneana, C.; Mozny, M.; Stepanek, P.; Skalak, P.

    2012-04-01

    This paper investigates the spatial and temporal evolution of drought episodes assessed with the Standardized Precipitation Evapotranspiration Index (SPEI) over the Czech Republic. The SPEI were calculated from monthly records of mean temperature and precipitation totals using a dense network of 183 climatological stations for the period 1961-2010. The SPEI were calculated with various lags, 1, 3, 6, 12 and 24 months. The drought at these time scales is relevant for agricultural, hydrological and socio-economic impact, respectively. The study refers at the warm season of the year (April to September). The principal modes of variability of these five time scale SPEI were identified using the analysis of Empirical Orthogonal Functions (EOF). The explained variance of the leading EOF ranges between 71 and 61% as the time scale for calculating the SPEI increases from 1 month to 24 months. The explained variance of EOF2 and EOF3 ranges between 5 to 9% and 4 to 6%, respectively, as the SPEI is calculated for 1 to 24 months. Based on the spatial distribution of the EOF2 and EOF3 for all time scales of SPEI, which correspond to some extend to a regionalization previously used in other studies, we identified three climatically homogeneous regions, corresponding to the altitudes below 400 m, between 401 and 700 m and, above 700 m. These regions correspond to different land use types with mostly intensive agriculture, less intensive agriculture and limited agricultural production and mostly forested, respectively. For these three regions the frequency distribution of the SPEI values in 7 classes of drought category (%) were calculated based on station records in each region. The normal conditions represent around 65% out of the total values of SPEI for all times scales, in all three regions, while moderate drought and moderate wet conditions are almost equally distributed around 10.5 %. Differences in extremely dry conditions (5%) compared to extremely wet conditions (1.5 %) were observed when increasing the SPEI timescales. The drought is classified as local when covers up to 10% of the territory of the Czech Republic, widespread when covers 11-30% of the territory, very widespread when covers 31-50% of the territory and most extended when covers more than 50% of the country territory. We gratefully acknowledge the support of the Ministry of Education, Youth and Sports for projects OC10010.

  13. In vitro-in vivo correlation for nevirapine extended release tablets.

    PubMed

    Macha, Sreeraj; Yong, Chan-Loi; Darrington, Todd; Davis, Mark S; MacGregor, Thomas R; Castles, Mark; Krill, Steven L

    2009-12-01

    An in vitro-in vivo correlation (IVIVC) for four nevirapine extended release tablets with varying polymer contents was developed. The pharmacokinetics of extended release formulations were assessed in a parallel group study with healthy volunteers and compared with corresponding in vitro dissolution data obtained using a USP apparatus type 1. In vitro samples were analysed using HPLC with UV detection and in vivo samples were analysed using a HPLC-MS/MS assay; the IVIVC analyses comparing the two results were performed using WinNonlin. A Double Weibull model optimally fits the in vitro data. A unit impulse response (UIR) was assessed using the fastest ER formulation as a reference. The deconvolution of the in vivo concentration time data was performed using the UIR to estimate an in vivo drug release profile. A linear model with a time-scaling factor clarified the relationship between in vitro and in vivo data. The predictability of the final model was consistent based on internal validation. Average percent prediction errors for pharmacokinetic parameters were <10% and individual values for all formulations were <15%. Therefore, a Level A IVIVC was developed and validated for nevirapine extended release formulations providing robust predictions of in vivo profiles based on in vitro dissolution profiles. Copyright 2009 John Wiley & Sons, Ltd.

  14. Extended self-similarity in the two-dimensional metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Moriconi, L.

    2003-09-01

    We show that extended self-similarity, a scaling phenomenon first observed in classical turbulent flows, holds for a two-dimensional metal-insulator transition that belongs to the universality class of random Dirac fermions. Deviations from multifractality, which in turbulence are due to the dominance of diffusive processes at small scales, appear in the condensed-matter context as a large-scale, finite-size effect related to the imposition of an infrared cutoff in the field theory formulation. We propose a phenomenological interpretation of extended self-similarity in the metal-insulator transition within the framework of the random β-model description of multifractal sets. As a natural step, our discussion is bridged to the analysis of strange attractors, where crossovers between multifractal and nonmultifractal regimes are found and extended self-similarity turns out to be verified as well.

  15. Scaling Characteristics of Mesoscale Wind Fields in the Lower Atmospheric Boundary Layer: Implications for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kiliyanpilakkil, Velayudhan Praju

    Atmospheric motions take place in spatial scales of sub-millimeters to few thousands of kilometers with temporal changes in the atmospheric variables occur in fractions of seconds to several years. Consequently, the variations in atmospheric kinetic energy associated with these atmospheric motions span over a broad spectrum of space and time. The mesoscale region acts as an energy transferring regime between the energy generating synoptic scale and the energy dissipating microscale. Therefore, the scaling characterizations of mesoscale wind fields are significant in the accurate estimation of the atmospheric energy budget. Moreover, the precise knowledge of the scaling characteristics of atmospheric mesoscale wind fields is important for the validation of the numerical models those focus on wind forecasting, dispersion, diffusion, horizontal transport, and optical turbulence. For these reasons, extensive studies have been conducted in the past to characterize the mesoscale wind fields. Nevertheless, the majority of these studies focused on near-surface and upper atmosphere mesoscale regimes. The present study attempt to identify the existence and to quantify the scaling of mesoscale wind fields in the lower atmospheric boundary layer (ABL; in the wind turbine layer) using wind observations from various research-grade instruments (e.g., sodars, anemometers). The scaling characteristics of the mesoscale wind speeds over diverse homogeneous flat terrains, conducted using structure function based analysis, revealed an altitudinal dependence of the scaling exponents. This altitudinal dependence of the wind speed scaling may be attributed to the buoyancy forcing. Subsequently, we use the framework of extended self-similarity (ESS) to characterize the observed scaling behavior. In the ESS framework, the relative scaling exponents of the mesoscale atmospheric boundary layer wind speed exhibit quasi-universal behavior; even far beyond the inertial range of turbulence (Delta t within 10 minutes to 6 hours range). The ESS framework based study is extended further to enquire its validity over complex terrain. This study, based on multiyear wind observations, demonstrate that the ESS holds for the lower ABL wind speed over the complex terrain as well. Another important inference from this study is that the ESS relative scaling exponents corresponding to the mesoscale wind speed closely matches the scaling characteristics of the inertial range turbulence, albeit not exactly identical. The current study proposes benchmark using ESS-based quasi-universal wind speed scaling characteristics in the ABL for the mesoscale modeling community. Using a state-of-the-art atmospheric mesoscale model in conjunction with different planetary boundary layer (PBL) parameterization schemes, multiple wind speed simulations have been conducted. This study reveals that the ESS scaling characteristics of the model simulated wind speed time series in the lower ABL vary significantly from their observational counterparts. The study demonstrate that the model simulated wind speed time series for the time intervals Delta t < 2 hours do not capture the ESS-based scaling characteristics. The detailed analysis of model simulations using different PBL schemes lead to the conclusion that there is a need for significant improvements in the turbulent closure parameterizations adapted in the new-generation atmospheric models. This study is unique as the ESS framework has never been reported or examined for the validation of PBL parameterizations.

  16. Generalized probabilistic scale space for image restoration.

    PubMed

    Wong, Alexander; Mishra, Akshaya K

    2010-10-01

    A novel generalized sampling-based probabilistic scale space theory is proposed for image restoration. We explore extending the definition of scale space to better account for both noise and observation models, which is important for producing accurately restored images. A new class of scale-space realizations based on sampling and probability theory is introduced to realize this extended definition in the context of image restoration. Experimental results using 2-D images show that generalized sampling-based probabilistic scale-space theory can be used to produce more accurate restored images when compared with state-of-the-art scale-space formulations, particularly under situations characterized by low signal-to-noise ratios and image degradation.

  17. Asynchronous adaptive time step in quantitative cellular automata modeling

    PubMed Central

    Zhu, Hao; Pang, Peter YH; Sun, Yan; Dhar, Pawan

    2004-01-01

    Background The behaviors of cells in metazoans are context dependent, thus large-scale multi-cellular modeling is often necessary, for which cellular automata are natural candidates. Two related issues are involved in cellular automata based multi-cellular modeling: how to introduce differential equation based quantitative computing to precisely describe cellular activity, and upon it, how to solve the heavy time consumption issue in simulation. Results Based on a modified, language based cellular automata system we extended that allows ordinary differential equations in models, we introduce a method implementing asynchronous adaptive time step in simulation that can considerably improve efficiency yet without a significant sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example. Conclusions Strategies for reducing time consumption in simulation are indispensable for large-scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains one million cells. Distributed and adaptive time step is a practical solution in cellular automata environment. PMID:15222901

  18. Multiscale multifractal detrended cross-correlation analysis of financial time series

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian; Wang, Jing; Lin, Aijing

    2014-06-01

    In this paper, we introduce a method called multiscale multifractal detrended cross-correlation analysis (MM-DCCA). The method allows us to extend the description of the cross-correlation properties between two time series. MM-DCCA may provide new ways of measuring the nonlinearity of two signals, and it helps to present much richer information than multifractal detrended cross-correlation analysis (MF-DCCA) by sweeping all the range of scale at which the multifractal structures of complex system are discussed. Moreover, to illustrate the advantages of this approach we make use of the MM-DCCA to analyze the cross-correlation properties between financial time series. We show that this new method can be adapted to investigate stock markets under investigation. It can provide a more faithful and more interpretable description of the dynamic mechanism between financial time series than traditional MF-DCCA. We also propose to reduce the scale ranges to analyze short time series, and some inherent properties which remain hidden when a wide range is used may exhibit perfectly in this way.

  19. Multiscale Granger causality

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Nollo, Giandomenico; Stramaglia, Sebastiano; Marinazzo, Daniele

    2017-10-01

    In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared to pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.

  20. Classical nucleation theory in the phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  1. The accurate particle tracer code

    DOE PAGES

    Wang, Yulei; Liu, Jian; Qin, Hong; ...

    2017-07-20

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runawaymore » electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world’s fastest computer, the Sunway TaihuLight supercomputer, by supporting master–slave architecture of Sunway many-core processors. Here, based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.« less

  2. Classical nucleation theory in the phase-field crystal model.

    PubMed

    Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

    2018-04-01

    A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

  3. The accurate particle tracer code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yulei; Liu, Jian; Qin, Hong

    The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runawaymore » electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world’s fastest computer, the Sunway TaihuLight supercomputer, by supporting master–slave architecture of Sunway many-core processors. Here, based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.« less

  4. Dynamics of Choice: Relative Rate and Amount Affect Local Preference at Three Different Time Scales

    ERIC Educational Resources Information Center

    Aparicio, Carlos F.; Baum, William M.

    2009-01-01

    To examine extended control over local choice, the present study investigated preference in transition as food-rate ratio provided by two levers changed across seven components within daily sessions, and food-amount ratio changed across phases. Phase 1 arranged a food-amount ratio of 4:1 (i.e., the left lever delivered four pellets and the right…

  5. Methodological Issues in the Study of Teachers' Careers: Critical Features of a Truly Longitudinal Study. Working Paper Series.

    ERIC Educational Resources Information Center

    Singer, Judith D.; Willett, John B.

    The National Center for Education Statistics (NCES) is exploring the possibility of conducting a large-scale multi-year study of teachers' careers. The proposed new study is intended to follow a national probability sample of teachers over an extended period of time. A number of methodological issues need to be addressed before the study can be…

  6. Application of the new Cross Recurrence Plots to multivariate data

    NASA Astrophysics Data System (ADS)

    Thiel, M.; Romano, C.; Kurths, J.

    2003-04-01

    We extend and then apply the method of the new Cross Recurrence Plots (XRPs) to multivariate data. After introducing the new method we carry out an analysis of spatiotemporal ecological data. We compute not only the Rényi entropies and cross entropies by XRP, that allow to draw conclusions about the coupling of the systems, but also find a prediction horizon for intermediate time scales.

  7. Extending the range of real time density matrix renormalization group simulations

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; Karrasch, C.

    2016-03-01

    We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.

  8. Single-shot Monitoring of Ultrafast Processes via X-ray Streaking at a Free Electron Laser.

    PubMed

    Buzzi, Michele; Makita, Mikako; Howald, Ludovic; Kleibert, Armin; Vodungbo, Boris; Maldonado, Pablo; Raabe, Jörg; Jaouen, Nicolas; Redlin, Harald; Tiedtke, Kai; Oppeneer, Peter M; David, Christian; Nolting, Frithjof; Lüning, Jan

    2017-08-03

    The advent of x-ray free electron lasers has extended the unique capabilities of resonant x-ray spectroscopy techniques to ultrafast time scales. Here, we report on a novel experimental method that allows retrieving with a single x-ray pulse the time evolution of an ultrafast process, not only at a few discrete time delays, but continuously over an extended time window. We used a single x-ray pulse to resolve the laser-induced ultrafast demagnetisation dynamics in a thin cobalt film over a time window of about 1.6 ps with an excellent signal to noise ratio. From one representative single shot measurement we extract a spin relaxation time of (130 ± 30) fs with an average value, based on 193 single shot events of (113 ± 20) fs. These results are limited by the achieved experimental time resolution of 120 fs, and both values are in excellent agreement with previous results and theoretical modelling. More generally, this new experimental approach to ultrafast x-ray spectroscopy paves the way to the study of non-repetitive processes that cannot be investigated using traditional repetitive pump-probe schemes.

  9. Equation-free multiscale computation: algorithms and applications.

    PubMed

    Kevrekidis, Ioannis G; Samaey, Giovanni

    2009-01-01

    In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.

  10. Extending Validity Evidence for Multidimensional Measures of Coaching Competency

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Wolfe, Edward W.; Maier, Kimberly S.; Feltz, Deborah L.; Reckase, Mark D.

    2006-01-01

    This study extended validity evidence for multidimensional measures of coaching competency derived from the Coaching Competency Scale (CCS; Myers, Feltz, Maier, Wolfe, & Reckase, 2006) by examining use of the original rating scale structure and testing how measures related to satisfaction with the head coach within teams and between teams.…

  11. The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales

    PubMed Central

    Wesolowski, Amy; Buckee, Caroline O.; Pindolia, Deepa K.; Eagle, Nathan; Smith, David L.; Garcia, Andres J.; Tatem, Andrew J.

    2013-01-01

    Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data. PMID:23326367

  12. Extending SME to Handle Large-Scale Cognitive Modeling.

    PubMed

    Forbus, Kenneth D; Ferguson, Ronald W; Lovett, Andrew; Gentner, Dedre

    2017-07-01

    Analogy and similarity are central phenomena in human cognition, involved in processes ranging from visual perception to conceptual change. To capture this centrality requires that a model of comparison must be able to integrate with other processes and handle the size and complexity of the representations required by the tasks being modeled. This paper describes extensions to Structure-Mapping Engine (SME) since its inception in 1986 that have increased its scope of operation. We first review the basic SME algorithm, describe psychological evidence for SME as a process model, and summarize its role in simulating similarity-based retrieval and generalization. Then we describe five techniques now incorporated into the SME that have enabled it to tackle large-scale modeling tasks: (a) Greedy merging rapidly constructs one or more best interpretations of a match in polynomial time: O(n 2 log(n)); (b) Incremental operation enables mappings to be extended as new information is retrieved or derived about the base or target, to model situations where information in a task is updated over time; (c) Ubiquitous predicates model the varying degrees to which items may suggest alignment; (d) Structural evaluation of analogical inferences models aspects of plausibility judgments; (e) Match filters enable large-scale task models to communicate constraints to SME to influence the mapping process. We illustrate via examples from published studies how these enable it to capture a broader range of psychological phenomena than before. Copyright © 2016 Cognitive Science Society, Inc.

  13. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  14. Radial deformation of the solar current sheet as a cause of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1979-01-01

    It is suggested that the solar current sheet, extending from a coronal streamer, develops a large-scale radial deformation, at times with a very steep gradient at the earth's distance. The associated magnetic field lines (namely, the interplanetary magnetic field (IMF) lines) are expected to have also a large gradient in the vicinity of the current sheet. It is also suggested that some of the major geomagnetic storms occur when the earth is located in the region where IMF field lines have a large dip angle with respect to the ecliptic plane for an extended period (6-48 h), as a result of a steep radial deformation of the current sheet.

  15. n-SIFT: n-dimensional scale invariant feature transform.

    PubMed

    Cheung, Warren; Hamarneh, Ghassan

    2009-09-01

    We propose the n-dimensional scale invariant feature transform (n-SIFT) method for extracting and matching salient features from scalar images of arbitrary dimensionality, and compare this method's performance to other related features. The proposed features extend the concepts used for 2-D scalar images in the computer vision SIFT technique for extracting and matching distinctive scale invariant features. We apply the features to images of arbitrary dimensionality through the use of hyperspherical coordinates for gradients and multidimensional histograms to create the feature vectors. We analyze the performance of a fully automated multimodal medical image matching technique based on these features, and successfully apply the technique to determine accurate feature point correspondence between pairs of 3-D MRI images and dynamic 3D + time CT data.

  16. Numerical tests of local scale invariance in ageing q-state Potts models

    NASA Astrophysics Data System (ADS)

    Lorenz, E.; Janke, W.

    2007-01-01

    Much effort has been spent over the last years to achieve a coherent theoretical description of ageing as a non-linear dynamics process. Long supposed to be a consequence of the slow dynamics of glassy systems only, ageing phenomena could also be identified in the phase-ordering kinetics of simple ferromagnets. As a phenomenological approach Henkel et al. developed a group of local scale transformations under which two-time autocorrelation and response functions should transform covariantly. This work is to extend previous numerical tests of the predicted scaling functions for the Ising model by Monte Carlo simulations of two-dimensional q-state Potts models with q=3 and 8, which, in equilibrium, undergo temperature-driven phase transitions of second and first order, respectively.

  17. Cratering time scales for the Galilean satellites

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Wolfe, R. F.

    1982-01-01

    An attempt is made to estimate the present cratering rate for each Galilean satellite within the correct order of magnitude and to extend the cratering rates back into the geologic past on the basis of evidence from the earth-moon system. For collisions with long and short period comets, the magnitudes and size distributions of the comet nuclei, the distribution of their perihelion distances, and the completeness of discovery are addressed. The diameters and masses of cometary nuclei are assessed, as are crater diameters and cratering rates. The dynamical relations between long period and short period comets are discussed, and the population of Jupiter-crossing asteroids is assessed. Estimated present cratering rates on the Galilean satellites are compared and variations of cratering rate with time are considered. Finally, the consistency of derived cratering time scales with the cratering record of the icy Galilean satellites is discussed.

  18. Polymer translocation under a pulling force: Scaling arguments and threshold forces

    NASA Astrophysics Data System (ADS)

    Menais, Timothée

    2018-02-01

    DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .

  19. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar

    2005-06-07

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  20. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor [Oakland, CA; Silin, Dimitriy Borisovich [Pleasant Hill, CA; De, Asoke Kumar [San Jose, CA

    2007-07-24

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  1. On simulating flow with multiple time scales using a method of averages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, L.G.

    1997-12-31

    The author presents a new computational method based on averaging to efficiently simulate certain systems with multiple time scales. He first develops the method in a simple one-dimensional setting and employs linear stability analysis to demonstrate numerical stability. He then extends the method to multidimensional fluid flow. His method of averages does not depend on explicit splitting of the equations nor on modal decomposition. Rather he combines low order and high order algorithms in a generalized predictor-corrector framework. He illustrates the methodology in the context of a shallow fluid approximation to an ocean basin circulation. He finds that his newmore » method reproduces the accuracy of a fully explicit second-order accurate scheme, while costing less than a first-order accurate scheme.« less

  2. Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata

    NASA Astrophysics Data System (ADS)

    Meyers, Stephen R.

    2016-04-01

    A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization, Paleoceanography, 30, doi:10.1002/ 2015PA002850.

  3. A California statewide three-dimensional seismic velocity model from both absolute and differential times

    USGS Publications Warehouse

    Lin, G.; Thurber, C.H.; Zhang, H.; Hauksson, E.; Shearer, P.M.; Waldhauser, F.; Brocher, T.M.; Hardebeck, J.

    2010-01-01

    We obtain a seismic velocity model of the California crust and uppermost mantle using a regional-scale double-difference tomography algorithm. We begin by using absolute arrival-time picks to solve for a coarse three-dimensional (3D) P velocity (VP) model with a uniform 30 km horizontal node spacing, which we then use as the starting model for a finer-scale inversion using double-difference tomography applied to absolute and differential pick times. For computational reasons, we split the state into 5 subregions with a grid spacing of 10 to 20 km and assemble our final statewide VP model by stitching together these local models. We also solve for a statewide S-wave model using S picks from both the Southern California Seismic Network and USArray, assuming a starting model based on the VP results and a VP=VS ratio of 1.732. Our new model has improved areal coverage compared with previous models, extending 570 km in the SW-NE directionand 1320 km in the NW-SE direction. It also extends to greater depth due to the inclusion of substantial data at large epicentral distances. Our VP model generally agrees with previous separate regional models for northern and southern California, but we also observe some new features, such as high-velocity anomalies at shallow depths in the Klamath Mountains and Mount Shasta area, somewhat slow velocities in the northern Coast Ranges, and slow anomalies beneath the Sierra Nevada at midcrustal and greater depths. This model can be applied to a variety of regional-scale studies in California, such as developing a unified statewide earthquake location catalog and performing regional waveform modeling.

  4. Interfacial mixing in high-energy-density matter with a multiphysics kinetic model

    NASA Astrophysics Data System (ADS)

    Haack, Jeffrey R.; Hauck, Cory D.; Murillo, Michael S.

    2017-12-01

    We have extended a recently developed multispecies, multitemperature Bhatnagar-Gross-Krook model [Haack et al., J. Stat. Phys. 168, 822 (2017), 10.1007/s10955-017-1824-9], to include multiphysics capabilities that enable modeling of a wider range of physical conditions. In terms of geometry, we have extended from the spatially homogeneous setting to one spatial dimension. In terms of the physics, we have included an atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, but for larger length and time scales and for much higher temperatures than can be simulated using molecular dynamics. Relative to molecular dynamics, the kinetic model greatly extends the temperature regime and the spatiotemporal scales over which we are able to model. In our numerical results we observe hydrogen from the ablator material jetting into the fuel during the early stages of the implosion and compare the relative size of various diffusion components (Fickean diffusion, electrodiffusion, and barodiffusion) that drive this process. We also examine kinetic effects, such as anisotropic distributions and velocity separation, in order to determine when this problem can be described with a hydrodynamic model.

  5. A preliminary study of extended magnetic field structures in the ionosphere

    NASA Technical Reports Server (NTRS)

    Sullivan, James D.; Lane, Barton G.; Post, Richard S.

    1987-01-01

    Several plasma phenomena which are to be expected around a magnet in LEO were identified and analyzed qualitatively. The ASTROMAG cusp magnet will create an extended field whose strength drops to the ambient level over a scale length of approx. 15 m; the combined field has a complex topology with ring nulls and open and closed field lines. The entire configuration is moving through the partially ionized F-layer of the ionosphere at a speed slow compared to the local Alfven speed but fast compared to the ion sound speed. The ambient plasma crosses the extended field structure in a time short compared to the ion Larmor period yet long relative to the electron Larmor period. Thus, electrons behave as a magnetized fluid while ions move ballistically until reflected from higher fields near the cusp. Since the Debye length is short compared to the field scale length, an electrostatic shock-like structure forms to equilibrate the flows and achieve quasi-neutrality. The ambient plasma will be excluded from a cavity near the magnet. The size and nature of the strong interaction region in which the magnet significantly perturbs the ambient flow were determined by studying ion orbits numerically. Lecture viewgraphs summarizing these results are presented.

  6. Interpolated Sounding and Gridded Sounding Value-Added Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toto, T.; Jensen, M.

    Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The INTERPOLATEDSONDE (i.e., Interpolated Sounding) Value-Added Product (VAP) transforms sounding data into continuous daily files on a fixed time-height grid, at 1-minute time resolution, on 332 levels, from the surface up to a limit of approximately 40 km. The grid extends that high so the full height of soundings can be captured; however, most soundings terminate at an altitude between 25more » and 30 km, above which no data is provided. Between soundings, the VAP linearly interpolates atmospheric state variables in time for each height level. In addition, INTERPOLATEDSONDE provides relative humidity scaled to microwave radiometer (MWR) observations.The INTERPOLATEDSONDE VAP, a continuous time-height grid of relative humidity-corrected sounding data, is intended to provide input to higher-order products, such as the Merged Soundings (MERGESONDE; Troyan 2012) VAP, which extends INTERPOLATEDSONDE by incorporating model data. The INTERPOLATEDSONDE VAP also is used to correct gaseous attenuation of radar reflectivity in products such as the KAZRCOR VAP.« less

  7. Enhanced polymer capture speed and extended translocation time in pressure-solvation traps

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2018-06-01

    The efficiency of nanopore-based biosequencing techniques requires fast anionic polymer capture by like-charged pores followed by a prolonged translocation process. We show that this condition can be achieved by setting a pressure-solvation trap. Polyvalent cation addition to the KCl solution triggers the like-charge polymer-pore attraction. The attraction speeds-up the pressure-driven polymer capture but also traps the molecule at the pore exit, reducing the polymer capture time and extending the polymer escape time by several orders of magnitude. By direct comparison with translocation experiments [D. P. Hoogerheide et al., ACS Nano 8, 7384 (2014), 10.1021/nn5025829], we characterize as well the electrohydrodynamics of polymers transport in pressure-voltage traps. We derive scaling laws that can accurately reproduce the pressure dependence of the experimentally measured polymer translocation velocity and time. We also find that during polymer capture, the electrostatic barrier on the translocating molecule slows down the liquid flow. This prediction identifies the streaming current measurement as a potential way to probe electrostatic polymer-pore interactions.

  8. Econophysics — complex correlations and trend switchings in financial time series

    NASA Astrophysics Data System (ADS)

    Preis, T.

    2011-03-01

    This article focuses on the analysis of financial time series and their correlations. A method is used for quantifying pattern based correlations of a time series. With this methodology, evidence is found that typical behavioral patterns of financial market participants manifest over short time scales, i.e., that reactions to given price patterns are not entirely random, but that similar price patterns also cause similar reactions. Based on the investigation of the complex correlations in financial time series, the question arises, which properties change when switching from a positive trend to a negative trend. An empirical quantification by rescaling provides the result that new price extrema coincide with a significant increase in transaction volume and a significant decrease in the length of corresponding time intervals between transactions. These findings are independent of the time scale over 9 orders of magnitude, and they exhibit characteristics which one can also find in other complex systems in nature (and in physical systems in particular). These properties are independent of the markets analyzed. Trends that exist only for a few seconds show the same characteristics as trends on time scales of several months. Thus, it is possible to study financial bubbles and their collapses in more detail, because trend switching processes occur with higher frequency on small time scales. In addition, a Monte Carlo based simulation of financial markets is analyzed and extended in order to reproduce empirical features and to gain insight into their causes. These causes include both financial market microstructure and the risk aversion of market participants.

  9. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig

    Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.

  10. An Adaptive Multiscale Finite Element Method for Large Scale Simulations

    DTIC Science & Technology

    2015-09-28

    Illinois at Urbana-Champaign Abstract Hypersonic vehicles are subjected to extreme acoustic, thermal and mechanical loading with strong spatial and temporal...07/15/2012 Reporting Period End Date 07/14/2015 Abstract Hypersonic vehicles are subjected to extreme acoustic, thermal and mechanical loading with...gradients and for extended periods of time. Long duration, 3-D simulations of non-linear response of these vehicles , is prohibitively expensive using

  11. A Stabilized Sparse-Matrix U-D Square-Root Implementation of a Large-State Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Boggs, D.; Ghil, M.; Keppenne, C.

    1995-01-01

    The full nonlinear Kalman filter sequential algorithm is, in theory, well-suited to the four-dimensional data assimilation problem in large-scale atmospheric and oceanic problems. However, it was later discovered that this algorithm can be very sensitive to computer roundoff, and that results may cease to be meaningful as time advances. Implementations of a modified Kalman filter are given.

  12. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules

    NASA Astrophysics Data System (ADS)

    Hamelberg, Donald; Mongan, John; McCammon, J. Andrew

    2004-06-01

    Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.

  13. [Development of a New Scale for Gauging Smartphone Dependence].

    PubMed

    Toda, Masahiro; Nishio, Nobuhiro; Takeshita, Tatsuya

    2015-01-01

    We designed a scale to gauge smartphone dependence and assessed its reliability and validity. A prototype self-rating smartphone-dependence scale was tested on 133 medical students who use smartphones more frequently than other devices to access web pages. Each response was scored on a Likert scale (0, 1, 2, 3), with higher scores indicating greater dependence. To select items for the final scale, exploratory factor analysis was conducted. On the basis of factor analysis results, we designed the Wakayama Smartphone-Dependence Scale (WSDS) comprising 21 items with 3 subscales: immersion in Internet communication; using a smartphone for extended periods of time and neglecting social obligations and other tasks; using a smartphone while doing something else and neglect of etiquette. Our analysis confirmed the validity of the different elements of the WSDS: the reliability coefficient (Cronbach's alpha) values of all subscales and total WSDS were from 0.79 to 0.83 and 0.88, respectively. These findings suggest that the WSDS is a useful tool for rating smartphone dependence.

  14. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    DOE PAGES

    Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; ...

    2015-11-05

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment modelmore » with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.« less

  15. SAMPEX/PET model of the low altitude trapped proton environment

    NASA Astrophysics Data System (ADS)

    Heynderickx, D.; Looper, M. D.; Blake, J. B.

    The low-altitude trapped proton population exhibits strong time variations related to geomagnetic secular variation and neutral atmosphere conditions. The flux measurements of the Proton Electron Telescope (PET) onboard the polar satellite SAMPEX constitute an adequate data set to distinguish different time scales and to characterise the respective variations. As a first step towards building a dynamic model of the low altitude proton environment we binned the 1995-1996 PET data into a model map with functional dependencies of the proton fluxes on the F10.7 solar radio flux and on the time of year to represent variations on the time scale of the solar cycle and seasonal variations. Now, a full solar cycle of SAMPEX/PET data is available, so that the preliminary model could be extended. The secular variation of the geomagnetic field is included in the model, as it is constructed using Kaufmann's K=I √{B} instead of McIlwain's L as a map coordinate.

  16. Toward a continuous 405-kyr-calibrated Astronomical Time Scale for the Mesozoic Era

    NASA Astrophysics Data System (ADS)

    Hinnov, Linda; Ogg, James; Huang, Chunju

    2010-05-01

    Mesozoic cyclostratigraphy is being assembled into a continuous Astronomical Time Scale (ATS) tied to the Earth's cyclic orbital parameters. Recognition of a nearly ubiquitous, dominant ~400-kyr cycling in formations throughout the era has been particularly striking. Composite formations spanning contiguous intervals up to 50 myr clearly express these long-eccentricity cycles, and in some cases, this cycling is defined by third- or fourth-order sea-level sequences. This frequency is associated with the 405-kyr orbital eccentricity cycle, which provides a basic metronome and enables the extension of the well-defined Cenozoic ATS to scale the majority of the Mesozoic Era. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, but with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS provide solutions to long-standing geologic problems of tectonics, eustasy, paleoclimate change, and rates of seafloor spreading.

  17. Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the cluster spacecraft.

    PubMed

    Yordanova, E; Vaivads, A; André, M; Buchert, S C; Vörös, Z

    2008-05-23

    We study the plasma turbulence, at scales larger than the ion inertial length scale, downstream of a quasiparallel bow shock using Cluster multispacecraft measurements. We show that turbulence is intermittent and well described by the extended structure function model, which takes into account the spatial inhomogeneity of the cascade rate. For the first time we use multispacecraft observations to characterize the evolution of magnetosheath turbulence, particularly its intermittency, as a function of the distance from the bow shock. The intermittency significantly changes over the distance of the order of 100 ion inertial lengths, being increasingly stronger and anisotropic away from the bow shock.

  18. Critical fluctuations and the rates of interstate switching near the excitation threshold of a quantum parametric oscillator.

    PubMed

    Lin, Z R; Nakamura, Y; Dykman, M I

    2015-08-01

    We study the dynamics of a nonlinear oscillator near the critical point where period-two vibrations are first excited with the increasing amplitude of parametric driving. Above the threshold, quantum fluctuations induce transitions between the period-two states over the quasienergy barrier. We find the effective quantum activation energies for such transitions and their scaling with the difference of the driving amplitude from its critical value. We also find the scaling of the fluctuation correlation time with the quantum noise parameters in the critical region near the threshold. The results are extended to oscillators with nonlinear friction.

  19. Further We Travel the Faster We Go

    PubMed Central

    Varga, Levente; Kovács, András; Tóth, Géza; Papp, István; Néda, Zoltán

    2016-01-01

    The average travelling speed increases in a nontrivial manner with the travel distance. This leads to scaling-like relations on quite extended spatial scales, for all mobility modes taken together and also for a given mobility mode in part. We offer a wide range of experimental results, investigating and quantifying this universal effect and its measurable causes. The increasing travelling speed with the travel distance arises from the combined effects of: choosing the most appropriate travelling mode; the structure of the travel networks; the travel times lost in the main hubs, starting or target cities; and the speed limit of roads and vehicles. PMID:26863605

  20. Fractal water quality fluctuations spanning the periodic table in an intensively farmed watershed.

    PubMed

    Aubert, Alice H; Kirchner, James W; Gascuel-Odoux, Chantal; Faucheux, Mikael; Gruau, Gérard; Mérot, Philippe

    2014-01-21

    Recently developed measurement technologies can monitor surface water quality almost continuously, creating high-frequency multiparameter time series and raising the question of how best to extract insights from such rich data sets. Here we use spectral analysis to characterize the variability of water quality at the AgrHys observatory (Western France) over time scales ranging from 20 min to 12 years. Three years of daily sampling at the intensively farmed Kervidy-Naizin watershed reveal universal 1/f scaling for all 36 solutes, yielding spectral slopes of 1.05 ± 0.11 (mean ± standard deviation). These 36 solute concentrations show varying degrees of annual cycling, suggesting different controls on watershed export processes. Twelve years of daily samples of SO4, NO3, and dissolved organic carbon (DOC) show that 1/f scaling does not continue at frequencies below 1/year in those constituents, whereas a 12-year daily record of Cl shows a general 1/f trend down to the lowest measurable frequencies. Conversely, approximately 12 months of 20 min NO3 and DOC measurements show that at frequencies higher than 1/day, the spectra of these solutes steepen to slopes of roughly 3, and at time scales shorter than 2-3 h, the spectra flatten to slopes near zero, reflecting analytical noise. These results confirm and extend the recent discovery of universal fractal 1/f scaling in water quality at the relatively pristine Plynlimon watershed in Wales, further demonstrating the importance of advective-dispersive transport mixing in catchments. However, the steeper scaling at subdaily time scales suggests additional short-term damping of solute concentrations, potentially due to in-stream or riparian processes.

  1. Future time perspective: opportunities and limitations are differentially associated with subjective well-being and hair cortisol concentration.

    PubMed

    Kozik, Pavel; Hoppmann, Christiane A; Gerstorf, Denis

    2015-01-01

    Future time perspective has been associated with subjective well-being, though depending on the line of research considered either an open-ended future time perspective or a limited future time perspective has been associated with high well-being. Most of this research however has conceptualized future time perspective as a one-dimensional construct, whereas recent evidence has demonstrated that there are likely at least two different underlying dimensions, a focus on opportunities and a focus on limitations. This project first seeks to replicate the two-dimensional structure of the Future Time Perspective Scale, and then examines the associations these dimensions may have with different measures of subjective well-being and a biological index of chronic stress. To test if the two dimensions of the Future Time Perspective Scale, a focus on opportunities and a focus on limitations, differentially associate with two measures of subjective well-being and a biological indicator of chronic stress, namely hair cortisol. Sixty-six community-dwelling participants with a mean age of 72 years (SD = 5.83) completed the Future Time Perspective Scale, Center for Epidemiologic Studies Depression Scale, and Philadelphia Geriatric Center Morale Scale. Participants also provided a 3-cm-long hair strand to index cortisol accumulation over the past 3 months. Following the results of a factor analysis, a mediation model was created for each dimension of the Future Time Perspective Scale, and significance testing was done through a bootstrapping approach to harness maximal statistical power. Factor analysis results replicated the two-dimensional structure of the Future Time Perspective Scale. Both dimensions were then found to have unique associations with well-being. Specifically, a high focus on opportunities was associated with fewer depressive symptoms and higher morale, whereas a low focus on limitations was associated with reduced hair cortisol, though this association was mediated by subjective well-being. RESULTS replicate and extend previous research by pointing to the multi-dimensional nature of the Future Time Perspective Scale. While an open future time perspective was overall beneficial for well-being, the exact association each dimension had with well-being differed depending on whether subjective measures of well-being or biological indices of chronic stress were considered. © 2014 S. Karger AG, Basel.

  2. Shock induced crystallization of amorphous Nickel powders

    NASA Astrophysics Data System (ADS)

    Cherukara, Mathew; Strachan, Alejandro

    2015-06-01

    Recent experimental work has shown the efficacy of amorphous Ni/crystalline Al composites as energetic materials, with flame velocities twice that of a comparable crystalline Ni/crystalline Al system. Of further interest is the recrystallization mechanisms in the pure amorphous Ni powders, both thermally induced and mechanically induced. We present large-scale molecular dynamics simulations of shock-induced recrystallization in loosely packed amorphous Nickel powders. We study the time dependent nucleation and growth processes by holding the shocked samples at the induced pressures and temperatures for extended periods following the passage of the shock (up to 6 ns). We find that the nanostructure of the recrystallized Ni and time scales of recrystallization are dependent on the piston velocity. At low piston velocities, nucleation events are rare, leading to long incubation times and a relatively coarse nanostructure. At higher piston velocities, local variations in temperature due to jetting phenomena and void collapse, give rise to multiple nucleation events on time scales comparable to the passage of the shock wave, leading to the formation of a fine-grained nanostructure. Interestingly, we observe that the nucleation and growth process occurs in two steps, with the first nuclei crystallizing into the BCC structure, before evolving over time into the expected FCC structure. U.S. Defense Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi Peiris).

  3. Surface deformation time series and source modeling for a volcanic complex system based on satellite wide swath and image mode interferometry: The Lazufre system, central Andes

    NASA Astrophysics Data System (ADS)

    Anderssohn, J.; Motagh, M.; Walter, T. R.; Rosenau, M.; Kaufmann, H.; Oncken, O.

    2009-12-01

    The variable spatio-temporal scales of Earth's surface deformation in potentially hazardous volcanic areas pose a challenge for observation and assessment. Here we used Envisat data acquired in Wide Swath Mode (WSM) and Image Mode (IM) from ascending and descending geometry, respectively, to study time-dependent ground uplift at the Lazufre volcanic system in Chile and Argentina. A least-squares adjustment was performed on 65 IM interferograms that covered the time period of 2003-2008. We obtained a clear trend of uplift reaching 15-16 cm in this 5-year interval. Using a joint inversion of ascending and descending interferograms, we evaluated the geometry and time-dependent progression of a horizontally extended pressurized source beneath the Lazufre volcanic system. Our results hence indicate that an extended magma body at a depth between 10 and 15 km would account for most of the ground uplift. The maximum inflation reached up to ~40 cm during 2003-2008. The lateral propagation velocity of the intrusion was estimated to be nearly constant at 5-10 km/yr during the observation time, which has important implications for the physical understanding of magma intrusion processes.

  4. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    NASA Astrophysics Data System (ADS)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-01

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  5. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

    PubMed

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  6. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE PAGES

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; ...

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  7. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  8. Web tools for large-scale 3D biological images and atlases

    PubMed Central

    2012-01-01

    Background Large-scale volumetric biomedical image data of three or more dimensions are a significant challenge for distributed browsing and visualisation. Many images now exceed 10GB which for most users is too large to handle in terms of computer RAM and network bandwidth. This is aggravated when users need to access tens or hundreds of such images from an archive. Here we solve the problem for 2D section views through archive data delivering compressed tiled images enabling users to browse through very-large volume data in the context of a standard web-browser. The system provides an interactive visualisation for grey-level and colour 3D images including multiple image layers and spatial-data overlay. Results The standard Internet Imaging Protocol (IIP) has been extended to enable arbitrary 2D sectioning of 3D data as well a multi-layered images and indexed overlays. The extended protocol is termed IIP3D and we have implemented a matching server to deliver the protocol and a series of Ajax/Javascript client codes that will run in an Internet browser. We have tested the server software on a low-cost linux-based server for image volumes up to 135GB and 64 simultaneous users. The section views are delivered with response times independent of scale and orientation. The exemplar client provided multi-layer image views with user-controlled colour-filtering and overlays. Conclusions Interactive browsing of arbitrary sections through large biomedical-image volumes is made possible by use of an extended internet protocol and efficient server-based image tiling. The tools open the possibility of enabling fast access to large image archives without the requirement of whole image download and client computers with very large memory configurations. The system was demonstrated using a range of medical and biomedical image data extending up to 135GB for a single image volume. PMID:22676296

  9. Remote Health Monitoring for Older Adults and Those with Heart Failure: Adherence and System Usability.

    PubMed

    Evans, Jarrett; Papadopoulos, Amy; Silvers, Christine Tsien; Charness, Neil; Boot, Walter R; Schlachta-Fairchild, Loretta; Crump, Cindy; Martinez, Michele; Ent, Carrie Beth

    2016-06-01

    Remote health monitoring technology has been suggested as part of an early intervention and prevention care model. Older adults with a chronic health condition have been shown to benefit from remote monitoring but often have challenges with complex technology. The current study reports on the usability of and adherence with an integrated, real-time monitoring system over an extended period of time by older adults with and without a chronic health condition. Older adults 55 years of age and over with and without heart failure participated in a study in which a telehealth system was used for 6 months each. The system consisted of a wireless wristwatch-based monitoring device that continuously collected temperature and motion data. Other health information was collected daily using a weight scale, blood pressure cuff, and tablet that participants used for health surveys. Data were automatically analyzed and summarized by the system and presented to study nurses. Forty-one older adults participated. Seventy-one percent of surveys, 75% of blood pressure readings, and 81% of daily weight measurements were taken. Participants wore the watch monitor 77% of the overall 24/7 time requested. The weight scale had the highest usability rating in both groups. The groups did not otherwise differ on device usage. The findings indicate that a health monitoring system designed for older adults can and will be used for an extended period of time and may help older adults with chronic conditions reside longer in their own homes in partnership with the healthcare system.

  10. Large-scale studies of ion acceleration in laser-generated plasma at intensities from 1010 W/cm2 to 1019 W/cm2

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2018-02-01

    A large-scale study of ion acceleration in laser-generated plasma, extended to intensities from 1010 W/cm2 up to 1019 W/cm2, is presented. Aluminium thick and thin foils were irradiated in high vacuum using different infrared lasers and pulse durations from ns up to fs scale. Plasma was monitored mainly using SiC detectors employed in time-of-flight configuration. Protons and aluminium ions, at different energies and yields, were measured as a function of the laser intensity. The discontinuity region between particle acceleration from both the backward plasma (BPA) in thick targets and the forward plasma in thin foils in the target normal sheath acceleration (TNSA) regimes were investigated.

  11. Anomalous diffusion for bed load transport with a physically-based model

    NASA Astrophysics Data System (ADS)

    Fan, N.; Singh, A.; Foufoula-Georgiou, E.; Wu, B.

    2013-12-01

    Diffusion of bed load particles shows both normal and anomalous behavior for different spatial-temporal scales. Understanding and quantifying these different types of diffusion is important not only for the development of theoretical models of particle transport but also for practical purposes, e.g., river management. Here we extend a recently proposed physically-based model of particle transport by Fan et al. [2013] to further develop an Episodic Langevin equation (ELE) for individual particle motion which reproduces the episodic movement (start and stop) of sediment particles. Using the proposed ELE we simulate particle movements for a large number of uniform size particles, incorporating different probability distribution functions (PDFs) of particle waiting time. For exponential PDFs of waiting times, particles reveal ballistic motion in short time scales and turn to normal diffusion at long time scales. The PDF of simulated particle travel distances also shows a change in its shape from exponential to Gamma to Gaussian with a change in timescale implying different diffusion scaling regimes. For power-law PDF (with power - μ) of waiting times, the asymptotic behavior of particles at long time scales reveals both super-diffusion and sub-diffusion, however, only very heavy tailed waiting times (i.e. 1.0 < μ < 1.5) could result in sub-diffusion. We suggest that the contrast between our results and previous studies (for e.g., studies based on fractional advection-diffusion models of thin/heavy tailed particle hops and waiting times) results could be due the assumption in those studies that the hops are achieved instantaneously, but in reality, particles achieve their hops within finite times (as we simulate here) instead of instantaneously, even if the hop times are much shorter than waiting times. In summary, this study stresses on the need to rethink the alternative models to the previous models, such as, fractional advection-diffusion equations, for studying the anomalous diffusion of bed load particles. The implications of these results for modeling sediment transport are discussed.

  12. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures themore » effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.« less

  13. Coal resources, reserves and peak coal production in the United States

    USGS Publications Warehouse

    Milici, Robert C.; Flores, Romeo M.; Stricker, Gary D.

    2013-01-01

    In spite of its large endowment of coal resources, recent studies have indicated that United States coal production is destined to reach a maximum and begin an irreversible decline sometime during the middle of the current century. However, studies and assessments illustrating coal reserve data essential for making accurate forecasts of United States coal production have not been compiled on a national basis. As a result, there is a great deal of uncertainty in the accuracy of the production forecasts. A very large percentage of the coal mined in the United States comes from a few large-scale mines (mega-mines) in the Powder River Basin of Wyoming and Montana. Reported reserves at these mines do not account for future potential reserves or for future development of technology that may make coal classified currently as resources into reserves in the future. In order to maintain United States coal production at or near current levels for an extended period of time, existing mines will eventually have to increase their recoverable reserves and/or new large-scale mines will have to be opened elsewhere. Accordingly, in order to facilitate energy planning for the United States, this paper suggests that probabilistic assessments of the remaining coal reserves in the country would improve long range forecasts of coal production. As it is in United States coal assessment projects currently being conducted, a major priority of probabilistic assessments would be to identify the numbers and sizes of remaining large blocks of coal capable of supporting large-scale mining operations for extended periods of time and to conduct economic evaluations of those resources.

  14. Maintaining Life Satisfaction in Adolescence: Affective Mediators of the Influence of Perceived Emotional Intelligence on Overall Life Satisfaction Judgments in a Two-Year Longitudinal Study.

    PubMed

    Sánchez-Álvarez, Nicolás; Extremera, Natalio; Fernández-Berrocal, Pablo

    2015-01-01

    Much attention has been paid to the psychological processes underlying the improvement in mood states and human well-being, particularly during adolescence. Theoretical and empirical research suggests that emotional skills may play a role in enhancing perceived well-being; however, the mechanisms involved in during adolescence are unclear. The purpose of this study was to extend understanding by investigating the potential mediators of the relationship between emotional intelligence (EI) and life satisfaction in a 2-years study. Participants were 269 high school students (145 girls and 124 boys) who completed the self-report perceived emotional intelligence (PEI) Scale, the Satisfaction with Life Scale, and the Positive Affect and Negative Affect Scale three times at 1-year intervals. The three-step longitudinal design corroborated earlier research indicating that positive and negative affect mediate the relationships between EI and life satisfaction. Students with high PEI tended to have more positive experiences and fewer negative experiences, which contributed to their greater life satisfaction. No sex differences were found in the multi-group analyses, suggesting that the causal relationships are similar in both sexes. These findings extend our understanding of the complex network of relationships involving PEI and life satisfaction in adolescence. Implications and limitations of the findings are discussed.

  15. Thermal history of the universe after inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Scott, E-mail: gswatson@syr.edu

    When did the universe thermalize? In this talk I review the status of this issue and its importance in establishing the expected properties of dark matter, the growth of large-scale structure, and the viability of inflation models when confronted with CMB observations. I also present a novel approach to tackling the theoretical challenges surrounding inflationary (p)reheating, which seeks to extend past work on the Effective Field Theory of Inflation to the time of reheating.

  16. Thermal history of the universe after inflation

    NASA Astrophysics Data System (ADS)

    Watson, Scott

    2016-06-01

    When did the universe thermalize? In this talk I review the status of this issue and its importance in establishing the expected properties of dark matter, the growth of large-scale structure, and the viability of inflation models when confronted with CMB observations. I also present a novel approach to tackling the theoretical challenges surrounding inflationary (p)reheating, which seeks to extend past work on the Effective Field Theory of Inflation to the time of reheating.

  17. Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale

    Treesearch

    William S. Currie; Mark E. Harmon; Ingrid C. Burke; Stephen C. Hart; William J. Parton; Whendee L. Silver

    2009-01-01

    We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term lntersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these...

  18. Waveform inversion of volcano-seismic signals for an extended source

    USGS Publications Warehouse

    Nakano, M.; Kumagai, H.; Chouet, B.; Dawson, P.

    2007-01-01

    We propose a method to investigate the dimensions and oscillation characteristics of the source of volcano-seismic signals based on waveform inversion for an extended source. An extended source is realized by a set of point sources distributed on a grid surrounding the centroid of the source in accordance with the source geometry and orientation. The source-time functions for all point sources are estimated simultaneously by waveform inversion carried out in the frequency domain. We apply a smoothing constraint to suppress short-scale noisy fluctuations of source-time functions between adjacent sources. The strength of the smoothing constraint we select is that which minimizes the Akaike Bayesian Information Criterion (ABIC). We perform a series of numerical tests to investigate the capability of our method to recover the dimensions of the source and reconstruct its oscillation characteristics. First, we use synthesized waveforms radiated by a kinematic source model that mimics the radiation from an oscillating crack. Our results demonstrate almost complete recovery of the input source dimensions and source-time function of each point source, but also point to a weaker resolution of the higher modes of crack oscillation. Second, we use synthetic waveforms generated by the acoustic resonance of a fluid-filled crack, and consider two sets of waveforms dominated by the modes with wavelengths 2L/3 and 2W/3, or L and 2L/5, where W and L are the crack width and length, respectively. Results from these tests indicate that the oscillating signature of the 2L/3 and 2W/3 modes are successfully reconstructed. The oscillating signature of the L mode is also well recovered, in contrast to results obtained for a point source for which the moment tensor description is inadequate. However, the oscillating signature of the 2L/5 mode is poorly recovered owing to weaker resolution of short-scale crack wall motions. The triggering excitations of the oscillating cracks are successfully reconstructed. Copyright 2007 by the American Geophysical Union.

  19. A Comparison of Change in the 0–10 Numeric Rating Scale to a Pain Relief Scale and Global Medication Performance Scale in a Short-term Clinical Trial of Breakthrough Pain Intensity

    PubMed Central

    Farrar, John T.; Polomano, Rosemary C.; Berlin, Jesse A.; Strom, Brian L.

    2010-01-01

    Background Pain intensity is commonly reported using a 0–10 numeric rating scale in breakthrough pain clinical trials. Analysis of the change on the Pain Intensity Numerical Rating Scale as a proportion as most consistently correlated with clinically important differences reported on the Patient Global Impression of Change. The analysis of data using a different global outcome measures and the pain relief scale will extend our understanding of these measures. Use of the pain relief scale is also explored in this study Methods Data came from the open titration phase of a multiple crossover, randomized, double-blind clinical trial comparing oral transmucosal fentanyl citrate to immediate-release oral morphine sulfate for treatment of cancer-related breakthrough pain. Raw and percent changes in the pain intensity scores on 1,307 from 134 oral transmucosal fentanyl citrate-naive patients were compared to the clinically relevant secondary outcomes of the pain relief verbal response scale and the global medication performance. The changes in raw and percent change were assessed over time and compared to the ordinal pain relief verbal response scale and global medication performance scales. Results The p-value of the interaction between the raw pain intensity difference was significant but not for the percent pain intensity difference score over 4 15 minute time periods (p = 0.034 and p = 0.26 respectively), in comparison with the ordinal pain relief verbal response scale (p = 0.0048 and p = 0.36 respectively), and global medication performance categories (p = 0.048 and p = 0.45 respectively). Conclusion The change in pain intensity in breakthrough pain was more consistent over time and when compared to both the pain relief verbal response scale and global medication performance scale when the percent change is used rather than raw pain intensity difference. PMID:20463579

  20. A comparison of change in the 0-10 numeric rating scale to a pain relief scale and global medication performance scale in a short-term clinical trial of breakthrough pain intensity.

    PubMed

    Farrar, John T; Polomano, Rosemary C; Berlin, Jesse A; Strom, Brian L

    2010-06-01

    Pain intensity is commonly reported using a 0-10 Numeric Rating Scale in pain clinical trials. Analysis of the change on the Pain Intensity Numerical Rating Scale as a proportion has most consistently correlated with clinically important differences reported on the patient's global impression of change. The correlation of data from patients with breakthrough pain with a Pain Relief Scale and a different global outcome measures will extend our understanding of these measures. Data were obtained from the open titration phase of a multiple crossover, randomized, double-blind clinical trial comparing oral transmucosal fentanyl citrate with immediate-release oral morphine sulfate for the treatment of cancer-related breakthrough pain. Raw and percentage changes in the pain intensity scores from 1,307 episodes of pain in 134 oral transmucosal fentanyl citrate-naïve patients were correlated with the clinically relevant secondary outcomes of Pain Relief Verbal Response Scale and the global medication performance scale. The changes in raw and percentage change were assessed over time and compared with the ordinal Pain Relief Verbal Response Scale and Global Medication Performance Scale. The P value of the interaction between the raw pain intensity difference was significant (P = 0.034) for four 15-min time periods but not for the percentage pain intensity difference score (P = 0.26). We found similar results in comparison with the ordinal Pain Relief Verbal Response Scale (P = 0.0048 and P = 0.36 respectively) and global medication performance categories (P = 0.048 and P = 0.45, respectively). The change in pain intensity in breakthrough pain was more consistent over time and when compared with both the Pain Relief Verbal Response Scale and the Global Medication Performance Scale when the percentage change is used rather than raw pain intensity difference.

  1. RaInCube: a proposed constellation of precipitation profiling Radars In Cubesat

    NASA Astrophysics Data System (ADS)

    Peral, E.; Tanelli, S.; Haddad, Z. S.; Stephens, G. L.; Im, E.

    2014-12-01

    Precipitation radars in Low-Earth-Orbit provide vertically resolved profiles of rain and snow on a global scale. With the recent advances in miniaturized radar and CubeSat/SmallSat technologies, it would now be feasible to launch multiple copies of the same radar instrument in desirable formations to allow measurements of short time scale evolution of atmospheric processes. One such concept is the novel radar architecture compatible with the 6U CubeSat class that is being developed at JPL by exploiting simplification and miniaturization of the radar subsystems. The RaInCube architecture would significantly reduce the number of components, power consumption and mass with respect to existing spaceborne radars. The baseline RaInCube instrument configuration would be a fixed nadir-pointing profiler at Ka-band with a minimum detectable reflectivity better than +10 dBZ at 250m range resolution and 5 km horizontal resolution. The low cost nature of the RaInCube platform would enable deployment of a constellation of identical copies of the same instrument in various relative positions in LEO to address specific observational gaps left open by the current missions that require high-resolution vertical profiling capability. A constellation of only four RaInCubes would populate the precipitation statistics in a distributed fashion across the globe and across the times of day, and therefore, would enable substantially better sampling of the diurnal cycle statistics. One could extend this scheme by adding more RaInCubes in each of the orbital planes, and phase them once in orbit so that they would be separated by an arbitrary amount of time among them. Wide separations (say 20-30 min) would further extend the sampling of the diurnal cycle to sub-hourly scales. Narrower time separations between RaInCubes would allow studying the evolution of convective systems at the convective time scale in each region of interest and would reveal the dominant modes of evolution of each corresponding climatological regime. A constellation of RaInCubes would also be a natural complement to other resources aiming at monitoring the evolution of weather systems, for example the Geostationary IR/VIS imagers, the NEXRAD network, and the GPM constellation.

  2. Evaluation of Large-scale Data to Detect Irregularity in Payment for Medical Services. An Extended Use of Benford's Law.

    PubMed

    Park, Junghyun A; Kim, Minki; Yoon, Seokjoon

    2016-05-17

    Sophisticated anti-fraud systems for the healthcare sector have been built based on several statistical methods. Although existing methods have been developed to detect fraud in the healthcare sector, these algorithms consume considerable time and cost, and lack a theoretical basis to handle large-scale data. Based on mathematical theory, this study proposes a new approach to using Benford's Law in that we closely examined the individual-level data to identify specific fees for in-depth analysis. We extended the mathematical theory to demonstrate the manner in which large-scale data conform to Benford's Law. Then, we empirically tested its applicability using actual large-scale healthcare data from Korea's Health Insurance Review and Assessment (HIRA) National Patient Sample (NPS). For Benford's Law, we considered the mean absolute deviation (MAD) formula to test the large-scale data. We conducted our study on 32 diseases, comprising 25 representative diseases and 7 DRG-regulated diseases. We performed an empirical test on 25 diseases, showing the applicability of Benford's Law to large-scale data in the healthcare industry. For the seven DRG-regulated diseases, we examined the individual-level data to identify specific fees to carry out an in-depth analysis. Among the eight categories of medical costs, we considered the strength of certain irregularities based on the details of each DRG-regulated disease. Using the degree of abnormality, we propose priority action to be taken by government health departments and private insurance institutions to bring unnecessary medical expenses under control. However, when we detect deviations from Benford's Law, relatively high contamination ratios are required at conventional significance levels.

  3. Soluto-inertial phenomena: Designing long-range, long-lasting, surface-specific interactions in suspensions

    PubMed Central

    Banerjee, Anirudha; Williams, Ian; Azevedo, Rodrigo Nery; Squires, Todd M.

    2016-01-01

    Equilibrium interactions between particles in aqueous suspensions are limited to distances less than 1 μm. Here, we describe a versatile concept to design and engineer nonequilibrium interactions whose magnitude and direction depends on the surface chemistry of the suspended particles, and whose range may extend over hundreds of microns and last thousands of seconds. The mechanism described here relies on diffusiophoresis, in which suspended particles migrate in response to gradients in solution. Three ingredients are involved: a soluto-inertial “beacon” designed to emit a steady flux of solute over long time scales; suspended particles that migrate in response to the solute flux; and the solute itself, which mediates the interaction. We demonstrate soluto-inertial interactions that extend for nearly half a millimeter and last for tens of minutes, and which are attractive or repulsive, depending on the surface chemistry of the suspended particles. Experiments agree quantitatively with scaling arguments and numerical computations, confirming the basic phenomenon, revealing design strategies, and suggesting a broad set of new possibilities for the manipulation and control of suspended particles. PMID:27410044

  4. From symptoms to social functioning: differential effects of antidepressant therapy.

    PubMed

    Kasper, S

    1999-05-01

    Significant impairments in social functioning frequently occur simultaneously with depressive symptoms. The implications of such impairments extend beyond the depressed individual to their family, friends and society at large. Classical rating scales such as the Hamilton rating scale for depression primarily assess the core symptoms of depression. A range of rating scales are available, both self-reporting and administered by clinician; however, many have been criticised for their unspecified conceptual background and for being complex and time-consuming. While antidepressants in general appear to improve social functioning, no clear advantage for any single class of agent has been reported. Recently, a new self-report rating scale, the Social Adaptation Self-evaluation Scale, has been developed and used to compare the novel selective noradrenaline reuptake inhibitor, reboxetine, with the selective serotonin re-uptake inhibitor, fluoxetine. The noradrenergic agent, reboxetine, was shown to be significantly more effective in improving social functioning than the serotonergic agent, fluoxetine. These findings are consistent with previous observations that noradrenaline may preferentially improve vigilance, motivation and self-perception.

  5. A cosmic superfluid phase

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami

    1991-01-01

    The universe may have undergone a superfluid-like phase during its evolution, resulting from the injection of nontopological charge into the spontaneously broken vacuum. In the presence of vortices this charge is identified with angular momentum. This leads to turbulent domains on the scale of the correlation length. By restoring the symmetry at low temperatures, the vortices dissociate and push the charges to the boundaries of these domains. The model can be scaled (phenomenologically) to very low energies, it can be incorporated in a late time phase transition and form large scale structure in the boundary layers of the correlation volumes. The novel feature of the model lies in the fact that the dark matter is endowed with coherent motion. The possibilities of identifying this flow around superfluid vortices with the observed large scale bulk motion is discussed. If this identification is possible, then the definite prediction can be made that a more extended map of peculiar velocities would have to reveal large scale circulations in the flow pattern.

  6. Comparing Time-Dependent Geomagnetic and Atmospheric Effects on Cosmogenic Nuclide Production Rate Scaling

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.

    2014-12-01

    A recently published cosmogenic nuclide production rate scaling model based on analytical fits to Monte Carlo simulations of atmospheric cosmic ray flux spectra (both of which agree well with measured spectra) (Lifton et al., 2014, Earth Planet. Sci. Lett. 386, 149-160: termed the LSD model) provides two main advantages over previous scaling models: identification and quantification of potential sources of bias in the earlier models, and the ability to generate nuclide-specific scaling factors easily for a wide range of input parameters. The new model also provides a flexible framework for exploring the implications of advances in model inputs. In this work, the scaling implications of two recent time-dependent spherical harmonic geomagnetic models spanning the Holocene will be explored. Korte and Constable (2011, Phys. Earth Planet. Int. 188, 247-259) and Korte et al. (2011, Earth Planet. Sci. Lett. 312, 497-505) recently updated earlier spherical harmonic paleomagnetic models used by Lifton et al. (2014) with paleomagnetic measurements from sediment cores in addition to archeomagnetic and volcanic data. These updated models offer improved accuracy over the previous versions, in part to due to increased temporal and spatial data coverage. With the new models as input, trajectory-traced estimates of effective vertical cutoff rigidity (RC- the standard method for ordering cosmic ray data) yield significantly different time-integrated scaling predictions when compared to the earlier models. These results will be compared to scaling predictions using another recent time-dependent spherical harmonic model of the Holocene geomagnetic field by Pavón-Carrasco et al. (2014, Earth Planet. Sci. Lett. 388, 98-109), based solely on archeomagnetic and volcanic paleomagnetic data, but extending to 14 ka. In addition, the potential effects of time-dependent atmospheric models on LSD scaling predictions will be presented. Given the typical dominance of altitudinal over latitudinal scaling effects on cosmogenic nuclide production, incorporating transient global simulations of atmospheric structure (e.g., Liu et al., 2009, Science 325, 310-314) into scaling frameworks may contribute to improved understanding of long-term production rate variations.

  7. Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification

    NASA Astrophysics Data System (ADS)

    Phinyomark, A.; Hu, H.; Phukpattaranont, P.; Limsakul, C.

    2012-01-01

    The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier.

  8. Nebula: reconstruction and visualization of scattering data in reciprocal space.

    PubMed

    Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H

    2015-04-01

    Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute time-scales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula , is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware.

  9. Nebula: reconstruction and visualization of scattering data in reciprocal space

    PubMed Central

    Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H.

    2015-01-01

    Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute time­scales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula, is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware. PMID:25844083

  10. Parallel Multi-Step/Multi-Rate Integration of Two-Time Scale Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Chang, Johnny T.; Ploen, Scott R.; Sohl, Garett. A,; Martin, Bryan J.

    2004-01-01

    Increasing demands on the fidelity of simulations for real-time and high-fidelity simulations are stressing the capacity of modern processors. New integration techniques are required that provide maximum efficiency for systems that are parallelizable. However many current techniques make assumptions that are at odds with non-cascadable systems. A new serial multi-step/multi-rate integration algorithm for dual-timescale continuous state systems is presented which applies to these systems, and is extended to a parallel multi-step/multi-rate algorithm. The superior performance of both algorithms is demonstrated through a representative example.

  11. Singlet particles as cold dark matter in a noncommutative space-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettefaghi, M. M.

    2009-03-15

    We extend the noncommutative (NC) standard model to incorporate singlet particles as cold dark matter. In the NC space-time, the singlet particles can be coupled to the U(1) gauge field in the adjoint representation. We study the relic density of the singlet particles due to the NC induced interaction. Demanding either the singlet fermion or the singlet scalar to serve as cold dark matter and the NC induced interactions to be relevant to the dark matter production, we obtain the corresponding relations between the NC scale and the dark matter masses, which are consistent with some existing bounds.

  12. Dynamical Structure of Madden-Julian Oscillation over Malay Peninsula

    NASA Astrophysics Data System (ADS)

    Djamil, Y. S.; Koh, T. Y.; Chandimala, J.; Teo, C. K.

    2014-12-01

    Madden-Julian Oscillation (MJO) is the dominant weather event in the intraseasonal time scale over Malay Peninsula region. The MJO signals are represented by the first two modes of radiosonde records extracted using Extended Empirical Orthogonal Function (EEOF) analyses which we label as Local Multivariate MJO (LMM). LMM is able to capture the spatio-temporal profile of MJO along the global tropics in all seasons. With the help of LMM, we clarify the dynamical and thermodynamical structure of the MJO over Malay Peninsula, including the unique "boomerang-shaped" feature in the time-height temperature profile identified in previous literature.

  13. Real-time simulation of an F110/STOVL turbofan engine

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Ouzts, Peter J.

    1989-01-01

    A traditional F110-type turbofan engine model was extended to include a ventral nozzle and two thrust-augmenting ejectors for Short Take-Off Vertical Landing (STOVL) aircraft applications. Development of the real-time F110/STOVL simulation required special attention to the modeling approach to component performance maps, the low pressure turbine exit mixing region, and the tailpipe dynamic approximation. Simulation validation derives by comparing output from the ADSIM simulation with the output for a validated F110/STOVL General Electric Aircraft Engines FORTRAN deck. General Electric substantiated basic engine component characteristics through factory testing and full scale ejector data.

  14. Avalanches and plasticity for colloids in a time dependent optical trap

    DOE PAGES

    Olson Reichhardt, Cynthia Jane; McDermott, Danielle Marie; Reichhardt, Charles

    2015-08-25

    Here, with the use of optical traps it is possible to confine assemblies of colloidal particles in two-dimensional and quasi-one-dimensional arrays. Here we examine how colloidal particles rearrange in a quasi-one-dimensional trap with a time dependent confining potential. The particle motion occurs both through slow elastic uniaxial distortions as well as through abrupt large-scale two-dimensional avalanches associated with plastic rearrangements. During the avalanches the particle velocity distributions extend over a broad range and can be fit to a power law consistent with other studies of plastic events mediated by dislocations.

  15. Long-range persistence in the global mean surface temperature and the global warming "time bomb"

    NASA Astrophysics Data System (ADS)

    Rypdal, M.; Rypdal, K.

    2012-04-01

    Detrended Fluctuation Analysis (DFA) and Maximum Likelihood Estimations (MLE) based on instrumental data over the last 160 years indicate that there is Long-Range Persistence (LRP) in Global Mean Surface Temperature (GMST) on time scales of months to decades. The persistence is much higher in sea surface temperature than in land temperatures. Power spectral analysis of multi-model, multi-ensemble runs of global climate models indicate further that this persistence may extend to centennial and maybe even millennial time-scales. We also support these conclusions by wavelet variogram analysis, DFA, and MLE of Northern hemisphere mean surface temperature reconstructions over the last two millennia. These analyses indicate that the GMST is a strongly persistent noise with Hurst exponent H>0.9 on time scales from decades up to at least 500 years. We show that such LRP can be very important for long-term climate prediction and for the establishment of a "time bomb" in the climate system due to a growing energy imbalance caused by the slow relaxation to radiative equilibrium under rising anthropogenic forcing. We do this by the construction of a multi-parameter dynamic-stochastic model for the GMST response to deterministic and stochastic forcing, where LRP is represented by a power-law response function. Reconstructed data for total forcing and GMST over the last millennium are used with this model to estimate trend coefficients and Hurst exponent for the GMST on multi-century time scale by means of MLE. Ensembles of solutions generated from the stochastic model also allow us to estimate confidence intervals for these estimates.

  16. On the Evolution of the Standard Genetic Code: Vestiges of Critical Scale Invariance from the RNA World in Current Prokaryote Genomes

    PubMed Central

    José, Marco V.; Govezensky, Tzipe; García, José A.; Bobadilla, Juan R.

    2009-01-01

    Herein two genetic codes from which the primeval RNA code could have originated the standard genetic code (SGC) are derived. One of them, called extended RNA code type I, consists of all codons of the type RNY (purine-any base-pyrimidine) plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. In order to test if putative nucleotide sequences in the RNA World and in both extended RNA codes, share the same scaling and statistical properties to those encountered in current prokaryotes, we used the genomes of four Eubacteria and three Archaeas. For each prokaryote, we obtained their respective genomes obeying the RNA code or the extended RNA codes types I and II. In each case, we estimated the scaling properties of triplet sequences via a renormalization group approach, and we calculated the frequency distributions of distances for each codon. Remarkably, the scaling properties of the distance series of some codons from the RNA code and most codons from both extended RNA codes turned out to be identical or very close to the scaling properties of codons of the SGC. To test for the robustness of these results, we show, via computer simulation experiments, that random mutations of current genomes, at the rates of 10−10 per site per year during three billions of years, were not enough for destroying the observed patterns. Therefore, we conclude that most current prokaryotes may still contain relics of the primeval RNA World and that both extended RNA codes may well represent two plausible evolutionary paths between the RNA code and the current SGC. PMID:19183813

  17. Plausible double inflation

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun

    1991-01-01

    It is likely that extended inflation is followed by an epoch of slowroll inflation. Such a sequence of events may lead to a very interesting perturbation spectrum with significant power on the scale of the transition between the extended and slowroll phase, superimposed upon a power-law spectrum with deviations from the Harrison-Zeldovich slope. Normalization of the spectra above and below the transition scale is expected to differ.

  18. Extended opening hours and patient experience of general practice in England: multilevel regression analysis of a national patient survey

    PubMed Central

    Cowling, Thomas E; Harris, Matthew; Majeed, Azeem

    2017-01-01

    Background The UK government plans to extend the opening hours of general practices in England. The ‘extended hours access scheme’ pays practices for providing appointments outside core times (08:00 to 18.30, Monday to Friday) for at least 30 min per 1000 registered patients each week. Objective To determine the association between extended hours access scheme participation and patient experience. Methods Retrospective analysis of a national cross-sectional survey completed by questionnaire (General Practice Patient Survey 2013–2014); 903 357 survey respondents aged ≥18 years old and registered to 8005 general practices formed the study population. Outcome measures were satisfaction with opening hours, experience of making an appointment and overall experience (on five-level interval scales from 0 to 100). Mean differences between scheme participation groups were estimated using multilevel random-effects regression, propensity score matching and instrumental variable analysis. Results Most patients were very (37.2%) or fairly satisfied (42.7%) with the opening hours of their general practices; results were similar for experience of making an appointment and overall experience. Most general practices participated in the extended hours access scheme (73.9%). Mean differences in outcome measures between scheme participants and non-participants were positive but small across estimation methods (mean differences ≤1.79). For example, scheme participation was associated with a 1.25 (95% CI 0.96 to 1.55) increase in satisfaction with opening hours using multilevel regression; this association was slightly greater when patients could not take time off work to see a general practitioner (2.08, 95% CI 1.53 to 2.63). Conclusions Participation in the extended hours access scheme has a limited association with three patient experience measures. This questions expected impacts of current plans to extend opening hours on patient experience. PMID:27343274

  19. Extended opening hours and patient experience of general practice in England: multilevel regression analysis of a national patient survey.

    PubMed

    Cowling, Thomas E; Harris, Matthew; Majeed, Azeem

    2017-05-01

    The UK government plans to extend the opening hours of general practices in England. The 'extended hours access scheme' pays practices for providing appointments outside core times (08:00 to 18.30, Monday to Friday) for at least 30 min per 1000 registered patients each week. To determine the association between extended hours access scheme participation and patient experience. Retrospective analysis of a national cross-sectional survey completed by questionnaire (General Practice Patient Survey 2013-2014); 903 357 survey respondents aged ≥18 years old and registered to 8005 general practices formed the study population. Outcome measures were satisfaction with opening hours, experience of making an appointment and overall experience (on five-level interval scales from 0 to 100). Mean differences between scheme participation groups were estimated using multilevel random-effects regression, propensity score matching and instrumental variable analysis. Most patients were very (37.2%) or fairly satisfied (42.7%) with the opening hours of their general practices; results were similar for experience of making an appointment and overall experience. Most general practices participated in the extended hours access scheme (73.9%). Mean differences in outcome measures between scheme participants and non-participants were positive but small across estimation methods (mean differences ≤1.79). For example, scheme participation was associated with a 1.25 (95% CI 0.96 to 1.55) increase in satisfaction with opening hours using multilevel regression; this association was slightly greater when patients could not take time off work to see a general practitioner (2.08, 95% CI 1.53 to 2.63). Participation in the extended hours access scheme has a limited association with three patient experience measures. This questions expected impacts of current plans to extend opening hours on patient experience. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Effectiveness of aerobic gymnastic exercise on stress, fatigue, and sleep quality during postpartum: A pilot randomized controlled trial.

    PubMed

    Yang, Chiu-Ling; Chen, Chung-Hey

    2018-01-01

    Gymnastics is a preferable safe exercise for postnatal women performing regularly. The aim of this pilot randomized controlled trial was to determine whether the aerobic gymnastic exercise improves stress, fatigue, sleep quality and depression in postpartum women. Single-blinded, randomized controlled trial held from December 2014 until September 2015. Postnatal clinic of a medical center in southern Taiwan. 140 eligible postnatal women were systematically assigned, with a random start to experimental (n=70) or a control (n=70) group. Engage in aerobic gymnastic exercise at least three times (15min per section) a week for three months using compact disc in the home. Perceived Stress Scale, Postpartum Fatigue Scale, Postpartum Sleep Quality Scale, and Edinburgh Postnatal Depression Scale. In a two-way ANOVA with repeated measures, the aerobic gymnastic exercise group showed significant decrease in fatigue after practicing exercise 4 weeks and the positive effects extended to the 12-week posttests. Paired t-tests revealed that aerobic gymnastic exercise participants had improved significantly in perceived stress and fatigue after 4 weeks gymnastic exercise; these positive effects extended to the 12-week posttests. In addition, the changes in physical symptoms-related sleep inefficiency after 12 weeks gymnastic exercise were significantly decreased in the experimental group compared with the control group. The findings can be used to encourage postnatal women to perform moderate-intensity gymnastic exercise in their daily life to reduce their stress, fatigue and improve sleep quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Representations of time coordinates in FITS. Time and relative dimension in space

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Bunclark, Peter S.; Calabretta, Mark R.; Allen, Steven L.; Manchester, Richard N.; Thompson, William T.

    2015-02-01

    Context. In a series of three previous papers, formulation and specifics of the representation of world coordinate transformations in FITS data have been presented. This fourth paper deals with encoding time. Aims: Time on all scales and precisions known in astronomical datasets is to be described in an unambiguous, complete, and self-consistent manner. Methods: Employing the well-established World Coordinate System (WCS) framework, and maintaining compatibility with the FITS conventions that are currently in use to specify time, the standard is extended to describe rigorously the time coordinate. Results: World coordinate functions are defined for temporal axes sampled linearly and as specified by a lookup table. The resulting standard is consistent with the existing FITS WCS standards and specifies a metadata set that achieves the aims enunciated above.

  2. Event Horizon Telescope observations as probes for quantum structure of astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.; Psaltis, Dimitrios

    2018-04-01

    The need for a consistent quantum evolution for black holes has led to proposals that their semiclassical description is modified not just near the singularity, but at horizon or larger scales. If such modifications extend beyond the horizon, they influence regions accessible to distant observation. Natural candidates for these modifications behave like metric fluctuations, with characteristic length scales and timescales set by the horizon radius. We investigate the possibility of using the Event Horizon Telescope to observe these effects, if they have a strength sufficient to make quantum evolution consistent with unitarity, without introducing new scales. We find that such quantum fluctuations can introduce a strong time dependence for the shape and size of the shadow that a black hole casts on its surrounding emission. For the black hole in the center of the Milky Way, detecting the rapid time variability of its shadow will require nonimaging timing techniques. However, for the much larger black hole in the center of the M87 galaxy, a variable black-hole shadow, if present with these parameters, would be readily observable in the individual snapshots that will be obtained by the Event Horizon Telescope.

  3. Dialogue concerning the survival of the one great world system: a study of the post-war scientific and theological perception of time scales as a relevant moral category in analyzing the dilemmas of the nuclear age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, D.J.F.

    1985-01-01

    This thesis seeks to extend the search for the moral implications inherent in the development, possession, and the threatened use of physical/astrophysical processes and in current understandings of the evolution of the physical universe. The nature of normal/theological discussion will not be a primary concern although clearly some residual position that such discussion is meaningful is presupposed. Neither is the nature of science or the scientific method at issue. It is assumed that both theology and science have long since negotiated the confidence crises of adolescence, and have mustered the requisite self-esteem regarding their respective disciplines. The aim of thismore » work is to present the concept of time scales as a relevant moral category. It investigates the use of this concept and its relationship to the other categories developed in the relevant scientific literature. The question is raised as to the validity of and the future of the concept of time scales as a common moral ground.« less

  4. An integrative neuroscience model of "significance" processing.

    PubMed

    Williams, Leanne M

    2006-03-01

    The Gordon [37-40] framework of Integrative Neuroscience is used to develop a continuum model for understanding the central role of motivationally-determined "significance" in organizing human information processing. Significance is defined as the property which gives a stimulus relevance to our core motivation to minimize danger and maximize pleasure. Within this framework, the areas of cognition and emotion, theories of motivational arousal and orienting, and the current understanding of neural systems are brought together. The basis of integration is a temporal continuum in which significance processing extends from the most rapid millisecond time scale of automatic, nonconscious mechanisms to the time scale of seconds, in which memory is shaped, to the controlled and conscious mechanisms unfolding over minutes. Over this continuum, significant stimuli are associated with a spectrum of defensive (or consumptive) behaviors through to volitional regulatory behaviors for danger (versus pleasure) and associated brainstem, limbic, medial forebrain bundle and prefrontal circuits, all of which reflect a balance of excitatory (predominant at rapid time scales) to inhibitory mechanisms. Across the lifespan, the negative and positive outcomes of significance processing, coupled with constitutional and genetic factors, will contribute to plasticity, shaping individual adaptations and maladaptions in the balance of excitatory-inhibitory mechanisms.

  5. Interfacial mixing in high energy-density matter with a multiphysics kinetic model

    NASA Astrophysics Data System (ADS)

    Haack, Jeff; Hauck, Cory; Murillo, Michael

    2017-10-01

    We have extended a recently-developed multispecies, multitemperature BGK model to include multiphysics capability that allows modeling of a wider range of plasma conditions. In particular, we have extended the model to describe one spatial dimension, and included a multispecies atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the new model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, similar to a recent molecular dynamics study, but for larger length and time scales and for much higher temperatures. From our numerical results we are able to explore a variety of phenomena, including hydrogen jetting, kinetic effects (non-Maxwellian and anisotropic distributions), plasma physics (size, persistence and role of electric fields) and transport (relative sizes of Fickean diffision, electrodiffusion and barodiffusion). As compared with the recent molecular dynamics work the kinetic model greatly extends the accessible physical domains we are able to model.

  6. Decompressive craniectomy in diffuse traumatic brain injury.

    PubMed

    Cooper, D James; Rosenfeld, Jeffrey V; Murray, Lynnette; Arabi, Yaseen M; Davies, Andrew R; D'Urso, Paul; Kossmann, Thomas; Ponsford, Jennie; Seppelt, Ian; Reilly, Peter; Wolfe, Rory

    2011-04-21

    It is unclear whether decompressive craniectomy improves the functional outcome in patients with severe traumatic brain injury and refractory raised intracranial pressure. From December 2002 through April 2010, we randomly assigned 155 adults with severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first-tier therapies to undergo either bifrontotemporoparietal decompressive craniectomy or standard care. The original primary outcome was an unfavorable outcome (a composite of death, vegetative state, or severe disability), as evaluated on the Extended Glasgow Outcome Scale 6 months after the injury. The final primary outcome was the score on the Extended Glasgow Outcome Scale at 6 months. Patients in the craniectomy group, as compared with those in the standard-care group, had less time with intracranial pressures above the treatment threshold (P<0.001), fewer interventions for increased intracranial pressure (P<0.02 for all comparisons), and fewer days in the intensive care unit (ICU) (P<0.001). However, patients undergoing craniectomy had worse scores on the Extended Glasgow Outcome Scale than those receiving standard care (odds ratio for a worse score in the craniectomy group, 1.84; 95% confidence interval [CI], 1.05 to 3.24; P=0.03) and a greater risk of an unfavorable outcome (odds ratio, 2.21; 95% CI, 1.14 to 4.26; P=0.02). Rates of death at 6 months were similar in the craniectomy group (19%) and the standard-care group (18%). In adults with severe diffuse traumatic brain injury and refractory intracranial hypertension, early bifrontotemporoparietal decompressive craniectomy decreased intracranial pressure and the length of stay in the ICU but was associated with more unfavorable outcomes. (Funded by the National Health and Medical Research Council of Australia and others; DECRA Australian Clinical Trials Registry number, ACTRN012605000009617.).

  7. Scaled multisensor inspection of extended surfaces for industrial quality control

    NASA Astrophysics Data System (ADS)

    Kayser, Daniel; Bothe, Thorsten; Osten, Wolfgang

    2002-06-01

    Reliable real-time surface inspection of extended surfaces with high resolution is needed in several industrial applications. With respect to an efficient application to extended technical components such as aircraft or automotive parts, the inspection system has to perform a robust measurement with a ratio of less then 10-6 between depth resolution and lateral extension. This ratio is at least one order beyond the solutions that are offered by existing technologies. The concept of scaled topometry consists of arranging different optical measurement techniques with overlapping ranges of resolution systematically in order to receive characteristic surface information with the required accuracy. In such a surface inspection system, an active algorithm combines measurements on several scales of resolution and distinguishes between local fault indicating structures with different extensions and global geometric properties. The first part of this active algorithm finds indications of critical surface areas in the data of every measurement and separates them into different categories. The second part analyses the detected structures in the data with respect to their resolution and decides whether a further local measurement with a higher resolution has to be performed. The third part positions the sensors and starts the refined measurements. The fourth part finally integrates the measured local data set into the overall data mesh. We have constructed a laboratory setup capable of measuring surfaces with extensions up to 1500mm x 1000mm x 500mm (in x-, y- and z-direction respectively). Using this measurement system we will be able to separate the fault indicating structures on the surface from the global shape and to classify the detected structures according to their extensions and characteristic shapes simultaneously. The level of fault detection probability will be applicable by input parameter control.

  8. Magnitude and Rupture Area Scaling Relationships of Seismicity at The Northwest Geysers EGS Demonstration Project

    NASA Astrophysics Data System (ADS)

    Dreger, D. S.; Boyd, O. S.; Taira, T.; Gritto, R.

    2017-12-01

    Enhanced Geothermal System (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. Spatio-temporal source properties, including source dimension, rupture area, slip, rupture speed, and slip velocity of induced seismicity are of interest at The Geysers geothermal field, northern California to map the coseismic facture density of the EGS swarm. In this investigation we extend our previous finite-source analysis of selected M>4 earthquakes to examine source properties of smaller magnitude seismicity located in the Northwest Geysers Enhanced Geothermal System (EGS) demonstration project. Moment rate time histories of the source are found using empirical Green's function (eGf) deconvolution using the method of Mori (1993) as implemented by Dreger et al. (2007). The moment rate functions (MRFs) from data recorded using the Lawrence Berkeley National Laboratory (LBNL) short-period geophone network are inverted for finite-source parameters including the spatial distribution of fault slip, rupture velocity, and the orientation of the causative fault plane. The results show complexity in the MRF for the studied earthquakes. Thus far the estimated rupture area and the magnitude-area trend of the smaller magnitude Geysers seismicity is found to agree with the empirical relationships of Wells and Coppersmith (1994) and Leonard (2010), which were developed for much larger M>5.5 earthquakes worldwide indicating self-similar behavior extending to M2 earthquakes. We will present finite-source inversion results of the micro-earthquakes, attempting to extend the analysis to sub Mw, and demonstrate their magnitude-area scaling. The extension of the scaling laws will then enable the mapping of coseismic fracture density of the EGS swarm in the Northwest Geysers based on catalog moment magnitude estimates.

  9. Vortex relaxation in type-II superconductors following current quenches

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Harsh; Assi, Hiba; Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe

    2015-03-01

    The mixed phase in type-II superconductors is characterized by the presence of mutually repulsive magnetic flux lines that are driven by external currents and pinned by point-like or extended material defects. We represent the disordered vortex system in the London limit by an elastic directed line model, whose relaxational dynamics we investigate numerically by means of Langevin Molecular Dynamics. We specifically study the effects of sudden changes of the driving current on the time evolution of the mean flux line gyration radius and the associated transverse displacement correlation functions. Upon quenching from the moving into the pinned glassy phase, we observe algebraically slow relaxation. The associated two-time height-autocorrelations display broken time translation invariance and can be described by a simple aging scaling form, albeit with non-universal scaling exponents. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  10. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  11. Spatio-temporal assessment of food safety risks in Canadian food distribution systems using GIS.

    PubMed

    Hashemi Beni, Leila; Villeneuve, Sébastien; LeBlanc, Denyse I; Côté, Kevin; Fazil, Aamir; Otten, Ainsley; McKellar, Robin; Delaquis, Pascal

    2012-09-01

    While the value of geographic information systems (GIS) is widely applied in public health there have been comparatively few examples of applications that extend to the assessment of risks in food distribution systems. GIS can provide decision makers with strong computing platforms for spatial data management, integration, analysis, querying and visualization. The present report addresses some spatio-analyses in a complex food distribution system and defines influence areas as travel time zones generated through road network analysis on a national scale rather than on a community scale. In addition, a dynamic risk index is defined to translate a contamination event into a public health risk as time progresses. More specifically, in this research, GIS is used to map the Canadian produce distribution system, analyze accessibility to contaminated product by consumers, and estimate the level of risk associated with a contamination event over time, as illustrated in a scenario. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  12. Detrended fluctuation analysis based on higher-order moments of financial time series

    NASA Astrophysics Data System (ADS)

    Teng, Yue; Shang, Pengjian

    2018-01-01

    In this paper, a generalized method of detrended fluctuation analysis (DFA) is proposed as a new measure to assess the complexity of a complex dynamical system such as stock market. We extend DFA and local scaling DFA to higher moments such as skewness and kurtosis (labeled SMDFA and KMDFA), so as to investigate the volatility scaling property of financial time series. Simulations are conducted over synthetic and financial data for providing the comparative study. We further report the results of volatility behaviors in three American countries, three Chinese and three European stock markets by using DFA and LSDFA method based on higher moments. They demonstrate the dynamics behaviors of time series in different aspects, which can quantify the changes of complexity for stock market data and provide us with more meaningful information than single exponent. And the results reveal some higher moments volatility and higher moments multiscale volatility details that cannot be obtained using the traditional DFA method.

  13. An efficient algorithm for the generalized Foldy-Lax formulation

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Li, Peijun; Zhao, Hongkai

    2013-02-01

    Consider the scattering of a time-harmonic plane wave incident on a two-scale heterogeneous medium, which consists of scatterers that are much smaller than the wavelength and extended scatterers that are comparable to the wavelength. In this work we treat those small scatterers as isotropic point scatterers and use a generalized Foldy-Lax formulation to model wave propagation and capture multiple scattering among point scatterers and extended scatterers. Our formulation is given as a coupled system, which combines the original Foldy-Lax formulation for the point scatterers and the regular boundary integral equation for the extended obstacle scatterers. The existence and uniqueness of the solution for the formulation is established in terms of physical parameters such as the scattering coefficient and the separation distances. Computationally, an efficient physically motivated Gauss-Seidel iterative method is proposed to solve the coupled system, where only a linear system of algebraic equations for point scatterers or a boundary integral equation for a single extended obstacle scatterer is required to solve at each step of iteration. The convergence of the iterative method is also characterized in terms of physical parameters. Numerical tests for the far-field patterns of scattered fields arising from uniformly or randomly distributed point scatterers and single or multiple extended obstacle scatterers are presented.

  14. Application of Large-Scale Database-Based Online Modeling to Plant State Long-Term Estimation

    NASA Astrophysics Data System (ADS)

    Ogawa, Masatoshi; Ogai, Harutoshi

    Recently, attention has been drawn to the local modeling techniques of a new idea called “Just-In-Time (JIT) modeling”. To apply “JIT modeling” to a large amount of database online, “Large-scale database-based Online Modeling (LOM)” has been proposed. LOM is a technique that makes the retrieval of neighboring data more efficient by using both “stepwise selection” and quantization. In order to predict the long-term state of the plant without using future data of manipulated variables, an Extended Sequential Prediction method of LOM (ESP-LOM) has been proposed. In this paper, the LOM and the ESP-LOM are introduced.

  15. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS.

    PubMed

    Lin, Shishi; Dikler, Sergei; Blincoe, William D; Ferguson, Ronald D; Sheridan, Robert P; Peng, Zhengwei; Conway, Donald V; Zawatzky, Kerstin; Wang, Heather; Cernak, Tim; Davies, Ian W; DiRocco, Daniel A; Sheng, Huaming; Welch, Christopher J; Dreher, Spencer D

    2018-05-24

    Understanding the practical limitations of chemical reactions is critically important for efficiently planning the synthesis of compounds in pharmaceutical, agrochemical and specialty chemical research and development. However, literature reports of the scope of new reactions are often cursory and biased toward successful results, severely limiting the ability to predict reaction outcomes for untested substrates. We herein illustrate strategies for carrying out large scale surveys of chemical reactivity using a material-sparing nanomole-scale automated synthesis platform with greatly expanded synthetic scope combined with ultra-high throughput (uHT) matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Copyright © 2018, American Association for the Advancement of Science.

  16. HOWARD EISEN, JPL'S LEAD MECHANICAL TECHNICIAN, HOLDS MARS PATHFINDER 'SOJOURNER' ROVER 1:1 SCALE DU

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Mars Pathfinder 'Sojourner' rover l:l scale duplicate test vehicle is held by Howard Eisen, its lead mechanical technician from the Jet Propulsion Laboratory, with Kennedy Space Center's Vehicle Assembly Building looming in the background. The launch of NASA's Mars Pathfinder spacecraft aboard a McDonnell Douglas Delta II rocket is scheduled for Monday, Dec. 2, at 2:09:11 a.m. EST. This is a single instantaneous target launch time without a second opportunity on that day. Liftoff will occur from Pad B at Launch Complex 17 on Cape Canaveral Air Station, Fla. There is a 24-day launch opportunity which extends through Dec. 31.

  17. Detecting Patchy Reionization in the Cosmic Microwave Background.

    PubMed

    Smith, Kendrick M; Ferraro, Simone

    2017-07-14

    Upcoming cosmic microwave background (CMB) experiments will measure temperature fluctuations on small angular scales with unprecedented precision. Small-scale CMB fluctuations are a mixture of late-time effects: gravitational lensing, Doppler shifting of CMB photons by moving electrons [the kinematic Sunyaev-Zel'dovich (KSZ) effect], and residual foregrounds. We propose a new statistic which separates the KSZ signal from the others, and also allows the KSZ signal to be decomposed in redshift bins. The decomposition extends to high redshift and does not require external data sets such as galaxy surveys. In particular, the high-redshift signal from patchy reionization can be cleanly isolated, enabling future CMB experiments to make high-significance and qualitatively new measurements of the reionization era.

  18. Analyzing large scale genomic data on the cloud with Sparkhit

    PubMed Central

    Huang, Liren; Krüger, Jan

    2018-01-01

    Abstract Motivation The increasing amount of next-generation sequencing data poses a fundamental challenge on large scale genomic analytics. Existing tools use different distributed computational platforms to scale-out bioinformatics workloads. However, the scalability of these tools is not efficient. Moreover, they have heavy run time overheads when pre-processing large amounts of data. To address these limitations, we have developed Sparkhit: a distributed bioinformatics framework built on top of the Apache Spark platform. Results Sparkhit integrates a variety of analytical methods. It is implemented in the Spark extended MapReduce model. It runs 92–157 times faster than MetaSpark on metagenomic fragment recruitment and 18–32 times faster than Crossbow on data pre-processing. We analyzed 100 terabytes of data across four genomic projects in the cloud in 21 h, which includes the run times of cluster deployment and data downloading. Furthermore, our application on the entire Human Microbiome Project shotgun sequencing data was completed in 2 h, presenting an approach to easily associate large amounts of public datasets with reference data. Availability and implementation Sparkhit is freely available at: https://rhinempi.github.io/sparkhit/. Contact asczyrba@cebitec.uni-bielefeld.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:29253074

  19. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface

    NASA Astrophysics Data System (ADS)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A new combination of first principle molecular dynamics (MD) simulations with a rate equation model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of argon atoms from a platinum (111) surface. The combined model is based on a classification of all atom trajectories according to their energies into trapped, quasi-trapped and scattering states. The number of particles in each of the three classes obeys coupled rate equations. The coefficients in the rate equations are the transition probabilities between these states which are obtained from MD simulations. While these rates are generally time-dependent, after a characteristic time scale t E of several tens of picoseconds they become stationary allowing for a rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal evolution of the energy distribution functions of the adsorbate atoms. We separately study the energy loss distribution function of the atoms and the distribution function of in-plane and perpendicular energy components. Further, we compute the sticking probability of argon atoms as a function of incident energy, angle and lattice temperature. Our model is important for plasma-surface modeling as it allows to extend accurate simulations to longer time scales.

  20. Atmospheric circulation patterns associated to the variability of River Ammer floods: evidence from observed and proxy data

    NASA Astrophysics Data System (ADS)

    Rimbu, N.; Czymzik, M.; Ionita, M.; Lohmann, G.; Brauer, A.

    2015-09-01

    The relationship between the frequency of River Ammer floods (southern Germany) and atmospheric circulation variability is investigated based on observational Ammer discharge data back to 1926 and a flood layer time series from varved sediments of the downstream Lake Ammersee for the pre-instrumental period back to 1766. A composite analysis reveals that, at synoptic time scales, observed River Ammer floods are associated with enhanced moisture transport from the Atlantic Ocean and the Mediterranean towards the Ammer region, a pronounced trough over Western Europe as well as enhanced potential vorticity at upper levels. We argue that this synoptic scale configuration can trigger heavy precipitation and floods in the Ammer region. Interannual to multidecadal increases in flood frequency as recorded in the instrumental discharge record are associated to a wave-train pattern extending from the North Atlantic to western Asia with a prominent negative center over western Europe. A similar atmospheric circulation pattern is associated to increases in flood layer frequency in the Lake Ammersee sediment record during the pre-instrumental period. We argue that the complete flood layer time-series from Lake Ammersee sediments covering the last 5500 years, contains information about atmospheric circulation variability on inter-annual to millennial time-scales.

  1. Mesozoic cyclostratigraphy, the 405-kyr orbital eccentricity metronome, and the Astronomical Time Scale (Invited)

    NASA Astrophysics Data System (ADS)

    Hinnov, L.; Ogg, J. G.

    2009-12-01

    Mesozoic cyclostratigraphy from around the world is being assessed to construct a continuous Astronomical Time Scale (ATS) based on Earth’s cyclic orbital parameters. The recognition of a prevalent sedimentary cycling with a ~400-kyr period associated with forcing by the stable 405-kyr orbital eccentricity variation is an important development. Numerous formations spanning 10 to 20 myr (and longer) intervals in the Cretaceous, Jurassic and Triassic clearly express this dominant cycle and provide a robust basis for 405-kyr-scale calibration of the ATS. This 405-kyr metronome will enable extension of the well-defined Cenozoic ATS for scaling of the past quarter-billion years of Earth history. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS have already provided new insights into long-standing geologic problems of seafloor spreading, tectonics, eustasy, and paleoclimate change. Ongoing work is focused on closing gaps in coverage and on collecting duplicate cyclostratigraphic records for the entire Mesozoic Era.

  2. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE PAGES

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; ...

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  3. Assessing the multidimensional and hierarchical structure of SERVQUAL.

    PubMed

    Ma, Jun; Harvey, Milton E; Hu, Michael Y

    2007-10-01

    Parasuraman, Zeithaml, and Berry introduced SERVQUAL in 1998 as a scale to measure service quality. Since then, researchers have proposed several variations. This study examines the development of the tool. Marketing researchers have first challenged the conceptualization of a perceptions-expectations gap and have concluded that the performance-based measures are adequate to capture consumers' perception of service quality. Some researchers have argued that the five dimensions of the SERVQUAL scale only focus on the process of service delivery and have extended the SERVQUAL scale into six dimensions by including the service outcome dimension. Others have proposed that service quality is a multilevel construct and should be measured accordingly. From a sample of 467 undergraduate students data on service quality toward up-scale restaurants were collected. Using the structural equation approach, two measurement models of service quality were compared, the extended SERVQUAL model and the restructured multilevel SERVQUAL model. Analysis suggested that the latter model fits the data better than the extended one.

  4. The golden 35 min of stroke intervention with ADAPT: effect of thrombectomy procedural time in acute ischemic stroke on outcome.

    PubMed

    Alawieh, Ali; Pierce, Alyssa K; Vargas, Jan; Turk, Aquilla S; Turner, Raymond D; Chaudry, M Imran; Spiotta, Alejandro M

    2018-03-01

    In acute ischemic stroke (AIS), extending mechanical thrombectomy procedural times beyond 60 min has previously been associated with an increased complication rate and poorer outcomes. After improvements in thrombectomy methods, to reassess whether this relationship holds true with a more contemporary thrombectomy approach: a direct aspiration first pass technique (ADAPT). We retrospectively studied a database of patients with AIS who underwent ADAPT thrombectomy for large vessel occlusions. Patients were dichotomized into two groups: 'early recan', in which recanalization (recan) was achieved in ≤35 min, and 'late recan', in which procedures extended beyond 35 min. 197 patients (47.7% women, mean age 66.3 years) were identified. We determined that after 35 min, a poor outcome was more likely than a good (modified Rankin Scale (mRS) score 0-2) outcome. The baseline National Institutes of Health Stroke Scale (NIHSS) score was similar between 'early recan' (n=122) (14.7±6.9) and 'late recan' patients (n=75) (15.9±7.2). Among 'early recan' patients, recanalization was achieved in 17.8±8.8 min compared with 70±39.8 min in 'late recan' patients. The likelihood of achieving a good outcome was higher in the 'early recan' group (65.2%) than in the 'late recan' group (38.2%; p<0.001). Patients in the 'late recan' group had a higher likelihood of postprocedural hemorrhage, specifically parenchymal hematoma type 2, than those in the 'early recan' group. Logistic regression analysis showed that baseline NIHSS, recanalization time, and atrial fibrillation had a significant impact on 90-day outcomes. Our findings suggest that extending ADAPT thrombectomy procedure times beyond 35 min increases the likelihood of complications such as intracerebral hemorrhage while reducing the likelihood of a good outcome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Brain Dynamics of Aging: Multiscale Variability of EEG Signals at Rest and during an Auditory Oddball Task1,2,3

    PubMed Central

    Perdikis, Dionysios; Müller, Viktor; Blanc, Jean-Luc; Huys, Raoul; Temprado, Jean-Jacques

    2015-01-01

    Abstract The present work focused on the study of fluctuations of cortical activity across time scales in young and older healthy adults. The main objective was to offer a comprehensive characterization of the changes of brain (cortical) signal variability during aging, and to make the link with known underlying structural, neurophysiological, and functional modifications, as well as aging theories. We analyzed electroencephalogram (EEG) data of young and elderly adults, which were collected at resting state and during an auditory oddball task. We used a wide battery of metrics that typically are separately applied in the literature, and we compared them with more specific ones that address their limits. Our procedure aimed to overcome some of the methodological limitations of earlier studies and verify whether previous findings can be reproduced and extended to different experimental conditions. In both rest and task conditions, our results mainly revealed that EEG signals presented systematic age-related changes that were time-scale-dependent with regard to the structure of fluctuations (complexity) but not with regard to their magnitude. Namely, compared with young adults, the cortical fluctuations of the elderly were more complex at shorter time scales, but less complex at longer scales, although always showing a lower variance. Additionally, the elderly showed signs of spatial, as well as between, experimental conditions dedifferentiation. By integrating these so far isolated findings across time scales, metrics, and conditions, the present study offers an overview of age-related changes in the fluctuation electrocortical activity while making the link with underlying brain dynamics. PMID:26464983

  6. Timescales of Massive Human Entrainment

    PubMed Central

    Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick

    2015-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment—as expressed by the content and patterns of hundreds of thousands of messages on Twitter—during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5–10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment. PMID:25880357

  7. Hemispheric Asymmetries in Substorm Recovery Time Scales

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.

    2009-01-01

    Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.

  8. Viet Cong Motivation and Morale: The Special Case of Chieu Hoi

    DTIC Science & Technology

    1966-05-01

    us to offer any clear and certain explanation why rates of rallying fluctuate. But they do throw light on certain conditioning factors, particularly...without paying much attention to them at the time, but later on remembering them in a different light . One independent-thinking and somewhat unorthodox...the extended political pamphlet. Possibly some of the energy of the urban elites of South Vietnam might be directed to a full-scale examination of the

  9. Protocol for Large-Scale Collection, Processing, and Storage of Seeds of Two Mesohaline Submerged Aquatic Plant Species

    DTIC Science & Technology

    2006-08-01

    and the regulation of the timing of initial seedling growth. The evolution of flowering plants extended the potential for regu- lating growth and...improved the efficiency of gamete transfer via pollination (Willis and Figure 1. A one-gram plant sample of R. maritima seeds Report Documentation...uniformity of plant growth and development is contrary to the goals of ecological restoration where the objective is the successful establishment of

  10. Mesospheric Precursors to the Major Stratospheric Sudden Warming of 2009: Validation and Dynamical Attribution using a Ground-to-Edge-of-Space Data Assimilation System

    DTIC Science & Technology

    2011-01-01

    et al., 2008). Since wind observations are sparse and standard data assimilation systems ( DASs ) do not extend through the mesosphere, we have far...et al., 2008). Figure 1f plots a time-height cross section of wave- 2 F z at 60◦N, scaled by exp(z/2H), where z is pres- sure altitude and H =7 km. As

  11. Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Phillips, N. B.; Beloy, K.; McGrew, W. F.; Schioppo, M.; Fasano, R. J.; Milani, G.; Zhang, X.; Hinkley, N.; Leopardi, H.; Yoon, T. H.; Nicolodi, D.; Fortier, T. M.; Ludlow, A. D.

    2017-12-01

    Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an 171Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10-18 level and beyond.

  12. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  13. Effect of Concomitant Medications on the Safety and Efficacy of Extended-Release Carbidopa-Levodopa (IPX066) in Patients With Advanced Parkinson Disease: A Post Hoc Analysis.

    PubMed

    LeWitt, Peter A; Verhagen Metman, Leo; Rubens, Robert; Khanna, Sarita; Kell, Sherron; Gupta, Suneel

    Extended-release (ER) carbidopa-levodopa (CD-LD) (IPX066/RYTARY/NUMIENT) produces improvements in "off" time, "on" time without troublesome dyskinesia, and Unified Parkinson Disease Rating Scale scores compared with immediate-release (IR) CD-LD or IR CD-LD plus entacapone (CLE). Post hoc analyses of 2 ER CD-LD phase 3 trials evaluated whether the efficacy and safety of ER CD-LD relative to the respective active comparators were altered by concomitant medications (dopaminergic agonists, monoamine oxidase B [MAO-B] inhibitors, or amantadine). ADVANCE-PD (n = 393) assessed safety and efficacy of ER CD-LD versus IR CD-LD. ASCEND-PD (n = 91) evaluated ER CD-LD versus CLE. In both studies, IR- and CLE-experienced patients underwent a 6-week, open-label dose-conversion period to ER CD-LD prior to randomization. For analysis, the randomized population was divided into 3 subgroups: dopaminergic agonists, rasagiline or selegiline, and amantadine. For each subgroup, changes from baseline in PD diary measures ("off" time and "on" time with and without troublesome dyskinesia), Unified Parkinson Disease Rating Scale Parts II + III scores, and adverse events were analyzed, comparing ER CD-LD with the active comparator. Concomitant dopaminergic agonist or MAO-B inhibitor use did not diminish the efficacy (improvement in "off" time and "on" time without troublesome dyskinesia) of ER CD-LD compared with IR CD-LD or CLE, whereas the improvement with concomitant amantadine failed to reach significance. Safety and tolerability were similar among the subgroups, and ER CD-LD did not increase troublesome dyskinesia. For patients on oral LD regimens and taking a dopaminergic agonist, and/or a MAO-B inhibitor, changing from an IR to an ER CD-LD formulation provides approximately an additional hour of "good" on time.

  14. Effect of Concomitant Medications on the Safety and Efficacy of Extended-Release Carbidopa-Levodopa (IPX066) in Patients With Advanced Parkinson Disease: A Post Hoc Analysis

    PubMed Central

    LeWitt, Peter A.; Verhagen Metman, Leo; Rubens, Robert; Khanna, Sarita; Kell, Sherron; Gupta, Suneel

    2018-01-01

    Objectives Extended-release (ER) carbidopa-levodopa (CD-LD) (IPX066/RYTARY/NUMIENT) produces improvements in “off” time, “on” time without troublesome dyskinesia, and Unified Parkinson Disease Rating Scale scores compared with immediate-release (IR) CD-LD or IR CD-LD plus entacapone (CLE). Post hoc analyses of 2 ER CD-LD phase 3 trials evaluated whether the efficacy and safety of ER CD-LD relative to the respective active comparators were altered by concomitant medications (dopaminergic agonists, monoamine oxidase B [MAO-B] inhibitors, or amantadine). Methods ADVANCE-PD (n = 393) assessed safety and efficacy of ER CD-LD versus IR CD-LD. ASCEND-PD (n = 91) evaluated ER CD-LD versus CLE. In both studies, IR- and CLE-experienced patients underwent a 6-week, open-label dose-conversion period to ER CD-LD prior to randomization. For analysis, the randomized population was divided into 3 subgroups: dopaminergic agonists, rasagiline or selegiline, and amantadine. For each subgroup, changes from baseline in PD diary measures (“off” time and “on” time with and without troublesome dyskinesia), Unified Parkinson Disease Rating Scale Parts II + III scores, and adverse events were analyzed, comparing ER CD-LD with the active comparator. Results and Conclusions Concomitant dopaminergic agonist or MAO-B inhibitor use did not diminish the efficacy (improvement in “off” time and “on” time without troublesome dyskinesia) of ER CD-LD compared with IR CD-LD or CLE, whereas the improvement with concomitant amantadine failed to reach significance. Safety and tolerability were similar among the subgroups, and ER CD-LD did not increase troublesome dyskinesia. For patients on oral LD regimens and taking a dopaminergic agonist, and/or a MAO-B inhibitor, changing from an IR to an ER CD-LD formulation provides approximately an additional hour of “good” on time. PMID:29432286

  15. Studying Reaction Intermediates Formed at Graphenic Surfaces

    NASA Astrophysics Data System (ADS)

    Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil

    2014-03-01

    We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.

  16. Research on regional numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Kreitzberg, C. W.

    1976-01-01

    Extension of the predictive power of dynamic weather forecasting to scales below the conventional synoptic or cyclonic scales in the near future is assessed. Lower costs per computation, more powerful computers, and a 100 km mesh over the North American area (with coarser mesh extending beyond it) are noted at present. Doubling the resolution even locally (to 50 km mesh) would entail a 16-fold increase in costs (including vertical resolution and halving the time interval), and constraints on domain size and length of forecast. Boundary conditions would be provided by the surrounding 100 km mesh, and time-varying lateral boundary conditions can be considered to handle moving phenomena. More physical processes to treat, more efficient numerical techniques, and faster computers (improved software and hardware) backing up satellite and radar data could produce further improvements in forecasting in the 1980s. Boundary layer modeling, initialization techniques, and quantitative precipitation forecasting are singled out among key tasks.

  17. Large-Eddy Simulation of Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Sochacki, James S.

    1999-01-01

    This report summarizes work accomplished under a one-year NASA grant from NASA Langley Research Center (LaRC). The effort culminates three years of NASA-supported research under three consecutive one-year grants. The period of support was April 6, 1998, through April 5, 1999. By request, the grant period was extended at no-cost until October 6, 1999. Its predecessors have been directed toward adapting the numerical tool of large-eddy simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of subgrid-scale (SGS) models that incorporate time-domain filters.

  18. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modeled processes were examined and enhanced to suitably represent the extended space and timesca...

  19. Inverse and Direct Energy Cascades in Three-Dimensional Magnetohydrodynamic Turbulence at Low Magnetic Reynolds Number

    NASA Astrophysics Data System (ADS)

    Baker, Nathaniel T.; Pothérat, Alban; Davoust, Laurent; Debray, François

    2018-06-01

    This experimental study analyzes the relationship between the dimensionality of turbulence and the upscale or downscale nature of its energy transfers. We do so by forcing low-R m magnetohydrodynamic turbulence in a confined channel, while precisely controlling its dimensionality by means of an externally applied magnetic field. We first identify a specific length scale l^⊥ c that separates smaller 3D structures from larger quasi-2D ones. We then show that an inverse energy cascade of horizontal kinetic energy along horizontal scales is always observable at large scales, and that it extends well into the region of 3D structures. At the same time, a direct energy cascade confined to the smallest and strongly 3D scales is observed. These dynamics therefore appear not to be simply determined by the dimensionality of individual scales, nor by the forcing scale, unlike in other studies. In fact, our findings suggest that the relationship between kinematics and dynamics is not universal and may strongly depend on the forcing and dissipating mechanisms at play.

  20. Acoustic Treatment Design Scaling Methods. Phase 2

    NASA Technical Reports Server (NTRS)

    Clark, L. (Technical Monitor); Parrott, T. (Technical Monitor); Jones, M. (Technical Monitor); Kraft, R. E.; Yu, J.; Kwan, H. W.; Beer, B.; Seybert, A. F.; Tathavadekar, P.

    2003-01-01

    The ability to design, build and test miniaturized acoustic treatment panels on scale model fan rigs representative of full scale engines provides not only cost-savings, but also an opportunity to optimize the treatment by allowing multiple tests. To use scale model treatment as a design tool, the impedance of the sub-scale liner must be known with confidence. This study was aimed at developing impedance measurement methods for high frequencies. A normal incidence impedance tube method that extends the upper frequency range to 25,000 Hz. without grazing flow effects was evaluated. The free field method was investigated as a potential high frequency technique. The potential of the two-microphone in-situ impedance measurement method was evaluated in the presence of grazing flow. Difficulties in achieving the high frequency goals were encountered in all methods. Results of developing a time-domain finite difference resonator impedance model indicated that a re-interpretation of the empirical fluid mechanical models used in the frequency domain model for nonlinear resistance and mass reactance may be required. A scale model treatment design that could be tested on the Universal Propulsion Simulator vehicle was proposed.

  1. Ultraviolet variability and mass expulsion from R Aquarii

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Hollis, J. M.

    1986-01-01

    Ultraviolet spectra in the 1200-3200 A range indicate that the extended nebular features which resemble a jet in the peculiar variable R Aquarii (M7e + pec) increased in excitation in 1985. The emission properties of the compact H II region that surrounds the unresolved binary, and those of the extended nebular jet, have been analyzed from low-resolution IUE spectra of these regions. In particular, the UV line intensities observed in the jet appear variable on a time scale of about 1.5 yr. A new accretion disk model is proposed that explains the kinematic and ionization properties of discrete components which comprise the jet emission nebulosity, the appearance of the jet in the 1980s, and morphology that uniquely characterizes the R Aquarii system at radio, optical, UV, and X-ray wavelengths.

  2. EPA Facilities and Regional Boundaries Service, US, 2012, US EPA, SEGS

    EPA Pesticide Factsheets

    This SEGS web service contains EPA facilities, EPA facilities labels, small- and large-scale versions of EPA region boundaries, and EPA region boundaries extended to the 200nm Exclusive Economic Zone (EEZ). Small scale EPA boundaries and boundaries extended to the EEZ render at scales of less than 5 million, large scale EPA boundaries draw at scales greater than or equal to 5 million. EPA facilities labels draw at scales greater than 2 million. Data used to create this web service are available as a separate download at the Secondary Linkage listed above. Full FGDC metadata records for each layer may be found by clicking the layer name in the web service table of contents (available through the online link provided above) and viewing the layer description. This SEGS dataset was produced by EPA through the Office of Environmental Information.

  3. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    DTIC Science & Technology

    2016-12-06

    upgrade included improving the SHRU clocks by utilizing chip- scale atomic clocks (CSAC), enlarging battery packs to extend the operation duration, and...instrument upgrade included improving the SHRU clocks by utilizing chip-scale atomic clocks (CSAC), enlarging battery packs to extend the operation...Changing the deployment configuration to use dual pressure housings to augment the alkaline primary battery payload to achieve the one-year duration

  4. Characterizing Relativistic Electrons Flux Enhancement Events using sensors onboard SAMPEX and POLAR

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Selesnick, R. S.; Baker, D. N.; Blake, J. B.

    2004-12-01

    Relativistic electron fluxes in the Earth's outer Van Allen belt are highly variable with flux enhancements of several orders of magnitude occurring on time scales of a few days. Radiation belt electrons often are energized to relativistic energies when the magnetosphere is subjected to high solar wind speed and the southward turning of the interplanetary magnetic field. Characterization of electron acceleration properties such as electron spectra and flux isotropization are important in understanding acceleration models. We use sensors onboard SAMPEX and POLAR to measure and survey systematically these properties. SAMPEX measurements cover the entire outer zone for more than a decade from mid 1992 to mid 2004 and POLAR covers the time period from mid 1996 to the present. We use the pulse height analyzed data from the PET detector onboard SAMPEX to measure electron spectra. Fluxes measured by the HIST detector onboard POLAR together with the PET measurements are used to characterize isotropization times. This paper presents electron spectra and isotropization time scales for a few representative events. We will eventually extend these measurements and survey the entire solar cycle 23.

  5. Comment on "Time needed to board an airplane: a power law and the structure behind it".

    PubMed

    Bernstein, Noam

    2012-08-01

    Frette and Hemmer [Phys. Rev. E 85, 011130 (2012)] recently showed that for a simple model for the boarding of an airplane, the mean time to board scales as a power law with the number of passengers N and the exponent is less than 1. They note that this scaling leads to the prediction that the "back-to-front" strategy, where passengers are divided into groups from contiguous ranges of rows and each group is allowed to board in turn from back to front once the previous group has found their seats, has a longer boarding time than would a single group. Here I extend their results to a larger number of passengers using a sampling approach and explore a scenario where the queue is presorted into groups from back to front, but allowed to enter the plane as soon as they can. I show that the power law dependence on passenger numbers is different for large N and that there is a boarding time reduction for presorted groups, with a power law dependence on the number of presorted groups.

  6. Highly multiplexed targeted proteomics using precise control of peptide retention time.

    PubMed

    Gallien, Sebastien; Peterman, Scott; Kiyonami, Reiko; Souady, Jamal; Duriez, Elodie; Schoen, Alan; Domon, Bruno

    2012-04-01

    Large-scale proteomics applications using SRM analysis on triple quadrupole mass spectrometers present new challenges to LC-MS/MS experimental design. Despite the automation of building large-scale LC-SRM methods, the increased numbers of targeted peptides can compromise the balance between sensitivity and selectivity. To facilitate large target numbers, time-scheduled SRM transition acquisition is performed. Previously published results have demonstrated incorporation of a well-characterized set of synthetic peptides enabled chromatographic characterization of the elution profile for most endogenous peptides. We have extended this application of peptide trainer kits to not only build SRM methods but to facilitate real-time elution profile characterization that enables automated adjustment of the scheduled detection windows. Incorporation of dynamic retention time adjustments better facilitate targeted assays lasting several days without the need for constant supervision. This paper provides an overview of how the dynamic retention correction approach identifies and corrects for commonly observed LC variations. This adjustment dramatically improves robustness in targeted discovery experiments as well as routine quantification experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. FIRE I - Extended Time Observations Data Sets

    Atmospheric Science Data Center

    2017-12-21

    FIRE I - Extended Time Observations Data Sets First ISCCP Regional Experiment (FIRE) I - Extended Time Observations were conducted in Utah. Relevant ... FIRE Project Guide FIRE I - Extended Time Observations Home Page (tar file) SCAR-B Block:  ...

  8. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirmer, M.; Diaz, R.; Levenson, N. A.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [Omore » III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.« less

  9. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    NASA Astrophysics Data System (ADS)

    Shan, Tzu-Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed by coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. The formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.

  10. Identification and synchronization of the common cosmic-ray signal in the IntCal13 14C calibration and the Greenland ice-core 10Be records

    NASA Astrophysics Data System (ADS)

    Muscheler, Raimund; Adolphi, Florian; Bronk Ramsey, Christopher; Rasmussen, Sune; Hughen, Konrad; Cooper, Alan; Turney, Chris

    2017-04-01

    The production rates of cosmogenic radionuclides (such as 10Be and 14C) are modulated by the solar and geomagnetic shielding of galactic cosmic rays. In addition, 14C and 10Be are influenced by the carbon cycle and the atmospheric transport and deposition, respectively. Isolating and identifying the common production signal allows us to synchronize ice core 10Be and tree ring 14C records during the Holocene (Adolphi and Muscheler, 2016), thereby connecting ice core climate records with 14C-dated records. Extending this comparison further back in time is challenging due to deteriorating quality of the 14C calibration record, IntCal13, (Reimer et al., 2013) and possible unidentified climate influences on the ice-core 10Be records. Nevertheless, by focusing on the most prominent production-rate features this comparison can be extended far back into the last glacial where, for example, the linkage of tree-ring based Kauri 14C data and the Greenland ice-core time scale (GICC05) suggested unresolved data and/or time scale differences around the period of the Laschamp geomagnetic field minimum at about 42000 yrs BP (Muscheler et al., 2014). Here we show that the data underlying the IntCal13 14C record and the ice-core 10Be records exhibit common variability that allows us to tentatively link the ice core GICC05 time scale to the radiocarbon time scale for almost the complete radiocarbon dating range. The observed time scale differences could be related to uncertainties in both the U/Th-based dating of the IntCal13 calibration data set and the GICC05 time scale, and we show that the two can be reconciled within the uncertainties of the ice-core layer counting. This direct comparison between IntCal13 and 10Be also suggests that the 14C differences shown in (Muscheler et al., 2014) around the Laschamp geomagnetic field minimum can be reduced by moderate adjustments to the GICC05 time scale. References: Adolphi, F., and Muscheler, R., 2016, Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene - Bayesian wiggle-matching of cosmogenic radionuclide records: Clim. Past. , v. 12, p. 15-30. Muscheler, R., Adolphi, F., and Svensson, A., 2014, Challenges in 14C dating towards the limit of the method inferred from anchoring a floating tree ring radiocarbon chronology to ice core records around the Laschamp geomagnetic field minimum: Earth Planet. Sci. Lett., v. 394, p. 209-215. Reimer, P., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P., Guilderson, T. P., Haflidison, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J., Staff, R. A., Turney, C. S. M., and van der Plicht, J., 2013, IntCal13 AND Marine13 radiocarbon age calibration curves 0-50,000 years cal BP: Radiocarbon, v. 55, No. 4, p. 1869-1887.

  11. Extended principle component analysis - a useful tool to understand processes governing water quality at catchment scales

    NASA Astrophysics Data System (ADS)

    Selle, B.; Schwientek, M.

    2012-04-01

    Water quality of ground and surface waters in catchments is typically driven by many complex and interacting processes. While small scale processes are often studied in great detail, their relevance and interplay at catchment scales remain often poorly understood. For many catchments, extensive monitoring data on water quality have been collected for different purposes. These heterogeneous data sets contain valuable information on catchment scale processes but are rarely analysed using integrated methods. Principle component analysis (PCA) has previously been applied to this kind of data sets. However, a detailed analysis of scores, which are an important result of a PCA, is often missing. Mathematically, PCA expresses measured variables on water quality, e.g. nitrate concentrations, as linear combination of independent, not directly observable key processes. These computed key processes are represented by principle components. Their scores are interpretable as process intensities which vary in space and time. Subsequently, scores can be correlated with other key variables and catchment characteristics, such as water travel times and land use that were not considered in PCA. This detailed analysis of scores represents an extension of the commonly applied PCA which could considerably improve the understanding of processes governing water quality at catchment scales. In this study, we investigated the 170 km2 Ammer catchment in SW Germany which is characterised by an above average proportion of agricultural (71%) and urban (17%) areas. The Ammer River is mainly fed by karstic springs. For PCA, we separately analysed concentrations from (a) surface waters of the Ammer River and its tributaries, (b) spring waters from the main aquifers and (c) deep groundwater from production wells. This analysis was extended by a detailed analysis of scores. We analysed measured concentrations on major ions and selected organic micropollutants. Additionally, redox-sensitive variables and environmental tracers indicating groundwater age were analysed for deep groundwater from production wells. For deep groundwater, we found that microbial turnover was stronger influenced by local availability of energy sources than by travel times of groundwater to the wells. Groundwater quality primarily reflected the input of pollutants determined by landuse, e.g. agrochemicals. We concluded that for water quality in the Ammer catchment, conservative mixing of waters with different origin is more important than reactive transport processes along the flow path.

  12. Scale-up on basis of structured mixing models: A new concept.

    PubMed

    Mayr, B; Moser, A; Nagy, E; Horvat, P

    1994-02-05

    A new scale-up concept based upon mixing models for bioreactors equipped with Rushton turbines using the tanks-in-series concept is presented. The physical mixing model includes four adjustable parameters, i.e., radial and axial circulation time, number of ideally mixed elements in one cascade, and the volume of the ideally mixed turbine region. The values of the model parameters were adjusted with the application of a modified Monte-Carlo optimization method, which fitted the simulated response function to the experimental curve. The number of cascade elements turned out to be constant (N = 4). The model parameter radial circulation time is in good agreement with the one obtained by the pumping capacity. In case of remaining parameters a first or second order formal equation was developed, including four operational parameters (stirring and aeration intensity, scale, viscosity). This concept can be extended to several other types of bioreactors as well, and it seems to be a suitable tool to compare the bioprocess performance of different types of bioreactors. (c) 1994 John Wiley & Sons, Inc.

  13. Variations of Luzon Undercurrent from observations and numerical model simulations

    NASA Astrophysics Data System (ADS)

    Wang, Qingye; Zhai, Fangguo; Hu, Dunxin

    2014-06-01

    Significant intraseasonal variability (ISV) of about 45-80 days and seasonal variation of the Luzon Undercurrent (LUC) at 18°N are studied using direct current measurements and a high-resolution global Hybrid Coordinate Ocean Model. The variations of the LUC are vertically coherent with those of Kuroshio Current both on intraseasonal and seasonal time scales. The ISV of the LUC is dominated by eddies with diameters of about 200-300 km and extending from sea surface to intermediate layer east of Luzon Island. The LUC becomes strong (weak) when cyclonic (anticyclonic) eddies occur. The eddies east of Luzon Island mainly originate from the bifurcation point (˜13°N) of the North Equatorial Current. These eddies propagate northwestward at a typical propagation speed of about 0.16 m s-1 along the east coast of Philippines, gradually strengthen and pass the Luzon coast, and continue northward to Luzon strait. On seasonal time scale, the LUC is strong (weak) in boreal winter (summer), and this variation is related to the seasonal evolution of large-scale ocean circulation east of Philippines mainly controlled by local wind forcing.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Luis; Stanier, Adam John

    Here, we demonstrate a scalable fully implicit algorithm for the two-field low-β extended MHD model. This reduced model describes plasma behavior in the presence of strong guide fields, and is of significant practical impact both in nature and in laboratory plasmas. The model displays strong hyperbolic behavior, as manifested by the presence of fast dispersive waves, which make a fully implicit treatment very challenging. In this study, we employ a Jacobian-free Newton–Krylov nonlinear solver, for which we propose a physics-based preconditioner that renders the linearized set of equations suitable for inversion with multigrid methods. As a result, the algorithm ismore » shown to scale both algorithmically (i.e., the iteration count is insensitive to grid refinement and timestep size) and in parallel in a weak-scaling sense, with the wall-clock time scaling weakly with the number of cores for up to 4096 cores. For a 4096 × 4096 mesh, we demonstrate a wall-clock-time speedup of ~6700 with respect to explicit algorithms. The model is validated linearly (against linear theory predictions) and nonlinearly (against fully kinetic simulations), demonstrating excellent agreement.« less

  15. Finite Gyroradius Effects Observed in Pickup Oxygen Ions at Venus

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Intriligator, Devrie; Grebowsky, Joseph M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On the dayside of Venus, the hot oxygen corona extending above the ionopause is the principal source of pickup oxygen ions. The ions are born here and picked up by the ionosheath plasma as it is deflected around the planet. These pickup ions have been observed by the Orbiter Plasma Analyzer (OPA) throughout the Pioneer Venus Orbiter (PVO) mission. They were observed over a region extending from their dayside source to great distances downstream (about 10 Venus radii), in the solar wind wake, as PVO passed through apoapsis. Finite gyroradius effects in the velocity distribution of the oxygen pickup ions are expected in the source region because the gyroradius is several times larger than the scale height of the hot oxygen source. Such effects are also expected in those regions of the ionosheath where the scale lengths of the magnetic field and the ambient plasma velocity field are less than the pickup ion gyroradius. While explicitly accounting for the spatial distribution of the hot oxygen source, an analytic expression for the pickup oxygen ion velocity distribution is developed to study how it is affected by finite gyroradii. The analysis demonstrates that as the gyroradius increases by factors of three to six above the hot oxygen scale height, the peak of the pickup oxygen ion flux distribution decreases 25 to 50% below the maximum allowed speed, which is twice the speed of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. The pickup oxygen ion flux distribution observed by OPA is shown to follow this behavior in the source region. It is also shown that this result is consistent with the pickup ion distributions observed in the wake, downstream of the source, where the flux peaks are usually well below the maximum allowed speed.

  16. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

    PubMed Central

    Carmena, Jose M.

    2016-01-01

    Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820

  17. Real-time evolution of a large-scale relativistic jet

    NASA Astrophysics Data System (ADS)

    Martí, Josep; Luque-Escamilla, Pedro L.; Romero, Gustavo E.; Sánchez-Sutil, Juan R.; Muñoz-Arjonilla, Álvaro J.

    2015-06-01

    Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims: We aim to obtain the first observational proof of the expected large-scale evolution and interaction with the environment in an astrophysical jet. Only jets from microquasars offer a chance to witness the real-time, full-jet evolution within a human lifetime, since they combine a "short", few parsec length with relativistic velocities. Methods: The methodology of this work is based on a systematic recalibraton of interferometric radio observations of microquasars available in public archives. In particular, radio observations of the microquasar GRS 1758-258 over less than two decades have provided the most striking results. Results: Significant morphological variations in the extended jet structure of GRS 1758-258 are reported here that were previously missed. Its northern radio lobe underwent a major morphological variation that rendered the hotspot undetectable in 2001 and reappeared again in the following years. The reported changes confirm the Galactic nature of the source. We tentatively interpret them in terms of the growth of instabilities in the jet flow. There is also evidence of surrounding cocoon. These results can provide a testbed for models accounting for the evolution of jets and their interaction with the environment.

  18. Two-rate periodic protocol with dynamics driven through many cycles

    NASA Astrophysics Data System (ADS)

    Kar, Satyaki

    2017-02-01

    We study the long time dynamics in closed quantum systems periodically driven via time dependent parameters with two frequencies ω1 and ω2=r ω1 . Tuning of the ratio r there can unleash plenty of dynamical phenomena to occur. Our study includes integrable models like Ising and X Y models in d =1 and the Kitaev model in d =1 and 2 and can also be extended to Dirac fermions in graphene. We witness the wave-function overlap or dynamic freezing that occurs within some small/ intermediate frequency regimes in the (ω1,r ) plane (with r ≠0 ) when the ground state is evolved through a single cycle of driving. However, evolved states soon become steady with long driving, and the freezing scenario gets rarer. We extend the formalism of adiabatic-impulse approximation for many cycle driving within our two-rate protocol and show the near-exact comparisons at small frequencies. An extension of the rotating wave approximation is also developed to gather an analytical framework of the dynamics at high frequencies. Finally we compute the entanglement entropy in the stroboscopically evolved states within the gapped phases of the system and observe how it gets tuned with the ratio r in our protocol. The minimally entangled states are found to fall within the regime of dynamical freezing. In general, the results indicate that the entanglement entropy in our driven short-ranged integrable systems follow a genuine nonarea law of scaling and show a convergence (with a r dependent pace) towards volume scaling behavior as the driving is continued for a long time.

  19. Reconstruction of the Exhumed Mantle Across the North Iberian Margin by Crustal-Scale 3-D Gravity Inversion and Geological Cross Section

    NASA Astrophysics Data System (ADS)

    Pedrera, A.; García-Senz, J.; Ayala, C.; Ruiz-Constán, A.; Rodríguez-Fernández, L. R.; Robador, A.; González Menéndez, L.

    2017-12-01

    Recent models support the view that the Pyrenees were formed after the inversion of a previously highly extended continental crust that included exhumed upper mantle rocks. Mantle rocks remain near to the surface after compression and mountain building, covered by the latest Cretaceous to Paleogene sequences. 3-D lithospheric-scale gravity inversion demands the presence of a high-density mantle body placed within the crust in order to justify the observed anomalies. Exhumed mantle, having 50 km of maximum width, continuously extends beneath the Basque-Cantabrian Basin and along the northern side of the Pyrenees. The association of this body with rift, postrift, and inversion structural geometries is tested in a balanced cross section across the Basque-Cantabrian Basin that incorporates a major south-dipping ramp-flat-ramp extensional detachment active between Valanginian and early Cenomanian times. Results indicate that horizontal extension progressed 48 km at variable strain rates that increased from 1 to 4 mm/yr in middle Albian times. Low-strength Triassic Keuper evaporites and mudstones above the basement favor the decoupling of the cover with formation of minibasins, expulsion rollovers, and diapirs. The inversion of the extensional system is accommodated by doubly verging basement thrusts due to the reactivation of the former basin bounding faults in Eocene-Oligocene times. Total shortening is estimated in 34 km and produced the partial subduction of the continental lithosphere beneath the two sides of the exhumed mantle. Obtained results help to pinpoint the original architecture of the North Iberian Margin and the evolution of the hyperextended aborted intracontinental basins.

  20. The Detection of Diffuse Extended Structure in 3C 273: Implications for Jet Power

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Kharb, Preeti

    2016-12-01

    We present deep Very Large Array imaging of 3C 273 in order to determine the diffuse, large scale radio structure of this famous radio-loud quasar. Diffuse extended structure (radio lobes) is detected for the first time in these observations as a consequence of high dynamic range in the 327.5 and 1365 MHz images. This emission is used to estimate a time averaged jet power, 7.2 × 1043 erg s-1 < \\overline{Q} < 3.7 × 1044 erg s-1. Brightness temperature arguments indicate consistent values of the time variability Doppler factor and the compactness Doppler factor for the inner jet, δ ≳ 10. Thus, the large apparent broadband bolometric luminosity of the jet, ˜3 × 1046 erg s-1, corresponds to a modest intrinsic luminosity ≳1042 erg s-1, or ˜1% of \\overline{Q}. In summary, we find that 3C 273 is actually a “typical” radio-loud quasar contrary to suggestions in the literature. The modest \\overline{Q} is near the peak of the luminosity distribution for radio-loud quasars and it is consistent with the current rate of dissipation emitted from millimeter wavelengths to gamma rays. The extreme core-jet morphology is an illusion from a near pole-on line of sight to a highly relativistic jet that produces a Doppler enhanced glow that previously swamped the lobe emission. 3C 273 apparently has the intrinsic kpc scale morphology of a classical double radio source, but it is distorted by an extreme Doppler aberration.

  1. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    NASA Astrophysics Data System (ADS)

    Tutt, J.; Anderson, C.; McKinney, G.

    Cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did not provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6. Cosmic background fluxes also scale with the solar cycle due to solar modulation. This modulation has been shown to be nearly sinusoidal over time, with an inverse effect - increased modulation leads to a decrease in cosmic fluxes. This effect was initially included with the cosmic source option in MCNP6 and has now been extended for use with the background source option when: (1) the date is specified in the background.dat file, and (2) when the user specifies a date on the source definition card. A description of the cosmic-neutron/photon date scaling feature will be presented along with scaling results for past and future date extrapolations.

  2. Lightweight and Statistical Techniques for Petascale PetaScale Debugging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Barton

    2014-06-30

    This project investigated novel techniques for debugging scientific applications on petascale architectures. In particular, we developed lightweight tools that narrow the problem space when bugs are encountered. We also developed techniques that either limit the number of tasks and the code regions to which a developer must apply a traditional debugger or that apply statistical techniques to provide direct suggestions of the location and type of error. We extend previous work on the Stack Trace Analysis Tool (STAT), that has already demonstrated scalability to over one hundred thousand MPI tasks. We also extended statistical techniques developed to isolate programming errorsmore » in widely used sequential or threaded applications in the Cooperative Bug Isolation (CBI) project to large scale parallel applications. Overall, our research substantially improved productivity on petascale platforms through a tool set for debugging that complements existing commercial tools. Previously, Office Of Science application developers relied either on primitive manual debugging techniques based on printf or they use tools, such as TotalView, that do not scale beyond a few thousand processors. However, bugs often arise at scale and substantial effort and computation cycles are wasted in either reproducing the problem in a smaller run that can be analyzed with the traditional tools or in repeated runs at scale that use the primitive techniques. New techniques that work at scale and automate the process of identifying the root cause of errors were needed. These techniques significantly reduced the time spent debugging petascale applications, thus leading to a greater overall amount of time for application scientists to pursue the scientific objectives for which the systems are purchased. We developed a new paradigm for debugging at scale: techniques that reduced the debugging scenario to a scale suitable for traditional debuggers, e.g., by narrowing the search for the root-cause analysis to a small set of nodes or by identifying equivalence classes of nodes and sampling our debug targets from them. We implemented these techniques as lightweight tools that efficiently work on the full scale of the target machine. We explored four lightweight debugging refinements: generic classification parameters, such as stack traces, application-specific classification parameters, such as global variables, statistical data acquisition techniques and machine learning based approaches to perform root cause analysis. Work done under this project can be divided into two categories, new algorithms and techniques for scalable debugging, and foundation infrastructure work on our MRNet multicast-reduction framework for scalability, and Dyninst binary analysis and instrumentation toolkits.« less

  3. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    PubMed

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  4. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years.

    PubMed

    Loulergue, Laetitia; Schilt, Adrian; Spahni, Renato; Masson-Delmotte, Valérie; Blunier, Thomas; Lemieux, Bénédicte; Barnola, Jean-Marc; Raynaud, Dominique; Stocker, Thomas F; Chappellaz, Jérôme

    2008-05-15

    Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.

  5. Implications on 1+1 D runup modeling due to time features of the earthquake source

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Riquelme, S.; Campos, J. A.

    2017-12-01

    The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1+1D solution for the shoreline motion time series, from the static case to the dynamic case, by including both, rise time and rupture velocity. Results show that the static case correspond to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum run-up may be affected by very slow ruptures and long rise time. The analytical solution has been tested for the Nicaraguan tsunami earthquake, suggesting that the rupture was not slow enough to cause wave amplification to explain the high runup observations.

  6. Vegetation Response to Climate Change in the Southern Part of Qinghai-Tibet Plateau at Basinal Scale

    NASA Astrophysics Data System (ADS)

    Liu, X.; Liu, C.; Kang, Q.; Yin, B.

    2018-04-01

    Global climate change has significantly affected vegetation variation in the third-polar region of the world - the Qinghai-Tibet Plateau. As one of the most important indicators of vegetation variation (growth, coverage and tempo-spatial change), the Normalized Difference Vegetation Index (NDVI) is widely employed to study the response of vegetation to climate change. However, a long-term series analysis cannot be achieved because a single data source is constrained by time sequence. Therefore, a new framework was presented in this paper to extend the product series of monthly NDVI, taking as an example the Yarlung Zangbo River Basin, one of the most important river basins in the Qinghai-Tibet Plateau. NDVI products were acquired from two public sources: Global Inventory Modeling and Mapping Studies (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging spectroradiometer (MODIS). After having been extended using the new framework, the new time series of NDVI covers a 384 months period (1982-2013), 84 months longer than previous time series of NDVI product, greatly facilitating NDVI related scientific research. In the new framework, the Gauss Filtering Method was employed to filter out noise in the NDVI product. Next, the standard method was introduced to enhance the comparability of the two data sources, and a pixel-based regression method was used to construct NDVI-extending models with one pixel after another. The extended series of NDVI fit well with original AVHRR-NDVI. With the extended time-series, temporal trends and spatial heterogeneity of NDVI in the study area were studied. Principal influencing factors on NDVI were further determined. The monthly NDVI is highly correlated with air temperature and precipitation in terms of climatic change wherein the spatially averaged NDVI slightly increases in the summer and has increased in temperature and decreased in precipitation in the 32 years period. The spatial heterogeneity of NDVI is in accordance with the seasonal variation of the two climate-change factors. All of these findings can provide valuable scientific support for water-land resources exploration in the third-polar region of the world.

  7. Mode Decomposition Methods for Soil Moisture Prediction

    NASA Astrophysics Data System (ADS)

    Jana, R. B.; Efendiev, Y. R.; Mohanty, B.

    2014-12-01

    Lack of reliable, well-distributed, long-term datasets for model validation is a bottle-neck for most exercises in soil moisture analysis and prediction. Understanding what factors drive soil hydrological processes at different scales and their variability is very critical to further our ability to model the various components of the hydrologic cycle more accurately. For this, a comprehensive dataset with measurements across scales is very necessary. Intensive fine-resolution sampling of soil moisture over extended periods of time is financially and logistically prohibitive. Installation of a few long term monitoring stations is also expensive, and needs to be situated at critical locations. The concept of Time Stable Locations has been in use for some time now to find locations that reflect the mean values for the soil moisture across the watershed under all wetness conditions. However, the soil moisture variability across the watershed is lost when measuring at only time stable locations. We present here a study using techniques such as Dynamic Mode Decomposition (DMD) and Discrete Empirical Interpolation Method (DEIM) that extends the concept of time stable locations to arrive at locations that provide not simply the average soil moisture values for the watershed, but also those that can help re-capture the dynamics across all locations in the watershed. As with the time stability, the initial analysis is dependent on an intensive sampling history. The DMD/DEIM method is an application of model reduction techniques for non-linearly related measurements. Using this technique, we are able to determine the number of sampling points that would be required for a given accuracy of prediction across the watershed, and the location of those points. Locations with higher energetics in the basis domain are chosen first. We present case studies across watersheds in the US and India. The technique can be applied to other hydro-climates easily.

  8. Advective and Mixing Time Scales for Transport of Denmark Strait Overflow Water from the Labrador Sea to the Western Subtropical Atlantic Ocean Determined from 129I, CFC and Hydrographic Time Series Observations

    NASA Astrophysics Data System (ADS)

    Smethie, W. M., Jr.; Smith, J.; Curry, R. G.; Yashayaev, I.; Azetsu-Scott, K.

    2016-02-01

    129I released to the North Sea from two nuclear fuel reprocessing plants is transported through the Nordic Seas and the Arctic Ocean and is entering the deep North Atlantic, predominantly in dense Denmark Strait Overflow Water (DSOW). CFCs enter the surface ocean and also become incorporated in DSOW. Measurements of temperature, salinity, CFCs and 129I have been made at least annually along WOCE/CLIVAR line AR7W in the Labrador Sea from the mid 1990s to present, along Line W extending from the continental slope southeast of Cape Cod toward Bermuda from 2003 to 2014, and along a single occupation of a line extending from Bermuda southeast across the Bermuda Rise in 2010. The measurements in the Labrador Sea were used as input to DSOW flowing from there to the subtropical western Atlantic Ocean. We compared the temporal changes along Line W to the temporal changes along the AR7W line and applied the boundary current model of Waugh and Hall (J. Phys. Oceanogr. 35,1538-1552, 2005) to the Line W and Bermuda Rise line observations to determine the transit time of DSOW transported to Line W in the Deep Western Boundary Current (DWBC) and transported to the southeastern flank of Bermuda via interior flow paths. The lateral mixing time scale along these two flow paths was also estimated with this model. CFC-11 and 129I increase monotonically in the DSOW in the Labrador Sea and salinity oscillates on a 5-year cycle. The boundary current model reproduces all of these trends. The transit time and lateral mixing time constant for DSOW transported to Line W are 7 years (mean flow velocity of 2.1 cm/sec) and 3-6 years, respectively, and for DSOW transported to the southeast flank of Bermuda are 6-10 years and 2-5 years.

  9. FIRE Science Results 1988

    NASA Technical Reports Server (NTRS)

    Mcdougal, David S. (Editor); Wagner, H. Scott (Editor)

    1990-01-01

    FIRE (First ISCCP Regional Experiment) is a U.S. cloud-radiation program that seeks to address the issues of a basic understanding and parameterizations of cirrus and marine stratocumulus cloud systems and ISCCP data products. The papers describe research analysis of data collected at the 1986 Cirrus Intensive Field Observations (IFO), the 1987 Marine Stratocumulus IFO, and the Extended Time Observations. The papers are grouped into sessions on satellite studies, lidar/radiative properties/microphysical studies, radiative properties, thermodynamic and dynamic properties, case studies, and large scale environment and modeling studies.

  10. Preparation of a pure molecular quantum gas.

    PubMed

    Herbig, Jens; Kraemer, Tobias; Mark, Michael; Weber, Tino; Chin, Cheng; Nägerl, Hanns-Christoph; Grimm, Rudolf

    2003-09-12

    An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales. We measured ultralow expansion energies in the range of a few nanokelvin for a sample of 3000 molecules. Our observations are consistent with the presence of a macroscopic molecular matter wave.

  11. Mineral scale management. Part 1, Case studies

    Treesearch

    Peter W. Hart; Alan W. Rudie

    2006-01-01

    Mineral scale increases operating costs, extends downtime, and increases maintenance requirements. This paper presents several successful case studies detailing how mills have eliminated scale. Cases presented include calcium carbonate scale in a white liquor strainer, calcium oxalate scale in the D0 stage of the bleach plant, enzymatic treatment of brown stock to...

  12. Time Strengthening of Crystal Nanocontacts

    NASA Astrophysics Data System (ADS)

    Mazo, Juan J.; Dietzel, Dirk; Schirmeisen, Andre; Vilhena, J. G.; Gnecco, Enrico

    2017-06-01

    We demonstrate how an exponentially saturating increase of the contact area between a nanoasperity and a crystal surface, occurring on time scales governed by the Arrhenius equation, is consistent with measurements of the static friction and lateral contact stiffness on a model alkali-halide surface at different temperatures in ultrahigh vacuum. The "contact ageing" effect is attributed to atomic attrition and is eventually broken by thermally activated slip of the nanoasperity on the surface. The combination of the two effects also leads to regions of strengthening and weakening in the velocity dependence of the friction, which are well-reproduced by an extended version of the Prandtl-Tomlinson model.

  13. 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images.

    PubMed

    Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann

    2018-04-01

    Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Predictability and Prediction of Low-Frequency Rainfall Over the Lower Reaches of the Yangtze River Valley on the Time Scale of 20 to 30 days

    NASA Astrophysics Data System (ADS)

    Yang, Qiuming

    2018-01-01

    This paper presents a predictability study of the 20-30-day low-frequency rainfall over the lower reaches of the Yangtze River valley (LYRV). This study relies on an extended complex autoregressive (ECAR) model method, which is based on the principal components of the global 850 hPa low-frequency meridional wind. ECAR is a recently advanced climate forecast method, based on data-driven models. It not only reflects the lagged variations information between the leading low-frequency components of the global circulation and rainfall in a complex space, but also displays the ability to describe the synergy variations of low-frequency components of a climate system in a low dimensional space. A 6-year forecast experiment is conducted on the low-frequency rainfall over the LYRV for the extended-range daily forecasts during 2009-2014, based on the time-varying high-order ECAR. These experimental results demonstrate that the useful skills of the real-time forecasts are achieved for an extended lead-time up to 28 days with a fifth-order model, and are also shown to be 27-day lead for forecasts which are initiated from weak intraseasonal oscillation (ISO). This high-order ECAR displays the ability to significantly improve the predictions of the ISO. The analysis of the 20-30-day ISO predictability reveals a predictability limit of about 28-40 days. Therefore, the forecast framework used in this study is determined to have the potential to assist in improving the real-time forecasts for the 20-30-day oscillations related to the heavy rainfall over the LYRV in summer.

  15. From microseconds to seconds and minutes—time computation in insect hearing

    PubMed Central

    Hartbauer, Manfred; Römer, Heiner

    2014-01-01

    The computation of time in the auditory system of insects is of relevance at rather different time scales, covering a large range from microseconds to several minutes. At the one end of this range, only a few microseconds of interaural time differences are available for directional hearing, due to the small distance between the ears, usually considered too small to be processed reliably by simple nervous systems. Synapses of interneurons in the afferent auditory pathway are, however, very sensitive to a time difference of only 1–2 ms provided by the latency shift of afferent activity with changing sound direction. At a much larger time scale of several tens of milliseconds to seconds, time processing is important in the context species recognition, but also for those insects where males produce acoustic signals within choruses, and the temporal relationship between song elements strongly deviates from a random distribution. In these situations, some species exhibit a more or less strict phase relationship of song elements, based on phase response properties of their song oscillator. Here we review evidence on how this may influence mate choice decisions. In the same dimension of some tens of milliseconds we find species of katydids with a duetting communication scheme, where one sex only performs phonotaxis to the other sex if the acoustic response falls within a very short time window after its own call. Such time windows show some features unique to insects, and although its neuronal implementation is unknown so far, the similarity with time processing for target range detection in bat echolocation will be discussed. Finally, the time scale being processed must be extended into the range of many minutes, since some acoustic insects produce singing bouts lasting quite long, and female preferences may be based on total signaling time. PMID:24782783

  16. 4D visualization of embryonic, structural crystallization by single-pulse microscopy

    PubMed Central

    Kwon, Oh-Hoon; Barwick, Brett; Park, Hyun Soon; Baskin, J. Spencer; Zewail, Ahmed H.

    2008-01-01

    In many physical and biological systems the transition from an amorphous to ordered native structure involves complex energy landscapes, and understanding such transformations requires not only their thermodynamics but also the structural dynamics during the process. Here, we extend our 4D visualization method with electron imaging to include the study of irreversible processes with a single pulse in the same ultrafast electron microscope (UEM) as used before in the single-electron mode for the study of reversible processes. With this augmentation, we report on the transformation of amorphous to crystalline structure with silicon as an example. A single heating pulse was used to initiate crystallization from the amorphous phase while a single packet of electrons imaged selectively in space the transformation as the structure continuously changes with time. From the evolution of crystallinity in real time and the changes in morphology, for nanosecond and femtosecond pulse heating, we describe two types of processes, one that occurs at early time and involves a nondiffusive motion and another that takes place on a longer time scale. Similar mechanisms of two distinct time scales may perhaps be important in biomolecular folding. PMID:18562291

  17. Adaptive spatial combining for passive time-reversed communications.

    PubMed

    Gomes, João; Silva, António; Jesus, Sérgio

    2008-08-01

    Passive time reversal has aroused considerable interest in underwater communications as a computationally inexpensive means of mitigating the intersymbol interference introduced by the channel using a receiver array. In this paper the basic technique is extended by adaptively weighting sensor contributions to partially compensate for degraded focusing due to mismatch between the assumed and actual medium impulse responses. Two algorithms are proposed, one of which restores constructive interference between sensors, and the other one minimizes the output residual as in widely used equalization schemes. These are compared with plain time reversal and variants that employ postequalization and channel tracking. They are shown to improve the residual error and temporal stability of basic time reversal with very little added complexity. Results are presented for data collected in a passive time-reversal experiment that was conducted during the MREA'04 sea trial. In that experiment a single acoustic projector generated a 24-PSK (phase-shift keyed) stream at 200400 baud, modulated at 3.6 kHz, and received at a range of about 2 km on a sparse vertical array with eight hydrophones. The data were found to exhibit significant Doppler scaling, and a resampling-based preprocessing method is also proposed here to compensate for that scaling.

  18. VizieR Online Data Catalog: Calibrated solar S-index time series (Egeland+, 2017)

    NASA Astrophysics Data System (ADS)

    Egeland, R.; Soon, W.; Baliunas, S.; Hall, J. C.; Pevtsov, A. A.; Bertello, L.

    2017-08-01

    The Mount Wilson HK Program observed the Moon with both the HKP-1 and HKP-2 instruments. After removing 11 obvious outliers, there are 162 HKP-1 observations taken from 1966 September 2 to 1977 June 4 with the Mount Wilson 100 inch reflector, covering the maximum of cycle 20 and the cycle 20-21 minimum. As mentioned in Baliunas+ (1995ApJ...438..269B), observations of the Moon resumed in 1993 with the HKP-2 instrument. After removing 10 obvious outliers, there are 75 HKP-2 observations taken from 1994 March 27 to 2002 November 23 with the Mount Wilson 60 inch reflector, covering the end of cycle 22 and the cycle 23 minimum, extending just past the cycle 23 maximum. The end of observations coincides with the unfortunate termination of the HK Project in 2003. We seek to extend our time series of solar variability beyond cycle 23 by establishing a proxy to the NSO Sacramento Peak (NSO/SP) observations taken from 1976 to 2016, covering cycles 21 to 24. The spectral intensity scale is set by integrating a 0.53Å band centered at 3934.869Å in the K-line wing and setting it to the fixed value of 0.162. We extend the S-index record back to cycle 20 using the composite K time series of Bertello+ (2016SoPh..291.2967B). See section 3 for further explanations. (1 data file).

  19. ADHD symptoms and benefit from extended time testing accommodations.

    PubMed

    Lovett, Benjamin J; Leja, Ashley M

    2015-02-01

    To investigate the relationship between ADHD symptoms, executive functioning problems, and benefit from extended time testing accommodations. College students completed a battery of measures assessing processing speed and reading fluency, reading comprehension (under two different time limits), symptoms of ADHD, executive functioning deficits, and perceptions of need for extended time. Students reporting more symptoms of ADHD and executive functioning deficits actually benefited less from extended time, and students' perceptions of their timing needs did not predict benefit. Students with more ADHD symptoms are less likely to use extended time effectively, possibly because of their associated executive functioning problems. These results suggest there may be little justification for examining a student's ADHD symptoms when making extended time accommodation decisions. © 2013 SAGE Publications.

  20. TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Nicole D.; Basu, Shantanu, E-mail: nwityk@uwo.ca, E-mail: basu@uwo.ca

    2012-12-10

    Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds shows that molecular clouds exhibit a preferred length scale for collapse that depends on the mass-to-flux ratio and neutral-ion collision time within the cloud. We extend this linear analysis to the context of clustered star formation. By combining the results of the linear analysis with a realistic ionization profile for the cloud, we find that a molecular cloud may evolve through two fragmentation events in the evolution toward the formation of stars. Our model suggests that the initial fragmentation into clumps occurs for a transcritical cloud onmore » parsec scales while the second fragmentation can occur for transcritical and supercritical cores on subparsec scales. Comparison of our results with several star-forming regions (Perseus, Taurus, Pipe Nebula) shows support for a two-stage fragmentation model.« less

  1. Scale Adhesion, Sulfur Content, and TBC Failure on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2002-01-01

    This paper summarizes the main effects of sulfur impurity content on the cyclic oxidation resistance of single crystal superalloys, with emphasis on scale and TBC adhesion. Eleven hundred degrees C cyclic oxidation of PWA 1480 produces scale spallation leading to a weight loss of more than 30 Mg/sq cm after 500 one-hr cycles for a sulfur content of 6 ppmw. The sulfur content was reduced to levels below 0.1 ppmw by hydrogen annealing, resulting in weight gains of only 0.5 to 1.0 Mg/sq cm after 1000 one-hr cycles. Samples were produced with various sulfur contents by adjusting the annealing temperature, time, and sample thickness (i.e., diffusion product Dt/L(exp 2)). The subsequent cyclic oxidation behavior, mapped over a sulfur content/thickness diagram, shows a transition to adherent behavior at sulfur levels equivalent to 1 monolayer of total segregation. Additional information is contained in the original extended abstract.

  2. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.

    PubMed

    Wang, Guochao; Tan, Lilong; Yan, Shuhua

    2018-02-07

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  3. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry

    PubMed Central

    Tan, Lilong; Yan, Shuhua

    2018-01-01

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions. PMID:29414897

  4. Use of the Morlet mother wavelet in the frequency-scale domain decomposition technique for the modal identification of ambient vibration responses

    NASA Astrophysics Data System (ADS)

    Le, Thien-Phu

    2017-10-01

    The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.

  5. Entropic Barriers for Two-Dimensional Quantum Memories

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.

    2014-03-01

    Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.

  6. Hypnotherapy for persistent genital arousal disorder: a case study.

    PubMed

    Elkins, Gary R; Ramsey, Derek; Yu, Yimin

    2014-01-01

    Persistent genital arousal disorder (PGAD) is characterized by intrusive sexual arousal that is unresolvable via sexual activity and persists for an extended period of time. PGAD's etiology is unknown, and it has no established treatments. This case study reports on a 71-year-old female patient diagnosed with PGAD who received 9 sessions of hypnotherapy. The following measures were administered at baseline and follow-up: Hospital Anxiety and Depression Scale, Center for Epidemiologic Studies Depression Scale, Pittsburgh Sleep Quality Index, and visual analogue measurements of quality of life, intensity of symptoms, and marital interference. At follow-up, there were significant improvements in all measures. Given the currently limited alternatives for treatment, this case study suggests that hypnotherapy may be beneficial for some patients with PGAD.

  7. Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1983-01-01

    An extended discussion is conducted concerning the origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large scale dynamics of the solar wind. The solar wind is at present the preeminent medium for the study of hydromagnetic waves and turbulence, providing an opportunity for advancement of understanding of the most fundamental processes of the astrophysical plasmas. All interplanetary fluctuations whose time scale is observed to be greater than 1 sec can be regarded as hydromagnetic fluctuations. It has been found to be simplest, and generally very satisfactory, to model interplanetary variations as fluctuations in an MHD fluid. Attention is given to the classification of wave modes, geometrical hydromagnetics, Alfven wave pressure, rugged invariants, and the kinetic theory of collisionless processes.

  8. How long the singular value decomposed entropy predicts the stock market? - Evidence from the Dow Jones Industrial Average Index

    NASA Astrophysics Data System (ADS)

    Gu, Rongbao; Shao, Yanmin

    2016-07-01

    In this paper, a new concept of multi-scales singular value decomposition entropy based on DCCA cross correlation analysis is proposed and its predictive power for the Dow Jones Industrial Average Index is studied. Using Granger causality analysis with different time scales, it is found that, the singular value decomposition entropy has predictive power for the Dow Jones Industrial Average Index for period less than one month, but not for more than one month. This shows how long the singular value decomposition entropy predicts the stock market that extends Caraiani's result obtained in Caraiani (2014). On the other hand, the result also shows an essential characteristic of stock market as a chaotic dynamic system.

  9. Parallel Visualization of Large-Scale Aerodynamics Calculations: A Case Study on the Cray T3E

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Crockett, Thomas W.

    1999-01-01

    This paper reports the performance of a parallel volume rendering algorithm for visualizing a large-scale, unstructured-grid dataset produced by a three-dimensional aerodynamics simulation. This dataset, containing over 18 million tetrahedra, allows us to extend our performance results to a problem which is more than 30 times larger than the one we examined previously. This high resolution dataset also allows us to see fine, three-dimensional features in the flow field. All our tests were performed on the Silicon Graphics Inc. (SGI)/Cray T3E operated by NASA's Goddard Space Flight Center. Using 511 processors, a rendering rate of almost 9 million tetrahedra/second was achieved with a parallel overhead of 26%.

  10. Improved scaling of temperature-accelerated dynamics using localization

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques G.

    2016-07-01

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N3 where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary "bottlenecks" to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N1/2. Some additional possible methods to improve the scaling of TAD are also discussed.

  11. An Analysis of Moisture Fluxes into the Gulf of California

    NASA Technical Reports Server (NTRS)

    Wu, Man-Li C.; Schubert, Siegfried D.; Suarez, Max J.; Huang, Norden E.

    2009-01-01

    This study examines the nature of episodes of enhanced warm-season moisture flux into the Gulf of California. Both spatial structure and primary time scales of the fluxes are examined using the 40-yr ECMWF Re-Analysis data for the period 1980-2001. The analysis approach consists of a compositing technique that is keyed on the low-level moisture fluxes into the Gulf of California. The results show that the fluxes have a rich spectrum of temporal variability, with periods of enhanced transport over the gulf linked to African easterly waves on subweekly (3-8 day) time scales, the Madden-Julian oscillation (MJO) at intraseasonal time scales (20-90 day), and intermediate (10-15 day) time-scale disturbances that appear to originate primarily in the Caribbean Sea-western Atlantic Ocean. In the case of the MJO, enhanced low-level westerlies and large-scale rising motion provide an environment that favors large-scale cyclonic development near the west coast of Central America that, over the course of about 2 weeks, expands northward along the coast eventually reaching the mouth of the Gulf of California where it acts to enhance the southerly moisture flux in that region. On a larger scale, the development includes a northward shift in the eastern Pacific ITCZ, enhanced precipitation over much of Mexico and the southwestern United States, and enhanced southerly/southeasterly fluxes from the Gulf of Mexico into Mexico and the southwestern and central United States. In the case of the easterly waves, the systems that reach Mexico appear to redevelop/reorganize on the Pacific coast and then move rapidly to the northwest to contribute to the moisture flux into the Gulf of California. The most intense fluxes into the gulf on these time scales appear to be synchronized with a midlatitude short-wave trough over the U.S. West Coast and enhanced low-level southerly fluxes over the U.S. Great Plains. The intermediate (10-15 day) time-scale systems have zonal wavelengths roughly twice that of the easterly waves, and their initiation appears to be linked to an extratropical U.S. East Coast ridge and associated northeasterly winds that extend well into the Caribbean Sea during their development phase. The short (3-8 day) and, to a lesser extent, the intermediate (10-15 day) time-scale fluxes tend to be enhanced when the convectively active phase of the MJO is situated over the Americas.

  12. Objective and Subjective Burden of Informal Caregivers 4 Years After a Severe Traumatic Brain Injury: Results From the PariS-TBI Study.

    PubMed

    Bayen, Eléonore; Jourdan, Claire; Ghout, Idir; Darnoux, Emmanuelle; Azerad, Sylvie; Vallat-Azouvi, Claire; Weiss, Jean-Jacques; Aegerter, Philippe; Pradat-Diehl, Pascale; Joël, Marie-Eve; Azouvi, Philippe

    2016-01-01

    Prospective assessment of informal caregiver (IC) burden 4 years after the traumatic brain injury of a relative. Longitudinal cohort study (metropolitan Paris, France). Home dwelling adults (N = 98) with initially severe traumatic brain injury and their primary ICs. Informal caregiver objective burden (Resource Utilization in Dementia measuring Informal Care Time [ICT]), subjective burden (Zarit Burden Inventory), monetary self-valuation of ICT (Willingness-to-pay, Willingness-to-accept). Informal caregivers were women (81%) assisting men (80%) of mean age of 37 years. Fifty-five ICs reported no objective burden (ICT = 0) and no/low subjective burden (average Zarit Burden Inventory = 12.1). Forty-three ICs reported a major objective burden (average ICT = 5.6 h/d) and a moderate/severe subjective burden (average Zarit Burden Inventory = 30.3). In multivariate analyses, higher objective burden was associated with poorer Glasgow Outcome Scale-Extended scores, with more severe cognitive disorders (Neurobehavioral Rating Scale-revised) and with no coresidency status; higher subjective burden was associated with poorer Glasgow Outcome Scale-Extended scores, more Neurobehavioral Rating Scale-revised disorders, drug-alcohol abuse, and involvement in litigation. Economic valuation showed that on average, ICs did not value their ICT as free and preferred to pay a mean Willingness-to-pay = &OV0556;17 per hour to be replaced instead of being paid for providing care themselves (Willingness-to-accept = &OV0556;12). Four years after a severe traumatic brain injury, 44% of ICs experienced a heavy multidimensional burden.

  13. Micron-scale coherence in interphase chromatin dynamics

    PubMed Central

    Zidovska, Alexandra; Weitz, David A.; Mitchison, Timothy J.

    2013-01-01

    Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent across large regions (4–5 µm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP dependent and unidirectional for several seconds, perhaps accounting for ATP-dependent directed movement of single genes. Perturbation of major nuclear ATPases such as DNA polymerase, RNA polymerase II, and topoisomerase II eliminated micron-scale coherence, while causing rapid, local movement to increase; i.e., local motions accelerated but became uncoupled from their neighbors. We observe similar trends in chromatin dynamics upon inducing a direct DNA damage; thus we hypothesize that this may be due to DNA damage responses that physically relax chromatin and block long-distance communication of forces. PMID:24019504

  14. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    PubMed

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  15. [Development and technological transfer of functional pastas extended with legumes].

    PubMed

    Granito, Marisela; Ascanio, Vanesa

    2009-03-01

    Development and technological transfer of functional pastas extended with legumes. Semolina pasta is a highly consumed foodstuff, the biological value of which is low because its protein is deficient in lysine. However, if the semolina is extended with legumes rich in this essential aminoacid, not only and aminoacid supplementation is produced, but also the dietary fibre and minerals are increased. In this work, pastas extended in 10% with a white variety of Phaseolus vulgaris and with Cajanus cajan were produced on a pilot plant scale, and this technology was transferred to a cooperative producing artisanal pastas. The cooking qualities and the physical, chemical, and nutritional characteristics of the pastas were evaluated, as well as the sensorial acceptability in institutionalized elderly people. The extension of the pastas with legume flours increased the optimum cooking time (15 to 20%), the weight (20% and 25%), and the loss of solids by cooking. Similarly, the functional value of the pastas increased by increasing the contents of minerals and dietary fibre. The protein content, as well as the protein digestibility in vitro also increased; however, the parameters of colour L, a and b, and the total starch content of the pastas decreased. At consumer level, the pastas extended with legumes had a good acceptability, for what it was concluded that the extension of the semolina with legume flours in the manufacture of pastas is technologically feasible.

  16. Amplification through chaotic synchronization in spatially extended beam-plasma systems

    NASA Astrophysics Data System (ADS)

    Moskalenko, Olga I.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2017-12-01

    In this paper, we have studied the relationship between chaotic synchronization and microwave signal amplification in coupled beam-plasma systems. We have considered a 1D particle-in-cell numerical model of unidirectionally coupled beam-plasma oscillatory media being in the regime of electron pattern formation. We have shown the significant gain of microwave oscillation power in coupled beam-plasma media being in the different regimes of generation. The discovered effect has a close connection with the chaotic synchronization phenomenon, so we have observed that amplification appears after the onset of the complete time scale synchronization regime in the analyzed coupled spatially extended systems. We have also provided the numerical study of physical processes in the chain of beam-plasma systems leading to the chaotic synchronization and the amplification of microwave oscillations power, respectively.

  17. Tensile properties of latex paint films with TiO2 pigment

    NASA Astrophysics Data System (ADS)

    Hagan, Eric W. S.; Charalambides, Maria N.; Young, Christina T.; Learner, Thomas J. S.; Hackney, Stephen

    2009-05-01

    The tensile properties of latex paint films containing TiO2 pigment were studied with respect to temperature, strain-rate and moisture content. The purpose of performing these experiments was to assist museums in defining safe conditions for modern paintings held in collections. The glass transition temperature of latex paint binders is in close proximity to ambient temperature, resulting in high strain-rate dependence in typical exposure environments. Time dependence of modulus and failure strain is discussed in the context of time-temperature superposition, which was used to extend the experimental time scale. Nonlinear viscoelastic material models are also presented, which incorporate a Prony series with the Ogden or Neo-Hookean hyperelastic function for different TiO2 concentrations.

  18. Entangled time in flocking: Multi-time-scale interaction reveals emergence of inherent noise

    PubMed Central

    Murakami, Hisashi

    2018-01-01

    Collective behaviors that seem highly ordered and result in collective alignment, such as schooling by fish and flocking by birds, arise from seamless shuffling (such as super-diffusion) and bustling inside groups (such as Lévy walks). However, such noisy behavior inside groups appears to preclude the collective behavior: intuitively, we expect that noisy behavior would lead to the group being destabilized and broken into small sub groups, and high alignment seems to preclude shuffling of neighbors. Although statistical modeling approaches with extrinsic noise, such as the maximum entropy approach, have provided some reasonable descriptions, they ignore the cognitive perspective of the individuals. In this paper, we try to explain how the group tendency, that is, high alignment, and highly noisy individual behavior can coexist in a single framework. The key aspect of our approach is multi-time-scale interaction emerging from the existence of an interaction radius that reflects short-term and long-term predictions. This multi-time-scale interaction is a natural extension of the attraction and alignment concept in many flocking models. When we apply this method in a two-dimensional model, various flocking behaviors, such as swarming, milling, and schooling, emerge. The approach also explains the appearance of super-diffusion, the Lévy walk in groups, and local equilibria. At the end of this paper, we discuss future developments, including extending our model to three dimensions. PMID:29689074

  19. Preheating after multifield inflation with nonminimal couplings. III. Dynamical spacetime results

    NASA Astrophysics Data System (ADS)

    DeCross, Matthew P.; Kaiser, David I.; Prabhu, Anirudh; Prescod-Weinstein, Chanda; Sfakianakis, Evangelos I.

    2018-01-01

    This paper concludes our semianalytic study of preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. Using the covariant framework of paper I in this series, we extend the rigid-spacetime results of paper II by considering both the expansion of the Universe during preheating, as well as the effect of the coupled metric perturbations on particle production. The adiabatic and isocurvature perturbations are governed by different effective masses that scale differently with the nonminimal couplings and evolve differently in time. The effective mass for the adiabatic modes is dominated by contributions from the coupled metric perturbations immediately after inflation. The metric perturbations contribute an oscillating tachyonic term that enhances an early period of significant particle production for the adiabatic modes, which ceases on a time scale governed by the nonminimal couplings ξI . The effective mass of the isocurvature perturbations, on the other hand, is dominated by contributions from the fields' potential and from the curvature of the field-space manifold (in the Einstein frame), the balance between which shifts on a time scale governed by ξI. As in papers I and II, we identify distinct behavior depending on whether the nonminimal couplings are small [ξI≲O (1 ) ], intermediate [ξI˜O (1 -10 ) ], or large (ξI≥100 ).

  20. Magnetic Rayleigh-Taylor instability in radiative flows

    NASA Astrophysics Data System (ADS)

    Yaghoobi, Asiyeh; Shadmehri, Mohsen

    2018-06-01

    We present a linear analysis of the radiative Rayleigh-Taylor (RT) instability in the presence of magnetic field for both optically thin and thick regimes. When the flow is optically thin, magnetic field not only stabilizes perturbations with short wavelengths, but also growth rate of the instability at long wavelengths is reduced compared to a non-magnetized case. Then, we extend our analysis to the optically thick flows with a conserved total specific entropy, and properties of the unstable perturbations are investigated in detail. Growth rate of the instability at short wavelengths is suppressed due to the presence of the magnetic field; however, growth rate is nearly constant at long wavelengths because of the radiation field. Since the radiative bubbles around massive protostars are subject to the RT instability, we also explore implications of our results in this context. In the non-magnetized case, the growth time-scale of the instability for a typical bubble is found to be less than 1000 yr, which is very short compared to the typical star formation time-scale. Magnetic field with a reasonable strength significantly increases the growth time-scale to more than hundreds of thousand years. The instability, furthermore, is more efficient at large wavelengths, whereas in the non-magnetized case, growth rate at short wavelengths is more significant.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. P. Jensen; Toto, T.

    Standard Atmospheric Radiation Measurement (ARM) Climate Research Facility sounding files provide atmospheric state data in one dimension of increasing time and height per sonde launch. Many applications require a quick estimate of the atmospheric state at higher time resolution. The INTERPOLATEDSONDE (i.e., Interpolated Sounding) Value-Added Product (VAP) transforms sounding data into continuous daily files on a fixed time-height grid, at 1-minute time resolution, on 332 levels, from the surface up to a limit of approximately 40 km. The grid extends that high so the full height of soundings can be captured; however, most soundings terminate at an altitude between 25more » and 30 km, above which no data is provided. Between soundings, the VAP linearly interpolates atmospheric state variables in time for each height level. In addition, INTERPOLATEDSONDE provides relative humidity scaled to microwave radiometer (MWR) observations.« less

  2. Exploring landscapes and ecosystems by studying their streams

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2016-12-01

    Streams integrate fluxes of water, solutes, and sediment from their catchments, and thus they act as mirrors of the surrounding landscape. Patterns of streamflow, chemistry, and sediment flux can therefore shed light on physical, chemical, and biological processes at the scale of whole ecosystems. However, landscapes also exhibit preferential flow and pervasive heterogeneity on all scales, and therefore store waters over a wide spectrum of time scales, complicating efforts to interpret hydrological and geochemical signals in streamwaters. Here I review current and recent research exploring how landscapes store, mix, and release water and solutes to streams. Groundwater levels and stream flows exhibit diurnal cycles in response to snowmelt in springtime and transpiration during the growing season. These cycles vividly illustrate how aquifers and streams mirror ecological processes in their surrounding landscapes. Stream networks extend and retract, both seasonally and in response to individual rainfall events, dynamically mapping out variations in subsurface transmissivity and in the balance between precipitation and transpiration. Water quality time series spanning the periodic table, from H+ to U, exhibit universal fractal scaling on time scales from hours to decades. This scaling behavior is a temporal expression of the spatial heterogeneity that pervades the subsurface, and it confounds efforts to identify water quality trends. Isotope tracers such as 18O, 2H, 3H, and 14C can used to quantify water ages over seven orders of magnitude, from hours to thousands of years. These tracers show that substantial fractions of streamflow are hours, days, and months old, even in streams fed by aquifers with significant proportions of pre-Holocene groundwater. Examples such as these will be presented to illustrate the close coupling between landscapes and the waters that drain them, and to demonstrate how streams can be used as windows into landscape processes.

  3. 43 CFR 2.19 - When may the bureau extend the basic time limit?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false When may the bureau extend the basic time... INFORMATION ACT; RECORDS AND TESTIMONY Timing of Responses to Requests § 2.19 When may the bureau extend the basic time limit? (a) The bureau may extend the basic time limit if unusual circumstances exist. Before...

  4. Highly Efficient Parallel Multigrid Solver For Large-Scale Simulation of Grain Growth Using the Structural Phase Field Crystal Model

    NASA Astrophysics Data System (ADS)

    Guan, Zhen; Pekurovsky, Dmitry; Luce, Jason; Thornton, Katsuyo; Lowengrub, John

    The structural phase field crystal (XPFC) model can be used to model grain growth in polycrystalline materials at diffusive time-scales while maintaining atomic scale resolution. However, the governing equation of the XPFC model is an integral-partial-differential-equation (IPDE), which poses challenges in implementation onto high performance computing (HPC) platforms. In collaboration with the XSEDE Extended Collaborative Support Service, we developed a distributed memory HPC solver for the XPFC model, which combines parallel multigrid and P3DFFT. The performance benchmarking on the Stampede supercomputer indicates near linear strong and weak scaling for both multigrid and transfer time between multigrid and FFT modules up to 1024 cores. Scalability of the FFT module begins to decline at 128 cores, but it is sufficient for the type of problem we will be examining. We have demonstrated simulations using 1024 cores, and we expect to achieve 4096 cores and beyond. Ongoing work involves optimization of MPI/OpenMP-based codes for the Intel KNL Many-Core Architecture. This optimizes the code for coming pre-exascale systems, in particular many-core systems such as Stampede 2.0 and Cori 2 at NERSC, without sacrificing efficiency on other general HPC systems.

  5. A Process Algebra Approach to Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Sulis, William

    2017-12-01

    The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.

  6. Cognitive Impairment after Severe Traumatic Brain Injury, Clinical Course and Impact on Outcome: A Swedish-Icelandic Study

    PubMed Central

    Stenberg, Maud; Godbolt, Alison K.; Nygren De Boussard, Catharina; Levi, Richard; Stålnacke, Britt-Marie

    2015-01-01

    Objective. To assess the clinical course of cognitive and emotional impairments in patients with severe TBI (sTBI) from 3 weeks to 1 year after trauma and to study associations with outcomes at 1 year. Methods. Prospective, multicenter, observational study of sTBI in Sweden and Iceland. Patients aged 18–65 years with acute Glasgow Coma Scale 3–8 were assessed with the Barrow Neurological Institute Screen for Higher Cerebral Functions (BNIS) and the Hospital Anxiety and Depression Scale (HADS). Outcome measures were Glasgow Outcome Scale Extended (GOSE) and Rancho Los Amigos Cognitive Scale-Revised (RLAS-R). Results. Cognition was assessed with the BNIS assessed for 42 patients out of 100 at 3 weeks, 75 patients at 3 months, and 78 patients at 1 year. Cognition improved over time, especially from 3 weeks to 3 months. The BNIS subscales “orientation” and “visuospatial and visual problem solving” were associated with the GOSE and RLAS-R at 1 year. Conclusion. Cognition seemed to improve over time after sTBI and appeared to be rather stable from 3 months to 1 year. Since cognitive function was associated with outcomes, these results indicate that early screening of cognitive function could be of importance for rehabilitation planning in a clinical setting. PMID:26783381

  7. Use of ruthenium dyes for subnanosecond detector fidelity testing in real time transient absorption

    NASA Astrophysics Data System (ADS)

    Byrdin, Martin; Thiagarajan, Viruthachalam; Villette, Sandrine; Espagne, Agathe; Brettel, Klaus

    2009-04-01

    Transient absorption spectroscopy is a powerful tool for the study of photoreactions on time scales from femtoseconds to seconds. Typically, reactions slower than ˜1 ns are recorded by the "classical" technique; the reaction is triggered by an excitation flash, and absorption changes accompanying the reaction are recorded in real time using a continuous monitoring light beam and a detection system with sufficiently fast response. The pico- and femtosecond region can be accessed by the more recent "pump-probe" technique, which circumvents the difficulties of real time detection on a subnanosecond time scale. This is paid for by accumulation of an excessively large number of shots to sample the reaction kinetics. Hence, it is of interest to extend the classical real time technique as far as possible to the subnanosecond range. In order to identify and minimize detection artifacts common on a subnanosecond scale, like overshoot, ringing, and signal reflections, rigorous testing is required of how the detection system responds to fast changes of the monitoring light intensity. Here, we introduce a novel method to create standard signals for detector fidelity testing on a time scale from a few picoseconds to tens of nanoseconds. The signals result from polarized measurements of absorption changes upon excitation of ruthenium complexes {[Ru(bpy)3]2+ and a less symmetric derivative} by a short laser flash. Two types of signals can be created depending on the polarization of the monitoring light with respect to that of the excitation flash: a fast steplike bleaching at magic angle and a monoexponentially decaying bleaching for parallel polarizations. The lifetime of the decay can be easily varied via temperature and viscosity of the solvent. The method is applied to test the performance of a newly developed real time transient absorption setup with 300 ps time resolution and high sensitivity.

  8. A deep X-ray view of the bare AGN Ark 120. III. X-ray timing analysis and multiwavelength variability

    NASA Astrophysics Data System (ADS)

    Lobban, A. P.; Porquet, D.; Reeves, J. N.; Markowitz, A.; Nardini, E.; Grosso, N.

    2018-03-01

    We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ˜420 ks XMM-Newton campaign plus recent NuSTAR observations and a ˜6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-time-scale (˜day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable Fe K emission redward of the Fe Kα core on long time-scales, consistent with previous findings. We detect a clearly defined power spectrum which we model with a power law with a slope of α ˜ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and Rossi X-ray Timing Explorer data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative (`soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay, τ, of ˜900 s. Finally, we analyse the variability in the optical and ultraviolet (UV) bands using the Optical/UV Monitor onboard XMM-Newton and the Ultra-Violet/Optical Telescope onboard Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of τ = 2.4 ± 1.8 d, which we discuss in the context of disc reprocessing.

  9. MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program

    NASA Astrophysics Data System (ADS)

    Ballett, Peter; Pascoli, Silvia; Ross-Lonergan, Mark

    2017-04-01

    Nearly-sterile neutrinos with masses in the MeV range and below would be produced in the beam of the Short-Baseline Neutrino (SBN) program at Fermilab. In this article, we study the potential for SBN to discover these particles through their subsequent decays in its detectors. We discuss the decays which will be visible at SBN in a minimal and non-minimal extension of the Standard Model, and perform simulations to compute the parameter space constraints which could be placed in the absence of a signal. We demonstrate that the SBN programme can extend existing bounds on well constrained channels such as N → ν l + l - and N → l ± π ∓ while, thanks to the strong particle identification capabilities of liquid-Argon technology, also place bounds on often neglected channels such as N → νγ and N → νπ 0. Furthermore, we consider the phenomenological impact of improved event timing information at the three detectors. As well as considering its role in background reduction, we note that if the light-detection systems in SBND and ICARUS can achieve nanosecond timing resolution, the effect of finite sterile neutrino mass could be directly observable, providing a smoking-gun signature for this class of models. We stress throughout that the search for heavy nearly-sterile neutrinos is a complementary new physics analysis to the search for eV-scale oscillations, and would extend the BSM programme of SBN while requiring no beam or detector modifications.

  10. Modeling reactive transport processes in fractured rock using the time domain random walk approach within a dual-porosity framework

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.

    2017-12-01

    Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.

  11. Multiscale multifractal time irreversibility analysis of stock markets

    NASA Astrophysics Data System (ADS)

    Jiang, Chenguang; Shang, Pengjian; Shi, Wenbin

    2016-11-01

    Time irreversibility is one of the most important properties of nonstationary time series. Complex time series often demonstrate even multiscale time irreversibility, such that not only the original but also coarse-grained time series are asymmetric over a wide range of scales. We study the multiscale time irreversibility of time series. In this paper, we develop a method called multiscale multifractal time irreversibility analysis (MMRA), which allows us to extend the description of time irreversibility to include the dependence on the segment size and statistical moments. We test the effectiveness of MMRA in detecting multifractality and time irreversibility of time series generated from delayed Henon map and binomial multifractal model. Then we employ our method to the time irreversibility analysis of stock markets in different regions. We find that the emerging market has higher multifractality degree and time irreversibility compared with developed markets. In this sense, the MMRA method may provide new angles in assessing the evolution stage of stock markets.

  12. Setting the renormalization scale in pQCD: Comparisons of the principle of maximum conformality with the sequential extended Brodsky-Lepage-Mackenzie approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hong -Hao; Wu, Xing -Gang; Ma, Yang

    A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach tomore » all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R e+e– at four-loop order in pQCD.« less

  13. Liquid storage of boar semen: Current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders.

    PubMed

    Schulze, M; Dathe, M; Waberski, D; Müller, K

    2016-01-01

    Antibiotics are of great importance in boar semen extenders to ensure long shelf life of spermatozoa and to reduce transmission of pathogens into the female tract. However, the use of antibiotics carries a risk of developing resistant bacterial strains in artificial insemination laboratories and their spread via artificial insemination. Development of multiresistant bacteria is a major concern if mixtures of antibiotics are used in semen extenders. Minimal contamination prevention techniques and surveillance of critical hygiene control points proved to be efficient in reducing bacterial load and preventing development of antibiotic resistance. Nevertheless, novel antimicrobial concepts are necessary for efficient bacterial control in extended boar semen with a minimum risk of evoking antibiotic resistance. Enhanced efforts have been made in recent years in the design and use of antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. The male genital tract harbors a series of endogenic substances with antimicrobial activity and additional functions relevant to the fertilization process. However, exogenic AMPs often exert dose- and time-dependent toxic effects on mammalian spermatozoa. Therefore, it is important that potential newly designed AMPs have only minor impacts on eukaryotic cells. Recently, synthetic magainin derivatives and cyclic hexapeptides were tested for their application in boar semen preservation. Bacterial selectivity, proteolytic stability, thermodynamic resistance, and potential synergistic interaction with conventional antibiotics propel predominantly cyclic hexapeptides into highly promising, leading candidates for further development in semen preservation. The time scale for the development of resistant pathogens cannot be predicted at this moment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Utility approach to decision-making in extended T1 and limited T2 glottic carcinoma.

    PubMed

    van Loon, Yda; Stiggelbout, Anne M; Hakkesteegt, Marieke M; Langeveld, Ton P M; de Jong, Rob J Baatenburg; Sjögren, Elisabeth V

    2017-04-01

    It is still undecided if endoscopic laser surgery or radiotherapy is the preferable treatment in extended T1 and limited T2 glottic tumors. Health utilities assessed from patients can aid in decision-making. Patients treated for extended T1 or limited T2 glottic carcinoma by laser surgery (n = 12) or radiotherapy (n = 14) assigned health utilities using a visual analog scale (VAS), time tradeoff (TTO) technique and scored their voice handicap using the Voice Handicap Index (VHI). VAS and TTO scores were slightly lower for the laser group compared to the radiotherapy group, however, not significantly so. The VHI showed a correlation with the VAS score, which was very low in both groups and can be considered (near) normal. Patients show no clear preference for the outcomes of laser surgery or radiotherapy from a quality of life (QOL) or voice handicap point of view. These data can now be incorporated into decision-making models. © 2017 Wiley Periodicals, Inc. Head Neck, 2017 © 2016 Wiley Periodicals, Inc. Head Neck 39: 779-785, 2017. © 2017 Wiley Periodicals, Inc.

  15. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function

    PubMed Central

    Wang, Zhaojun; Cai, Yanan; Liang, Yansheng; Zhou, Xing; Yan, Shaohui; Dan, Dan; Bianco, Piero R.; Lei, Ming; Yao, Baoli

    2017-01-01

    A wide-field fluorescence microscope with a double-helix point spread function (PSF) is constructed to obtain the specimen’s three-dimensional distribution with a single snapshot. Spiral-phase-based computer-generated holograms (CGHs) are adopted to make the depth-of-field of the microscope adjustable. The impact of system aberrations on the double-helix PSF at high numerical aperture is analyzed to reveal the necessity of the aberration correction. A modified cepstrum-based reconstruction scheme is promoted in accordance with properties of the new double-helix PSF. The extended depth-of-field images and the corresponding depth maps for both a simulated sample and a tilted section slice of bovine pulmonary artery endothelial (BPAE) cells are recovered, respectively, verifying that the depth-of-field is properly extended and the depth of the specimen can be estimated at a precision of 23.4nm. This three-dimensional fluorescence microscope with a framerate-rank time resolution is suitable for studying the fast developing process of thin and sparsely distributed micron-scale cells in extended depth-of-field. PMID:29296483

  16. New Measurements of the Cosmic Infrared Background Fluctuations in Deep SpitzerllRAC Survey Data and their Cosmological Implications

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Arendt, R. G.; Ashby, M. L. N.; Fazio, G. G.; Mather, J.; Moseley, S. H.

    2012-01-01

    We extend the previous measurements of CIB fluctuations to angular scales of less than or equal to 1 degree new data obtained in the course of the 2,000+ hour Spitzer Extended Deep Survey. Two fields with completed observations of approximately equal to 12 hr/pixel are analyzed for source-subtracted CIB fluctuations at 3.6 and 4.5 micrometers. The fields, EGS and UDS, cover a total area of approximately 0.25 deg and lie at high Galactic and Ecliptic latitudes, thus minimizing cirrus and zodiacal light contributions to the fluctuations. The observations have been conducted at 3 distinct epochs separated by about 6 months. As in our previous studies, the fields were assembled using the self-calibration method which is uniquely suitable for probing faint diffuse backgrounds. The assembled fields were cleaned off the bright sources down to the low shot noise levels corresponding to AB mag approximately equal to 25, Fourier-transformed and their power spectra evaluated. The noise was estimated from the time-differenced data and subtracted from the signal isolating the fluctuations remaining above the noise levels. The power spectra of the source-subtracted fields remain identical (within the observational uncertainties) for the three epochs of observations indicating that zodiacal light contributes negligibly to the fluctuations. By comparing to the measurements for the same regions at 8 micrometers we demonstrate that Galactic cirrus cannot account for the levels of the fluctuations either. The signal appears isotropically distributed on the sky as required by its origin in the CIB fluctuations. This measurement thus extends our earlier results to the important range of sub-degree scales. We find that the CIB fluctuations continue to diverge to more than 10 times those of known galaxy populations on angular scales out to less than or equal to 1 degree. The low shot noise levels remaining in the diffuse maps indicate that the large scale fluctuations arise from spatial clustering of faint sources well within the confusion noise. The spatial spectrum of these fluctuations is in reasonable agreement with simple fitting assuming that they originate in early populations spatially distributed according to the standard cosmological model (ACDM) at epochs coinciding with the first stars era. The alternative to this identification would require a new population never observed before, nor expected on theoretical grounds, but if true this would represent an important discovery in its own right.

  17. Time Dependent Data Mining in RAVEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogliati, Joshua Joseph; Chen, Jun; Patel, Japan Ketan

    RAVEN is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. The goal of this type of analyses is to understand the response of such systems in particular with respect their probabilistic behavior, to understand their predictability and drivers or lack of thereof. Data mining capabilities are the cornerstones to perform such deep learning of system responses. For this reason static data mining capabilities were added last fiscal year (FY 15). In real applications, when dealing with complex multi-scale, multi-physics systems it seems natural that, during transients, the relevance of themore » different scales, and physics, would evolve over time. For these reasons the data mining capabilities have been extended allowing their application over time. In this writing it is reported a description of the new RAVEN capabilities implemented with several simple analytical tests to explain their application and highlight the proper implementation. The report concludes with the application of those newly implemented capabilities to the analysis of a simulation performed with the Bison code.« less

  18. Reconciliation of Gene and Species Trees

    PubMed Central

    Rusin, L. Y.; Lyubetskaya, E. V.; Gorbunov, K. Y.; Lyubetsky, V. A.

    2014-01-01

    The first part of the paper briefly overviews the problem of gene and species trees reconciliation with the focus on defining and algorithmic construction of the evolutionary scenario. Basic ideas are discussed for the aspects of mapping definitions, costs of the mapping and evolutionary scenario, imposing time scales on a scenario, incorporating horizontal gene transfers, binarization and reconciliation of polytomous trees, and construction of species trees and scenarios. The review does not intend to cover the vast diversity of literature published on these subjects. Instead, the authors strived to overview the problem of the evolutionary scenario as a central concept in many areas of evolutionary research. The second part provides detailed mathematical proofs for the solutions of two problems: (i) inferring a gene evolution along a species tree accounting for various types of evolutionary events and (ii) trees reconciliation into a single species tree when only gene duplications and losses are allowed. All proposed algorithms have a cubic time complexity and are mathematically proved to find exact solutions. Solving algorithms for problem (ii) can be naturally extended to incorporate horizontal transfers, other evolutionary events, and time scales on the species tree. PMID:24800245

  19. Magnetic switching, relaxation, and domain structure of a Co/Si(111) film

    NASA Astrophysics Data System (ADS)

    Baird, M. J.; Bland, J. A. C.; Gu, E.; Ives, A. J. R.; Schumann, F. O.; Hughes, H. P.

    1993-11-01

    We have used scanning magneto-optic Kerr effect (MOKE) microscopy to investigate the magnetic relaxation of a polycrystalline hcp 125 Å Co/Si(111) film with planar uniaxial anisotropy, on time scales between 10 and 2400 s and with a spatial resolution of 15 μm. In a static magnetic field slightly less than the coercive field and applied along the easy axis direction, domains develop and the magnetization reversal proceeds via displacements of 180° domain walls. Microscopic images of this metastable state allow the 180° domains to be identified by calibration of the MOKE signal with respect to that for the saturated magnetization states. The 180° reversed domains are observed to grow in the direction of the field in the form of narrow fingers, extending via short Barkhausen jumps, randomly spaced in time over the entire time-scale range investigated, with typical distances between pinning sites of the order of microns. This reversal behavior is qualitatively similar to that reported for Au/Co perpendicular anisotropy films a few monolayers thick.

  20. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    NASA Astrophysics Data System (ADS)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  1. Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: Thickness scaling

    NASA Astrophysics Data System (ADS)

    Jain, Prateek; Rastogi, Priyank; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh

    2017-07-01

    The direct and indirect valleys in Germanium (Ge) are separated by a very small offset, which opens up the prospect of direct tunneling in the Γ valley of an extended Ge source tunnel field effect transistor (TFET). We explore the impact of thickness scaling of extended Ge source lateral TFET on the band to band tunneling (BTBT) current. The Ge source is extended inside the gate by 2 nm to confine the tunneling in Ge only. We observe that as the thickness is scaled, the band alignment at the Si/Ge heterojunction changes significantly, which results in an increase in Ge to Si BTBT current. Based on density functional calculations, we first obtain the band structure parameters (bandgap, effective masses, etc.) for the Ge and Si slabs of varying thickness, and these are then used to obtain the thickness dependent Kane's BTBT tunneling parameters. We find that electrostatics improves as the thickness is reduced in the ultra-thin Ge film ( ≤ 10 nm). The ON current degrades as we scale down in thickness; however, the subthreshold slope ( S S AVG ) improves remarkably with thickness scaling due to subsurface BTBT. We predict that 8 nm thin devices offer the best option for optimized ON current and S S AVG .

  2. One patient with schizophrenia showed reduced drug-induced extrapyramidal symptoms as a result of an alternative regimen of treatment with paliperidone 3 and 6 mg every other day.

    PubMed

    Suzuki, Hidenobu; Hibino, Hiroyuki; Inoue, Yuichi; Matsumoto, Hideo; Mikami, Katsunaka

    2017-01-01

    Schizophrenia is a chronic disease that requires long-term management with antipsychotics. Antipsychotic drugs are given by tapering their dose, extending the dosing interval, and so on, as part of a treatment strategy to minimize the adverse effects while at the same time maintaining efficacy. We report the case of one patient with schizophrenia in whom the clinical symptoms were alleviated after treatment with 6 mg paliperidone. However, the patient developed extrapyramidal syndrome, for which 3 and 6 mg paliperidone were administered alternately every other day. Extrapyramidal syndrome was assessed using the Drug-Induced Extrapyramidal Symptoms Scale, Abnormal Involuntary Movement Scale, or Barnes Akathisia Scale. There was improvement in Drug-Induced Extrapyramidal Symptoms Scale score and Abnormal Involuntary Movement Scale score. However, there was almost no change in the Positive and Negative Syndrome Scale total score, positive score, negative score, or general score. The results indicate the possibility of lessened adverse effects as a result of an alternative regimen of treatment with paliperidone 3 and 6 mg every other day in the maintenance phase.

  3. Quantum gravity in the sky: interplay between fundamental theory and observations

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-01-01

    Observational missions have provided us with a reliable model of the evolution of the universe starting from the last scattering surface all the way to future infinity. Furthermore given a specific model of inflation, using quantum field theory on curved space-times this history can be pushed back in time to the epoch when space-time curvature was some 1062 times that at the horizon of a solar mass black hole! However, to extend the history further back to the Planck regime requires input from quantum gravity. An important aspect of this input is the choice of the background quantum geometry and of the Heisenberg state of cosmological perturbations thereon, motivated by Planck scale physics. This paper introduces first steps in that direction. Specifically we propose two principles that link quantum geometry and Heisenberg uncertainties in the Planck epoch with late time physics and explore in detail the observational consequences of the initial conditions they select. We find that the predicted temperature-temperature (T-T) correlations for scalar modes are indistinguishable from standard inflation at small angular scales even though the initial conditions are now set in the deep Planck regime. However, there is a specific power suppression at large angular scales. As a result, the predicted spectrum provides a better fit to the PLANCK mission data than standard inflation, where the initial conditions are set in the general relativity regime. Thus, our proposal brings out a deep interplay between the ultraviolet and the infrared. Finally, the proposal also leads to specific predictions for power suppression at large angular scales also for the (T-E and E-E) correlations involving electric polarization3. The PLANCK team is expected to release this data in the coming year.

  4. Simulating Non-Fickian Transport across Péclet Regimes by doing Lévy Flights in the Rank Space of Velocity

    NASA Astrophysics Data System (ADS)

    Most, S.; Dentz, M.; Bolster, D.; Bijeljic, B.; Nowak, W.

    2017-12-01

    Transport in real porous media shows non-Fickian characteristics. In the Lagrangian perspective this leads to skewed distributions of particle arrival times. The skewness is triggered by particles' memory of velocity that persists over a characteristic length. Capturing process memory is essential to represent non-Fickianity thoroughly. Classical non-Fickian models (e.g., CTRW models) simulate the effects of memory but not the mechanisms leading to process memory. CTRWs have been applied successfully in many studies but nonetheless they have drawbacks. In classical CTRWs each particle makes a spatial transition for which each particle adapts a random transit time. Consecutive transit times are drawn independently from each other, and this is only valid for sufficiently large spatial transitions. If we want to apply a finer numerical resolution than that, we have to implement memory into the simulation. Recent CTRW methods use transitions matrices to simulate correlated transit times. However, deriving such transition matrices require transport data of a fine-scale transport simulation, and the obtained transition matrix is solely valid for this single Péclet regime. The CTRW method we propose overcomes all three drawbacks: 1) We simulate transport without restrictions in transition length. 2) We parameterize our CTRW without requiring a transport simulation. 3) Our parameterization scales across Péclet regimes. We do so by sampling the pore-scale velocity distribution to generate correlated transit times as a Lévy flight on the CDF-axis of velocities with reflection at 0 and 1. The Lévy flight is parametrized only by the correlation length. We explicitly model memory including the evolution and decay of non-Fickianity, so it extends from local via pre-asymptotic to asymptotic scales.

  5. A Confirmatory Study of Rating Scale Category Effectiveness for the Coaching Efficacy Scale

    ERIC Educational Resources Information Center

    Myers, Nicholas D.; Feltz, Deborah L.; Wolfe, Edward W.

    2008-01-01

    This study extended validity evidence for measures of coaching efficacy derived from the Coaching Efficacy Scale (CES) by testing the rating scale categorizations suggested in previous research. Previous research provided evidence for the effectiveness of a four-category (4-CAT) structure for high school and collegiate sports coaches; it also…

  6. 21 CFR 99.203 - Request to extend the time for completing planned studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Request to extend the time for completing planned... DEVICES Manufacturer's Submissions, Requests, and Applications § 99.203 Request to extend the time for... FDA under § 99.201, that FDA extend the 36-month time period for completing the studies and submitting...

  7. 21 CFR 99.203 - Request to extend the time for completing planned studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Request to extend the time for completing planned... DEVICES Manufacturer's Submissions, Requests, and Applications § 99.203 Request to extend the time for... FDA under § 99.201, that FDA extend the 36-month time period for completing the studies and submitting...

  8. 22 CFR 401.19 - Reducing or extending time and dispensing with statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Reducing or extending time and dispensing with... RULES OF PROCEDURE Applications § 401.19 Reducing or extending time and dispensing with statements. In... Commission may reduce or extend the time for the presentation of any paper or the doing of any act required...

  9. 21 CFR 99.203 - Request to extend the time for completing planned studies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Request to extend the time for completing planned... DEVICES Manufacturer's Submissions, Requests, and Applications § 99.203 Request to extend the time for... FDA under § 99.201, that FDA extend the 36-month time period for completing the studies and submitting...

  10. A Statistical Model for Estimation of Fish Density Including Correlation in Size, Space, Time and between Species from Research Survey Data

    PubMed Central

    Bastardie, Francois

    2014-01-01

    Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP) statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes zero observations and over-dispersion. The model utilises the fact the correlation between numbers of fish caught increases when the distance in space and time between the fish decreases, and the correlation between size groups in a haul increases when the difference in size decreases. Here the model is extended in two ways. Instead of assuming a natural scale size correlation, the model is further developed to allow for a transformed length scale. Furthermore, in the present application, the spatial- and size-dependent correlation between species was included. For cod (Gadus morhua) and whiting (Merlangius merlangus), a common structured size correlation was fitted, and a separable structure between the time and space-size correlation was found for each species, whereas more complex structures were required to describe the correlation between species (and space-size). The within-species time correlation is strong, whereas the correlations between the species are weaker over time but strong within the year. PMID:24911631

  11. Accuracy of Time Integration Approaches for Stiff Magnetohydrodynamics Problems

    NASA Astrophysics Data System (ADS)

    Knoll, D. A.; Chacon, L.

    2003-10-01

    The simulation of complex physical processes with multiple time scales presents a continuing challenge to the computational plasma physisist due to the co-existence of fast and slow time scales. Within computational plasma physics, practitioners have developed and used linearized methods, semi-implicit methods, and time splitting in an attempt to tackle such problems. All of these methods are understood to generate numerical error. We are currently developing algorithms which remove such error for MHD problems [1,2]. These methods do not rely on linearization or time splitting. We are also attempting to analyze the errors introduced by existing ``implicit'' methods using modified equation analysis (MEA) [3]. In this presentation we will briefly cover the major findings in [3]. We will then extend this work further into MHD. This analysis will be augmented with numerical experiments with the hope of gaining insight, particularly into how these errors accumulate over many time steps. [1] L. Chacon,. D.A. Knoll, J.M. Finn, J. Comput. Phys., vol. 178, pp. 15-36 (2002) [2] L. Chacon and D.A. Knoll, J. Comput. Phys., vol. 188, pp. 573-592 (2003) [3] D.A. Knoll , L. Chacon, L.G. Margolin, V.A. Mousseau, J. Comput. Phys., vol. 185, pp. 583-611 (2003)

  12. Convergent Validity with the BERS-2 Teacher Rating Scale and the Achenbach Teacher's Report Form: A Replication and Extension

    ERIC Educational Resources Information Center

    Benner, Gregory J.; Beaudoin, Kathleen; Mooney, Paul; Uhing, Brad M.; Pierce, Corey D.

    2008-01-01

    In the present study, we sought to extend instrument validation research for a strength-based emotional and behavior rating scale, the "Teacher Rating Scale of the Behavior and Emotional Rating Scale-Second Edition" (BERS-2; Epstein, M. H. (2004). "Behavioral and emotional rating scale" (2nd ed.). Austin, TX: PRO-ED) through…

  13. Tokamak Operation with Safety Factor q 95 < 2 via Control of MHD Stability

    DOE PAGES

    Piovesan, Paolo; Hanson, Jeremy M.; Martin, Piero; ...

    2014-07-24

    Magnetic feedback control of the resistive-wall mode has enabled DIII-D to access stable operation at safety factor q95 = 1:9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at given toroidal magnetic eld. In tokamaks with a divertor, the limit occurs at q95 = 2, as con rmed in DIII-D. Since the energy con cement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a wholemore » new high-current regime not accessible before. This result brings signi cant possible bene ts in terms of fusion performance, but it also extends resistive wall mode physics and its control to conditions never explored before. In present experiments, q95 < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.« less

  14. Wave-equation migration velocity inversion using passive seismic sources

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2015-12-01

    Seismic monitoring at injection sites (e.g., CO2 sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits the fact that the P- and S-wave arrivals originate at the same time and location in the subsurface. We generate image volumes by back-propagating P- and S-wave data through initial Earth models and then applying a correlation-based extended-imaging condition. Energy focusing away from zero lag in the extended image volume is used as a (penalized) residual in an adjoint-state tomography scheme to update the P- and S-wave velocity models. We use an acousto-elastic approximation to greatly reduce the computational cost. Because the method requires neither an initial source location or origin time estimate nor picking of arrivals, it is suitable for low signal-to-noise datasets, such as microseismic data. Synthetic results show that with a realistic distribution of microseismic sources, P- and S-velocity perturbations can be recovered. Although demonstrated at an oil and gas reservoir scale, the technique can be applied to problems of all scales from geologic core samples to global seismology.

  15. Diagnosis and Management of Combined Central Diabetes Insipidus and Cerebral Salt Wasting Syndrome After Traumatic Brain Injury.

    PubMed

    Wu, Xuehai; Zhou, Xiaolan; Gao, Liang; Wu, Xing; Fei, Li; Mao, Ying; Hu, Jin; Zhou, Liangfu

    2016-04-01

    Combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury (TBI) is rare, is characterized by massive polyuria leading to severe water and electrolyte disturbances, and usually is associated with very high mortality mainly as a result of delayed diagnosis and improper management. We retrospectively reviewed the clinical presentation, management, and outcomes of 11 patients who developed combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury to define distinctive features for timely diagnosis and proper management. The most typical clinical presentation was massive polyuria (10,000 mL/24 hours or >1000 mL/hour) refractory to vasopressin alone but responsive to vasopressin plus cortisone acetate. Other characteristic presentations included low central venous pressure, high brain natriuretic peptide precursor level without cardiac dysfunction, high 24-hour urine sodium excretion and hypovolemia, and much higher urine than serum osmolarity; normal serum sodium level and urine specific gravity can also be present. Timely and adequate infusion of sodium chloride was key in treatment. Of 11 patients, 5 had a good prognosis 3 months later (Extended Glasgow Outcome Scale score ≥6), 1 had an Extended Glasgow Outcome Scale score of 4, 2 died in the hospital of brain hernia, and 3 developed a vegetative state. For combined diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury, massive polyuria is a major typical presentation, and intensive monitoring of fluid and sodium status is key for timely diagnosis. To achieve a favorable outcome, proper sodium chloride supplementation and cortisone acetate and vasopressin coadministration are key. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A note on Bjerkne's hypothesis for North Atlantic variability

    NASA Astrophysics Data System (ADS)

    Bryan, Kirk; Stouffer, Ron

    1991-01-01

    On decadal time-scales the historical surface temperature record over land in the Northern Hemisphere is dominated by polar amplified variations. These variations are coherent with SST anomalies concentrated in the Northwest Atlantic, but extending with lesser amplitude into the North Pacific as well. Bierknes suggested that multi-year SST anomalies in the subpolar North Atlantic were due to irregular changes in the intensity of the thermohaline circulation. In support of the Bjerknes hypothesis there is evidence that winter overturning in the Labrador Sea was suppressed for a brief period from 1967-1969 by a cap of relative fresh water at the surface. Cause and effect are unclear, but this event was associated with a marked cooling of the entire Northern Hemisphere. The difference in SST averaged over the Northern Hemisphere oceans and SST averaged over the Southern Hemisphere oceans from the equator to 40°S is coherent with Sahel summer rainfall on decadal time scales. Empirical evidence is supported by numerical experiments with the British Meteorological Office atmospheric climate model which simulate augmented monsoonal rainfall in the Sahel region of Africa in response to realistic warm SST anomalies in the Northwest Atlantic. A coupled ocean-atmosphere global model exhibits two equilibrium climate states. One has an active thermohaline circulation in the North Atlantic and the other does not. The two climate states provide an extreme example which illustrates the type of large scale air sea interaction Bjerknes visualized as a mechanism for North Atlantic climate variability on decadal time-scales.

  17. Demonstration of improved sensitivity of echo interferometers to gravitational acceleration

    NASA Astrophysics Data System (ADS)

    Mok, C.; Barrett, B.; Carew, A.; Berthiaume, R.; Beattie, S.; Kumarakrishnan, A.

    2013-08-01

    We have developed two configurations of an echo interferometer that rely on standing-wave excitation of a laser-cooled sample of rubidium atoms. Both configurations can be used to measure acceleration a along the axis of excitation. For a two-pulse configuration, the signal from the interferometer is modulated at the recoil frequency and exhibits a sinusoidal frequency chirp as a function of pulse spacing. In comparison, for a three-pulse stimulated-echo configuration, the signal is observed without recoil modulation and exhibits a modulation at a single frequency as a function of pulse spacing. The three-pulse configuration is less sensitive to effects of vibrations and magnetic field curvature, leading to a longer experimental time scale. For both configurations of the atom interferometer (AI), we show that a measurement of acceleration with a statistical precision of 0.5% can be realized by analyzing the shape of the echo envelope that has a temporal duration of a few microseconds. Using the two-pulse AI, we obtain measurements of acceleration that are statistically precise to 6 parts per million (ppm) on a 25 ms time scale. In comparison, using the three-pulse AI, we obtain measurements of acceleration that are statistically precise to 0.4 ppm on a time scale of 50 ms. A further statistical enhancement is achieved by analyzing the data across the echo envelope so that the statistical error is reduced to 75 parts per billion (ppb). The inhomogeneous field of a magnetized vacuum chamber limited the experimental time scale and resulted in prominent systematic effects. Extended time scales and improved signal-to-noise ratio observed in recent echo experiments using a nonmagnetic vacuum chamber suggest that echo techniques are suitable for a high-precision measurement of gravitational acceleration g. We discuss methods for reducing systematic effects and improving the signal-to-noise ratio. Simulations of both AI configurations with a time scale of 300 ms suggest that an optimized experiment with improved vibration isolation and atoms selected in the mF=0 state can result in measurements of g statistically precise to 0.3 ppb for the two-pulse AI and 0.6 ppb for the three-pulse AI.

  18. Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe

    NASA Astrophysics Data System (ADS)

    Scheifinger, Helfried; Menzel, Annette; Koch, Elisabeth; Peter, Christian; Ahas, Rein

    2002-11-01

    A data set of 17 phenological phases from Germany, Austria, Switzerland and Slovenia spanning the time period from 1951 to 1998 has been made available for analysis together with a gridded temperature data set (1° × 1° grid) and the North Atlantic Oscillation (NAO) index time series. The disturbances of the westerlies constitute the main atmospheric source for the temporal variability of phenological events in Europe. The trend, the standard deviation and the discontinuity of the phenological time series at the end of the 1980s can, to a great extent, be explained by the NAO. A number of factors modulate the influence of the NAO in time and space. The seasonal northward shift of the westerlies overlaps with the sequence of phenological spring phases, thereby gradually reducing its influence on the temporal variability of phenological events with progression of spring (temporal loss of influence). This temporal process is reflected by a pronounced decrease in trend and standard deviation values and common variability with the NAO with increasing year-day. The reduced influence of the NAO with increasing distance from the Atlantic coast is not only apparent in studies based on the data set of the International Phenological Gardens, but also in the data set of this study with a smaller spatial extent (large-scale loss of influence). The common variance between phenological and NAO time series displays a discontinuous drop from the European Atlantic coast towards the Alps. On a local and regional scale, mountainous terrain reduces the influence of the large-scale atmospheric flow from the Atlantic via a proposed decoupling mechanism. Valleys in mountainous terrain have the inclination to harbour temperature inversions over extended periods of time during the cold season, which isolate the valley climate from the large-scale atmospheric flow at higher altitudes. Most phenological stations reside at valley bottoms and are thus largely decoupled in their temporal variability from the influence of the westerly flow regime (local-scale loss of influence). This study corroborates an increasing number of similar investigations that find that vegetation does react in a sensitive way to variations of its atmospheric environment across various temporal and spatial scales.

  19. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    DOE PAGES

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less

  20. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    DOE PAGES

    Seyler, C. E.; Martin, M. R.

    2011-01-14

    In this study, it is shown that the two-fluid model under a generalized Ohm’s law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm’s law determines the current density to a system where Ohm’s law determines the electric field. This resultmore » is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.« less

  1. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less

  2. Fracture induced electromagnetic emissions: extending laboratory findings by observations at the geophysical scale

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Kopanas, John; Kalimeris, Anastasios; Antonopoulos, George; Peratzakis, Athanasios; Eftaxias, Konstantinos; Nomicos, Constantinos

    2014-05-01

    Under natural conditions, it is practically impossible to install an experimental network on the geophysical scale using the same instrumentations as in laboratory experiments for understanding, through the states of stress and strain and their time variation, the laws that govern the friction during the last stages of EQ generation, or to monitor (much less to control) the principal characteristics of a fracture process. Fracture-induced electromagnetic emissions (EME) in a wide range of frequency bands are sensitive to the micro-structural chances. Thus, their study constitutes a nondestructive method for the monitoring of the evolution of damage process at the laboratory scale. It has been suggested that fracture induced MHz-kHz electromagnetic (EM) emissions, which emerge from a few days up to a few hours before the main seismic shock occurrence permit a real time monitoring of the damage process during the last stages of earthquake preparation, as it happens at the laboratory scale. Since the EME are produced both in the case of the laboratory scale fracture and the EQ preparation process (geophysical scale fracture) they should present similar characteristics in these two scales. Therefore, both the laboratory experimenting scientists and the experimental scientists studying the pre-earthquake EME could benefit from each- other's results. Importantly, it is noted that when studying the fracture process by means of laboratory experiments, the fault growth process normally occurs violently in a fraction of a second. However, a major difference between the laboratory and natural processes is the order-of-magnitude differences in scale (in space and time), allowing the possibility of experimental observation at the geophysical scale for a range of physical processes which are not observable at the laboratory scale. Therefore, the study of fracture-induced EME is expected to reveal more information, especially for the last stages of the fracture process, when it is conducted at the geophysical scale. As a characteristic example, we discuss about the case of electromagnetic silence before the global rupture that was first observed in preseismic EME and recently was also observed in the EME measured during laboratory fracture experiments, completely revising the earlier views about the fracture-induced electromagnetic emissions.

  3. Gridded Uncertainty Maps of Fossil Fuel Carbon Dioxide Emissions: A New Data Product

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Boden, T.

    2014-12-01

    With the publication of a new assessment of the uncertainty associated with the mass of fossil fuel carbon dioxide (FFCO2) emissions (2014, Tellus B, 66, 23616, doi:10.3402/tellusb.v66.23616), it is now possible to extend that work with a gridded map of fossil fuel emission uncertainties. The new data product was created to be paired with the long-used, Carbon Dioxide Information Analysis Center (CDIAC), emission year 1751-present, one degree latitude by one degree longitude (1x1) mass of emissions data product (http://cdiac.ornl.gov/epubs/ndp/ndp058/ndp058_v2013.html). Now, for the first time, data users will have FFCO2 emission information that represents both mass and uncertainty, each of which varies in both time and space. The new data product was constructed by examining the individual uncertainties in each of the input data sets to the gridded mass maps and then combining these individual uncertainties into an overall uncertainty for the mass maps. The input data sets include a table of the mass of FFCO2 emissions by country and year, the one degree geographic map of emissions which includes changing borders on an annual time scale and ties the mass of emissions to location, and the one degree population proxy used to distribute the mass of emissions within each country. As the three input data sets are independent of each other, their combination for the overall uncertainty is accomplished by a simple square root of the sum of the squares procedure. The resulting uncertainty data product is gridded at 1x1 and exactly overlays the 1x1 mass emission maps. The default temporal resolution is annual, but a companion product is also available at monthly time scales. The monthly uncertainty product uses the same input data sets, but the mass uncertainty is scaled as described in the monthly mass product description paper (2011, Tellus B, 63:309-327, doi: 10.1111/j.1600-0889.2011.00530.x). The gridded uncertainty maps cover emission year 1950 to 2010. The start year is determined by the mass uncertainty study which began its analysis in 1950. The end year reflects the latest emission year in the current CDIAC data set; as new years are added to the CDIAC data set, the uncertainty map time series can also be extended.

  4. Editorial

    NASA Astrophysics Data System (ADS)

    Preis, T.

    2011-03-01

    The two articles in this issue of the European Physical Journal Special Topics cover topics in Econophysics and GPU computing in the last years. In the first article [1], the formation of market prices for financial assets is described which can be understood as superposition of individual actions of market participants, in which they provide cumulative supply and demand. This concept of macroscopic properties emerging from microscopic interactions among the various subcomponents of the overall system is also well-known in statistical physics. The distribution of price changes in financial markets is clearly non-Gaussian leading to distinct features of the price process, such as scaling behavior, non-trivial correlation functions and clustered volatility. This article focuses on the analysis of financial time series and their correlations. A method is used for quantifying pattern based correlations of a time series. With this methodology, evidence is found that typical behavioral patterns of financial market participants manifest over short time scales, i.e., that reactions to given price patterns are not entirely random, but that similar price patterns also cause similar reactions. Based on the investigation of the complex correlations in financial time series, the question arises, which properties change when switching from a positive trend to a negative trend. An empirical quantification by rescaling provides the result that new price extrema coincide with a significant increase in transaction volume and a significant decrease in the length of corresponding time intervals between transactions. These findings are independent of the time scale over 9 orders of magnitude, and they exhibit characteristics which one can also find in other complex systems in nature (and in physical systems in particular). These properties are independent of the markets analyzed. Trends that exist only for a few seconds show the same characteristics as trends on time scales of several months. Thus, it is possible to study financial bubbles and their collapses in more detail, because trend switching processes occur with higher frequency on small time scales. In addition, a Monte Carlo based simulation of financial markets is analyzed and extended in order to reproduce empirical features and to gain insight into their causes. These causes include both financial market microstructure and the risk aversion of market participants.

  5. Extended Time Testing Accommodations for Students with Disabilities: Answers to Five Fundamental Questions

    ERIC Educational Resources Information Center

    Lovett, Benjamin J.

    2010-01-01

    Extended time is one of the most common testing accommodations provided to students with disabilities. It is also controversial; critics of extended time accommodations argue that extended time is used too readily, without concern for how it changes the skills measured by tests, leading to scores that cannot be compared fairly with those of other…

  6. Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures

    NASA Astrophysics Data System (ADS)

    Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.

    2018-03-01

    A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.

  7. Observations of a diapycnal shortcut to adiabatic upwelling of Antarctic Circumpolar Deep Water

    NASA Astrophysics Data System (ADS)

    Silvester, J. Mead; Lenn, Yueng-Djern; Polton, Jeff A.; Rippeth, Tom P.; Maqueda, M. Morales

    2014-11-01

    In the Southern Ocean, small-scale turbulence causes diapycnal mixing which influences important water mass transformations, in turn impacting large-scale ocean transports such as the Meridional Overturning Circulation (MOC), a key controller of Earth's climate. We present direct observations of mixing over the Antarctic continental slope between water masses that are part of the Southern Ocean MOC. A 12 h time series of microstructure turbulence measurements, hydrography, and velocity observations off Elephant Island, north of the Antarctic Peninsula, reveals two concurrent bursts of elevated dissipation of O(10-6) W kg-1, resulting in heat fluxes ˜10 times higher than basin-integrated Drake Passage estimates. This occurs across the boundary between adjacent adiabatic upwelling and downwelling overturning cells. Ray tracing to nearby topography shows mixing between 300 and 400 m is consistent with the breaking of locally generated internal tidal waves. Since similar conditions extend to much of the Antarctic continental slope where these water masses outcrop, diapycnal mixing may contribute significantly to upwelling.

  8. Frequency adaptive metadynamics for the calculation of rare-event kinetics

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Valsson, Omar; Tiwary, Pratyush; Parrinello, Michele; Lindorff-Larsen, Kresten

    2018-08-01

    The ability to predict accurate thermodynamic and kinetic properties in biomolecular systems is of both scientific and practical utility. While both remain very difficult, predictions of kinetics are particularly difficult because rates, in contrast to free energies, depend on the route taken. For this reason, specific enhanced sampling methods are needed to calculate long-time scale kinetics. It has recently been demonstrated that it is possible to recover kinetics through the so-called "infrequent metadynamics" simulations, where the simulations are biased in a way that minimally corrupts the dynamics of moving between metastable states. This method, however, requires the bias to be added slowly, thus hampering applications to processes with only modest separations of time scales. Here we present a frequency-adaptive strategy which bridges normal and infrequent metadynamics. We show that this strategy can improve the precision and accuracy of rate calculations at fixed computational cost and should be able to extend rate calculations for much slower kinetic processes.

  9. Wind Carved Rock

    NASA Image and Video Library

    2016-10-19

    The distinctively fluted surface and elongated hills in this image in Medusae Fossae are caused by wind erosion of a soft fine-grained rock. Called yardangs, these features are aligned with the prevailing wind direction. This wind direction would have dominated for a very long time to carve these large-scale features into the exposed rock we see today. Yardangs not only reveal the strength and direction of historic winds, but also reveal something of the host rock itself. Close inspection by HiRISE shows an absence of boulders or rubble, especially along steep yardang cliffs and buttresses. The absence of rubble and the scale of the yardangs tells us that the host rock consists only of weakly cemented fine granules in tens of meters or more thick deposits. Such deposits could have come from extended settling of volcanic ash, atmospheric dust, or accumulations of wind deposited fine sands. After a time these deposits became cemented and cohesive, illustrated by the high standing relief and exposed cliffs. http://photojournal.jpl.nasa.gov/catalog/PIA21111

  10. Sensors in the Stream: The High-Frequency Wave of the Present.

    PubMed

    Rode, Michael; Wade, Andrew J; Cohen, Matthew J; Hensley, Robert T; Bowes, Michael J; Kirchner, James W; Arhonditsis, George B; Jordan, Phil; Kronvang, Brian; Halliday, Sarah J; Skeffington, Richard A; Rozemeijer, Joachim C; Aubert, Alice H; Rinke, Karsten; Jomaa, Seifeddine

    2016-10-04

    New scientific understanding is catalyzed by novel technologies that enhance measurement precision, resolution or type, and that provide new tools to test and develop theory. Over the last 50 years, technology has transformed the hydrologic sciences by enabling direct measurements of watershed fluxes (evapotranspiration, streamflow) at time scales and spatial extents aligned with variation in physical drivers. High frequency water quality measurements, increasingly obtained by in situ water quality sensors, are extending that transformation. Widely available sensors for some physical (temperature) and chemical (conductivity, dissolved oxygen) attributes have become integral to aquatic science, and emerging sensors for nutrients, dissolved CO 2 , turbidity, algal pigments, and dissolved organic matter are now enabling observations of watersheds and streams at time scales commensurate with their fundamental hydrological, energetic, elemental, and biological drivers. Here we synthesize insights from emerging technologies across a suite of applications, and envision future advances, enabled by sensors, in our ability to understand, predict, and restore watershed and stream systems.

  11. Synaptic dynamics contribute to long-term single neuron response fluctuations.

    PubMed

    Reinartz, Sebastian; Biro, Istvan; Gal, Asaf; Giugliano, Michele; Marom, Shimon

    2014-01-01

    Firing rate variability at the single neuron level is characterized by long-memory processes and complex statistics over a wide range of time scales (from milliseconds up to several hours). Here, we focus on the contribution of non-stationary efficacy of the ensemble of synapses-activated in response to a given stimulus-on single neuron response variability. We present and validate a method tailored for controlled and specific long-term activation of a single cortical neuron in vitro via synaptic or antidromic stimulation, enabling a clear separation between two determinants of neuronal response variability: membrane excitability dynamics vs. synaptic dynamics. Applying this method we show that, within the range of physiological activation frequencies, the synaptic ensemble of a given neuron is a key contributor to the neuronal response variability, long-memory processes and complex statistics observed over extended time scales. Synaptic transmission dynamics impact on response variability in stimulation rates that are substantially lower compared to stimulation rates that drive excitability resources to fluctuate. Implications to network embedded neurons are discussed.

  12. Relationship between Birkeland current regions, particle precipitation, and electric fields

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, O.; Watermann, J.; Newell, P.; Rich, F.

    1993-01-01

    The relationship of the large-scale dayside Birkeland currents to large-scale particle precipitation patterns, currents, and convection is examined using DMSP and Sondrestrom radar observations. It is found that the local time of the mantle currents is not limited to the longitude of the cusp proper, but covers a larger local time extent. The mantle currents flow entirely on open field lines. About half of region 1 currents flow on open field lines, consistent with the assumption that the region 1 currents are generated by the solar wind dynamo and flow within the surface that separates open and closed field lines. More than 80 percent of the Birkeland current boundaries do not correspond to particle precipitation boundaries. Region 2 currents extend beyond the plasma sheet poleward boundary; region 1 currents flow in part on open field lines; mantle currents and mantle particles are not coincident. On most passes when a triple current sheet is observed, the convection reversal is located on closed field lines.

  13. A Rapid Process for Fabricating Gas Sensors

    PubMed Central

    Hsiao, Chun-Ching; Luo, Li-Siang

    2014-01-01

    Zinc oxide (ZnO) is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD) was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (ΔR/R) of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost. PMID:25010696

  14. Exploring the spiral of silence in adjustable social networks

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Du, Ya-Jun; Li, Xian-Yong; Chen, Xiao-Liang

    2015-03-01

    This study extends the understanding of the spiral of silence theory by taking into account four factors, including the topology of networks, the time factor of information transmission, the node degree of individuals and the freedom of expression. Simulation experiments analyze the silencers, public opinion in steady state and relaxation time in small-world networks, scale-free networks and community-structured networks by adjusting the initial conditions. Results highlight that individuals are easier to keep silent in scale-free network, especially when the individual with big degree and minority opinion starts the discussion. Conversely, there are only a few individuals keep silent in the community-structured network when the two communities hold opposite opinions. Moreover, the number of silencers grows as the degree of coupling increases, and it decreases as the freedom of expression goes up. By analyzing the public opinion evolution, we also find some important conditions, such as the network topology, the potential public opinion distribution, and the status and sides of the first speaker, can drive the minority reversal.

  15. Extending atomistic scale chemistry to mesoscale model of condensed-phase deflagration

    NASA Astrophysics Data System (ADS)

    Joshi, Kaushik; Chaudhuri, Santanu

    2017-01-01

    Predictive simulations connecting chemistry that follow the shock or thermal initiation of energetic materials to subsequent deflagration or detonation events is currently outside the realm of possibilities. Molecular dynamics and first-principles based dynamics have made progress in understanding reactions in picosecond to nanosecond time scale. Results from thermal ignition of different phases of RDX show a complex reaction network and emergence of a deterministic behavior for critical temperature before ignition and hot spot growth rates. The kinetics observed is dependent on the hot spot temperature, system size and thermal conductivity. For cases where ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. The gradual temperature and pressure increase in the incubation period is accompanied by accumulation of heavier polyradicals. The challenge of connecting such chemistry in mesoscale simulations remain in reducing the complexity of chemistry. The hot spot growth kinetics in RDX grains and interfaces is an important challenge for reactive simulations aiming to fill in the gaps in our knowledge in the nanoseconds to microseconds time scale. The results discussed indicate that the mesoscale chemistry may include large polyradical molecules in dense reactive mix reaching an instability point at certain temperatures and pressures.

  16. Transient response to localized episodic heating in the tropics

    NASA Technical Reports Server (NTRS)

    Salby, M. L.; Garcia, R. R.

    1985-01-01

    It is generally recognized that equatorial disturbances in the lower stratosphere are excited by convective latent heat release associated with the Internal Tropical Convergence Zone (ITCZ). Recently, attention has also focused on tropical convection with regard to extratropical teleconnection patterns. Unlike equatorial waves which are trapped about the equator but propagate vertically, the latter extend well out of the tropics but are barotropic. They have been most widely discussed in connection with long-term climatological features. Both types of disturbances have been examined largely from the standpoint of steady monochromatic forcing, in the latter case zero frequency or time-mean heating. However, tropical convection as revealed by recent geostationary satellite imagery is anything but regular, surely not steady. Much of the heating variance is concentrated spatially within three localized convective centers: Indonesia, the Amazon, and the Congo. Convective activity within these regions undergoes an irregular evolution over the span of a couple of days. It involves a rather broad spectrum of spatial and temporal scales. The analysis of cloud brightness over the Eastern Atlantic and Africa suggests a characteristic time scale of 3-4 days and correlations scales in latitude and longitude of approximately 30 deg.

  17. Decomposition method for fast computation of gigapixel-sized Fresnel holograms on a graphics processing unit cluster.

    PubMed

    Jackin, Boaz Jessie; Watanabe, Shinpei; Ootsu, Kanemitsu; Ohkawa, Takeshi; Yokota, Takashi; Hayasaki, Yoshio; Yatagai, Toyohiko; Baba, Takanobu

    2018-04-20

    A parallel computation method for large-size Fresnel computer-generated hologram (CGH) is reported. The method was introduced by us in an earlier report as a technique for calculating Fourier CGH from 2D object data. In this paper we extend the method to compute Fresnel CGH from 3D object data. The scale of the computation problem is also expanded to 2 gigapixels, making it closer to real application requirements. The significant feature of the reported method is its ability to avoid communication overhead and thereby fully utilize the computing power of parallel devices. The method exhibits three layers of parallelism that favor small to large scale parallel computing machines. Simulation and optical experiments were conducted to demonstrate the workability and to evaluate the efficiency of the proposed technique. A two-times improvement in computation speed has been achieved compared to the conventional method, on a 16-node cluster (one GPU per node) utilizing only one layer of parallelism. A 20-times improvement in computation speed has been estimated utilizing two layers of parallelism on a very large-scale parallel machine with 16 nodes, where each node has 16 GPUs.

  18. Re-understanding the law-of-the-wall for wall-bounded turbulence based on in-depth investigation of DNS data

    NASA Astrophysics Data System (ADS)

    Cao, Bochao; Xu, Hongyi

    2018-05-01

    Based on direct numerical simulation (DNS) data of the straight ducts, namely square and rectangular annular ducts, detailed analyses were conducted for the mean streamwise velocity, relevant velocity scales, and turbulence statistics. It is concluded that turbulent boundary layers (TBL) should be broadly classified into three types (Type-A, -B, and -C) in terms of their distribution patterns of the time-averaged local wall-shear stress (τ _w ) or the mean local frictional velocity (u_τ ) . With reference to the Type-A TBL analysis by von Karman in developing the law-of-the-wall using the time-averaged local frictional velocity (u_τ ) as scale, the current study extended the approach to the Type-B TBL and obtained the analytical expressions for streamwise velocity in the inner-layer using ensemble-averaged frictional velocity (\\bar{{u}}_τ ) as scale. These analytical formulae were formed by introducing the general damping and enhancing functions. Further, the research applied a near-wall DNS-guided integration to the governing equations of Type-B TBL and quantitatively proved the correctness and accuracy of the inner-layer analytical expressions for this type.

  19. Sybil--efficient constraint-based modelling in R.

    PubMed

    Gelius-Dietrich, Gabriel; Desouki, Abdelmoneim Amer; Fritzemeier, Claus Jonathan; Lercher, Martin J

    2013-11-13

    Constraint-based analyses of metabolic networks are widely used to simulate the properties of genome-scale metabolic networks. Publicly available implementations tend to be slow, impeding large scale analyses such as the genome-wide computation of pairwise gene knock-outs, or the automated search for model improvements. Furthermore, available implementations cannot easily be extended or adapted by users. Here, we present sybil, an open source software library for constraint-based analyses in R; R is a free, platform-independent environment for statistical computing and graphics that is widely used in bioinformatics. Among other functions, sybil currently provides efficient methods for flux-balance analysis (FBA), MOMA, and ROOM that are about ten times faster than previous implementations when calculating the effect of whole-genome single gene deletions in silico on a complete E. coli metabolic model. Due to the object-oriented architecture of sybil, users can easily build analysis pipelines in R or even implement their own constraint-based algorithms. Based on its highly efficient communication with different mathematical optimisation programs, sybil facilitates the exploration of high-dimensional optimisation problems on small time scales. Sybil and all its dependencies are open source. Sybil and its documentation are available for download from the comprehensive R archive network (CRAN).

  20. Effects of summer internship and follow-up distance mentoring programs on middle and high school student perceptions and interest in health careers.

    PubMed

    Fernandez-Repollet, Emma; Locatis, Craig; De Jesus-Monge, Wilfredo E; Maisiak, Richard; Liu, Wei-Li

    2018-05-02

    Minorities are underrepresented in health professions and efforts to recruit minority students into health careers are considered a way to reduce health disparities. There is little research about the effectiveness of these programs, other than satisfaction. This study aimed to measure program effects on student understanding of and interest in health careers. Students took a career interest inventory, completed a scale measuring their self-reported understanding and interest in health careers, and wrote essays about health careers before and after completing a 1 week on campus internship on health careers and after a 9 month follow up distance mentoring program where they continued to interact with university faculty by videoconference about career options. Changes in inventory, scale, and essay scores were analyzed for changes over time using Wilcoxon and Mann-Whitney tests. Inventory scores were unchanged over time, but scale and essay scores trended upward significantly post internship and mentoring. Health career education and mentoring programs can positively affect student knowledge of health careers and their attitudes about them. The study's methods extend measures of program impact beyond satisfaction.

  1. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models.

    PubMed

    Lovejoy, S; de Lima, M I P

    2015-07-01

    Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.

  2. Highly parallel demagnetization field calculation using the fast multipole method on tetrahedral meshes with continuous sources

    NASA Astrophysics Data System (ADS)

    Palmesi, P.; Exl, L.; Bruckner, F.; Abert, C.; Suess, D.

    2017-11-01

    The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Computational improvements can relieve problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. The novelty lies in extending FMM to linearly magnetized tetrahedral sources making it interesting also for other areas of computational physics. We treat the near field directly and in use (exact) numerical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.

  3. Extended Operation of Turbojet Engine with Pentaborane

    NASA Technical Reports Server (NTRS)

    Useller, James W; Jones, William L

    1957-01-01

    A full-scale turbojet engine was operated with pentaborane fuel continuously for 22 minutes at conditions simulating flight at a Mach number of 0.8 at an altitude of 50,000 feet. This period of operation is approximately three times longer than previously reported operation times. Although the specific fuel consumption was reduced from 1.3 with JP-4 fuel to 0.98 with pentaborane, a 13.2-percent reduction in net thrust was also encountered. A portion of this thrust loss is potentially recoverable with proper design of the engine components. The boron oxide deposition and erosion processes within the engine approached an equilibrium condition after approximately 22 minutes of operation with pentaborane.

  4. The X-33 Extended Flight Test Range

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Sakahara, Robert; Kremer, Steven E.

    1998-01-01

    Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.

  5. DEKFIS user's guide: Discrete Extended Kalman Filter/Smoother program for aircraft and rotorcraft data consistency

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer program DEKFIS (discrete extended Kalman filter/smoother), formulated for aircraft and helicopter state estimation and data consistency, is described. DEKFIS is set up to pre-process raw test data by removing biases, correcting scale factor errors and providing consistency with the aircraft inertial kinematic equations. The program implements an extended Kalman filter/smoother using the Friedland-Duffy formulation.

  6. Memory Maintenance in Synapses with Calcium-Based Plasticity in the Presence of Background Activity

    PubMed Central

    Higgins, David; Graupner, Michael; Brunel, Nicolas

    2014-01-01

    Most models of learning and memory assume that memories are maintained in neuronal circuits by persistent synaptic modifications induced by specific patterns of pre- and postsynaptic activity. For this scenario to be viable, synaptic modifications must survive the ubiquitous ongoing activity present in neural circuits in vivo. In this paper, we investigate the time scales of memory maintenance in a calcium-based synaptic plasticity model that has been shown recently to be able to fit different experimental data-sets from hippocampal and neocortical preparations. We find that in the presence of background activity on the order of 1 Hz parameters that fit pyramidal layer 5 neocortical data lead to a very fast decay of synaptic efficacy, with time scales of minutes. We then identify two ways in which this memory time scale can be extended: (i) the extracellular calcium concentration in the experiments used to fit the model are larger than estimated concentrations in vivo. Lowering extracellular calcium concentration to in vivo levels leads to an increase in memory time scales of several orders of magnitude; (ii) adding a bistability mechanism so that each synapse has two stable states at sufficiently low background activity leads to a further boost in memory time scale, since memory decay is no longer described by an exponential decay from an initial state, but by an escape from a potential well. We argue that both features are expected to be present in synapses in vivo. These results are obtained first in a single synapse connecting two independent Poisson neurons, and then in simulations of a large network of excitatory and inhibitory integrate-and-fire neurons. Our results emphasise the need for studying plasticity at physiological extracellular calcium concentration, and highlight the role of synaptic bi- or multistability in the stability of learned synaptic structures. PMID:25275319

  7. Discovering mechanisms relevant for radiation damage evolution

    DOE PAGES

    Uberuaga, Blas Pedro; Martinez, Enrique Saez; Perez, Danny; ...

    2018-02-22

    he response of a material to irradiation is a consequence of the kinetic evolution of defects produced during energetic damage events. Thus, accurate predictions of radiation damage evolution require knowing the atomic scale mechanisms associated with those defects. Atomistic simulations are a key tool in providing insight into the types of mechanisms possible. Further, by extending the time scale beyond what is achievable with conventional molecular dynamics, even greater insight can be obtained. Here, we provide examples in which such simulations have revealed new kinetic mechanisms that were not obvious before performing the simulations. We also demonstrate, through the couplingmore » with higher level models, how those mechanisms impact experimental observables in irradiated materials. Lastly, we discuss the importance of these types of simulations in the context of predicting material behavior.« less

  8. Discovering mechanisms relevant for radiation damage evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uberuaga, Blas Pedro; Martinez, Enrique Saez; Perez, Danny

    he response of a material to irradiation is a consequence of the kinetic evolution of defects produced during energetic damage events. Thus, accurate predictions of radiation damage evolution require knowing the atomic scale mechanisms associated with those defects. Atomistic simulations are a key tool in providing insight into the types of mechanisms possible. Further, by extending the time scale beyond what is achievable with conventional molecular dynamics, even greater insight can be obtained. Here, we provide examples in which such simulations have revealed new kinetic mechanisms that were not obvious before performing the simulations. We also demonstrate, through the couplingmore » with higher level models, how those mechanisms impact experimental observables in irradiated materials. Lastly, we discuss the importance of these types of simulations in the context of predicting material behavior.« less

  9. The Direct and Indirect Effects of Paliperidone Extended-release on Depressive Symptoms in Schizoaffective Disorder: A Path Analysis.

    PubMed

    Turkoz, Ibrahim; Fu, Dong-Jing; Bossie, Cynthia A; Alphs, Larry

    2015-01-01

    This analysis evaluates improvement in symptoms of depression in patients with schizoaffective disorder administered oral paliperidone extended-release by accounting for the magnitude of direct and indirect (changes in negative and positive symptoms and worsening of extrapyramidal symptoms) treatment effects on depressive symptoms. Data for this post hoc analysis were drawn from two six-week, randomized, placebo-controlled studies of paliperidone extended-release versus placebo in adult subjects with schizoaffective disorder (N=614; NCT00412373, NCT00397033). Subjects with baseline 17-item Hamilton Rating Scale for Depression scores of 16 or greater were included. Structural equation models (path analyses) were used to separate total effects into direct and indirect effects on depressive symptoms. Change from baseline in 17-item Hamilton Rating Scale for Depression score at the Week 6 end point was the dependent variable; changes in Positive and Negative Syndrome Scale positive and negative factors and Simpson-Angus Scale (to evaluate extrapyramidal symptoms) scores were independent variables. At baseline, 332 of 614 (54.1%) subjects had a 17-item Hamilton Rating Scale for Depression score of 16 or greater. Path analysis determined that up to 26.4 percent of the paliperidone extended-release versus placebo effect on depressive symptoms may be attributed to a direct treatment effect, and 45.8 percent and 28.4 percent were mediated indirectly through improvements on positive and negative symptoms, respectively. No effects were identified as mediated through extrapyramidal symptoms changes (-0.7%). RESULTS of this analysis suggest that paliperidone's effect on depressive symptoms in subjects with schizoaffective disorder participating in two six-week, randomized, placebo-controlled studies is mediated through indirect effects (e.g., positive and negative symptom changes) and a direct treatment effect.

  10. Implications on 1 + 1 D Tsunami Runup Modeling due to Time Features of the Earthquake Source

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Riquelme, S.; Ruiz, J.; Campos, J.

    2018-02-01

    The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1 + 1 D solution for the shoreline motion time series, from the static case to the kinematic case, by including both rise time and rupture velocity. Our results show that the static case corresponds to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum runup may be affected by very slow ruptures and long rise time. Parametric analysis reveals that runup is strictly decreasing with the rise time while is highly amplified in a certain range of slow rupture velocities. For even lower rupture velocities, the tsunami excitation vanishes and for larger, quicker approaches to the instantaneous case.

  11. Implications on 1 + 1 D Tsunami Runup Modeling due to Time Features of the Earthquake Source

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Riquelme, S.; Ruiz, J.; Campos, J.

    2018-04-01

    The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1 + 1 D solution for the shoreline motion time series, from the static case to the kinematic case, by including both rise time and rupture velocity. Our results show that the static case corresponds to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum runup may be affected by very slow ruptures and long rise time. Parametric analysis reveals that runup is strictly decreasing with the rise time while is highly amplified in a certain range of slow rupture velocities. For even lower rupture velocities, the tsunami excitation vanishes and for larger, quicker approaches to the instantaneous case.

  12. Physically Consistent Eddy-resolving State Estimation and Prediction of the Coupled Pan-Arctic Climate System at Daily to Interannual Time Scales Using the Regional Arctic Climate Model (RACM)

    DTIC Science & Technology

    2014-09-30

    large biases aloft manifest themselves as large circulation biases at the surface (Fig. 3). Wintertime sea level pressure ( SLP ) contours align closely...extends Arctic, and the Icelandic low is very weak and shifted eastward from its proper location. Summer SLP biases in RASM_nonudg are smaller than...winter SLP biases, but are still substantial, and are again greatly improved in RASM_nudg. Although the magnitude of SLP biases is somewhat smaller

  13. Isocurvature constraints and anharmonic effects on QCD axion dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Kurematsu, Ryosuke; Takahashi, Fuminobu, E-mail: takeshi@cita.utoronto.ca, E-mail: rkurematsu@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2013-09-01

    We revisit the isocurvature density perturbations induced by quantum fluctuations of the axion field by extending a recently developed analytic method and approximations to a time-dependent scalar potential, which enables us to follow the evolution of the axion until it starts to oscillate. We find that, as the initial misalignment angle approaches the hilltop of the potential, the isocurvature perturbations become significantly enhanced, while the non-Gaussianity parameter increases slowly but surely. As a result, the isocurvature constraint on the inflation scale is tightened as H{sub inf}∼

  14. Generation of density perturbations by inflation in scalar-tensor gravity theories

    NASA Astrophysics Data System (ADS)

    Seshadri, T. R.

    1992-02-01

    Density perturbations arising out of the quantum fluctuations in a Brans-Dicke field in the context of extended inflation have been studied. We have used a model in which the Brans-Dicke parameter varies with time. We find that the density perturbations are large in magnitude and have a scale invariant spectrum. The origin of these is discussed and it is shown that these place further constraints on the model. Address after 15 Octobr 1991: Department of Physics and Astrophysics, University of Delhi 110 007, India.

  15. Nuclear forward scattering for high energy mössbauer transitions.

    PubMed

    Sergueev, I; Chumakov, A I; Beaume-Dang, T H Deschaux; Rüffer, R; Strohm, C; van Bürck, U

    2007-08-31

    We have studied nuclear forward scattering of synchrotron radiation for the 67.41 keV resonance of 61Ni using a silicon crystal monochromator with low-index reflections and a multielement detector. This approach can be extended to other high-energy Mössbauer transitions and does not pose any restrictions on the sample environment. Under conditions of large sample thickness and short nuclear lifetime, typical for work with high-energy nuclear resonances, the nuclear decay follows a universal dependence where both thickness effects and hyperfine interactions are taken into account by time scaling.

  16. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation and First Results

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.; Virts, K.; hide

    2017-01-01

    Mission: Fly a flight-spare LIS (Lightning Imaging Sensor) on ISS to take advantage of unique capabilities provided by the ISS (e.g., high inclination, real time data); Integrate LIS as a hosted payload on the DoD Space Test Program-Houston 5 (STP-H5) mission and launch on a Space X rocket for a minimum 2 year mission. Measurement: NASA and its partners developed and demonstrated effectiveness and value of using space-based lightning observations as a remote sensing tool; LIS measures lightning (amount, rate, radiant energy) with storm scale resolution, millisecond timing, and high detection efficiency, with no land-ocean bias. Benefit: LIS on ISS will extend TRMM (Tropical Rainfall Measuring Mission) time series observations, expand latitudinal coverage, provide real time data to operational users, and enable cross-sensor calibration.

  17. Extension of landscape-based population viability models to ecoregional scales for conservation planning

    Treesearch

    Thomas W. Bonnot; Frank R. III Thompson; Joshua Millspaugh

    2011-01-01

    Landscape-based population models are potentially valuable tools in facilitating conservation planning and actions at large scales. However, such models have rarely been applied at ecoregional scales. We extended landscape-based population models to ecoregional scales for three species of concern in the Central Hardwoods Bird Conservation Region and compared model...

  18. Adjacent-Categories Mokken Models for Rater-Mediated Assessments

    ERIC Educational Resources Information Center

    Wind, Stefanie A.

    2017-01-01

    Molenaar extended Mokken's original probabilistic-nonparametric scaling models for use with polytomous data. These polytomous extensions of Mokken's original scaling procedure have facilitated the use of Mokken scale analysis as an approach to exploring fundamental measurement properties across a variety of domains in which polytomous ratings are…

  19. Scaling range of power laws that originate from fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Grech, Dariusz; Mazur, Zygmunt

    2013-05-01

    We extend our previous study of scaling range properties performed for detrended fluctuation analysis (DFA) [Physica A0378-437110.1016/j.physa.2013.01.049 392, 2384 (2013)] to other techniques of fluctuation analysis (FA). The new technique, called modified detrended moving average analysis (MDMA), is introduced, and its scaling range properties are examined and compared with those of detrended moving average analysis (DMA) and DFA. It is shown that contrary to DFA, DMA and MDMA techniques exhibit power law dependence of the scaling range with respect to the length of the searched signal and with respect to the accuracy R2 of the fit to the considered scaling law imposed by DMA or MDMA methods. This power law dependence is satisfied for both uncorrelated and autocorrelated data. We find also a simple generalization of this power law relation for series with a different level of autocorrelations measured in terms of the Hurst exponent. Basic relations between scaling ranges for different techniques are also discussed. Our findings should be particularly useful for local FA in, e.g., econophysics, finances, or physiology, where the huge number of short time series has to be examined at once and wherever the preliminary check of the scaling range regime for each of the series separately is neither effective nor possible.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Yunsic; Amar, Jacques G.

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N{sup 3} where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scalingmore » of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary “bottlenecks” to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N{sup 1/2}. Some additional possible methods to improve the scaling of TAD are also discussed.« less

  1. Turbulence and wave particle interactions in solar-terrestrial plasmas

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1982-01-01

    Theoretical modelling of two dimensional compressible convection in the Sun shows that convective flows can extend over many pressure scale heights without the nonlinear motions becoming supersonic, and that compressional work arising from pressure fluctuations can be comparable to that by buoyancy forces. These results are contrary to what was supposed in prevailing mixing length models for solar convection, and they imply a much greater degree of organized flow extending over the full depth of the convection zone. The nonlinear penetration of motions into the stable region below the convection zone was emphasized. These compressible flows are dominated by downward directed plumes in the unstable zone. Their strong penetration into the region of stable stratification below excites a broad spectrum of internal gravity waves there, and these in turn feed back upon the convection in the unstable zone to produce a rich time dependence.

  2. Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections.

    PubMed

    Sporns, O; Tononi, G; Edelman, G M

    1991-01-01

    The segmentation of visual scenes is a fundamental process of early vision, but the underlying neural mechanisms are still largely unknown. Theoretical considerations as well as neurophysiological findings point to the importance in such processes of temporal correlations in neuronal activity. In a previous model, we showed that reentrant signaling among rhythmically active neuronal groups can correlate responses along spatially extended contours. We now have modified and extended this model to address the problems of perceptual grouping and figure-ground segregation in vision. A novel feature is that the efficacy of the connections is allowed to change on a fast time scale. This results in active reentrant connections that amplify the correlations among neuronal groups. The responses of the model are able to link the elements corresponding to a coherent figure and to segregate them from the background or from another figure in a way that is consistent with the so-called Gestalt laws.

  3. Modeling Perceptual Grouping and Figure-Ground Segregation by Means of Active Reentrant Connections

    NASA Astrophysics Data System (ADS)

    Sporns, Olaf; Tononi, Giulio; Edelman, Gerald M.

    1991-01-01

    The segmentation of visual scenes is a fundamental process of early vision, but the underlying neural mechanisms are still largely unknown. Theoretical considerations as well as neurophysiological findings point to the importance in such processes of temporal correlations in neuronal activity. In a previous model, we showed that reentrant signaling among rhythmically active neuronal groups can correlate responses along spatially extended contours. We now have modified and extended this model to address the problems of perceptual grouping and figure-ground segregation in vision. A novel feature is that the efficacy of the connections is allowed to change on a fast time scale. This results in active reentrant connections that amplify the correlations among neuronal groups. The responses of the model are able to link the elements corresponding to a coherent figure and to segregate them from the background or from another figure in a way that is consistent with the so-called Gestalt laws.

  4. Route to Coherent Electronics

    NASA Astrophysics Data System (ADS)

    Goulielmakis, Eleftherios

    2017-04-01

    Laser-driven generation of coherent radiation in bulk solids extending up to the extreme ultraviolet part of the spectrum has recently open up completely new possibilities for study of electronic phenomena which lie beyond the scope of standard condensed phase physics spectroscopies. I will present how previous and new tools of attosecond metrology can now allow us to gain detailed insight into the fundamental microscopic processes responsible for the EUV emission in solids. We will show that this emission is in reality a macroscopic probe of nanoscale intraband coherent electric currents the frequency of which is extending into multiPetahertz range. On the basis of these findings, I will try to persuade you that we are now entering the realm of coherent electronics. A regime in which electronic circuitry can be conceived on the atomic level and where electronic properties of materials can be accessed and controlled on attosecond time scales.

  5. Power Management and SRAM for Energy-Autonomous and Low-Power Systems

    NASA Astrophysics Data System (ADS)

    Chen, Gregory K.

    We demonstrate the two first-known, complete, self-powered millimeter-scale computer systems. These microsystems achieve zero-net-energy operation using solar energy harvesting and ultra-low-power circuits. A medical implant for monitoring intraocular pressure (IOP) is presented as part of a treatment for glaucoma. The 1.5mm3 IOP monitor is easily implantable because of its small size and measures IOP with 0.5mmHg accuracy. It wirelessly transmits data to an external wand while consuming 4.70nJ/bit. This provides rapid feedback about treatment efficacies to decrease physician response time and potentially prevent unnecessary vision loss. A nearly-perpetual temperature sensor is presented that processes data using a 2.1muW near-threshold ARMRTM Cortex-M3(TM) muP that provides a widely-used and trusted programming platform. Energy harvesting and power management techniques for these two microsystems enable energy-autonomous operation. The IOP monitor harvests 80nW of solar power while consuming only 5.3nW, extending lifetime indefinitely. This allows the device to provide medical information for extended periods of time, giving doctors time to converge upon the best glaucoma treatment. The temperature sensor uses on-demand power delivery to improve low-load dc-dc voltage conversion efficiency by 4.75x. It also performs linear regulation to deliver power with low noise, improved load regulation, and tight line regulation. Low-power high-throughput SRAM techniques help millimeter-scale microsystems meet stringent power budgets. VDD scaling in memory decreases energy per access, but also decreases stability margins. These margins can be improved using sizing, VTH selection, and assist circuits, as well as new bitcell designs. Adaptive Crosshairs modulation of SRAM power supplies fixes 70% of parametric failures. Half-differential SRAM design improves stability, reducing VMIN by 72mV. The circuit techniques for energy autonomy presented in this dissertation enable millimeter-scale microsystems for medical implants, such as blood pressure and glucose sensors, as well as non-medical applications, such as supply chain and infrastructure monitoring. These pervasive sensors represent the continuation of Bell's Law, which accurately traces the evolution of computers as they have become smaller, more numerous, and more powerful. The development of millimeter-scale massively-deployed ubiquitous computers ensures the continued expansion and profitability of the semiconductor industry. NanoWatt circuit techniques will allow us to meet this next frontier in IC design.

  6. Self-quartic interaction for a scalar field in an extended DFR noncommutative space-time

    NASA Astrophysics Data System (ADS)

    Abreu, Everton M. C.; Neves, M. J.

    2014-07-01

    The framework of Dopliche-Fredenhagen-Roberts (DFR) for a noncommutative (NC) space-time is considered as an alternative approach to study the NC space-time of the early Universe. Concerning this formalism, the NC constant parameter, θ, is promoted to coordinate of the space-time and consequently we can describe a field theory in a space-time with extra-dimensions. We will see that there is a canonical momentum associated with this new coordinate in which the effects of a new physics can emerge in the propagation of the fields along the extra-dimensions. The Fourier space of this framework is automatically extended by the addition of the new momenta components. The main concept that we would like to emphasize from the outset is that the formalism demonstrated here will not be constructed by introducing a NC parameter in the system, as usual. It will be generated naturally from an already NC space. We will review that when the components of the new momentum are zero, the (extended) DFR approach is reduced to the usual (canonical) NC case, in which θ is an antisymmetric constant matrix. In this work we will study a scalar field action with self-quartic interaction ϕ4⋆ defined in the DFR NC space-time. We will obtain the Feynman rules in the Fourier space for the scalar propagator and vertex of the model. With these rules we are able to build the radiative corrections to one loop order of the model propagator. The consequences of the NC scale, as well as the propagation of the field in extra-dimensions, will be analyzed in the ultraviolet divergences scenario. We will investigate about the actual possibility that this kμν conjugate momentum has the property of healing the combination of IR/UV divergences that emerges in this recently new NC spacetime quantum field theory.

  7. Evidencing `Tight Bound States' in the Hydrogen Atom:. Empirical Manipulation of Large-Scale XD in Violation of QED

    NASA Astrophysics Data System (ADS)

    Amoroso, Richard L.; Vigier, Jean-Pierre

    2013-09-01

    In this work we extend Vigier's recent theory of `tight bound state' (TBS) physics and propose empirical protocols to test not only for their putative existence, but also that their existence if demonstrated provides the 1st empirical evidence of string theory because it occurs in the context of large-scale extra dimensionality (LSXD) cast in a unique M-Theoretic vacuum corresponding to the new Holographic Anthropic Multiverse (HAM) cosmological paradigm. Physicists generally consider spacetime as a stochastic foam containing a zero-point field (ZPF) from which virtual particles restricted by the quantum uncertainty principle (to the Planck time) wink in and out of existence. According to the extended de Broglie-Bohm-Vigier causal stochastic interpretation of quantum theory spacetime and the matter embedded within it is created annihilated and recreated as a virtual locus of reality with a continuous quantum evolution (de Broglie matter waves) governed by a pilot wave - a `super quantum potential' extended in HAM cosmology to be synonymous with the a `force of coherence' inherent in the Unified Field, UF. We consider this backcloth to be a covariant polarized vacuum of the (generally ignored by contemporary physicists) Dirac type. We discuss open questions of the physics of point particles (fermionic nilpotent singularities). We propose a new set of experiments to test for TBS in a Dirac covariant polarized vacuum LSXD hyperspace suggestive of a recently tested special case of the Lorentz Transformation put forth by Kowalski and Vigier. These protocols reach far beyond the recent battery of atomic spectral violations of QED performed through NIST.

  8. Timing and tracking for the Crystal Barrel detector

    NASA Astrophysics Data System (ADS)

    Beck, Reinhard; Brinkmann, Kai; Novotny, Rainer

    2017-01-01

    The aim of the project D.3 is the upgrade of several detector components used in the CBELSA/TAPS experiment at ELSA. The readout of the Crystal Barrel Calorimeter will be extended by a timing branch in order to gain trigger capability for the detector, which will allow to measure completely neutral final states in photoproduction reactions (see projects A.1 and C.5). Additionally, the readout of the inner crystals of the TAPS detector, which covers the forward opening of the Crystal Barrel Calorimeter, will be modified to be capable of high event rates due to the intensity upgrade of ELSA. Furthermore, a full-scale prototype Time Projection Chamber (TPC) has been built to be used as a new central tracker for the CBELSA/TAPS experiment at ELSA and the FOPI experiment at GSI.

  9. A Study on the Kinetics of a Disorder-to-Order Transition Induced by Alkyne/Azide Click Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X Wei; L Li; J Kalish

    2011-12-31

    The kinetics of binary blends of poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) diblock copolymer and Rhodamine B azide was investigated during a disorder-to-order transition induced by alkyne/azide click reaction. The change in the domain spacing and conversion of reactants as a function of annealing time were investigated by in situ small-angle X-ray scattering (SAXS) and infrared spectroscopy (IR), suggesting several kinetic processes with different time scales during thermal annealing. While a higher conversion can be realized by extending the annealing time, the microphase-separated morphology is independent of the annealing conditions, as long as both the reagents and final products have enoughmore » mobility.« less

  10. The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 350 deg. C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jun; Zou Hong; Li Cong

    2008-05-15

    The influence of aging time on the microstructure evolution of 17-4 PH martensitic stainless steel was studied by transmission electron microscopy (TEM). Results showed that the martensite decomposed by a spinodal decomposition mechanism after the alloy was subjected to long-term aging at 350 deg. C. The fine scale spinodal decomposition of {alpha}-ferrite brought about a Cr-enriched bright stripe and a Fe-enriched dark stripe, i.e., {alpha}' and {alpha} phases, separately, which were perpendicular to the grain boundary. The spinodal decomposition started at the grain boundary. Then with prolonged aging time, the decomposition microstructure expanded from the grain boundary to interior. Themore » wavelength of the spinodally decomposed microstructure changed little with extended aging time.« less

  11. EDITORIAL: Fracture: from the atomic to the geophysical scale Fracture: from the atomic to the geophysical scale

    NASA Astrophysics Data System (ADS)

    Bouchaud, Elisabeth; Soukiassian, Patrick

    2009-11-01

    Although fracture is a very common experience in every day life, it still harbours many unanswered questions. New avenues of investigation arise concerning the basic mechanisms leading to deformation and failure in heterogeneous materials, particularly in non-metals. The processes involved are even more complex when plasticity, thermal fluctuations or chemical interactions between the material and its environment introduce a specific time scale. Sub-critical failure, which may be reached at unexpectedly low loads, is particularly important for silicate glasses. Another source of complications originates from dynamic fracture, when loading rates become so high that the acoustic waves produced by the crack interact with the material heterogeneities, in turn producing new waves that modify the propagation. Recent progress in experimental techniques, allowing one to test and probe materials at sufficiently small length or time scales or in three dimensions, has led to a quantitative understanding of the physical processes involved. In parallel, simulations have also progressed, by extending the time and length scales they are able to reach, and thus attaining experimentally accessible conditions. However, one central question remains the inclusion of these basic mechanisms into a statistical description. This is not an easy task, mostly because of the strong stress gradients present at the tip of a crack, and because the averaging of fracture properties over a heterogeneous material, containing more or less brittle phases, requires rare event statistics. Substantial progress has been made in models and simulations based on accurate experiments. From these models, scaling laws have been derived, linking the behaviour at a micro- or even nano-scale to the macroscopic and even to geophysical scales. The reviews in this Cluster Issue of Journal of Physics D: Applied Physics cover several of these important topics, including the physical processes in fracture mechanisms, the sub-critical failure issue, the dynamical fracture propagation, and the scaling laws from the micro- to the geophysical scales. Achievements and progress are reported, and the many open questions are discussed, which should provide a sound basis for present and future prospects.

  12. On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.

    PubMed

    Feng, Zhiguang; Zheng, Wei Xing

    2015-12-01

    In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.

  13. Annual, Seasonal, and Secular Changes in Time-Variable Gravity from GRACE

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Luthcke, S. B.; Klosko, S. M.; Rowlands, D. D.; Chinn, D. S.; McCarthy, J. J.; Ray, R. D.; Boy, J.

    2007-12-01

    The NASA/DLR GRACE mission, launched in 2002, has now operated for more than five years, producing monthly and ten-day snapshots of the variations of the gravity field of the Earth. The available solutions, either from spherical harmonics or from mascons, allow us new insights into the variations of surface gravity on the Earth at annual, inter-annual, and secular time scales. Our baseline time series, based on GGM02C, NCEP Atmospheric Gravity with IB, and GOT00 tides now is extended to July 2007, spanning four+ years, and we analyze both mascon and spherical harmonic solutions from this time series with respect to global hydrology variations. Our 4degx4deg mascon solutions are extended to cover all continental regions of the globe. Comparisons with hydrology (land-surface) models can offer insights into how these models might be improved. We compare our baseline time series, with new time series that include an updated Goddard Ocean Tide (GOT) model, ECMWF- 3hr atmosphere de-aliasing data, and the MOG-2D ocean dealiasing product. Finally, we intercompare the spherical harmonic solutions at low degree from GRACE from the various product centers (e.g., GFZ, CSR, GRGS), and look for secular signals in both the GSFC mascon and spherical harmonic solutions, taking care to compare the results for secular gravity field change with independent solutions developed over 25 years of independent tracking to geodetic satellites by Satellite Laser Ranging (SLR) and DORIS.

  14. Long-time dynamics through parallel trajectory splicing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, Danny; Cubuk, Ekin D.; Waterland, Amos

    2015-11-24

    Simulating the atomistic evolution of materials over long time scales is a longstanding challenge, especially for complex systems where the distribution of barrier heights is very heterogeneous. Such systems are difficult to investigate using conventional long-time scale techniques, and the fact that they tend to remain trapped in small regions of configuration space for extended periods of time strongly limits the physical insights gained from short simulations. We introduce a novel simulation technique, Parallel Trajectory Splicing (ParSplice), that aims at addressing this problem through the timewise parallelization of long trajectories. The computational efficiency of ParSplice stems from a speculation strategymore » whereby predictions of the future evolution of the system are leveraged to increase the amount of work that can be concurrently performed at any one time, hence improving the scalability of the method. ParSplice is also able to accurately account for, and potentially reuse, a substantial fraction of the computational work invested in the simulation. We validate the method on a simple Ag surface system and demonstrate substantial increases in efficiency compared to previous methods. As a result, we then demonstrate the power of ParSplice through the study of topology changes in Ag 42Cu 13 core–shell nanoparticles.« less

  15. Control and formation mechanism of extended nanochannel geometry in colloidal mesoporous silica particles.

    PubMed

    Sokolov, I; Kalaparthi, V; Volkov, D O; Palantavida, S; Mordvinova, N E; Lebedev, O I; Owens, J

    2017-01-04

    A large class of colloidal multi-micron mesoporous silica particles have well-defined cylindrical nanopores, nanochannels which self-assembled in the templated sol-gel process. These particles are of broad interest in photonics, for timed drug release, enzyme stabilization, separation and filtration technologies, catalysis, etc. Although the pore geometry and mechanism of pore formation of such particles has been widely investigated at the nanoscale, their pore geometry and its formation mechanism at a larger (extended) scale is still under debate. The extended geometry of nanochannels is paramount for all aforementioned applications because it defines accessibility of nanochannels, and subsequently, kinetics of interaction of the nanochannel content with the particle surrounding. Here we present both experimental and theoretical investigation of the extended geometry and its formation mechanism in colloidal multi-micron mesoporous silica particles. We demonstrate that disordered (and consequently, well accessible) nanochannels in the initially formed colloidal particles gradually align and form extended self-sealed channels. This knowledge allows to control the percentage of disordered versus self-sealed nanochannels, which defines accessibility of nanochannels in such particles. We further show that the observed aligning the channels is in agreement with theory; it is thermodynamically favored as it decreases the Gibbs free energy of the particles. Besides the practical use of the obtained results, developing a fundamental understanding of the mechanisms of morphogenesis of complex geometry of nanopores will open doors to efficient and controllable synthesis that will, in turn, further fuel the practical utilization of these particles.

  16. Psychometric Properties of the Revised Teachers' Attitude toward Inclusion Scale

    ERIC Educational Resources Information Center

    Monsen, Jeremy J.; Ewing, Donna L.; Boyle, James

    2015-01-01

    This paper presents the psychometric properties of a questionnaire measure that updates and extends Larrivee and Cook's (1979) Opinions Relative to Mainstreaming Scale in terms of structure, terminology, and language. The revised scale was tested using a sample of 106 teachers based in inclusive mainstream schools. Using Principal Component…

  17. Astronomical tuning and carbon isotope stratigraphy of the Maastrichtian in Sopelana and Zumaia (Basque country, N-Spain)

    NASA Astrophysics Data System (ADS)

    Batenburg, S. J.; Gale, A. S.; Hilgen, F. J.; Hüsing, S. K.; Laskar, J.; Orue-Etxebarria, X.; Sprovieri, M.; Voigt, S.

    2012-04-01

    Astronomical tuning has led to significant refinement of the Geological Time Scale for the Cenozoic, however the Late Cretaceous time scale still has potential errors of ~0.5 Myr. The Basque sections of Sopelana and Zumaia (N-Spain) provide a high-resolution sedimentary archive encompassing the Maastrichtian up to the Cretaceous/Paleogene boundary. Rhythmic limestone-marl alternations, deposited in a hemipelagic setting, reflect the influence of the periodicities of eccentricity modulated precession. Starting from a K/Pg boundary age of 66.0 Ma, consecutive 405-kyr minima are tuned to the new astronomical solution La2011. This orbital tuning, together with the expression of individual precessional cycles, allows for unprecedented refinement of the Geologic Time Scale for the Maastrichtian with errors <100 kyr. The cyclostratigraphic interpretation is thoroughly tested by time series analysis of magnetic susceptibility and colour reflectance data. A cyclostratigraphic framework and orbital tuning of the Zumaia section has recently been obtained. This is extended further back in time by correlation to the Sopelana section by recognition of orbital patterns and marker beds. The total amount of time represented by the two sections is 5 Myr. The lower boundary falls within chron C32N1n, almost reaching the Campanian/Maastrichtian boundary. Magnetostratigraphic and biostratigraphic data allow for application of the cyclostratigraphic framework worldwide, and comparison to previously published Maastrichtian time scales. Additionally, we present an orbitally tuned bulk carbon isotope curve. The high resolution and large amplitude of shifts in δ13C on the 405-kyr and 1.2-Myr scales enables correlation to deep marine oceanic sites, several sections from the Boreal chalk sea and Italy and, importantly, the Campanian/Maastrichtian boundary GSSP at Tercis, France. This will provide a globally applicable cyclostratigraphic framework for the entire Maastrichtian. We will discuss the implications for the orbital pacing theory of the late Cretaceous climate system. Furthermore we will elaborate on the enigmatic presence of a strong 1.2-Myr cyclicity in lithological and proxy record data and its possible relation to carbon cycle dynamics and/or orbital forcing.

  18. Hi-fidelity multi-scale local processing for visually optimized far-infrared Herschel images

    NASA Astrophysics Data System (ADS)

    Li Causi, G.; Schisano, E.; Liu, S. J.; Molinari, S.; Di Giorgio, A.

    2016-07-01

    In the context of the "Hi-Gal" multi-band full-plane mapping program for the Galactic Plane, as imaged by the Herschel far-infrared satellite, we have developed a semi-automatic tool which produces high definition, high quality color maps optimized for visual perception of extended features, like bubbles and filaments, against the high background variations. We project the map tiles of three selected bands onto a 3-channel panorama, which spans the central 130 degrees of galactic longitude times 2.8 degrees of galactic latitude, at the pixel scale of 3.2", in cartesian galactic coordinates. Then we process this image piecewise, applying a custom multi-scale local stretching algorithm, enforced by a local multi-scale color balance. Finally, we apply an edge-preserving contrast enhancement to perform an artifact-free details sharpening. Thanks to this tool, we have thus produced a stunning giga-pixel color image of the far-infrared Galactic Plane that we made publicly available with the recent release of the Hi-Gal mosaics and compact source catalog.

  19. Improved Strength and Damage Modeling of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah; Senft, Laurel

    2007-06-01

    Collisions and impact cratering events are important processes in the evolution of planetary bodies. The time and length scales of planetary collisions, however, are inaccessible in the laboratory and require the use of shock physics codes. We present the results from a new rheological model for geological materials implemented in the CTH code [1]. The `ROCK' model includes pressure, temperature, and damage effects on strength, as well as acoustic fluidization during impact crater collapse. We demonstrate that the model accurately reproduces final crater shapes, tensile cracking, and damaged zones from laboratory to planetary scales. The strength model requires basic material properties; hence, the input parameters may be benchmarked to laboratory results and extended to planetary collision events. We show the effects of varying material strength parameters, which are dependent on both scale and strain rate, and discuss choosing appropriate parameters for laboratory and planetary situations. The results are a significant improvement in models of continuum rock deformation during large scale impact events. [1] Senft, L. E., Stewart, S. T. Modeling Impact Cratering in Layered Surfaces, J. Geophys. Res., submitted.

  20. Scale and geometry effects on heat-recirculating combustors

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hua; Ronney, Paul D.

    2013-10-01

    A simple analysis of linear and spiral counterflow heat-recirculating combustors was conducted to identify the dimensionless parameters expected to quantify the performance of such devices. A three-dimensional (3D) numerical model of spiral counterflow 'Swiss roll' combustors was then used to confirm and extend the applicability of the identified parameters. It was found that without property adjustment to maintain constant values of these parameters, at low Reynolds number (Re) smaller-scale combustors actually showed better performance (in terms of having lower lean extinction limits at the same Re) due to lower heat loss and internal wall-to-wall radiation effects, whereas at high Re, larger-scale combustors showed better performance due to longer residence time relative to chemical reaction time. By adjustment of property values, it was confirmed that four dimensionless parameters were sufficient to characterise combustor performance at all scales: Re, a heat loss coefficient (α), a Damköhler number (Da) and a radiative transfer number (R). The effect of diffusive transport effect (i.e. Lewis number) was found to be significant only at low Re. Substantial differences were found between the performance of linear and spiral combustors; these were explained in terms of the effects of the area exposed to heat loss to ambient and the sometimes detrimental effect of increasing heat transfer to adjacent outlet turns of the spiral exchanger. These results provide insight into the optimal design of small-scale combustors and choice of operation conditions.

  1. SU-E-J-196: Implementation of An In-House Visual Feedback System for Motion Management During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, V; James, J; Wang, B

    Purpose: To describe an in-house video goggle feedback system for motion management during simulation and treatment of radiation therapy patients. Methods: This video goggle system works by splitting and amplifying the video output signal directly from the Varian Real-Time Position Management (RPM) workstation or TrueBeam imaging workstation into two signals using a Distribution Amplifier. The first signal S[1] gets reconnected back to the monitor. The second signal S[2] gets connected to the input of a Video Scaler. The S[2] signal can be scaled, cropped and panned in real time to display only the relevant information to the patient. The outputmore » signal from the Video Scaler gets connected to an HDMI Extender Transmitter via a DVI-D to HDMI converter cable. The S[2] signal can be transported from the HDMI Extender Transmitter to the HDMI Extender Receiver located inside the treatment room via a Cat5e/6 cable. Inside the treatment room, the HDMI Extender Receiver is permanently mounted on the wall near the conduit where the Cat5e/6 cable is located. An HDMI cable is used to connect from the output of the HDMI Receiver to the video goggles. Results: This video goggle feedback system is currently being used at two institutions. At one institution, the system was just recently implemented for simulation and treatments on two breath-hold gated patients with 8+ total fractions over a two month period. At the other institution, the system was used to treat 100+ breath-hold gated patients on three Varian TrueBeam linacs and has been operational for twelve months. The average time to prepare the video goggle system for treatment is less than 1 minute. Conclusion: The video goggle system provides an efficient and reliable method to set up a video feedback signal for radiotherapy patients with motion management.« less

  2. On hydrostatic flows in isentropic coordinates

    NASA Astrophysics Data System (ADS)

    Bokhove, Onno

    2000-01-01

    The hydrostatic primitive equations of motion which have been used in large-scale weather prediction and climate modelling over the last few decades are analysed with variational methods in an isentropic Eulerian framework. The use of material isentropic coordinates for the Eulerian hydrostatic equations is known to have distinct conceptual advantages since fluid motion is, under inviscid and statically stable circumstances, confined to take place on quasi-horizontal isentropic surfaces. First, an Eulerian isentropic Hamilton's principle, expressed in terms of fluid parcel variables, is therefore derived by transformation of a Lagrangian Hamilton's principle to an Eulerian one. This Eulerian principle explicitly describes the boundary dynamics of the time-dependent domain in terms of advection of boundary isentropes sB; these are the values the isentropes have at their intersection with the (lower) boundary. A partial Legendre transform for only the interior variables yields an Eulerian ‘action’ principle. Secondly, Noether's theorem is used to derive energy and potential vorticity conservation from the Eulerian Hamilton's principle. Thirdly, these conservation laws are used to derive a wave-activity invariant which is second-order in terms of small-amplitude disturbances relative to a resting or moving basic state. Linear stability criteria are derived but only for resting basic states. In mid-latitudes a time- scale separation between gravity and vortical modes occurs. Finally, this time-scale separation suggests that conservative geostrophic and ageostrophic approximations can be made to the Eulerian action principle for hydrostatic flows. Approximations to Eulerian variational principles may be more advantageous than approximations to Lagrangian ones because non-dimensionalization and scaling tend to be based on Eulerian estimates of the characteristic scales involved. These approximations to the stratified hydrostatic formulation extend previous approximations to the shallow- water equations. An explicit variational derivation is given of an isentropic version of Hoskins & Bretherton's model for atmospheric fronts.

  3. 40 CFR 1515.9 - Extending CEQ's time to respond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Extending CEQ's time to respond. 1515... ACT PROCEDURES Procedures for Requesting Records § 1515.9 Extending CEQ's time to respond. (a) In... request (§§ 1515.6(a) and 1515.8(d)) may be extended by the Council for not more than 10 working days...

  4. 40 CFR 1515.9 - Extending CEQ's time to respond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Extending CEQ's time to respond. 1515... ACT PROCEDURES Procedures for Requesting Records § 1515.9 Extending CEQ's time to respond. (a) In... request (§§ 1515.6(a) and 1515.8(d)) may be extended by the Council for not more than 10 working days...

  5. 40 CFR 1515.9 - Extending CEQ's time to respond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Extending CEQ's time to respond. 1515... ACT PROCEDURES Procedures for Requesting Records § 1515.9 Extending CEQ's time to respond. (a) In... request (§§ 1515.6(a) and 1515.8(d)) may be extended by the Council for not more than 10 working days...

  6. 40 CFR 1515.9 - Extending CEQ's time to respond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Extending CEQ's time to respond. 1515... ACT PROCEDURES Procedures for Requesting Records § 1515.9 Extending CEQ's time to respond. (a) In... request (§§ 1515.6(a) and 1515.8(d)) may be extended by the Council for not more than 10 working days...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Marco, Luigi; Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637; Fournier, Joseph A.

    Water’s extended hydrogen-bond network results in rich and complex dynamics on the sub-picosecond time scale. In this paper, we present a comprehensive analysis of the two-dimensional infrared (2D IR) spectrum of O–H stretching vibrations in liquid H{sub 2}O and their interactions with bending and intermolecular vibrations. By exploring the dependence of the spectrum on waiting time, temperature, and laser polarization, we refine our molecular picture of water’s complex ultrafast dynamics. The spectral evolution following excitation of the O–H stretching resonance reveals vibrational dynamics on the 50–300 fs time scale that are dominated by intermolecular delocalization. These O–H stretch excitons aremore » a result of the anharmonicity of the nuclear potential energy surface that arises from the hydrogen-bonding interaction. The extent of O–H stretching excitons is characterized through 2D depolarization measurements that show spectrally dependent delocalization in agreement with theoretical predictions. Furthermore, we show that these dynamics are insensitive to temperature, indicating that the exciton dynamics alone set the important time scales in the system. Finally, we study the evolution of the O–H stretching mode, which shows highly non-adiabatic dynamics suggestive of vibrational conical intersections. We argue that the so-called heating, commonly observed within ∼1 ps in nonlinear IR spectroscopy of water, is a nonequilibrium state better described by a kinetic temperature rather than a Boltzmann distribution. Our conclusions imply that the collective nature of water vibrations should be considered in describing aqueous solvation.« less

  8. On the upscaling of process-based models in deltaic applications

    NASA Astrophysics Data System (ADS)

    Li, L.; Storms, J. E. A.; Walstra, D. J. R.

    2018-03-01

    Process-based numerical models are increasingly used to study the evolution of marine and terrestrial depositional environments. Whilst a detailed description of small-scale processes provides an accurate representation of reality, application on geological timescales is restrained by the associated increase in computational time. In order to reduce the computational time, a number of acceleration methods are combined and evaluated for a schematic supply-driven delta (static base level) and an accommodation-driven delta (variable base level). The performance of the combined acceleration methods is evaluated by comparing the morphological indicators such as distributary channel networking and delta volumes derived from the model predictions for various levels of acceleration. The results of the accelerated models are compared to the outcomes from a series of simulations to capture autogenic variability. Autogenic variability is quantified by re-running identical models on an initial bathymetry with 1 cm added noise. The overall results show that the variability of the accelerated models fall within the autogenic variability range, suggesting that the application of acceleration methods does not significantly affect the simulated delta evolution. The Time-scale compression method (the acceleration method introduced in this paper) results in an increased computational efficiency of 75% without adversely affecting the simulated delta evolution compared to a base case. The combination of the Time-scale compression method with the existing acceleration methods has the potential to extend the application range of process-based models towards geologic timescales.

  9. Catchment Storage and Transport on Timescales from Minutes to Millennia

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2017-12-01

    Landscapes are characterized by preferential flow and pervasive heterogeneity on all scales. They therefore store and transmit water and solutes over a wide spectrum of time scales, with important implications for contaminant transport, weathering rates, and runoff chemistry. Theoretical analyses predict, and syntheses of age tracer data confirm, that waters in aquifers are older - often by orders of magnitude - than in the rivers that flow from them, and that this disconnect between water ages arises from aquifer heterogeneity. Recent theoretical studies also suggest that catchment transit time distributions are nonstationary, reflecting temporal variability in precipitation forcing, structural heterogeneity in catchments themselves, and the nonlinearity of the mechanisms controlling storage and transport in the subsurface. The challenge of empirically estimating these nonstationary transit time distributions in real-world catchments, however, has only begun to be explored. In recent years, long-term isotope time series have been collected in many research catchments, and new technologies have emerged that allow quasi-continuous measurements of isotopes in precipitation and streamflow. These new data streams create new opportunities to study how rainfall becomes streamflow following the onset of precipitation. Here I present novel methods for quantifying the fraction of current rainfall in streamflow across ensembles of precipitation events. Benchmark tests with nonstationary catchment models demonstrate that this approach quantitatively measures the short tail of the transit time distribution for a wide range of catchment response characteristics. In combination with reactive tracer time series, this approach can potentially be extended to measure short-term chemical reaction rates at the catchment scale. Applications using high-frequency tracer time series from several experimental catchments demonstrate the utility of the new approach outlined here.

  10. Subjective expansion of extended time-spans in experienced meditators.

    PubMed

    Wittmann, Marc; Otten, Simone; Schötz, Eva; Sarikaya, Anna; Lehnen, Hanna; Jo, Han-Gue; Kohls, Niko; Schmidt, Stefan; Meissner, Karin

    2014-01-01

    Experienced meditators typically report that they experience time slowing down in meditation practice as well as in everyday life. Conceptually this phenomenon may be understood through functional states of mindfulness, i.e., by attention regulation, body awareness, emotion regulation, and enhanced memory. However, hardly any systematic empirical work exists regarding the experience of time in meditators. In the current cross-sectional study, we investigated whether 42 experienced mindfulness meditation practitioners (with on average 10 years of experience) showed differences in the experience of time as compared to 42 controls without any meditation experience matched for age, sex, and education. The perception of time was assessed with a battery of psychophysical tasks assessing the accuracy of prospective time judgments in duration discrimination, duration reproduction, and time estimation in the milliseconds to minutes range as well with several psychometric instruments related to subjective time such as the Zimbardo Time Perspective Inventory, the Barratt Impulsivity Scale and the Freiburg Mindfulness Inventory. In addition, subjective time judgments on the current passage of time and retrospective time ranges were assessed. While subjective judgements of time were found to be significantly different between the two groups on several scales, no differences in duration estimates in the psychophysical tasks were detected. Regarding subjective time, mindfulness meditators experienced less time pressure, more time dilation, and a general slower passage of time. Moreover, they felt that the last week and the last month passed more slowly. Overall, although no intergroup differences in psychophysical tasks were detected, the reported findings demonstrate a close association between mindfulness meditation and the subjective feeling of the passage of time captured by psychometric instruments.

  11. Electrostatic interactions in soft particle systems: mesoscale simulations of ionic liquids.

    PubMed

    Wang, Yong-Lei; Zhu, You-Liang; Lu, Zhong-Yuan; Laaksonen, Aatto

    2018-05-21

    Computer simulations provide a unique insight into the microscopic details, molecular interactions and dynamic behavior responsible for many distinct physicochemical properties of ionic liquids. Due to the sluggish and heterogeneous dynamics and the long-ranged nanostructured nature of ionic liquids, coarse-grained meso-scale simulations provide an indispensable complement to detailed first-principles calculations and atomistic simulations allowing studies over extended length and time scales with a modest computational cost. Here, we present extensive coarse-grained simulations on a series of ionic liquids of the 1-alkyl-3-methylimidazolium (alkyl = butyl, heptyl-, and decyl-) family with Cl, [BF4], and [PF6] counterions. Liquid densities, microstructures, translational diffusion coefficients, and re-orientational motion of these model ionic liquid systems have been systematically studied over a wide temperature range. The addition of neutral beads in cationic models leads to a transition of liquid morphologies from dispersed apolar beads in a polar framework to that characterized by bi-continuous sponge-like interpenetrating networks in liquid matrices. Translational diffusion coefficients of both cations and anions decrease upon lengthening of the neutral chains in the cationic models and by enlarging molecular sizes of the anionic groups. Similar features are observed in re-orientational motion and time scales of different cationic models within the studied temperature range. The comparison of the liquid properties of the ionic systems with their neutral counterparts indicates that the distinctive microstructures and dynamical quantities of the model ionic liquid systems are intrinsically related to Coulombic interactions. Finally, we compared the computational efficiencies of three linearly scaling O(N log N) Ewald summation methods, the particle-particle particle-mesh method, the particle-mesh Ewald summation method, and the Ewald summation method based on a non-uniform fast Fourier transform technique, to calculate electrostatic interactions. Coarse-grained simulations were performed using the GALAMOST and the GROMACS packages and hardware efficiently utilizing graphics processing units on a set of extended [1-decyl-3-methylimidazolium][BF4] ionic liquid systems of up to 131 072 ion pairs.

  12. Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hurlimann, M. D.; Sen, P. N.; Schwartz, L. M.; Patz, S.; Walsworth, R. L.

    2001-01-01

    We have extended the utility of NMR as a technique to probe porous media structure over length scales of approximately 100-2000 microm by using the spin 1/2 noble gas 129Xe imbibed into the system's pore space. Such length scales are much greater than can be probed with NMR diffusion studies of water-saturated porous media. We utilized Pulsed Gradient Spin Echo NMR measurements of the time-dependent diffusion coefficient, D(t), of the xenon gas filling the pore space to study further the measurements of both the pore surface-area-to-volume ratio, S/V(p), and the tortuosity (pore connectivity) of the medium. In uniform-size glass bead packs, we observed D(t) decreasing with increasing t, reaching an observed asymptote of approximately 0.62-0.65D(0), that could be measured over diffusion distances extending over multiple bead diameters. Measurements of D(t)/D(0) at differing gas pressures showed this tortuosity limit was not affected by changing the characteristic diffusion length of the spins during the diffusion encoding gradient pulse. This was not the case at the short time limit, where D(t)/D(0) was noticeably affected by the gas pressure in the sample. Increasing the gas pressure, and hence reducing D(0) and the diffusion during the gradient pulse served to reduce the previously observed deviation of D(t)/D(0) from the S/V(p) relation. The Pade approximation is used to interpolate between the long and short time limits in D(t). While the short time D(t) points lay above the interpolation line in the case of small beads, due to diffusion during the gradient pulse on the order of the pore size, it was also noted that the experimental D(t) data fell below the Pade line in the case of large beads, most likely due to finite size effects.

  13. Constraints on the Longevity of the 2010 Eyjaföll Eruption Cloud From Analog Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Jellinek, M.

    2010-12-01

    The prolonged disruption of global air travel as a result of the 2010 Eyjafjöll eruption in Iceland underscores the value of discerning the dynamics of volcanic ash-clouds in the atmosphere. Understanding the longevity of these clouds is a particularly long standing problem that bears not only on volcanic hazards to humans but also on the nature and time scale of volcanic forcings on climate change. Since early work on the subject, the common practice to tackle the problem of cloud longevity has been to account for the dynamics of sedimentation by individual particle settling. We use 1D modeling and analog experiments of a turbulent particle-laden umbrella cloud to show that this classical view can be misleading and that the residence times of these ash-clouds in the atmosphere depends strongly on the collective behavior of the solid fraction. Diffusive convection driven by the differential diffusion of constituents altering the cloud density (ash, temperature, sulfur dioxide) may enhance particle scavenging and extend the cloud longevity over time scales orders of magnitude longer than currently expected (i.e., years rather than days for powerful eruptions). Records of this behavior can be found in real-time measurements of stratospheric post-volcanic aerosols following the 1974 Fuego, the 1982 El Chichon, the 1991 Hudson and Pinatubo events, and more recently, from the 14 April 2010 Eyjafjöll eruption. The importance of diffusive convection in volcanic ash-clouds depends strongly on particle size distribution and concentration. For the 2010 Eyjafjöll eruption, we predict that particles larger than 10 microns should settle individually as commonly assumed, but particles smaller than 1 micron should diffuse slowly in layers extending the cloud longevity to several weeks rather than days. These predictions are found to be in good agreement with a number of satellite and ground-based lidar data on ash size and mass estimates performed at different locations across Europe.

  14. Thermodynamic scaling in ionically conducting glasses and melts

    NASA Astrophysics Data System (ADS)

    Habasaki, Junko

    2013-02-01

    Molecular dynamics simulations have been performed to learn temperature, composition, pressure dependencies of the diffusivity and structures in the system having ion channels and network formers. Validity of the thermodynamic scaling in the lithium silicate glasses and melts is shown, where the scaling concept is extended with an aid of a percolation aspect of the ion channels. All diffusion coefficients of ions of different compositions, temperatures, pressures are successfully represented by a single master curve as a function of system volumes, temperatures and volume fraction of M2O part. It enables us to predict the diffusivity in different conditions. Furthermore, it suggests an applicability of scaling concept for the sub-structures in more complex systems. Nearby points on the master curve have the comparable MSD as well as self-part of the van Hove functions. Similarity is observed from an early term region. This observation is consistent to our previous claims [K. L. Ngai, J. Habasaki, D. Prevosto, S. Capaccioli, Marian Paluch, J. Chem. Phys. 137, 034511 (2012)] that the thermodynamic scaling of α-Relaxation time stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

  15. Infragravity waves on fringing reefs in the tropical Pacific: Dynamic setup

    NASA Astrophysics Data System (ADS)

    Becker, J. M.; Merrifield, M. A.; Yoon, H.

    2016-05-01

    Cross-shore pressure and current observations from four fringing reefs of lengths ranging from 135 to 420 m reveal energetic low-frequency (˜0.001-0.05 Hz) motions. The spatial structure and temporal amplitudes of an empirical orthogonal function analysis of the pressure measurements suggest the dominant low-frequency variability is modal. Incoming and outgoing linear flux estimates also support partially standing modes on the reef flat during energetic events. A cross-covariance analysis suggests that breakpoint forcing excites these partially standing modes, similar to previous findings at other steep reefs. The dynamics of Symonds et al. (1982) with damping are applied to a step reef, with forcing obtained by extending a point break model of Vetter et al. (2010) for breaking wave setup to the low-frequency band using the shoaled envelope of the incident free surface elevation. A one parameter, linear analytical model for the reef flat free surface elevation is presented, which describes between 75% and 97% of the variance of the observed low-frequency shoreline significant wave height for all reefs considered over a range of conditions. The linear model contains a single dimensionless parameter that is the ratio of the inertial to dissipative time scales, and the observations from this study exhibit more low-frequency variability when the dissipative time scale is greater than the inertial time scale for the steep reefs considered.

  16. AGN feedback and the origin of the α enhancement in early-type galaxies - insights from the GAEA model

    NASA Astrophysics Data System (ADS)

    De Lucia, Gabriella; Fontanot, Fabio; Hirschmann, Michaela

    2017-03-01

    We take advantage of our recently published model for GAlaxy Evolution and Assembly (GAEA) to study the origin of the observed correlation between [α/Fe] and galaxy stellar mass. In particular, we analyse the role of radio-mode active galactic nuclei (AGN) feedback, which recent work has identified as a crucial ingredient to reproduce observations. In GAEA, this process introduces the observed trend of star formation histories extending over shorter time-scales for more massive galaxies, but does not provide a sufficient condition to reproduce the observed α enhancements of massive galaxies. In the framework of our model, this is possible only by assuming that any residual star formation is truncated for galaxies more massive than 1010.5 M⊙. This results, however, in even shorter star formation time-scales for the most massive galaxies, which translate in total stellar metallicities significantly lower than observed. Our results demonstrate that (I) trends of [α/Fe] ratios cannot be simply converted into relative time-scale indicators; and (II) AGN feedback cannot explain alone the positive correlation between [α/Fe] and galaxy mass/velocity dispersion. Reproducing simultaneously the mass-metallicity relation and the α enhancements observed pose a challenge for hierarchical models, unless more exotic solutions are adopted such as metal-rich winds or a variable initial mass function.

  17. A study of residence time distribution using radiotracer technique in the large scale plant facility

    NASA Astrophysics Data System (ADS)

    Wetchagarun, S.; Tippayakul, C.; Petchrak, A.; Sukrod, K.; Khoonkamjorn, P.

    2017-06-01

    As the demand for troubleshooting of large industrial plants increases, radiotracer techniques, which have capability to provide fast, online and effective detections to plant problems, have been continually developed. One of the good potential applications of the radiotracer for troubleshooting in a process plant is the analysis of Residence Time Distribution (RTD). In this paper, the study of RTD in a large scale plant facility using radiotracer technique was presented. The objective of this work is to gain experience on the RTD analysis using radiotracer technique in a “larger than laboratory” scale plant setup which can be comparable to the real industrial application. The experiment was carried out at the sedimentation tank in the water treatment facility of Thailand Institute of Nuclear Technology (Public Organization). Br-82 was selected to use in this work due to its chemical property, its suitable half-life and its on-site availability. NH4Br in the form of aqueous solution was injected into the system as the radiotracer. Six NaI detectors were placed along the pipelines and at the tank in order to determine the RTD of the system. The RTD and the Mean Residence Time (MRT) of the tank was analysed and calculated from the measured data. The experience and knowledge attained from this study is important for extending this technique to be applied to industrial facilities in the future.

  18. Late Functional Changes Post-Severe Traumatic Brain Injury Are Related to Community Reentry Support: Results From the PariS-TBI Cohort.

    PubMed

    Jourdan, Claire; Bayen, E; Vallat-Azouvi, C; Ghout, I; Darnoux, E; Azerad, S; Charanton, J; Aegerter, P; Pradat-Diehl, P; Ruet, A; Azouvi, P

    To explore late functional changes after a traumatic brain injury and their relation to patients' characteristics and reentry support. Prospective follow-up of an inception cohort of adults with severe traumatic brain injury recruited in 2005-2007 in the Parisian area, France. One and 4-year assessments were performed by trained neuropsychologists. One-to-4-year change in the Glasgow Outcome Scale-Extended defined 3 groups: "improvement," "stability," and "worsening." Relationships between these groups and patients' characteristics were analyzed. Among 504 recruited patients and 245 four-year survivors, 93 participated in both evaluations. Overall Glasgow Outcome Scale-Extended improved by 0.4. Forty percent of the sample improved, 44% were stable, and 16% worsened. Being in a more unfavorable group was related to preinjury alcohol abuse and to higher anxiety and depression at 4 years. Attendance to a specialized community reentry unit was related to higher chances of being in the "improvement" group in univariate analyses and after adjustment for age, time to follow command, preinjury alcohol and occupation, and mood disorders (adjusted odds ratio [OR] = 4.6 [1.1-20]). Late functional changes were related to psychosocial variables and to reentry support. The effect of reentry support on late recovery needs to be confirmed by further investigations.

  19. Development of an Acoustic Signal Analysis Tool “Auto-F” Based on the Temperament Scale

    NASA Astrophysics Data System (ADS)

    Modegi, Toshio

    The MIDI interface is originally designed for electronic musical instruments but we consider this music-note based coding concept can be extended for general acoustic signal description. We proposed applying the MIDI technology to coding of bio-medical auscultation sound signals such as heart sounds for retrieving medical records and performing telemedicine. Then we have tried to extend our encoding targets including vocal sounds, natural sounds and electronic bio-signals such as ECG, using Generalized Harmonic Analysis method. Currently, we are trying to separate vocal sounds included in popular songs and encode both vocal sounds and background instrumental sounds into separate MIDI channels. And also, we are trying to extract articulation parameters such as MIDI pitch-bend parameters in order to reproduce natural acoustic sounds using a GM-standard MIDI tone generator. In this paper, we present an overall algorithm of our developed acoustic signal analysis tool, based on those research works, which can analyze given time-based signals on the musical temperament scale. The prominent feature of this tool is producing high-precision MIDI codes, which reproduce the similar signals as the given source signal using a GM-standard MIDI tone generator, and also providing analyzed texts in the XML format.

  20. ALMA resolves extended star formation in high-z AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Simpson, J. M.; Stanley, F.; Alexander, D. M.; Daddi, E.; Mullaney, J. R.; Pannella, M.; Rosario, D. J.; Smail, Ian

    2016-03-01

    We present high-resolution (0.3 arcsec) Atacama Large Millimeter Array (ALMA) 870 μm imaging of five z ≈ 1.5-4.5 X-ray detected AGN (with luminosities of L2-8keV > 1042 erg s-1). These data provide a ≳20 times improvement in spatial resolution over single-dish rest-frame far-infrared (FIR) measurements. The sub-millimetre emission is extended on scales of FWHM ≈ 0.2 arcsec-0.5 arcsec, corresponding to physical sizes of 1-3 kpc (median value of 1.8 kpc). These sizes are comparable to the majority of z=1-5 sub-millimetre galaxies (SMGs) with equivalent ALMA measurements. In combination with spectral energy distribution analyses, we attribute this rest-frame FIR emission to dust heated by star formation. The implied star-formation rate surface densities are ≈20-200 M⊙ yr-1 kpc-2, which are consistent with SMGs of comparable FIR luminosities (I.e. LIR ≈ [1-5] × 1012 L⊙). Although limited by a small sample of AGN, which all have high-FIR luminosities, our study suggests that the kpc-scale spatial distribution and surface density of star formation in high-redshift star-forming galaxies is the same irrespective of the presence of X-ray detected AGN.

  1. Physiologically based pharmacokinetic model for 6-mercpatopurine: exploring the role of genetic polymorphism in TPMT enzyme activity

    PubMed Central

    Ogungbenro, Kayode; Aarons, Leon

    2015-01-01

    Aims To extend the physiologically based pharmacokinetic (PBPK) model developed for 6-mercaptopurine to account for intracellular metabolism and to explore the role of genetic polymorphism in the TPMT enzyme on the pharmacokinetics of 6-mercaptopurine. Methods The developed PBPK model was extended for 6-mercaptopurine to account for intracellular metabolism and genetic polymorphism in TPMT activity. System and drug specific parameters were obtained from the literature or estimated using plasma or intracellular red blood cell concentrations of 6-mercaptopurine and its metabolites. Age-dependent changes in parameters were implemented for scaling, and variability was also introduced for simulation. The model was validated using published data. Results The model was extended successfully. Parameter estimation and model predictions were satisfactory. Prediction of intracellular red blood cell concentrations of 6-thioguanine nucleotide for different TPMT phenotypes (in a clinical study that compared conventional and individualized dosing) showed results that were consistent with observed values and reported incidence of haematopoietic toxicity. Following conventional dosing, the predicted mean concentrations for homozygous and heterozygous variants, respectively, were about 10 times and two times the levels for wild-type. However, following individualized dosing, the mean concentration was around the same level for the three phenotypes despite different doses. Conclusions The developed PBPK model has been extended for 6-mercaptopurine and can be used to predict plasma 6-mercaptopurine and tissue concentration of 6-mercaptopurine, 6-thioguanine nucleotide and 6-methylmercaptopurine ribonucleotide in adults and children. Predictions of reported data from clinical studies showed satisfactory results. The model may help to improve 6-mercaptopurine dosing, achieve better clinical outcome and reduce toxicity. PMID:25614061

  2. Efficacy and Safety of Amphetamine Extended-Release Oral Suspension in Children with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Childress, Ann C; Wigal, Sharon B; Brams, Matthew N; Turnbow, John M; Pincus, Yulia; Belden, Heidi W; Berry, Sally A

    2018-06-01

    To determine the efficacy and safety of amphetamine extended-release oral suspension (AMPH EROS) in the treatment of attention-deficit/hyperactivity disorder (ADHD) in a dose-optimized, randomized, double-blind, parallel-group study. Boys and girls aged 6 to 12 years diagnosed with ADHD were enrolled. During a 5-week, open-label, dose-optimization phase, patients began treatment with 2.5 or 5 mg/day of AMPH EROS; doses were titrated until an optimal dose (maximum 20 mg/day) was reached. During the double-blind phase, patients were randomized to receive treatment with either their optimized dose (10-20 mg/day) of AMPH EROS or placebo for 1 week. Efficacy was assessed in a laboratory classroom setting on the final day of double-blind treatment using the Swanson, Kotkin, Agler, M-Flynn, and Pelham (SKAMP) Rating Scale and Permanent Product Measure of Performance (PERMP) test. Safety was assessed measuring adverse events (AEs) and vital signs. The study was completed by 99 patients. The primary efficacy endpoint (change from predose SKAMP-Combined score at 4 hours postdose) and secondary endpoints (change from predose SKAMP-Combined scores at 1, 2, 6, 8, 10, 12, and 13 hours postdose) were statistically significantly improved with AMPH EROS treatment versus placebo at all time points. Onset of treatment effect was present by 1 hour postdosing, the first time point measured, and duration of efficacy lasted 13 hours postdosing. PERMP data mirrored the SKAMP-Combined score data. AEs (>5%) reported during dose optimization were decreased appetite, insomnia, affect lability, upper abdominal pain, mood swings, and headache. AMPH EROS was effective in reducing symptoms of ADHD and had a rapid onset and extended duration of effect. Reported AEs were consistent with those of other extended-release amphetamine products.

  3. Potential of hydrolysis of particulate COD in extended anaerobic conditions to enhance biological phosphorous removal.

    PubMed

    Jabari, P; Yuan, Q; Oleszkiewicz, J A

    2016-11-01

    The effect of anaerobic hydrolysis of particulate COD (pCOD) on biological phosphorous removal in extended anaerobic condition was investigated through (i) sequencing batch reactors (SBR)s with anaerobic hydraulic retention time (HRT) of 0.8, 2, and 4 h; (ii) batch tests using biomass from a full scale biological nutrient removal (BNR) plant; and (iii) activated sludge modeling (BioWin 4.1 simulation). The results from long-term SBRs operation showed that phosphorus removal was correlated to the ratio of filtered COD (FCOD) to total phosphorus (TP) in the influent. Under conditions with low FCOD/TP ratio (average of 20) in the influent, extending anaerobic HRT to 4 h in the presence of pCOD did not significantly improve overall phosphorous removal. During the period with high FCOD/TP ratio (average of 37) in the influent, all SBRs removed phosphorous completely, and the long anaerobic HRT did not have negative effect on overall phosphorous removal. The batch tests also showed that pCOD at different concentration during 4 h test did not affect the rate of anaerobic phosphorus release. The rate of anaerobic hydrolysis of pCOD was significantly low and extending the anaerobic HRT was ineffective. The simulation (BioWin 4.1) of SBRs with low influent FCOD/TP ratio showed that the default kinetics of anaerobic hydrolysis in ASM2d overestimated phosphorous removal in the SBRs (high anaerobic hydrolysis of pCOD). The default anaerobic hydrolysis rate in BioWin 4.1 (ten times lower) could produce similar phosphorous removal to that in the experiment. Results showed that the current kinetics of anaerobic hydrolysis in ASM2d could lead to considerable error in predicting phosphorus removal in processes with extended anaerobic HRT. Biotechnol. Bioeng. 2016;113: 2377-2385. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Human machine interaction via the transfer of power and information signals

    NASA Technical Reports Server (NTRS)

    Kazerooni, H.; Foslien, W. K.; Anderson, B. J.; Hessburg, T. M.

    1989-01-01

    Robot manipulators are designed to perform tasks which would otherwise be executed by a human operator. No manipulator can even approach the speed and accuracy with which humans execute these tasks. But manipulators have the capability to exceed human ability in one particular area: strength. Through any reasonable observation and experience, the human's ability to perform a variety of physical tasks is limited not by his intelligence, but by his physical strength. If, in the appropriate environment, we can more closely integrate the mechanical power of a machine with intellectually driven human hand under the supervisory control of the human's intellect, we will then have a system which is superior to a loosely-integrated combination of a human and his fully automated robot as in the present day robotic systems. We must therefore develop a fundamental approach to the problem of this extending human mechanical power in certain environments. Extenders will be a class of robots worn by humans to increase human mechanical ability, while the wearer's intellect remains the central intelligent control system for manipulating the extender. The human body, in physical contact with the extender, exchanges information signals and power with the extender. Commands are transferred to the extender via the contact forces between the wearer and the extender as opposed to use of joystick (master arm), push-button or key-board to execute such commands that were used in previous man amplifiers. Instead, the operator becomes an integral part of the extender while executing the task. In this unique configuration the mechanical power transfer between the human and extender occurs in addition to information signal transfer. When the wearer uses the extender to touch and manipulate an object, the extender transfers to the wearer's hand, in feedback fashion, a scaled-down value of the actual external load which the extender is manipulating. This natural feedback force on the wearer's hand allows him to feel the scaled-down value of the external forces in the manipulations. Extenders can be utilized to maneuver very heavy loads in factories, shipyards, airports, and construction sites. In some instances, for example, extenders can replace forklifts. The experimental results for a prototype extender are discussed.

  5. Wavelet-based techniques for the gamma-ray sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less

  6. Multilevel mixed effects parametric survival models using adaptive Gauss-Hermite quadrature with application to recurrent events and individual participant data meta-analysis.

    PubMed

    Crowther, Michael J; Look, Maxime P; Riley, Richard D

    2014-09-28

    Multilevel mixed effects survival models are used in the analysis of clustered survival data, such as repeated events, multicenter clinical trials, and individual participant data (IPD) meta-analyses, to investigate heterogeneity in baseline risk and covariate effects. In this paper, we extend parametric frailty models including the exponential, Weibull and Gompertz proportional hazards (PH) models and the log logistic, log normal, and generalized gamma accelerated failure time models to allow any number of normally distributed random effects. Furthermore, we extend the flexible parametric survival model of Royston and Parmar, modeled on the log-cumulative hazard scale using restricted cubic splines, to include random effects while also allowing for non-PH (time-dependent effects). Maximum likelihood is used to estimate the models utilizing adaptive or nonadaptive Gauss-Hermite quadrature. The methods are evaluated through simulation studies representing clinically plausible scenarios of a multicenter trial and IPD meta-analysis, showing good performance of the estimation method. The flexible parametric mixed effects model is illustrated using a dataset of patients with kidney disease and repeated times to infection and an IPD meta-analysis of prognostic factor studies in patients with breast cancer. User-friendly Stata software is provided to implement the methods. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Joint analysis of ESR lineshapes and 1H NMRD profiles of DOTA-Gd derivatives by means of the slow motion theory

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Kowalewski, J.; Tipikin, D. S.; Freed, J. H.; Mościcki, M.; Mielczarek, A.; Port, M.

    2011-01-01

    The "Swedish slow motion theory" [Nilsson and Kowalewski, J. Magn. Reson. 146, 345 (2000)] applied so far to Nuclear Magnetic Relaxation Dispersion (NMRD) profiles for solutions of transition metal ion complexes has been extended to ESR spectral analysis, including in addition g-tensor anisotropy effects. The extended theory has been applied to interpret in a consistent way (within one set of parameters) NMRD profiles and ESR spectra at 95 and 237 GHz for two Gd(III) complexes denoted as P760 and P792 (hydrophilic derivatives of DOTA-Gd, with molecular masses of 5.6 and 6.5 kDa, respectively). The goal is to verify the applicability of the commonly used pseudorotational model of the transient zero field splitting (ZFS). According to this model the transient ZFS is described by a tensor of a constant amplitude, defined in its own principal axes system, which changes its orientation with respect to the laboratory frame according to the isotropic diffusion equation with a characteristic time constant (correlation time) reflecting the time scale of the distortional motion. This unified interpretation of the ESR and NMRD leads to reasonable agreement with the experimental data, indicating that the pseudorotational model indeed captures the essential features of the electron spin dynamics.

  8. Generalized Riemann hypothesis and stochastic time series

    NASA Astrophysics Data System (ADS)

    Mussardo, Giuseppe; LeClair, André

    2018-06-01

    Using the Dirichlet theorem on the equidistribution of residue classes modulo q and the Lemke Oliver–Soundararajan conjecture on the distribution of pairs of residues on consecutive primes, we show that the domain of convergence of the infinite product of Dirichlet L-functions of non-principal characters can be extended from down to , without encountering any zeros before reaching this critical line. The possibility of doing so can be traced back to a universal diffusive random walk behavior of a series C N over the primes which underlies the convergence of the infinite product of the Dirichlet functions. The series C N presents several aspects in common with stochastic time series and its control requires to address a problem similar to the single Brownian trajectory problem in statistical mechanics. In the case of the Dirichlet functions of non principal characters, we show that this problem can be solved in terms of a self-averaging procedure based on an ensemble of block variables computed on extended intervals of primes. Those intervals, called inertial intervals, ensure the ergodicity and stationarity of the time series underlying the quantity C N . The infinity of primes also ensures the absence of rare events which would have been responsible for a different scaling behavior than the universal law of the random walks.

  9. Effect of Carboxymethylation on the Rheological Properties of Hyaluronan

    PubMed Central

    Wendling, Rian J.; Christensen, Amanda M.; Quast, Arthur D.; Atzet, Sarah K.; Mann, Brenda K.

    2016-01-01

    Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30–40% modification. This was followed by an increase in viscosity around 45–50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions. PMID:27611817

  10. Magnetic Reconnection in MHD and Kinetic Turbulence

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno; Boldyrev, Stanislav

    2017-10-01

    Recent works have revisited the current understanding of Alfvénic turbulence to account for the role of magnetic reconnection. Theoretical arguments suggest that reconnection inevitably becomes important in the inertial range, at the scale where it becomes faster than the eddy turnover time. This leads to a transition to a new sub-inertial interval, suggesting a route to energy dissipation that is fundamentally different from that envisioned in the usual Kolmogorov-like phenomenology. These concepts can be extended to collisionless plasmas, where reconnection is enabled by electron inertia rather than resistivity. Although several different cases must then be considered, a common result is that the energy spectrum exhibits a scaling with the perpendicular wave number that scales between k⊥- 8 / 3 and k⊥- 3 , in favourable agreement with many numerical results and observations. Work supported by NSF-DOE Partnership in Basic Plasma Science and Engineering, Award No. DE-SC0016215, and by NSF CAREER Award No. 1654168 (NFL); and by NSF Grant NSF AGS- 1261659 and by the Vilas Associates Award of UWM (SB).

  11. Scaled particle theory for bulk and confined fluids: A review

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Chen, XiaoSong

    2018-07-01

    More than half a century after its first formulation by Reiss, Frisch and Lebowitz in 1959, scaled particle theory (SPT) has proven its immense usefulness and has become one of the most successful theories in liquid physics. In recent years, we have strived to extend SPT to fluids confined in a variety of random porous matrices. In this article, we present a timely review of these developments. We have endeavored to present a formulation that is pedagogically more accessible than those presented in various original papers, and we hope this benefits newcomers in their research work. We also use more consistent notations for different cases. In addition, we discuss issues that have been scarcely considered in the literature, e.g., the one-fluid structure of SPT due to the isomorphism between the equation of state for a multicomponent fluid and that for a one-component fluid or the pure-confinement scaling relation that provides a connection between a confined and a bulk fluid.

  12. The occultation of Epsilon Geminorum by Mars - Analysis of McDonald data. [turbulent scintillation in light curves

    NASA Technical Reports Server (NTRS)

    Africano, J.; De Vaucouleurs, G.; Evans, D. S.; Finkel, B. E.; Nather, R. E.; Palm, C.; Silverberg, E.; Wiant, J.; Hubbard, W. B.; Jokipii, J. R.

    1977-01-01

    An analysis of observations of the occultation of Epsilon Gem by Mars on April 8, 1976, is presented. The data were obtained by three neighboring telescopes at McDonald Observatory. Intensity fluctuations on time scales of the order of 100 ms were observed simultaneously at the three telescopes. As the observations compare well with predictions of turbulent scintillation theory, it is concluded that such fluctuations were probably largely the effect of stellar scintillations in the Martian atmosphere. The stellar diameter is included as a parameter in the theory but in a way which differs from previously published interpretations of occultations of extended sources by planetary atmospheres. Scintillations govern the experimental uncertainty in the deduction of the scale height of the high Martian atmosphere. A density scale height of 9.9 + or - 2.5 km is obtained at an altitude of 74 + or - 8 km above the mean surface. For CO 2 gas, this result corresponds to a temperature of 190 + or - 50 K.

  13. Statistical scaling of pore-scale Lagrangian velocities in natural porous media.

    PubMed

    Siena, M; Guadagnini, A; Riva, M; Bijeljic, B; Pereira Nunes, J P; Blunt, M J

    2014-08-01

    We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample structure functions associated with the limestone block display two diverse power-law regimes, which we infer to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for sample structure functions of Lagrangian velocity, porosity, and specific surface area.

  14. Double Time? Examining Extended Testing Time Accommodations (ETTA) in Postsecondary Settings

    ERIC Educational Resources Information Center

    Sokal, Laura; Vermette, Laurie Anne

    2017-01-01

    Over eight thousand test administrations across two universities were examined to determine whether students with disabilities were being given the necessary extended testing time accommodations and whether their use of extended time decreased over the course of their programs. Findings revealed that commonly accepted recommendations about…

  15. DEXTER: Disease-Expression Relation Extraction from Text.

    PubMed

    Gupta, Samir; Dingerdissen, Hayley; Ross, Karen E; Hu, Yu; Wu, Cathy H; Mazumder, Raja; Vijay-Shanker, K

    2018-01-01

    Gene expression levels affect biological processes and play a key role in many diseases. Characterizing expression profiles is useful for clinical research, and diagnostics and prognostics of diseases. There are currently several high-quality databases that capture gene expression information, obtained mostly from large-scale studies, such as microarray and next-generation sequencing technologies, in the context of disease. The scientific literature is another rich source of information on gene expression-disease relationships that not only have been captured from large-scale studies but have also been observed in thousands of small-scale studies. Expression information obtained from literature through manual curation can extend expression databases. While many of the existing databases include information from literature, they are limited by the time-consuming nature of manual curation and have difficulty keeping up with the explosion of publications in the biomedical field. In this work, we describe an automated text-mining tool, Disease-Expression Relation Extraction from Text (DEXTER) to extract information from literature on gene and microRNA expression in the context of disease. One of the motivations in developing DEXTER was to extend the BioXpress database, a cancer-focused gene expression database that includes data derived from large-scale experiments and manual curation of publications. The literature-based portion of BioXpress lags behind significantly compared to expression information obtained from large-scale studies and can benefit from our text-mined results. We have conducted two different evaluations to measure the accuracy of our text-mining tool and achieved average F-scores of 88.51 and 81.81% for the two evaluations, respectively. Also, to demonstrate the ability to extract rich expression information in different disease-related scenarios, we used DEXTER to extract information on differential expression information for 2024 genes in lung cancer, 115 glycosyltransferases in 62 cancers and 826 microRNA in 171 cancers. All extractions using DEXTER are integrated in the literature-based portion of BioXpress.Database URL: http://biotm.cis.udel.edu/DEXTER.

  16. Splashing Droplets

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.; Kizito, John Patrick; Berger, Gordon M.; Iwan, J.; Alexander, D.; Tryggvason, Gretar

    2002-01-01

    Current data on droplet breakup is scarce for the sizes and velocities typical of practical applications such as in spray combustion processes and coating processes. While much more representative of practical applications, the small spatial scales and rapid time-scales prevent detailed measurement of the internal fluid dynamics and liquid property gradients produced by impinging upon surfaces. Realized through the extended spatial and temporal scales afforded by a microgravity environment, an improved understanding of drop breakup dynamics is sought to understand and ultimately control the impingement dynamics of droplets upon surfaces in practical situations. The primary objective of this research will be to mark the onset of different 'splashing modes' and to determine their temperature, pressure and angle dependence for impinging droplets representative of practical fluids. In addition, we are modeling the evolution of droplets that do not initially splash but rather undergo a 'fingering' evolution observed on the spreading fluid front and the transformation of these fingers into splashed products. An example of our experimental data is presented below. These images are of Isopar V impacting a mirror-polished surface. They were acquired using a high-speed camera at 1000 frames per second. They show the spreading of a single droplet after impact and ensuing finger instabilities. Normal gravity experimental data such as this will guide low gravity measurements in the 2.2 second drop tower and KC-135 aircraft as available. Presently we are in the process of comparing the experimental data of droplet shape evolution to numerical models, which can also capture the internal fluid dynamics and liquid property gradients such as produced by impingement upon a heated surface. To-date isothermal numerical data has been modeled using direct numerical simulations of representative splashing droplets. The data obtained so far indicates that the present model describes well the droplet wall interactions to a point in time just before splash. Additional information is included in the original extended abstract.

  17. Time utilization, productivity and costs of solo and extended duty auxiliary dental practice.

    PubMed

    Tan, H H; van Gemert, H G

    1977-07-01

    A study was conducted to compare the time utilization of the dentist, and productivity and costs for solo (one dentist, one chairside assistant and one treatment room) and extended duty settings (one dentist, two extended duty dental hygienists, one chairside assistant and two treatment rooms). Only amalgam and composite restorations done in a general group practice were included. In the extended duty setting the dentist spent more time in managerial activities and less time in treatment than in the solo setting. Nevertheless, the dentist in the extended duty setting produced 53% more restorations as compared with solo practice. The cost ratio of solo to extended duty practice was computed to 1:1.52. From the point of view of microeconomics, the extended duty setting was found no worse than the solo setting.

  18. Attributes of innovations and approaches to scalability - lessons from a national program to extend the scope of practice of health professionals.

    PubMed

    Masso, Malcolm; Thompson, Cristina

    2016-01-01

    The context for the paper was the evaluation of a national program in Australia to investigate extended scopes of practice for health professionals (paramedics, physiotherapists, and nurses). The design of the evaluation involved a mixed-methods approach with multiple data sources. Four multidisciplinary models of extended scope of practice were tested over an 18-month period, involving 26 organizations, 224 health professionals, and 36 implementation sites. The evaluation focused on what could be learned to inform scaling up the extended scopes of practice on a national scale. The evaluation findings were used to develop a conceptual framework for use by clinicians, managers, and policy makers to determine appropriate strategies for scaling up effective innovations. Development of the framework was informed by the literature on the diffusion of innovations, particularly an understanding that certain attributes of innovations influence adoption. The framework recognizes the role played by three groups of stakeholders: evidence producers, evidence influencers, and evidence adopters. The use of the framework is illustrated with four case studies from the evaluation. The findings demonstrate how the scaling up of innovations can be influenced by three quite distinct approaches - letting adoption take place in an uncontrolled, unplanned, way; actively helping the process of adoption; or taking deliberate steps to ensure that adoption takes place. Development of the conceptual framework resulted in two sets of questions to guide decisions about scalability, one for those considering whether to adopt the innovation (evidence adopters), and the other for those trying to decide on the optimal strategy for dissemination (evidence influencers).

  19. On the Formation of Extended Galactic Disks by Tidally Disrupted Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge; McConnachie, Alan; Babul, Arif

    2006-10-01

    We explore the possibility that extended disks, such as that recently discovered in M31, are the result of a single dwarf (109-1010 Msolar) satellite merger. We conduct N-body simulations of dwarf NFW halos with embedded spheroidal stellar components on coplanar, prograde orbits in an M31-like host galaxy. As the orbit decays due to dynamical friction and the system is disrupted, the stellar particles relax to form an extended, exponential-disk-like structure that spans the radial range 30-200 kpc. The disk scale length Rd correlates with the initial extent of the stellar component within the satellite halo: the more embedded the stars, the smaller the resulting disk scale length. If the progenitors start on circular orbits, the kinematics of the stars that make up the extended disk have an average rotational motion that is 30-50 km s-1 lower than the host's circular velocity. For dwarf galaxies moving on highly eccentric orbits (e~=0.7), the stellar debris exhibits a much lower rotational velocity. Our results imply that extended galactic disks might be a generic feature of the hierarchical formation of spiral galaxies such as M31 and the Milky Way.

  20. The spatially resolved star formation history of mergers. A comparative study of the LIRGs IC 1623, NGC 6090, NGC 2623, and Mice

    NASA Astrophysics Data System (ADS)

    Cortijo-Ferrero, C.; González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; Di Matteo, P.; Sánchez, S. F.; de Amorim, A. L.; Lacerda, E. A. D.; López Fernández, R.; Tadhunter, C.

    2017-11-01

    This paper presents the spatially resolved star formation history (2D-SFH) of a small sample of four local mergers: the early-stage mergers IC 1623, NGC 6090, and the Mice, and the more advanced merger NGC 2623, by analyzing IFS data from the CALIFA survey and PMAS in LArr mode. Full spectral fitting techniques are applied to the datacubes to obtain the spatially resolved mass growth histories, the time evolution of the star formation rate intensity (ΣSFR), and the local specific star formation rate (sSFR), over three different time scales (30 Myr, 300 Myr, and 1 Gyr). The results are compared with non-interacting Sbc-Sc galaxies, to quantify if there is an enhancement of the star formation and to trace its time scale and spatial extent. Our results for the three LIRGs (IC 1623 W, NGC 6090, and NGC 2623) show that a major phase of star formation is occurring in time scales of 107 yr to few 108 yr, with global SFR enhancements of between approximately two and six with respect to main-sequence star forming (MSSF) galaxies. In the two early-stage mergers IC 1623 W and NGC 6090, which are between first pericentre passage and coalescence, the most remarkable increase of the SFR with respect to non-interacting spirals occurred in the last 30 Myr, and it is spatially extended, with enhancements of factors between two and seven both in the centres (r < 0.5 half light radius, HLR), and in the disks (r > 1 HLR). In the more advanced merger NGC 2623 an extended phase of star formation occurred on a longer time scale of 1 Gyr, with a SFR enhancement of a factor of approximately two-to-three larger than the one in Sbc-Sc MSSF galaxies over the same period, probably relic of the first pericentre passage epoch. A SFR enhancement in the last 30 Myr is also present, but only in NGC 2623 centre, by a factor of three. In general, the spatially resolved SFHs of the LIRG-mergers are consistent with the predictions from high spatial resolution simulations. In contrast, the star formation in the Mice, specially in Mice B, is not enhanced but inhibited with respect to Sbc-Sc MSSF galaxies. The fact that the gas fraction of Mice B is smaller than in most non-interacting spirals, and that the Mice are close to a prograde orbit, represents a new challenge for the models, which must cover a larger space of parameters in terms of the availability of gas and the orbital characteristics.

Top