Simulation of atmospheric turbulence for optical systems with extended sources.
Safari, Majid; Hranilovic, Steve
2012-11-01
In this paper, the method of random wave vectors for simulation of atmospheric turbulence is extended to 2D×2D space to provide spatial degrees of freedom at both input and output planes. The modified technique can thus simultaneously simulate the turbulence-induced log-amplitude and phase distortions for optical systems with extended sources either implemented as a single large aperture or multiple apertures. The reliability of our simulation technique is validated in different conditions and its application is briefly investigated in a multibeam free-space optical communication scenario.
Gershgorin, B.; Harlim, J. Majda, A.J.
2010-01-01
The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. This approach can have significant skill by fitting the parameters to some statistical feature of the true signal; however in the context of real-time prediction, such a strategy performs poorly when intermittent transitions to instability occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating parameters on the fly is a stochastic parameter estimation through partial observations of the true signal. In this paper, we extend our newly developed stochastic parameter estimation strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering sparsely observed spatially extended turbulent systems which exhibit abrupt stability transition from time to time despite a stable average behavior. For our primary numerical example, we consider a turbulent system of externally forced barotropic Rossby waves with instability introduced through intermittent negative damping. We find high filtering skill of SPEKF applied to this toy model even in the case of very sparse observations (with only 15 out of the 105 grid points observed) and with unspecified external forcing and damping. Additive and multiplicative bias corrections are used to learn the unknown features of the true dynamics from observations. We also present a comprehensive study of predictive skill in the one-mode context including the robustness toward variation of stochastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore, the proposed stochastic parameter estimation scheme applied to the same spatially extended Rossby wave system demonstrates
Imaging System for Extending Evanescent-Wave Particle Velocimetry to Wall Turbulence
2014-11-17
based particle?tracking velocimetry (PTV) technique to visualize a “slice” of the viscous sublayer in wall turbulence parallel to the wall in fully...developed turbulent channel flow. Understanding the characteristics of wall (?bounded) turbulence, especially in the viscous sublayer, i.e., the thin...flow region next to the wall where viscous effects dominate, is the key to understanding the drag and lift forces 1. REPORT DATE (DD-MM-YYYY) 4. TITLE
Tilt anisoplanatism in extended turbulence propagation
NASA Astrophysics Data System (ADS)
Magee, Eric P.; Whiteley, Matthew R.; Das, Shashikala T.; Welsh, Byron M.
2003-04-01
The use of high-energy laser (HEL) weapon systems in tactical air-to-ground target engagements offers great promise for revolutionizing the USAF's war-fighting capabilities. Laser directed-energy systems will enable ultra-precision strike with minimal collateral damage and significant stand-off range for the aerial platform. The tactical directed energy application differs in many crucial ways from the conventional approach used in missile defense. Tactical missions occur at much lower altitudes and involve look-down to low-contrast ground targets instead of a high-contrast boosting missile. At these lower altitudes, the strength of atmospheric turbulence is greatly enhanced. Although the target slant ranges are much shorter, tactical missions may still involve moderate values of the Rytov number (0.1-0.5), and small isoplanatic angles compared to the diffraction angle. With increased density of air in the propagation path, and the potential for slow-moving or stationary ground targets, HEL-induced thermal blooming will certainly be a concern. In order to minimize the errors induced by tracking through thermal blooming, offset aimpoint tracking can be used. However, this will result in significant tilt anisoplanatism, thus degrading beam stabilization on target. In this paper we investigate the effects of extended turbulence on tracking (or tilt) anisoplanatism using theory and wave optics simulations. The simulations show good agreement with geometric optics predictions at angles larger than about 5 micro-radians (asymptotic regime) while at smaller angles the agreement is poor. We present a theoretical basis for this observation.
Airborne Turbulence Warning System Development
NASA Technical Reports Server (NTRS)
Bogue, Rod
2003-01-01
This viewgraph presentation provides information on the development of a system by which aircraft pilots will be warned of turbulence. This networked system of in situ sensors will be mounted on various aircraft all of which are linked through a ground based parabolic antenna. As its end result, this system will attempt to reduce the number of accidents arising from turbulence.
Extending velocity channel analysis for studying turbulence anisotropies
NASA Astrophysics Data System (ADS)
Kandel, D.; Lazarian, A.; Pogosyan, D.
2016-09-01
We extend the velocity channel analysis (VCA), introduced by Lazarian & Pogosyan, of the intensity fluctuations in the velocity slices of position-position-velocity (PPV) spectroscopic data from Doppler broadened lines to study statistical anisotropy of the underlying velocity and density that arises in a turbulent medium from the presence of magnetic field. In particular, we study analytically how the anisotropy of the intensity correlation in the channel maps changes with the thickness of velocity channels. In agreement with the earlier VCA studies, we find that the anisotropy in the thick channels reflects the anisotropy of the density field, while the relative contribution of density and velocity fluctuations to the thin velocity channels depends on the density spectral slope. We show that the anisotropies arising from Alfvén, slow and fast magnetohydrodynamical modes are different; in particular, the anisotropy in PPV created by fast modes is opposite to that created by Alfvén and slow modes, and this can be used to separate their contributions. We successfully compare our results with the recent numerical study of the PPV anisotropies measured with synthetic observations. We also extend our study to the medium with self-absorption as well as to the case of absorption lines. In addition, we demonstrate how the studies of anisotropy can be performed using interferometers.
Filtering skill for turbulent signals for a suite of nonlinear and linear extended Kalman filters
NASA Astrophysics Data System (ADS)
Branicki, M.; Gershgorin, B.; Majda, A. J.
2012-02-01
The filtering skill for turbulent signals from nature is often limited by errors due to utilizing an imperfect forecast model. In particular, real-time filtering and prediction when very limited or no a posteriori analysis is possible (e.g. spread of pollutants, storm surges, tsunami detection, etc.) introduces a number of additional challenges to the problem. Here, a suite of filters implementing stochastic parameter estimation for mitigating model error through additive and multiplicative bias correction is examined on a nonlinear, exactly solvable, stochastic test model mimicking turbulent signals in regimes ranging from configurations with strongly intermittent, transient instabilities associated with positive finite-time Lyapunov exponents to laminar behavior. Stochastic Parameterization Extended Kalman Filter (SPEKF), used as a benchmark here, involves exact formulas for propagating the mean and covariance of the augmented forecast model including the unresolved parameters. The remaining filters use the same nonlinear forecast model but they introduce model error through different moment closure approximations and/or linear tangent approximation used for computing the second-order statistics of the augmented stochastic forecast model. A comprehensive study of filter performance is carried out in the presence of various moment closure errors which are enhanced by additional model errors due to incorrect parameters inducing additive and multiplicative stochastic biases. The estimation skill of the unresolved stochastic parameters is also discussed and it is shown that the linear tangent filter, despite its popularity, is completely unreliable in many turbulent regimes for both parameter estimation and filtering; moreover, regimes of filter divergence for the linear tangent filter are identified. The results presented here provide useful guidelines for filtering turbulent, high-dimensional, spatially extended systems with more general model errors, as well as
PREFACE: Complex Dynamics in Spatially Extended Systems
NASA Astrophysics Data System (ADS)
Mosekilde, Erik; Bohr, Tomas; Rasmussen, Jens Juul; Leth Christiansen, Peter
1996-01-01
Self-organization, or the spontaneous emergence of patterns and structures under far-from-equilibrium conditions, turbulence, and related nonlinear dynamic phenomena in spatially extended systems have developed into one of the most exciting topics of modern science. Phenomena of this type arise in a wide variety of different fields, ranging from the development of chemical and biological patterns in reaction-diffusion systems over vortex formation in connection with chemical, optical, hydrodynamic or magnetohydrodynamic turbulence to technical applications in connection with liquid crystal displays or pulse compression in optical communication systems. Lasers often show interesting patterns produced by self-focusing and other nonlinear phenomena, diffusion limited aggregation is known to generate fractal-like structures, and amazing struc- tures also arise in bacterial growth processes or when a droplet of an oil suspension of finely divided magnetic particles is subject to a magnetic field perpendicular to the surface of the cell in which it is contained. In September 1995 the Niels Bohr Institute in Copenhagen was the venue of an International Conference on Complex Dynamics in Spatially Extended Systems. Organizers of the conference were the three Danish centers for nonlinear dynamics: The Center for Chaos and Turbulence Studies (CATS), located at the Niels Bohr Institute; the Center for Modeling, Nonlinear Dynamics and Irreversible Thermodynamics (MIDIT), located at the Technical University of Denmark, and the Center for Nonlinear Dynamics in Continuum Systems, located at the Risø National Laboratories. In the spirit of the successful NATO Advanced Research Workshops on Spatiotemporal Patterns in Nonequilibrium Systems of which the last was held in Santa Fe, New Mexico in 1993, the conference aimed at stimulating new ideas and providing a forum for the exchange of knowledge between leading practitioners of the field. With its 50 invited speakers and more than
Computer correction of turbulent distortions of image of extended objects on near-Earth paths
Averin, A P; Morozov, Yu B; Pryanichkov, V S; Tyapin, V V
2011-05-31
An algorithm of computer-based correction of images of extended objects distorted by turbulent atmosphere is developed. The method of computer correction is used to correct a distorted image of an extended object on a horizontal 2300-m-long observation path. The angular size of the corrected-image region was 15'. (image processing)
Extended MHD Turbulence and Its Applications to the Solar Wind
NASA Astrophysics Data System (ADS)
Abdelhamid, Hamdi M.; Lingam, Manasvi; Mahajan, Swadesh M.
2016-10-01
Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfvénic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal (k\\lt 1/{λ }i), Hall (1/{λ }i\\lt k\\lt 1/{λ }e), and electron inertia (k\\gt 1/{λ }e) regimes; k is the wavenumber and {λ }s=c/{ω }{ps} is the skin depth of species “s.” In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of -11/3 and -13/3 are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approximately -4 in this regime. It is thus plausible that these spectra may constitute a part of the (extended) inertial range, as opposed to the standard “dissipation” range paradigm.
Airborne Turbulence Detection System Certification Tool Set
NASA Technical Reports Server (NTRS)
Hamilton, David W.; Proctor, Fred H.
2006-01-01
A methodology and a corresponding set of simulation tools for testing and evaluating turbulence detection sensors has been presented. The tool set is available to industry and the FAA for certification of radar based airborne turbulence detection systems. The tool set consists of simulated data sets representing convectively induced turbulence, an airborne radar simulation system, hazard tables to convert the radar observable to an aircraft load, documentation, a hazard metric "truth" algorithm, and criteria for scoring the predictions. Analysis indicates that flight test data supports spatial buffers for scoring detections. Also, flight data and demonstrations with the tool set suggest the need for a magnitude buffer.
Extended attention span training system
NASA Technical Reports Server (NTRS)
Pope, Alan T.; Bogart, Edward H.
1991-01-01
Attention Deficit Disorder (ADD) is a behavioral disorder characterized by the inability to sustain attention long enough to perform activities such as schoolwork or organized play. Treatments for this disorder include medication and brainwave biofeedback training. Brainwave biofeedback training systems feed back information to the trainee showing him how well he is producing the brainwave pattern that indicates attention. The Extended Attention Span Training (EAST) system takes the concept a step further by making a video game more difficult as the player's brainwaves indicate that attention is waning. The trainee can succeed at the game only by maintaining an adequate level of attention. The EAST system is a modification of a biocybernetic system that is currently being used to assess the extent to which automated flight management systems maintain pilot engagement. This biocybernetic system is a product of a program aimed at developing methods to evaluate automated flight deck designs for compatibility with human capabilities. The EAST technology can make a contribution in the fields of medical neuropsychology and neurology, where the emphasis is on cautious, conservative treatment of youngsters with attention disorders.
Velocity and turbulence measurements in combustion systems
NASA Astrophysics Data System (ADS)
Goldstein, R. J.; Lau, K. Y.; Leung, C. C.
1983-06-01
A laser-Doppler velocimeter is used in the measurement of high-temperature gas flows. A two-stage fluidization particle generator provides magnesium oxide particles to serve as optical scattering centers. The one-dimensional dual-beam system is frequency shifted to permit measurements of velocities up to 300 meters per second and turbulence intensities greater than 100 percent. Exiting flows from can-type gas turbine combustors and burners with pre-mixed oxy-acetylene flames are described in terms of the velocity, turbulence intensity, and temperature profiles. The results indicate the influence of the combustion process on turbulence.
Extended recombinant bacterial ghost system.
Lubitz, W; Witte, A; Eko, F O; Kamal, M; Jechlinger, W; Brand, E; Marchart, J; Haidinger, W; Huter, V; Felnerova, D; Stralis-Alves, N; Lechleitner, S; Melzer, H; Szostak, M P; Resch, S; Mader, H; Kuen, B; Mayr, B; Mayrhofer, P; Geretschläger, R; Haslberger, A; Hensel, A
1999-08-20
Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts from a variety of bacteria are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extends the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying foreign epitopes further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts have inherent adjuvant properties, they can be used as adjuvants in combination with subunit vaccines. Subunits or other ligands can also be coupled to matrixes like dextran which are used to fill the internal lumen of ghosts. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in this production. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. The endotoxic component of the outer membrane does not limit the use of ghosts as vaccine candidates but triggers the release of several potent immunoregulatory cytokines. As carriers, there is no limitation in the size of foreign antigens that can be inserted in the membrane and the capacity of all spaces including the membranes, peri
Extending the restricted nonlinear model for wall-turbulence to high Reynolds numbers
NASA Astrophysics Data System (ADS)
Bretheim, Joel; Meneveau, Charles; Gayme, Dennice
2016-11-01
The restricted nonlinear (RNL) model for wall-turbulence is motivated by the long-observed streamwise-coherent structures that play an important role in these flows. The RNL equations, derived by restricting the convective term in the Navier-Stokes equations, provide a computationally efficient approach due to fewer degrees of freedom in the underlying dynamics. Recent simulations of the RNL system have been conducted for turbulent channel flows at low Reynolds numbers (Re), yielding insights into the dynamical mechanisms and statistics of wall-turbulence. Despite the computational advantages of the RNL system, simulations at high Re remain out-of-reach. We present a new Large Eddy Simulation (LES) framework for the RNL system, enabling its use in engineering applications at high Re such as turbulent flows through wind farms. Initial results demonstrate that, as observed at moderate Re, restricting the range of streamwise varying structures present in the simulation (i.e., limiting the band of x Fourier components or kx modes) significantly affects the accuracy of the statistics. Our results show that only a few well-chosen kx modes lead to RNL turbulence with accurate statistics, including the mean profile and the well-known inner and outer peaks in energy spectra. This work is supported by NSF (WindInspire OISE-1243482).
NASA Astrophysics Data System (ADS)
Frisch, Uriel
1996-01-01
Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.
Laser Doppler systems in atmospheric turbulence
NASA Technical Reports Server (NTRS)
Murty, S. S. R.
1976-01-01
The loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction is investigated. The current status in the physics of low energy laser propagation through turbulent atmosphere is presented. The analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests. Theoretical and experimental signal to noise values are compared. Maximum and minimum values of the atmospheric attenuation over a two way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.
NASA Technical Reports Server (NTRS)
Cranmer, Steven R.; Wagner, William (Technical Monitor)
2003-01-01
The PI (Cranmer) and Co-I (A. van Ballegooijen) made significant progress toward the goal of building a "unified model" of the dominant physical processes responsible for the acceleration of the solar wind. The approach outlined in the original proposal comprised two complementary pieces: (1) to further investigate individual physical processes under realistic coronal and solar wind conditions, and (2) to extract the dominant physical effects from simulations and apply them to a one-dimensional and time-independent model of plasma heating and acceleration. The accomplishments in the report period are thus divided into these two categories: 1a. Focused Study of Kinetic MHD Turbulence. We have developed a model of magnetohydrodynamic (MHD) turbulence in the extended solar corona that contains the effects of collisionless dissipation and anisotropic particle heating. A turbulent cascade is one possible way of generating small-scale fluctuations (easy to dissipate/heat) from a pre-existing population of low-frequency Alfven waves (difficult to dissipate/heat). We modeled the cascade as a combination of advection and diffusion in wavenumber space. The dominant spectral transfer occurs in the direction perpendicular to the background magnetic field. As expected from earlier models, this leads to a highly anisotropic fluctuation spectrum with a rapidly decaying tail in the parallel wavenumber direction. The wave power that decays to high enough frequencies to become ion cyclotron resonant depends on the relative strengths of advection and diffusion in the cascade. For the most realistic values of these parameters, though, there is insufficient power to heat protons and heavy ions. The dominant oblique waves undergo Landau damping, which implies strong parallel electron heating. We thus investigated the nonlinear evolution of the electron velocity distributions (VDFs) into parallel beams and discrete phase-space holes (similar to those seen in the terrestrial magnetosphere
Brenkosh, J.P.
1993-12-23
The X Window System was originally developed in 1984 at Massachusetts Institute of Technology. It provides client-server computing functionality and also facilitates the establishment of a distributed computing environment. Since its inception the X Window System has undergone many enhancements. Despite these enhancements there will always be a functionality desired in the standard released version of X that is not supported or commercially or academically available. The developers of the X Window System have designed it in such a way that it is possible to add functionality that is not included in the standard release. This is called an extension. Extensions are one method used to develop a customized version of the X Window System to support a specialized application. This report presents the mechanics of adding an extension and examines a particular extension that was developed at Sandia National Laboratories to support data compression in X Windows which was one aspect of the Desktop Video and Collaborative Engineering Laboratory Directed Research and Development (LDRD).
Laser system of extended range
NASA Technical Reports Server (NTRS)
Lehr, C. G.
1972-01-01
A pulsed laser system was developed for range measurements from the earth to retroreflecting satellites at distances up to that of the moon. The system has a transportable transmitter unit that can be moved from one location to another. This unit consists of a 0.2 m coude refractor and a high radiance, neodymium-glass, frequency doubled laser that operates in a single transverse mode. It can be used for lunar or distant satellite ranging at any observatory that has a telescope with an aperture diameter of about 1.5 m for the detection of the laser return pulses. This telescope is utilized in the same manner customarily employed for the observation of celestial objects. A special photometric package and the associated electronics are provided for laser ranging.
Development and characterization of a variable turbulence generation system
NASA Astrophysics Data System (ADS)
Marshall, A.; Venkateswaran, P.; Noble, D.; Seitzman, J.; Lieuwen, T.
2011-09-01
Experimental turbulent combustion studies require systems that can simulate the turbulence intensities [ u'/ U 0 ~ 20-30% (Koutmos and McGuirk in Exp Fluids 7(5):344-354, 1989)] and operating conditions of real systems. Furthermore, it is important to have systems where turbulence intensity can be varied independently of mean flow velocity, as quantities such as turbulent flame speed and turbulent flame brush thickness exhibit complex and not yet fully understood dependencies upon both U 0 and u'. Finally, high pressure operation in a highly pre-heated environment requires systems that can be sealed, withstand high gas temperatures, and have remotely variable turbulence intensity that does not require system shut down and disassembly. This paper describes the development and characterization of a variable turbulence generation system for turbulent combustion studies. The system is capable of a wide range of turbulence intensities (10-30%) and turbulent Reynolds numbers (140-2,200) over a range of flow velocities. An important aspect of this system is the ability to vary the turbulence intensity remotely, without changing the mean flow velocity. This system is similar to the turbulence generators described by Videto and Santavicca (Combust Sci Technol 76(1):159-164, 1991) and Coppola and Gomez (Exp Therm Fluid Sci 33(7):1037-1048, 2009), where variable blockage ratio slots are located upstream of a contoured nozzle. Vortical structures from the slots impinge on the walls of the contoured nozzle to produce fine-scale turbulence. The flow field was characterized for two nozzle diameters using three-component Laser Doppler velocimetry (LDV) and hotwire anemometry for mean flow velocities from 4 to 50 m/s. This paper describes the key design features of the system, as well as the variation of mean and RMS velocity, integral length scales, and spectra with nozzle diameter, flow velocity, and turbulence generator blockage ratio.
CARS system for turbulent flame measurements
NASA Technical Reports Server (NTRS)
Antcliff, R. R.; Jarrett, O., Jr.; Rogers, R. C.
1984-01-01
Simultaneous nitrogen number density and rotational-vibrational temperatures were measured in a turbulent diffusion flame with a Coherent Anti-Stokes Raman Scattering (CARS) instrument. The fuel jet was diluted with nitrogen (20 percent by volume) to allow temperature measurements across the entire jet mixing region. These measurements were compared with fluid dynamics computations. The CARS system incorporated a neodymium YAG laser, an intensified silicon photodiode array detector, and unique dynamic range enhancement methods. Theoretical calculations were based on a parabolic Navier-Stokes computer code. The comparison of these techniques will aid their development in the study of complex flowfields.
In-Service Evaluation of the Turbulence Auto-PIREP System and Enhanced Turbulence Radar Technologies
NASA Technical Reports Server (NTRS)
Prince, Jason B.; Buck, Bill K.; Robinson, Paul A.; Ryan, Tim
2007-01-01
From August 2003 to December 2006, In-Service Evaluations (ISE) of the Turbulence Auto-PIREP System (TAPS) and Enhanced Turbulence (E-Turb) Radar, technologies developed in NASA's Turbulence Prediction and Warning System (TPAWS) element of its Aviation Safety and Security Program (AvSSP), were conducted. NASA and AeroTech Research established an industry team comprising AeroTech, Delta Air Lines, Rockwell Collins, and ARINC to conduct the ISEs. The technologies were installed on Delta aircraft and their effectiveness was evaluated in day-to-day operations. This report documents the establishment and conduct of the ISEs and presents results and feedback from various users.
NASA Technical Reports Server (NTRS)
Cranmer, Steven R.; Wagner, William (Technical Monitor)
2004-01-01
The PI (Cranmer) and Co-I (A. van Ballegooijen) made substantial progress toward the goal of producing a unified model of the basic physical processes responsible for solar wind acceleration. The approach outlined in the original proposal comprised two complementary pieces: (1) to further investigate individual physical processes under realistic coronal and solar wind conditions, and (2) to extract the dominant physical effects from simulations and apply them to a 1D model of plasma heating and acceleration. The accomplishments in Year 2 are divided into these two categories: 1a. Focused Study of Kinetic Magnetohydrodynamic (MHD) Turbulence. lb. Focused Study of Non - WKB Alfven Wave Rejection. and 2. The Unified Model Code. We have continued the development of the computational model of a time-study open flux tube in the extended corona. The proton-electron Monte Carlo model is being tested, and collisionless wave-particle interactions are being included. In order to better understand how to easily incorporate various kinds of wave-particle processes into the code, the PI performed a detailed study of the so-called "Ito Calculus", i.e., the mathematical theory of how to update the positions of particles in a probabilistic manner when their motions are governed by diffusion in velocity space.
NASA Technical Reports Server (NTRS)
Wagner, William (Technical Monitor); Cranmer, Steven R.
2005-01-01
The paper discusses the following: 1. No-cost Extension. The no-cost extension is required to complete the work on the unified model codes (both hydrodynamic and kinetic Monte Carlo) as described in the initial proposal and previous annual reports. 2. Scientific Accomplishments during the Report Period. We completed a comprehensive model of Alfvtn wave reflection that spans the full distance from the photosphere to the distant heliosphere. 3. Comparison of Accomplishments with Proposed Goals. The proposal contained two specific objectives for Year 3: (1) to complete the unified model code, and (2) to apply it to various kinds of coronal holes (and polar plumes within coronal holes). Although the anticipated route toward these two final goals has changed (see accomplishments 2a and 2b above), they remain the major milestones for the extended period of performance. Accomplishments la and IC were necessary prerequisites for the derivation of "physically relevant transport and mode-coupling terms" for the unified model codes (as stated in the proposal Year 3 goals). We have fulfilled the proposed "core work" to study 4 general types of physical processes; in previous years we studied turbulence, mode coupling (Le., non-WKB reflection), and kinetic wave damping, and accomplishment lb provides the fourth topic: nonlinear steepening.
On the structure and statistical theory of turbulence of extended magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Miloshevich, George; Lingam, Manasvi; Morrison, Philip J.
2017-01-01
Recent progress regarding the noncanonical Hamiltonian formulation of extended magnetohydrodynamics (XMHD), a model with Hall drift and electron inertia, is summarized. The advantages of the Hamiltonian approach are invoked to study some general properties of XMHD turbulence, and to compare them against their ideal MHD counterparts. For instance, the helicity flux transfer rates for XMHD are computed, and Liouville’s theorem for this model is also verified. The latter is used, in conjunction with the absolute equilibrium states, to arrive at the spectra for the invariants, and to determine the direction of the cascades, e.g., generalizations of the well-known ideal MHD inverse cascade of magnetic helicity. After a similar analysis is conducted for XMHD by inspecting second order structure functions and absolute equilibrium states, a couple of interesting results emerge. When cross helicity is taken to be ignorable, the inverse cascade of injected magnetic helicity also occurs in the Hall MHD range—this is shown to be consistent with previous results in the literature. In contrast, in the inertial MHD range, viz at scales smaller than the electron skin depth, all spectral quantities are expected to undergo direct cascading. The consequences and relevance of our results in space and astrophysical plasmas are also briefly discussed.
Market Assessment of Forward-Looking Turbulence Sensing Systems
NASA Technical Reports Server (NTRS)
Kauffmann, Paul
2003-01-01
This viewgraph presentation provides a cost benefit analysis of three next-generation forward-looking turbulence sensing systems: X band turbulence radar system for convective turbulence, LIDAR based turbulence systems to sense clear air turbulence and a combined hybrid system. Parameters for the cost benefit analysis were established using a business model which considered injury rates, cost of injuries, indirect costs, market penetration rate estimates and product success characteristics. Topics covered include: study approach, business case equations, data acquisition, benchmark analysis. Data interpretation from the cost benefit analysis is presented. The researchers conclude that the market potential for these products is based primarily on injury cost reduction and that X band radar systems have the greatest chance for commercial success.
How turbulence regulates biodiversity in systems with cyclic competition
NASA Astrophysics Data System (ADS)
Grošelj, Daniel; Jenko, Frank; Frey, Erwin
2015-03-01
Cyclic, nonhierarchical interactions among biological species represent a general mechanism by which ecosystems are able to maintain high levels of biodiversity. However, species coexistence is often possible only in spatially extended systems with a limited range of dispersal, whereas in well-mixed environments models for cyclic competition often lead to a loss of biodiversity. Here we consider the dispersal of biological species in a fluid environment, where mixing is achieved by a combination of advection and diffusion. In particular, we perform a detailed numerical analysis of a model composed of turbulent advection, diffusive transport, and cyclic interactions among biological species in two spatial dimensions and discuss the circumstances under which biodiversity is maintained when external environmental conditions, such as resource supply, are uniform in space. Cyclic interactions are represented by a model with three competitors, resembling the children's game of rock-paper-scissors, whereas the flow field is obtained from a direct numerical simulation of two-dimensional turbulence with hyperviscosity. It is shown that the space-averaged dynamics undergoes bifurcations as the relative strengths of advection and diffusion compared to biological interactions are varied.
Flight Tests of the Turbulence Prediction and Warning System (TPAWS)
NASA Technical Reports Server (NTRS)
Hamilton, David W.; Proctor, Fred H.; Ahmad, Nashat N.
2012-01-01
Flight tests of the National Aeronautics and Space Administration's Turbulence Prediction And Warning System (TPAWS) were conducted in the Fall of 2000 and Spring of 2002. TPAWS is a radar-based airborne turbulence detection system. During twelve flights, NASA's B-757 tallied 53 encounters with convectively induced turbulence. Analysis of data collected during 49 encounters in the Spring of 2002 showed that the TPAWS Airborne Turbulence Detection System (ATDS) successfully detected 80% of the events at least 30 seconds prior to the encounter, achieving FAA recommended performance criteria. Details of the flights, the prevailing weather conditions, and each of the turbulence events are presented in this report. Sensor and environmental characterizations are also provided.
NASA Astrophysics Data System (ADS)
Dutta, Agnibesh; Kumar, Vivek; Kaushal, Hemani; Aennam, Harika; Jain, V. K.; Kar, Subrat; Joseph, Joby
2011-10-01
The performance of laser communication systems operating in the atmosphere is degraded by atmospheric turbulence effects, which causes irradiance fluctuations in the received signal and result in a random signal fades. We propose to simulate this effect in laboratory using an optical turbulence generator chamber and to measure the level of turbulence using CMOS array.
Lidar system for atmospheric turbulence measurement with Mersen telescope
NASA Astrophysics Data System (ADS)
Savin, A. V.; Strakhov, S. Yu.; Konyaev, M. A.; Trilis, A. V.
2006-02-01
In this work the lidar system for measurements of atmospheric turbulence structural function C n2 are presented. Method of such measurements is based on increasing of focal spot on the receiver after beam pass through turbulent atmosphere. In this work the receiving-transmission system on the base of Mersen telescope with main mirror diameter 0.5m is used. Features connected with optical system aberrations are considered. The results of experimental investigation are presented.
Electrodynamic tether system study: Extended study
NASA Technical Reports Server (NTRS)
1988-01-01
This document is the final report of a study performed by Ball Space Systems Division (BSSD) for the NASA Johnson Space Center under an extension to contract NAS9-17666. The tasks for the extended study were as follows: (1) Define an interface between the Electrodynamic Tether System (ETS) and the Space Station (SS); (2) Identify growth paths for the 100 kW ETS defined in the original study to a 200 kW level of performance; (3) Quantify orbit perturbations caused by cyclic day/night operations of a Plasma Motor/Generator (PMG) on the SS and explore methods of minimizing these effects; (4) Define the analyses, precursor technology, ground tests, and precursor demonstrations leading up to a demonstration mission for an electrodynamic tether system that would be capable of producing maneuvering thrust levels of 25 newtons; and (5) Propose a development schedule for the demonstration mission and preliminary cost estimates.
Statistical energy conservation principle for inhomogeneous turbulent dynamical systems.
Majda, Andrew J
2015-07-21
Understanding the complexity of anisotropic turbulent processes over a wide range of spatiotemporal scales in engineering shear turbulence as well as climate atmosphere ocean science is a grand challenge of contemporary science with important societal impact. In such inhomogeneous turbulent dynamical systems there is a large dimensional phase space with a large dimension of unstable directions where a large-scale ensemble mean and the turbulent fluctuations exchange energy and strongly influence each other. These complex features strongly impact practical prediction and uncertainty quantification. A systematic energy conservation principle is developed here in a Theorem that precisely accounts for the statistical energy exchange between the mean flow and the related turbulent fluctuations. This statistical energy is a sum of the energy in the mean and the trace of the covariance of the fluctuating turbulence. This result applies to general inhomogeneous turbulent dynamical systems including the above applications. The Theorem involves an assessment of statistical symmetries for the nonlinear interactions and a self-contained treatment is presented below. Corollary 1 and Corollary 2 illustrate the power of the method with general closed differential equalities for the statistical energy in time either exactly or with upper and lower bounds, provided that the negative symmetric dissipation matrix is diagonal in a suitable basis. Implications of the energy principle for low-order closure modeling and automatic estimates for the single point variance are discussed below.
System and Method for Finite Element Simulation of Helicopter Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E. (Inventor); Dulsenberg, Ken (Inventor)
1999-01-01
The present invention provides a turbulence model that has been developed for blade-element helicopter simulation. This model uses an innovative temporal and geometrical distribution algorithm that preserves the statistical characteristics of the turbulence spectra over the rotor disc, while providing velocity components in real time to each of five blade-element stations along each of four blades. for a total of twenty blade-element stations. The simulator system includes a software implementation of flight dynamics that adheres to the guidelines for turbulence set forth in military specifications. One of the features of the present simulator system is that it applies simulated turbulence to the rotor blades of the helicopter, rather than to its center of gravity. The simulator system accurately models the rotor penetration into a gust field. It includes time correlation between the front and rear of the main rotor, as well as between the side forces felt at the center of gravity and at the tail rotor. It also includes features for added realism, such as patchy turbulence and vertical gusts in to which the rotor disc penetrates. These features are realized by a unique real time implementation of the turbulence filters. The new simulator system uses two arrays one on either side of the main rotor to record the turbulence field and to produce time-correlation from the front to the rear of the rotor disc. The use of Gaussian Interpolation between the two arrays maintains the statistical properties of the turbulence across the rotor disc. The present simulator system and method may be used in future and existing real-time helicopter simulations with minimal increase in computational workload.
AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS
Li, Pak Shing; Myers, Andrew; McKee, Christopher F. E-mail: atmyers@berkeley.edu
2012-11-20
The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of {approx}1 and AD Reynolds numbers of {approx}20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.
Canadian system extends Arctic drilling season
Park, D.A.
1984-06-18
Faced with the possibility of insufficient drilling equipment to meet accelerated exploration programs in the Canadian Beaufort Sea, Gulf Canada Resources Inc. of Calgary, Alta., undertook in 1981 to build a major new drilling system that would be capable of operating in Arctic water depths ranging from 50 to 180 ft. The company decided to design the system to extend the drilling season beyond that achieved with modified conventional drillships. The new system is operated by BeauDril Ltd., the Arctic offshore drilling subsidiary of Gulf Canada Resources. It consists of a mobile, bottomfounded, shallow-water drilling unit named Molikpaq; a conically shaped, deeper-water unit called Kulluk; two ice-breakers and two icebreaking supply vessels (all Ice Class IV); a large operations base at Tuktoyaktuk; and a floating marine base. With the exception of Molikpaq (delivered mid-April this year), the system became operational in the summer of 1983. In addition to discussing engineering and construction challenges resulting from the extension of the drilling season to mid-December, this article describes the mobilization of Kulluk and her supporting fleet to the Beaufort Sea, highlighting vessel positioning, and drilling operations at the first well locations.
The evaluation of a turbulent loads characterization system
Kelley, N.D.; McKenna, H.E.
1996-01-01
In this paper we discuss an on-line turbulent load characterization system that has been designed to acquire loading spectra from turbines of the same design operating in several different environments and from different turbine designs operating in the same environment. This System simultaneously measures the rainflow-counted alternating and mean loading spectra and the hub-height turbulent mean shearing stress and atmospheric stability associated with the turbulent inflow. We discuss the theory behind the measurement configuration and the results of proof-of-concept testing recently performed at the National Wind Technology Center (NWTC) using a Bergey EXCEL-S 10-kW wind turbine. The on-line approach to characterizing the load spectra and the inflow turbulent scaling parameter produces results that are consistent with other measurements. The on-line approximation of the turbulent shear stress or friction velocity u* also is considered adequate. The system can be used to characterize turbulence loads during turbine deployment in a wide variety of environments. Using the WISPER protocol, we found that a wide-range, variable-speed turbine will accumulate a larger number of stress cycles in the low-cycle, high-amplitude (LCHA) region when compared with a constant speed rotor under similar inflow conditions.
NASA Astrophysics Data System (ADS)
Ozawa, Hisashi; Shimokawa, Shinya; Sakuma, Hirofumi
Turbulence is ubiquitous in nature, yet remains an enigma in many respects. Here we investigate dissipative properties of turbulence so as to find out a statistical "law" of turbulence. Two general expressions are derived for a rate of entropy increase due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is found with these equations that phenomenological properties of turbulence such as Malkus's suggestion on maximum heat transport in thermal convection as well as Busse's sug- gestion on maximum momentum transport in shear turbulence can rigorously be ex- plained by a unique state in which the rate of entropy increase due to the turbulent dissipation is at a maximum (dS/dt = Max.). It is also shown that the same state cor- responds to the maximum entropy climate suggested by Paltridge. The tendency to increase the rate of entropy increase has also been confirmed by our recent GCM ex- periments. These results suggest the existence of a universal law that manifests itself in the long-term statistics of turbulent fluid systems from laboratory-scale turbulence to planetary-scale circulations. Ref.) Ozawa, H., Shimokawa, S., and Sakuma, H., Phys. Rev. E 64, 026303, 2001.
Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.
Yang, Huizhen; Soloviev, Oleg; Verhaegen, Michel
2015-09-21
A model-based wavefront sensorless (WFSless) adaptive optics (AO) system with a 61-element deformable mirror is simulated to correct the imaging of a turbulence-degraded extended object. A fast closed-loop control algorithm, which is based on the linear relation between the mean square of the aberration gradients and the second moment of the image intensity distribution, is used to generate the control signals for the actuators of the deformable mirror (DM). The restoration capability and the convergence rate of the AO system are investigated with different turbulence strength wave-front aberrations. Simulation results show the model-based WFSless AO system can restore those images degraded by different turbulence strengths successfully and obtain the correction very close to the achievable capability of the given DM. Compared with the ideal correction of 61-element DM, the averaged relative error of RMS value is 6%. The convergence rate of AO system is independent of the turbulence strength and only depends on the number of actuators of DM.
Thermalization and Pseudolocality in Extended Quantum Systems
NASA Astrophysics Data System (ADS)
Doyon, Benjamin
2017-04-01
Recently, it was understood that modified concepts of locality played an important role in the study of extended quantum systems out of equilibrium, in particular in so-called generalized Gibbs ensembles. In this paper, we rigorously study pseudolocal charges and their involvement in time evolutions and in the thermalization process of arbitrary states with strong enough clustering properties. We show that the densities of pseudolocal charges form a Hilbert space, with inner product determined by thermodynamic susceptibilities. Using this, we define the family of pseudolocal states, which are determined by pseudolocal charges. This family includes thermal Gibbs states at high enough temperatures, as well as (a precise definition of) generalized Gibbs ensembles. We prove that the family of pseudolocal states is preserved by finite time evolution, and that, under certain conditions, the stationary state emerging at infinite time is a generalized Gibbs ensemble with respect to the evolution dynamics. If the evolution dynamics does not admit any conserved pseudolocal charges other than the evolution Hamiltonian, we show that any stationary pseudolocal state with respect to these dynamics is a thermal Gibbs state, and that Gibbs thermalization occurs. The framework is that of translation-invariant states on hypercubic quantum lattices of any dimensionality (including quantum chains) and finite-range Hamiltonians, and does not involve integrability.
NASA Astrophysics Data System (ADS)
Engels, W. P.; Subhani, S.; Zafar, H.; Savenije, F.
2014-06-01
Extreme wind conditions can cause excessive loading on the turbine. This not only results in higher design loads, but when these conditions occur in practice, will also result in higher maintenance cost. Although there are already effective methods of dealing with gusts, other extreme conditions should also be examined. More specifically, extreme turbulence conditions (e.g. those specified by design load case 1.3 in IEC61400-1 ed. 3) require special attention as they can lead to design-driving extreme loads on blades, tower and other wind turbine components. This paper examines two methods to deal with extreme loads in a case of extreme turbulent wind. One method is derating the turbine, the other method is an individual pitch control (IPC) algorithm. Derating of the turbine can be achieved in two ways, one is changing the rated torque, the other is changing the rated rotor speed. The effect of these methods on fatigue loads and extreme loads is examined. Non-linear aero-elastic simulations using Phatas, show that reducing the rated rotor speed is far more effective at reducing the loads than reducing torque. Then, the IPC algorithm is proposed. This algorithm is a linear quadratic Gaussian (LQG) controller based on a time invariant model, defined in the fixed reference frame that includes the first tower and blade modes. Because this method takes the dynamics of the system into account more than conventional IPC control, it is expected that these loads dealt with more effectively, when they are particularly relevant. It is expected that in extreme turbulent the blade and tower dynamics are indeed more relevant. The effect of this algorithm on fatigue loads and pitch effort is examined and compared with the fatigue loads and pitch effort of reference IPC. Finally, the methods are compared in non-linear aero-elastic simulations with extreme turbulent wind.
Atmospheric turbulence and sensor system effects on biometric algorithm performance
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy
2015-05-01
Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.
2011-03-01
United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not...subject to copyright protection in the United States . AFIT/GE/ENG/11-08 SIMULATING THE EFFECTS OF AN EXTENDED SOURCE ON THE SHACK-HARTMANN WAVEFRONT SENSOR...19 USAF United States Air Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 OSC
NASA Astrophysics Data System (ADS)
Yang, X. I. A.; Meneveau, C.; Marusic, I.; Biferale, L.
2016-08-01
In wall-bounded turbulence, the moment generating functions (MGFs) of the streamwise velocity fluctuations
Extended Solar System Structures Observed by WISE
NASA Astrophysics Data System (ADS)
Sykes, Mark V.; Masci, Frank; Cutri, Roc; Walker, Russell; Mainzer, Amy; Bauer, James; Stevenson, Rachel; Tricarico, Pasquale
2014-11-01
Extended structures associated with recent asteroid collisions and comets were detected by the Infrared Astronomical Satellite, which conducted the first survey of the thermal emission of the sky in 1983. Twenty-seven years later, the Wide-field Infrared Survey Explorer (WISE), conducted a more sensitive survey of the sky at wavelengths spanning the shorter IRAS bandpasses and detected many of these same structures. Initial identifications include asteroid dust bands associated with collisions giving rise to the Karin and Beagle clusters within the Koronis and Themis asteroid families, respectively. An additional pair of bands is associated with the collision giving rise to the Veritas asteroid family. Comet trails associated with short-period comets have also been observed. Type 2 trails, detected by IRAS and possibly associated with asteroid collisions within the past few thousand years, have yet to be identified. Because WISE is significantly more sensitive than IRAS in the mid-infrared, it has detected some trails extending much further over their orbits and will greatly expand the catalog of trails detected in addition to those observed by IRAS and Spitzer (the latter by targeted observations). WISE and the yet more sensitive NEOCAM survey telescope will provide important insights into the recent collisional history of the asteroid belt and the nature and evolution of comets.
Implementation of SLODAR atmospheric turbulence profiling to the ARGOS system
NASA Astrophysics Data System (ADS)
Mazzoni, Tommaso; Busoni, Lorenzo; Bonaglia, Marco; Esposito, Simone
2014-08-01
ARGOS is the Ground Layer Adaptive Optics system of the Large Binocular Telescope, it uses three Laser Guide Stars at 12 km altitude, generated by Rayleigh backscattered light of pulsed Nd:YAG lasers at 532nm. The wavefront distortion in the Ground Layer is measured by three Shack-Hartmann WFS, sampling with 15×15 subaperture the three LGS arranged on a single CCD with 8×8px per square subaperture. The SLOpe Detection And Ranging (SLODAR) is a method used to measure the turbulence profiles. Cross correlation of wavefronts gradient from multiple stars is used to estimate the relative strengths of turbulent layers at different altitudes. In the ARGOS case the LGS are arranged on a triangle inscribed in a 2 arcmin radius circle, so we expect an effective slopes correlation up to 5km altitude. We present here the results of a study aimed to implement the SLODAR method on ARGOS performed with the idl-based simulation code used to characterize the ARGOS performance. Simulation implements the atmospheric turbulence on different layers with variable strength, altitude and wind speed. The algorithm performance are evaluated comparing the input turbulence with the cross-correlation of the SH slopes acquired in open loop.
Coherence and chaos in extended dynamical systems
Bishop, A.R.
1994-12-31
Coherence, chaos, and pattern formation are characteristic elements of the nonequilibrium statistical mechanics controlling mesoscopic order and disorder in many-degree-of-freedom nonlinear dynamical systems. Competing length scales and/or time scales are the underlying microscopic driving forces for many of these aspects of ``complexity.`` We illustrate the basic concepts with some model examples of classical and quantum, ordered and disordered, nonlinear systems.
Low current extended duration spark ignition system
Waters, Stephen Howard; Chan, Anthony Kok-Fai
2005-08-30
A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.
Extended length microchannels for high density high throughput electrophoresis systems
Davidson, James C.; Balch, Joseph W.
2000-01-01
High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.
Solar system plasma Turbulence: Observations, inteRmittency and Multifractals
NASA Astrophysics Data System (ADS)
Echim, Marius M.
2016-04-01
The FP7 project STORM is funded by the European Commission to "add value to existing data bases through a more comprehensive interpretation". STORM targets plasma and magnetic field databases collected in the solar wind (Ulysses and also some planetary missions), planetary magnetospheres (Venus Express, Cluster, a few orbits from Cassini), cometary magnetosheaths (e.g. Haley from Giotto observations). The project applies the same package of analysis methods on geomagnetic field observations from ground and on derived indices (e.g. AE, AL, AU, SYM-H). The analysis strategy adopted in STORM is built on the principle of increasing complexity, from lower (like, e.g., the Power Spectral Density - PSD) to higher order analyses (the Probability Distribution Functions - PDFs, Structure Functions - SFs, Fractals and Multifractals - MFs). Therefore STORM targets not only the spectral behavior of turbulent fluctuations but also their topology and scale behavior inferred from advanced mathematical algorithms and geometrical-like analogs. STORM started in January 2013 and ended in December 2015. We will report on a selection of scientific and technical achievements and will highlight: (1) the radial evolution of solar wind turbulence and intermittency based on Ulysses data with some contributions from Venus Express and Cluster; (2) comparative study of fast and slow wind turbulence and intermittency at solar minimum; (3) comparative study of the planetary response (Venus and Earth magnetosheaths) to turbulent solar wind; (4) the critical behavior of geomagnetic fluctuations and indices; (5) an integrated library for non-linear analysis of time series that includes all the approaches adopted in STORM to investigate solar system plasma turbulence. STORM delivers an unprecedented volume of analysed data for turbulence. The project made indeed a systematic survey, orbit by orbit, of data available from ESA repositories and Principal Investigators and provides results ordered as a
Modeling mesoscopic phenomena in extended dynamical systems
Bishop, A.; Lomdahl, P.; Jensen, N.G.; Cai, D.S.; Mertenz, F.; Konno, Hidetoshi; Salkola, M.
1997-08-01
This is the final report of a three-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). We have obtained classes of nonlinear solutions on curved geometries that demonstrate a novel interplay between topology and geometric frustration relevant for nanoscale systems. We have analyzed the nature and stability of localized oscillatory nonlinear excitations (multi-phonon bound states) on discrete nonlinear chains, including demonstrations of successful perturbation theories, existence of quasiperiodic excitations, response to external statistical time-dependent fields and point impurities, robustness in the presence of quantum fluctuations, and effects of boundary conditions. We have demonstrated multi-timescale effects for nonlinear Schroedinger descriptions and shown the success of memory function approaches for going beyond these approximations. In addition we have developed a generalized rate-equation framework that allows analysis of the important creation/annihilation processes in driven nonlinear, nonequilibiium systems.
Shock-induced turbulent flow in baffle systems
Kuhl, A.L.; Reichenbach, H.
1993-07-01
Experiments are described on shock propagation through 2-D aligned and staggered baffle systems. Flow visualization was provided by shadow and schlieren photography, recorded by the Cranz-Schardin camera. Also single-frame, infinite-fringe, color interferograms were used. Intuition suggests that this is a rather simple 2-D shock diffraction problem. However, flow visualization reveals that the flow rapidly evolved into a complex 3-D turbulent mixing problem. Mushroom-shaped mixing regions blocked the flow into the next baffle orifice. Thus energy was transferred from the directed kinetic energy (induced by the shock) to rotational energy of turbulent mixing, and then dissipated by molecular effects. These processes dramatically dissipate the strength of the shock wave. The experiments provide an excellent test case that could be used to assess the accuracy of computer code calculations of such problems.
Extended professional development for systemic curriculum reform
NASA Astrophysics Data System (ADS)
Kubitskey, Mary Elizabeth
Education standards call for adopting inquiry science instruction. Successful adoption requires professional development (PD) to support teachers, increasing the need for research on PD. This dissertation examines the question: What is the influence of high quality, curriculum aligned, long-term group workshops and related practice on teacher learning? I focus on the following subquestions: (1) What is the influence of high quality, curriculum aligned, long-term, group workshops on teacher knowledge and beliefs? (2) What is the impact of the workshops on teacher practice? (3) What is the influence of practice on student response? (4) What is the impact of practice and student response on teacher knowledge and beliefs? I focus on an instance of PD nested within a long-term systemic change initiative, tracing eleven science teachers' learning from workshops and associated enactments. The data included pre and post-unit interviews (n=22), two post-workshop interviews (n=17), workshop observations (n=2), classroom observations (n=24) and student work (n=351). I used mixed-methods analysis. Quantitative analysis measured teacher learning by comparing pre and post-unit interview ratings. Qualitative components included two case study approaches: logic model technique and cross-case synthesis, examining teacher learning within and across teachers. The findings suggested a teacher-learning model incorporating PD, teacher knowledge, beliefs, practice and student response. PD impacts teachers' knowledge by providing teachers with new knowledge, adapting previous knowledge, or convincing them to value existing knowledge they chose not to use. The workshops can influence beliefs, providing teachers with confidence and motivation to adopt the practice. Beliefs can mediate how knowledge manifested itself in practice that, in turn, impacts students' response. Student response influences the teachers' beliefs, either reinforcing or motivating change. This teacher-learning model
Mooring system of ocean turbulence observation based on submerged buoy
NASA Astrophysics Data System (ADS)
Song, Da-lei; Sun, Jing-jing; Xue, Bing; Jiang, Qian-li; Wu, Bing-wei
2013-06-01
A comparison experiment has been taken in the Kiaochow Bay between a newly designed mooring turbulence observation instrument (MTOI) and microstructure profiler MSS60 made by Sea & Sun. The whole observing system is based on a submerged buoy, in which the turbulence observation instrument is embedded, with a streamline-shape floating body, which is made of buoyancy material of glass microsphere. For the movement of seawater and the cable shaking strongly anytime influence the behaviors of the floating body, the accelerate sensors are used for the vibration measurement in the instrument together with the shear probe sensor. Both the vibration data and the shear data are acquired by the instrument at the same time. During data processing, the vibration signals can be removed and leave the shear data which we really need. In order to prove the reliability of the new turbulence instrument MTOI, a comparison experiment was designed. The measuring conditions are the same both in time and space. By this way, the two groups of data are comparable. In this paper, the conclusion gives a good similarity of 0.93 for the two groups of shear data in dissipation rate. The processing of the data acquired by MTOI is based on the cross-spectrum analysis, and the dissipation rate of it matches the Nasmyth spectrum well.
Calibration of NASA Turbulent Air Motion Measurement System
NASA Technical Reports Server (NTRS)
Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.
1996-01-01
A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.
Some applications of the turbulence amplifier to airborne systems
NASA Astrophysics Data System (ADS)
Taylor, D. L.
1981-06-01
The turbulence amplifier relies on the disruption of a laminar air stream by a small actuating signal that consists of a transverse jet. The dynamic pressure head, generated by the passage of an aircraft through the atmosphere will provide sufficient supply pressure at 130 mph and sufficient control pressure at 30 mph. This means that, in certain applications, no external power source is required, which is of significant interest to airborne applications. As a result of this feature, three systems were investigated for practicability. A description is presented of the development and performance of laboratory models of these three applications. An ice detection and de-icing control system was designed to sense icing conditions on a wing leading edge, and to use the sensed data to operate a de-icing control system. A demonstration model for a control surface asymmetry detection and rectification system was built, and a stall warning system was studied.
Control of Multichaotic Systems Using the Extended OGY Method
NASA Astrophysics Data System (ADS)
Nobakhti, Ensieh; Khaki-Sedigh, Ali; Vasegh, Nastaran
This paper considers the problem of controlling coupled chaotic maps. Coupled chaotic maps or multichaotic subsystems are complex dynamical systems that consist of several chaotic sub-systems with interactions. The OGY methodology is extended to deal with the control of such systems. It is shown that the decentralized control design scheme in which the individual controllers share no information is not generally able to control multichaotic systems. Simulation results are used to support the main conclusions of the paper.
Ensemble Kalman filters for dynamical systems with unresolved turbulence
Grooms, Ian; Lee, Yoonsang; Majda, Andrew J.
2014-09-15
Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (a multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy
Market Assessment of Forward-Looking Turbulence Sensing Systems
NASA Technical Reports Server (NTRS)
Kauffmann, Paul; Sousa-Poza, Andres
2001-01-01
In recognition of the importance of turbulence mitigation as a tool to improve aviation safety, NASA's Aviation Safety Program developed a Turbulence Detection and Mitigation Sub-element. The objective of this effort is to develop highly reliable turbulence detection technologies for commercial transport aircraft to sense dangerous turbulence with sufficient time warning so that defensive measures can be implemented and prevent passenger and crew injuries. Current research involves three forward sensing products to improve the cockpit awareness of possible turbulence hazards. X-band radar enhancements will improve the capabilities of current weather radar to detect turbulence associated with convective activity. LIDAR (Light Detection and Ranging) is a laser-based technology that is capable of detecting turbulence in clear air. Finally, a possible Radar-LIDAR hybrid sensor is envisioned to detect the full range of convective and clear air turbulence. To support decisions relating to the development of these three forward-looking turbulence sensor technologies, the objective of this study was defined as examination of cost and implementation metrics. Tasks performed included the identification of cost factors and certification issues, the development and application of an implementation model, and the development of cost budget/targets for installing the turbulence sensor and associated software devices into the commercial transport fleet.
Approaching complexity by stochastic methods: From biological systems to turbulence
NASA Astrophysics Data System (ADS)
Friedrich, Rudolf; Peinke, Joachim; Sahimi, Muhammad; Reza Rahimi Tabar, M.
2011-09-01
This review addresses a central question in the field of complex systems: given a fluctuating (in time or space), sequentially measured set of experimental data, how should one analyze the data, assess their underlying trends, and discover the characteristics of the fluctuations that generate the experimental traces? In recent years, significant progress has been made in addressing this question for a class of stochastic processes that can be modeled by Langevin equations, including additive as well as multiplicative fluctuations or noise. Important results have emerged from the analysis of temporal data for such diverse fields as neuroscience, cardiology, finance, economy, surface science, turbulence, seismic time series and epileptic brain dynamics, to name but a few. Furthermore, it has been recognized that a similar approach can be applied to the data that depend on a length scale, such as velocity increments in fully developed turbulent flow, or height increments that characterize rough surfaces. A basic ingredient of the approach to the analysis of fluctuating data is the presence of a Markovian property, which can be detected in real systems above a certain time or length scale. This scale is referred to as the Markov-Einstein (ME) scale, and has turned out to be a useful characteristic of complex systems. We provide a review of the operational methods that have been developed for analyzing stochastic data in time and scale. We address in detail the following issues: (i) reconstruction of stochastic evolution equations from data in terms of the Langevin equations or the corresponding Fokker-Planck equations and (ii) intermittency, cascades, and multiscale correlation functions.
[Extending the palliative approach across the French health system].
Mino, Jean-Christophe
2015-11-01
The care provision for people at the end of life requires a palliative care approach to be extended across the whole healthcare system. Access to palliative care for everyone requires training for professionals, support for specialised structures and teams as well as clear political will.
Cheng, Mingjian; Zhang, Yixin; Gao, Jie; Wang, Fei; Zhao, Fengsheng
2014-06-20
We model the average channel capacity of optical wireless communication systems for cases of weak to strong turbulence channels, using the exponentiation Weibull distribution model. The joint effects of the beam wander and spread, pointing errors, atmospheric attenuation, and the spectral index of non-Kolmogorov turbulence on system performance are included. Our results show that the average capacity decreases steeply as the propagation length L changes from 0 to 200 m and decreases slowly down or tends to a stable value as the propagation length L is greater than 200 m. In the weak turbulence region, by increasing the detection aperture, we can improve the average channel capacity and the atmospheric visibility as an important issue affecting the average channel capacity. In the strong turbulence region, the increase of the radius of the detection aperture cannot reduce the effects of the atmospheric turbulence on the average channel capacity, and the effect of atmospheric visibility on the channel information capacity can be ignored. The effect of the spectral power exponent on the average channel capacity in the strong turbulence region is higher than weak turbulence region. Irrespective of the details determining the turbulent channel, we can say that pointing errors have a significant effect on the average channel capacity of optical wireless communication systems in turbulence channels.
Extended GTST-MLD for aerospace system safety analysis.
Guo, Chiming; Gong, Shiyu; Tan, Lin; Guo, Bo
2012-06-01
The hazards caused by complex interactions in the aerospace system have become a problem that urgently needs to be settled. This article introduces a method for aerospace system hazard interaction identification based on extended GTST-MLD (goal tree-success tree-master logic diagram) during the design stage. GTST-MLD is a functional modeling framework with a simple architecture. Ontology is used to extend the ability of system interaction description in GTST-MLD by adding the system design knowledge and the past accident experience. From the level of functionality and equipment, respectively, this approach can help the technician detect potential hazard interactions. Finally, a case is used to show the method.
Extended phase space description of human-controlled systems dynamics
NASA Astrophysics Data System (ADS)
Zgonnikov, Arkady; Lubashevsky, Ihor
2014-03-01
Humans are often incapable of precisely identifying and implementing the desired control strategy in controlling unstable dynamical systems. That is, the operator of a dynamical system treats the current control effort as acceptable even if it deviates slightly from the desired value, and starts correcting the actions only when the deviation has become evident. We argue that the standard Newtonian approach does not allow such behavior to be modeled. Instead, the physical phase space of a controlled system should be extended with an independent phase variable characterizing the motivated actions of the operator. The proposed approach is illustrated via a simple non-Newtonian model capturing the operators' fuzzy perception of their own actions. The properties of the model are investigated analytically and numerically; the results confirm that the extended phase space may aid in capturing the intricate dynamical properties of human-controlled systems.
Wind Shear/Turbulence Inputs to Flight Simulation and Systems Certification
NASA Technical Reports Server (NTRS)
Bowles, Roland L. (Editor); Frost, Walter (Editor)
1987-01-01
The purpose of the workshop was to provide a forum for industry, universities, and government to assess current status and likely future requirements for application of flight simulators to aviation safety concerns and system certification issues associated with wind shear and atmospheric turbulence. Research findings presented included characterization of wind shear and turbulence hazards based on modeling efforts and quantitative results obtained from field measurement programs. Future research thrusts needed to maximally exploit flight simulators for aviation safety application involving wind shear and turbulence were identified. The conference contained sessions on: Existing wind shear data and simulator implementation initiatives; Invited papers regarding wind shear and turbulence simulation requirements; and Committee working session reports.
Estimating Power System Dynamic States Using Extended Kalman Filter
Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw; Zhou, Ning
2014-10-31
Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This new dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.
Turbulence Measurements by the DC-8 Meteorological Measurement System
NASA Technical Reports Server (NTRS)
Chan, K. R.; Dean-Day, J.; Bowen, S. W.; Bui, T. P.; Chan, K. Roland (Technical Monitor)
1997-01-01
The instrumentation of a new MMS on the DC-8 aircraft is briefly described. Methods to compute and evaluate the turbulent dissipation rate epsilon, based on theory and MMS data, are discussed. Examples of turbulence measurements during encounters of a wake vortex, wave clouds, persistent contrails, mountain are gravity waves are illustrated.
Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems
NASA Astrophysics Data System (ADS)
Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang
2016-09-01
Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.
Extended physics as a theoretical framework for systems biology?
Miquel, Paul-Antoine
2011-08-01
In this essay we examine whether a theoretical and conceptual framework for systems biology could be built from the Bailly and Longo (2008, 2009) proposal. These authors aim to understand life as a coherent critical structure, and propose to develop an extended physical approach of evolution, as a diffusion of biomass in a space of complexity. Their attempt leads to a simple mathematical reconstruction of Gould's assumption (1989) concerning the bacterial world as a "left wall of least complexity" that we will examine. Extended physical systems are characterized by their constructive properties. Time is acting and new properties emerge by their history that can open the list of their initial properties. This conceptual and theoretical framework is nothing more than a philosophical assumption, but as such it provides a new and exciting approach concerning the evolution of life, and the transition between physics and biology.
Extended Darknet: Multi-Dimensional Internet Threat Monitoring System
NASA Astrophysics Data System (ADS)
Shimoda, Akihiro; Mori, Tatsuya; Goto, Shigeki
Internet threats caused by botnets/worms are one of the most important security issues to be addressed. Darknet, also called a dark IP address space, is one of the best solutions for monitoring anomalous packets sent by malicious software. However, since darknet is deployed only on an inactive IP address space, it is an inefficient way for monitoring a working network that has a considerable number of active IP addresses. The present paper addresses this problem. We propose a scalable, light-weight malicious packet monitoring system based on a multi-dimensional IP/port analysis. Our system significantly extends the monitoring scope of darknet. In order to extend the capacity of darknet, our approach leverages the active IP address space without affecting legitimate traffic. Multi-dimensional monitoring enables the monitoring of TCP ports with firewalls enabled on each of the IP addresses. We focus on delays of TCP syn/ack responses in the traffic. We locate syn/ack delayed packets and forward them to sensors or honeypots for further analysis. We also propose a policy-based flow classification and forwarding mechanism and develop a prototype of a monitoring system that implements our proposed architecture. We deploy our system on a campus network and perform several experiments for the evaluation of our system. We verify that our system can cover 89% of the IP addresses while darknet-based monitoring only covers 46%. On our campus network, our system monitors twice as many IP addresses as darknet.
Flight Tests of the DELICAT Airborne LIDAR System for Remote Clear Air Turbulence Detection
NASA Astrophysics Data System (ADS)
Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Witschas, Benjamin; Veerman, Henk; Tump, Robert; Barny, Hervé; Rondeau, Philippe; Dolfi-Bouteyre, Agnès; Lombard, Laurent
2016-06-01
An important aeronautics application of lidar is the airborne remote detection of Clear Air Turbulence which cannot be performed with onboard radar. We report on a DLR-developed lidar system for the remote detection of such turbulent areas in the flight path of an aircraft. The lidar, consisting of a high-power UV laser transmitter and a direct detection system, was installed on a Dutch research aircraft. Flight tests executed in 2013 demonstrated the performance of the lidar system to detect local subtle variations in the molecular backscatter coefficient indicating the turbulence some 10 to 15 km ahead.
Algorithm for Simulating Atmospheric Turbulence and Aeroelastic Effects on Simulator Motion Systems
NASA Technical Reports Server (NTRS)
Ercole, Anthony V.; Cardullo, Frank M.; Kelly, Lon C.; Houck, Jacob A.
2012-01-01
Atmospheric turbulence produces high frequency accelerations in aircraft, typically greater than the response to pilot input. Motion system equipped flight simulators must present cues representative of the aircraft response to turbulence in order to maintain the integrity of the simulation. Currently, turbulence motion cueing produced by flight simulator motion systems has been less than satisfactory because the turbulence profiles have been attenuated by the motion cueing algorithms. This report presents a new turbulence motion cueing algorithm, referred to as the augmented turbulence channel. Like the previous turbulence algorithms, the output of the channel only augments the vertical degree of freedom of motion. This algorithm employs a parallel aircraft model and an optional high bandwidth cueing filter. Simulation of aeroelastic effects is also an area where frequency content must be preserved by the cueing algorithm. The current aeroelastic implementation uses a similar secondary channel that supplements the primary motion cue. Two studies were conducted using the NASA Langley Visual Motion Simulator and Cockpit Motion Facility to evaluate the effect of the turbulence channel and aeroelastic model on pilot control input. Results indicate that the pilot is better correlated with the aircraft response, when the augmented channel is in place.
NASA Astrophysics Data System (ADS)
Meneguz, Elena; Turp, Debi; Wells, Helen
2015-04-01
It is well known that encounters with moderate or severe turbulence can lead to passenger injuries and incur high costs for airlines from compensation and litigation. As one of two World Area Forecast Centres (WAFCs), the Met Office has responsibility for forecasting en-route weather hazards worldwide for aviation above a height of 10,000 ft. Observations from commercial aircraft provide a basis for gaining a better understanding of turbulence and for improving turbulence forecasts through verification. However there is currently a lack of information regarding the possible cause of the observed turbulence, or whether the turbulence occurred within cloud. Such information would be invaluable for the development of forecasting techniques for particular types of turbulence and for forecast verification. Of all the possible sources of turbulence, convective activity is believed to be a major cause of turbulence. Its relative importance over the Europe and North Atlantic area has not been yet quantified in a systematic way: in this study, a new approach is developed to automate identification of turbulent encounters in the proximity of convective clouds. Observations of convection are provided from two independent sources: a surface based lightning network and satellite imagery. Lightning observations are taken from the Met Office Arrival Time Detections network (ATDnet). ATDnet has been designed to identify cloud-to-ground flashes over Europe but also detects (a smaller fraction of) strikes over the North Atlantic. Meteosat Second Generation (MSG) satellite products are used to identify convective clouds by applying a brightness temperature filtering technique. The morphological features of cold cloud tops are also investigated. The system is run for all in situ turbulence reports received from airlines for a total of 12 months during summer 2013 and 2014 for the domain of interest. Results of this preliminary short term climatological study show significant intra
Turbine airfoil with laterally extending snubber having internal cooling system
Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.
2016-09-06
A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.
Particle deposition due to turbulent diffusion in the upper respiratory system
NASA Technical Reports Server (NTRS)
Hamill, P.
1979-01-01
Aerosol deposition in the upper respiratory system (trachea to segmental bronchi) is considered and the importance of turbulent diffusion as a deposition mechanism is evaluated. It is demonstrated that for large particles (diameter greater than about 5 microns), turbulent diffusion is the dominant deposition mechanism in the trachea. Conditions under which turbulent diffusion may be important in successive generations of the pulmonary system are determined. The probability of particle deposition is compared with probabilities of deposition, as determined by the equations generally used in regional deposition models. The analysis is theoretical; no new experimental data is presented.
1980-09-01
and 3 times higher than expected from free- jet results. Hill et al., (Reference 6) in work with foun- tain jets impacting fuselage models, detected ...delineate the origins of the turbulent anomalies associated with fountain jets by extending the previous studies. The results are presented herein...jet velocities were detected with a Thermal Systems Inc. Model 1050 dual-channel constant-temperature anemometer equipped with a Thermal Systems Inc
On some integrable systems in the extended lobachevsky space
Kurochkin, Yu. A. Otchik, V. S.; Ovsiyuk, E. M.; Shoukavy, Dz. V.
2011-06-15
Some classical and quantum-mechanical problems previously studied in Lobachevsky space are generalized to the extended Lobachevsky space (unification of the real, imaginary Lobachevsky spaces and absolute). Solutions of the Schroedinger equation with Coulomb potential in two coordinate systems of the imaginary Lobachevsky space are considered. The problem of motion of a charged particle in the homogeneous magnetic field in the imaginary Lobachevsky space is treated both classically and quantum mechanically. In the classical case, Hamilton-Jacoby equation is solved by separation of variables, and constraints for integrals of motion are derived. In the quantum case, solutions of Klein-Fock-Gordon equation are found.
He, Ping; Basu, Sukanta
2016-05-02
In Wyngaard et al., 1971, a simple model was proposed to estimate Cn2 in the atmospheric surface layer, which only requires routine meteorological information (wind speed and temperature) as input from two heights. This Cn2 model is known to have satisfactory performance in unstable conditions; however, in stable conditions, the model only covers a relatively short range of atmospheric stabilities which significantly limits its applicability during nighttime. To mitigate this limitation, in this study we construct a new Cn2 model utilizing an extensive turbulence dataset generated by a high-fidelity numerical modeling approach (known as direct numerical simulation). The most distinguishing feature of this new Cn2 model is that it covers a wide range of atmospheric stabilities including the strongly stratified (very stable) conditions. To validate this model, approximately four weeks of Cn2 data collected at the Mauna Loa Observatory, Hawaii are used for comparison, and reasonably good agreement is found between the observed and estimated values.
Extending self-organizing particle systems to problem solving.
Rodríguez, Alejandro; Reggia, James A
2004-01-01
Self-organizing particle systems consist of numerous autonomous, purely reflexive agents ("particles") whose collective movements through space are determined primarily by local influences they exert upon one another. Inspired by biological phenomena (bird flocking, fish schooling, etc.), particle systems have been used not only for biological modeling, but also increasingly for applications requiring the simulation of collective movements such as computer-generated animation. In this research, we take some first steps in extending particle systems so that they not only move collectively, but also solve simple problems. This is done by giving the individual particles (agents) a rudimentary intelligence in the form of a very limited memory and a top-down, goal-directed control mechanism that, triggered by appropriate conditions, switches them between different behavioral states and thus different movement dynamics. Such enhanced particle systems are shown to be able to function effectively in performing simulated search-and-collect tasks. Further, computational experiments show that collectively moving agent teams are more effective than similar but independently moving ones in carrying out such tasks, and that agent teams of either type that split off members of the collective to protect previously acquired resources are most effective. This work shows that the reflexive agents of contemporary particle systems can readily be extended to support goal-directed problem solving while retaining their collective movement behaviors. These results may prove useful not only for future modeling of animal behavior, but also in computer animation, coordinated movement control in robotic teams, particle swarm optimization, and computer games.
Modelling atmospheric turbulence effects on ground-based telescope systems
Bradford, L.W.; Flatte, S.M.; Max, C.E.
1993-09-30
Questions still exist concerning the appropriate model for turbulence- induced phase fluctuations seen in ground-based telescopes. Bester et al. used a particular observable (slope of the Allan variance) with an infrared interferometer in an attempt to distinguish models. The authors have calculated that observable for Kolmogorov and {open_quotes}random walk{close_quotes} models with a variety of outer scales and altitude-dependent turbulence and wind velocity. The authors have found that clear distinction between models requires good data on the vertical distribution of wind and turbulence. Furthermore, measurements at time separations of order 60 s are necessary to distinguish the {open_quotes}random walk{close_quotes} model from the Kolmogorov model.
Daytime turbulence profiling for EST and its impact in the solar MCAO system design
NASA Astrophysics Data System (ADS)
Marco de la Rosa, J.; Montoya, L.; Collados, M.; Montilla, I.; Vega Reyes, N.
2016-07-01
The European Solar Telescope (EST) is a 4-meter facility to be built in Canary Islands in the near future. Extensive daytime turbulence observation campaigns with the long baseline SHABAR instrument has been carried out in the two candidate sites from 2011 up to the end of 2014. The collected data together with nighttime turbulence data allow the site characterization and the computation of average turbulence profiles. These profiles can be used to feed numerical simulations in order to take important design decisions for the multiconjugate adaptive optics (MCAO) system in the telescope. This paper describes the main tasks developed in this context up to date.
Limits of localized control in extended nonlinear systems
NASA Astrophysics Data System (ADS)
Handel, Andreas
We investigate the limits of localized linear control in spatially extended, nonlinear systems. Spatially extended, nonlinear systems can be found in virtually every field of engineering and science. An important category of such systems are fluid flows. Fluid flows play an important role in many commercial applications, for instance in the chemical, pharmaceutical and food-processing industries. Other important fluid flows include air- or water flows around cars, planes or ships. In all these systems, it is highly desirable to control the flow of the respective fluid. For instance control of the air flow around an airplane or car leads to better fuel-economy and reduced noise production. Usually, it is impossible to apply control everywhere. Consider an airplane: It would not be feasibly to cover the whole body of the plane with control units. Instead, one can place the control units at localized regions, such as points along the edge of the wings, spaced as far apart from each other as possible. These considerations lead to an important question: For a given system, what is the minimum number of localized controllers that still ensures successful control? Too few controllers will not achieve control, while using too many leads to unnecessary expenses and wastes resources. To answer this question, we study localized control in a class of model equations. These model equations are good representations of many real fluid flows. Using these equations, we show how one can design localized control that renders the system stable. We study the properties of the control and derive several expressions that allow us to determine the limits of successful control. We show how the number of controllers that are needed for successful control depends on the size and type of the system, as well as the way control is implemented. We find that especially the nonlinearities and the amount of noise present in the system play a crucial role. This analysis allows us to determine under
Moment estimation for chemically reacting systems by extended Kalman filtering.
Ruess, J; Milias-Argeitis, A; Summers, S; Lygeros, J
2011-10-28
In stochastic models of chemically reacting systems that contain bimolecular reactions, the dynamics of the moments of order up to n of the species populations do not form a closed system, in the sense that their time-derivatives depend on moments of order n + 1. To close the dynamics, the moments of order n + 1 are generally approximated by nonlinear functions of the lower order moments. If the molecule counts of some of the species have a high probability of becoming zero, such approximations may lead to imprecise results and stochastic simulation is the only viable alternative for system analysis. Stochastic simulation can produce exact realizations of chemically reacting systems, but tends to become computationally expensive, especially for stiff systems that involve reactions at different time scales. Further, in some systems, important stochastic events can be very rare and many simulations are necessary to obtain accurate estimates. The computational cost of stochastic simulation can then be prohibitively large. In this paper, we propose a novel method for estimating the moments of chemically reacting systems. The method is based on closing the moment dynamics by replacing the moments of order n + 1 by estimates calculated from a small number of stochastic simulation runs. The resulting stochastic system is then used in an extended Kalman filter, where estimates of the moments of order up to n, obtained from the same simulation, serve as outputs of the system. While the initial motivation for the method was improving over the performance of stochastic simulation and moment closure methods, we also demonstrate that it can be used in an experimental setting to estimate moments of species that cannot be measured directly from time course measurements of the moments of other species.
The Extended Globular Cluster System of NGC3923
NASA Astrophysics Data System (ADS)
Ahumada, Tomás; Miller, Bryan; Candlish, Graeme; McGaugh, Stacy S.; Mihos, Chris; Smith, Rory; Puzia, Thomas H.; Taylor, Matthew
2017-01-01
In the LambdaCMD paradigm of galaxy formation galaxy halos and their globular clusters systems build up over time by the accretion of small satellites. We can learn about this process in detail by observing systems with ongoing accretion events and comparing the data with simulations. Elliptical shell galaxies are systems that are thought to be due to ongoing or recent minor mergers. We present preliminary results of an investigation of the entire globular cluster system of the shell galaxy NGC3923 from deep DECam g and i-band imaging. Cluster candidates are selected using Principal Component Analysis of Sextractor/PSFEx parameters. We will present the 2D and radial distributions of the globular cluster candidates out to a projected radius of about 130kpc, or 26Re, making this one of the most extended cluster systems studied. We find that the bluer globular cluster candidates have a shallower radial distribution than the red cluster candidates, in agreement with many previous studies.
Mechanistic explanation, cognitive systems demarcation, and extended cognition.
van Eck, Dingmar; Looren de Jong, Huib
2016-10-01
Approaches to the Internalism-Externalism controversy in the philosophy of mind often involve both (broadly) metaphysical and explanatory considerations. Whereas originally most emphasis seems to have been placed on metaphysical concerns, recently the explanation angle is getting more attention. Explanatory considerations promise to offer more neutral grounds for cognitive systems demarcation than (broadly) metaphysical ones. However, it has been argued that explanation-based approaches are incapable of determining the plausibility of internalist-based conceptions of cognition vis-à-vis externalist ones. On this perspective, improved metaphysics is the route along which to solve the Internalist-Externalist stalemate. In this paper we challenge this claim. Although we agree that explanation-orientated approaches have indeed so far failed to deliver solid means for cognitive system demarcation, we elaborate a more promising explanation-oriented framework to address this issue. We argue that the mutual manipulability account of constitutive relevance in mechanisms, extended with the criterion of 'fat-handedness', is capable of plausibly addressing the cognitive systems demarcation problem, and thus able to decide on the explanatory traction of Internalist vs. Externalist conceptions, on a case-by-case basis. Our analysis also highlights why some other recent mechanistic takes on the problem of cognitive systems demarcation have been unsuccessful. We illustrate our claims with a case on gestures and learning.
NASA Astrophysics Data System (ADS)
Chhabra, Ashvin
'This thesis explores the mapping between conventional thermodynamics and the multifractal formalism. As a result the thermodynamic formalism, combined with theorems by Shannon, Eggelston and Billingsley, leads to an accurate yet simple way to compute the f(alpha)^ectrum of a measure directly. The utility of this method is demonstrated by applying it to Binomial Cantor measures, to one-dimensional maps and to data on the dissipation field of fully turbulent flows in the laboratory and in the atmosphere. The question of whether it is possible to extract information about an underlying multiplicative process from the multifractal description of the measure is addressed. Previous work by Feigenbaum et al. on extracting such information via transfer matrices is extended to the case of singular measures and the corresponding thermodynamic formalism is developed. It is shown that the extraction procedure based solely on information from the D _{q} curves allows for an infinity of cascade processes, which, for all practical purposes, cannot be distinguished from each other. Therefore, additional dynamical information is required to remove this degeneracy. In addition, several multiplicative processes with as few as three free parameters are shown to produce excellent fits to all the D_{q} curves studied in this thesis. These procedures are applied to a variety of computer and laboratory experiments, such as the period doubling attractor and the golden mean circle map attractor. A re-analysis of the Rayleigh Benard experiments which correspond to these examples is performed. The transition to fully developed turbulence is analysed in an open flow in the wake of an oscillating cylinder. Finally, the dissipation field of fully developed turbulence in open flows is analysed. In each of these examples, the abovementioned ambiguities are highlighted and, in cases where additional information is available, the procedure to extract basic underlying length scales of the phenomena
Polymodal activation of the endocannabinoid system in the extended amygdala.
Puente, Nagore; Cui, Yihui; Lassalle, Olivier; Lafourcade, Mathieu; Georges, François; Venance, Laurent; Grandes, Pedro; Manzoni, Olivier J
2011-11-06
The reason why neurons synthesize more than one endocannabinoid (eCB) and how this is involved in the regulation of synaptic plasticity in a single neuron is not known. We found that 2-arachidonoylglycerol (2-AG) and anandamide mediate different forms of plasticity in the extended amygdala of rats. Dendritic L-type Ca(2+) channels and the subsequent release of 2-AG acting on presynaptic CB1 receptors triggered retrograde short-term depression. Long-term depression was mediated by postsynaptic mGluR5-dependent release of anandamide acting on postsynaptic TRPV1 receptors. In contrast, 2-AG/CB1R-mediated retrograde signaling mediated both forms of plasticity in the striatum. These data illustrate how the eCB system can function as a polymodal signal integrator to allow the diversification of synaptic plasticity in a single neuron.
The effect of thin turbulent shear layers on the optical quality of imaging systems
NASA Technical Reports Server (NTRS)
Steinmetz, W. J.
1975-01-01
A modified C141 transport was outfitted with a 91.5-cm reflector telescope designed to view objects radiating outside the visible window in the infrared range from 1 micron to 1000 microns. The telescope is situated in a cavity which is operated open port. Spoilers were designed which reduce turbulence-induced excitation of the cavity. The aircraft was designed to operate at altitudes up to 15 km to significantly reduce the effect of the H2O and CO2. Furthermore, the optically degrading influence of the large-scale atmospheric turbulence on land-based telescopes is replaced by the effect of the turbulent shear layer resulting from the spoiler upstream of the cavity. A mathematical model was established to describe the effect of turbulent shear layers on imaging systems and to examine the parameters of interest relevant to potential wind-tunnel experimentation.
Recent insights into instability and transition to turbulence in open-flow systems
NASA Technical Reports Server (NTRS)
Morkovin, Mark V.
1988-01-01
Roads to turbulence in open-flow shear layers are interpreted as sequences of often competing instabilities. These correspond to primary and higher order restructurings of vorticity distributions which culminate in convected spatial disorder (with some spatial coherence on the scale of the shear layer) traditionally called turbulence. Attempts are made to interpret these phenomena in terms of concepts of convective and global instabilities on one hand, and of chaos and strange attractors on the other. The first is fruitful, and together with a review of mechanisms of receptivity provides a unifying approach to understanding and estimating transition to turbulence. In contrast, current evidence indicates that concepts of chaos are unlikely to help in predicting transition in open-flow systems. Furthermore, a distinction should apparently be made between temporal chaos and the convected spatial disorder of turbulence past Reynolds numbers where boundary layers and separated shear layers are formed.
Extended depth of field system for long distance iris acquisition
NASA Astrophysics Data System (ADS)
Chen, Yuan-Lin; Hsieh, Sheng-Hsun; Hung, Kuo-En; Yang, Shi-Wen; Li, Yung-Hui; Tien, Chung-Hao
2012-10-01
Using biometric signatures for identity recognition has been practiced for centuries. Recently, iris recognition system attracts much attention due to its high accuracy and high stability. The texture feature of iris provides a signature that is unique for each subject. Currently most commercial iris recognition systems acquire images in less than 50 cm, which is a serious constraint that needs to be broken if we want to use it for airport access or entrance that requires high turn-over rate . In order to capture the iris patterns from a distance, in this study, we developed a telephoto imaging system with image processing techniques. By using the cubic phase mask positioned front of the camera, the point spread function was kept constant over a wide range of defocus. With adequate decoding filter, the blurred image was restored, where the working distance between the subject and the camera can be achieved over 3m associated with 500mm focal length and aperture F/6.3. The simulation and experimental results validated the proposed scheme, where the depth of focus of iris camera was triply extended over the traditional optics, while keeping sufficient recognition accuracy.
Sapsis, Themistoklis P; Majda, Andrew J
2013-08-20
A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.
Research of laser scintillation effect based on physical simulation turbulent system
NASA Astrophysics Data System (ADS)
Gan, Xin-ji; Guo, Jin
2011-06-01
A turbulent simulating device in inner field, which is used to research the process of laser propagation in atmospheric turbulent, could avoid to be disturbed by many casual factors from the atmosphere disturb. For the sake of eliminating uncertainty of the atmosphere disturb, a physical simulation turbulent system using phase plates based on Kolmogorov spectrum is designed to carry out a beam spot scintillation experiment of laser propagation. The physical simulation turbulent system employs two phase plates with micro-fabricated surfaces with the characteristic of Kolmogorov spectrum. The formula of simulated atmospheric coherent length of the optical system is given for the motive of adjusting different turbulent conveniently. With the movement in a cone-shape path optical system, the different coherence length to simulate atmospheric turbulent can continuously be adjusted in a wide range. In the experiment of beam spot scintillation, a He-Ne laser of 632.8 nm wavelength with 3.5 mm beam diameter is adopted as the propagation source, which is expanded to 10mm diameter with the expanded lens. The beam passes through all the optical element of the whole turbulent simulation system in sequence. Finally the beam spot reaches the CCD for picking spot images and the detector of laser energy meter for collecting the power of spot scintillation. When the distance between the phase and field lens is adjusted to a longer simulated coherent length, it is observed that whole spot is fractured due to serious phase aberration. We measured the power of spot in one rotation period of the phase plate. The normalized power amplitude distribution histogram and the normalized logarithm power amplitude distribution histogram of the intensity scintillation data in the experiment are given in the paper.
Competition between shock and turbulent heating in coronal loop system
NASA Astrophysics Data System (ADS)
Matsumoto, Takuma
2016-11-01
2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of this study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 per cent of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in this study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.
Modeling the pharmacokinetics of extended release pharmaceutical systems
NASA Astrophysics Data System (ADS)
di Muria, Michela; Lamberti, Gaetano; Titomanlio, Giuseppe
2009-03-01
The pharmacokinetic (PK) models predict the hematic concentration of drugs after the administration. In compartment modeling, the body is described by a set of interconnected “vessels” or “compartments”; the modeling consisting of transient mass balances. Usually the orally administered drugs were considered as immediately available: this cannot describe the administration of extended-release systems. In this work we added to the traditional compartment models the ability to account for a delay in administration, relating this delay to in vitro data. Firstly, the method was validated, applying the model to the dosage of nicotine by chewing-gum; the model was tuned by in vitro/in vivo data of drugs (divalproex-sodium and diltiazem) with medium-rate release kinetics, then it was applied in describing in vivo evolutions due to the assumption of fast- and slow-release systems. The model reveals itself predictive, the same of a Level A in vitro/in vivo correlation, but being physically based, it is preferable to a purely statistical method.
Incompressible Rayleigh–Taylor Turbulence
NASA Astrophysics Data System (ADS)
Boffetta, Guido; Mazzino, Andrea
2017-01-01
Basic fluid equations are the main ingredient in the development of theories of Rayleigh–Taylor buoyancy-induced instability. Turbulence arises in the late stage of the instability evolution as a result of the proliferation of active scales of motion. Fluctuations are maintained by the unceasing conversion of potential energy into kinetic energy. Although the dynamics of turbulent fluctuations is ruled by the same equations controlling the Rayleigh–Taylor instability, here only phenomenological theories are currently available. The present review provides an overview of the most relevant (and often contrasting) theoretical approaches to Rayleigh–Taylor turbulence together with numerical and experimental evidence for their support. Although the focus is mainly on the classical Boussinesq Rayleigh–Taylor turbulence of miscible fluids, the review extends to other fluid systems with viscoelastic behavior, affected by rotation of the reference frame, and, finally, in the presence of reactions.
Filtering and Predicting Complex Nonlinear Turbulent Dynamical Systems with Model Error
NASA Astrophysics Data System (ADS)
Chen, Nan
This dissertation includes five topics in filtering and predicting complex turbulent systems with model error from noisy partial observations. An efficient and accurate model calibration is the prerequisite of filtering and prediction. The first topic involves adopting Bayesian inference that incorporates data augmentation in a Markov chain Monte Carlo algorithm to estimate the parameters in a reduced model that describes nature with hidden instability. A novel pre-estimation of hidden processes greatly enhances the efficiency of the algorithm. The model equipped with the estimated parameters succeeds in predicting the extreme events in nature. The filtering and prediction of the Madden-Julian oscillation (MJO) and relevant tropical waves have significant implications for extended range forecasting. A physics-constrained low-order nonlinear stochastic model involving correlated multiplicative noise defined through energy conserving nonlinear interaction is developed to predict two MJO indices with different features. The special structure of the model allows efficient data assimilation and ensemble initialization algorithms for the hidden variables. Utilizing an information-theoretic framework for model calibration, the model has significant skill for determining the predictability limits of the MJO. Filtering the stochastic skeleton model for the MJO with noisy partial observations is another central topic. A nonlinear filter, which captures the inherent nonlinearity of the system, is proposed and judicious model error is included. An effectively balanced reduced filter involving a simple fast-wave averaging strategy is developed, which facilitates filtering the moisture and other fast-oscillating modes and enhances the total computational efficiency. Both filters succeed in filtering the MJO and other large-scale features. The last two topics focus on filtering complex turbulent systems within a conditional Gaussian framework. Despite the conditional Gaussianity
Imaging through atmospheric turbulence for laser based C-RAM systems: an analytical approach
NASA Astrophysics Data System (ADS)
Buske, Ivo; Riede, Wolfgang; Zoz, Jürgen
2013-10-01
High Energy Laser weapons (HEL) have unique attributes which distinguish them from limitations of kinetic energy weapons. HEL weapons engagement process typical starts with identifying the target and selecting the aim point on the target through a high magnification telescope. One scenario for such a HEL system is the countermeasure against rockets, artillery or mortar (RAM) objects to protect ships, camps or other infrastructure from terrorist attacks. For target identification and especially to resolve the aim point it is significant to ensure high resolution imaging of RAM objects. During the whole ballistic flight phase the knowledge about the expectable imaging quality is important to estimate and evaluate the countermeasure system performance. Hereby image quality is mainly influenced by unavoidable atmospheric turbulence. Analytical calculations have been taken to analyze and evaluate image quality parameters during an approaching RAM object. In general, Kolmogorov turbulence theory was implemented to determine atmospheric coherence length and isoplanatic angle. The image acquisition is distinguishing between long and short exposure times to characterize tip/tilt image shift and the impact of high order turbulence fluctuations. Two different observer positions are considered to show the influence of the selected sensor site. Furthermore two different turbulence strengths are investigated to point out the effect of climate or weather condition. It is well known that atmospheric turbulence degenerates image sharpness and creates blurred images. Investigations are done to estimate the effectiveness of simple tip/tilt systems or low order adaptive optics for laser based C-RAM systems.
Kinetic theory and turbulent discontinuities. [shock tube flow
NASA Technical Reports Server (NTRS)
Johnson, J. A., III; I, L.; Li, Y.; Ramaian, R.; Santigo, J. P.
1981-01-01
Shock tube discontinuities were used to test and extend a kinetic theory of turbulence. In shock wave and contact surface fluctuations, coherent phenomena were found which provide new support for the microscopic nonempirical approach to turbulent systems, especially those with boundary layer-like instabilities.
Extending human proprioception to cyber-physical systems
NASA Astrophysics Data System (ADS)
Keller, Kevin; Robinson, Ethan; Dickstein, Leah; Hahn, Heidi A.; Cattaneo, Alessandro; Mascareñas, David
2016-04-01
Despite advances in computational cognition, there are many cyber-physical systems where human supervision and control is desirable. One pertinent example is the control of a robot arm, which can be found in both humanoid and commercial ground robots. Current control mechanisms require the user to look at several screens of varying perspective on the robot, then give commands through a joystick-like mechanism. This control paradigm fails to provide the human operator with an intuitive state feedback, resulting in awkward and slow behavior and underutilization of the robot's physical capabilities. To overcome this bottleneck, we introduce a new human-machine interface that extends the operator's proprioception by exploiting sensory substitution. Humans have a proprioceptive sense that provides us information on how our bodies are configured in space without having to directly observe our appendages. We constructed a wearable device with vibrating actuators on the forearm, where frequency of vibration corresponds to the spatial configuration of a robotic arm. The goal of this interface is to provide a means to communicate proprioceptive information to the teleoperator. Ultimately we will measure the change in performance (time taken to complete the task) achieved by the use of this interface.
A feasibility study for measuring stratospheric turbulence using metrac positioning system
NASA Technical Reports Server (NTRS)
Gage, K. S.; Jasperson, W. H.
1975-01-01
The feasibility of obtaining measurements of Lagrangian turbulence at stratospheric altitudes is demonstrated by using the METRAC System to track constant-level balloons. The basis for current estimates of diffusion coefficients are reviewed and it is pointed out that insufficient data is available upon which to base reliable estimates of vertical diffusion coefficients. It is concluded that diffusion coefficients could be directly obtained from Lagrangian turbulence measurements. The METRAC balloon tracking system is shown to possess the necessary precision in order to resolve the response of constant-level balloons to turbulence at stratospheric altitudes. A small sample of data recorded from a tropospheric tetroon flight tracked by the METRAC System is analyzed to obtain estimates of small-scale three-dimensional diffusion coefficients. It is recommended that this technique be employed to establish a climatology of diffusion coefficients and to ascertain the variation of these coefficients with altitude, season, and latitude.
Transmission analysis of CPolM-based OFDM FSO system in atmospheric turbulence
NASA Astrophysics Data System (ADS)
Su, Yuwei; Bai, Fan; Sato, Takuro
2016-06-01
In this paper, we propose to implement a consecutive polarization modulation (CPolM) scheme to transmit orthogonal frequency division multiplexing (OFDM) signal over the turbulent free-space optical (FSO) links. We analyze the fluctuation of polarization states of an optical wave while propagating through the turbulence channel of which the refractive-index property is described by Kolmogorov spectrum. The transmission performance in terms of signal-to-noise-ratio (SNR), symbol-error-ratio (SER) and outage probability of the proposed system are evaluated. The proposed system provides a more efficient way to compensate scintillation effects in a comparison with the intensity modulation (IM) based OFDM FSO system under a varying degrees of turbulence strength regimes.
Fichtl, G.H.
1983-09-01
When designing a wind energy converison system (WECS), it may be necessary to take into account the distribution of wind across the disc of rotation. The specific engineering applications include structural strength, fatigue, and control. This wind distribution consists of two parts, namely that associated with the mean wind profile and that associated with the turbulence velocity fluctuation field. The work reported herein is aimed at the latter, namely the distribution of turbulence velocity fluctuations across the WECS disk of rotation. A theory is developed for the two-time covariance matrix for turbulence velocity vector components for wind energy conversion system (WECS) design. The theory is developed for homogeneous and iotropic turbulance with the assumption that Taylor's hypothesis is valid. The Eulerian turbulence velocity vector field is expanded about the hub of the WECS. Formulae are developed for the turbulence velocity vector component covariance matrix following the WECS blade elements. It is shown that upon specification of the turbulence energy spectrum function and the WECS rotation rate, the two-point, two-time covariance matrix of the turbulent flow relative to the WECS bladed elements is determined. This covariance matrix is represented as the sum of nonstationary and stationary contributions. Generalized power spectral methods are used to obtain two-point, double frequency power spectral density functions for the turbulent flow following the blade elements. The Dryden turbulence model is used to demonstrate the theory. A discussion of linear system response analysis is provided to show how the double frequency turbulence spectra might be used to calculate response spectra of a WECS to turbulent flow. Finally the spectrum of the component of turbulence normal to the WECS disc of rotation, following the blade elements, is compared with experimental results.
Allam, A.M.; Crichlow, H.B.; Soliman, M.Y.
1981-01-01
A numerical technique for analyzing the behavior of a fractured gas reservoir system is presented. The reservoir is simulated by a fully implicit three-dimensional model that incorporates the effects of turbulent flow and closure stress in a finite conductivity fracture. The model utilizes the real gas pseudo-pressure, two-point upstream transmissibilities and a stable iterative process based on a sparse matrix approach to solving the equation systems. This paper presents a description of the model and applications to various reservoirs to illustrate the effects of fracture heights, turbulence and closure pressure on well performance. 16 refs.
Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere.
Cai, Yangjian; Korotkova, Olga; Eyyuboğlu, Halil T; Baykal, Yahya
2008-09-29
Propagation of stochastic electromagnetic beams through paraxial ABCD optical systems operating through turbulent atmosphere is investigated with the help of the ABCD matrices and the generalized Huygens-Fresnel integral. In particular, the analytic formula is derived for the cross-spectral density matrix of an electromagnetic Gaussian Schell-model (EGSM) beam. We applied our analysis for the ABCD system with a single lens located on the propagation path, representing, in a particular case, the unfolded double-pass propagation scenario of active laser radar. Through a number of numerical examples we investigated the effect of local turbulence strength and lens' parameters on spectral, coherence and polarization properties of the EGSM beam.
Turbine airfoil with an internal cooling system having vortex forming turbulators
Lee, Ching-Pang
2014-12-30
A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.
Intermittency of solar system plasma turbulence near Venus and Earth
NASA Astrophysics Data System (ADS)
Teodorescu, Eliza; Echim, Marius; Chang, Tom
2016-04-01
We analyze magnetic field data from Venus Express (VEX) and CLUSTER to investigate the turbulent properties of the solar wind and the Earth's and Venus' magnetosheaths. A systematic study of the PDFs (Probability Distribution Functions) of the measured magnetic fluctuations and their fourth order moments (kurtosis) reveals numerous intermittent time series. The presence of intermittency is marked by non-Gaussian PDFs with heavy wings and a scale dependent kurtosis. Higher order analyses on the scale dependence of several moment orders of the PDFs, the structure functions, along with the scaling of the kurtosis allow for a selection of scales that pertain to different scaling regimes, governed by different physics. On such sub-ranges of scales we investigate the fractal structure of fluctuations through the Rank Ordered Multifractal Analysis - ROMA (Chang and Wu, 2008). ROMA is applied to a selection of intermittent magnetic field time series in the solar wind and planetary magnetosheaths and helps to quantify the turbulence properties through the estimation of a spectrum of local Hurst exponents. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.
NASA Astrophysics Data System (ADS)
Caceres, Juan-Pablo; Escauriaza, Cristian
2012-11-01
The adverse pressure gradient induced by a surface-mounted obstacle in a turbulent boundary layer causes the formation the dynamically rich horseshoe vortex system around the body. Recent studies have identified the complex mechanisms responsible for the dynamics of the vortices and the emergence of bimodal histograms of velocity fluctuations in the junction region. To understand the dynamic relation of the multiple vortices, we convert streamwise velocity time-series at the symmetry plane into sound by Parameter Mapping Sonification, to make emerge aspects of the rich-dynamics of the turbulent coherent structures in the vortex system that may not have been uncovered by traditional methods. Through this development we provide insights on the analysis of turbulent flows dominated by the quasi-periodic interaction of large-scale coherent vortices.
Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong
2014-12-29
In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.
Dan, Youquan; Zeng, Shuguang; Hao, Bangyuan; Zhang, Bin
2010-03-01
Two characteristic distances for partially coherent beams propagating in atmospheric turbulence have been proposed. The turbulent Rayleigh range is used for characterizing the range over which the beams propagate in turbulence without spreading appreciably; i.e., the concept of the well-known Rayleigh range in free space is extended to the case of turbulence. In this paper the range of turbulence-independent propagation of the beams, in contrast to similar characteristic distances in previous published works, is based on the formula of the beam propagation factor (M(2) factor) and is used for describing the range over which the spatial and angular spreading and the M(2) factor increase due to turbulence are sufficiently small and negligible. Several simple formulas used for calculating the approximate values of these distances are given, and the formulas are applied to Gaussian Schell-model (GSM) beams and illustrated by examples. Furthermore, as a typical example, the effect of the angular spread of GSM beams in turbulence on a thin-lens optical system is also discussed. We show that the turbulent Rayleigh range depends on the Rayleigh range in free space, the waist width, and the spatial power spectrum of the refractive-index fluctuations of the turbulent atmosphere, and that the range of turbulence-independent propagation depends on the waist width, the initial angular spread in the waist plane, and the spatial power spectrum.
NASA Astrophysics Data System (ADS)
Langer, Stefan
2013-03-01
For unstructured finite volume methods, we present a line implicit Runge-Kutta method applied as smoother in an agglomerated multigrid algorithm to significantly improve the reliability and convergence rate to approximate steady-state solutions of the Reynolds-averaged Navier-Stokes equations. To describe turbulence, we consider a one-equation Spalart-Allmaras turbulence model. The line implicit Runge-Kutta method extends a basic explicit Runge-Kutta method by a preconditioner given by an approximate derivative of the residual function. The approximate derivative is only constructed along predetermined lines which resolve anisotropies in the given grid. Therefore, the method is a canonical generalisation of point implicit methods. Numerical examples demonstrate the improvements of the line implicit Runge-Kutta when compared with explicit Runge-Kutta methods accelerated with local time stepping.
Coupled-cluster singles and doubles for extended systems
NASA Astrophysics Data System (ADS)
Hirata, So; Podeszwa, Rafał; Tobita, Motoi; Bartlett, Rodney J.
2004-02-01
Coupled-cluster theory with connected single and double excitation operators (CCSD) and related approximations, such as linearized CCSD, quadratic configuration interaction with single and double excitation operators, coupled-cluster with connected double excitation operator (CCD), linearized CCD, approximate CCD, and second- and third-order many-body perturbation theories, are formulated and implemented for infinitely extended one-dimensional systems (polymers), on the basis of the periodic boundary conditions and distance-based screening of integrals, density matrix elements, and excitation amplitudes. The variation of correlation energies with the truncation radii of short- and long-range lattice sums and with the number of wave vector sampling points in the first Brillouin zone is examined for polyethylene, polyacetylene, and polyyne, and is shown to be a function of the degree of π-electron conjugation or the fundamental band gaps. The t2 and t1 amplitudes in the atomic orbital (AO) basis are obtained by first computing the t amplitudes in the Bloch-orbital basis and subsequently back-transforming them into the AO basis. The plot of these AO-based t amplitudes as a function of unit cells also indicates that the t2 amplitudes of polyacetylene and polyyne exhibit appreciably slower decay than those of polyethylene, although the asymptotic decay behavior is invariably 1/r3. The AO-based t1 amplitudes appear to correlate strongly with the electronic structure, and they decay seemingly exponentially for polyethylene whereas they stay at a constant magnitude across the seventh nearest neighbors of polyacetylene and polyyne, which attests to far reaching effects of nondynamical electron correlation mediated by orbital rotation. Nonetheless, the unit cell contributions to the correlation energies taper below 10-6 hartree after 15 Å for all three polymers. The basis set dependence of the decay behavior of t2 amplitudes is also examined for linear hydrogen fluoride
Induction system effects on small-scale turbulence in a high-speed diesel engine
Catania, A.E.; Mittica, A.
1987-10-01
The influence of the induction system on small-scale turbulence in a high-speed, automotive diesel engine was investigated under variable swirl conditions. The induction system was made up of two equiverse swirl tangential ducts, and valves of the same size and lift. Variable swirl conditions were obtained by keeping one of the inlet valves either closed or functioning, and by changing engine speed. The investigation was carried out for two induction system configurations: with both ducts operating and with only one of them operating. Two different engine speeds were considered, one relatively low (1600 rpm) and the other quite high (3000 rpm), the latter being the highest speed at which engine turbulence has been measured up to now. Cycle-resolved hot-wire anemometry measurements of air velocity were performed throughout the induction and compression strokes, under motored conditions, along a radial direction at an axial level that was virtually in the middle of the combustion chamber at top dead center. The velocity data were analyzed using the nonstationary time-averaging procedure previously developed by the authors. Correlation and spectral analysis of the small-scale turbulence so determined was also performed. The turbulence intensity and its degree of nonhomogeneity and anisotropy were sensibly influenced by the variable swirl conditions, depending on both the intake system configuration and engine speed.
NASA Astrophysics Data System (ADS)
Wang, Yi; Li, Yuan; Ma, Jing; Guo, Qiang
2016-11-01
We analyze the performance of a coherent orthogonal frequency division multiplexing (OFDM) system and a serial decode and forward relay transmission multihop coherent free-space optical OFDM system using an exponential distribution atmospheric turbulence model under the circumstance of strong atmospheric turbulence. The attenuation of the atmospheric channel fading model mainly considers the light intensity scintillation caused by atmospheric turbulence and interaction between the path consumption, the transmitter and the receiver. The OFDM signal mapping method uses quadrature amplitude modulation. We also derive the formulas of the outage probability and symbol error rate of the coherent OFDM and multihop system, respectively, under the conditions described above. In addition, a simulation is performed, which is essential to evaluate the influence of key factors including coherent detection in a number of relay nodes, the mapping orders, and the number of subcarriers, which have a significant effect on the outage performance and the bit error performance of the OFDM-FSO system under the strong atmospheric turbulence.
Modeling Compressed Turbulence
Israel, Daniel M.
2012-07-13
From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.
Applicability of Mixing Length Theory to a Turbulent Vortex System
NASA Technical Reports Server (NTRS)
Ragsdale, Robert G.
1961-01-01
The ability of mixing length theory to correlate vortex data is evaluated. Expressions are derived for eddy diffusivity by applying the techniques of von Karman and Prandtl which have been established for pipe flow. Total and static pressures were measured from the outer radius to the exhaust-nozzle radius of a vortex generator for a range of mass flows. These data are combined with Navier-Stokes solutions for this region of a compressible vortex to determine turbulent Reynolds numbers. The Reynolds number is related to Prandtl and Karman functions for various assumed boundary conditions, and the experimental data are used to determine the usefulness of these expressions. The following conclusions were reached: (1) Mixing length functions developed by applying von Karman's similarity hypothesis to vortex motion correlate the data better than do Prandtl functions obtained with the assumption that mixing length is proportional to radius. (2) Some of the expressions developed do not adequately represent the experimental data. (3) The data are correlated with acceptable scatter by evaluating the fluid radial inertia at the outer boundary and the shear stress at the inner boundary. The universal constant K was found to be 0.04 to 0.08, rather than the value of 0.4 which is accepted for rectilinear flow. (4) The data are best correlated by a modified Karman expression which includes an effect of radial inertia, as well as shear stress, on eddy diffusivity.
CO2 laser doppler systems for the measurement of atmospheric winds and turbulence
NASA Technical Reports Server (NTRS)
Huffaker, R. M.
1975-01-01
Two CO2 laser doppler systems developed by NASA and some results obtained with them are discussed. A continuous wave, monostatic system for short-range wind measurement is described, and direct comparisons between the data obtained with it and with a cup-anemometer/wind vane system and a hot-wire anemometer show excellent agreement between the systems. Improvements being made in three CW, CO2 laser doppler systems, including a filter bank for optimized signal processing and a versatile scanning system, are noted. A pulsed CO2 system for measuring clear air turbulence is described, and results of test performance on board a Convair 990 are presented. It is noted that while the system was able to measure air speed and turbulence, the range of its transmitter-atmosphere-receiver was lower than predicted, and a difference of about 20 to 30 dB existed between the actual and theoretical turbulence measurements. Factors that may account for this loss are listed.
Wake Turbulence Mitigation for Departures (WTMD) Prototype System - Software Design Document
NASA Technical Reports Server (NTRS)
Sturdy, James L.
2008-01-01
This document describes the software design of a prototype Wake Turbulence Mitigation for Departures (WTMD) system that was evaluated in shadow mode operation at the Saint Louis (KSTL) and Houston (KIAH) airports. This document describes the software that provides the system framework, communications, user displays, and hosts the Wind Forecasting Algorithm (WFA) software developed by the M.I.T. Lincoln Laboratory (MIT-LL). The WFA algorithms and software are described in a separate document produced by MIT-LL.
Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang
2012-04-23
The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams.
Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph
2016-05-20
The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.
Small-scale universality in fluid turbulence
Schumacher, Jörg; Scheel, Janet D.; Krasnov, Dmitry; Donzis, Diego A.; Yakhot, Victor; Sreenivasan, Katepalli R.
2014-01-01
Turbulent flows in nature and technology possess a range of scales. The largest scales carry the memory of the physical system in which a flow is embedded. One challenge is to unravel the universal statistical properties that all turbulent flows share despite their different large-scale driving mechanisms or their particular flow geometries. In the present work, we study three turbulent flows of systematically increasing complexity. These are homogeneous and isotropic turbulence in a periodic box, turbulent shear flow between two parallel walls, and thermal convection in a closed cylindrical container. They are computed by highly resolved direct numerical simulations of the governing dynamical equations. We use these simulation data to establish two fundamental results: (i) at Reynolds numbers Re ∼ 102 the fluctuations of the velocity derivatives pass through a transition from nearly Gaussian (or slightly sub-Gaussian) to intermittent behavior that is characteristic of fully developed high Reynolds number turbulence, and (ii) beyond the transition point, the statistics of the rate of energy dissipation in all three flows obey the same Reynolds number power laws derived for homogeneous turbulence. These results allow us to claim universality of small scales even at low Reynolds numbers. Our results shed new light on the notion of when the turbulence is fully developed at the small scales without relying on the existence of an extended inertial range. PMID:25024175
Zhu, Yingbin; Zhao, Daomu
2008-10-01
On the basis of the generalized diffraction integral formula for misaligned optical systems in the spatial domain, an analytical propagation expression for the elements of the cross-spectral density matrix of a random electromagnetic beam passing through a misaligned optical system in turbulent atmosphere is derived. Some analyses are illustrated by numerical examples relating to changes in the state of polarization of an electromagnetic Gaussian Schell-model beam propagating through such an optical system. It is shown that the misalignment has a significant influence on the intensity profile and the state of polarization of the beam, but the influence becomes smaller for the beam propagating in strong turbulent atmosphere. The method in this paper can be applied for sources that are either isotropic or anisotropic. It is shown that the isotropic sources and the anisotropic sources have different polarization properties on beam propagation.
Extending satisficing control strategy to slowly varying nonlinear systems
NASA Astrophysics Data System (ADS)
Binazadeh, T.; Shafiei, M. H.
2013-04-01
Based on the satisficing control strategy, a novel approach to design a stabilizing control law for nonlinear time varying systems with slowly varying parameters (slowly varying systems) is presented. The satisficing control strategy has been originally introduced for time-invariant systems; however, this technique does not have any stability proof for time varying systems. In this paper, first, a parametric version of the satisficing control strategy is developed. Then, by considering the time as a frozen parameter, the parametric satisficing control strategy is utilized. Finally, a theorem is presented which suggested a stabilizing satisficing control law for the slowly varying control systems. Moreover, in this theorem, the maximum admissible rate of change of the system dynamics is evaluated. The efficiency of the proposed approach is demonstrated by a computer simulation.
Extending Fuzzy System Concepts for Control of a Vitrification Melter
Whitehouse, J.C.; Sorgel, W.; Garrison, A.; Schalkoff, R.J.
1995-08-16
Fuzzy systems provide a mathematical framework to capture uncertainty. The complete description of real, complex systems or situations often requires far more detail and information than could ever be obtained (or understood). Fuzzy approaches are an alternative technology for both system control and information processing and management. In this paper, we present the design of a fuzzy control system for a melter used in the vitrification of hazardous waste. Design issues, especially those related to melter shutdown and obtaining smooth control surfaces, are addressed. Several extensions to commonly-applied fuzzy techniques, notably adaptive defuzzification and modified rule structures are developed.
An extended ASLD trading system to enhance portfolio management.
Hung, Kei-Keung; Cheung, Yiu-Ming; Xu, Lei
2003-01-01
An adaptive supervised learning decision (ASLD) trading system has been presented by Xu and Cheung (1997) to optimize the expected returns of investment without considering risks. In this paper, we propose an extension of the ASLD system (EASLD), which combines the ASLD with a portfolio optimization scheme to take a balance between the expected returns and risks. This new system not only keeps the learning adaptability of the ASLD, but also dynamically controls the risk in pursuit of great profits by diversifying the capital to a time-varying portfolio of N assets. Consequently, it is shown that: 1) the EASLD system gives the investment risk much smaller than the ASLD one; and 2) more returns are gained through the EASLD system in comparison with the two individual portfolio optimization schemes that statically determine the portfolio weights without adaptive learning. We have justified these two issues by the experiments.
Multi-level segment analysis: definition and application in turbulent systems
NASA Astrophysics Data System (ADS)
Wang, L. P.; Huang, Y. X.
2015-06-01
For many complex systems the interaction of different scales is among the most interesting and challenging features. It seems not very successful to extract the physical properties in different scale regimes by the existing approaches, such as the structure-function and Fourier spectrum method. Fundamentally, these methods have their respective limitations, for instance scale mixing, i.e. the so-called infrared and ultraviolet effects. To make improvements in this regard, a new method, multi-level segment analysis (MSA) based on the local extrema statistics, has been developed. Benchmark (fractional Brownian motion) verifications and the important case tests (Lagrangian and two-dimensional turbulence) show that MSA can successfully reveal different scaling regimes which have remained quite controversial in turbulence research. In general the MSA method proposed here can be applied to different dynamic systems in which the concepts of multiscale and multifractality are relevant.
Infrared Laser System for Extended Area Monitoring of Air Pollution
NASA Technical Reports Server (NTRS)
Snowman, L. R.; Gillmeister, R. J.
1971-01-01
An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.
Nonlinear Dynamics of Extended Hydrologic Systems over long time scales
NASA Astrophysics Data System (ADS)
Lall, Upmanu
2014-05-01
We often view our knowledge of hydrology and hence of nature as intransient, at least over the time scales over which we study processes we wish to predict and understand. Over the last few decades, this assumption has come under question, largely because of the vocal expression of a changing climate, but also the recurrent demonstration of significant land use change, both of which significantly affect the boundary conditions for terrestrial hydrology that is our forte. Most recently, the concepts of hydromorphology and social hydrology have entered the discussion, and the notion that climate and hydrology influence human action, which in turn shapes hydrology, is being recognized. Finally, as a field, we seem to be coming to the conclusion that the hydrologic system is an open system, whose boundaries evolve in time, and that the hydrologic system, at many scales, has a profound effect on the systems that drive it -- whether they be the ecological and climatic systems, or the social system. What a mess! Complexity! Unpredictability! At a certain level of abstraction, one can consider the evolution of these coupled systems with nonlinear feedbacks and ask what types of questions are relevant in terms of such a coupled evolution? What are their implications at the planetary scale? What are their implications for a subsistence farmer in an arid landscape who may under external influence achieve a new transient hydro-ecological equilibrium? What are the implications for the economy and power of nations? In this talk, I will try to raise some of these questions and also provide some examples with very simple dynamical systems that suggest ways of thinking about some practical issues of feedback across climate, hydrology and human behavior.
NASA Technical Reports Server (NTRS)
1971-01-01
A preliminary plan and procedure are presented for conducting an extended manned test program for a regenerative life support system. Emphasis will be placed on elements associated with long-term system operation and long-term uninterrupted crew confinement.
Extending NASA's SPICE ancillary information system to meet future mission needs
NASA Technical Reports Server (NTRS)
Acton, C.; Bachman, N.; Elson, L.; Semenov, B.; Turner, F.; Wright, E.
2002-01-01
This paper summarizes the architecture, capabilities, characteristics and uses of the current SPICE ancillary information system, and then outlines plans and ideas for how this system can be extended to meet future space mission requirements.
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Percolation-based precursors of transitions in extended systems
Rodríguez-Méndez, Víctor; Eguíluz M, Víctor M.; Hernández-García, Emilio; Ramasco, José J.
2016-01-01
Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system’s time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system’s tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon. PMID:27412567
Percolation-based precursors of transitions in extended systems
NASA Astrophysics Data System (ADS)
Rodríguez-Méndez, Víctor; Eguíluz M, Víctor M.; Hernández-García, Emilio; Ramasco, José J.
2016-07-01
Abrupt transitions are ubiquitous in the dynamics of complex systems. Finding precursors, i.e. early indicators of their arrival, is fundamental in many areas of science ranging from electrical engineering to climate. However, obtaining warnings of an approaching transition well in advance remains an elusive task. Here we show that a functional network, constructed from spatial correlations of the system’s time series, experiences a percolation transition way before the actual system reaches a bifurcation point due to the collective phenomena leading to the global change. Concepts from percolation theory are then used to introduce early warning precursors that anticipate the system’s tipping point. We illustrate the generality and versatility of our percolation-based framework with model systems experiencing different types of bifurcations and with Sea Surface Temperature time series associated to El Niño phenomenon.
An experimental investigation of nonequilibrium physics and dynamical systems in turbulent fluids
NASA Astrophysics Data System (ADS)
Bandi, Mahesh M.
Experiment 1 studies finite system size effects on temporal energy flux fluctuations in three-dimensional (3D) incompressible turbulence. The measured instantaneous energy flux shows that the turbulent energy transfer proceeds towards small spatial scales on average but frequently reverses direction (backscatter) to travel towards larger scales. The frequency of backscatter events is studied experimentally and through simulations. In Experiment 2 the third-order Eulerian structure function is measured for compressible turbulence on a free surface for the first time, and is found to scale linearly in space and agrees well with Kolmogorov's theory of 1941 (K41). K41 predicts the second-order Lagrangian structure function should scale linearly in time. However the experimental measurements show it instead scales as a power-law with exponent 1/2. Experiment 3 concerns measurement of entropy production rate in steady-state compressible turbulence. The analysis relies on the recent theory of Falkovich and Fouxon. The entropy rate is expected to equal the time integral of the lagrangian velocity divergence correlation function with a negative prefactor. The experimental results are found to disagree with this prediction. In addition, if the system is highly chaotic (follows SRB statistics), the system's entropy rate equals the sum of its Lyapunov exponents. The measured entropy rate agrees well with the sum of Lyapunov exponents obtained from simulations by Boffetta et. al. under flow conditions similar to the experiment. Experiment 4 presents a test of the Steady-State Fluctuation Theorem of Gallavotti and Cohen for entropy rate statistics collected from the individual lagrangian trajectories of experiment 3. The entropy rate statistics show excellent agreement with the Fluctuation Theorem within a limited interval of the probability distributions and limited window of averaging times.
Extending Molecular Theory to Steady-State Diffusing Systems
FRINK,LAURA J. D.; SALINGER,ANDREW G.; THOMPSON,AIDAN P.
1999-10-22
Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.
Modular open RF architecture: extending VICTORY to RF systems
NASA Astrophysics Data System (ADS)
Melber, Adam; Dirner, Jason; Johnson, Michael
2015-05-01
Radio frequency products spanning multiple functions have become increasingly critical to the warfighter. Military use of the electromagnetic spectrum now includes communications, electronic warfare (EW), intelligence, and mission command systems. Due to the urgent needs of counterinsurgency operations, various quick reaction capabilities (QRCs) have been fielded to enhance warfighter capability. Although these QRCs were highly successfully in their respective missions, they were designed independently resulting in significant challenges when integrated on a common platform. This paper discusses how the Modular Open RF Architecture (MORA) addresses these challenges by defining an open architecture for multifunction missions that decomposes monolithic radio systems into high-level components with welldefined functions and interfaces. The functional decomposition maximizes hardware sharing while minimizing added complexity and cost due to modularization. MORA achieves significant size, weight and power (SWaP) savings by allowing hardware such as power amplifiers and antennas to be shared across systems. By separating signal conditioning from the processing that implements the actual radio application, MORA exposes previously inaccessible architecture points, providing system integrators with the flexibility to insert third-party capabilities to address technical challenges and emerging requirements. MORA leverages the Vehicular Integration for Command, Control, Communication, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR)/EW Interoperability (VICTORY) framework. This paper concludes by discussing how MORA, VICTORY and other standards such as OpenVPX are being leveraged by the U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development, and Engineering Center (CERDEC) to define a converged architecture enabling rapid technology insertion, interoperability and reduced SWaP.
The Turbulent Origin of Outflow and Spin Misalignment in Multiple Star Systems
NASA Astrophysics Data System (ADS)
Offner, Stella S. R.; Dunham, Michael M.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B.
2016-08-01
The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce 12CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.
Stochastic Modeling of Turbulence-Driven Systems: Application to Wind Energy
NASA Astrophysics Data System (ADS)
Milan, P.; Waechter, M.; Peinke, J.
2010-11-01
The recent increase in the exploitation of the wind energy resource stresses the need for fundamental research in fluid dynamics. The complex wind inflows that drive wind turbines affect their availability in terms of electric power production, as well as in operation lifetime. Short-scale turbulent effects in the wind such as intermittency, as well as large-scale atmospheric non-stationarity lead to ever-changing power signals fed into the electric grid. This calls for a theoretical classification of wind energy phenomena into complex, turbulence-driven systems. Our raising dependence on wind energy requires a better understanding of these phenomena, as well as reliable models. A stochastic model is proposed as an alternative to standard wind energy models that often neglect turbulent effects or CFD models that cannot decribe large wind turbines yet. This model is based on the stochastic equation of Langevin that can simulate these complex systems after their proper characterization. This stochastic model can be applied separately on both atmospheric wind speed signals as well as wind turbine power production signals, after the wind turbine was characterized properly. The signals generated display the proper statistics and represent fast and flexible models for wind energy applications such as monitoring, availability prediction or grid integration. A future analysis of fatigue loads is also under development.
Effects of atmospheric turbulence and building sway on optical wireless-communication systems.
Arnon, Shlomi
2003-01-15
Urban optical wireless communication (UOWC) systems are considered a last-mile technology. UOWC systems use the atmosphere as a propagation medium. To provide a line of sight the transceivers are placed on high-rise building. However, dynamic wind loads, thermal expansion, and weak earthquakes cause buildings to sway. These sways distort the alignment between transmitter and receiver, causing pointing errors, the outcome of which is fading of the received signal. Furthermore, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, resulting in impaired link performance. A bit-error probability (BEP) model is developed that takes into account both building sway and turbulence-induced log amplitude fluctuations (i.e., fading of signal intensity) in the regime in which the receiver aperture, D0, is smaller than the turbulence coherence diameter, d0. It is assumed that the receiver has knowledge about the marginal statistics of the signal fading and the instantaneous signal-fading state.
Effects of turbulence on the geodynamic laser ranging system
NASA Technical Reports Server (NTRS)
Churnside, James H.
1993-01-01
The Geodynamic Laser Ranging System (GLRS) is one of several instruments being developed by the National Aeronautics and Space Administration (NASA) for implementation as part of the Earth Observing System in the mid-1990s (Cohen et al., 1987; Bruno et al., 1988). It consists of a laser transmitter and receiver in space and an array of retroreflectors on the ground. The transmitter produces short (100 ps) pulses of light at two harmonics (0.532 and 0.355 microns) of the Nd:YAG laser. These propagate to a retroreflector on the ground and return. The receiver collects the reflected light and measures the round-trip transit time. Ranging from several angles accurately determines the position of the retroreflector, and changes in position caused by geophysical processes can be monitored.
The Turbulent Life of Phytoplankton
NASA Technical Reports Server (NTRS)
Ghosal, S.; Rogers, M.; Wray, A.
2000-01-01
Phytoplankton is a generic name for photosynthesizing microscopic organisms that inhabit the upper sunlit layer (euphotic zone) of almost all oceans and bodies of freshwater. They are agents for "primary production," the incorporation of carbon from the environment into living organisms, a process that, sustains the aquatic food web. It is estimated that phytoplankton contribute about half of the global primary production, the other half being due to terrestrial plants. By sustaining the aquatic food web and controlling the biogeochemical cycles through primary production, phytoplankton exert a dominant influence on life on earth. Turbulence influences this process in three very important ways. First, essential mineral nutrients are transported from the deeper layers to the euphotic zone through turbulence. Second, turbulence helps to suspend phytoplankton in the euphotic zone since in still water, the phytoplankton, especially the larger species, tend to settle out of the sunlit layers. Third, turbulence transports phytoplankton from the surface to the dark sterile waters, and this is an important mechanism of loss. Thus, stable phytoplankton populations are maintained through a delicate dynamic balance between the processes of turbulence, reproduction, and sinking. The first quantitative model for this was introduced by Riley, Stommel and Bumpus in 1949. This is an attempt to extend their efforts through a combination of analysis and computer simulation in order to better understand the principal qualitative aspects of the physical/biological coupling of this natural system.
NASA Technical Reports Server (NTRS)
Perras, G. H.; Dasey, T. J.
2000-01-01
Potential adaptive wake vortex spacing systems may need to rely on wake vortex decay rather than wake vortex transport in reducing wake separations. A wake vortex takeoff-spacing system in particular will need to rely on wake decay. Ambient turbulence is the primary influence on wake decay away from the ground. This study evaluated 18 months of ambient turbulence measurements at Dallas/Ft. Worth (DFW) Airport. The measurements show minor variation in the turbulence levels at various times of the year or times of the day for time periods when a departure system could be used. Arrival system operation was also examined, and a slightly lower overall turbulence level was found as compared to departure system benefit periods. The Sarpkaya model, a validated model of wake vortex behavior, was applied to various turbulence levels and compared to the DFW turbulence statistics. The results show that wake vortices from heavy aircraft on takeoff should dissipate within one minute for the majority of the time and will rarely last two minutes. These results will need to be verified by wake vortex measurements on departure.
Open multiagent architecture extended to distributed autonomous robotic systems
NASA Astrophysics Data System (ADS)
Sellem, Philippe; Amram, Eric; Luzeaux, Dominique
2000-07-01
Our research deals with the design and experiment of a control architecture for an autonomous outdoor mobile robot which uses mainly vision for perception. In this case of a single robot, we have designed a hybrid architecture with an attention mechanism that allows dynamic selection of perception processes. Building on this work, we have developed an open multi-agent architecture, for standard multi-task operating system, using the C++ programming language and Posix threads. Our implementation features of efficient and fully generic messages between agents, automatic acknowledgement receipts and built-in synchronization capabilities. Knowledge is distributed among robots according to a collaborative scheme: every robot builds its own representation of the world and shares it with others. Pieces of information are exchanged when decisions have to be made. Experiments are to be led with two outdoor ActiveMedia Pioneer AT mobile robots. Distributed perception, using mainly vision but also ultrasound, will serve as proof of concept.
Extended atmospheres of comets and outer planet-satellite systems
NASA Technical Reports Server (NTRS)
Smyth, William H.; Marconi, Max L.
1992-01-01
For the hydrogen coma of comet P/Halley, both a Lyman-alpha image and extensive Lyman-alpha scan data obtained by the Pioneer Venus Orbiter Ultraviolet spectrometer as well as H-alpha ground-based spectral observations obtained by the University of Wisconsin Space Physics Group were successfully interpreted and analyzed with our Monte Carlo particle trajectory model. The excellent fit of the model and the Halley data and the water production rate determined near perihelion (9 Feb. 1986) from 13 Dec. 1985 to 13 Jan. 1986 and from 1 Feb. to 7 Mar. 1986 are discussed. Studies for the circumplanetary distribution of atomic hydrogen in the Saturn and Neptune systems were undertaken for escape of H atoms from Titan and Triton, respectively. The discovery of a new mechanism which can dramatically change the normal cylindrically symmetric distribution of hydrogen about the planet is discussed. The implications for the Titan-Saturn and Triton-Neptune are summarized.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
... AGENCY Notice of Extended Availability of Draft National Pollutant Discharge Elimination System (NPDES...-9139-4). Today EPA is extending the public comment period for the draft permit and proposed Residual... INFORMATION CONTACT: Additional information concerning the draft permit may be obtained between the hours of...
Nonlinear response of driven systems in weak turbulence theory
Berk, H.L.; Breizman, B.N.; Fitzpatrick, J.; Pekker, M.S.; Wong, H.V.; Wong, K.L.
1995-11-01
A method is presented for predicting the saturation levels and particle transport in weakly unstable systems where there are a discrete number of modes. Conditions are established for either steady state or pulsating responses when several modes are excited for cases where there is and there is not resonance overlap. The conditions for achieving different levels of saturation are discussed. Depending on details, the saturation level can be quite low, where only a small fraction of the available free energy is released to waves, or the saturation level can be quite high, with almost a complete conversion of free energy to wave energy coupled with rapid transport.
Forecasting of Optical Turbulence in Support of Realtime Optical Imaging and Communication Systems
NASA Astrophysics Data System (ADS)
Alliss, R.; Felton, B.
2012-09-01
Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from large astronomical and imaging telescopes and possibly reducing data quality of free space optical communication (FSOC) links. Some of the degradation due to optical turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. In addition, clouds, precipitation, and inhomogeneities in atmospheric temperature and moisture all have the potential to disrupt imaging and communications through the atmosphere. However, there are strategies that can be employed to mitigate the atmospheric impacts. These strategies require an accurate characterization of the atmosphere through which the communications links travel. To date these strategies have been to climatological characterize OT and its properties. Recently efforts have been developed to employ a realtime forecasting system which provides planners useful information for maintaining links and link budgets. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. Atmospheric measurements provided by local instrumentation are valuable for link characterization, but provide an incomplete picture of the atmosphere. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). During realtime FSOC demonstrations, in situ measurements are supplemented with NWP simulations, which provide near realtime characterizations and forecasts of the Cn2, the Fried Coherence Length (ro), and time-varying, three-dimensional characterizations of the atmosphere. The three dimensional Weather
Floating Extended States in a Disordered Quantum Hall System
NASA Astrophysics Data System (ADS)
Glozman, Igor
1995-01-01
Several recent experiments, on various GaAs systems, have shown that an insulating phase at B = 0 can undergo a phase transition to the quantum Hall liquid (QHL) phase in an applied magnetic field B. The transition was generally interpreted as being consistent with the global phase diagram (GPD) of the quantum Hall effect. While the GPD is parametrized in terms of disorder and magnetic field, another canonical theory treats the field-induced delocalization phenomenon in the context of "floating" energy levels. While the two theories are not inconsistent with each other, this thesis will present experimental evidence in direct support for the latter theory. it will be demonstrated conclusively that it is indeed the levitation (or floating) of a delocalized state (as B to 0) that underlies the delocalization transition. A complete understanding of the remarkable phenomenon clearly requires a reasonable microscopic picture. Toward this end, two recent theoretical papers have suggested that Landau level mixing is at the root of the experimentally observed levitation. In fact, it has already been shown numerically that the energy of the delocalized states can shift upward due to Landau level mixing. Experimentally, a similar determination, with respect to Landau level mixing, necessitates the examination of the density of states (DOS). In order to obtain the relevant DOS information, we have conducted a systematic study of the minimum conductivity in the vicinity of the insulator-quantum Hall liquid transition. Since, at low-temperatures, hopping between localized sates is the dominant conduction mechanism for a QHL state, the minimum in conductivity should directly reflect the minimum in the DOS. Experimental evidence will be presented, through an anomalous behavior of the conductivity minimum, that Landau level mixing is indeed important and directly associated with the floating of the delocalized states.
Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere.
Chu, Xiuxiang
2007-12-24
The propagation of a cosh-Gaussian beam through an arbitrary ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity at any receiver plane are obtained. As an elementary example, the average intensity and its radius at the image plane of a cosh-Gaussian beam through a thin lens are studied. To show the effects of a lens on the average intensity and the intensity radius of the laser beam in turbulent atmosphere, the properties of a collimated cosh-Gaussian beam and a focused cosh-Gaussian beam for direct propagation in turbulent atmosphere are studied and numerically calculated. The average intensity profiles of a cosh-Gaussian beam through a lens can have a shape similar to that of the initial beam for a longer propagation distance than that of a collimated cosh-Gaussian beam for direct propagation. With the increment in the propagation distance, the average intensity radius at the image plane of a cosh-Gaussian beam through a thin lens will be smaller than that at the focal plane of a focused cosh-Gaussian beam for direct propagation. Meanwhile, the intensity distributions at the image plane of a cosh-Gaussian beam through a lens with different w(0) and Omega(0) are also studied.
Chaotic transport in Hamiltonian systems perturbed by a weak turbulent wave field
Abdullaev, S. S.
2011-08-15
Chaotic transport in a Hamiltonian system perturbed by a weak turbulent wave field is studied. It is assumed that a turbulent wave field has a wide spectrum containing up to thousands of modes whose phases are fluctuating in time with a finite correlation time. To integrate the Hamiltonian equations a fast symplectic mapping is derived. It has a large time-step equal to one full turn in angle variable. It is found that the chaotic transport across tori caused by the interactions of small-scale resonances have a fractal-like structure with the reduced or zero values of diffusion coefficients near low-order rational tori thereby forming transport barriers there. The density of rational tori is numerically calculated and its properties are investigated. It is shown that the transport barriers are formed in the gaps of the density of rational tori near the low-order rational tori. The dependencies of the depth and width of transport barriers on the wave field spectrum and the correlation time of fluctuating turbulent field (or the Kubo number) are studied. These numerical findings may have importance in understanding the mechanisms of transport barrier formation in fusion plasmas.
Extending Hydrologic Information Systems to accommodate Arctic marine observations data
NASA Astrophysics Data System (ADS)
Hersh, Eric S.; Maidment, David R.
2014-04-01
The Chukchi Sea Offshore Monitoring in Drilling Area - Chemical and Benthos (COMIDA CAB) project characterizes the biota and chemistry of the continental shelf ecosystem of a region of the Chukchi Sea to form a baseline survey of environmental conditions before drilling for oil commences. This paper describes the COMIDA CAB project data and processing methods, which provide a novel approach to data tracking and archiving from marine sampling cruises. This approach features an adaptation of the Consortium of Universities for the Advancement of Hydrologic Science. Observations Data Model for application with physical, chemical, and biological oceanographic data - a new extension of the CUAHSI Hydrologic Information System - thus bringing hydroinformatics into the oceanographic realm. Environmental sampling has been carried out by five separate scientific teams who characterize particular classes of physical, chemical and biological variables, and who each have their own methods of processing samples in their laboratories following the two sampling cruises made to the Chukchi Sea in the summers of 2009 and 2010. The results of their observations and analyses are stored in data files, mostly in Excel format, whose structure is defined differently by each scientific team. In all, the 2009 and 2010 COMIDA CAB field efforts yielded a database of 510,405 data values. Of these, 474,129 were derived from continuous in-situ data sonde profiles and 36,276 were derived from non-sonde extracted samples of the sediment, epibenthos, and water column. These data values represent 301 variables measured at 65 sites and originated from 26 different source files. The biological observations represented 519 distinct taxa. The data from these files are transformed and synthesized into a comprehensive project database in which a set of standardized descriptors of each observed data value are specified and each data value is linked to the data file from which it was created to establish a
Controllability of flow turbulence.
Guan, Shuguang; Wei, G W; Lai, C-H
2004-06-01
In this paper, we study the controllability of real-world flow turbulence governed by the two-dimensional Navier-Stokes equations, using strategies developed in chaos control. A case of control/synchronization of turbulent dynamics is observed when only one component of the velocity field vector is unidirectionally coupled to a target state, while the other component is uncoupled. Unlike previous results, it is shown that the dynamics of the whole velocity field cannot be completely controlled/synchronized to the target, even in the limit of long time and strong coupling strength. It is further revealed that the controlled component of the velocity field can be fully controlled/synchronized to the target, but the other component, which is not directly coupled to the target, can only be partially controlled/synchronized to the target. By extending an auxiliary method to distributed dynamic systems, the partial synchronization of two turbulent orbits in the present study can be categorized in the domain of generalized synchronization of spatiotemporal dynamics.
PDF Modeling of Turbulent Combustion
2008-11-30
extend methodologies for the modeling and simulation of turbulent combustion. Probability density function (PDF) calculations were performed of piloted...were developed to implement the combined methodology of large-eddy simulation (LES) and filtered density function (FDF). Second-order schemes were...was to advance and extend methodologies for the modeling and simulation of turbulent combustion. Probability density function (PDF) calculations were
Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Hawthorne, E. I.
1977-01-01
Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.
Manned orbital systems concepts study. Book 2: Requirements for extended-duration missions
NASA Technical Reports Server (NTRS)
1975-01-01
In order to provide essential data needed in long-range program planning, the Manned Orbital Systems Concepts (MOSC) study attempted to define, evaluate, and compare concepts for manned orbital systems that provide extended experiment mission capabilities in space, flexibility of operation, and growth potential. Specific areas discussed include roles and requirements for man in future space missions, requirements for extended capability, mission/payload concepts, and preliminary design and operational requirements.
Talbot, L.; Cheng, R.K.
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
Introduction to quantum turbulence
Barenghi, Carlo F.; Skrbek, Ladislav; Sreenivasan, Katepalli R.
2014-01-01
The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our aim is also to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics. PMID:24704870
A discrete analog of the extended Bass algorithm for stabilizing constant linear systems
NASA Technical Reports Server (NTRS)
Armstrong, E. S.; Rublein, G. T.
1976-01-01
Two methods for stabilizing constant linear systems, namely, the extended Bass algorithm for continuous systems and a discrete system analog, are discussed. For the continuous algorithm, a new result on the degree of stability of the closed-loop eigenvalues is presented, and for both methods, typical results and asymptotic trends in the data are illustrated through an example computation.
Eighmy, T. Taylor; Bishop, P. L.
1985-01-01
This research documents an effect of reactor turbulence on the ability of gram-negative wastewater biofilm bacteria to actively transport l-aspartate via a binding-protein-mediated transport system. Biofilms which were not preadapted to turbulence and which possessed two separate and distinct aspartate transport systems (systems 1 and 2) were subjected to a turbulent flow condition in a hydrodynamically defined closed-loop reactor system. A shear stress treatment of 3.1 N · m−2 for 10 min at a turbulent Reynolds number (Re = 11,297) inactivated the low-affinity, high-capacity binding-protein-mediated transport system (system 2) and resolved the high-affinity, low-capacity membrane-bound proton symport system (system 1). The Kt and Vmax values for the resolved system were statistically similar to Kt and Vmax values for system 1 when system 2 was inactivated either by osmotic shock or arsenate, two treatments which are known to inactivate binding-protein-mediated transport systems. We hypothesize that shear stress disrupts system 2 by deforming the outer membranes of the firmly adhered gram-negative bacteria. PMID:16346830
Acoustic sounder system design for measurement of optical turbulence and wind profiles
NASA Astrophysics Data System (ADS)
Miller, Judith E.; Eaton, Frank D.; Stokes, Sheldon S.
2000-07-01
An Acoustic Sounder System has been installed on the side of the cliff at North Oscura Peak, WSMR to provide important refractive index structure parameter, Cn2 data for laser propagation tests. The acoustic sounder system records echo information that is used to provide 3D wind and optical turbulence profiles. The received signal is the product of the interaction of the transmitted acoustic pulse with the small scale atmospheric temperature variations. This information is displayed as a time-height display of the signal intensity. The frequency of the received signals are processed and converted into time histories of the horizontal wind field. The data from the Acoustic Sounder is calibrated with the hot-wire anemometer temperature structure parameter (Ct2) data, and meteorological data measured locally to produce the Cn2 profile. The design and location of the Acoustic Sounder System will be discussed along with the methodology of extracting the turbulence. Many days of data have been collected and representative data will be shown.
Nonstationary multiscale turbulence simulation based on local PCA.
Beghi, Alessandro; Cenedese, Angelo; Masiero, Andrea
2014-09-01
Turbulence simulation methods are of fundamental importance for evaluating the performance of control strategies for Adaptive Optics (AO) systems. In order to obtain a reliable evaluation of the performance a statistically accurate turbulence simulation method has to be used. This work generalizes a previously proposed method for turbulence simulation based on the use of a multiscale stochastic model. The main contributions of this work are: first, a multiresolution local PCA representation is considered. In typical operating conditions, the computational load for turbulence simulation is reduced approximately by a factor of 4, with respect to the previously proposed method, by means of this PCA representation. Second, thanks to a different low resolution method, based on a moving average model, the wind velocity can be in any direction (not necessarily that of the spatial axes). Finally, this paper extends the simulation procedure to generate, if needed, turbulence samples by using a more general model than that of the frozen flow hypothesis.
Webb, Paul W; Cotel, Aline J
2011-06-01
Fish are cultured in ponds, recirculating systems, raceways, and cages. Turbulence is associated with one or more of mechanisms to facilitate food accessibility, maintain adequate levels of oxygen, remove carbon dioxide, urinary and fecal wastes, as well as from locomotion of fishes themselves. Turbulence has been shown to have positive and negative effects on fish swimming, feeding, and energetics, usually with negative impacts at very low and at high levels, and least effects and sometimes positive effects at intermediate levels. Differences in responses of fishes with varying levels of turbulence are related to the size of eddies relative to the size of a fish (larvae, juveniles, and adults). Impacts on locomotor functions are associated with eddy diameters of the order of 0.5-1L, where L is the total length of a fish. Negative locomotor impacts of turbulence are associated with eddies challenging stability, while positive effects promote drafting and station holding with reduced locomotor motions. Deployment of control surfaces increases with the level of turbulence up to a threshold where control is overwhelmed. The design of culture facilities is expected to affect levels of turbulence and may be engineered to provide optimal levels facilitating high growth.
The onset of vortex turbulence
Huber, G. |
1992-12-01
It is the goal of this thesis to investigate some of the unusual and spectacular properties near the transition to turbulence in a two-dimensional field of limit-cycle oscillators. Of particular interest are the dynamics of topological defects (vortices) associated with the onset of turbulence. The complex Ginzburg-Landau equation describes an extended reaction-diffusion system close to the bifurcation of a steady state into a stable, periodic orbit. In the jargon of nonlinear dynamics, it is the amplitude equation corresponding to a Hopf bifurcation. Because of the generality of the assumptions under which it is derived, the complex Ginzburg-Landau equation describes systems in contexts other than chemical reactions with diffusion. Examples include Rayleigh-Benard convection and the phase fields of multimode lasers. The reaction-diffusion model is however, a sufficiently general model to frame our discussion.
On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction
NASA Astrophysics Data System (ADS)
Paik, Joongcheol; Escauriaza, Cristian; Sotiropoulos, Fotis
2007-04-01
The turbulent boundary layer approaching a wall-mounted obstacle experiences a strong adverse pressure gradient and undergoes three-dimensional separation leading to the formation of a dynamically rich horseshoe vortex (HSV) system. In a pioneering experimental study, Devenport and Simpson [J. Fluid Mech. 210, 23 (1990)] showed that the HSV system forming at the leading edge region of a wing mounted on a flat plate at Re =1.15×105 exhibits bimodal, low-frequency oscillations, which away from the wall produce turbulent energy and stresses one order of magnitude higher than those produced by the conventional shear mechanism in the approaching turbulent boundary layer. We carry out numerical simulations for the experimental configuration of Devenport and Simpson using the detached-eddy-simulation (DES) approach. The DES length scale is adjusted for this flow to alleviate the well known shortcoming of DES; namely that of premature, laminar-like flow separation. The numerical simulations reproduce with good accuracy most experimental observations, including both the distributions of the mean flow and turbulence quantities and the bimodal dynamics of the velocity field in the HSV region. The only remaining discrepancy between experiments and simulations is the predicted location of the HSV, which is somewhat further upstream from the wing than the measured one. Proper orthogonal decomposition (POD) of the resolved flow field is employed to gain insights into the coherent dynamics of the flow. The POD analysis shows that 85% of the energy in the vortex region is accounted for by the first two POD modes whose dynamics is quasiperiodic. To elucidate the physical mechanisms that lead to the onset of the bimodal dynamics, we employ probability-density-function-based conditional averaging and visualization of the instantaneous three-dimensional structure of the HSV using the q criterion. We show that the bimodal dynamics is due to the continuous and aperiodic interplay of two
ERIC Educational Resources Information Center
Ferran, C.; Bosch, S.; Carnicer, A.
2012-01-01
A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…
Using Vector and Extended Boolean Matching in an Expert System for Selecting Foster Homes.
ERIC Educational Resources Information Center
Fox, Edward A.; Winett, Sheila G.
1990-01-01
Describes FOCES (Foster Care Expert System), a prototype expert system for choosing foster care placements for children which integrates information retrieval techniques with artificial intelligence. The use of prototypes and queries in Prolog routines, extended Boolean matching, and vector correlation are explained, as well as evaluation by…
Tactical missile turbulence problems
NASA Technical Reports Server (NTRS)
Dickson, Richard E.
1987-01-01
Of particular interest is atmospheric turbulence in the atmospheric boundary layer, since this affects both the launch and terminal phase of flight, and the total flight for direct fire systems. Brief discussions are presented on rocket artillery boost wind problems, mean wind correction, turbulent boost wind correction, the Dynamically Aimed Free Flight Rocket (DAFFR) wind filter, the DAFFR test, and rocket wake turbulence problems. It is concluded that many of the turbulence problems of rockets and missiles are common to those of aircraft, such as structural loading and control system design. However, these problems have not been solved at this time.
Local heterogeneities in cardiac systems suppress turbulence by generating multi-armed rotors
NASA Astrophysics Data System (ADS)
Zhang, Zhihui; Steinbock, Oliver
2016-05-01
Ventricular fibrillation is an extremely dangerous cardiac arrhythmia that is linked to rotating waves of electric activity and chaotically moving vortex lines. These filaments can pin to insulating, cylindrical heterogeneities which swiftly become the new rotation backbone of the local wave field. For thin cylinders, the stabilized rotation is sufficiently fast to repel the free segments of the turbulent filament tangle and annihilate them at the system boundaries. The resulting global wave pattern is periodic and highly ordered. Our cardiac simulations show that also thicker cylinders can establish analogous forms of tachycardia. This process occurs through the spontaneous formation of pinned multi-armed vortices. The observed number of wave arms N depends on the cylinder radius and is associated to stability windows that for N = 2, 3 partially overlap. For N = 1, 2, we find a small gap in which the turbulence is removed but the pinned rotor shows complex temporal dynamics. The relevance of our findings to human cardiology are discussed in the context of vortex pinning to more complex-shaped anatomical features and remodeled myocardium.
NASA Astrophysics Data System (ADS)
Wang, Xudong; Syrmos, Vassilis L.
2004-07-01
In this paper, an adaptive reconfigurable control system based on extended Kalman filter approach and eigenstructure assignments is proposed. System identification is carried out using an extended Kalman filter (EKF) approach. An eigenstructure assignment (EA) technique is applied for reconfigurable feedback control law design to recover the system dynamic performance. The reconfigurable feedforward controllers are designed to achieve the steady-state tracking using input weighting approach. The proposed scheme can identify not only actuator and sensor variations, but also changes in the system structures using the extended Kalman filtering method. The overall design is robust with respect to uncertainties in the state-space matrices of the reconfigured system. To illustrate the effectiveness of the proposed reconfigurable control system design technique, an aircraft longitudinal vertical takeoff and landing (VTOL) control system is used to demonstrate the reconfiguration procedure.
Angle extended linear MEMS scanning system for 3D laser vision sensor
NASA Astrophysics Data System (ADS)
Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Zhu, Pan; Gai, Ye; Zhao, Jian; Huang, Zhanhua
2016-09-01
Scanning system is often considered as the most important part for 3D laser vision sensor. In this paper, we propose a method for the optical system design of angle extended linear MEMS scanning system, which has features of huge scanning degree, small beam divergence angle and small spot size for 3D laser vision sensor. The principle of design and theoretical formulas are derived strictly. With the help of software ZEMAX, a linear scanning optical system based on MEMS has been designed. Results show that the designed system can extend scanning angle from ±8° to ±26.5° with a divergence angle small than 3.5 mr, and the spot size is reduced for 4.545 times.
Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Barny, Hervé; Rondeau, Philippe; Veerman, Henk
2016-11-10
A high-performance airborne UV Rayleigh lidar system was developed within the European project DELICAT. With its forward-pointing architecture, it aims at demonstrating a novel detection scheme for clear air turbulence (CAT) for an aeronautics safety application. Due to its occurrence in clear and clean air at high altitudes (aviation cruise flight level), this type of turbulence evades microwave radar techniques and in most cases coherent Doppler lidar techniques. The present lidar detection technique relies on air density fluctuation measurement and is thus independent of backscatter from hydrometeors and aerosol particles. The subtle air density fluctuations caused by the turbulent air flow demand exceptionally high stability of the setup and in particular of the detection system. This paper describes an airborne test system for the purpose of demonstrating this technology and turbulence detection method: a high-power UV Rayleigh lidar system is installed on a research aircraft in a forward-looking configuration for use in cruise flight altitudes. Flight test measurements demonstrate this unique lidar system being able to resolve air density fluctuations occurring in light-to-moderate CAT at 5 km or moderate CAT at 10 km distance. A scaling of the determined stability and noise characteristics shows that such performance is adequate for an application in commercial air transport.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-16
..., to modify the list of products that are eligible for duty-free treatment under the Generalized System of Preferences (GSP) program. This notice extends the deadline for submission of petitions for the... Register at a later date. FOR FURTHER INFORMATION CONTACT: Tameka Cooper, GSP Program, Office of the...
Extended Attention Span Training System: Video Game Neurotherapy for Attention Deficit Disorder.
ERIC Educational Resources Information Center
Pope, Alan T.; Bogart, Edward H.
1996-01-01
Describes the Extended Attention Span Training (EAST) system for modifying attention deficits, which takes the concept of biofeedback one step further by making a video game more difficult as the player's brain waves indicate that attention is waning. Notes contributions of this technology to neuropsychology and neurology, where the emphasis is on…
Toselli, Italo; Korotkova, Olga
2015-06-01
We generalize a recently introduced model for nonclassic turbulent spatial power spectrum involving anisotropy along two mutually orthogonal axes transverse to the direction of beam propagation by including two scale-dependent weighting factors for these directions. Such a turbulent model may be pertinent to atmospheric fluctuations in the refractive index in stratified regions well above the boundary layer and employed for air-air communication channels. When restricting ourselves to an unpolarized, coherent Gaussian beam and a weak turbulence regime, we examine the effects of such a turbulence type on the OOK FSO link performance by including the results on scintillation flux, probability of fade, SNR, and BERs.
Towards spin turbulence of light: Spontaneous disorder and chaos in cavity-polariton systems
NASA Astrophysics Data System (ADS)
Gavrilov, S. S.
2016-11-01
Recent advances in nanophotonics have brought about coherent light sources with chaotic circular polarization; a low-dimensional chaotic evolution of optical spin was evidenced in laser diodes. Here we propose a mechanism that gives rise to light with a spatiotemporal spin chaos resembling turbulent states in hydrodynamics. The spin-chaotic radiation is emitted by exciton polaritons under resonant optical pumping in arbitrarily sized planar microcavities, including, as a limiting case, pointlike systems with only three degrees of freedom. The underlying mechanism originates in the interplay between spin symmetry breakdown and scattering into pairs of Bogolyubov excitations. As a practical matter, it opens up the way for spin modulation of light on the scale of picoseconds and micrometers.
CATS - A process-based model for turbulent turbidite systems at the reservoir scale
NASA Astrophysics Data System (ADS)
Teles, Vanessa; Chauveau, Benoît; Joseph, Philippe; Weill, Pierre; Maktouf, Fakher
2016-09-01
The Cellular Automata for Turbidite systems (CATS) model is intended to simulate the fine architecture and facies distribution of turbidite reservoirs with a multi-event and process-based approach. The main processes of low-density turbulent turbidity flow are modeled: downslope sediment-laden flow, entrainment of ambient water, erosion and deposition of several distinct lithologies. This numerical model, derived from (Salles, 2006; Salles et al., 2007), proposes a new approach based on the Rouse concentration profile to consider the flow capacity to carry the sediment load in suspension. In CATS, the flow distribution on a given topography is modeled with local rules between neighboring cells (cellular automata) based on potential and kinetic energy balance and diffusion concepts. Input parameters are the initial flow parameters and a 3D topography at depositional time. An overview of CATS capabilities in different contexts is presented and discussed.
Data-driven prediction and prevention of extreme events in a spatially extended excitable system.
Bialonski, Stephan; Ansmann, Gerrit; Kantz, Holger
2015-10-01
Extreme events occur in many spatially extended dynamical systems, often devastatingly affecting human life, which makes their reliable prediction and efficient prevention highly desirable. We study the prediction and prevention of extreme events in a spatially extended system, a system of coupled FitzHugh-Nagumo units, in which extreme events occur in a spatially and temporally irregular way. Mimicking typical constraints faced in field studies, we assume not to know the governing equations of motion and to be able to observe only a subset of all phase-space variables for a limited period of time. Based on reconstructing the local dynamics from data and despite being challenged by the rareness of events, we are able to predict extreme events remarkably well. With small, rare, and spatiotemporally localized perturbations which are guided by our predictions, we are able to completely suppress extreme events in this system.
Definition study for an extended manned test of a regenerative life support system
NASA Technical Reports Server (NTRS)
1971-01-01
A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.
NASA Technical Reports Server (NTRS)
Devasirvatham, D. M. J.; Hodge, D. B.
1981-01-01
A model of the microwave and millimeter wave link in the presence of atmospheric turbulence is presented with emphasis on satellite communications systems. The analysis is based on standard methods of statistical theory. The results are directly usable by the design engineer.
NASA Technical Reports Server (NTRS)
Katzberg, S. J.
1972-01-01
A primary limitation of many solid-state photodetectors used in electro-optical systems such as the facsimile camera is their slow response in converting light intensities into electrical signals. An optical feedback technique is presented which can extend the frequency response of systems that use these detectors by orders of magnitude without significantly degrading their signal-to-noise performance. This technique is analyzed to predict improvement, implemented, and evaluated to verify analytical results.
Thermal analysis of sludge transport system for Argon backfill and extended transport window
ROMANO, T.
2003-10-02
This calculation, which addresses the use of argon as the backfill gas and extended periods of transfer, provides the thermal and gas generation analyses for the Sludge Transportation System (STS) under Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) for onsite transportation of the STS between the K Basins and the interim storage location (Le., T Plant). The STS is comprised of a packaging and transportation system for the removal of radioactive sludge from the K Basins.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2005-01-01
Solutions are derived for the generalized mutual coherence function (MCF), i.e., the second order moment, of a random wave field propagating through a random medium within the context of the extended parabolic equation. Here, "generalized" connotes the consideration of both the transverse as well as the longitudinal second order moments (with respect to the direction of propagation). Such solutions will afford a comparison between the results of the parabolic equation within the pararaxial approximation and those of the wide-angle extended theory. To this end, a statistical operator method is developed which gives a general equation for an arbitrary spatial statistical moment of the wave field. The generality of the operator method allows one to obtain an expression for the second order field moment in the direction longitudinal to the direction of propagation. Analytical solutions to these equations are derived for the Kolmogorov and Tatarskii spectra of atmospheric permittivity fluctuations within the Markov approximation.
Spreading and wandering of Gaussian-Schell model laser beams in an anisotropic turbulent ocean
NASA Astrophysics Data System (ADS)
Wu, Yuqian; Zhang, Yixin; Zhu, Yun; Hu, Zhengda
2016-09-01
The effect of anisotropic turbulence on the spreading and wandering of Gaussian-Schell model (GSM) laser beams propagating in an ocean is studied. The long-term spreading of a GSM beam propagating through the paraxial channel of a turbulent ocean is also developed. Expressions of random wander for such laser beams are derived in an anisotropic turbulent ocean based on the extended Huygens-Fresnel principle. We investigate the influence of parameters in a turbulent ocean on the beam wander and spreading. Our results indicate that beam spreading and random beam wandering are smaller without considering the anisotropy of turbulence in the oceanic channel. Salinity fluctuation has a greater contribution to both the beam spreading and beam wander than that of temperature fluctuations in a turbulent ocean. Our results could be helpful for designing a free-space optical wireless communication system in an oceanic environment.
NASA Astrophysics Data System (ADS)
Odeyemi, Kehinde O.; Owolawi, Pius A.; Srivastava, Viranjay M.
2017-01-01
Atmospheric turbulence is a major impairment that degrades the performance of free space optical (FSO) communication systems. Spatial modulation (SM) with receive spatial diversity is considered as a powerful technique to mitigate the fading effect induced by atmospheric turbulence. In this paper, the performance of free space optical spatial modulation (FSO-SM) system under Gamma-Gamma atmospheric turbulence is presented. We studied the Average Bit Error Rate (ABER) for the system by employing spatial diversity combiners such Maximum Ratio Combining (MRC) and Equal Gain Combining (EGC) at the receiving end. In particular, we provide a theoretical framework for the system error by deriving Average Pairwise Error Probability (APEP) expression using a generalized infinite power series expansion approach and union bounding technique is applied to obtain the ABER for each combiner. Based on this study, it was found that spatial diversity combiner significantly improved the system error rate where MRC outperforms the EGC. The performance of this system is also compared with other well established diversity combiner systems. The proposed system performance is further improved by convolutional coding technique and our analysis confirmed that the system performance of MRC coded system is enhanced by approximately 20 dB while EGC falls within 17 dB.
A Huygens principle for diffusion and anomalous diffusion in spatially extended systems
Gottwald, Georg A.; Melbourne, Ian
2013-01-01
We present a universal view on diffusive behavior in chaotic spatially extended systems for anisotropic and isotropic media. For anisotropic systems, strong chaos leads to diffusive behavior (Brownian motion with drift) and weak chaos leads to superdiffusive behavior (Lévy processes with drift). For isotropic systems, the drift term vanishes and strong chaos again leads to Brownian motion. We establish the existence of a nonlinear Huygens principle for weakly chaotic systems in isotropic media whereby the dynamics behaves diffusively in even space dimension and exhibits superdiffusive behavior in odd space dimensions. PMID:23653481
Viewing the Extended Mind Hypothesis (clark & Chambers) in Terms of Complex System Dynamics
NASA Astrophysics Data System (ADS)
Werner, Gerhard
In the course of the past 60 years, the brain — and in lockstep with it, Cognition — became liberated from confinement to the skull: the liberation I am referring to consists of the transition from being a distinct physical entity in indirect, mediated contact with the rest of the physical world to being an integral component of it, in a manner envisioned by the Extended Mind Hypothesis of Clark & Chalmers: in current terminology, merging brain, body and world into ONE complex system. As background, I briefly review the progression of steps that culminated in the Extended Mind Hypothesis, and allude to the controversies it raised. Assuming the validity of this hypothesis, I will explore the issues that arise from viewing brain, body and world as ONE complex dynamical system. This will lead me to suggest that interrelations between complex system and fractal dynamics enable the seamless integration of human capabilities and the material world.
A knowledge based application of the extended aircraft interrogation and display system
NASA Technical Reports Server (NTRS)
Glover, Richard D.; Larson, Richard R.
1991-01-01
A family of multiple-processor ground support test equipment was used to test digital flight-control systems on high-performance research aircraft. A unit recently built for the F-18 high alpha research vehicle project is the latest model in a series called the extended aircraft interrogation and display system. The primary feature emphasized monitors the aircraft MIL-STD-1553B data buses and provides real-time engineering units displays of flight-control parameters. A customized software package was developed to provide real-time data interpretation based on rules embodied in a highly structured knowledge database. The configuration of this extended aircraft interrogation and display system is briefly described, and the evolution of the rule based package and its application to failure modes and effects testing on the F-18 high alpha research vehicle is discussed.
ERIC Educational Resources Information Center
Starratt, Robert J.
2004-01-01
In this article, the author discusses how superintendents function in an environment of nearly continuous turbulence challenged by concerns and pressures that compete for their attention and resolution. The turbulence is inescapable. Today it constitutes the natural--but not the exceptional--environment of school board politics, local…
Allam, A.M.
1982-01-01
Although techniques for designing a fracture treatment are available, the intended results of these techniques are often not attained. The evaluation of fracturing treatments on low permeability gas wells is required to both optimize the fracturing design and form prediction calculations of a treatments effect. This study primarily investigates the effect of fracture height on the performance of vertically fractured wells. The effects of layered media, turbulance, and closure pressure are included in this work. Consider that a well, intercepted by a vertical fracture, is in the center of a squared drainage system with closed outer boundary. Any increase in well productivity will be determined by fracture parameters, which are: fracture length, height, fracture conductivity, and location of the fracture in the formaton. On the basis of the analysis of fluid flow in porous media, the problem solving technique used in this study is the numerical method. A three-dimensional finite difference fully implicit model was written for this. In addition, the Sparse Matrix technique was used as a solver. Furthermore, Slices Source Over Relaxation was used as an iterative method for solving routines. Presented here are the numerical results of the three-dimensional model for a well intercepting a vertical fracture wth finite conductivity. The results are presented in the general form of dimensionless variables. Type curves considering the effect of fracture height on well performance are included. In addition, type curves for turbulent flow in the fracture are also obtained. Finally, other important contributions of this work are the data showing the effect of layered formation on fractured well performance.
Contributions to the simulation of turbulence
NASA Technical Reports Server (NTRS)
Dutton, J. A.; Kerman, B. R.; Petersen, E. L.
1976-01-01
The simulation modeling of turbulence in the boundary layer in consolidated in terms of boundary layer similarity principles and empirical results. The modeling is extended for some aspects of the nonlinear and non-Gaussian structure of the turbulence. Properties of the discrete gust form structure of the modeled turbulence are identified.
Workshop on Computational Turbulence Modeling
NASA Technical Reports Server (NTRS)
1993-01-01
This document contains presentations given at Workshop on Computational Turbulence Modeling held 15-16 Sep. 1993. The purpose of the meeting was to discuss the current status and future development of turbulence modeling in computational fluid dynamics for aerospace propulsion systems. Papers cover the following topics: turbulence modeling activities at the Center for Modeling of Turbulence and Transition (CMOTT); heat transfer and turbomachinery flow physics; aerothermochemistry and computational methods for space systems; computational fluid dynamics and the k-epsilon turbulence model; propulsion systems; and inlet, duct, and nozzle flow.
Investigation on Dynamics of the Extended Duffing-Van der Pol System
NASA Astrophysics Data System (ADS)
Yu, Jun; Li, Jieru
2009-06-01
The chaotic motion in periodic self-excited oscillators has been extensively investigated through experiments and computer simulations. However, with the advent of the study of chaotic motion by means of strange attractors, Poincaŕe map, fractal dimension, it has become necessary to seek for a better understanding of nonlinear system with higher order nonlinear terms. In this paper we consider an extended Duffing-Van der Pol oscillator by introducing a nonlinear quintic term. The dynamical behaviour of the system is investigated by using Melnikov analysis and numerical simulation. The results can help one to understand the essence of given nonlinear system.
A nonequilibrium statistical field theory of swarms and other spatially extended complex systems
Millonas, M.M. Santa Fe Inst., NM )
1993-01-01
A class of models with applications to swarm behavior as well as many other types of spatially extended complex biological and physical systems is studied. Internal fluctuations can play an active role in the organization of the phase structure of such systems. Consequently, it is not possible to fully understand the behavior of these systems without explicitly incorporating the fluctuations. In particular, for the class of models studied here the effect of internal fluctuations due to finite size is a renormalized decrease in the temperature near the point of spontaneous symmetry breaking. We briefly outline how these models can be applied to the behavior of an ant swarm.
A nonequilibrium statistical field theory of swarms and other spatially extended complex systems
Millonas, M.M. |
1993-07-01
A class of models with applications to swarm behavior as well as many other types of spatially extended complex biological and physical systems is studied. Internal fluctuations can play an active role in the organization of the phase structure of such systems. Consequently, it is not possible to fully understand the behavior of these systems without explicitly incorporating the fluctuations. In particular, for the class of models studied here the effect of internal fluctuations due to finite size is a renormalized decrease in the temperature near the point of spontaneous symmetry breaking. We briefly outline how these models can be applied to the behavior of an ant swarm.
Digital approximation to extended depth of field in no telecentric imaging systems
NASA Astrophysics Data System (ADS)
Meneses, J. E.; Contreras, C. R.
2011-01-01
A method used to digitally extend the depth of field of an imaging system consists to move the object of study along the optical axis of the system and different images will contain different areas that are sharp; those images are stored and processed digitally to obtain a fused image, in that image will be sharp all regions of the object. The implementation of this method, although widely used, imposes certain experimental conditions that should be evaluated for to study the degree of validity of the image final obtained. An experimental condition is related with the conservation of the geometric magnification factor when there is a relative movement between the object and the observation system; this implies that the system must be telecentric, which leads to a reduction of the observation field and the use of expensive systems if the application includes microscopic observation. This paper presents a technique that makes possible to extend depth of filed of an imaging system non telecentric; this system is used to realize applications in Optical Metrology with systems that have great observation field.
NASA Astrophysics Data System (ADS)
Ma, Zhisai; Liu, Li; Zhou, Sida; Naets, Frank; Heylen, Ward; Desmet, Wim
2017-03-01
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
El-Wakeel, Amr S; Mohammed, Nazmi A; Aly, Moustafa H
2016-09-10
In this work, a free space optical communication (FSO) link is proposed and utilized to explore and evaluate the FSO link performance under the joint occurrence of the atmospheric scattering and turbulence phenomena for 850 and 1550 nm operation. Diffraction and nondiffraction-limited systems are presented and evaluated for both wavelengths' operation, considering far-field conditions under different link distances. Bit error rate, pointing error angles, beam divergence angles, and link distance are the main performance indicators that are used to evaluate and compare the link performance under different system configurations and atmospheric phenomena combinations. A detailed study is performed to provide the merits of this work. For both far-field diffraction-limited and nondiffraction-limited systems, it is concluded that 1550 nm system operation is better than 850 nm for the whole presented joint occurrences of atmospheric scattering and turbulence.
Case study: a novel biomechanical approach for evaluating extended body armor systems.
Selinger, Jessica C; Gooyers, Chad E; Stevenson, Joan M; Costigan, Patrick A; Chafe, Gabrielle S
2010-11-01
To combat the devastating effects of improvised explosive devices (IEDs), body armor that provides extended coverage has been developed. However, this extended coverage increases the armor's weight and may restrict movement. Throughout this case study, a novel technique to assess several armor systems was investigated. Four soldiers performed shoulder and trunk movements while wearing each of the six different armor inserts. Electromyography (EMG) was used to quantify muscular activity and inertial motion sensors were used to determine joint range of motion (ROM). Outcome measures included maximum ROM, integrated EMG, and the soldiers' subjective rankings. For the shoulder tasks, objective ROM and EMG measures were related to each other as well as to subjective rankings and armor material properties. Conversely, little agreement was found between measures for the trunk tasks. Results of this preliminary investigation indicate that combining shoulder ROM and EMG measures has the potential to provide an objective assessment of body armor systems.
Systems biology of stored blood cells: can it help to extend the expiration date?
Paglia, Giuseppe; Palsson, Bernhard Ø; Sigurjonsson, Olafur E
2012-12-05
With increasingly stringent regulations regarding deferral and elimination of blood donors it will become increasingly important to extend the expiration date of blood components beyond the current allowed storage periods. One reason for the storage time limit for blood components is that platelets and red blood cells develop a condition called storage lesions during their storage in plastic blood containers. Systems biology provides comprehensive bio-chemical descriptions of organisms through quantitative measurements and data integration in mathematical models. The biological knowledge for a target organism can be translated in a mathematical format and used to compute physiological properties. The use of systems biology represents a concrete solution in the study of blood cell storage lesions, and it may open up new avenues towards developing better storage methods and better storage media, thereby extending the storage period of blood components. This article is part of a Special Issue entitled: Integrated omics.
An Extended Membrane System with Active Membranes to Solve Automatic Fuzzy Clustering Problems.
Peng, Hong; Wang, Jun; Shi, Peng; Pérez-Jiménez, Mario J; Riscos-Núñez, Agustín
2016-05-01
This paper focuses on automatic fuzzy clustering problem and proposes a novel automatic fuzzy clustering method that employs an extended membrane system with active membranes that has been designed as its computing framework. The extended membrane system has a dynamic membrane structure; since membranes can evolve, it is particularly suitable for processing the automatic fuzzy clustering problem. A modification of a differential evolution (DE) mechanism was developed as evolution rules for objects according to membrane structure and object communication mechanisms. Under the control of both the object's evolution-communication mechanism and the membrane evolution mechanism, the extended membrane system can effectively determine the most appropriate number of clusters as well as the corresponding optimal cluster centers. The proposed method was evaluated over 13 benchmark problems and was compared with four state-of-the-art automatic clustering methods, two recently developed clustering methods and six classification techniques. The comparison results demonstrate the superiority of the proposed method in terms of effectiveness and robustness.
NASA Technical Reports Server (NTRS)
Chandler, C. L.
1987-01-01
In order to forecast turbulence, one needs to have an understanding of the cause of turbulence. Therefore, an attempt is made to show the atmospheric structure that often results when aircraft encounter moderate or greater turbulence. The analysis is based on thousands of hours of observations of flights over the past 39 years of aviation meteorology.
The Turbulent Origin of Spin-Orbit Misalignment in Planetary Systems
Fielding, Drummond B.; McKee, Christopher F.; Socrates, Aristostle; Cunningham, Andrew J.; Klein, Richard I.
2015-05-13
The turbulent environment from which stars form may lead to misalignment between the stellar spin and the remnant protoplanetary disk. By using hydrodynamic and magnetohydrodynamic simulations, we demonstrate that a wide range of stellar obliquities may be produced as a by-product of forming a star within a turbulent environment. We present a simple semi-analytic model that reveals this connection between the turbulent motions and the orientation of a star and its disk. Our results are consistent with the observed obliquity distribution of hot Jupiters. Migration of misaligned hot Jupiters may, therefore, be due to tidal dissipation in the disk, rather than tidal dissipation of the star-planet interaction.
Statistical Mechanics of Turbulent Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
MHD Turbulence and Magnetic Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Numerical simulation of turbulence in the presence of shear
NASA Technical Reports Server (NTRS)
Shaanan, S.; Ferziger, J. H.; Reynolds, W. C.
1975-01-01
The numerical calculations are presented of the large eddy structure of turbulent flows, by use of the averaged Navier-Stokes equations, where averages are taken over spatial regions small compared to the size of the computational grid. The subgrid components of motion are modeled by a local eddy-viscosity model. A new finite-difference scheme is proposed to represent the nonlinear average advective term which has fourth-order accuracy. This scheme exhibits several advantages over existing schemes with regard to the following: (1) the scheme is compact as it extends only one point away in each direction from the point to which it is applied; (2) it gives better resolution for high wave-number waves in the solution of Poisson equation, and (3) it reduces programming complexity and computation time. Examples worked out in detail are the decay of isotropic turbulence, homogeneous turbulent shear flow, and homogeneous turbulent shear flow with system rotation.
Extended quantification of the generalized recurrence plot
NASA Astrophysics Data System (ADS)
Riedl, Maik; Marwan, Norbert; Kurths, Jürgen
2016-04-01
The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing structures, turbulent spatial plankton patterns, and fractals. But, it is also successfully applied to the description of spatio-temporal dynamics and the detection of regime shifts, such as in the complex Ginzburg-Landau- equation. The recurrence plot based determinism is a central measure in this framework quantifying the level of regularities in temporal and spatial structures. We extend this measure for the generalized recurrence plot considering additional operations of symmetry than the simple translation. It is tested not only on two-dimensional regular patterns and noise but also on complex spatial patterns reconstructing the parameter space of the complex Ginzburg-Landau-equation. The extended version of the determinism resulted in values which are consistent to the original recurrence plot approach. Furthermore, the proposed method allows a split of the determinism into parts which based on laminar and non-laminar regions of the two-dimensional pattern of the complex Ginzburg-Landau-equation. A comparison of these parts with a standard method of image classification, the co-occurrence matrix approach, shows differences especially in the description of patterns associated with turbulence. In that case, it seems that the extended version of the determinism allows a distinction of phase turbulence and defect turbulence by means of their spatial patterns. This ability of the proposed method promise new insights in other systems with turbulent dynamics coming from climatology, biology, ecology, and social sciences, for example.
von Kameke, A; Huhn, F; Muñuzuri, A P; Pérez-Muñuzuri, V
2013-02-22
In the absence of advection, reaction-diffusion systems are able to organize into spatiotemporal patterns, in particular spiral and target waves. Whenever advection is present that can be parametrized in terms of effective or turbulent diffusion D(*), these patterns should be attainable on a much greater, boosted length scale. However, so far, experimental evidence of these boosted patterns in a turbulent flow was lacking. Here, we report the first experimental observation of boosted target and spiral patterns in an excitable chemical reaction in a quasi-two-dimensional turbulent flow. The wave patterns observed are ~50 times larger than in the case of molecular diffusion only. We vary the turbulent diffusion coefficient D(*) of the flow and find that the fundamental Fisher-Kolmogorov-Petrovsky-Piskunov equation, v(f) proportional sqrt[D(*)], for the asymptotic speed of a reactive wave remains valid. However, not all measures of the boosted wave scale with D(*) as expected from molecular diffusion, since the wave fronts turn out to be highly filamentous.
NASA Astrophysics Data System (ADS)
Zhou, Jian; Lu, Wei; Sun, Jianfeng; Liu, Liren
2013-09-01
We investigate the random phase fluctuations of coherent laser propagate through the turbulent atmosphere, and introduce a model of its impact on optical heterodyne reception free space coherent laser optical communication (FSO) system. A polarization based shearing interferometer is used to detect the distorted laser wave-front and reconstruct the wave-front after propagate through a 1Km near-ground atmospheric channel. Further, the heterodyne efficiency of the heterodyne reception system would be given under special consideration of the mismatch between the signal field and the local oscillator. By analyzing the heterodyne efficiency data and the real-time atmospheric coherence length data, a mathematical model of the effects of atmospheric turbulence on FSO system performance is given.
Emergent states in dense systems of active rods: from swarming to turbulence
NASA Astrophysics Data System (ADS)
Wensink, H. H.; Löwen, H.
2012-11-01
Dense suspensions of self-propelled rod-like particles exhibit a fascinating variety of non-equilibrium phenomena. By means of computer simulations of a minimal model for rigid self-propelled colloidal rods with variable shape we explore the generic diagram of emerging states over a large range of rod densities and aspect ratios. The dynamics is studied using a simple numerical scheme for the overdamped noiseless frictional dynamics of a many-body system in which steric forces are dominant over hydrodynamic ones. The different emergent states are identified by various characteristic correlation functions and suitable order parameter fields. At low density and aspect ratio, a disordered phase with no coherent motion precedes a highly cooperative swarming state with giant number fluctuations at large aspect ratio. Conversely, at high densities weakly anisometric particles show a distinct jamming transition whereas slender particles form dynamic laning patterns. In between there is a large window corresponding to strongly vortical, turbulent flow. The different dynamical states should be verifiable in systems of swimming bacteria and artificial rod-like micro-swimmers.
Advanced Extended Plate and Beam Wall System in a Cold-Climate House
Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir
2016-01-01
This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders.
Extended Logic Intelligent Processing System for a Sensor Fusion Processor Hardware
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Thomas, Tyson; Li, Wei-Te; Daud, Taher; Fabunmi, James
2000-01-01
The paper presents the hardware implementation and initial tests from a low-power, highspeed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) is described, which combines rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor signals in compact low power VLSI. The development of the ELIPS concept is being done to demonstrate the interceptor functionality which particularly underlines the high speed and low power requirements. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Processing speeds of microseconds have been demonstrated using our test hardware.
Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu
2013-02-25
As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.
Amato, Alberto; Fortini, Stefania; Watteaux, Romain; Diano, Marcello; Espa, Stefania; Esposito, Serena; Ferrante, Maria I; Peters, Francesc; Iudicone, Daniele; Ribera d'Alcalà, Maurizio
2016-03-01
In recent years, there has been a renewed interest in the impact of turbulence on aquatic organisms. In response to this interest, a novel instrument has been constructed, TURBOGEN, that generates turbulence in water volumes up to 13 l. TURBOGEN is fully computer controlled, thus, allowing for a high level of reproducibility and for variations of the intensity and characteristics of turbulence during the experiment. The calibration tests, carried out by particle image velocimetry, showed TURBOGEN to be successful in generating isotropic turbulence at the typical relatively low levels of the marine environment. TURBOGEN and its sizing have been devised with the long-term scope of analyzing in detail the molecular responses of plankton to different mixing regimes, which is of great importance in both environmental and biotechnological processes.
NASA Astrophysics Data System (ADS)
Yamaguchi, Atsushi; Ishihara, Takeshi
2016-09-01
In this study, a new motion compensation algorithm was proposed and verified by using numerical simulation. Compensated horizontal mean wind speed by using conventional method shows good agreement with reference wind speed regardless of the motion of the floater. However, turbulence intensity is always overestimated. The overestimation is more significant when the maximum pitch angle of the floater motion is larger. When proposed method is used, the overestimation of the turbulent intensity is improved and estimated turbulent intensity shows better agreement with reference value. There still remains underestimation of the turbulence intensity with the bias of -1.1%. This is probably caused by the low sampling frequency in LIDAR measurement and further research is needed to model the high frequency component of the wind speed for LIDAR measurement.
Samanta, Devranjan; Dubief, Yves; Holzner, Markus; Schäfer, Christof; Morozov, Alexander N.; Wagner, Christian; Hof, Björn
2013-01-01
Turbulence is ubiquitous in nature, yet even for the case of ordinary Newtonian fluids like water, our understanding of this phenomenon is limited. Many liquids of practical importance are more complicated (e.g., blood, polymer melts, paints), however; they exhibit elastic as well as viscous characteristics, and the relation between stress and strain is nonlinear. We demonstrate here for a model system of such complex fluids that at high shear rates, turbulence is not simply modified as previously believed but is suppressed and replaced by a different type of disordered motion, elasto-inertial turbulence. Elasto-inertial turbulence is found to occur at much lower Reynolds numbers than Newtonian turbulence, and the dynamical properties differ significantly. The friction scaling observed coincides with the so-called “maximum drag reduction” asymptote, which is exhibited by a wide range of viscoelastic fluids. PMID:23757498
The variational two-electron reduced-density-matrix method for extended systems
NASA Astrophysics Data System (ADS)
Rubin, Nicholas C.
In this thesis we develop the variational two-electron reduced-density-matrix method for extended systems. Extended systems are represented in two ways: i) lattice models describing the dominant valence electronic structure with periodic boundaries to account for their extended nature and ii) a crystalline-orbital basis built from atomic orbitals using the generalization of molecular orbital theory to polymers. The first part of this thesis (Ch. 3--4) examines the performance of the variational 2-RDM method on lattice systems with tunable electron correlation. The first of these systems is the classic Hubbard model with linear and ladder lattice topologies. Because electron correlation functions, such as charge- and spin-ordering, are linear functions of the 2-RDM, the difference in electronic structure between one- and quasi-one-dimensional systems is accurately characterized. The second model contains only two-body interactions and is unique among typical spin models in that it does not have a mean-field reference wave function. The ground state wave functions from all Hamiltonians in the model have the same 1-electron reduced density matrix; consequently, one-electron theories are largely inapplicable. The superconducting eta-pairing ground states make the model a unique tool for demonstrating the necessary N-representability in highly correlated environments. The second part of this thesis (Ch. 5--6) develops a formalism for modeling materials by solving the full Schrodinger equation. Crystalline-orbital Hartree-Fock provides a set of orbitals and integral tensors for the variational 2-RDM method. We demonstrate that time-reversal symmetry, which is implicitly included in position space electronic structure calculations, must be explicitly included as an N-representability constraint on the 2-RDM when using a momentum space basis. The necessity of these equality constraints is demonstrated by the accurate recovery of the binding energy of two polymers and the
Probe systems for measuring static pressure and turbulence intensity in fluid streams
NASA Technical Reports Server (NTRS)
Rossow, Vernon J. (Inventor)
1993-01-01
A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.
NASA Astrophysics Data System (ADS)
Laizet, Sylvain; Lamballais, Eric; Vassilicos, J. Christos
2015-11-01
Incompact3d is a high-order flow solver dedicated to Direct and Large Eddy Simulations (DNS/LES) using High Performance Computing (HPC) systems which isdevoted to turbulent flows at the interface between academic research and upstream industrial R&D. It is originating from the University of Poitiers (France) and was developed there as well as, more recently, in the Turbulence, Mixing and Flow Control Group at Imperial College London (UK). This high-order flow solver can reconcile accuracy, efficiency, versatility and scalability using a simple Cartesian mesh and up to one million computational cores. The three key ingredients of this successful cocktail to tackle turbulence on HPC systemswill be given in this talkfollowed by various applications such as fractal-generated turbulence, gravity currents in an open basin, impinging jets on a heated plate and a micro-jet device to control a turbulent jet.
NASA Astrophysics Data System (ADS)
Khallaf, Haitham S.; Garrido-Balsells, José M.; Shalaby, Hossam M. H.; Sampei, Seiichi
2015-12-01
The performance of multiple-input multiple-output free space optical (MIMO-FSO) communication systems, that adopt multipulse pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived for both cases of uncorrelated and correlated channels. The effects of background noise, receiver shot-noise, and atmospheric turbulence are taken into consideration in our analysis. The random fluctuations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the widely used gamma-gamma statistical distribution. Uncorrelated MIMO channels are modeled by the α-μ distribution. A closed-form expression for the probability density function of the optical received irradiance is derived for the case of correlated MIMO channels. Using our analytical expressions, the degradation of the system performance with the increment of the correlation coefficients between MIMO channels is corroborated.
Aligning the CMS muon chambers with the muon alignment system during an extended cosmic ray run
NASA Astrophysics Data System (ADS)
CMS Collaboration
2010-03-01
The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18 mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140-350 μm and 30-200 μrad, close to the precision requirements of the experiment. Systematic errors on absolute positions are estimated to be 340-590 μm based on comparisons with independent photogrammetry measurements.
Power coupling of a two-Cassegrain-telescopes system in turbulent atmosphere in a slant path.
Chu, Xiuxiang; Zhou, Guoquan
2007-06-11
The characteristics of dark hollow beams passing through a two-Cassegrain-telescopes system in turbulent atmosphere in a slant path have been investigated. The distribution of the average intensity at the receiver telescope and the efficiency of power coupling with respect to propagation distance with different parameters are derived and numerically calculated. These studies illuminate that the power of the dark hollow beams is concentrated on a narrow annular aperture at the source plane and its power coupling with a transmitter Cassegrain telescope can remain quite high. For short distance between the two Cassegrain telescopes, the normalized average intensity distribution at receiver plane holds shape similar to that at the source plane, and the two Cassegrain telescopes keep high efficiency of the power coupling. But with the increment in the propagation distance, the power of the dark hollow beams gradually converges to the central and the spot spreads. The central obscuration of the receiver telescope blocks more of the power; meanwhile more of the power moves out beyond the edge of the receiving aperture. Therefore, the efficiency of the power coupling decreases with the increment in the propagation distance. In addition, the relations between the efficiency of power coupling and wavelength of laser beams are also numerically calculated and discussed.
Experimental determination of the correlation properties of plasma turbulence using 2D BES systems
NASA Astrophysics Data System (ADS)
Fox, M. F. J.; Field, A. R.; van Wyk, F.; Ghim, Y.-c.; Schekochihin, A. A.; the MAST Team
2017-04-01
A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a beam emission spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of point-spread functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the Mega-Ampere Spherical Tokamak BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay method, is also investigated and is shown to be sensitive to the fluctuating radial component of velocity, as well as to small variations in the spatial properties of the PSFs.
NASA Technical Reports Server (NTRS)
Stoeffler, R. C.
1972-01-01
Analytical and experimental fluid mechanics studies were conducted to investigate instabilities in atmospheric flow systems associated with clear air turbulence. The experimental portion of the program was conducted using an open water channel which allows investigation of flows having wide ranges of shear and density stratification. The program was primarily directed toward studies of the stability of straight, stratified shear flows with particular emphasis on the effects of velocity profile on stability; on studies of three-dimensional effects on the breakdown region in shear layers; on the the interaction of shear flows with long-wave length internal waves; and on the stability of shear flows consisting of adjacent stable layers. The results of these studies were used to evaluate methods used in analyses of CAT encounters in the atmosphere involving wave-induced shear layer instabilities of the Kelvin-Helmholta type. A computer program was developed for predicting shear-layer instability and CAT induced by mountain waves. This technique predicts specific altitudes and locations where CAT would be expected.
An Integrated Nonlinear Analysis library - (INA) for solar system plasma turbulence
NASA Astrophysics Data System (ADS)
Munteanu, Costel; Kovacs, Peter; Echim, Marius; Koppan, Andras
2014-05-01
We present an integrated software library dedicated to the analysis of time series recorded in space and adapted to investigate turbulence, intermittency and multifractals. The library is written in MATLAB and provides a graphical user interface (GUI) customized for the analysis of space physics data available online like: Coordinated Data Analysis Web (CDAWeb), Automated Multi Dataset Analysis system (AMDA), Planetary Science Archive (PSA), World Data Center Kyoto (WDC), Ulysses Final Archive (UFA) and Cluster Active Archive (CAA). Three main modules are already implemented in INA : the Power Spectral Density (PSD) Analysis, the Wavelet and Intemittency Analysis and the Probability Density Functions (PDF) analysis.The layered structure of the software allows the user to easily switch between different modules/methods while retaining the same time interval for the analysis. The wavelet analysis module includes algorithms to compute and analyse the PSD, the Scalogram, the Local Intermittency Measure (LIM) or the Flatness parameter. The PDF analysis module includes algorithms for computing the PDFs for a range of scales and parameters fully customizable by the user; it also computes the Flatness parameter and enables fast comparison with standard PDF profiles like, for instance, the Gaussian PDF. The library has been already tested on Cluster and Venus Express data and we will show relevant examples. Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS UEFISCDI, project number PN-II-ID PCE-2012-4-0418.
Kalay, Berfin; Demiralp, Metin
2014-10-06
The expectation value definitions over an extended space from the considered Hilbert space of the system under consideration is given in another paper of the second author in this symposium. There, in that paper, the conceptuality rather than specification is emphasized on. This work uses that conceptuality to investigate the time evolutions of the position related operators' expectation values not in its standard meaning but rather in a new version of the definition over not the original Hilbert space but in the space obtained by extensions via introducing the images of the given initial wave packet under the positive integer powers of the system Hamiltonian. These images may not be residing in the same space of the initial wave packet when certain singularities appear in the structure of the system Hamiltonian. This may break down the existence of the integrals in the definitions of the expectation values. The cure is the use of basis functions in the abovementioned extended space and the sandwiching of the target operator whose expectation value is under questioning by an appropriately chosen operator guaranteeing the existence of the relevant integrals. Work specifically focuses on the hydrogen-like quantum systems whose Hamiltonians contain a polar singularity at the origin.
Advanced Extended Plate and Beam Wall System in a Cold-Climate House
Mallay, Dave; Wiehagen, Joseph; Kochkin, Vladimir
2016-01-29
This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wall system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.
Fuel cell powered small unmanned aerial systems (UASs) for extended endurance flights
NASA Astrophysics Data System (ADS)
Chu, Deryn; Jiang, R.; Dunbar, Z.; Grew, Kyle; McClure, J.
2015-05-01
Small unmanned aerial systems (UASs) have been used for military applications and have additional potential for commercial applications [1-4]. For the military, these systems provide valuable intelligence, surveillance, reconnaissance and target acquisition (ISRTA) capabilities for units at the infantry, battalion, and company levels. The small UASs are light-weight, manportable, can be hand-launched, and are capable of carrying payloads. Currently, most small UASs are powered by lithium-ion or lithium polymer batteries; however, the flight endurance is usually limited less than two hours and requires frequent battery replacement. Long endurance small UAS flights have been demonstrated through the implementation of a fuel cell system. For instance, a propane fueled solid oxide fuel cell (SOFC) stack has been used to power a small UAS and shown to extend mission flight time. The research and development efforts presented here not only apply to small UASs, but also provide merit to the viability of extending mission operations for other unmanned systems applications.
Kwon, Gayeung; Lee, Jiyun; Lim, Young-Hee
2016-01-01
Dairy Propionibacterium freudenreichii is a candidate non-lactic acid probiotic. However, little information is available on the effect of P. freudenreichii on lifespan extension in humans. The aim of this study was to evaluate the effects of P. freudenreichii on lifespan extension and to elucidate the mechanism of P. freudenreichii-dependent lifespan extension in Caenorhabditis elegans. The results showed that P. freudenreichii significantly (p < 0.05) extended the lifespan of C. elegans compared with Escherichia coli OP50, a standard food for the worm. Analysis of age-related biomarkers showed that P. freudenreichii retards ageing. Moreover, P. freudenreichii increased resistance against a human pathogen, Salmonella typhimurium, through the activation of skn-1, which is involved in pathogen resistance in C. elegans. Furthermore, P. freudenreichii-fed daf-16, jnk-1, skn-1 or daf-7 loss-of-function mutants showed an extended mean lifespan compared with E. coli OP50-fed worms. However, the increase in lifespan was not observed in pmk-1, sek-1, mek-1, dbl-1, daf-12 or daf-2 mutants, which suggests potential roles for these genes in P. freudenreichii-induced longevity in C. elegans. In conclusion, P. freudenreichii extends the lifespan of C. elegans via the p38 MAPK pathway involved in stress response and the TGF-β pathways associated with anti-inflammation processes in the immune system. PMID:27531646
Effect of laminar and turbulent fluid flow on mass transfer in some electrochemical systems
NASA Astrophysics Data System (ADS)
Chen, Qian
2000-10-01
The influence of fluid flow on electrode-shape change that results from electrodeposition in the presence of a model leveling agent is simulated and discussed. The treatment is more rigorous than past studies in that flow and concentration fields are recalculated as the electrode shape changes. It is shown that uncertainties due to approximate treatments of fluid flow may be as significant as existing discrepancies between experiment and theory. The mass transfer characteristics of a turbulent slot jet impinging normally on a target wall are examined using numerical simulations. Fluid flow is modeled using the k-turbulence model of Wilcox [1]. The computations are validated against existing experimental fluid flow, heat transfer and mass transfer data. The range of Reynolds numbers examined is from 450 to 20,000 with Prandtl or Schmidt numbers from 1 to 2,400. The distance of the target plate from the slot jet varies between 2 to 8 times the slot jet width. The study reveals computational aspects that are unique to the solution of flow and mass transfer problems with the combination of high Schmidt numbers and turbulent flows. A low order "coherent structure" near-wall flow model first proposed by Chapman and Kuhn [2] is used to obtain the near-wall fluid flow field. This flow field is then used to compute high Schmidt number mass transfer for a turbulent boundary layer flow. It is shown that useful insight can be obtained into high Schmidt number mass transfer for a turbulent fluid flow using this model. The boundary conditions for this near-wall field for more complicated flow or geometries may be obtained either from experimental turbulent velocity and frequency data or from a k-o type of turbulence model.
Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film
Natanasabapathi, Gopishankar; Bisht, Raj Kishor
2013-12-15
Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film.
Generalised monogamy relation of convex-roof extended negativity in multi-level systems
Tian, Tian; Luo, Yu; Li, Yongming
2016-01-01
In this paper, we investigate the generalised monogamy inequalities of convex-roof extended negativity (CREN) in multi-level systems. The generalised monogamy inequalities provide the upper and lower bounds of bipartite entanglement, which are obtained by using CREN and the CREN of assistance (CRENOA). Furthermore, we show that the CREN of multi-qubit pure states satisfies some monogamy relations. Additionally, we test the generalised monogamy inequalities for qudits by considering the partially coherent superposition of a generalised W-class state in a vacuum and show that the generalised monogamy inequalities are satisfied in this case as well. PMID:27857163
An odd-number limitation of extended time-delayed feedback control in autonomous systems.
Amann, Andreas; Hooton, Edward W
2013-09-28
We propose a necessary condition for the successful stabilization of a periodic orbit, using the extended version of time-delayed feedback control. This condition depends on the number of real Floquet multipliers larger than unity and is therefore related to the well-known odd-number limitation in non-autonomous systems. We show that the period of the orbit that is induced by mismatching the delay time of the control scheme and the period of the uncontrolled orbit plays an important role in the formulation of the odd-number limitation in the autonomous case.
Majda, Andrew J; Grote, Marcus J
2007-01-23
Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and physical instabilities on both large and small scales. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Here, explicit off-line test criteria for stable accurate discrete filtering are developed for use in the above context and mimic the classical stability analysis for finite difference schemes. First, constant coefficient partial differential equations, which are randomly forced and damped to mimic mesh scale energy spectra in the above problems are developed as off-line filtering test problems. Then mathematical analysis is used to show that under natural suitable hypothesis the time filtering algorithms for general finite difference discrete approximations to an sxs partial differential equation system with suitable observations decompose into much simpler independent s-dimensional filtering problems for each spatial wave number separately; in other test problems, such block diagonal models rigorously provide upper and lower bounds on the filtering algorithm. In this fashion, elementary off-line filtering criteria can be developed for complex spatially extended systems. The theory is illustrated for time filters by using both unstable and implicit difference scheme approximations to the stochastically forced heat equation where the combined effects of filter stability and model error are analyzed through the simpler off-line criteria.
Design and evaluation of an IDM-based MIMO FSO system over Gamma-Gamma turbulence channels
NASA Astrophysics Data System (ADS)
Zhang, Chenglei; Zhou, Xiaolin; Zheng, Xiaowei; Du, Jianhong
2011-12-01
In this paper, we design an interleave-division-multiplexing (IDM) based multiple-input multiple-output (MIMO) free-space optics (FSO) communication system. The system overcomes problems harassing conventional optical MIMO systems such as restrictions of antenna number and high complexity in receiver. An iterative on-off keying (OOK) modulated IDM MIMO detection algorithm is developed. Expression of an upper bound of frame-error-rate (FER) is derived. In addition, we evaluate the BER performance of the proposed optical MIMO scheme in various FSO scenarios. Simulations confirm that the proposed scheme can effectively increase the feasibility of FSO communications over Gamma-Gamma turbulence-induced fading channels.
Hsieh, Sheng-Hsun; Li, Yung-Hui; Tien, Chung-Hao; Chang, Chin-Chen
2016-12-01
Iris recognition has gained increasing popularity over the last few decades; however, the stand-off distance in a conventional iris recognition system is too short, which limits its application. In this paper, we propose a novel hardware-software hybrid method to increase the stand-off distance in an iris recognition system. When designing the system hardware, we use an optimized wavefront coding technique to extend the depth of field. To compensate for the blurring of the image caused by wavefront coding, on the software side, the proposed system uses a local patch-based super-resolution method to restore the blurred image to its clear version. The collaborative effect of the new hardware design and software post-processing showed great potential in our experiment. The experimental results showed that such improvement cannot be achieved by using a hardware-or software-only design. The proposed system can increase the capture volume of a conventional iris recognition system by three times and maintain the system's high recognition rate.
Three-dimensional finite-element simulation of a turbulent push-pull ventilation system.
Flynn, M R; Ahn, K; Miller, C T
1995-10-01
A finite-element formulation with penalty approach to enforce continuity is employed here to simulate the three-dimensional velocity field resulting from a simple push-pull ventilation configuration. An analytic expression for the length scale and a transport equation for turbulent kinetic energy are coupled with the momentum equations. A coaxial square hood and jet are arranged with cross-draught perpendicular to the common centreline. Numerical predictions of the velocity and turbulence kinetic energy fields are evaluated in the plane of symmetry with hot film anemometry, and smoke-wire flow visualizations. The agreement of the simulated jet trajectories with flow visualizations is reasonable, as are velocities. Predictions of turbulence kinetic energy are not as good, particularly near the hood face. Despite the limitations the numerical approach is useful in assessing the impact of cross-draughts on the push-pull arrangement.
The Turbulent Origin of Spin-Orbit Misalignment in Planetary Systems
Fielding, Drummond B.; McKee, Christopher F.; Socrates, Aristostle; ...
2015-05-13
The turbulent environment from which stars form may lead to misalignment between the stellar spin and the remnant protoplanetary disk. By using hydrodynamic and magnetohydrodynamic simulations, we demonstrate that a wide range of stellar obliquities may be produced as a by-product of forming a star within a turbulent environment. We present a simple semi-analytic model that reveals this connection between the turbulent motions and the orientation of a star and its disk. Our results are consistent with the observed obliquity distribution of hot Jupiters. Migration of misaligned hot Jupiters may, therefore, be due to tidal dissipation in the disk, rathermore » than tidal dissipation of the star-planet interaction.« less
An Extended Expectation-Confirmation Model for Mobile Nursing Information System Continuance.
Hsieh, Pi-Jung; Lai, Hui-Min; Ma, Chen-Chung; Alexander, Judith W; Lin, Memg-Yi
2016-11-01
Nursing is critical in health care systems and comprises the planning, execution, and documentation of nursing care. To better manage health care information during patient care, the use of a mobile nursing information system (MNIS) provides more time to care for inpatients by reducing time-consuming and redundant paperwork. The purpose of this study was to extend the expectation-confirmation model and explore the roles of nursing professional competency (skill in use), habit (customary use), satisfaction (with use), and frequency of prior use in the context of MNIS continuance usage. We randomly chose 3 hospitals from among 14 hospitals in Taiwan that had indicated they used an MNIS. We conducted a field survey of nurses who had experience using the MNIS. We used a valid sample of 90 nurses to test the research model, using structural equation modeling with the partial least squares method. The results show that habit and frequency of prior use had a significant impact on MNIS continuance usage. Satisfaction and frequency of prior use had a significant impact on habit. Nurses' professional competence is crucial to perceived usefulness and, thus, is relevant in the context of MNIS continuance usage. When habit weakens over time, the continuance intention predicts continuance usage. This study showed that the extended expectation-confirmation model effectively predicts nurses' MNIS continuance usage and provides implications. Academics and practitioners should understand how nurses' habits form and how they affect continued MNIS use. Understanding the antecedents of habits can help nursing managers identify and manipulate habit formation.
NASA Technical Reports Server (NTRS)
Frehlich, Rod; Kavaya, Michael J.
2000-01-01
The explanation for the difference between simulation and the zero-order theory for heterodyne lidar returns in a turbulent atmosphere proposed by Belmonte and Rye is incorrect. The theoretical expansion is not developed under a square- law-structure function approximation (random wedge atmosphere). Agreement between the simulations and the zero-order term of the theoretical expansion is produced for the limit of statistically independent paths (bi-static operation with large transmitter-receiver separation) when the simulations correctly include the large-scale gradients of the turbulent atmosphere.
NASA Astrophysics Data System (ADS)
Kuang, Hua; Xu, Zhi-Peng; Li, Xing-Li; Lo, Siu-Ming
2017-04-01
In this paper, an extended car-following model is proposed to simulate traffic flow by considering average headway of preceding vehicles group in intelligent transportation systems environment. The stability condition of this model is obtained by using the linear stability analysis. The phase diagram can be divided into three regions classified as the stable, the metastable and the unstable ones. The theoretical result shows that the average headway plays an important role in improving the stabilization of traffic system. The mKdV equation near the critical point is derived to describe the evolution properties of traffic density waves by applying the reductive perturbation method. Furthermore, through the simulation of space-time evolution of the vehicle headway, it is shown that the traffic jam can be suppressed efficiently with taking into account the average headway effect, and the analytical result is consistent with the simulation one.
Extending dispersive waves theory to use in semi-open systems
NASA Astrophysics Data System (ADS)
Chumakova, Lyubov; Rosales, Ruben; Rzeznik, Andrew; Tabak, Esteban
2015-11-01
In the classical linear dispersive wave theory the sinusoidal waves e i (kx - ωt) carry energy with the group speed cg = dω / dk . This concept is limited to the case where both the frequency ω (k) and the wavenumber k are real. On the other hand, semi-open dispersive systems allow more than just sinusoidal solutions: they can have exponentially blowing up and/or decaying solutions as well. In this talk I will address the questions of what is direction and the speed of the energy propagation for these exponential waves, extend the classical concept of group velocity, and use this theory to construct radiation boundary conditions for semi-open dispersive systems. This approach will be demonstrated on an example of dry hydrostatic troposphere which experiences effective damping due to gravity waves propagating into the stratosphere. RSE, Scottish government.
Decentralized neural identifier and control for nonlinear systems based on extended Kalman filter.
Castañeda, Carlos E; Esquivel, P
2012-07-01
A time-varying learning algorithm for recurrent high order neural network in order to identify and control nonlinear systems which integrates the use of a statistical framework is proposed. The learning algorithm is based in the extended Kalman filter, where the associated state and measurement noises covariance matrices are composed by the coupled variance between the plant states. The formulation allows identification of interactions associate between plant state and the neural convergence. Furthermore, a sliding window-based method for dynamical modeling of nonstationary systems is presented to improve the neural identification in the proposed methodology. The efficiency and accuracy of the proposed method is assessed to a five degree of freedom (DOF) robot manipulator where based on the time-varying neural identifier model, the decentralized discrete-time block control and sliding mode techniques are used to design independent controllers and develop the trajectory tracking for each DOF.
NASA Technical Reports Server (NTRS)
Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret
1992-01-01
Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.
NASA Technical Reports Server (NTRS)
Boykin, William H., Jr.
1993-01-01
Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.
Raupach, Marc; Tonner, Ralf
2015-05-21
The development and first applications of a new periodic energy decomposition analysis (pEDA) scheme for extended systems based on the Kohn-Sham approach to density functional theory are described. The pEDA decomposes the bonding energy between two fragments (e.g., the adsorption energy of a molecule on a surface) into several well-defined terms: preparation, electrostatic, Pauli repulsion, and orbital relaxation energies. This is complemented by consideration of dispersion interactions via a pairwise scheme. One major extension toward a previous implementation [Philipsen and Baerends, J. Phys. Chem. B 110, 12470 (2006)] lies in the separate discussion of electrostatic and Pauli and the addition of a dispersion term. The pEDA presented here for an implementation based on atomic orbitals can handle restricted and unrestricted fragments for 0D to 3D systems considering periodic boundary conditions with and without the determination of fragment occupations. For the latter case, reciprocal space sampling is enabled. The new method gives comparable results to established schemes for molecular systems and shows good convergence with respect to the basis set (TZ2P), the integration accuracy, and k-space sampling. Four typical bonding scenarios for surface-adsorbate complexes were chosen to highlight the performance of the method representing insulating (CO on MgO(001)), metallic (H{sub 2} on M(001), M = Pd, Cu), and semiconducting (CO and C{sub 2}H{sub 2} on Si(001)) substrates. These examples cover diverse substrates as well as bonding scenarios ranging from weakly interacting to covalent (shared electron and donor acceptor) bonding. The results presented lend confidence that the pEDA will be a powerful tool for the analysis of surface-adsorbate bonding in the future, enabling the transfer of concepts like ionic and covalent bonding, donor-acceptor interaction, steric repulsion, and others to extended systems.
Raupach, Marc; Tonner, Ralf
2015-05-21
The development and first applications of a new periodic energy decomposition analysis (pEDA) scheme for extended systems based on the Kohn-Sham approach to density functional theory are described. The pEDA decomposes the bonding energy between two fragments (e.g., the adsorption energy of a molecule on a surface) into several well-defined terms: preparation, electrostatic, Pauli repulsion, and orbital relaxation energies. This is complemented by consideration of dispersion interactions via a pairwise scheme. One major extension toward a previous implementation [Philipsen and Baerends, J. Phys. Chem. B 110, 12470 (2006)] lies in the separate discussion of electrostatic and Pauli and the addition of a dispersion term. The pEDA presented here for an implementation based on atomic orbitals can handle restricted and unrestricted fragments for 0D to 3D systems considering periodic boundary conditions with and without the determination of fragment occupations. For the latter case, reciprocal space sampling is enabled. The new method gives comparable results to established schemes for molecular systems and shows good convergence with respect to the basis set (TZ2P), the integration accuracy, and k-space sampling. Four typical bonding scenarios for surface-adsorbate complexes were chosen to highlight the performance of the method representing insulating (CO on MgO(001)), metallic (H2 on M(001), M = Pd, Cu), and semiconducting (CO and C2H2 on Si(001)) substrates. These examples cover diverse substrates as well as bonding scenarios ranging from weakly interacting to covalent (shared electron and donor acceptor) bonding. The results presented lend confidence that the pEDA will be a powerful tool for the analysis of surface-adsorbate bonding in the future, enabling the transfer of concepts like ionic and covalent bonding, donor-acceptor interaction, steric repulsion, and others to extended systems.
How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Waterman, Robert D.; KrishnaKumar, Kalmanje; Waterman, Susan J.
2005-01-01
For sustainable Exploration Missions the need exists to assemble systems-of-systems in space, on the Moon or on other planetary surfaces. To fulfill this need new and innovative system architecture is needed that can be satisfied with the present lift capability of existing rocket technology without the added cost of developing a new heavy lift vehicle. To enable ultra-long life missions with minimum redundancy and lighter mass the need exists to develop system soft,i,are and hardware reconfigurability, which enables increasing functionality and multiple use of launched assets while at the same time overcoming any components failures. Also the need exists to develop the ability to dynamically demate and reassemble individual system elements during a mission in order to work around failed hardware or changed mission requirements. Therefore to meet the goals of Space Exploration Missions in hiteroperability and Reconfigurability, many challenges must be addressed to transform the traditional static avionics architecture into architecture with dynamic capabilities. The objective of this paper is to introduce concepts associated with reconfigurable computer systems; review the various needs and challenges associated with reconfigurable avionics space systems; provide an operational example that illustrates the needs applicable to either the Crew Exploration Vehicle or a collection of "Habot like" mobile surface elements; summarize the approaches that address key challenges to acceptance of a Flexible, Intelligent, Modular and Affordable reconfigurable avionics space system.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Behrendt, Andreas; Wulfmeyer, Volker
2017-02-01
Measurements carried out by the Raman lidar system BASIL are reported to demonstrate the capability of this instrument to characterize turbulent processes within the Convective Boundary Layer (CBL). In order to resolve the vertical profiles of turbulent variables, high resolution water vapour and temperature measurements, with a temporal resolution of 10 sec and a vertical resolution of 90 and 30 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of spectral and auto-covariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (IOP 5, 20 April 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. The noise errors are demonstrated to be small enough to allow the derivation of up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations with sufficient accuracy.
Extendable COTS multi-computer/CPU design for an MCAO control system
NASA Astrophysics Data System (ADS)
Saddlemyer, Leslie K.; Dunn, Jennifer; Smith, Malcolm J.; Boyer, Corinne
2003-02-01
Many reconstructors, or Real Time Controllers (RTC), for mono-conjugate AO systems are currently operating with many more about to be commissioned. The advent of faster and more efficient CPUs has permitted this task to be accomplished on a single processing element, for all but the highest order systems. However, the demands on the RTC increase by an order of magnitude or so in the case of a Multi-Conjugate AO (MCAO) system. Multiple Wavefront Sensors (WFS) and multiple deformable mirrors increase the complexity, processing load and data flow rates that the RTC must deal with. No currently available single processing unit is capable of meeting this demand and retain the advantages of a cost-effective, flexible system. Multiple processing units must be employed. We present in this paper a general architecture that addresses these issues. We present an analysis of the requirements of the Gemini South MCAO system on the RTC. This is followed by an algorithmic decomposition that simplifies the problem, lending itself to the use of commercially available multi-CPU single board computers. This is supported by the results of benchmark tests aimed at verifying the capabilities of one sample SBC. We conclude by presenting a description of the extendability of this architectural approach in the face of yet higher demands such as more mirrors, WFSs or complexity.
NASA Astrophysics Data System (ADS)
Fujii, Tatsuya; Oishi, Yoshihiko; Kawai, Hideki; Kikura, Hiroshige; Stepanus Situmorang, Riky; Ambarita, Himsar
2017-01-01
Taylor-Couette flow with small aspect ratio has characteristics such as the different vortex structure, because of a boundary layer of the upper and lower wall and the acceleration of the inner cylinder. In this study, the mechanism of Taylor-Couette system with the small aspect ratio is measured and analyzed by using an ultrasound measurement and a numerical simulation. The process of transition to turbulent flow is observed by using a spectra analysis in a radial and an axial direction. The experimental and numerical results confirmed the characteristics of the broadband component in Taylor-Couette system.
An extended grammar system for learning and recognizing complex visual events.
Zhang, Zhang; Tan, Tieniu; Huang, Kaiqi
2011-02-01
For a grammar-based approach to the recognition of visual events, there are two major limitations that prevent it from real application. One is that the event rules are predefined by domain experts, which means huge manual cost. The other is that the commonly used grammar can only handle sequential relations between subevents, which is inadequate to recognize more complex events involving parallel subevents. To solve these problems, we propose an extended grammar approach to modeling and recognizing complex visual events. First, motion trajectories as original features are transformed into a set of basic motion patterns of a single moving object, namely, primitives (terminals) in the grammar system. Then, a Minimum Description Length (MDL) based rule induction algorithm is performed to discover the hidden temporal structures in primitive stream, where Stochastic Context-Free Grammar (SCFG) is extended by Allen's temporal logic to model the complex temporal relations between subevents. Finally, a Multithread Parsing (MTP) algorithm is adopted to recognize interesting complex events in a given primitive stream, where a Viterbi-like error recovery strategy is also proposed to handle large-scale errors, e.g., insertion and deletion errors. Extensive experiments, including gymnastic exercises, traffic light events, and multi-agent interactions, have been executed to validate the effectiveness of the proposed approach.
Spectral functions of strongly correlated extended systems via an exact quantum embedding
NASA Astrophysics Data System (ADS)
Booth, George H.; Chan, Garnet Kin-Lic
2015-04-01
Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.
Lesage, Adrien; Lelièvre, Tony; Stoltz, Gabriel; Hénin, Jérôme
2016-12-27
We report a theoretical description and numerical tests of the extended-system adaptive biasing force method (eABF), together with an unbiased estimator of the free energy surface from eABF dynamics. Whereas the original ABF approach uses its running estimate of the free energy gradient as the adaptive biasing force, eABF is built on the idea that the exact free energy gradient is not necessary for efficient exploration, and that it is still possible to recover the exact free energy separately with an appropriate estimator. eABF does not directly bias the collective coordinates of interest, but rather fictitious variables that are harmonically coupled to them; therefore is does not require second derivative estimates, making it easily applicable to a wider range of problems than ABF. Furthermore, the extended variables present a smoother, coarse-grain-like sampling problem on a mollified free energy surface, leading to faster exploration and convergence. We also introduce CZAR, a simple, unbiased free energy estimator from eABF trajectories. eABF/CZAR converges to the physical free energy surface faster than standard ABF for a wide range of parameters.
NASA Astrophysics Data System (ADS)
Olsen, Scott Charles
In this dissertation, new inverse scattering algorithms are derived for the Helmholtz equation using the Extended Born field model (eikonal rescattered field), and the angular spectrum (parabolic) layered field model. These two field models performed the 'best' of all the field models evaluated. Algorithms are solved with conjugate gradient methods. An advanced ultrasonic data acquisition system is also designed. Many different field models for use in a reconstruction algorithm are investigated. 'Layered' field models that mathematically partition the field calculation in layers in space possess the advantage that the field in layer n is calculated from the field in layer n - 1. Several of the 'layered' field models are investigated in terms of accuracy and computational complexity. Field model accuracy using field rescattering is also tested. The models investigated are the eikonal field model, the angular spectrum (AS) field model, and the parabolic field models known as the Split-Step Fast-Fourier Transform and the Crank-Nicolson algorithms. All of the 'layered' field models can be referred to as Extended Born field models since the 'layered' field models are more accurate than the Born approximated total field. The Rescattered Extended Born (eikonal rescattered field) Transmission Mode (REBTM) algorithm with the AS field model and the Nonrescattered AS Reconstruction (NASR) algorithm are tested with several types of objects: a single-layer cylinder, double-layer cylinders, two double-layer cylinders and the breast model. Both algorithms, REBTM and NASR work well; however, the NASR algorithm is faster and more accurate than the REBTM algorithm. The NASR algorithm is matched well with the requirements of breast model reconstructions. A major purpose of new scanner development is to collect both transmission and reflection data from multiple ultrasonic transducer arrays to test the next generation of reconstruction algorithms. The data acquisition system advanced
Hinton, F. L.; Waltz, R. E.
2006-10-15
Expressions for particle and energy fluxes and heating rates due to turbulence are derived. These fluxes and heating rates are identified from moments of an extended drift-kinetic equation for the equilibrium distribution function. These include neoclassical as well as turbulent diffusion and heating. Phase-space conservation is demonstrated, allowing the drift-kinetic equation to be expressed in conservative form. This facilitates taking moments with few approximations, mainly those consistent with drift kinetics for the equilibrium distribution function and the relative smallness of the fluctuations. The turbulent heating is uniquely defined by choosing the standard gyrokinetic definition for the energy flux. With this definition, most of the heating can be expressed in the form of ohmic heating from turbulent parallel and perpendicular current density perturbations. The latter current is identified with grad-B and curvature drifts, plus terms involving magnetic perturbations (which are smaller for low beta). A small contribution to the heating comes from the divergence of an energy flux that is dependent on the finite gyroradius of the ions. The fluxes and heating rates are expressed in a form that can be easily evaluated from gyrokinetic turbulence simulations.
NASA Astrophysics Data System (ADS)
Venaille, Antoine; Nadeau, Louis-Philippe; Vallis, Geoffrey
2014-12-01
We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel with an initial eastward baroclinically unstable jet in the upper layer, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization in the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these results by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the initial eastward jet in the upper layer appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the global distribution of potential vorticity levels. Statistical mechanical theory of the 1 1/2 layer quasi-geostrophic model predicts the formation of two regions of homogenized potential vorticity separated by a minimal interface. We explain that cascade phenomenology leads to the same result. We then show that the dynamics of the ribbons results from a competition between a tendency to reach the equilibrium state and baroclinic instability that induces meanders of the interface. These meanders intermittently break and induce potential vorticity mixing, but the interface remains sharp throughout the flow evolution. We show that for some parameter regimes, the ribbons act as a mixing barrier which prevents relaxation toward equilibrium, favouring the emergence of multiple zonal (eastward) jets.
Measurement of Turbulent Water Vapor Fluxes from Lightweight Unmanned Aircraft Systems
NASA Astrophysics Data System (ADS)
Thomas, R. M.; Ramanathan, V.; Nguyen, H.; Lehmann*, K.
2010-12-01
Scientists at the Center for Clouds, Chemistry and Climate (C4) at the Scripps Institution of Oceanography have successfully used Unmanned Aircraft Systems (UASs) for measurements of radiation fluxes, aerosol concentrations and cloud microphysical properties. Building on this success, a payload to measure water vapor fluxes using the eddy covariance (EC) technique has been recently developed and tested. To our knowledge this is the first UAS turbulent flux system to incorporate high-frequency water vapor measurements. The driving aim of the water vapor flux system’s development is to investigate ‘atmospheric rivers’ in the north-western Pacific Ocean, these can lead to sporadic yet extreme rainfall and flooding events upon landfall in California. Such a flux system may also be used to investigate other weather events (e.g. the formation of hurricanes) and offers a powerful aerosol-cloud-radiative forcing investigative tool when combined with the existing aerosol/radiation and cloud microphysics UAS payloads. The atmospheric vertical wind component (w) is derived by this system at up to 100Hz using data from a GPS/Inertial Measurement Unit (GPS/IMU) combined with a fast-response gust probe mounted on the UAV. Measurements of w are then combined with equally high frequency water vapor data (collected using a Campbell Scientific Krypton Hygrometer) to calculate latent heat fluxes (λE). Two test flights were conducted at the NASA Dryden test facility on 27th May 2010, located in the Mojave Desert. Horizontal flight legs were recorded at four altitudes between 1000-2500 masl within the convective boundary layer. Preliminary data analysis indicates averaged spectral data follow the theoretical -5/3 slope , and extrapolation of the flux profile to the surface resulted in λE of 1.6 W m-2; in good agreement with 1.0 W m-2 λE measured by NOAA from a surface tower using standard flux techniques. The system performance during the Dryden test, as well as subsequent
Extended Plate and Beam Wall System: Concept Investigation and Initial Evaluation
Wiehagen, J.; Kochkin, V.
2015-08-01
A new and innovative High-R wall design, referred to as the Extended Plate & Beam (EP&B), is under development. The EP&B system uniquely integrates foam sheathing insulation with wall framing such that wood structural panels are installed exterior of the foam sheathing, enabling the use of standard practices for installation of drainage plane, windows and doors, claddings, cavity insulation, and the standard exterior foam sheathing installation approach prone to damage of the foam during transportation of prefabricated wall panels. As part of the ongoing work, the EP&B wall system concept has undergone structural verification testing and has been positively vetted by a group of industry stakeholders. Having passed these initial milestone markers, the advanced wall system design has been analyzed to assess cost implications relative to other advanced wall systems, undergone design assessment to develop construction details, and has been evaluated to develop representative prescriptive requirements for the building code. This report summarizes the assessment steps conducted to-date and provides details of the concept development.
Pupil-phase optimization for extended-focus, aberration-corrected imaging systems
NASA Astrophysics Data System (ADS)
Prasad, Sudhakar; Pauca, V. Paul; Plemmons, Robert J.; Torgersen, Todd C.; van der Gracht, Joseph
2004-10-01
The insertion of a suitably designed phase plate in the pupil of an imaging system makes it possible to encode the depth dimension of an extended three-dimensional scene by means of an approximately shift-invariant PSF. The so-encoded image can then be deblurred digitally by standard image recovery algorithms to recoup the depth dependent detail of the original scene. A similar strategy can be adopted to compensate for certain monochromatic aberrations of the system. Here we consider two approaches to optimizing the design of the phase plate that are somewhat complementary - one based on Fisher information that attempts to reduce the sensitivity of the phase encoded image to misfocus and the other based on a minimax formulation of the sum of singular values of the system blurring matrix that attempts to maximize the resolution in the final image. Comparisons of these two optimization approaches are discussed. Our preliminary demonstration of the use of such pupil-phase engineering to successfully control system aberrations, particularly spherical aberration, is also presented.
Improved Constraint-based GGA Functionals in Extended Systems and Molecules
NASA Astrophysics Data System (ADS)
Trickey, Sam; Vela, A.; Pacheco Kato, Juan
2010-03-01
Despite wide-spread interest in explicitly orbitally-dependent exchange-correlation functionals, there is aimed at the basic vision of Density Functional Theory, orbital-free implementation. Here we report on further development of our non-empirical X functionals. We give results for the VMT functional (J. Chem. Phys. 130 244103 (2009)) combined with the PBE C functional on simple solids and ultra-thin films. We also give results for molecules for a more sophisticated family of functionals, VPTmn, which satisfy more constraints than VMT. VMT11 with PBE C tested on a widely used 20 molecule set shows essentially no change in atomization energies compared to VMT, an illustration that enforcing more constraints does not necessarily improve outcomes. We also consider VMT11 in extended systems and in combination with both the LYP and rev-TCA correlation functionals on molecules.
Low-cost attitude determination system using an extended Kalman filter (EKF) algorithm
NASA Astrophysics Data System (ADS)
Esteves, Fernando M.; Nehmetallah, Georges; Abot, Jandro L.
2016-05-01
Attitude determination is one of the most important subsystems in spacecraft, satellite, or scientific balloon mission s, since it can be combined with actuators to provide rate stabilization and pointing accuracy for payloads. In this paper, a low-cost attitude determination system with a precision in the order of arc-seconds that uses low-cost commercial sensors is presented including a set of uncorrelated MEMS gyroscopes, two clinometers, and a magnetometer in a hierarchical manner. The faster and less precise sensors are updated by the slower, but more precise ones through an Extended Kalman Filter (EKF)-based data fusion algorithm. A revision of the EKF algorithm fundamentals and its implementation to the current application, are presented along with an analysis of sensors noise. Finally, the results from the data fusion algorithm implementation are discussed in detail.
An extended optimal velocity difference model in a cooperative driving system
NASA Astrophysics Data System (ADS)
Cao, Jinliang; Shi, Zhongke; Zhou, Jie
2015-10-01
An extended optimal velocity (OV) difference model is proposed in a cooperative driving system by considering multiple OV differences. The stability condition of the proposed model is obtained by applying the linear stability theory. The results show that the increase in number of cars that precede and their OV differences lead to the more stable traffic flow. The Burgers, Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) equations are derived to describe the density waves in the stable, metastable and unstable regions, respectively. To verify these theoretical results, the numerical simulation is carried out. The theoretical and numerical results show that the stabilization of traffic flow is enhanced by considering multiple OV differences. The traffic jams can be suppressed by taking more information of cars ahead.
NASA Astrophysics Data System (ADS)
Huang, Yue-Xin; Zhou, Xiang-Fa; Guo, Guang-Can; Zhang, Yong-Sheng
2016-10-01
We present a scheme to realize the (extended) Bose-Hubbard model in an N -coupled optomechanical system. By treating the cavities as intermediary and eliminating them adiabatically with the condition of large detuning or fast decay, we can obtain the effective Hamiltonian for the N oscillators, with the regular terms in the Bose-Hubbard model, i.e., the pair tunnelings and the density-density interactions. Then we verify and provide the condition for our approximation with numerical results. Due to the existence of the pair tunnelings and the density-density interactions, we can investigate the density wave and supersolid phases in our model. Moreover, we also discuss the competition between the regular tunneling and the pair tunneling.
Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems.
Pakala, Lalitha; Schmauss, Bernhard
2016-03-21
We numerically investigate our proposed carrier phase and amplitude noise estimation (CPANE) algorithm using extend Kalman filter (EKF) for joint mitigation of linear and non-linear phase noise as well as amplitude noise on 4, 16 and 64 polarization multiplexed (PM) quadrature amplitude modulation (QAM) 224 Gb/s systems. The results are compared to decision directed (DD) carrier phase estimation (CPE), DD phase locked loop (PLL) and universal CPE (U-CPE) algorithms. Besides eliminating the necessity of phase unwrapping function, EKF-CPANE shows improved performance for both back-to-back (BTB) and transmission scenarios compared to the aforementioned algorithms. We further propose a weighted innovation approach (WIA) of the EKF-CPANE which gives an improvement of 0.3 dB in the Q-factor, compared to the original algorithm.
Extended flight evaluation of a near-term pitch active control system
NASA Technical Reports Server (NTRS)
Guinn, Wiley A.; Willey, Craig S.; Chong, Michael G.
1983-01-01
Fuel savings can be achieved by moving the center of gravity of an aircraft aft which reduces the static stability margin and consequently the trim drag. However, flying qualities of an aircraft with relaxed static stability can be significantly degraded. The flying qualities can be restored by using a pitch active control system (PACS). This report documents the work accomplished during a follow-on program (see NASA CR-165951 for initial program report) to perform extended flight tests of a near-term PACS. The program included flying qualities analyses, piloted flight simulation tests, aircraft preparation and flight tests to demonstrate that the near-term PACS provided good flying qualities within the linear static stability envelope to a negative 3% static stability margin.
Global invariants in ideal magnetohydrodynamic turbulence
Shebalin, John V.
2013-10-15
Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.
Global invariants in ideal magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Shebalin, John V.
2013-10-01
Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1987-01-01
A pipelined, multiprocessor, general-purpose ground support equipment for digital flight systems has been developed and placed in service at the NASA Ames Research Center's Dryden Flight Research Facility. The design is an outgrowth of the earlier aircraft interrogation and display system (AIDS) used in support of several research projects to provide engineering-units display of internal control system parameters during development and qualification testing activities. The new system, incorporating multiple 16-bit processors, is called extended AIDS (XAIDS) and is now supporting the X-29A forward-swept-wing aircraft project. This report describes the design and mechanization of XAIDS and shows the steps whereby a typical user may take advantage of its high throughput and flexible features.
Binns, K.E.; Dieterle, G.L.
1996-10-01
The most promising JP-8+100 additive candidates consists of dispersants, detergents, antioxidants and metal deactivators. A series of tests were conducted in the Extended Duration Thermal Stability Test System to determine the thermal stability effects of the individual JP-8+100 additives and combinations of the additives. This paper will cover the test results and their relationship to future aircraft fuel systems. The Extended Duration Thermal Stability Test System was designed to conduct long duration tests at non-accelerated temperature conditions and resident times representative or aircraft/engine fuel systems. This system and its operating characteristics will also be covered in this paper.
Zhao, Haihua; Zhang, Hongbin; Zou, Ling; Martineau, Richard Charles
2015-03-01
The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety
Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems
NASA Astrophysics Data System (ADS)
Katsoulakis, Markos A.; Plecháč, Petr
2013-08-01
In this paper, we focus on the development of new methods suitable for efficient and reliable coarse-graining of non-equilibrium molecular systems. In this context, we propose error estimation and controlled-fidelity model reduction methods based on Path-Space Information Theory, combined with statistical parametric estimation of rates for non-equilibrium stationary processes. The approach we propose extends the applicability of existing information-based methods for deriving parametrized coarse-grained models to Non-Equilibrium systems with Stationary States. In the context of coarse-graining it allows for constructing optimal parametrized Markovian coarse-grained dynamics within a parametric family, by minimizing information loss (due to coarse-graining) on the path space. Furthermore, we propose an asymptotically equivalent method—related to maximum likelihood estimators for stochastic processes—where the coarse-graining is obtained by optimizing the information content in path space of the coarse variables, with respect to the projected computational data from a fine-scale simulation. Finally, the associated path-space Fisher Information Matrix can provide confidence intervals for the corresponding parameter estimators. We demonstrate the proposed coarse-graining method in (a) non-equilibrium systems with diffusing interacting particles, driven by out-of-equilibrium boundary conditions, as well as (b) multi-scale diffusions and the corresponding stochastic averaging limits, comparing them to our proposed methodologies.
Re-Engineering the Mission Operations System (MOS) for the Prime and Extended Mission
NASA Technical Reports Server (NTRS)
Hunt, Joseph C., Jr.; Cheng, Leo Y.
2012-01-01
One of the most challenging tasks in a space science mission is designing the Mission Operations System (MOS). Whereas the focus of the project is getting the spacecraft built and tested for launch, the mission operations engineers must build a system to carry out the science objectives. The completed MOS design is then formally assessed in the many reviews. Once a mission has completed the reviews, the Mission Operation System (MOS) design has been validated to the Functional Requirements and is ready for operations. The design was built based on heritage processes, new technology, and lessons learned from past experience. Furthermore, our operational concepts must be properly mapped to the mission design and science objectives. However, during the course of implementing the science objective in the operations phase after launch, the MOS experiences an evolutional change to adapt for actual performance characteristics. This drives the re-engineering of the MOS, because the MOS includes the flight and ground segments. Using the Spitzer mission as an example we demonstrate how the MOS design evolved for both the prime and extended mission to enhance the overall efficiency for science return. In our re-engineering process, we ensured that no requirements were violated or mission objectives compromised. In most cases, optimized performance across the MOS, including gains in science return as well as savings in the budget profile was achieved. Finally, we suggest a need to better categorize the Operations Phase (Phase E) in the NASA Life-Cycle Phases of Formulation and Implementation
Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Science Platform
NASA Technical Reports Server (NTRS)
Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.
2010-01-01
Issue: extended duration lunar science platforms, using solar/battery or radioisotope power, require thermal switching systems that: a) Provide efficient cooling during the 15-earth-day 390 K lunar day; b) Consume minimal power during the 15-earth-day 100 K lunar night. Objective: carry out an analytical study of thermal switching systems that can meet the thermal requirements of: a) International Lunar Network (ILN) anchor node mission - primary focus; b) Other missions such as polar crater landers. ILN Anchor Nodes: network of geophysical science platforms to better understand the interior structure/composition of the moon: a) Rationale: no data since Apollo seismic stations ceased operation in 1977; b) Anchor Nodes: small, low-power, long-life (6-yr) landers with seismographic and a few other science instruments (see next chart); c) WEB: warm electronics box houses ILN anchor node electronics/batteries. Technology Need: thermal switching system that will keep the WEB cool during the lunar day and warm during the lunar night.
NASA Astrophysics Data System (ADS)
Frank, Till; Beek, Peter
It is argued that perception-action systems should be considered as spatially extended systems on account of (i) the presence of spatially distributed synchronized brain activity during the performance of perceptual-motor tasks, and (ii) the failure of conventional zero-dimensional theoretical approaches to deal with multistable perception-action systems and hysteresis in the presence of noise. It is shown that in spatially extended systems self-organization can arise due to the emergence of mean field attractors. This mean field approach is exemplified for a particular class of perception-action systems, namely, rhythmic movements. In addition, clinical implications of the mean field approach and the notion of spatially extended perception-action systems are briefly discussed in the context of psychotherapy and Parkinson's disease.
NASA Astrophysics Data System (ADS)
Tsubota, Makoto
2008-11-01
The present article reviews the recent developments in the physics of quantum turbulence. Quantum turbulence (QT) was discovered in superfluid 4He in the 1950s, and the research has tended toward a new direction since the mid 90s. The similarities and differences between quantum and classical turbulence have become an important area of research. QT is comprised of quantized vortices that are definite topological defects, being expected to yield a model of turbulence that is much simpler than the classical model. The general introduction of the issue and a brief review on classical turbulence are followed by a description of the dynamics of quantized vortices. Then, we discuss the energy spectrum of QT at very low temperatures. At low wavenumbers, the energy is transferred through the Richardson cascade of quantized vortices, and the spectrum obeys the Kolmogorov law, which is the most important statistical law in turbulence; this classical region shows the similarity to conventional turbulence. At higher wavenumbers, the energy is transferred by the Kelvin-wave cascade on each vortex. This quantum regime depends strongly on the nature of each quantized vortex. The possible dissipation mechanism is discussed. Finally, important new experimental studies, which include investigations into temperature-dependent transition to QT, dissipation at very low temperatures, QT created by vibrating structures, and visualization of QT, are reviewed. The present article concludes with a brief look at QT in atomic Bose-Einstein condensates.
Predicting two-dimensional turbulence
NASA Astrophysics Data System (ADS)
Cerbus, R. T.; Goldburg, W. I.
2015-04-01
Prediction is a fundamental objective of science. It is more difficult for chaotic and complex systems like turbulence. Here we use information theory to quantify spatial prediction using experimental data from a turbulent soap film. At high Reynolds number, Re, where a cascade exists, turbulence becomes easier to predict as the inertial range broadens. The development of a cascade at low Re is also detected.
Meeks, Kelsey; Pantoya, Michelle L.; Green, Micah; ...
2017-06-01
For dispersions containing a single type of particle, it has been observed that the onset of percolation coincides with a critical value of volume fraction. When the volume fraction is calculated based on excluded volume, this critical percolation threshold is nearly invariant to particle shape. The critical threshold has been calculated to high precision for simple geometries using Monte Carlo simulations, but this method is slow at best, and infeasible for complex geometries. This article explores an analytical approach to the prediction of percolation threshold in polydisperse mixtures. Specifically, this paper suggests an extension of the concept of excluded volume,more » and applies that extension to the 2D binary disk system. The simple analytical expression obtained is compared to Monte Carlo results from the literature. In conclusion, the result may be computed extremely rapidly and matches key parameters closely enough to be useful for composite material design.« less
NASA Technical Reports Server (NTRS)
1975-01-01
Mission planning, systems analysis, and design concepts for the Space Shuttle/Spacelab system for extended manned operations are described. Topics discussed are: (1) payloads, (2) spacecraft docking, (3) structural design criteria, (4) life support systems, (5) power supplies, and (6) the role of man in long duration orbital operations. Also discussed are the assembling of large structures in space. Engineering drawings are included.
2016-02-10
A zero energy ready home was recently completed that features an innovative wall system. This highly insulated (high-R) light-frame wall system, called the extended plate and beam, is for use above grade in residential buildings. The Building America research team Home Innovation Research Labs featured this system in a new construction test house.
Effect of a commercial housing system on egg quality during extended storage.
Jones, D R; Karcher, D M; Abdo, Z
2014-05-01
Egg producers in the United States are utilizing a variety of commercial egg production systems to provide consumer choice and meet legislative requirements. Consumer egg grades in the United States were developed for conventional cage production, and it is unclear what effect alternative production systems might have on egg quality during retail and consumer home storage. The current study was undertaken to determine what changes in egg quality characteristics occur during extended cold storage for commercially produced conventional cage, enriched colony cage, and cage-free aviary eggs. During 12 wk of cold storage, egg weight, albumen height, Haugh unit, static compression shell strength, vitelline membrane strength and deformation, yolk index, shell dynamic stiffness, and whole egg total solids were monitored. Overall, aviary and enriched eggs were significantly (P < 0.05) heavier than conventional cage. Albumen height and Haugh unit (P < 0.05) were significantly greater for conventional cage than enriched eggs. Static compression shell strength was greatest (P < 0.05) for enriched eggs compared with aviary. No overall housing system effects for yolk measurements, shell dynamic stiffness, or whole egg total solids were observed. Albumen height, Haugh unit, and yolk quality measurements were all greatest at 0 and lowest at 12 wk of storage (P < 0.05). The rate of quality change among the housing systems for each measured attribute at 4, 6, and 12 wk was determined. Other than differences in the change of egg weight at 4 wk, no significant differences in the rate of quality decline were found among the housing systems. The results of the current study indicate that current US egg quality standards should effectively define quality for commercially produced conventional cage, enriched colony cage, and cage-free aviary eggs.
An enhanced mobile-healthcare emergency system based on extended chaotic maps.
Lee, Cheng-Chi; Hsu, Che-Wei; Lai, Yan-Ming; Vasilakos, Athanasios
2013-10-01
Mobile Healthcare (m-Healthcare) systems, namely smartphone applications of pervasive computing that utilize wireless body sensor networks (BSNs), have recently been proposed to provide smartphone users with health monitoring services and received great attentions. An m-Healthcare system with flaws, however, may leak out the smartphone user's personal information and cause security, privacy preservation, or user anonymity problems. In 2012, Lu et al. proposed a secure and privacy-preserving opportunistic computing (SPOC) framework for mobile-Healthcare emergency. The brilliant SPOC framework can opportunistically gather resources on the smartphone such as computing power and energy to process the computing-intensive personal health information (PHI) in case of an m-Healthcare emergency with minimal privacy disclosure. To balance between the hazard of PHI privacy disclosure and the necessity of PHI processing and transmission in m-Healthcare emergency, in their SPOC framework, Lu et al. introduced an efficient user-centric privacy access control system which they built on the basis of an attribute-based access control mechanism and a new privacy-preserving scalar product computation (PPSPC) technique. However, we found out that Lu et al.'s protocol still has some secure flaws such as user anonymity and mutual authentication. To fix those problems and further enhance the computation efficiency of Lu et al.'s protocol, in this article, the authors will present an improved mobile-Healthcare emergency system based on extended chaotic maps. The new system is capable of not only providing flawless user anonymity and mutual authentication but also reducing the computation cost.
Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems
Ade, Brian J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Martinez, J. S.
2015-01-01
[Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k_{eff}) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, and it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades
NASA Technical Reports Server (NTRS)
Avery, D. E.
1978-01-01
An experimental heat-transfer investigation was conducted on two staggered arrays of metallic tiles in laminar and turbulent boundary layers. This investigation was conducted for two purposes. The impingement heating distribution where flow in a longitudinal gap intersects a transverse gap and impinges on a downstream blocking tile was defined. The influence of tile and gap geometries was analyzed to develop empirical relationships for impingement heating in laminar and turbulent boundary layers. Tests were conducted in a high temperature structures tunnel at a nominal Mach number of 7, a nominal total temperature of 1800 K, and free-stream unit Reynolds numbers from 1.0 x 10 million to 4.8 x 10 million per meter. The test results were used to assess the impingement heating effects produced by parameters that include gap width, longitudinal gap length, slope of the tile forward-facing wall, boundary-layer displacement thickness, Reynolds number, and local surface pressure.
DNS of MHD turbulent flow via the HELIOS supercomputer system at IFERC-CSC
NASA Astrophysics Data System (ADS)
Satake, Shin-ichi; Kimura, Masato; Yoshimori, Hajime; Kunugi, Tomoaki; Takase, Kazuyuki
2014-06-01
The simulation plays an important role to estimate characteristics of cooling in a blanket for such high heating plasma in ITER-BA. An objective of this study is to perform large -scale direct numerical simulation (DNS) on heat transfer of magneto hydro dynamic (MHD) turbulent flow on coolant materials assumed from Flibe to lithium. The coolant flow conditions in ITER-BA are assumed to be Reynolds number and Hartmann number of a higher order. The maximum target of the DNS assumed by this study based on the result of the benchmark of Helios at IFERC-CSC for Project cycle 1 is 116 TB (2048 nodes). Moreover, we tested visualization by ParaView to visualize directly the large-scale computational result. If this large-scale DNS becomes possible, an essential understanding and modelling of a MHD turbulent flow and a design of nuclear fusion reactor contributes greatly.
Development of renormalization group analysis of turbulence
NASA Technical Reports Server (NTRS)
Smith, L. M.
1990-01-01
The renormalization group (RG) procedure for nonlinear, dissipative systems is now quite standard, and its applications to the problem of hydrodynamic turbulence are becoming well known. In summary, the RG method isolates self similar behavior and provides a systematic procedure to describe scale invariant dynamics in terms of large scale variables only. The parameterization of the small scales in a self consistent manner has important implications for sub-grid modeling. This paper develops the homogeneous, isotropic turbulence and addresses the meaning and consequence of epsilon-expansion. The theory is then extended to include a weak mean flow and application of the RG method to a sequence of models is shown to converge to the Navier-Stokes equations.
Alli, Sk Md Athar
2011-01-01
Background: The purpose of this study was to develop a mucoadhesive coacervate microparticulate system to deliver viable Lactobacillus rhamnosus cells into the gut for an extended period of time while maintaining high numbers of viable cells within the formulation throughout its shelf-life and during gastrointestinal transit. Methods: Core coacervate mucoadhesive microparticles of L. rhamnosus were developed using several grades of hypromellose and were subsequently enteric-coated with hypromellose phthalate. Microparticles were evaluated for percent yield, entrapment efficiency, surface morphology, particle size, size distribution, zeta potential, flow properties, in vitro swelling, mucoadhesion properties, in vitro release profile and release kinetics, in vivo probiotic activity, and stability. The values for the kinetic constant and release exponent of model-dependent approaches, the difference factor, similarity factor, and Rescigno indices of model-independent approaches were determined for analyzing in vitro dissolution profiles. Results: Experimental microparticles of formulation batches were of spherical shape with percent yields of 41.24%–58.18%, entrapment efficiency 45.18%–64.16%, mean particle size 33.10–49.62 μm, and zeta potential around −11.5 mV, confirming adequate stability of L. rhamnosus at room temperature. The in vitro L. rhamnosus release profile follows zero-order kinetics and depends on the grade of hypromellose and the L. rhamnosus to hypromellose ratio. Conclusion: Microparticles delivered L. rhamnosus in simulated intestinal conditions for an extended period, following zero-order kinetics, and exhibited appreciable mucoadhesion in simulated intestinal conditions. PMID:21984867
Effects of turbulence on cosmic ray propagation in protostars and young star/disk systems
Fatuzzo, Marco; Adams, Fred C. E-mail: fca@umich.edu
2014-05-20
The magnetic fields associated with young stellar objects are expected to have an hour-glass geometry, i.e., the magnetic field lines are pinched as they thread the equatorial plane surrounding the forming star but merge smoothly onto a background field at large distances. With this field configuration, incoming cosmic rays experience both a funneling effect that acts to enhance the flux impinging on the circumstellar disk and a magnetic mirroring effect that acts to reduce that flux. To leading order, these effects nearly cancel out for simple underlying magnetic field structures. However, the environments surrounding young stellar objects are expected to be highly turbulent. This paper shows how the presence of magnetic field fluctuations affects the process of magnetic mirroring, and thereby changes the flux of cosmic rays striking circumstellar disks. Turbulence has two principle effects: (1) the (single) location of the magnetic mirror point found in the absence of turbulence is replaced with a wide distribution of values. (2) The median of the mirror point distribution moves outward for sufficiently large fluctuation amplitudes (roughly when δB/B {sub 0} > 0.2 at the location of the turbulence-free mirror point); the distribution becomes significantly non-Gaussian in this regime as well. These results may have significant consequences for the ionization fraction of the disk, which in turn dictates the efficiency with which disk material can accrete onto the central object. A similar reduction in cosmic ray flux can occur during the earlier protostellar stages; the decrease in ionization can help alleviate the magnetic braking problem that inhibits disk formation.
Modeling Transition to Turbulence using the Turbulent Potential Model
NASA Astrophysics Data System (ADS)
Chang, Wang; Perot, Blair
2001-11-01
While transition is a very different phenomenon from fully developed turbulence, it is governed, on average, by equations with are mathematically the same as the RANS equations for fully turbulent flow. It is therefore theoretically possible for RANS equation systems to display transition-like behavior a very rapid growth in turbulent kinetic energy levels, skin friction, etc. In this work, the ability of the turbulent potential model to accurately predict laminar to turbulent transition in flat plate boundary layers is examined. The model accurately predicts the entire range of free-stream turbulence levels from strong bypass transition (6natural transition (0.03It shows correct sensitivity to favorable and adverse pressure gradients, as well as acoustic noise levels. Past results indicated the ability of the model to relaminarize the flow. Recent work has focused attention on the model’s ability to predict transition in mixing layers.
Development and testing of a user-friendly Matlab interface for the JHU turbulence database system
NASA Astrophysics Data System (ADS)
Graham, Jason; Frederix, Edo; Meneveau, Charles
2011-11-01
One of the challenges that faces researchers today is the ability to store large scale data sets in a way that promotes easy access to the data and sharing among the research community. A public turbulence database cluster has been constructed in which 27 terabytes of a direct numerical simulation of isotropic turbulence is stored (Li et al., 2008, JoT). The public database provides researchers the ability to retrieve subsets of the spatiotemporal data remotely from a client machine anywhere over the internet. In addition to C and Fortran client interfaces, we now present a new Matlab interface based on Matlab's intrinsic SOAP functions. The Matlab interface provides the benefit of a high-level programming language with a plethora of intrinsic functions and toolboxes. In this talk, we will discuss several aspects of the Matlab interface including its development, optimization, usage, and application to the isotropic turbulence data. We will demonstrate several examples (visualizations, statistical analysis, etc) which illustrate the tool. Supported by NSF (CDI-II, CMMI-0941530) and Eindhoven University of Technology's Masters internship program.
Relevance of convective turbulent dust emission (CTDE) in the Earth system
NASA Astrophysics Data System (ADS)
Klose, Martina; Shao, Yaping; Butler, Harry; Leys, John
2015-04-01
Convective turbulence generates localized and intermittent surface shear stress and can effectively entrain dust into the atmosphere. This mechanism is referred to as "Convective Turbulent Dust Emission" (CTDE) and is considered as the most important form of direct aerodynamic dust entrainment. CTDE occurs predominantly at weak mean wind conditions, when the buoyancy production of atmospheric turbulence is most pronounced. CTDE is a stochastic process and does not need to involve the saltation of sand-sized grains. An improved parameterization for CTDE is presented, which represents both aerodynamic lifting and inter-particle cohesive forces as probability distributions. The dust emission scheme therefore accounts for the stochastic nature of CTDE. The scheme was evaluated against field data recorded in the Horqin Sandy Land area in China and during the Japan-Australia Dust Experiment (JADE) in Australia. Coupled to the regional model WRF/Chem, the calibrated dust emission scheme was used to assess the long-term regional contribution of CTDE to the overall dust budget for Australia. We show that a persistent background dust concentration can be generated by CTDE. The modeled dust concentrations were compared to PM10 measurements monitored by the DustWatch Australia network. An estimate on the relevance of CTDE compared to saltation bombardment at the local and regional scales is given and implications for climate are highlighted.
Pattern selection in extended periodically forced systems: a continuum coupled map approach.
Venkataramani, S C; Ott, E
2001-04-01
We propose that a useful approach to the modeling of periodically forced extended systems is through continuum coupled map (CCM) models. CCM models are discrete time, continuous space models, mapping a continuous spatially varying field xi(n)(x) from time n to time n+1. The efficacy of CCM models is illustrated by an application to experiments of Umbanhowar, Melo, and Swinney [Nature 382, 793 (1996)] on vertically vibrated granular layers. Using a simple CCM model incorporating temporal period doubling and spatial patterning at a preferred length scale, we obtain results that bear remarkable similarities to the experimental observations. The fact that the model does not make use of physics specific to granular layers suggests that similar phenomena may be observed in other (nongranular) periodically forced, strongly dissipative systems. We also present a framework for the analysis of pattern selection in CCM models using a truncated modal expansion. Through the analysis, we predict scaling laws of various quantities, and these laws may be verifiable experimentally.
Dissonance and the honor system: extending the severity of threat phenomenon.
Gire, James T; Williams, Tyson D
2007-10-01
In this field experiment, the authors extended the severe threat of punishment paradigm to the honor system. Participants (N = 80) came from two small colleges that differ in the severity of threats of punishment for honor code violations. The authors placed participants in situations in which they came upon money that did not belong to them, in both public and private settings. Using the framework of insufficient justification, the authors hypothesized that participants from the military school, who face a severe threat of punishment for honor code violations, would be less likely to pick up the money in the public setting than in the private setting. The authors predicted that, in contrast, at the nonmilitary college, where students face only a mild threat of punishment for honor code violations, there would be no difference in how participants behaved across the two settings. The results supported both hypotheses. The authors discuss the implications of their findings for understanding and improving the nature of the punishment structure for honor systems.
Anisotropic Particles in Turbulence
NASA Astrophysics Data System (ADS)
Voth, Greg A.; Soldati, Alfredo
2017-01-01
Anisotropic particles are common in many industrial and natural turbulent flows. When these particles are small and neutrally buoyant, they follow Lagrangian trajectories while exhibiting rich orientational dynamics from the coupling of their rotation to the velocity gradients of the turbulence field. This system has proven to be a fascinating application of the fundamental properties of velocity gradients in turbulence. When particles are not neutrally buoyant, they experience preferential concentration and very different preferential alignment than neutrally buoyant tracer particles. A vast proportion of the parameter range of anisotropic particles in turbulence is still unexplored, with most existing research focusing on the simple foundational cases of axisymmetric ellipsoids at low concentrations in homogeneous isotropic turbulence and in turbulent channel flow. Numerical simulations and experiments have recently developed a fairly comprehensive picture of alignment and rotation in these cases, and they provide an essential foundation for addressing more complex problems of practical importance. Macroscopic effects of nonspherical particle dynamics include preferential concentration in coherent structures and drag reduction by fiber suspensions. We review the models used to describe nonspherical particle motion, along with numerical and experimental methods for measuring particle dynamics.
Wake Turbulence Mitigation for Arrivals (WTMA)
NASA Technical Reports Server (NTRS)
Williams, Daniel M.; Lohr, Gary W.; Trujillo, Anna C.
2008-01-01
The preliminary Wake Turbulence Mitigation for Arrivals (WTMA) concept of operations is described in this paper. The WTMA concept provides further detail to work initiated by the Wake Vortex Avoidance System Concept Evaluation Team and is an evolution of the Wake Turbulence Mitigation for Departure concept. Anticipated benefits about reducing wake turbulence separation standards in crosswind conditions, and candidate WTMA system considerations are discussed.
Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
Kurushina, Svetlana E; Maximov, Valerii V; Romanovskii, Yurii M
2014-08-01
We develop a mean-field approach for multicomponent stochastic spatially extended systems and use it to obtain a multivariate nonlinear self-consistent Fokker-Planck equation defining the probability density of the state of the system, which describes a well-known model of autocatalytic chemical reaction (brusselator) with spatially correlated multiplicative noise, and to study the evolution of probability density and statistical characteristics of the system in the process of spatial pattern formation. We propose the finite-difference method for the numerical solving of a general class of multivariate nonlinear self-consistent time-dependent Fokker-Planck equations. We illustrate the accuracy and reliability of the method by applying it to an exactly solvable nonlinear Fokker-Planck equation (NFPE) for the Shimizu-Yamada model [Prog. Theor. Phys. 47, 350 (1972)] and nonlinear Fokker-Planck equation [Desai and Zwanzig, J. Stat. Phys. 19, 1 (1978)] obtained for a nonlinear stochastic mean-field model introduced by Kometani and Shimizu [J. Stat. Phys. 13, 473 (1975)]. Taking the problems indicated above as an example, the accuracy of the method is compared with the accuracy of Hermite distributed approximating functional method [Zhang et al., Phys. Rev. E 56, 1197 (1997)]. Numerical study of the NFPE solutions for a stochastic brusselator shows that in the region of Turing bifurcation several types of solutions exist if noise intensity increases: unimodal solution, transient bimodality, and an interesting solution which involves multiple "repumping" of probability density through bimodality. Additionally, we study the behavior of the order parameter of the system under consideration and show that the second type of solution arises in the supercritical region if noise intensity values are close to the values appropriate for the transition from bimodal stationary probability density for the order parameter to the unimodal one.
NASA Astrophysics Data System (ADS)
Nistazakis, H. E.; Ninos, M. P.; Tsigopoulos, A. D.; Zervos, D. A.; Tombras, G. S.
2016-08-01
The free-space optical communication systems attract significant research and commercial interest the last few years, due to their high performance and reliability characteristics along with their, relatively, low installation and operational cost. Moreover, due to the fact that these systems are using the atmosphere as propagation path, their performance is varying according to its characteristics. Here, we present the performance analysis of a serially relayed radio-on-free-space-optical (RoFSO) communication system which employs the orthogonal frequency division multiplexing technique, with a quadrature amplitude modulation scheme, over atmospheric turbulence channels modelled by either the Gamma-Gamma or the Gamma distribution model. For this RoFSO communication link, we derive closed-form mathematical expressions for the estimation of its average bit error rate and outage probability, taking into account the relays' number, the atmospheric turbulence and the pointing errors effect. Furthermore, for realistic parameter values, numerical results are presented using the derived mathematical expressions, which are verified through the corresponding numerical simulations.
NASA Astrophysics Data System (ADS)
Prabu, K.; Cheepalli, Shashidhar; Kumar, D. Sriram
2014-08-01
Free space optics (FSO) or wireless optical communication systems is an evolving alternative to the current radio frequency (RF) links due to its high and secure datarates, large license free bandwidth access, ease of installation, and lower cost for shorter range distances. These systems are largely influenced by atmospheric conditions due to wireless transmission; requirement of line of sight (LOS) propagation may lead to alignment problems in turn pointing errors. In this paper, we consider atmospheric turbulence and pointing errors are the major limitations. We tried to address these difficulties by considering polarization shift keying (PolSK) modulated FSO communication system with wavelength and time diversity. We derived the closed form expressions for estimation of the average bit error rate (BER) and outage probability, which are vital system performance metrics. Analytical results are shown considering different practical cases.
Containerless Ripple Turbulence
NASA Technical Reports Server (NTRS)
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-01-01
interaction. Furthermore, the steady state distribution of energy again follows a Kolmogorov scaling law; in this case the ripple energy is distributed according to 1/k (sup 7/4). Again, in parallel with vortex turbulence ripple turbulence exhibits intermittency. The problem of ripple turbulence presents an experimental opportunity to generate data in a controlled, benchmarked system. In particular the surface of a sphere is an ideal environment to study ripple turbulence. Waves run around the sphere and interact with each other, and the effect of walls is eliminated. In microgravity this state can be realized for over 2 decades of frequency. Wave turbulence is a physically relevant problem in its own right. It has been studied on the surface of liquid hydrogen and its application to Alfven waves in space is a source of debate. Of course, application of wave turbulence perspectives to ocean waves has been a major success. The experiment which we plan to run in microgravity is conceptually straightforward. Ripples are excited on the surface of a spherical drop of fluid and then their amplitude is recorded with appropriate photography. A key challenge is posed by the need to stably position a 10cm diameter sphere of water in microgravity. Two methods are being developed. Orbitec is using controlled puffs of air from at least 6 independent directions to provided the positioning force. This approach has actually succeeded to position and stabilize a 4cm sphere during a KC 135 segment. Guigne International is using the radiation pressure of high frequency sound. These transducers have been organized into a device in the shape of a dodecahedron. This apparatus 'SPACE DRUMS' has already been approved for use for combustion synthesis experiments on the International Space Station. A key opportunity presented by the ripple turbulence data is its use in driving the development of codes to simulate its properties.
Containerless Ripple Turbulence
NASA Astrophysics Data System (ADS)
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-11-01
interaction. Furthermore, the steady state distribution of energy again follows a Kolmogorov scaling law; in this case the ripple energy is distributed according to 1/k 7/4. Again, in parallel with vortex turbulence ripple turbulence exhibits intermittency. The problem of ripple turbulence presents an experimental opportunity to generate data in a controlled, benchmarked system. In particular the surface of a sphere is an ideal environment to study ripple turbulence. Waves run around the sphere and interact with each other, and the effect of walls is eliminated. In microgravity this state can be realized for over 2 decades of frequency. Wave turbulence is a physically relevant problem in its own right. It has been studied on the surface of liquid hydrogen and its application to Alfven waves in space is a source of debate. Of course, application of wave turbulence perspectives to ocean waves has been a major success. The experiment which we plan to run in microgravity is conceptually straightforward. Ripples are excited on the surface of a spherical drop of fluid and then their amplitude is recorded with appropriate photography. A key challenge is posed by the need to stably position a 10cm diameter sphere of water in microgravity. Two methods are being developed. Orbitec is using controlled puffs of air from at least 6 independent directions to provided the positioning force. This approach has actually succeeded to position and stabilize a 4cm sphere during a KC 135 segment. Guigne International is using the radiation pressure of high frequency sound. These transducers have been organized into a device in the shape of a dodecahedron. This apparatus 'SPACE DRUMS' has already been approved for use for combustion synthesis experiments on the International Space Station. A key opportunity presented by the ripple turbulence data is its use in driving the development of codes to simulate its properties.
ERIC Educational Resources Information Center
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
NEXUS/NASCAD- NASA ENGINEERING EXTENDIBLE UNIFIED SOFTWARE SYSTEM WITH NASA COMPUTER AIDED DESIGN
NASA Technical Reports Server (NTRS)
Purves, L. R.
1994-01-01
NEXUS, the NASA Engineering Extendible Unified Software system, is a research set of computer programs designed to support the full sequence of activities encountered in NASA engineering projects. This sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. NEXUS primarily addresses the process of prototype engineering, the task of getting a single or small number of copies of a product to work. Prototype engineering is a critical element of large scale industrial production. The time and cost needed to introduce a new product are heavily dependent on two factors: 1) how efficiently required product prototypes can be developed, and 2) how efficiently required production facilities, also a prototype engineering development, can be completed. NEXUS extendibility and unification are achieved by organizing the system as an arbitrarily large set of computer programs accessed in a common manner through a standard user interface. The NEXUS interface is a multipurpose interactive graphics interface called NASCAD (NASA Computer Aided Design). NASCAD can be used to build and display two and three-dimensional geometries, to annotate models with dimension lines, text strings, etc., and to store and retrieve design related information such as names, masses, and power requirements of components used in the design. From the user's standpoint, NASCAD allows the construction, viewing, modification, and other processing of data structures that represent the design. Four basic types of data structures are supported by NASCAD: 1) three-dimensional geometric models of the object being designed, 2) alphanumeric arrays to hold data ranging from numeric scalars to multidimensional arrays of numbers or characters, 3) tabular data sets that provide a relational data base capability, and 4) procedure definitions to combine groups of system commands or other user procedures to create more powerful functions. NASCAD has extensive abilities to
Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Surface Science Platform
NASA Technical Reports Server (NTRS)
Bugby, David C.; Farmer, Jeffery T.; OConnor, Brian F.; Wirzburger, Melissa J.; Abel, Elisabeth D.; Stouffer, Chuck J.
2010-01-01
This paper describes a novel thermal control system for the Warm Electronics Box (WEB) on board a small lunar surface lander intended to support science activities anywhere on the lunar surface for an extended duration of up to 6 years. Virtually all lander electronics, which collectively dissipate about 60 W in the reference mission, are contained within the WEB. These devices must be maintained below 323 K (with a goal of 303 K) during the nearly 15-earth-day lunar day, when surface temperatures can reach 390K, and above 263 K during the nearly 15-earth-day lunar night, when surface temperatures can reach 100K. Because of the large temperature swing from lunar day-to-night, a novel thermal switching system was required that would be able to provide high conductance from WEB to radiator(s) during the hot lunar day and low (or negligible) conductance during the cold lunar night. The concept that was developed consists of ammonia variable conductance heat pipes (VCHPs) to collect heat from WEB components and a polymer wick propylene loop heat pipe (LHP) to transport the collected heat to the radiator(s). The VCHPs autonomously maximize transport when the WEB is warm and autonomously shut down when the WEB gets cold. The LHP autonomously shuts down when the VCHPs shut down. When the environment transitions from lunar night to day, the VCHPs and LHP autonomously turn back on. Out of 26 analyzed systems, this novel arrangement was able to best achieve the combined goals of zero control power, autonomous operation, long life, low complexity, low T, and landed tilt tolerance.
Turbulence in Natural Environments
NASA Astrophysics Data System (ADS)
Banerjee, Tirtha
Problems in the area of land/biosphere-atmosphere interaction, hydrology, climate modeling etc. can be systematically organized as a study of turbulent flow in presence of boundary conditions in an increasing order of complexity. The present work is an attempt to study a few subsets of this general problem of turbulence in natural environments- in the context of neutral and thermally stratified atmospheric surface layer, the presence of a heterogeneous vegetation canopy and the interaction between air flow and a static water body in presence of flexible protruding vegetation. The main issue addressed in the context of turbulence in the atmospheric surface layer is whether it is possible to describe the macro-states of turbulence such as mean velocity and turbulent velocity variance in terms of the micro-states of the turbulent flow, i.e., a distribution of turbulent kinetic energy across a multitude of scales. This has been achieved by a `spectral budget approach' which is extended for thermal stratification scenarios as well, in the process unifying the seemingly different and unrelated theories of turbulence such as Kolmogorov's hypothesis, Heisenberg's eddy viscosity, Monin Obukhov Similarity Theory (MOST) etc. under a common framework. In the case of a more complex scenario such as presence of a vegetation canopy with edges and gaps, the question that is addressed is in what detail the turbulence is needed to be resolved in order to capture the bulk flow features such as recirculation patterns. This issue is addressed by a simple numerical framework and it has been found out that an explicit prescription of turbulence is not necessary in presence of heterogeneities such as edges and gaps where the interplay between advection, pressure gradients and drag forces are sufficient to capture the first order dynamics. This result can be very important for eddy-covariance flux calibration strategies in non-ideal environments and the developed numerical model can be
Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS).
Varma, Manthena V; Steyn, Stefanus J; Allerton, Charlotte; El-Kattan, Ayman F
2015-12-01
Early prediction of clearance mechanisms allows for the rapid progression of drug discovery and development programs, and facilitates risk assessment of the pharmacokinetic variability associated with drug interactions and pharmacogenomics. Here we propose a scientific framework--Extended Clearance Classification System (ECCS)--which can be used to predict the predominant clearance mechanism (rate-determining process) based on physicochemical properties and passive membrane permeability. Compounds are classified as: Class 1A--metabolism as primary systemic clearance mechanism (high permeability acids/zwitterions with molecular weight (MW) ≤400 Da), Class 1B--transporter-mediated hepatic uptake as primary systemic clearance mechanism (high permeability acids/zwitterions with MW >400 Da), Class 2--metabolism as primary clearance mechanism (high permeability bases/neutrals), Class 3A--renal clearance (low permeability acids/zwitterions with MW ≤400 Da), Class 3B--transporter mediated hepatic uptake or renal clearance (low permeability acids/zwitterions with MW >400 Da), and Class 4--renal clearance (low permeability bases/neutrals). The performance of the ECCS framework was validated using 307 compounds with single clearance mechanism contributing to ≥70% of systemic clearance. The apparent permeability across clonal cell line of Madin - Darby canine kidney cells, selected for low endogenous efflux transporter expression, with a cut-off of 5 × 10(-6) cm/s was used for permeability classification, and the ionization (at pH7) was assigned based on calculated pKa. The proposed scheme correctly predicted the rate-determining clearance mechanism to be either metabolism, hepatic uptake or renal for ~92% of total compounds. We discuss the general characteristics of each ECCS class, as well as compare and contrast the framework with the biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS
Coshcous turbulence and its thermalization
Zhu, Jian-zhou; Taylor, Mark
2008-01-01
Dissipation rate {mu}[cosh(k/k{sub c}) - 1] in Fourier space, which reduces to the Newtonian viscosity dissipation rate {nu}k{sup 2} for small k/k{sub c}, can be scaled to make a hydrodynamic system either actually or potentially converge to its Galerkin truncation. The former case acquires convergence to the truncation at a finite wavenumber k{sub G}; the latter realizes as the wavenumber grows to infinity. Intermittency reduction and vitiation of extended self-similarity (ESS) in the partially thermalized regime of turbulence are confirmed and clarified. Onsager's pictures of intermittent versus nonintermittent flows are visualized from thermalized numerical fields, showing cleanly spotty versus mistily uniform properties, the latter of which destroys self-organization and so the ESS property.
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2014-06-30
In this paper, a novel adaptive cooperative protocol with multiple relays using detect-and-forward (DF) over atmospheric turbulence channels with pointing errors is proposed. The adaptive DF cooperative protocol here analyzed is based on the selection of the optical path, source-destination or different source-relay links, with a greater value of fading gain or irradiance, maintaining a high diversity order. Closed-form asymptotic bit error-rate (BER) expressions are obtained for a cooperative free-space optical (FSO) communication system with Nr relays, when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions, following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. A greater robustness for different link distances and pointing errors is corroborated by the obtained results if compared with similar cooperative schemes or equivalent multiple-input multiple-output (MIMO) systems. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.
NASA Technical Reports Server (NTRS)
Cebeci, T.; Carr, L. W.
1981-01-01
A procedure which solves the governing boundary layer equations within Keller's box method was developed for calculating unsteady laminar flows with flow reversal. This method is extended to turbulent boundary layers with flow reversal. Test cases are used to investigate the proposition that unsteady turbulent boundary layers also remain free of singularities. Turbulent flow calculations are performed. The governing equations for both models are solved. As in laminar flows, the unsteady turbulent boundary layers are free from singularities, but there is a clear indication of rapid thickening of the boundary layer with increasing flow reversal. Predictions of both turbulence models are the same for all practical purposes.
Localized states in the active region of blue LEDs related to a system of extended defects
NASA Astrophysics Data System (ADS)
Davydov, D. V.; Zakgeim, A. L.; Snegov, F. M.; Sobolev, M. M.; Chernyakov, A. E.; Usikov, A. S.; Shmidt, N. M.
2007-02-01
Blue light-emitting diodes (LEDs) based on InGaN/GaN quantum wells (QWs) with different characters of the system of extended defects (SEDs) threading through the active region have been studied using the current-voltage (I U), capacitance-voltage (C V), and deep-level transient spectroscopy (DLTS) measurements in the dark and under illumination with white light in a temperature range from 100 to 450 K. The DLTS curves exhibit broad E1 and E2 peaks with amplitudes dependent on the illumination. This behavior can be explained assuming the presence of localized states related to SEDs in the active region of the LED. The LEDs with more developed SEDs are characterized by a greater concentration of donor-type traps, which leads to an increase in the density of free charge carriers in QWs, which screen the electron-hole interaction. This circumstance can be among the factors responsible for a severalfold decrease in the quantum efficiency of such LEDs.
Extending Climate Analytics-As to the Earth System Grid Federation
NASA Astrophysics Data System (ADS)
Tamkin, G.; Schnase, J. L.; Duffy, D.; McInerney, M.; Nadeau, D.; Li, J.; Strong, S.; Thompson, J. H.
2015-12-01
We are building three extensions to prior-funded work on climate analytics-as-a-service that will benefit the Earth System Grid Federation (ESGF) as it addresses the Big Data challenges of future climate research: (1) We are creating a cloud-based, high-performance Virtual Real-Time Analytics Testbed supporting a select set of climate variables from six major reanalysis data sets. This near real-time capability will enable advanced technologies like the Cloudera Impala-based Structured Query Language (SQL) query capabilities and Hadoop-based MapReduce analytics over native NetCDF files while providing a platform for community experimentation with emerging analytic technologies. (2) We are building a full-featured Reanalysis Ensemble Service comprising monthly means data from six reanalysis data sets. The service will provide a basic set of commonly used operations over the reanalysis collections. The operations will be made accessible through NASA's climate data analytics Web services and our client-side Climate Data Services (CDS) API. (3) We are establishing an Open Geospatial Consortium (OGC) WPS-compliant Web service interface to our climate data analytics service that will enable greater interoperability with next-generation ESGF capabilities. The CDS API will be extended to accommodate the new WPS Web service endpoints as well as ESGF's Web service endpoints. These activities address some of the most important technical challenges for server-side analytics and support the research community's requirements for improved interoperability and improved access to reanalysis data.
Nonlinear Detection for a High Rate Extended Binary Phase Shift Keying System
Chen, Xian-Qing; Wu, Le-Nan
2013-01-01
The algorithm and the results of a nonlinear detector using a machine learning technique called support vector machine (SVM) on an efficient modulation system with high data rate and low energy consumption is presented in this paper. Simulation results showed that the performance achieved by the SVM detector is comparable to that of a conventional threshold decision (TD) detector. The two detectors detect the received signals together with the special impacting filter (SIF) that can improve the energy utilization efficiency. However, unlike the TD detector, the SVM detector concentrates not only on reducing the BER of the detector, but also on providing accurate posterior probability estimates (PPEs), which can be used as soft-inputs of the LDPC decoder. The complexity of this detector is considered in this paper by using four features and simplifying the decision function. In addition, a bandwidth efficient transmission is analyzed with both SVM and TD detector. The SVM detector is more robust to sampling rate than TD detector. We find that the SVM is suitable for extended binary phase shift keying (EBPSK) signal detection and can provide accurate posterior probability for LDPC decoding. PMID:23539034
Transport of quantum excitations coupled to spatially extended nonlinear many-body systems
NASA Astrophysics Data System (ADS)
Iubini, Stefano; Boada, Octavi; Omar, Yasser; Piazza, Francesco
2015-11-01
The role of noise in the transport properties of quantum excitations is a topic of great importance in many fields, from organic semiconductors for technological applications to light-harvesting complexes in photosynthesis. In this paper we study a semi-classical model where a tight-binding Hamiltonian is fully coupled to an underlying spatially extended nonlinear chain of atoms. We show that the transport properties of a quantum excitation are subtly modulated by (i) the specific type (local versus non-local) of exciton-phonon coupling and by (ii) nonlinear effects of the underlying lattice. We report a non-monotonic dependence of the exciton diffusion coefficient on temperature, in agreement with earlier predictions, as a direct consequence of the lattice-induced fluctuations in the hopping rates due to long-wavelength vibrational modes. A standard measure of transport efficiency confirms that both nonlinearity in the underlying lattice and off-diagonal exciton-phonon coupling promote transport efficiency at high temperatures, preventing the Zeno-like quench observed in other models lacking an explicit noise-providing dynamical system.
Gentili, Pier Luigi; Rightler, Amanda L; Heron, B Mark; Gabbutt, Christopher D
2016-01-25
Photochromic fuzzy logic systems have been designed that extend human visual perception into the UV region. The systems are founded on a detailed knowledge of the activation wavelengths and quantum yields of a series of thermally reversible photochromic compounds. By appropriate matching of the photochromic behaviour unique colour signatures are generated in response differing UV activation frequencies.
NASA Astrophysics Data System (ADS)
Yang, You-quan; Chi, Xue-fen; Shi, Jia-lin; Zhao, Lin-lin
2015-05-01
To facilitate the efficient support of quality-of-service (QoS) for promising free-space optical (FSO) communication systems, it is essential to model and analyze FSO channels in terms of delay QoS. However, most existing works focus on the average capacity and outage capacity for FSO, which are not enough to characterize the effective transmission data rate when delay-sensitive service is applied. In this paper, the effective capacity of FSO communication systems under statistical QoS provisioning constraints is investigated to meet heterogeneous traffic demands. A novel closed-form expression for effective capacity is derived under the combined effects of atmospheric turbulence conditions, pointing errors, beam widths, detector sizes and QoS exponents. The obtained results reveal the effects of some significant parameters on effective capacity, which can be used for the design of FSO systems carrying a wide range of services with diverse QoS requirements.
NASA Astrophysics Data System (ADS)
Sung, C.; Peebles, W. A.; Wannberg, C.; Rhodes, T. L.; Nguyen, X.; Lantsov, R.; Bardóczi, L.
2016-11-01
A new eight-channel correlation electron cyclotron emission diagnostic has recently been installed on the DIII-D tokamak to study both turbulent and coherent electron temperature fluctuations under various plasma conditions and locations. This unique system is designed to cover a broad range of operation space on DIII-D (1.6-2.1 T, detection frequency: 72-108 GHz) via four remotely selected local oscillators (80, 88, 96, and 104 GHz). Eight radial locations are measured simultaneously in a single discharge covering as much as half the minor radius. In this paper, we present design details of the quasi-optical system, the receiver, as well as representative data illustrating operation of the system.
Sung, C; Peebles, W A; Wannberg, C; Rhodes, T L; Nguyen, X; Lantsov, R; Bardóczi, L
2016-11-01
A new eight-channel correlation electron cyclotron emission diagnostic has recently been installed on the DIII-D tokamak to study both turbulent and coherent electron temperature fluctuations under various plasma conditions and locations. This unique system is designed to cover a broad range of operation space on DIII-D (1.6-2.1 T, detection frequency: 72-108 GHz) via four remotely selected local oscillators (80, 88, 96, and 104 GHz). Eight radial locations are measured simultaneously in a single discharge covering as much as half the minor radius. In this paper, we present design details of the quasi-optical system, the receiver, as well as representative data illustrating operation of the system.
Flight tests of a clear-air turbulence alerting system. [infrared radiometers
NASA Technical Reports Server (NTRS)
Kurkowski, R. L.; Kuhn, P. M.; Stearns, L. P.
1981-01-01
The detection of clear-air turbulence (CAT) ahead of an aircraft in real-time by an infrared (IR) radiometer is discussed. It is noted that the alter time and reliability depend on the band-pass of the IR filter used and on the altitude of the aircraft. Results of flights tests indicate that a bandpass of 20 to 40 microns appears optimal for altering the aircraft crew to CAT at times before encounter of 2 to 9 min. Alert time increases with altitude, as the atmospheric absorption determining the horizontal weighting is reduced.
Hassmiller Lich, Kristen; Urban, Jennifer Brown; Frerichs, Leah; Dave, Gaurav
2017-02-01
Group concept mapping (GCM) has been successfully employed in program planning and evaluation for over 25 years. The broader set of systems thinking methodologies (of which GCM is one), have only recently found their way into the field. We present an overview of systems thinking emerging from a system dynamics (SD) perspective, and illustrate the potential synergy between GCM and SD. As with GCM, participatory processes are frequently employed when building SD models; however, it can be challenging to engage a large and diverse group of stakeholders in the iterative cycles of divergent thinking and consensus building required, while maintaining a broad perspective on the issue being studied. GCM provides a compelling resource for overcoming this challenge, by richly engaging a diverse set of stakeholders in broad exploration, structuring, and prioritization. SD provides an opportunity to extend GCM findings by embedding constructs in a testable hypothesis (SD model) describing how system structure and changes in constructs affect outcomes over time. SD can be used to simulate the hypothesized dynamics inherent in GCM concept maps. We illustrate the potential of the marriage of these methodologies in a case study of BECOMING, a federally-funded program aimed at strengthening the cross-sector system of care for youth with severe emotional disturbances.
Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light.
Stöckl, Anna Lisa; O'Carroll, David Charles; Warrant, Eric James
2016-03-21
Most of the world's animals are active in dim light and depend on good vision for the tasks of daily life. Many have evolved visual adaptations that permit a performance superior to that of manmade imaging devices [1]. In insects, a major model visual system, nocturnal species show impressive visual abilities ranging from flight control [2, 3], to color discrimination [4, 5], to navigation using visual landmarks [6-8] or dim celestial compass cues [9, 10]. In addition to optical adaptations that improve their sensitivity in dim light [11], neural summation of light in space and time-which enhances the coarser and slower features of the scene at the expense of noisier finer and faster features-has been suggested to improve sensitivity in theoretical [12-14], anatomical [15-17], and behavioral [18-20] studies. How these summation strategies function neurally is, however, presently unknown. Here, we quantified spatial and temporal summation in the motion vision pathway of a nocturnal hawkmoth. We show that spatial and temporal summation combine supralinearly to substantially increase contrast sensitivity and visual information rate over four decades of light intensity, enabling hawkmoths to see at light levels 100 times dimmer than without summation. Our results reveal how visual motion is calculated neurally in dim light and how spatial and temporal summation improve sensitivity while simultaneously maximizing spatial and temporal resolution, thus extending models of insect motion vision derived predominantly from diurnal flies. Moreover, the summation strategies we have revealed may benefit manmade vision systems optimized for variable light levels [21].
Maul, Timothy M.; Hamilton, Douglas W.; Nieponice, Alejandro; Soletti, Lorenzo
2007-01-01
Mechanical forces have been shown to be important stimuli for the determination and maintenance of cellular phenotype and function. Many cells are constantly exposed in vivo to cyclic pressure, shear stress, and/or strain. Therefore, the ability to study the effects of these stimuli in vitro is important for understanding how they contribute to both normal and pathologic states. While there exist commercial as well as custom-built devices for the extended application of cyclic strain and shear stress, very few cyclic pressure systems have been reported to apply stimulation longer than 48 h. However, pertinent responses of cells to mechanical stimulation may occur later than this. To address this limitation, we have designed a new cyclic hydrostatic pressure system based upon the following design variables: minimal size, stability of pressure and humidity, maximal accessibility, and versatility. Computational fluid dynamics (CFD) was utilized to predict the pressure and potential shear stress within the chamber during the first half of a 1.0 Hz duty cycle. To biologically validate our system, we tested the response of bone marrow progenitor cells (BMPCs) from Sprague Dawley rats to a cyclic pressure stimulation of 120/80 mm Hg, 1.0 Hz for 7 days. Cellular morphology was measured using Scion Image, and cellular proliferation was measured by counting nuclei in ten fields of view. CFD results showed a constant pressure across the length of the chamber and no shear stress developed at the base of the chamber where the cells are cultured. BMPCs from Sprague Dawley rats demonstrated a significant change in morphology versus controls by reducing their size and adopting a more rounded morphology. Furthermore, these cells increased their proliferation under cyclic hydrostatic pressure. We have demonstrated that our system imparts a single mechanical stimulus of cyclic hydrostatic pressure and is capable of at least 7 days of continuous operation without affecting cellular
Review and assessment of turbulence models for hypersonic flows
NASA Astrophysics Data System (ADS)
Roy, Christopher J.; Blottner, Frederick G.
2006-10-01
Accurate aerodynamic prediction is critical for the design and optimization of hypersonic vehicles. Turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating for these systems. The first goal of this article is to update the previous comprehensive review of hypersonic shock/turbulent boundary-layer interaction experiments published in 1991 by Settles and Dodson (Hypersonic shock/boundary-layer interaction database. NASA CR 177577, 1991). In their review, Settles and Dodson developed a methodology for assessing experiments appropriate for turbulence model validation and critically surveyed the existing hypersonic experiments. We limit the scope of our current effort by considering only two-dimensional (2D)/axisymmetric flows in the hypersonic flow regime where calorically perfect gas models are appropriate. We extend the prior database of recommended hypersonic experiments (on four 2D and two 3D shock-interaction geometries) by adding three new geometries. The first two geometries, the flat plate/cylinder and the sharp cone, are canonical, zero-pressure gradient flows which are amenable to theory-based correlations, and these correlations are discussed in detail. The third geometry added is the 2D shock impinging on a turbulent flat plate boundary layer. The current 2D hypersonic database for shock-interaction flows thus consists of nine experiments on five different geometries. The second goal of this study is to review and assess the validation usage of various turbulence models on the existing experimental database. Here we limit the scope to one- and two-equation turbulence models where integration to the wall is used (i.e., we omit studies involving wall functions). A methodology for validating turbulence models is given, followed by an extensive evaluation of the turbulence models on the current hypersonic experimental database. A total of 18 one- and two-equation turbulence models are reviewed
Energy transfer in compressible turbulence
NASA Technical Reports Server (NTRS)
Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre
1995-01-01
This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.
NASA Astrophysics Data System (ADS)
Djordjevic, Goran T.; Petkovic, Milica I.
2016-04-01
This paper presents the exact average bit error rate (BER) analysis of the free-space optical system employing subcarrier intensity modulation (SIM) with Gray-coded quadrature amplitude modulation (QAM). The intensity fluctuations of the received optical signal are caused by the path loss, atmospheric turbulence and pointing errors. The exact closed-form analytical expressions for the average BER are derived assuming the SIM-QAM with arbitrary constellation size in the presence of the Gamma-Gamma scintillation. The simple approximate average BER expressions are also provided, considering only the dominant term in the finite summations of obtained expressions. Derived expressions are reduced to the special case when optical signal transmission is affected only by the atmospheric turbulence. Numerical results are presented in order to illustrate usefulness of the derived expressions and also to give insights into the effects of different modulation, channel and receiver parameters on the average BER performance. The results show that the misalignment between the transmitter laser and receiver detector has the strong effect on the average BER value, especially in the range of the high values of the average electrical signal-to-noise ratio.
NASA Astrophysics Data System (ADS)
Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.
2004-12-01
The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that
NASA Technical Reports Server (NTRS)
Poehler, H. A.
1978-01-01
Results of a test of the use of a Lightning Detection and Ranging (LDAR) remote display in the Patrick AFB RAPCON facility are presented. Agreement between LDAR and radar precipitation echoes of the RAPCON radar was observed, as well as agreement between LDAR and pilot's visual observations of lightning flashes. A more precise comparison between LDAR and KSC based radars is achieved by the superposition of LDAR precipitation echoes. Airborne measurements of updrafts and turbulence by an armored T-28 aircraft flying through the thunderclouds are correlated with LDAR along the flight path. Calibration and measurements of the accuracy of the LDAR System are discussed, and the extended range of the system is illustrated.
NASA Astrophysics Data System (ADS)
Zhang, Chunxia; Zhang, Hong; Ouyang, Qi; Hu, Bambi; Gunaratne, Gemunu H.
2003-09-01
The transition from spiral waves to defect-mediated turbulence was studied in a spatial open reactor using Belousov-Zhabotinsky reaction. The experimental results show a new mechanism of the transition from spirals to spatiotemporal chaos, in which the gradient effects in the three-dimensional system are essential. The transition scenario consists of two stages: first, the effects of gradients in the third dimension cause a splitting of the spiral tip and a deletion of certain wave segments, generating new wave sources; second, the waves sent by the new wave sources undergo a backfire instability, and the back waves are laterally unstable. As a result, defects are automatically generated and fill all over the system. The result of numerical simulation using the FitzHugh-Nagumo model essentially agrees with the experimental observation.
Lee, W; Park, H K; Lee, D J; Nam, Y U; Leem, J; Kim, T K
2016-04-01
The design characteristics of a multi-channel collective (or coherent) scattering system for small scale turbulence study in Korea Superconducting Tokamak Advanced Research (KSTAR), which is planned to be installed in 2017, are given in this paper. A few critical issues are discussed in depth such as the Faraday and Cotton-Mouton effects on the beam polarization, radial spatial resolution, probe beam frequency, polarization, and power. A proper and feasible optics with the 300 GHz probe beam, which was designed based on these issues, provides a simultaneous measurement of electron density fluctuations at four discrete poloidal wavenumbers up to 24 cm(-1). The upper limit corresponds to the normalized wavenumber kθρe of ∼0.15 in nominal KSTAR plasmas. To detect the scattered beam power and extract phase information, a quadrature detection system consisting of four-channel antenna/detector array and electronics will be employed.
NEXUS/NASCAD- NASA ENGINEERING EXTENDIBLE UNIFIED SOFTWARE SYSTEM WITH NASA COMPUTER AIDED DESIGN
NASA Technical Reports Server (NTRS)
Purves, L. R.
1994-01-01
NEXUS, the NASA Engineering Extendible Unified Software system, is a research set of computer programs designed to support the full sequence of activities encountered in NASA engineering projects. This sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. NEXUS primarily addresses the process of prototype engineering, the task of getting a single or small number of copies of a product to work. Prototype engineering is a critical element of large scale industrial production. The time and cost needed to introduce a new product are heavily dependent on two factors: 1) how efficiently required product prototypes can be developed, and 2) how efficiently required production facilities, also a prototype engineering development, can be completed. NEXUS extendibility and unification are achieved by organizing the system as an arbitrarily large set of computer programs accessed in a common manner through a standard user interface. The NEXUS interface is a multipurpose interactive graphics interface called NASCAD (NASA Computer Aided Design). NASCAD can be used to build and display two and three-dimensional geometries, to annotate models with dimension lines, text strings, etc., and to store and retrieve design related information such as names, masses, and power requirements of components used in the design. From the user's standpoint, NASCAD allows the construction, viewing, modification, and other processing of data structures that represent the design. Four basic types of data structures are supported by NASCAD: 1) three-dimensional geometric models of the object being designed, 2) alphanumeric arrays to hold data ranging from numeric scalars to multidimensional arrays of numbers or characters, 3) tabular data sets that provide a relational data base capability, and 4) procedure definitions to combine groups of system commands or other user procedures to create more powerful functions. NASCAD has extensive abilities to
The impact of the declining extended family support system on the education of orphans in Lesotho.
Tanga, Pius T
2013-09-01
This paper examines the impact of the weakening of the extended family on the education of double orphans in Lesotho through in-depth interviews with participants from 3 of the 10 districts in Lesotho. The findings reveal that in Lesotho the extended family has not yet disintegrated as the literature suggests. However, it shows signs of rupturing, as many orphans reported that they are being taken into extended family households, the incentive for these households being, presumably, the financial and other material assistance that they receive from the government and non-governmental organisations (NGOs) which supplements household income and material wellbeing. The findings show that financial and other assistance given by the government and NGOs have resulted in conflict between the orphans and caregivers. This has also prompted many extended families to shift responsibilities to the government and NGOs. Most of the extended households provided the orphans with poor living conditions, such as unhygienic houses, poor nutrition, and little or no provision of school materials, which has had a negative impact on the education of the orphans. The combined effects of economic crisis and HIV and AIDS have resulted in extended families not being able to care for the needs of the orphans adequately, whilst continuing to accept them into their households. It is recommended that although extended families are still accepting orphans, the government should strengthen and recognise the important role played by families and the communities in caring for these vulnerable children. The government should also introduce social grants for orphans and other vulnerable children and review the current meagre public assistance (R100) it provides for orphans and vulnerable children in Lesotho. Other stakeholders should concentrate on strengthening the capacity of families and communities through programmes and projects which could be more sustainable than the current handouts given by
The impact of the declining extended family support system on the education of orphans in Lesotho
Tanga, Pius T
2013-01-01
This paper examines the impact of the weakening of the extended family on the education of double orphans in Lesotho through in-depth interviews with participants from 3 of the 10 districts in Lesotho. The findings reveal that in Lesotho the extended family has not yet disintegrated as the literature suggests. However, it shows signs of rupturing, as many orphans reported that they are being taken into extended family households, the incentive for these households being, presumably, the financial and other material assistance that they receive from the government and non-governmental organisations (NGOs) which supplements household income and material wellbeing. The findings show that financial and other assistance given by the government and NGOs have resulted in conflict between the orphans and caregivers. This has also prompted many extended families to shift responsibilities to the government and NGOs. Most of the extended households provided the orphans with poor living conditions, such as unhygienic houses, poor nutrition, and little or no provision of school materials, which has had a negative impact on the education of the orphans. The combined effects of economic crisis and HIV and AIDS have resulted in extended families not being able to care for the needs of the orphans adequately, whilst continuing to accept them into their households. It is recommended that although extended families are still accepting orphans, the government should strengthen and recognise the important role played by families and the communities in caring for these vulnerable children. The government should also introduce social grants for orphans and other vulnerable children and review the current meagre public assistance (R100) it provides for orphans and vulnerable children in Lesotho. Other stakeholders should concentrate on strengthening the capacity of families and communities through programmes and projects which could be more sustainable than the current handouts given by
Controlled-Turbulence Bioreactors
NASA Technical Reports Server (NTRS)
Wolf, David A.; Schwartz, Ray; Trinh, Tinh
1989-01-01
Two versions of bioreactor vessel provide steady supplies of oxygen and nutrients with little turbulence. Suspends cells in environment needed for sustenance and growth, while inflicting less damage from agitation and bubbling than do propeller-stirred reactors. Gentle environments in new reactors well suited to delicate mammalian cells. One reactor kept human kidney cells alive for as long as 11 days. Cells grow on carrier beads suspended in liquid culture medium that fills cylindrical housing. Rotating vanes - inside vessel but outside filter - gently circulates nutrient medium. Vessel stationary; magnetic clutch drives filter cylinder and vanes. Another reactor creates even less turbulence. Oxygen-permeable tubing wrapped around rod extending along central axis. Small external pump feeds oxygen to tubing through rotary coupling, and oxygen diffuses into liquid medium.
NASA Astrophysics Data System (ADS)
Skrbek, L.
2011-12-01
We review physical properties of quantum fluids He II and 3He-B, where quantum turbulence (QT) has been studied experimentally. Basic properties of QT in these working fluids are discussed within the phenomenological two-fluid model introduced by Landau. We consider counterflows in which the normal and superfluid components flow against each other, as well as co-flows in which the direction of the two fluids is the same. We pay special attention to the important case of zero temperature limit, where QT represents an interesting and probably the simplest prototype of three-dimensional turbulence in fluids. Experimental techniques to explore QT such as second sound attenuation, Andreev reflection, NMR, ion propagation are briefly introduced and results of various experiments on so-called Vinen QT and Kolmogorov QT both in He II and 3He are discussed, emphasizing similarities and differences between classical and quantum turbulence.
Turbulence in Compressible Flows
NASA Technical Reports Server (NTRS)
1997-01-01
Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.
New strategies for combination vaccines based on the extended recombinant bacterial ghost system.
Eko, F O; Witte, A; Huter, V; Kuen, B; Fürst-Ladani, S; Haslberger, A; Katinger, A; Hensel, A; Szostak, M P; Resch, S; Mader, H; Raza, P; Brand, E; Marchart, J; Jechlinger, W; Haidinger, W; Lubitz, W
1999-03-26
Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts have been produced from a great variety of bacteria and are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extents the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens, immunomodulators or other substances. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in bacterial candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying inserts of foreign epitopes of up to 600 amino acids within the flexible surface loop areas of the S-layer further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts do not need the addition of adjuvants to induce immunity in experimental animals they can also be used as carriers or targeting vehicles or as adjuvants in combination with subunit vaccines. Matrixes like dextran which can be used to fill the internal lumen of ghosts can be substituted with various ligands to bind the subunit or other materials of interest. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of ghosts and recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in the production of ghosts. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. As carriers of foreign
NASA Astrophysics Data System (ADS)
Kolesnichenko, A. V.
2010-08-01
This paper considers the modern approach to the thermodynamic modeling of developed turbulent flows of a compressible fluid based on the systematic application of the formalism of extended irreversible thermodynamics (EIT) that goes beyond the local equilibrium hypothesis, which is an inseparable attribute of classical nonequilibrium thermodynamics (CNT). In addition to the classical thermodynamic variables, EIT introduces new state parameters—dissipative flows and the means to obtain the respective evolutionary equations consistent with the second law of thermodynamics. The paper presents a detailed discussion of a number of physical and mathematical postulates and assumptions used to build a thermodynamic model of turbulence. A turbulized liquid is treated as an indiscrete continuum consisting of two thermodynamic sub-systems: an averaged motion subsystem and a turbulent chaos subsystem, where turbulent chaos is understood as a conglomerate of small-scale vortex bodies. Under the above formalism, this representation enables the construction of new models of continual mechanics to derive cause-and-effect differential equations for turbulent heat and impulse transfer, which describe, together with the averaged conservations laws, turbulent flows with transverse shear. Unlike gradient (noncausal) relationships for turbulent flows, these differential equations can be used to investigate both hereditary phenomena, i.e., phenomena with history or memory, and nonlocal and nonlinear effects. Thus, within EIT, the second-order turbulence models underlying the so-called invariant modeling of developed turbulence get a thermodynamic explanation. Since shear turbulent flows are widespread in nature, one can expect the given modification of the earlier developed thermodynamic approach to developed turbulence modeling (see Kolesnichenko, 1980; 1998; 2002-2004; Kolesnichenko and Marov, 1985; Kolesnichenko and Marov, 2009) to be used in research on a broad class of dissipative
NASA Technical Reports Server (NTRS)
Lin, C. H.; Cusick, R. J.
1985-01-01
An advanced flight prototype regenerable CO2 and humidity control system was delivered to NASA-JSC in February 1980. It is pointed out that this system offers substantial weight savings compared with the Shuttle Orbiter expendable lithium hydroxide CO2 removal system for extended duration missions. The present paper provides a brief description of the 4- to 10-man regenerable CO2 and humidity control system. The potential advantages which can be realized for an extended duration Shuttle mission are considered along with the results of extensive testing conducted at JSC. The performance evaluation and endurance tests show that the system is capable of long-term operation (up to 60 days) without maintenance.
NASA Astrophysics Data System (ADS)
Poludnenko, Alexei
2016-11-01
Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force
Fears, Scott C.; Service, Susan K.; Kremeyer, Barbara; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Ramirez, Margarita; Castrillón, Gabriel; Gomez-Franco, Juliana; Lopez, Maria C.; Montoya, Gabriel; Montoya, Patricia; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Ericson, Marissa; Jalbrzikowski, Maria; Luykx, Jurjen J.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier; Glahn, David C.; Ospina-Duque, Jorge; Risch, Neil; Ruiz-Linares, Andrés; Thompson, Paul M.; Cantor, Rita M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Freimer, Nelson B.; Bearden, Carrie E.
2014-01-01
IMPORTANCE Genetic factors contribute to risk for bipolar disorder (BP), yet its pathogenesis remains poorly understood. A focus on measuring multi-system quantitative traits that may be components of BP psychopathology may enable genetic dissection of this complex disorder, and investigation of extended pedigrees from genetically isolated populations may facilitate the detection of specific genetic variants that impact on BP as well as its component phenotypes. OBJECTIVE To identify quantitative neurocognitive, temperament-related, and neuroanatomic phenotypes that appear heritable and associated with severe bipolar disorder (BP-I), and therefore suitable for genetic linkage and association studies aimed at identifying variants contributing to BP-I risk. DESIGN Multi-generational pedigree study in two closely related, genetically isolated populations: the Central Valley of Costa Rica (CVCR) and Antioquia, Colombia (ANT). PARTICIPANTS 738 individuals, all from CVCR and ANT pedigrees, of whom 181 are affected with BP-I. MAIN OUTCOME MEASURE Familial aggregation (heritability) and association with BP-I of 169 quantitative neurocognitive, temperament, magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) phenotypes. RESULTS Seventy-five percent (126) of the phenotypes investigated were significantly heritable, and 31% (53) were associated with BP-I. About 1/4 of the phenotypes, including measures from each phenotype domain, were both heritable and associated with BP-I. Neuroimaging phenotypes, particularly cortical thickness in prefrontal and temporal regions, and volume and microstructural integrity of the corpus callosum, represented the most promising candidate traits for genetic mapping related to BP based on strong heritability and association with disease. Analyses of phenotypic and genetic covariation identified substantial correlations among the traits, at least some of which share a common underlying genetic architecture. CONCLUSIONS AND
1991-10-01
and complexity of thermochemistry . Accordingly a practical viewpoint is required to meet near-term work required for use in advanced CFD codes...teachers the opportunity to learn/explore/ teach turbulence issues. While such a product could be an invaluable eductaional tool (university), it also
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.
1995-01-01
The objective of this work is to develop, verify, and incorporate the baseline two-equation turbulence models which account for the effects of compressibility into the three-dimensional Reynolds averaged Navier-Stokes (RANS) code and to provide documented descriptions of the models and their numerical procedures so that they can be implemented into 3-D CFD codes for engineering applications.
Alert Confidence Fusion in Intrusion Detection Systems with Extended Dempster- Shafer Theory
Yu, Dong; Frincke, Deborah A.
2005-03-01
Extend Dempster-Shafer Theory of Evidence to include differential weightings of alerts drawn from multiple sources. The intent is to support automated (and manual) response to threat by producing more realistic confidence ratings for IDS alerts than is currently available.
Extending The Umambiguous Range Of CW Polyphase Radar Systems Using Number Theoretic Transforms
2011-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited EXTENDING THE...reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol Number: N/A. 12a. DISTRIBUTION ...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Polyphase
Extending the Unambiguous Range of CW Polyphase Radar Systems Using Number Theoretic Transforms
2011-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited EXTENDING THE...reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol Number: N/A. 12a. DISTRIBUTION ...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Polyphase
Optimized non-integer order phase mask to extend the depth of field of an imaging system
NASA Astrophysics Data System (ADS)
Liu, Jiang; Miao, Erlong; Sui, Yongxin; Yang, Huaijiang
2016-09-01
Wavefront coding is an effective optical technique used to extend the depth of field for an incoherent imaging system. Through introducing an optimized phase mask to the pupil plane, the modulated optical transfer function is defocus-invariant. In this paper, we proposed a new form phase mask using non-integer order and signum function to extend the depth of field. The performance of the phase mask is evaluated by comparing defocused modulation transfer function invariant and Fisher information with other phase masks. Defocused imaging simulation is also carried out. The results demonstrate the advantages of non-integer order phase mask and its effectiveness on the depth of field extension.
Passive adaptive imaging through turbulence
NASA Astrophysics Data System (ADS)
Tofsted, David
2016-05-01
Standard methods for improved imaging system performance under degrading optical turbulence conditions typically involve active adaptive techniques or post-capture image processing. Here, passive adaptive methods are considered where active sources are disallowed, a priori. Theoretical analyses of short-exposure turbulence impacts indicate that varying aperture sizes experience different degrees of turbulence impacts. Smaller apertures often outperform larger aperture systems as turbulence strength increases. This suggests a controllable aperture system is advantageous. In addition, sub-aperture sampling of a set of training images permits the system to sense tilts in different sub-aperture regions through image acquisition and image cross-correlation calculations. A four sub-aperture pattern supports corrections involving five realizable operating modes (beyond tip and tilt) for removing aberrations over an annular pattern. Progress to date will be discussed regarding development and field trials of a prototype system.
Workshop on Computational Turbulence Modeling
NASA Technical Reports Server (NTRS)
Shabbir, A. (Compiler); Shih, T.-H. (Compiler); Povinelli, L. A. (Compiler)
1994-01-01
The purpose of this meeting was to discuss the current status and future development of turbulence modeling in computational fluid dynamics for aerospace propulsion systems. Various turbulence models have been developed and applied to different turbulent flows over the past several decades and it is becoming more and more urgent to assess their performance in various complex situations. In order to help users in selecting and implementing appropriate models in their engineering calculations, it is important to identify the capabilities as well as the deficiencies of these models. This also benefits turbulence modelers by permitting them to further improve upon the existing models. This workshop was designed for exchanging ideas and enhancing collaboration between different groups in the Lewis community who are using turbulence models in propulsion related CFD. In this respect this workshop will help the Lewis goal of excelling in propulsion related research. This meeting had seven sessions for presentations and one panel discussion over a period of two days. Each presentation session was assigned to one or two branches (or groups) to present their turbulence related research work. Each group was asked to address at least the following points: current status of turbulence model applications and developments in the research; progress and existing problems; and requests about turbulence modeling. The panel discussion session was designed for organizing committee members to answer management and technical questions from the audience and to make concluding remarks.
Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.
2003-01-01
We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an
Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.
2003-01-01
We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an
Laser beam scintillation beyond the turbulent atmosphere A numerical computation
NASA Technical Reports Server (NTRS)
Bufton, J. L.; Taylor, L. S.
1976-01-01
The extended Huygens-Fresnel formulation for propagation through turbulence is used to examine scintillation of a finite laser beam. The method is demonstrated analytically for propagation beyond a weak Gaussian phase screen. A numerical integration technique is used to extend the results to a more realistic turbulence model. Results are compared with existing Gaussian beam propagation theory.
Shell models of magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Plunian, Franck; Stepanov, Rodion; Frick, Peter
2013-02-01
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfvén waves and the Hall effect.
NASA Astrophysics Data System (ADS)
Toledo-Suárez, Carlos D.
It is proposed a way of increasing the cardinality of an alphabet used to write rules in a learning classifier system that extends the idea of relational schemata. Theoretical justifications regarding the possible reduction in the amount of rules for the solution of problems such extended alphabets (st-alphabets) imply are shown. It is shown that when expressed as bipolar neural networks, the matching process of rules over st-alphabets strongly resembles a gene expression mechanism applied to a system over {0,1,#}. In spite of the apparent drawbacks the explicit use of such relational alphabets would imply, their successful implementation in an information gain based classifier system (IGCS) is presented.
Evans, J.L.; Frank, W.M.; Young, G.S.
1996-04-01
Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.
New class of turbulence in active fluids
Bratanov, Vasil; Frey, Erwin
2015-01-01
Turbulence is a fundamental and ubiquitous phenomenon in nature, occurring from astrophysical to biophysical scales. At the same time, it is widely recognized as one of the key unsolved problems in modern physics, representing a paradigmatic example of nonlinear dynamics far from thermodynamic equilibrium. Whereas in the past, most theoretical work in this area has been devoted to Navier–Stokes flows, there is now a growing awareness of the need to extend the research focus to systems with more general patterns of energy injection and dissipation. These include various types of complex fluids and plasmas, as well as active systems consisting of self-propelled particles, like dense bacterial suspensions. Recently, a continuum model has been proposed for such “living fluids” that is based on the Navier–Stokes equations, but extends them to include some of the most general terms admitted by the symmetry of the problem [Wensink HH, et al. (2012) Proc Natl Acad Sci USA 109:14308–14313]. This introduces a cubic nonlinearity, related to the Toner–Tu theory of flocking, which can interact with the quadratic Navier–Stokes nonlinearity. We show that as a result of the subtle interaction between these two terms, the energy spectra at large spatial scales exhibit power laws that are not universal, but depend on both finite-size effects and physical parameters. Our combined numerical and analytical analysis reveals the origin of this effect and even provides a way to understand it quantitatively. Turbulence in active fluids, characterized by this kind of nonlinear self-organization, defines a new class of turbulent flows. PMID:26598708
New class of turbulence in active fluids.
Bratanov, Vasil; Jenko, Frank; Frey, Erwin
2015-12-08
Turbulence is a fundamental and ubiquitous phenomenon in nature, occurring from astrophysical to biophysical scales. At the same time, it is widely recognized as one of the key unsolved problems in modern physics, representing a paradigmatic example of nonlinear dynamics far from thermodynamic equilibrium. Whereas in the past, most theoretical work in this area has been devoted to Navier-Stokes flows, there is now a growing awareness of the need to extend the research focus to systems with more general patterns of energy injection and dissipation. These include various types of complex fluids and plasmas, as well as active systems consisting of self-propelled particles, like dense bacterial suspensions. Recently, a continuum model has been proposed for such "living fluids" that is based on the Navier-Stokes equations, but extends them to include some of the most general terms admitted by the symmetry of the problem [Wensink HH, et al. (2012) Proc Natl Acad Sci USA 109:14308-14313]. This introduces a cubic nonlinearity, related to the Toner-Tu theory of flocking, which can interact with the quadratic Navier-Stokes nonlinearity. We show that as a result of the subtle interaction between these two terms, the energy spectra at large spatial scales exhibit power laws that are not universal, but depend on both finite-size effects and physical parameters. Our combined numerical and analytical analysis reveals the origin of this effect and even provides a way to understand it quantitatively. Turbulence in active fluids, characterized by this kind of nonlinear self-organization, defines a new class of turbulent flows.
NASA Astrophysics Data System (ADS)
Leakeas, Charles L.; Capehart, Shay R.; Bartell, Richard J.; Cusumano, Salvatore J.; Whiteley, Matthew R.
2011-06-01
Laser weapon systems comprised of tiled subapertures are rapidly emerging in importance in the directed energy community. Performance models of these laser weapon systems have been developed from numerical simulations of a high fidelity wave-optics code called WaveTrain which is developed by MZA Associates. System characteristics such as mutual coherence, differential jitter, and beam quality rms wavefront error are defined for a focused beam on the target. Engagement scenarios are defined for various platform and target altitudes, speeds, headings, and slant ranges along with the natural wind speed and heading. Inputs to the performance model include platform and target height and velocities, Fried coherence length, Rytov number, isoplanatic angle, thermal blooming distortion number, Greenwood and Tyler frequencies, and atmospheric transmission. The performance model fit is based on power-in-the-bucket (PIB) values against the PIB from the simulation results for the vacuum diffraction-limited spot size as the bucket. The goal is to develop robust performance models for aperture phase error, turbulence, and thermal blooming effects in tiled subaperture systems.
NASA Astrophysics Data System (ADS)
Gibson, C. H.; Bondur, V. G.; Keeler, R. N.; Leung, P. T.
2011-11-01
Sea surface brightness spectral anomalies from a Honolulu municipal outfall have been detected from space satellites in 200 km2 areas extending 20 km from the wastewater diffuser (Bondur 2005, Keeler et al. 2005, Gibson et al. 2005). Dropsonde and towed body microstructure measurements show outfall enhanced viscous and temperature dissipation rates above the turbulence trapping layer. Fossil turbulence waves and secondary (zombie, zebra) turbulence waves break as they propagate near-vertically and then break again near the surface to produce wind ripple smoothing in narrow frequency band (zebra) patterns from soliton-like sources of secondary turbulence energy acting on fossils advected from the outfall. The 30-250 m solitons reflect a nonlinear cascade from tidal and current kinetic energy to boundary layer turbulence events, to fossil turbulence waves, to internal soliton and tidal waves. Secondary (zombie) turbulence acts on outfall fossil patches to amplify, channel in chimneys, and vertically beam ambient internal wave energy just as energized metastable molecules around stars amplify and beam quantum frequencies in astrophysical masers. Kilowatts of buoyancy power from the treatment plant produces fossil turbulence patches trapped below the thermocline. Beamed zombie turbulence maser action (BZTMA) in mixing chimneys amplifies these kilowatts into the megawatts of surface turbulence dissipation required to affect brightness on wide sea surface areas by maser action vertical beaming of fossil-wave-power extracted from gigawatts dissipated by intermittent bottom turbulence events on topography from the tides and currents.
NASA Astrophysics Data System (ADS)
Akhmediev, N.; Soto-Crespo, J. M.; Devine, N.
2016-08-01
Turbulence in integrable systems exhibits a noticeable scientific advantage: it can be expressed in terms of the nonlinear modes of these systems. Whether the majority of the excitations in the system are breathers or solitons defines the properties of the turbulent state. In the two extreme cases we can call such states "breather turbulence" or "soliton turbulence." The number of rogue waves, the probability density functions of the chaotic wave fields, and their physical spectra are all specific for each of these two situations. Understanding these extreme cases also helps in studies of mixed turbulent states when the wave field contains both solitons and breathers, thus revealing intermediate characteristics.
Akhmediev, N; Soto-Crespo, J M; Devine, N
2016-08-01
Turbulence in integrable systems exhibits a noticeable scientific advantage: it can be expressed in terms of the nonlinear modes of these systems. Whether the majority of the excitations in the system are breathers or solitons defines the properties of the turbulent state. In the two extreme cases we can call such states "breather turbulence" or "soliton turbulence." The number of rogue waves, the probability density functions of the chaotic wave fields, and their physical spectra are all specific for each of these two situations. Understanding these extreme cases also helps in studies of mixed turbulent states when the wave field contains both solitons and breathers, thus revealing intermediate characteristics.
Turbulent oceanic western-boundary layers at low latitude
NASA Astrophysics Data System (ADS)
Quam Cyrille Akuetevi, Cataria; Wirth, Achim
2013-04-01
Low latitude oceanic western-boundary layers range within the most turbulent regions in the worlds ocean. The Somali current system with the Great Whirl and the Brazilian current system with its eddy shedding are the most prominent examples. Results from analytical calculations and integration of a one layer reduced-gravity fine resolution shallow water model is used to entangle this turbulent dynamics. Two types of wind-forcing are applied: a remote Trade wind forcing with maximum shear along the equator and a local Monsoon wind forcing with maximum shear in the vicinity of the boundary. For high values of the viscosity (> 1000m2s-1) the stationary solutions compare well to analytical predictions using Munk and inertial layer theory. When lowering the friction parameter time dependence results. The onset of instability is strongly influenced by inertial effects. The unstable boundary current proceeds as a succession of anti-cyclonic coherent eddies performing a chaotic dynamics in a turbulent flow. The dynamics is governed by the turbulent fluxes of mass and momentum. We determine these fluxes by analyzing the (potential) vorticity dynamics. We demonstrate that the boundary-layer can be separated in four sub-layers, which are (starting from the boundary): (1) the viscous sub-layer (2) the turbulent buffer-layer (3) the layer containing the coherent structures and (4) the extended boundary layer. The characteristics of each sub-layer and the corresponding turbulent fluxes are determined, as are the dependence on latitude and the type of forcing. A new pragmatic method of determining the eddy viscosity, based on Munk-layer theory, is proposed. Results are compared to observations and solutions of the multi-level primitive equation model (DRAKKAR).
NASA Astrophysics Data System (ADS)
Kühnen, Jakob; Hof, Björn
2015-11-01
We show that a simple modification of the velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarises. The annihilation of turbulence is achieved by a steady manipulation of the streamwise velocity component alone, greatly reducing control efforts. Several different control techniques are presented: one with a local modification of the flow profile by means of a stationary obstacle, one employing a nozzle injecting fluid through a small gap at the pipe wall and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. All control techniques act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. In a smooth straight pipe the flow remains laminar downstream of the control. Hence a reduction in skin friction by a factor of 8 and more can be accomplished. Stereoscopic PIV-measurements and movies of the development of the flow during relaminarisation are presented.
Extended State Observer Based Controller Design for the Green Bank Telescope Servo System
NASA Astrophysics Data System (ADS)
Ranka, Trupti; Garcia-Sanz, Mario; Ford, John
2015-10-01
The Green Bank Telescope is a large flexible structure, requiring rms tracking error ≤ 3 arcseconds against internal and external disturbances. We design an extended state observer (ESO) based controller in various configurations to improve tracking performance and increase disturbance rejection. The controllers are simulated with an experimentally validated model of the GBT. Through the simulations, the response of ESO based controllers and legacy PID controller are compared using time and frequency domain responses. We show that the ESO based controller when implemented in both position and velocity loop can give significant improvement in tracking performance and better disturbance rejection without increase in controller output.
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Schreiber, Jeffrey G.; Wilson, Scott D.; Oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas
2009-01-01
100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements, and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hr of TDC testing and 40,000 hr of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Schreiber, Jeffre G.; Wilson, Scott D.; oriti, Salvatore M.; Cornell, Peggy; Schifer, Nicholas
2008-01-01
100 We class Stirling convertors began extended operation testing at NASA Glenn Research Center (GRC) in 2003 with a pair of Technology Demonstration Convertors (TDCs) operating in air. Currently, the number of convertors on extended operation test has grown to 12, including both TDCs and Advanced Stirling Convertors (ASCs) operating both in air and in thermal vacuum. Additional convertors and an electrically heated radioisotope generator will be put on test in the near future. This testing has provided data to support life and reliability estimates and the quality improvements and design changes that have been made to the convertor. The convertors operated 24/7 at the nominal amplitude and power levels. Performance data were recorded on an hourly basis. Techniques to monitor the convertors for change in internal operation included gas analysis, vibration measurements and acoustic emission measurements. This data provided a baseline for future comparison. This paper summarizes the results of over 145,000 hours of TDC testing and 40,000 hours of ASC testing and discusses trends in the data. Data shows the importance of improved materials, hermetic sealing, and quality processes in maintaining convertor performance over long life.
Outer scale of atmospheric turbulence
NASA Astrophysics Data System (ADS)
Lukin, Vladimir P.
2005-10-01
In the early 70's, the scientists in Italy (A.Consortini, M.Bertolotti, L.Ronchi), USA (R.Buser, Ochs, S.Clifford) and USSR (V.Pokasov, V.Lukin) almost simultaneously discovered the phenomenon of deviation from the power law and the effect of saturation for the structure phase function. During a period of 35 years we have performed successively the investigations of the effect of low-frequency spectral range of atmospheric turbulence on the optical characteristics. The influence of the turbulence models as well as a outer scale of turbulence on the characteristics of telescopes and systems of laser beam formations has been determined too.
El-Said, Ibrahim A; Aboelwafa, Ahmed A; Khalil, Rawia M; ElGazayerly, Omaima N
2016-01-01
Baclofen is a centrally acting skeletal muscle relaxant with a short elimination half-life, which results in frequent daily dosing and subsequent poor patient compliance. The narrow absorption window of baclofen in the upper gastrointestinal tract limits its formulation as extended release dosage forms. In this study, baclofen extended release superporous hydrogel (SPH) systems, including conventional SPH, SPH composite and SPH hybrid (SPHH), were prepared aiming to increase the residence of baclofen at its absorption window. The applicability of different polymers, namely, gellan gum, guar gum, polyvinyl alcohol and gelatin, was investigated in preparation of SPHH systems. The prepared SPH systems were evaluated regarding weight and volume swelling ratio, porosity, mechanical properties, incorporation efficiency, degree of erosion and drug release. In vivo assessment was performed in dogs to evaluate gastric residence time by X-ray studies. In addition, the oral bioavailability of baclofen relative to commercially available Lioresal® immediate release tablets was also investigated. The novel baclofen gellan SPHH cross linked with calcium chloride was characterized by optimum mechanical properties, acceptable swelling properties as well as extended drug release. It also exhibited a prolonged plasma profile when compared to twice daily administered Lioresal®.
Cygankiewicz, Iwona
2013-01-01
Heart rate turbulence (HRT) is a baroreflex-mediated biphasic reaction of heart rate in response to premature ventricular beats. Heart rate turbulence is quantified by: turbulence onset (TO) reflecting the initial acceleration of heart rate following premature beat and turbulence slope (TS) describing subsequent deceleration of heart rate. Abnormal HRT identifies patients with autonomic dysfunction or impaired baroreflex sensitivity due to variety of disorders, but also may reflect changes in autonomic nervous system induced by different therapeutic modalities such as drugs, revascularization, or cardiac resynchronization therapy. More importantly, impaired HRT has been shown to identify patients at high risk of all-cause mortality and sudden death, particularly in postinfarction and congestive heart failure patients. It should be emphasized that abnormal HRT has a well-established role in stratification of postinfarction and heart failure patients with relatively preserved left ventricular ejection fraction. The ongoing clinical trials will document whether HRT can be used to guide implantation of cardioverter-defibrillators in this subset of patients, not covered yet by ICD guidelines. This review focuses on the current state-of-the-art knowledge regarding clinical significance of HRT in detection of autonomic dysfunction and regarding the prognostic significance of this parameter in predicting all-cause mortality and sudden death.
NASA Technical Reports Server (NTRS)
Bass, J; Agostini, L
1955-01-01
The theory of turbulence reached its full growth at the end of the 19th century as a result of the work by Boussinesq and Reynolds. It then underwent a long period of stagnation which ended under the impulse given to it by the development of wind tunnels caused by the needs of aviation. Numerous researchers, attempted to put Reynolds' elementary statistical theory into a more precise form. During the war, some isolated scientists - von Weizsacker and Heisenberg in Germany, Kolmogoroff in Russia, Onsager in the U.S.A. - started a program of research. By a system of assumptions which make it possible to approach the structure of turbulence in well-defined limiting conditions quantitatively, they obtained a certain number of laws on the correlations and the spectrum. Since the late reports have improved the mathematical language of turbulence, it was deemed advisable to start with a detailed account of the mathematical methods applicable to turbulence, inspired at first by the work of the French school, above all for the basic principles, then the work of the foreigners, above all for the theory of the spectrum.
Davies, Jim; Michaelian, Kourken
2016-08-01
This article argues for a task-based approach to identifying and individuating cognitive systems. The agent-based extended cognition approach faces a problem of cognitive bloat and has difficulty accommodating both sub-individual cognitive systems ("scaling down") and some supra-individual cognitive systems ("scaling up"). The standard distributed cognition approach can accommodate a wider variety of supra-individual systems but likewise has difficulties with sub-individual systems and faces the problem of cognitive bloat. We develop a task-based variant of distributed cognition designed to scale up and down smoothly while providing a principled means of avoiding cognitive bloat. The advantages of the task-based approach are illustrated by means of two parallel case studies: re-representation in the human visual system and in a biomedical engineering laboratory.
NASA Astrophysics Data System (ADS)
Muschinski, Andreas; Frehich, Ror; Jensen, Mike; Hugo, Ron; Hoff, Axel; Eaton, Frank; Balsley, Ben
Two state-of-the-art, high-resolution, in situ turbulence measurement systems, which can be deployed at altitudes well above the atmospheric surface layer, are compared: the Tethered Lifting System (TLS) of the Cooperative Institute for Research in Environmental Sciences (CIRES)at the University of Colorado, Boulder, Colorado, and the helicopter-borneturbulence measurement system HELIPOD of the Technical UniversityBraunschweig, Germany, and the University of Hanover, Germany. Whilethe CIRES TLS is a fixed-point platform, HELIPOD is a moving platform.On the basis of data taken with the two systems in separate field campaigns,the system capabilities are quantified and discussed. Criteria for instrumentalrequirements are presented. It is shown that both the CIRES TLS and HELIPODare well suited for measuring fine-scale turbulence that is characterized by very small temperature structure parameters 106 K2 m-2/3 and smaller) and very small energy dissipation rates (10-7 m2 s-3 and smaller). The authors are not aware of any other turbulence measurement systems that have similar capabilities and can be deployed at altitudes of up to several kilometres. The HELIPOD is ideal for high-resolution horizontal measurements while the TLS is ideal for high-resolution vertical measurements using multiple sensors attached to a suspended line.
2014-09-26
wire anemometer in order to compare with those made with a LV. Their results were in good coincidence in the core flow region. The velocity bias was...jet flow with the use of an IRLV system. The mean velocity distribution was also measured simultaneously with a hot wire anemometer for comparison...1 and Fig. 2 show the experimental systems which consist of the model, IRLV system and hot wire anemometer . 1. Flow system The flow system is
Phase transition in predator-prey ecosystems and a connection to transitional turbulence
NASA Astrophysics Data System (ADS)
Shih, Hong-Yan; Goldenfeld, Nigel
2015-03-01
We suggest how the transition from laminar fluid flow to turbulence can be connected to the extinction phase transition in spatially-extended predator-prey systems. By measuring the statistics of spontaneous relaminarization, spatiotemporal intermittency and expanding turbulent puffs in hydrodynamics equations and mapping them to the corresponding states in the predator-prey model, the extinction event and the formation and propagation of spatial patterns in ecology can be interpreted as the instabilities in fluid systems. We also summarize the general phenomena of such predator-prey dynamics in a wide class of transitional turbulence systems such as magnetohydrodynamics. This work was partially supported by the National Science Foundation through Grant NSF-DMR-1044901.
Turbulent optimization of toroidal configurations
NASA Astrophysics Data System (ADS)
Mynick, H.; Xanthopoulos, P.; Faber, B.; Lucia, M.; Rorvig, M.; Talmadge, J. N.
2014-09-01
Recent progress in ‘turbulent optimization’ of toroidal configurations is described, using a method recently developed for evolving such configurations to ones having reduced turbulent transport. The method uses the GENE gyrokinetic code to compute the radial heat flux Qgk, and the STELLOPT optimization code with a theory-based ‘proxy’ figure of merit Qpr to stand in for Qgk for computational speed. Improved expressions for Qpr have been developed, involving further geometric quantities beyond those in the original proxy, which can also be used as ‘control knobs’ to reduce Qgk. Use of a global search algorithm has led to the discovery of turbulent-optimized configurations not found by the standard, local algorithm usually employed, as has use of a mapping capability which STELLOPT has been extended to provide, of figures of merit over the search space.
Lim, Wansu; Cho, Tae-Sik; Yun, Changho; Kim, Kiseon
2009-11-09
In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.
Extending the life and recycle capability of earth storable propellant systems.
NASA Technical Reports Server (NTRS)
Schweickert, T. F.
1972-01-01
Rocket propulsion systems for reusable vehicles will be required to operate reliably for a large number of missions with a minimum of maintenance and a fast turnaround. For the space shuttle reaction control system to meet these requirements, current and prior related system failures were examined for their impact on reuse and, where warranted, component design and/or system configuration changes were defined for improving system service life. It was found necessary to change the pressurization component arrangement used on many single-use applications in order to eliminate a prevalent check valve failure mode and to incorporate redundant expulsion capability in propellant tank designs to achieve the necessary system reliability. Material flaws in pressurant and propellant tanks were noted to have a significant effect on tank cycle life. Finally, maintenance considerations dictated a modularized systems approach, allowing the system to be removed from the vehicle for service and repair at a remote site.
Deterministic Aperiodic One-Dimensional Systems with All States Extended, One of Which is Periodic
NASA Astrophysics Data System (ADS)
Lindquist, Bruno; Riklund, Rolf
1998-05-01
A one-dimensional discrete tight-binding model with nearest-neighbour interaction is studied. We use the transfer model with variable hopping matrix elements, here assuming the two values t or -t, and constant on-site potential. Under this conditions all the eigenstates are known to be extended. It is shown that if the distribution of the off-diagonal matrix elements constitutes a deterministic aperiodic sequence, the eigenstate corresponding to the middle eigenvalue is periodic for some choices of the sequence, but not for all. The studied sequences that turn out to have a periodic middle state are the Thue-Morse sequence, the Rudin-Shapiro sequence and many of the generalised Thue-Morse sequences but not for instance the well known Fibonacci sequence.
Toward a systems-oriented approach to the role of the extended amygdala in adaptive responding.
Waraczynski, Meg
2016-09-01
Research into the structure and function of the basal forebrain macrostructure called the extended amygdala (EA) has recently seen considerable growth. This paper reviews that work, with the objectives of identifying underlying themes and developing a common goal towards which investigators of EA function might work. The paper begins with a brief review of the structure and the ontological and phylogenetic origins of the EA. It continues with a review of research into the role of the EA in both aversive and appetitive states, noting that these two seemingly disparate avenues of research converge on the concept of reinforcement - either negative or positive - of adaptive responding. These reviews lead to a proposal as to where the EA may fit in the organization of the basal forebrain, and an invitation to investigators to place their findings in a unifying conceptual framework of the EA as a collection of neural ensembles that mediate adaptive responding.
NASA Astrophysics Data System (ADS)
Labombard, B.; Golfinopoulos, T.; Parker, R.; Burke, W.; Leccacorvi, R.; Vieira, R.; Zaks, J.; Granetz, R.; Greenwald, M.; Marmar, E.; Porkolab, M.; Wolfe, S.; Woskov, P.; Wuktich, S.
2011-10-01
Experiments indicate that short wavelength, drift-Alfvenic turbulence largely sets the transport levels in the plasma edge: pressure gradients in L and H-mode are `clamped' at canonical values of the MHD parameter (αMHD) ; broadband and coherent fluctuations have strong magnetic signatures, with k⊥ρs ~ 0.1 being prominent. A quasi-coherent mode (50 kHz < f < 150 kHz, 1 < k⊥ < 2 cm-1) drives particle transport in C-Mod's EDA H-modes, making them steady-state without ELMs. With the idea of exciting, controlling or otherwise exploiting this transport behavior, we are developing a novel, high k⊥ antenna system to drive drift-Alfvenic modes at the outer midplane with k⊥ ~ 1.5 cm-1. A `shoelace' style winding is placed in close proximity to the last-closed flux surface. In principle, this scheme inductively drives parallel current fluctuations that mimic intrinsic plasma fluctuations but at larger amplitude. Details of the antenna system design, its planned modes of operation and initial results will be presented. Supported by USDoE award DE-FC02-99ER54512.
Future Air Force aircraft propulsion control systems: The extended summary paper
NASA Technical Reports Server (NTRS)
Skira, C. A.
1980-01-01
Hydromechanical control technology simply cannot compete against the performance benefits offered by electronics. Future military aircraft propulsion control systems will be full authority, digital electronic, microprocessor base systems. Anticipating the day when microprocessor technology will permit the integration and management of aircraft flight control, fire control and propulsion control systems, the Air Force Aero Propulsion Laboratory is developing control logic algorithms for a real time, adaptive control and diagnostic information system.
Ofuchi, César Yutaka; Coutinho, Fabio Rizental; Neves, Flávio; de Arruda, Lucia Valéria Ramos; Morales, Rigoberto Eleazar Melgarejo
2016-08-09
In this paper the extended autocorrelation velocity estimator is evaluated and compared using a nondestructive ultrasonic device. For this purpose, three velocity estimators are evaluated and compared. The autocorrelation method (ACM) is the most used and well established in current ultrasonic velocity profiler technology, however, the technique suffers with phase aliasing (also known as the Nyquist limit) at higher velocities. The cross-correlation method (CCM) is also well known and does not suffer with phase aliasing as it relies on time shift measurements between emissions. The problem of this method is the large computational burden due to several required mathematical operations. Recently, an extended autocorrelation method (EAM) which combines both ACM and CCM was developed. The technique is not well known within the fluid engineering community, but it can measure velocities beyond the Nyquist limit without the ACM phase aliasing issues and with a lower computational cost than CCM. In this work, all three velocity estimation methods are used to measure a uniform flow of the liquid inside a controlled rotating cylinder. The root-mean-square deviation variation coefficient (CVRMSD) of the velocity estimate and the reference cylinder velocity was used to evaluate the three different methods. Results show that EAM correctly measures velocities below the Nyquist limit with less than 2% CVRMSD. Velocities beyond the Nyquist limit are only measured well by EAM and CCM, with the advantage of the former of being computationally 15 times faster. Furthermore, the maximum value of measurable velocity is also investigated considering the number of times the velocity surpasses the Nyquist limit. The combination of number of pulses and number of samples, which highly affects the results, are also studied in this work. Velocities up to six times the Nyquist limit could be measurable with CCM and EAM using a set of parameters as suggested in this work. The results validate
Ofuchi, César Yutaka; Coutinho, Fabio Rizental; Neves, Flávio; de Arruda, Lucia Valéria Ramos; Morales, Rigoberto Eleazar Melgarejo
2016-01-01
In this paper the extended autocorrelation velocity estimator is evaluated and compared using a nondestructive ultrasonic device. For this purpose, three velocity estimators are evaluated and compared. The autocorrelation method (ACM) is the most used and well established in current ultrasonic velocity profiler technology, however, the technique suffers with phase aliasing (also known as the Nyquist limit) at higher velocities. The cross-correlation method (CCM) is also well known and does not suffer with phase aliasing as it relies on time shift measurements between emissions. The problem of this method is the large computational burden due to several required mathematical operations. Recently, an extended autocorrelation method (EAM) which combines both ACM and CCM was developed. The technique is not well known within the fluid engineering community, but it can measure velocities beyond the Nyquist limit without the ACM phase aliasing issues and with a lower computational cost than CCM. In this work, all three velocity estimation methods are used to measure a uniform flow of the liquid inside a controlled rotating cylinder. The root-mean-square deviation variation coefficient (CVRMSD) of the velocity estimate and the reference cylinder velocity was used to evaluate the three different methods. Results show that EAM correctly measures velocities below the Nyquist limit with less than 2% CVRMSD. Velocities beyond the Nyquist limit are only measured well by EAM and CCM, with the advantage of the former of being computationally 15 times faster. Furthermore, the maximum value of measurable velocity is also investigated considering the number of times the velocity surpasses the Nyquist limit. The combination of number of pulses and number of samples, which highly affects the results, are also studied in this work. Velocities up to six times the Nyquist limit could be measurable with CCM and EAM using a set of parameters as suggested in this work. The results validate
Rotating Rayleigh-Taylor turbulence
NASA Astrophysics Data System (ADS)
Boffetta, G.; Mazzino, A.; Musacchio, S.
2016-09-01
The turbulent Rayleigh-Taylor system in a rotating reference frame is investigated by direct numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical arguments, supported by our simulations, we show that the Rossby number decreases in time, and therefore the Coriolis force becomes more important as the system evolves and produces many effects on Rayleigh-Taylor turbulence. We find that rotation reduces the intensity of turbulent velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in the presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be less effective, and the efficiency of the heat transfer is reduced. Finally, during the evolution of the mixing layer we observe the development of a cyclone-anticyclone asymmetry.
Turbulence, Spontaneous Stochasticity and Climate
NASA Astrophysics Data System (ADS)
Eyink, Gregory
Turbulence is well-recognized as important in the physics of climate. Turbulent mixing plays a crucial role in the global ocean circulation. Turbulence also provides a natural source of variability, which bedevils our ability to predict climate. I shall review here a recently discovered turbulence phenomenon, called ``spontaneous stochasticity'', which makes classical dynamical systems as intrinsically random as quantum mechanics. Turbulent dissipation and mixing of scalars (passive or active) is now understood to require Lagrangian spontaneous stochasticity, which can be expressed by an exact ``fluctuation-dissipation relation'' for scalar turbulence (joint work with Theo Drivas). Path-integral methods such as developed for quantum mechanics become necessary to the description. There can also be Eulerian spontaneous stochasticity of the flow fields themselves, which is intimately related to the work of Kraichnan and Leith on unpredictability of turbulent flows. This leads to problems similar to those encountered in quantum field theory. To quantify uncertainty in forecasts (or hindcasts), we can borrow from quantum field-theory the concept of ``effective actions'', which characterize climate averages by a variational principle and variances by functional derivatives. I discuss some work with Tom Haine (JHU) and Santha Akella (NASA-Goddard) to make this a practical predictive tool. More ambitious application of the effective action is possible using Rayleigh-Ritz schemes.
Extended depth-of-field iris recognition system for a workstation environment
NASA Astrophysics Data System (ADS)
Narayanswamy, Ramkumar; Silveira, Paulo E. X.; Setty, Harsha; Pauca, V. P.; van der Gracht, Joseph
2005-03-01
Iris recognition imaging is attracting considerable interest as a viable alternative for personal identification and verification in many defense and security applications. However current iris recognition systems suffer from limited depth of field, which makes usage of these systems more difficult by an untrained user. Traditionally, the depth of field is increased by reducing the imaging system aperture, which adversely impacts the light capturing power and thus the system signal-to-noise ratio (SNR). In this paper we discuss a computational imaging system, referred to as Wavefront Coded(R) imaging, for increasing the depth of field without sacrificing the SNR or the resolution of the imaging system. This system employs a especially designed Wavefront Coded lens customized for iris recognition. We present experimental results that show the benefits of this technology for biometric identification.
NASA Astrophysics Data System (ADS)
Long, Zi-Xuan; Zhang, Yi
2014-11-01
This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by El-Nabulsi. First, the El-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and El-Nabulsi—Hamilton's canonical equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of El-Nabulsi—Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of El-Nabulsi—Hamilton action under the infinitesimal transformations of the group. Finally, Noether's theorems for the non-conservative Hamilton system under the El-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.
Field Effects of Buoyancy on Lean Premixed Turbulent Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Johnson, M. R.; Greenberg, P. S.; Wernet, M. P.
2003-01-01
The study of field effects of buoyancy on premixed turbulent flames is directed towards the advancement of turbulent combustion theory and the development of cleaner combustion technologies. Turbulent combustion is considered the most important unsolved problem in combustion science and laboratory studies of turbulence flame processes are vital to theoretical development. Although buoyancy is dominant in laboratory flames, most combustion models are not yet capable to consider buoyancy effects. This inconsistency has impeded the validation of theories and numerical simulations with experiments. Conversely, the understanding of buoyancy effects is far too limited to help develop buoyant flame models. Our research is also relevant to combustion technology because lean premixed combustion is a proven method to reduce the formation of oxides of nitrogen (NOx). In industrial lean premixed combustion systems, their operating conditions make them susceptible to buoyancy thus affecting heat distribution, emissions, stability, flashback and blowoff. But little knowledge is available to guide combustion engineers as to how to avoid or overcome these problems. Our hypothesis is that through its influence on the mean pressure field, buoyancy has direct and indirect effects on local flame/turbulence interactions. Although buoyancy acts on the hot products in the farfield the effect is also felt in the nearfield region upstream of the flame. These changes also influence the generation and dissipation of turbulent kinetic energy inside the flame brush and throughout the flowfield. Moreover, the plume of an open flame is unstable and the periodic fluctuations make additional contributions to flame front dynamics in the farfield. Therefore, processes such as flame wrinkling, flow acceleration due to heat release and flame- generated vorticity are all affected. Other global flame properties (e.g. flame stabilization limits and flame speed) may all be coupled to buoyancy. This
Turbulent transport in the solar nebula
NASA Technical Reports Server (NTRS)
Thompson, Kevin W.
1989-01-01
It is likely that turbulence played a major role in the evolution of the solar nebula, which is the flattened disk of dust and gas out of which our solar system formed. Relevant turbulent processes include the transport of angular momentum, mass, and heat, which were critically important to the formation of the solar system. This research will break ground in the modeling of compressible turbulence and its effects on the evolution of the solar nebula. The computational techniques which were developed should be of interest to researchers studying other astrophysical disk systems (e.g., active galactic nuclei), as well as turbulence modelers outside the astrophysics community.
An extended steepness model for leg-size determination based on Dachsous/Fat trans-dimer system.
Yoshida, Hiroshi; Bando, Tetsuya; Mito, Taro; Ohuchi, Hideyo; Noji, Sumihare
2014-03-11
What determines organ size has been a long-standing biological question. Lawrence et al. (2008) proposed the steepness hypothesis suggesting that the protocadherin Dachsous/Fat (Ds/Ft) system may provide some measure of dimension to the cells in relation to the gradient. In this paper we extended the model as a means of interpreting experimental results in cricket leg regeneration. We assumed that (1) Ds/Ft trans-heterodimers or trans-homodimers are redistributed during cell division, and (2) growth would cease when a differential of the dimer across each cell decreases to a certain threshold. We applied our model to simulate the results obtained by leg regeneration experiments in a cricket model. The results were qualitatively consistent with the experimental data obtained for cricket legs by RNA interference methodology. Using our extended steepness model, we provided a molecular-based explanation for leg size determination even in intercalary regeneration and for organ size determination.
An extended steepness model for leg-size determination based on Dachsous/Fat trans-dimer system
Yoshida, Hiroshi; Bando, Tetsuya; Mito, Taro; Ohuchi, Hideyo; Noji, Sumihare
2014-01-01
What determines organ size has been a long-standing biological question. Lawrence et al. (2008) proposed the steepness hypothesis suggesting that the protocadherin Dachsous/Fat (Ds/Ft) system may provide some measure of dimension to the cells in relation to the gradient. In this paper we extended the model as a means of interpreting experimental results in cricket leg regeneration. We assumed that (1) Ds/Ft trans-heterodimers or trans-homodimers are redistributed during cell division, and (2) growth would cease when a differential of the dimer across each cell decreases to a certain threshold. We applied our model to simulate the results obtained by leg regeneration experiments in a cricket model. The results were qualitatively consistent with the experimental data obtained for cricket legs by RNA interference methodology. Using our extended steepness model, we provided a molecular-based explanation for leg size determination even in intercalary regeneration and for organ size determination. PMID:24613915
Pressure atomizer having multiple orifices and turbulent generation feature
VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane
2002-01-01
A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.
Manned orbital systems concept study. Book 4: Programmatics for extended-duration missions
NASA Technical Reports Server (NTRS)
1975-01-01
The cost estimates, schedule data, and funding distributions generated in the Manned Orbital Systems Concepts (MOSC) study are presented. The overall objectives were to examine the requirements for, and to describe, a cost-effective concept for an orbital facility capable of supporting manned operations in earth orbit beyond the 7-to-30-day mission duration provided by the Shuttle/Spacelab system. The cost, schedule, and other programmatic data were developed to provide information useful for their long-range planning activities. The major portion of the data documented and discussed consists of project- and system-level schedule and funding information and also project-, system-, and subsystem-level cost summaries.
NASA Astrophysics Data System (ADS)
Quintana-Seguí, Pere; Míguez-Macho, Gonzalo; Llasat, María del Carmen
2015-04-01
Within the FP7 eartH2Observe project we are studying the ability of different LSMs to simulate the processes of drought on the Iberian Peninsula. In order to perform our simulations we need a good atmospheric forcing dataset that covers the whole area of study at the right resolution (5 km in hour case). Currently, in Spain, there are some high resolution datasets, but none of them have all the variables necessary to run a LSM. Thus, we decided to extend the SAFRAN meteorological analysis system to the whole Iberian Peninsula and the Balearic Islands. SAFRAN uses optimal interpolation to analyze the variables of interest using all available observed data (from AEMET's network) and a first guess (ERA-Interim). SAFRAN, which was developed by Météo France to force its LSMs (CROCUS for snow, ISBA and SURFEX for hydrological studies), was recently extended to the Ebro basin in a pilot study that covered only three years. In eartH2Observe we are extending it to cover the 1995-2007 period. This period is not long enough to study climate variability, but it already useful to a range of studies that need a decade long dataset. In the future, we plan to extend SAFRAN to a period that covers several decades. We present the SAFRAN analysis system, its main features and its performance in the study area. In addition, we also present a first comparison with alternative databases in the context of the eartH2Observe Spanish Case Study. In the future, we expect SAFRAN to be useful, not only to large scale hydrology projects, but also to a large range of projects simulating land surface processes for other purposes. SAFRAN will also be useful as reference dataset for downscaling climate simulations. Thus, we also discuss these applications.
ULF turbulence in the Neptunian polar cusp
NASA Astrophysics Data System (ADS)
Farrell, W. M.; Lepping, R. P.; Smith, C. W.
1993-03-01
Results of a spectral analysis of the ULF wave turbulence in the Neptunian polar cusp are presented. The activity is characterized as broadbanded, extending up to a maximum frequency of about 0.5 Hz, and having maximum wave amplitudes as large as 6 percent of the dc magnetic field. Activity in the cusp region was particularly intense at its frontside and backside, associated with the magnetopause and cusp/magnetosphere boundaries, respectively. The turbulence, particularly that above f(ci), is tentatively identified as whistler mode. It is argued that such whistler mode turbulence should resonate with electrons having energies in the tens of kiloelectron volts. Observations indicate a very strong correlation of the ULF turbulence with the energetic electrons between 22 and 35 keV measured by Voyager's low-energy charged particle experiment. A vigorous interaction between the two is inferred. ULF wave turbulence in the cusp may represent a significant but not complete power source for the magnetosphere.
NASA Astrophysics Data System (ADS)
Li, Qiang; Rapp, Markus; Schrön, Anne; Schneider, Andreas; Stober, Gunter
2016-12-01
We present the derivation of turbulent energy dissipation rate ɛ from a total of 522 days of observations with the Middle Atmosphere Alomar Radar SYstem (MAARSY) mesosphere-stratosphere-troposphere (MST) radar running tropospheric experiments during the period of 2010-2013 as well as with balloon-borne radiosondes based on a campaign in the summer 2013. Spectral widths are converted to ɛ after the removal of the broadening effects due to the finite beam width of the radar. With the simultaneous in situ measurements of ɛ with balloon-borne radiosondes at the MAARSY radar site, we compare the ɛ values derived from both techniques and reach an encouraging agreement between them. Using all the radar data available, we present a preliminary climatology of atmospheric turbulence in the UTLS (upper troposphere and lower stratosphere) region above the MAARSY site showing a variability of more than 5 orders of magnitude inherent in turbulent energy dissipation rates. The derived ɛ values reveal a log-normal distribution with a negative skewness, and the ɛ profiles show an increase with height which is also the case for each individual month. Atmospheric turbulence based on our radar measurements reveals a seasonal variation but no clear diurnal variation in the UTLS region. Comparison of ɛ with the gradient Richardson number Ri shows that only 1.7 % of all the data with turbulence occur under the condition of Ri < 1 and that the values of ɛ under the condition of Ri < 1 are significantly larger than those under Ri > 1. Further, there is a roughly negative correlation between ɛ and Ri that is independent of the scale dependence of Ri. Turbulence under active dynamical conditions (velocity of horizontal wind U > 10 m s-1) is significantly stronger than under quiet conditions (U < 10 m s-1). Last but not least, the derived ɛ values are compared with the corresponding vertical shears of background wind velocity showing a linear relation with a corresponding
NASA Astrophysics Data System (ADS)
Abdelsamie, Abouelmagd H.; Lee, Changhoon
2013-03-01
The current paper examines the heavy particle statistics modification by two-way interaction in particle-laden isotropic turbulence in an attempt to interpret their statistics modification using the information of modulated turbulence. Moreover, we clarify the distinctions of this modification between decaying and stationary turbulence as an extension of our previous work [A. H. Abdelsamie and C. Lee, "Decaying versus stationary turbulence in particle-laden isotropic turbulence: Turbulence modulation mechanism," Phys. Fluids 24, 015106 (2012), 10.1063/1.3678332]. Direct Numerical Simulation (DNS) was carried out using 1283 grid points at a Taylor micro-scale Reynolds number of Rλ ˜ 70. The effect of O(10^6) solid particles with a different Stokes number (St) was implemented as a point-force approximation in the Navier-Stokes equation. Various statistics associated with particle dispersion are investigated, and the auto-correlations models which was provided by Jung et al. ["Behavior of heavy particles in isotropic turbulence," Phys. Rev. E 77, 016307 (2008), 10.1103/PhysRevE.77.016307] are extended in the current paper. DNS results reveal that the two-way coupling interaction enhances the fluid and heavy particle auto-correlation functions and the alignment between their velocity vectors for all Stokes numbers in decaying and stationary turbulence, but for different reasons. The modification mechanisms of particle dispersion statistics in stationary turbulence are different from those in decaying turbulence depending on the Stokes number, particularly for St <1.
A complete model of turbulence
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Traci, R. M.
1976-01-01
A set of constitutive equations suitable for a priori computation of turbulent shear flows has been developed. Since no properties of a given turbulent flow need be known in advance in order to obtain a solution, the equations comprise a complete model of turbulence. Perturbation analysis shows that the model predicts a composite five-layer structure for an incompressible turbulent boundary layer, viz, a defect layer, a law-of-the-wall layer, a viscous sublayer, a near-surface roughness layer, and a viscous superlayer at the boundary-layer edge. Analysis of the defect layer demonstrates the key improvement of the model over its predecessor, the Saffman-Wilcox two-equation model of turbulence. Examination of model-predicted sublayer structure yields model-parameter boundary conditions appropriate for surfaces with roughness and mass injection. Results of numerical computations of compressible and incompressible equilibrium boundary layers show that, for such flows, the model is as accurate as mixing-length theory. Applications to transitional boundary layers and to nonequilibrium relaxation of a boundary layer passing from a rough to a smooth surface indicate that the model's applicability extends far beyond that of mixing-length theory's.
Extend Instruction outside the Classroom: Take Advantage of Your Learning Management System
ERIC Educational Resources Information Center
Jensen, Lauren A.
2010-01-01
Numerous institutions of higher education have implemented a learning management system (LMS) or are considering doing so. This web-based software package provides self-service and quick (often personalized) access to content in a dynamic environment. Learning management systems support administrative, reporting, and documentation activities. LMSs…
Impact of commercial housing system on egg quality during extended storage
Technology Transfer Automated Retrieval System (TEKTRAN)
U.S. egg producers are utilizing a variety of commercial egg production systems to provide consumer choice and meet legislative requirements. U.S. consumer egg grades were developed for conventional cage production and it is unclear what impact alternative production systems might have on egg quali...
Nonthermal plasma system for extending shelf life of raw broiler breast fillets
Technology Transfer Automated Retrieval System (TEKTRAN)
A nonthermal dielectric barrier discharge (DBD) plasma system was developed and enhanced to treat broiler breast fillets (BBF) in order to improve the microbial quality of the meat. The system consisted of a high-voltage source and two parallel, round-aluminum electrodes separated by three semi-rig...
Ushakov, I B; Vasin, M V
2011-01-01
Radiation environment in extended duration exploration missions is scrutinized in the context of the probability of the risks of deterministic and stochastic effects of radiation. Though the probability of severe radiation damage due to solar flare is very low, nonetheless it is requisite that the crew must be provided with appropriate, including pharmacological safeguards. The current nomenclature of radiation protectors composes short-term agents against acute radiation damage. Among the others, preparation B-190 is distinguished by particularly high effectiveness and universal action, and good tolerance even when organism is exposed to the extreme factors of space flight Regimen of B-290 therapy alone and with combination with aminothiol preparations have been developed to render treatment following multiple solar events. Effectiveness of radioprotectors can be increased substantially by local shielding of the abdomen and pelvis. The most promising nonspecific stimulators of total resistance of organism are riboxin (inosin) and combined preparation aminotetravit as well as vitamins tocopherol and retinol. Therapy combining B-190 with riboxin and aminotetravit is also under discussion. Cytokine neipogen is also viewed as a candidate agent for early therapy. Concern is raised about possible development of chronic oxidative stress in long-duration exploration missions. Highlighted is the significance of adequate nutrition supplemented with fresh vegetables as a source of the most valuable bioflavonoids. Antioxidants L-selenomethionine and melatonin proved their effectiveness against heavy nuclei of galactic radiation. An open issue is how to make natural antioxidants beneficial to oxidative stress control and attenuation of low-intensity galactic radiation.
Martínez-Fonseca, Nadhynee; Castañeda, Luis Ángel; Uranga, Agustín; Luviano-Juárez, Alberto; Chairez, Isaac
2016-05-01
This study addressed the problem of robust control of a biped robot based on disturbance estimation. Active disturbance rejection control was the paradigm used for controlling the biped robot by direct active estimation. A robust controller was developed to implement disturbance cancelation based on a linear extended state observer of high gain class. A robust high-gain scheme was proposed for developing a state estimator of the biped robot despite poor knowledge of the plant and the presence of uncertainties. The estimated states provided by the state estimator were used to implement a feedback controller that was effective in actively rejecting the perturbations as well as forcing the trajectory tracking error to within a small vicinity of the origin. The theoretical convergence of the tracking error was proven using the Lyapunov theory. The controller was implemented by numerical simulations that showed the convergence of the tracking error. A comparison with a high-order sliding-mode-observer-based controller confirmed the superior performance of the controller using the robust observer introduced in this study. Finally, the proposed controller was implemented on an actual biped robot using an embedded hardware-in-the-loop strategy.
Mollusc-Microbe Mutualisms Extend the Potential for Life in Hypersaline Systems
NASA Astrophysics Data System (ADS)
Hickman, Carole S.
2003-11-01
Metazoans in extreme environments have evolved mutualisms with microbes that extend the physical and chemical capabilities of both partners. Some of the best examples are bivalve molluscs in evaporite and hypersaline settings. Mollusc tissue is developmentally and evolutionarily amenable to housing vast numbers of symbiotic microbes. Documented benefits to the host are nutritional. Multiple postulated benefits to the microbes are related to optimizing metabolic performance at interfaces, where heterogeneity and steep gradients that cannot be negotiated by microbes can be spanned by larger metazoan hosts. A small cockle, Fragum erugatum, and its photosymbiotic microbes provide a remarkable example of a mutualistic partnership in the hypersaline reaches of Shark Bay, Western Australia. Lucinid bivalves and their endosymbiotic chemolithotrophic bacteria provide examples in which hosts span oxic/anoxic interfaces on behalf of their symbionts at sites of seafloor venting. Multiple lines of evidence underscore the antiquity of mutualisms and suggest that they may have played a significant role in life's first experiments above the prokaryotic grade of complexity. The study of metazoan-microbe mutualisms and their signatures in extreme environments in the geologic record will provide a significant augmentation to microbial models in paleobiology and astrobiology. There are strong potential links between mutualisms and the early history of life on Earth, the persistence of life in extreme environments at times of global crisis and mass extinction, and the possibilities for life elsewhere in the universe.
Extended s-wave pairing symmetry on the triangular lattice heavy fermion system
NASA Astrophysics Data System (ADS)
Zhang, Lan; Wang, Yu-Feng; Zhong, Yin; Luo, Hong-Gang
2015-10-01
We investigate the pairing symmetry of the Kondo-Heisenberg model on triangular lattice, which is believed to capture the core competition of Kondo screening and local magnetic exchange interaction in heavy electron compounds. On the dominant background of the heavy fermion state, the introduction of the Heisenberg antiferromagnetic interaction ( J H ) leads to superconducting pairing instability. Depending on the strength of the interactions, it is found that the pairing symmetry favours an extended s-wave for small J H and high conduction electron density but a chiral d_{x^2 - y^2 } + id_{xy}-wave for large J H and low conduction electron density, which provides a phase diagram of pairing symmetry from the calculations of the ground-state energy. The transition between these two pairing symmetries is found to be first-order. Furthermore, we also analyze the phase diagram from the pairing strengths and find that the phase diagram obtained is qualitatively consistent with that based on the ground-state energy. In addition, we propose an effective single-band BCS Hamiltonian, which is able to describe the low-energy thermodynamic behaviors of the heavy fermion superconducting states. These results further deepen the understanding of the antiferromagnetic interaction which results in a geometric frustration for the model studied. Our work may provide a possible scenario to understand the pairing symmetry of the heavy fermion superconductivity, which is one of active issues in very recent years.
Extending the zero-derivative principle for slow-fast dynamical systems
NASA Astrophysics Data System (ADS)
Benoît, Eric; Brøns, Morten; Desroches, Mathieu; Krupa, Martin
2015-10-01
Slow-fast systems often possess slow manifolds, that is invariant or locally invariant sub-manifolds on which the dynamics evolves on the slow time scale. For systems with explicit timescale separation, the existence of slow manifolds is due to Fenichel theory, and asymptotic expansions of such manifolds are easily obtained. In this paper, we discuss methods of approximating slow manifolds using the so-called zero-derivative principle. We demonstrate several test functions that work for systems with explicit time scale separation including ones that can be generalized to systems without explicit timescale separation. We also discuss the possible spurious solutions, known as ghosts, as well as treat the Templator system as an example.
Bochenkov, Vladimir; Suetin, Nikolay; Shankar, Sadasivan
2014-09-07
A new method, the Extended Temperature-Accelerated Dynamics (XTAD), is introduced for modeling long-timescale evolution of large rare-event systems. The method is based on the Temperature-Accelerated Dynamics approach [M. Sørensen and A. Voter, J. Chem. Phys. 112, 9599 (2000)], but uses full-scale parallel molecular dynamics simulations to probe a potential energy surface of an entire system, combined with the adaptive on-the-fly system decomposition for analyzing the energetics of rare events. The method removes limitations on a feasible system size and enables to handle simultaneous diffusion events, including both large-scale concerted and local transitions. Due to the intrinsically parallel algorithm, XTAD not only allows studies of various diffusion mechanisms in solid state physics, but also opens the avenue for atomistic simulations of a range of technologically relevant processes in material science, such as thin film growth on nano- and microstructured surfaces.
NASA Astrophysics Data System (ADS)
Yamada, Shunsuke; Shimojo, Fuyuki; Akashi, Ryosuke; Tsuneyuki, Shinji
2017-01-01
We present an efficient postprocessing method for calculating the electronic structure of nanosystems based on the divide-and-conquer approach to density functional theory (DC-DFT), in which a system is divided into subsystems whose electronic structure is solved separately. In this postprocess, the Kohn-Sham Hamiltonian of the total system is easily derived from the orbitals and orbital energies of subsystems obtained by DC-DFT without time-consuming and redundant computation. The resultant orbitals spatially extended over the total system are described as linear combinations of the orbitals of the subsystems. The size of the Hamiltonian matrix can be much reduced from that for the conventional calculation, so our method is fast and applicable to general huge systems for investigating the nature of electronic states.
2016-01-01
This report presents the design and evaluation of a innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wall system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.
NASA Technical Reports Server (NTRS)
Shapiro, Bruce E.; Levchenko, Andre; Meyerowitz, Elliot M.; Wold, Barbara J.; Mjolsness, Eric D.
2003-01-01
Cellerator describes single and multi-cellular signal transduction networks (STN) with a compact, optionally palette-driven, arrow-based notation to represent biochemical reactions and transcriptional activation. Multi-compartment systems are represented as graphs with STNs embedded in each node. Interactions include mass-action, enzymatic, allosteric and connectionist models. Reactions are translated into differential equations and can be solved numerically to generate predictive time courses or output as systems of equations that can be read by other programs. Cellerator simulations are fully extensible and portable to any operating system that supports Mathematica, and can be indefinitely nested within larger data structures to produce highly scaleable models.
Analysis of a stability valve system for extending the dynamic range of a supersonic inlet
NASA Technical Reports Server (NTRS)
Webb, J. A., Jr.; Dustin, M. O.
1975-01-01
A stability valve system designed for a full-scale, flight, supersonic, mixed-compression inlet was modeled dynamically by using analog computer techniques. The system uses poppet valves mounted in the inlet cowl to bypass airflow and augments the inlet shock position control system by preventing unstarts caused by high-frequency perturbations. The model was used as a design aid to investigate the effects of varying both the physical configurations of the valve and the flight and wind tunnel conditions. Results of the analysis indicate that the stability valve will provide a bandpass operation of 1 hertz to 17 hertz.
Shapiro, Bruce E; Levchenko, Andre; Meyerowitz, Elliot M; Wold, Barbara J; Mjolsness, Eric D
2003-03-22
Cellerator describes single and multi-cellular signal transduction networks (STN) with a compact, optionally palette-driven, arrow-based notation to represent biochemical reactions and transcriptional activation. Multi-compartment systems are represented as graphs with STNs embedded in each node. Interactions include mass-action, enzymatic, allosteric and connectionist models. Reactions are translated into differential equations and can be solved numerically to generate predictive time courses or output as systems of equations that can be read by other programs. Cellerator simulations are fully extensible and portable to any operating system that supports Mathematica, and can be indefinitely nested within larger data structures to produce highly scaleable models.
Impact of resonant magnetic perturbations on nonlinearly driven modes in drift-wave turbulence
Leconte, M.; Diamond, P. H.
2012-05-15
In this work, we study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows, and confinement in the framework of resistive drift wave turbulence. We extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large ({delta}B{sub r}/B{sub 0}). Both the vorticity flux (Reynolds stress) and particle flux are modulated. We derive an extended predator prey model which couples zonal potential and density dynamics to the evolution of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. We find states that are similar to the ZF-dominated state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude, the energy of zonal flows decreases and the turbulence energy increases with ({delta}B{sub r}/B{sub 0}), corresponding to a damping of zonal flows.
Aspects of Turbulent / Non-Turbulent Interfaces
NASA Technical Reports Server (NTRS)
Bisset, D. K.; Hunt, J. C. R.; Rogers, M. M.; Koen, Dennis (Technical Monitor)
1999-01-01
A distinct boundary between turbulent and non-turbulent regions in a fluid of otherwise constant properties is found in many laboratory and engineering turbulent flows, including jets, mixing layers, boundary layers and wakes. Generally, the flow has mean shear in at least one direction within t he turbulent zone, but the non-turbulent zones have no shear (adjacent laminar shear is a different case, e.g. transition in a boundary layer). There may be purely passive differences between the turbulent and non-turbulent zones, e.g. small variations in temperature or scalar concentration, for which turbulent mixing is an important issue. The boundary has several major characteristics of interest for the present study. Firstly, the boundary advances into the non-turbulent fluid, or in other words, nonturbulent fluid is entrained. Secondly, the change in turbulence properties across the boundary is remarkably abrupt; strong turbulent motions come close to the nonturbulent fluid, promoting entrainment. Thirdly, the boundary is irregular with a continually changing convoluted shape, which produces statistical intermittency. Its shape is contorted at all scales of the turbulent motion.
Turbulence and turbulent mixing in natural fluids
NASA Astrophysics Data System (ADS)
Gibson, Carl H.
2010-12-01
Turbulence and turbulent mixing in natural fluids begin with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretions on a spinning pair release 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscous stresses and negative turbulence stresses work against gravity, extracting mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until strong-force viscous stresses freeze out turbulent mixing patterns as the first fossil turbulence. Cosmic microwave background temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered as plasma photon-viscous forces permitting gravitational fragmentation on supercluster to galaxy mass scales. Turbulent morphologies and viscous-turbulent lengths appear as linear gas-protogalaxy-clusters in the Hubble ultra-deep field at z~7. Protogalaxies fragment into Jeans mass clumps of primordial-gas planets at decoupling: the dark matter of galaxies. Shortly after the plasma-to-gas transition, planet mergers produce stars that explode on overfeeding to fertilize and distribute the first life.
Thomas, John
2012-05-01
Systems Theoretic Process Analysis (STPA) is a powerful new hazard analysis method designed to go beyond traditional safety techniques - such as Fault Tree Analysis (FTA) - that overlook important causes of accidents like flawed requirements, dysfunctional component interactions, and software errors. While proving to be very effective on real systems, no formal structure has been defined for STPA and its application has been ad-hoc with no rigorous procedures or model-based design tools. This report defines a formal mathematical structure underlying STPA and describes a procedure for systematically performing an STPA analysis based on that structure. A method for using the results of the hazard analysis to generate formal safety-critical, model-based system and software requirements is also presented. Techniques to automate both the analysis and the requirements generation are introduced, as well as a method to detect conflicts between the safety and other functional model-based requirements during early development of the system.
Thermal Control System for a Small, Extended Duration Lunar Surface Science Platform
NASA Technical Reports Server (NTRS)
Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.
2010-01-01
The presentation slides include: Introduction: lunar mission definition, Problem: requirements/methodology, Concept: thermal switching options, Analysis: system evaluation, Plans: dual-radiator LHP (loop heat pipe) test bed, and Conclusions: from this study.
Multi-level segment analysis: definition and applications in turbulence
NASA Astrophysics Data System (ADS)
Wang, Lipo
2015-11-01
The interaction of different scales is among the most interesting and challenging features in turbulence research. Existing approaches used for scaling analysis such as structure-function and Fourier spectrum method have their respective limitations, for instance scale mixing, i.e. the so-called infrared and ultraviolet effects. For a given function, by specifying different window sizes, the local extremal point set will be different. Such window size dependent feature indicates multi-scale statistics. A new method, multi-level segment analysis (MSA) based on the local extrema statistics, has been developed. The part of the function between two adjacent extremal points is defined as a segment, which is characterized by the functional difference and scale difference. The structure function can be differently derived from these characteristic parameters. Data test results show that MSA can successfully reveal different scaling regimes in turbulence systems such as Lagrangian and two-dimensional turbulence, which have been remaining controversial in turbulence research. In principle MSA can generally be extended for various analyses.
Portable inference engine: An extended CLIPS for real-time production systems
NASA Technical Reports Server (NTRS)
Le, Thach; Homeier, Peter
1988-01-01
The present C-Language Integrated Production System (CLIPS) architecture has not been optimized to deal with the constraints of real-time production systems. Matching in CLIPS is based on the Rete Net algorithm, whose assumption of working memory stability might fail to be satisfied in a system subject to real-time dataflow. Further, the CLIPS forward-chaining control mechanism with a predefined conflict resultion strategy may not effectively focus the system's attention on situation-dependent current priorties, or appropriately address different kinds of knowledge which might appear in a given application. Portable Inference Engine (PIE) is a production system architecture based on CLIPS which attempts to create a more general tool while addressing the problems of real-time expert systems. Features of the PIE design include a modular knowledge base, a modified Rete Net algorithm, a bi-directional control strategy, and multiple user-defined conflict resolution strategies. Problems associated with real-time applications are analyzed and an explanation is given for how the PIE architecture addresses these problems.
Premixed autoignition in compressible turbulence
NASA Astrophysics Data System (ADS)
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Decay of capillary wave turbulence.
Deike, Luc; Berhanu, Michael; Falcon, Eric
2012-06-01
We report on the observation of freely decaying capillary wave turbulence on the surface of a fluid. The capillary wave turbulence spectrum decay is found to be self-similar in time with the same power law exponent as the one found in the stationary regime, in agreement with weak turbulence predictions. The amplitude of all Fourier modes are found to decrease exponentially with time at the same damping rate. The longest wavelengths involved in the system are shown to be damped by a viscous surface boundary layer. These long waves play the role of an energy source during the decay that sustains nonlinear interactions to keep capillary waves in a wave turbulent state.
Turbulent Fluxes of Suspended Sediment from Coupled Acoustic Doppler Current Profilers
NASA Astrophysics Data System (ADS)
Hoitink, T.; Sassi, M.; Vermeulen, B.
2014-12-01
Turbulent diffusion is a cornerstone in geophysical fluid mechanics, controlling the exchange of momentum, heat and mass in surface flows occurring in the atmosphere, in rivers and in the ocean. In fluvial and coastal systems, modeling turbulent diffusion of momentum and suspended sediment requires knowledge about turbulent diffusivities, which is generally derived from parameterizations based on laboratory experiments. Field determinations of momentum and sediment diffusivities are cumbersome, requiring an instrumental array to simultaneously sample turbulence and mean flow quantities in time and in space. Recently, a new technique to analyze geophysical surface flow turbulence was introduced, appropriate for large scale systems, based on coupling of acoustic Doppler current profilers (ADCPs). Here, we extend this approach to obtain collocated profiles of both the Reynolds stress tensor and eddy covariance fluxes, to derive vertical profiles of turbulent momentum and sediment diffusivity in a tidal river. Shear and normal stresses are obtained by combining the variances in radial velocities measured by the ADCP beams. The covariances between radial velocities and calibrated acoustic backscatter allow to determine the three Cartesian components of the turbulent flux of suspended sediment. The main advantage of this new approach is that flow velocity and sediment concentration measurements are exactly collocated, and that it allows to profile over longer ranges, in comparison to existing techniques. Results show that vertical profiles of the inverse turbulent Prandtl-Schmidt number is coherent with corresponding profiles of the sediment diffusivity, rather than with profiles of the eddy viscosity. This implies modelling suspended sediment dynamics requires knowledge about the sediment diffusivity, as the Prandtl-Schmidt number cannot be estimated from the eddy viscosity alone.
Damage-Mitigating Control of Space Propulsion Systems for High Performance and Extended Life
NASA Technical Reports Server (NTRS)
Ray, Asok; Wu, Min-Kuang
1994-01-01
A major goal in the control of complex mechanical system such as spacecraft rocket engine's advanced aircraft, and power plants is to achieve high performance with increased reliability, component durability, and maintainability. The current practice of decision and control systems synthesis focuses on improving performance and diagnostic capabilities under constraints that often do not adequately represent the materials degradation. In view of the high performance requirements of the system and availability of improved materials, the lack of appropriate knowledge about the properties of these materials will lead to either less than achievable performance due to overly conservative design, or over-straining of the structure leading to unexpected failures and drastic reduction of the service life. The key idea in this report is that a significant improvement in service life could be achieved by a small reduction in the system dynamic performance. The major task is to characterize the damage generation process, and then utilize this information in a mathematical form to synthesize a control law that would meet the system requirements and simultaneously satisfy the constraints that are imposed by the material and structural properties of the critical components. The concept of damage mitigation is introduced for control of mechanical systems to achieve high performance with a prolonged life span. A model of fatigue damage dynamics is formulated in the continuous-time setting, instead of a cycle-based representation, for direct application to control systems synthesis. An optimal control policy is then formulated via nonlinear programming under specified constraints of the damage rate and accumulated damage. The results of simulation experiments for the transient upthrust of a bipropellant rocket engine are presented to demonstrate efficacy of the damage-mitigating control concept.
Adaptive system for solar telescopes operating in the strongly turbulent atmosphere
NASA Astrophysics Data System (ADS)
Antoshkin, L. V.; Botugina, N. N.; Bolbasova, L. A.; Demidov, M. L.; Grigoriev, V. M.; Emaleev, O. N.; Konyaev, P. A.; Kopylov, E. A.; Kovadlo, P. G.; Kudryashov, A. V.; Lavrinov, V. V.; Lavrinova, L. N.; Lukin, V. P.; Shikhovtcev, A. Yu.; Trifonov, V. D.
2016-07-01
In this article, we describe the development of the newest adaptive optics system for the Big Solar Vacuum Telescope of the Baikal Astrophysical Observatory. This system is a result of collaboration between VE Zuev Institute of Atmospheric Optics SB RAS, Tomsk, and Institute of Solar-Terrestrial Physics SB RAS, Irkutsk. The system includes two active mirrors for the correction: domestic tip-tilt and bimorph deformable (Active Optics NightN Ltd.), and separate wavefront sensors (WFS). A correlation S-H wave-front sensor is based on a Allies Prosilica GX-1050 GigE camera with speed of 309 Hz and frame size of 1248x1248 pixels. A personal computer is used for bimorph deformable mirror image processing. The mirror was successfully used during the 2010-2014 observing seasons. The system developed is capable of correcting up to 35 modes, thus providing diffraction limited images at visible wavelengths.
NASA Technical Reports Server (NTRS)
Bayard, David S. (Inventor)
1996-01-01
Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N greater then n of liftings in periodic input and output windows Pu and Py, respectively, where N is an integer chosen to define the extent (length) of each of the windows Pu and Py, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is carried out. Conditions for OT are distinct from IT in terms of zero annihilation, namely for OT and of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels.
Extending PowerPack for Profiling and Analysis of High Performance Accelerator-Based Systems
Li, Bo; Chang, Hung-Ching; Song, Shuaiwen; Su, Chun-Yi; Meyer, Timmy; Mooring, John; Cameron, Kirk
2014-12-01
Accelerators offer a substantial increase in efficiency for high-performance systems offering speedups for computational applications that leverage hardware support for highly-parallel codes. However, the power use of some accelerators exceeds 200 watts at idle which means use at exascale comes at a significant increase in power at a time when we face a power ceiling of about 20 megawatts. Despite the growing domination of accelerator-based systems in the Top500 and Green500 lists of fastest and most efficient supercomputers, there are few detailed studies comparing the power and energy use of common accelerators. In this work, we conduct detailed experimental studies of the power usage and distribution of Xeon-Phi-based systems in comparison to the NVIDIA Tesla and at SandyBridge.
MRT letter: An extended scanning probe microscopy system for macroscopic topography imaging.
Fu, Ji; Li, Faxin
2014-10-01
Enlightened by the principle of scanning probe microscopy or atomic force microscope (AFM), we proposed a novel surface topography imaging system based on the scanning of a piezoelectric unimorph cantilever. The height of sample surface can be obtained by recording the cantilever's strain using an ultra-sensitive strain gauge and the Z-axis movement is realized by electric bending of the cantilever. This system can be operated in the way similar to the contact mode in AFM, with the practical height detection resolution better than 100 nm. Imaging of the inner surface of a steel tube and on a transparent wing of a honey bee were conducted and the obtained results showed that this proposed system is a very promising solution for in situ topography mapping.
NASA Technical Reports Server (NTRS)
1987-01-01
The objectives consisted of three major tasks. The first was to establish the definition of Space Station and Orbital Maneuvering Vehicle (OMV) user requirements and interfaces and to evaluate system requirements of a water tanker to be used at the station. The second task is to conduct trade studies of system requirements, hardware/software, and operations to evaluate the effect of automatic operation at the station or remote from the station in consonance with the OMV. The last task is to evaluate automatic refueling concepts and to evaluate the impact to Orbital Spacecraft Consumable Resupply System (OSCRS) concept/design to use expendable launch vehicles (ELV) to place the tank into orbit. Progress in each area is discussed.
3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System
Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P
2002-05-29
Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of
Extended cubic B-spline method for solving a linear system of second-order boundary value problems.
Heilat, Ahmed Salem; Hamid, Nur Nadiah Abd; Ismail, Ahmad Izani Md
2016-01-01
A method based on extended cubic B-spline is proposed to solve a linear system of second-order boundary value problems. In this method, two free parameters, [Formula: see text] and [Formula: see text], play an important role in producing accurate results. Optimization of these parameters are carried out and the truncation error is calculated. This method is tested on three examples. The examples suggest that this method produces comparable or more accurate results than cubic B-spline and some other methods.
NASA Astrophysics Data System (ADS)
Fallahi, Kia; Raoufi, Reza; Khoshbin, Hossein
2008-07-01
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper a chaotic communication method using extended Kalman filter is presented. The chaotic synchronization is implemented by EKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication is used to achieve a satisfactory, typical secure communication scheme. In the proposed system, a multi-shift cipher algorithm is also used to enhance the security and the key cipher is chosen as one of the chaos states. The key estimate is employed to recover the primary data. To illustrate the effectiveness of the proposed scheme, a numerical example based on Chen dynamical system is presented and the results are compared to two other chaotic systems.
Pai, Sung Jin; Bae, Young Chan
2010-10-21
A simple and analytical pair potential function was developed to represent the osmotic pressures in aqueous protein/salt systems under various conditions. Based on a hard core Lennard-Jones (HCLJ) potential model, the new potential function considers various interactions by extending the attractive Lennard-Jones potential. A temperature-dependent coefficient term was introduced to take into account the specific properties of given materials. Comparison of the new potential function with the HCLJ model in hydrocarbon and water systems showed that consideration of the temperature dependence in the potential function was effective, especially for strong polar systems such as water. To predict the osmotic pressures of aqueous lysozyme/(NH(4))(2)SO(4) solutions of various ionic strength and pH, the energy parameters of lysozyme were correlated with the experimental cloud point temperature. The proposed model agreed fairly well with the experimental osmotic pressure data with only previously obtained parameters.
NASA Astrophysics Data System (ADS)
Yang, Hongjiu; You, Xiu; Liu, Zhixin; Sun, Fuchun
2015-10-01
This paper studies the problem of synchronisation to a desired trajectory for non-linear multi-agent systems. By introducing extended state observer approach, decentralised adaptive controllers are designed for distributed systems which have non-identical unknown non-linear dynamics. The non-identical unknown non-linear dynamics allows for a tracked command dynamics which is also non-linear and unknown. State variables of agents can be obtained only in the case where leader agent and the network communication topology for multi-agent systems is strongly connected digraph network structures. A Lyapunov-function-based approach is given to show that the tracking error is ultimately bounded. Some simulation results are given to demonstrate the effectiveness of the developed techniques in this paper.
NASA Astrophysics Data System (ADS)
Pai, Sung Jin; Bae, Young Chan
2010-10-01
A simple and analytical pair potential function was developed to represent the osmotic pressures in aqueous protein/salt systems under various conditions. Based on a hard core Lennard-Jones (HCLJ) potential model, the new potential function considers various interactions by extending the attractive Lennard-Jones potential. A temperature-dependent coefficient term was introduced to take into account the specific properties of given materials. Comparison of the new potential function with the HCLJ model in hydrocarbon and water systems showed that consideration of the temperature dependence in the potential function was effective, especially for strong polar systems such as water. To predict the osmotic pressures of aqueous lysozyme/(NH4)2SO4 solutions of various ionic strength and pH, the energy parameters of lysozyme were correlated with the experimental cloud point temperature. The proposed model agreed fairly well with the experimental osmotic pressure data with only previously obtained parameters.
Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system.
Alkhatib, Y; Dewaldt, M; Moritz, S; Nitzsche, R; Kralisch, D; Fischer, D
2017-03-01
Although bacterial nanocellulose (BNC) has been widely investigated in the last 10years as drug delivery system, up to now no long-term controlled release of drugs could be realized. Therefore, the aim of the present work was the development of a BNC-based drug delivery system that provides prolonged retention time for the antiseptic octenidine up to one week with improved mechanical and antimicrobial properties as well as a high biocompatibility. BNC was modified by incorporation of differently concentrated Poloxamers 338 and 407 as micelles and gels that were extensively investigated regarding size, surface charge, and dynamic viscosity. Depending on type and concentration of the Poloxamer, a retarded octenidine release up to one week could be accomplished. Additionally, superior material properties such as high compression stability and water binding could be achieved. The antimicrobial activity of octenidine against Staphylococcus aureus and Pseudomonas aeruginosa was not changed by the use of Poloxamers. Excellent biocompatibility of the Poloxamer loaded BNC could be demonstrated after local administration in a shell-less hen's egg model. In conclusion, a long-term delivery system consisting of BNC and Poloxamer could be developed for octenidine as a ready-to-use system e.g. for long-term dermal wound treatment.
NASA Astrophysics Data System (ADS)
Tannenbaum, Emmanuel; Shakhnovich, Eugene I.
2005-12-01
Quasispecies theory has emerged as an important tool for modeling the evolutionary dynamics of biological systems. We review recent advances in the field, with an emphasis on the quasispecies dynamics of semiconservatively replicating genomes. Applications to cancer and adult stem cell growth are discussed. Additional topics, such as genetic repair and many-gene genomes, are covered as well.
Statistical turbulence theory and turbulence phenomenology
NASA Technical Reports Server (NTRS)
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Effective capacity of MIMO free-space optical systems over gamma-gamma turbulence channels
NASA Astrophysics Data System (ADS)
Chen, Li; Wang, Weidong
2017-01-01
In this paper, we provide the capacity limits of multiple-input multiple-output (MIMO) free-space optical communication (FSO) system in the presence of quality of service (QoS) requirements. Closed-form expression for the effective capacity of MIMO FSO system with equal gain combining (EGC) is derived. In order to provide insights into the impact of various system parameters, asymptotic expressions are further analyzed in the high signal-to-noise ratio (SNR) regime. Special cases are provided according to the derived results at the same time. Numerical results are given to validate all the analytical results, and the influences of QoS requirements and MIMO configurations are also illustrated.
NASA Astrophysics Data System (ADS)
Dou, Wenbin; Sun, Zhong Liang; Zeng, G.
1998-11-01
integrated antennas have the advantages of low cost and can be readily mass produced using standard IC fabrication processes. However, integrated antennas suffer from the surface wave effect at millimeter waves. One of the ways to avoid this problem is to integrate the antennas on a dielectric lens. This structure does not support surface-waves and tend to radiate most of their power into the dielectric side making the pattern unidirectional on high dielectric constant lenses. The dielectric lens also provides mechanical rigidity and thermal stability. There are various dielectric lenses which can be used for receiver application. Among them the extended hemispherical lens is very practical, since it can synthesize other lenses such as hemispherical, hyperhemispherical, or ellipsoidal simply by varying the extension length behind the hemispherical position. In reference five, investigation on such antenna/lens system is presented. In reference 6, slot- ring antennas on dielectric lens is investigated. In many applications the extended hemispherical lens/objective lens antenna system is more attractive, because it can provide higher gain and may be used in imaging system. On the other hand, monopulse direction-finding techniques are currently the most accurate and rapid method for locating a target electronically. This antenna system can also be used as monopulse antenna. However, the treatments on such antenna system are not presented yet. In this paper, the radiation pattern of the antenna system fed by double-slot antenna are computed using ray-tracing and diffraction integration methods. Although the double-slot antenna is used as feed antenna, other antenna such as slot-ring, bow-tie antenna can be used too.
Shifted Feedback Suppression of Turbulent Behavior in Advection-Diffusion Systems
Evain, C.; Szwaj, C.; Bielawski, S.; Couprie, M.-E.; Hosaka, M.; Mochihashi, A.; Katoh, M.
2009-04-03
In spatiotemporal systems with advection, suppression of noise-sustained structures involves questions that are outside of the framework of deterministic dynamical systems control (such as Ott-Grebogi-Yorke-type methods). Here we propose and test an alternate strategy where a nonlocal additive feedback is applied, with the objective to create a new deterministic solution that becomes robust to noise. As a remarkable fact - though the needed parameter perturbations required have essentially a finite size - they turn out to be extraordinarily small in principle: 10{sup -8} in the free-electron laser experiment presented here.
High-Speed Intensified Camera System for Investigation of Plasma Turbulence Induced by the Aurora
2013-02-01
frames per second. The camera was mounted to a worm -driven translating table, which provided the focusing mechanism for the system, and the method by...sensor, and illustrating the formation of parallel auroral forms of -m width within a 100-ms interval (highlighted by the arrows in panel 4
2011-09-30
98) Prescribed by ANSI Std Z39-18 2 instrumented with a Sequoia Scientific LISST-100x Type B laser particle sizer and a Digital Floc Camera ( DFC ...size distributions measured with the LISST and DFC . MINSSECT has an in situ water filtration system (McLane Research Laboratories, Inc
2011-09-30
ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 Camera ( DFC ) to measure a range...measured with the LISST and DFC . MINSSECT has an in situ water filtration system (McLane Research Laboratories, Inc. Phytoplankton Sampler) for
A quantum-mechanics molecular-mechanics scheme for extended systems.
Hunt, Diego; Sanchez, Veronica M; Scherlis, Damián A
2016-08-24
We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.
Use and Care of the Extended Cold Weather Clothing System (ECWCS).
1986-01-01
Headwear (Hood (Balaclava) and Cap, 41Camouflage Pattern) a. Machine/Hand Laundering 41b. n rylng 41 9. Foot% ear 43 10. Accessories 42 F. STAIN...SYSTEM DESCRIPTION OF ECWCS A. GENERAL. The ECWCS is composed of 23 indivi- dual clothing, handwear, headwear and footwear items which are used in...up at the hem of the mitten opening. The thumb side has an opening for the trigger finger. D. HEADWIAR. There are two headwear items in the ECWCS
A quantum-mechanics molecular-mechanics scheme for extended systems
NASA Astrophysics Data System (ADS)
Hunt, Diego; Sanchez, Veronica M.; Scherlis, Damián A.
2016-08-01
We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.
A Formal Modelling Language Extending SysML for Simulation of Continuous and Discrete System
2012-11-01
Nick Luckman2 1Block Software and 2Weapons Systems Division, DSTO Abstract MBSE tools and techniques in a broad sense provide a structured approach...aims to support the broader modelling needs of SE, hence the term MBSE . However, engineering has at its disposal another type of modelling that is...more precisely iterative algorithms. The challenge therefore for MBSE is to develop general purpose graphical modelling views that transition naturally
NASA Technical Reports Server (NTRS)
Bayard, David S. (Inventor)
1994-01-01
Periodic gain adjustment in plants of irreducible order, n, or for equalization of communications channels is effected in such a way that the plant (system) appears to be minimum phase by choosing a horizon time N is greater than n of liftings in periodic input and output windows rho sub u and rho sub y, respectively, where N is an integer chosen to define the extent (length) of each of the windows rho sub u and rho sub y, and n is the order of an irreducible input/output plant. The plant may be an electrical, mechanical, or chemical system, in which case output tracking (OT) is carried out for feedback control or a communication channel, in which case input tracking (IT) is performed. Conditions for OT are distinct from IT in terms of zero annihilation, namely H(sub s)H(sub s)(sup +) = I for OT and H(sub s)H(sub s)(sup +) = I of IT, where the OT conditions are intended for gain adjustments in the control system, and IT conditions are intended for equalization for communication channels.
Niu, Mingbo; Cheng, Julian; Holzman, Jonathan F
2010-06-21
Exact error rate performances are studied for coherent free-space optical communication systems under strong turbulence with diversity reception. Equal gain and selection diversity are considered as practical schemes to mitigate turbulence. The exact bit-error rate for binary phase-shift keying and outage probability are developed for equal gain diversity. Analytical expressions are obtained for the bit-error rate of differential phase-shift keying and asynchronous frequency-shift keying, as well as for outage probability using selection diversity. Furthermore, we provide the closed-form expressions of diversity order and coding gain with both diversity receptions. The analytical results are verified by computer simulations and are suitable for rapid error rates calculation.
Scale-invariant cascades in turbulence and evolution
NASA Astrophysics Data System (ADS)
Guttenberg, Nicholas Ryan
In this dissertation, I present work addressing three systems which are traditionally considered to be unrelated: turbulence, evolution, and social organization. The commonality between these systems is that in each case, microscopic interaction rules give rise to an emergent behavior that in some way makes contact with the macroscopic scale of the problem. The open-ended evolution of complexity in evolving systems is analogous to the scale-free structure established in turbulent flows through local transportation of energy. In both cases, an invariance is required for the cascading behavior to occur, and in both cases the scale-free structure is built up from some initial scale from which the behavior is fed. In turbulence, I examine the case of two-dimensional turbulence in order to support the hypothesis that the friction factor and velocity profile of turbulent pipe flows depend on the turbulent energy spectrum in a way unpredicted by the classic Prandtl theory. By simulating two-dimensional flows in controlled geometries, either an inverse energy cascade or forward enstrophy cascade can be produced. The friction factor scaling of the flow changes depending on which cascade is present, in a way consistent with momentum transfer theory and roughness-induced criticality. In the problem of evolution, I show that open-ended growth of complexity can be obtained by ensuring that the evolutionary dynamics are invariant with respect to changes in complexity. Finite system size, finite point mutation rate, and fixed points in the fitness landscape can all interrupt this cascade behavior, producing an analogue to the integral scale of turbulence. This complexity cascade can exist both for competing and for symbiotic sets of organisms. Extending this picture to the qualitatively-different levels of organization of real lifeforms (viruses, unicellular, biofilms, multicellular) requires an understanding of how the processes of evolution themselves evolve. I show that a
Kawano, Yoshihiro; Higgins, Christopher; Yamamoto, Yasuhito; Nyhus, Julie; Bernard, Amy; Dong, Hong-Wei; Karten, Harvey J; Schilling, Tobias
2013-01-01
We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI), also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI). Our darkfield system uses an ultra-thin light-emitting diode (LED) light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1) no oil condenser is required for high resolution imaging (2) there is less scatter from dust and dirt on the slide specimen (3) there is less halo, providing a more natural darkfield contrast image, and (4) the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB) and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the use of
An extended real-time flood impact forecasting system for the Chapare watershed in Bolivia
NASA Astrophysics Data System (ADS)
Rossi, Lauro; Gabellani, Simone; Masoero, Alessandro; Dolia, Daniele; Rudari, Roberto
2016-04-01
All over the world a lot of cities are located in flood-prone areas and million of people are exposed to inundation risk. To cope with that the social safety demands efficient civil protection structures able to reduce flood risk by issuing warnings. This task requires civil protection organisms to adopt systems able to support their activities in predicting floods and rainfall impacts. For this reason flood early warning systems, based on rainfall observations and predictions, has become very useful because they are able to provide in advance a quantitative evaluation of possible effects in term of discharge and peak flow. Traditionally those forecasting systems use hydrologic models coupled with meteorological models to forecast discharge in relevant river sections and are called hydro-meteorological chains. In order to have a better representation of the flood dynamics, these hydro-meteorological chains can be expanded to include bi-dimensional hydraulic models where the level exposure is high or flow singularities (e.g. junctions, deltas, etc.) require more accurate investigation. That information allows the generation of real-time inundation scenarios that can be used by civil protection and authorities to estimate impact on population and take counter-measures. The new real-time flood impact forecasting chain consists of a suite of hydrometeorological tools that combines meteorological models, a disaggregation tool and a fully distributed hydrological model and a bidimensional hydraulic model that produces inundation scenarios in the most exposed river segments of the flood plain and a scenario tool that allows the assessment of assets involved. The complete modelling chain has been implemented in the Chapare watershed in Bolivia and it is managed by the Dewetra platform, which since 2013 is used by the Civil Defense and National Meteorological service as the main national Early Warning supporting tool.
Honoré, Paul; Granjeaud, Samuel; Tagett, Rebecca; Deraco, Stéphane; Beaudoing, Emmanuel; Rougemont, Jacques; Debono, Stéphane; Hingamp, Pascal
2006-01-01
Background High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and
2012-09-30
Floc Camera ( DFC ) to measure a range of particle diameters from approximately 2 µm to 4 cm. The LISST also measures the beam attenuation coefficient...based on particle size distributions measured with the LISST and DFC . MINSSECT has an in situ water filtration system (McLane Research Laboratories...LISST-100x Type B and a digital floc camera ( DFC ) to estimate sediment mass and volume concentrations in suspension. He estimated sediment mass by
Extending Team Software Process (TSP) to Systems Engineering: A NAVAIR Experience Report
2010-03-01
Hanscom AFB, MA 01731-2100 The ideas and findings in this report should not be construed as an official DoD position . It is published in the...2.1.3 Feature Performance 8 2.1.4 Responsiveness 8 2.1.5 Predictability 9 2.1.6 Quality-of-Life 9 2.1.7 Quality Performance 10 2.1.8 Customer...Satisfaction 10 2.2 AV-8B System Engineering Before and After TSPI 11 2.2.1 Definition of Terms 11 2.2.2 Before and After Using TSPI 11 2.3 Conduct
Lilly, M.P.; Wootters, A.H.; Hallock, R.B.
1996-11-01
Capacitive studies of hysteretic capillary condensation of superfluid {sup 4}He in Nuclepore have shown that the initial draining of the pores occurs over a small range of the chemical potential with avalanches present as groups of pores drain. In the work reported here, the avalanches in this system are shown to be nonlocal events which involve pores distributed at low density across the entire sample. The nonlocal avalanche behavior is shown to be enabled by the presence of a superfluid film connection among the pores. {copyright} {ital 1996 The American Physical Society.}
2007-06-01
1: Interview with: Jane Doe ACME Corporation Chief Engineer Date: 11/2/01 Q: What are some of your challenges in coordinating design activities? Codes...Canwnentfl Jb3r ATh level yet so obviously it wasn’t an R, an A-5-R issue)......... Stakeholders. MD> comunicates with> Q. Do you have contact with any...some ways, the goal was to develop a suite of systems that were akin to the weapons of corporate warfare, the Blackberry and Treo (other multipurpose
Berbert, Juliana Militão; Martinez, Alexandre Souto
2010-06-01
Consider N sites randomly and uniformly distributed in a d-dimensional hypercube. A walker explores this disordered medium going to the nearest site, which has not been visited in the last μ (memory) steps. The walker trajectory is composed of a transient part and a periodic part (cycle). For one-dimensional systems, travelers can or cannot explore all available space, giving rise to a crossover between localized and extended regimes at the critical memory μ1=log2 N. The deterministic rule can be softened to consider more realistic situations with the inclusion of a stochastic parameter T (temperature). In this case, the walker movement is driven by a probability density function parameterized by T and a cost function. The cost function increases as the distance between two sites and favors hops to closer sites. As the temperature increases, the walker can escape from cycles that are reminiscent of the deterministic nature and extend the exploration. Here, we report an analytical model and numerical studies of the influence of the temperature and the critical memory in the exploration of one-dimensional disordered systems.
Melas, Christos D; Zampetakis, Leonidas A; Dimopoulou, Anastasia; Moustakis, Vassilis
2011-08-01
Recent empirical research has utilized the Technology Acceptance Model (TAM) to advance the understanding of doctors' and nurses' technology acceptance in the workplace. However, the majority of the reported studies are either qualitative in nature or use small convenience samples of medical staff. Additionally, in very few studies moderators are either used or assessed despite their importance in TAM based research. The present study focuses on the application of TAM in order to explain the intention to use clinical information systems, in a random sample of 604 medical staff (534 physicians) working in 14 hospitals in Greece. We introduce physicians' specialty as a moderator in TAM and test medical staff's information and communication technology (ICT) knowledge and ICT feature demands, as external variables. The results show that TAM predicts a substantial proportion of the intention to use clinical information systems. Findings make a contribution to the literature by replicating, explaining and advancing the TAM, whereas theory is benefited by the addition of external variables and medical specialty as a moderator. Recommendations for further research are discussed.
Microscopic description for the emergence of collective dissipation in extended quantum systems
Galve, Fernando; Mandarino, Antonio; Paris, Matteo G. A.; Benedetti, Claudia; Zambrini, Roberta
2017-01-01
Practical implementations of quantum technology are limited by unavoidable effects of decoherence and dissipation. With achieved experimental control for individual atoms and photons, more complex platforms composed by several units can be assembled enabling distinctive forms of dissipation and decoherence, in independent heat baths or collectively into a common bath, with dramatic consequences for the preservation of quantum coherence. The cross-over between these two regimes has been widely attributed in the literature to the system units being farther apart than the bath’s correlation length. Starting from a microscopic model of a structured environment (a crystal) sensed by two bosonic probes, here we show the failure of such conceptual relation, and identify the exact physical mechanism underlying this cross-over, displaying a sharp contrast between dephasing and dissipative baths. Depending on the frequency of the system and, crucially, on its orientation with respect to the crystal axes, collective dissipation becomes possible for very large distances between probes, opening new avenues to deal with decoherence in phononic baths. PMID:28176835
Microscopic description for the emergence of collective dissipation in extended quantum systems
NASA Astrophysics Data System (ADS)
Galve, Fernando; Mandarino, Antonio; Paris, Matteo G. A.; Benedetti, Claudia; Zambrini, Roberta
2017-02-01
Practical implementations of quantum technology are limited by unavoidable effects of decoherence and dissipation. With achieved experimental control for individual atoms and photons, more complex platforms composed by several units can be assembled enabling distinctive forms of dissipation and decoherence, in independent heat baths or collectively into a common bath, with dramatic consequences for the preservation of quantum coherence. The cross-over between these two regimes has been widely attributed in the literature to the system units being farther apart than the bath’s correlation length. Starting from a microscopic model of a structured environment (a crystal) sensed by two bosonic probes, here we show the failure of such conceptual relation, and identify the exact physical mechanism underlying this cross-over, displaying a sharp contrast between dephasing and dissipative baths. Depending on the frequency of the system and, crucially, on its orientation with respect to the crystal axes, collective dissipation becomes possible for very large distances between probes, opening new avenues to deal with decoherence in phononic baths.
Extending birthday paradox theory to estimate the number of tags in RFID systems.
Shakiba, Masoud; Singh, Mandeep Jit; Sundararajan, Elankovan; Zavvari, Azam; Islam, Mohammad Tariqul
2014-01-01
The main objective of Radio Frequency Identification systems is to provide fast identification for tagged objects. However, there is always a chance of collision, when tags transmit their data to the reader simultaneously. Collision is a time-consuming event that reduces the performance of RFID systems. Consequently, several anti-collision algorithms have been proposed in the literature. Dynamic Framed Slotted ALOHA (DFSA) is one of the most popular of these algorithms. DFSA dynamically modifies the frame size based on the number of tags. Since the real number of tags is unknown, it needs to be estimated. Therefore, an accurate tag estimation method has an important role in increasing the efficiency and overall performance of the tag identification process. In this paper, we propose a novel estimation technique for DFSA anti-collision algorithms that applies birthday paradox theory to estimate the number of tags accurately. The analytical discussion and simulation results prove that the proposed method increases the accuracy of tag estimation and, consequently, outperforms previous schemes.
Microscopic description for the emergence of collective dissipation in extended quantum systems.
Galve, Fernando; Mandarino, Antonio; Paris, Matteo G A; Benedetti, Claudia; Zambrini, Roberta
2017-02-08
Practical implementations of quantum technology are limited by unavoidable effects of decoherence and dissipation. With achieved experimental control for individual atoms and photons, more complex platforms composed by several units can be assembled enabling distinctive forms of dissipation and decoherence, in independent heat baths or collectively into a common bath, with dramatic consequences for the preservation of quantum coherence. The cross-over between these two regimes has been widely attributed in the literature to the system units being farther apart than the bath's correlation length. Starting from a microscopic model of a structured environment (a crystal) sensed by two bosonic probes, here we show the failure of such conceptual relation, and identify the exact physical mechanism underlying this cross-over, displaying a sharp contrast between dephasing and dissipative baths. Depending on the frequency of the system and, crucially, on its orientation with respect to the crystal axes, collective dissipation becomes possible for very large distances between probes, opening new avenues to deal with decoherence in phononic baths.
Towards extending the applicability of density functional theory to weakly bound systems
NASA Astrophysics Data System (ADS)
Wu, X.; Vargas, M. C.; Nayak, S.; Lotrich, V.; Scoles, G.
2001-11-01
While the attempts currently in progress in several groups for the rigorous inclusion of dispersion interactions in density functional theory (DFT) calculations mature and evolve into practical methodology, we contribute to the debate on the applicability of current functionals to the calculation of weak interaction with a systematic investigation of a few, typical, weakly bound systems. We have used both pure DFT and a hybrid approach in which the total interaction energy is partitioned into two parts: (a) the dispersion energy which, in a first approximation is the contribution due to intermonomer correlations and (b) all other interactions. The first component is accurately obtained at all distances of interest by means of a well-known damped multipolar expansion of the dispersion energy while for the second component different approximations will be evaluated. The need to avoid double counting a fraction of the correlation energy when using the hybrid approach and the choice of the appropriate functional are also discussed. We consider four systems of increasing binding strength, namely the Ar2 and Kr2 dimers, the benzene dimer, the water dimer, and a few metal carbonyls. For pure DFT calculations we confirm the conclusion reached by others concerning (a) the strong dependence of the results on the choice of the GGA functional for dispersion-dominated interaction (noble gases and benzene) with the overall tendency to yield underbinding and (b) the relatively accurate, functional-independent, description for that DFT gives of water, which we attribute to the fact that this system is dominated by electrostatic interactions. For the carbonyls we find that DFT yields results which area again strongly dependent on the choice of the functional and show a tendency to give overbinding. Our hybrid method shows instead shortcomings only for the noble gases. The problem in this case is traceable to the well-known difficulties that all current functionals experience at
Survey of materials for hydrazine propulsion systems in multicycle extended life applications
NASA Technical Reports Server (NTRS)
Coulbert, C. D.; Yankura, G.
1972-01-01
An assessment is presented of materials compatibility data for hydrazine monopropellant propulsion systems applicable to the Space Shuttle vehicle missions. Materials were evaluated for application over a 10-yr/100-mission operational lifetime with minimum refurbishment. A general materials compatibility rating for a broad range of materials and several propellants based primarily on static liquid propellant immersion testing and an in-depth evaluation of hydrazine decomposition as a function of purity, temperature, material, surface conditions, etc., are presented. The most promising polymeric material candidates for propellant diaphragms and seals appear to have little effect on increasing hydrazine decomposition rates, but the materials themselves do undergo changes in physical properties which can affect their 10-yr performance in multicycle applications. The available data on these physical properties of elastomeric materials as affected by exposure to hydrazine or related environments are presented.
Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries.
Wang, Chengliang; Xu, Yang; Fang, Yaoguo; Zhou, Min; Liang, Liying; Singh, Sukhdeep; Zhao, Huaping; Schober, Andreas; Lei, Yong
2015-03-04
Organic sodium-ion batteries (SIBs) are potential alternatives of current commercial inorganic lithium-ion batteries for portable electronics (especially wearable electronics) because of their low cost and flexibility, making them possible to meet the future flexible and large-scale requirements. However, only a few organic SIBs have been reported so far, and most of them either were tested in a very slow rate or suffered significant performance degradation when cycled under high rate. Here, we are focusing on the molecular design for improving the battery performance and addressing the current challenge of fast-charge and -discharge. Through reasonable molecular design strategy, we demonstrate that the extension of the π-conjugated system is an efficient way to improve the high rate performance, leading to much enhanced capacity and cyclability with full recovery even after cycled under current density as high as 10 A g(-1).
Ge, H X; Dai, S Q; Dong, L Y; Xue, Y
2004-12-01
An extended car following model is proposed by incorporating an intelligent transportation system in traffic. The stability condition of this model is obtained by using the linear stability theory. The results show that anticipating the behavior of more vehicles ahead leads to the stabilization of traffic systems. The modified Korteweg-de Vries equation (the mKdV equation, for short) near the critical point is derived by applying the reductive perturbation method. The traffic jam could be thus described by the kink-antikink soliton solution for the mKdV equation. From the simulation of space-time evolution of the vehicle headway, it is shown that the traffic jam is suppressed efficiently with taking into account the information about the motion of more vehicles in front, and the analytical result is consonant with the simulation one.
Bauer, Roger E.; Figley, Reed R.; Innes, A. G.
2013-11-11
A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.
Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.
2016-09-23
The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.
Abdel-Rehim, A M; Stathopoulos, Andreas; Orginos, Kostas
2014-08-01
The technique that was used to build the EigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right-hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems and then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of EigBiCG to compute spectral approximations with accuracy comparable to that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental EigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right-hand sides.
Haihua Zhao; Ling Zou; Hongbin Zhang; David Andrs; Richard Martineau
2014-04-01
The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. It was one of the very few safety systems still available during the Fukushima Daiichi accidents after the tsunamis hit the plants and the system successfully delayed the core meltdown for a few days for unit 2 & 3. Therefore, detailed models for RCIC system components are indispensable to understand extended station black-out accidents (SBO) for BWRs. As part of the effort to develop the new generation reactor system safety analysis code RELAP-7, major components to simulate the RCIC system have been developed. This paper describes the models for those components such as turbine, pump, and wet well. Selected individual component test simulations and a simplified SBO simulation up to but before core damage is presented. The successful implementation of the simplified RCIC and wet well models paves the way to further improve the models for safety analysis by including more detailed physical processes in the near future.
RELATIVISTIC ACCRETION MEDIATED BY TURBULENT COMPTONIZATION
Socrates, Aristotle E-mail: socrates@astro.princeton.ed
2010-08-10
Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in the limit where the turbulence is trans-sonic and the accretion power approaches the Eddington limit. In this regime, the turbulent Compton y-parameter approaches unity and the turbulent Compton temperature is a significant fraction of the electron rest mass energy, in agreement with the observed phenomena.
Collective Behaviors in Spatially Extended Systems with Local Interactions and Synchronous Updating
NASA Astrophysics Data System (ADS)
ChatÉ, H.; Manneville, P.
1992-01-01
Assessing the extent to which dynamical systems with many degrees of freedom can be described within a thermodynamics formalism is a problem that currently attracts much attention. In this context, synchronously updated regular lattices of identical, chaotic elements with local interactions are promising models for which statistical mechanics may be hoped to provide some insights. This article presents a large class of cellular automata rules and coupled map lattices of the above type in space dimensions d = 2 to 6.Such simple models can be approached by a mean-field approximation which usually reduces the dynamics to that of a map governing the evolution of some extensive density. While this approximation is exact in the d = infty limit, where macroscopic variables must display the time-dependent behavior of the mean-field map, basic intuition from equilibrium statistical mechanics rules out any such behavior in a low-dimensional systems, since it would involve the collective motion of locally disordered elements.The models studied are chosen to be as close as possible to mean-field conditions, i.e., rather high space dimension, large connectivity, and equal-weight coupling between sites. While the mean-field evolution is never observed, a new type of non-trivial collective behavior is found, at odds with the predictions of equilibrium statistical mechanics. Both in the cellular automata models and in the coupled map lattices, macroscopic variables frequently display a non-transient, time-dependent, low-dimensional dynamics emerging out of local disorder. Striking examples are period 3 cycles in two-state cellular automata and a Hopf bifurcation for a d = 5 lattice of coupled logistic maps. An extensive account of the phenomenology is given, including a catalog of behaviors, classification tables for the celular automata rules, and bifurcation diagrams for the coupled map lattices.The observed underlying dynamics is accompanied by an intrinsic quasi-Gaussian noise
Harding, Stephen E.; Schuck, Peter; Abdelhameed, Ali Saber; Adams, Gary; Kök, M. Samil; Morris, Gordon A.
2011-01-01
In 1962 H. Fujita (Mathematical Theory of Sedimentation Analysis, Academic Press, New York, pp. 182–192) examined the possibility of transforming a quasi-continuous distribution g(s) of sedimentation coefficient s into a distribution f(M) of molecular weight M for linear polymers using the relation f(M) = g(s).(ds/dM) and showed that this could be done if information about the relation between s and M is available from other sources. Fujita provided the transformation based on the scaling relation s = κM0.5, where κ is taken as a constant for that particular polymer and the exponent 0.5 essentially corresponds to a randomly coiled polymer under ideal conditions. This method was successfully applied to mucus glycoproteins (S.E. Harding, Adv. Carbohyd. Chem. Biochem. 47 (1989), 345–381). We now describe an extension of the method to general conformation types via the scaling relation s = κMb, where b = 0.4–0.5 for a coil, ~0.15–0.2 for a rod and ~0.67 for a sphere. We give examples of distributions f(M) vs M obtained for polysaccharides from SEDFIT derived least squares g(s) vs s profiles (P. Schuck, Biophys. J. 78 (2000) 1606–1619) and the analytical derivative for ds/dM performed with Microcal ORIGIN. We also describe a more direct route from a direct numerical solution of the integral equation describing the molecular weight distribution problem. Both routes give identical distributions although the latter offers the advantage of being incorporated completely within SEDFIT. The method currently assumes that solutions behave ideally: sedimentation velocity has the major advantage over sedimentation equilibrium in that concentrations less than 0.2 mg/ml can be employed, and for many systems non-ideality effects can be reasonably ignored. For large, non-globular polymer systems, diffusive contributions are also likely to be small. PMID:21276851
Turbulence velocimetry of density fluctuation imaging data
NASA Astrophysics Data System (ADS)
McKee, G. R.; Fonck, R. J.; Gupta, D. K.; Schlossberg, D. J.; Shafer, M. W.; Holland, C.; Tynan, G.
2004-10-01
Analysis techniques to measure the time-resolved flow field of turbulence are developed and applied to images of density fluctuations obtained with the beam emission spectroscopy diagnostic system on the DIII-D tokamak. Velocimetry applications include measurement of turbulent particle flux, zonal flows, and the Reynolds stress. The flow field of turbulent eddies exhibits quasisteady poloidal flows as well as high-frequency radial and poloidal motion associated with electrostatic potential fluctuations and strongly nonlinear multifield interactions. The orthogonal dynamic programming technique, developed for fluid-based particle and amorphous shape (smoke) flow analysis, is investigated to measure such turbulence flows. Sensitivity and accuracy are assessed and sample results discussed.
New Atmospheric Turbulence Model for Shuttle Applications
NASA Technical Reports Server (NTRS)
Justus, C. G.; Campbell, C. W.; Doubleday, M. K.; Johnson, D. L.
1990-01-01
An updated NASA atmospheric turbulence model, from 0 to 200 km altitude, which was developed to be more realistic and less conservative when applied to space shuttle reentry engineering simulation studies involving control system fuel expenditures is presented. The prior model used extreme turbulence (3 sigma) for all altitudes, whereas in reality severe turbulence is patchy within quiescent atmospheric zones. The updated turublence model presented is designed to be more realistic. The prior turbulence statistics (sigma and L) were updated and were modeled accordingly.
NASA Technical Reports Server (NTRS)
Levy, R.; Mcdonald, H.; Briley, W. R.; Kreskovsky, J. P.
1981-01-01
An approximate analysis is presented which is applicable to nonorthogonal coordinate systems having a curved centerline and planar transverse coordinate surfaces normal to the centerline. The primary flow direction is taken to coincide with the local direction of the duct centerline and is hence normal to transverse coordinate planes. The formulation utilizes vector components (velocity, vorticity, transport equations) defined in terms of local Cartesian directions aligned with the centerline tangent, although the governing equations themselves are expressed in general nonorthogonal coordinates. For curved centerlines, these vector quantities are redefined in new local Cartesian directions at each streamwise location. The use of local Cartesian variables and fluxes leads to governing equations which require only first derivatives of the coordinate transformation, and this provides for the aforementioned ease in using constructed coordinates.
NASA Technical Reports Server (NTRS)
Levy, R.; Mcdonald, H.; Briley, W. R.; Kreskovsky, J. P.
1980-01-01
An approximate analysis, applicable to nonorthogonal coordinate systems having a curved centerline and planar transverse coordinate surfaces normal to the centerline, is presented for computation of three-dimensional subsonic flow in straight and curved diffusers. The formulation is intended to facilitate the use of constructed coordinates in circumstances where it is difficult to maintain smooth behavior in higher derivatives; the use of local Cartesian variables and fluxes leads to governing equations which require only first derivatives of the coordinate transformation. The analysis is applied to a particular family of duct and diffuser geometries having curved centerlines and superelliptic cross sections. Qualitative agreement with experimental measurements is observed with regard to streamwise vortices and distortion of the primary flow.
Evaluation of an extended duct air delivery system for spaces conditioned by rooftop units
NASA Astrophysics Data System (ADS)
Kennett, Ryan
Traditional air delivery to high-bay buildings involves ceiling level supply and return ducts that create an almost-uniform temperature in the space. Problems with this system include potential recirculation of supply air and higher-than-necessary return air temperatures. A new air delivery strategy was investigated that involves changing the height of conventional supply and return ducts to have control over thermal stratification in the space. A full-scale experiment using ten vertical temperature profiles was conducted in a manufacturing facility over one year. The experimental data was utilized to validated CFD and EnergyPlus models. CFD simulation results show that supplying air directly to the occupied zone increases stratification while holding thermal comfort constant during the cooling operation. The building energy simulation identified how return air temperature offset, set point offset, and stratification influence the building's energy consumption. A utility bill analysis for cooling shows 28.8% HVAC energy savings while the building energy simulation shows 19.3-37.4% HVAC energy savings.
Multi-focus, high resolution inspection system for extended range applications
NASA Astrophysics Data System (ADS)
Harding, Kevin
2016-05-01
Visual inspection of parts or structures for defects typically requires good spatial resolution to see the defects, but may also require a large focus range. But to obtain the best resolution from an imaging system, it needs to have a low f-number which limits the usable depth of field. Methods to use autofocus or focus stacking provides more range at high resolution, but often at the expense of computation time, loss of a real time image and uncertainty in scale changes. This paper describes an approach to quickly move through a range of focus positions without the need to move optics mechanically in a manner that is highly repeatable, maintains high resolution and provides the potential for a live image directly viewable by an inspector, even at microscope level magnifications. This paper will present the approach we investigated and discuss the pros and cons for a range of applications from large structures to small feature inspection. The paper will present examples of what resolution was achieved and how the multiple images might also be used to determine other parameters such as pose of a test surface.
Baczewski, Andrew David; Shulenburger, Luke; Desjarlais, Michael Paul; Magyar, Rudolph J.
2014-02-01
In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.
Space Resource Utilization and Extending Human Presence Across the Solar System
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2005-01-01
investment enables commercial and private viability beyond Earth orbit. For example, analysis has shown the lunar oxygen production for propellant becomes commercially viable after the exploration program completes the R&D, and power from lunar derived photovoltaics could, according to past NASA sponsored studies, pay for themselves while supplying most of Earth's electrical energy after about 17 years. Besides the Moon and Mars the resources of the near Earth asteroids enable the building of large space structures and science payloads. Analysis has shown that one of the thousands of these objects (some as easily accessible in space as the Moon and Mars), 2 km dia, the size of a typical open pit mine, would cost the total global financial product of Earth for 30,000 years if we were to launch it from Earth. Beyond Mars, the belt asteroids have been calculated to contain enough materials for habitat and life to support 10 quadrillion people. Thus, the development and use of space resources enables the extension of human life through the solar system allowing humanity to move from a planetary to a solar system society.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Behrendt, Andreas; Wulfmeyer, Volker
2016-06-01
Measurements carried out by the Raman lidar system BASIL are reported to demonstrate the capability of this instrument to characterize turbulent processes within the Convective Boundary Layer (CBL). In order to resolve the vertical profiles of turbulent variables, high resolution water vapour and temperature measurements, with a temporal resolution of 10 sec and a vertical resolution of 90 and 210 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of spectral and auto-covariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (IOP 5, 20 April 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. The noise errors are demonstrated to be small enough to allow the derivation of up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations with sufficient accuracy.
NASA Astrophysics Data System (ADS)
Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele
2016-12-01
Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.
NASA Astrophysics Data System (ADS)
Hillmann, Frank; Dobereiner, Stefan; Gittinger, Christian; Reiter, Richard; Falk, Gunther; Bruck, Hans-Jurgen; Scheuring, Gerd; Bosser, Artur; Heiden, Michael; Hoppen, Gerhard; Sulik, Wolfgang; Vollrath, Wolfgang
2005-06-01
The increased requirements on reticles for the 65nm technology node with respect to CD homogeneity and CD mean to target requirements call for a metrology system with adequate measurement performance. We report on the new water immersion technique and the system concept of the worlds first optical CD metrology system based on this technology. The core of it is a new DUV immersion objective with a NA of 1.2, using illumination at a wavelength of 248nm. The largest challenge of the water immersion technology was the fluid handling. The key compo-nents, a water injection and removal unit, developed by MueTec, solve this issue. To avoid contaminations the purified DI water is micro-filtered. An environmental chamber guarantees extremely stable measurement conditions. The advantages of optical CD measurements in transmitted light compared to CD-SEM is shown. With this system, already installed, excellent results for short- and longterm repeatability for both linewidth and contact measurements were achieved on COG, KrF HT and ArF HT masks. The linearity range of the system is extended down to 220nm. A comparison of CD measurements between the different tool generations such as the Leica LWM250/270 DUV at 248nm with a NA of 0.9 is shown. An outlook on the future potentials of optical mask CD metrology finalises this report.
Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele
2016-12-28
Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.
Kolosz, Ben Grant-Muller, Susan
2015-01-15
The paper reports research involving three cost–benefit analyses performed on different ITS schemes (Active Traffic Management, Intelligent Speed Adaptation and the Automated Highway System) on one of the UK's busiest highways — the M42. The environmental scope of the assets involved is widened to take into account the possibility of new technology linked by ICT and located within multiple spatial regions. The areas focused on in the study were data centre energy emissions, the embedded emissions of the road-side infrastructure, vehicle tailpipe emissions, additional hardware required by the vehicles (if applicable) and safety, and all aspects of sustainability. Dual discounting is applied which aims to provide a separate discount rate for environmental elements. For ATM, despite the energy costs of the data centre, the initial implementation costs and mitigation costs of its embedded emissions, a high cost–benefit ratio of 5.89 is achieved, although the scheme becomes less effective later on its lifecycle due to rising costs of energy. ISA and AHS generate a negative result, mainly due to the cost of getting the vehicle on the road. In order to negate these costs, the pricing of the vehicle should be scaled depending upon the technology that is outfitted. Retrofitting on vehicles without the technology should be paid for by the driver. ATM will offset greenhouse gas emissions by 99 kt of CO{sub 2} equivalency over a 25 year lifespan. This reduction has taken into account the expected improvement in vehicle technology. AHS is anticipated to save 280 kt of CO{sub 2} equivalency over 15 years of operational usage. However, this offset is largely dependent on assumptions such as the level of market penetration. - Highlights: • Three cost–benefit analyses are applied to inter-urban intelligent transport. • For ATM, a high cost–benefit ratio of 5.89 is achieved. • ATM offsets greenhouse gas emissions by 99 kt of CO{sub 2} equivalency over 25 years.
Hansson, S
2005-01-01
Extended antipaternalism means the use of antipaternalist arguments to defend activities that harm (consenting) others. As an example, a smoker's right to smoke is often invoked in defence of the activities of tobacco companies. It can, however, be shown that antipaternalism in the proper sense does not imply such extended antipaternalism. We may therefore approve of Mill's antipaternalist principle (namely, that the only reason to interfere with someone's behaviour is to protect others from harm) without accepting activities that harm (consenting) others. This has immediate consequences for the ethics of public health. An antipaternalist need not refrain from interfering with activities such as the marketing of tobacco or heroin, boxing promotion, driving with unbelted passengers, or buying sex from "voluntary" prostitutes. PMID:15681674
Bogenschutz, Peter; Moeng, Chin-Hoh
2015-10-13
The PI’s at the National Center for Atmospheric Research (NCAR), Chin-Hoh Moeng and Peter Bogenschutz, have primarily focused their time on the implementation of the Simplified-Higher Order Turbulence Closure (SHOC; Bogenschutz and Krueger 2013) to the Multi-scale Modeling Framework (MMF) global model and testing of SHOC on deep convective cloud regimes.
Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Xie, Dong; Yang, Yixian
2015-06-01
The Telecare Medicine Information Systems (TMISs) provide an efficient communicating platform supporting the patients access health-care delivery services via internet or mobile networks. Authentication becomes an essential need when a remote patient logins into the telecare server. Recently, many extended chaotic maps based authentication schemes using smart cards for TMISs have been proposed. Li et al. proposed a secure smart cards based authentication scheme for TMISs using extended chaotic maps based on Lee's and Jiang et al.'s scheme. In this study, we show that Li et al.'s scheme has still some weaknesses such as violation the session key security, vulnerability to user impersonation attack and lack of local verification. To conquer these flaws, we propose a chaotic maps and smart cards based password authentication scheme by applying biometrics technique and hash function operations. Through the informal and formal security analyses, we demonstrate that our scheme is resilient possible known attacks including the attacks found in Li et al.'s scheme. As compared with the previous authentication schemes, the proposed scheme is more secure and efficient and hence more practical for telemedical environments.
Moon, Jongho; Choi, Younsung; Kim, Jiye; Won, Dongho
2016-03-01
Recently, numerous extended chaotic map-based password authentication schemes that employ smart card technology were proposed for Telecare Medical Information Systems (TMISs). In 2015, Lu et al. used Li et al.'s scheme as a basis to propose a password authentication scheme for TMISs that is based on biometrics and smart card technology and employs extended chaotic maps. Lu et al. demonstrated that Li et al.'s scheme comprises some weaknesses such as those regarding a violation of the session-key security, a vulnerability to the user impersonation attack, and a lack of local verification. In this paper, however, we show that Lu et al.'s scheme is still insecure with respect to issues such as a violation of the session-key security, and that it is vulnerable to both the outsider attack and the impersonation attack. To overcome these drawbacks, we retain the useful properties of Lu et al.'s scheme to propose a new password authentication scheme that is based on smart card technology and requires the use of chaotic maps. Then, we show that our proposed scheme is more secure and efficient and supports security properties.
NASA Astrophysics Data System (ADS)
Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R.
2016-12-01
Driven Langevin processes have appeared in a variety of fields due to the relevance of natural phenomena having both deterministic and stochastic effects. The stochastic currents and fluxes in these systems provide a convenient set of observables to describe their non-equilibrium steady states. Here we consider stochastic motion of a (k - 1) -dimensional object, which sweeps out a k-dimensional trajectory, and gives rise to a higher k-dimensional current. By employing the low-temperature (low-noise) limit, we reduce the problem to a discrete Markov chain model on a CW complex, a topological construction which generalizes the notion of a graph. This reduction allows the mean fluxes and currents of the process to be expressed in terms of solutions to the discrete Supersymmetric Fokker-Planck (SFP) equation. Taking the adiabatic limit, we show that generic driving leads to rational quantization of the generated higher dimensional current. The latter is achieved by implementing the recently developed tools, coined the higher-dimensional Kirchhoff tree and co-tree theorems. This extends the study of motion of extended objects in the continuous setting performed in the prequel (Catanzaro et al.) to this manuscript.
Dorn, G.K.; Gilbert, H.A.
1989-02-21
An efficient and cost competitive fuel extender liquid is described for blending with lead-free gasoline as an additive thereto in a maximum amount of up to about 35% thereof with 65% by volume of the gasoline in a blended mixture wherein. The content of the extender in the resultant fuel as proportioned on the basis of its thus representative maximum content consists essentially of: naphtha X as represented by C/sub 4/, C/sub 5/ and C/sub 6/ hydrocarbons having a Reid vapor pressure of about 8.5 to 9.6 per ASTM, D323 test procedure and an initial distillation point of about 101/sup 0/F. and an end point of about 280/sup 0/F. within a range of about 10 to 25% by volume, about 3.8 to 6.0% by volume of anhydrous ethanol, a stabilizing amount of a water repellent of the class consisting of ethyl acetate and methyl isotubyl ketone; and about 4 to 10.5% by volume of aromatics benzene and toluene, of benzene and xylene or of benzene with toluene and xylene; the extender having a specific gravity substantially comparable with that of the lead-free gasoline to which it is to be added and having phase stability in the presence of water when mixed with the gasoline.
Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.
Ecke, Robert E
2015-09-01
The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.
Enhanced simulation of an RF ion funnel including gas turbulence.
Tridas, Eric; Anthony, J Mark; Guldiken, Rasim; Schlaf, Rudy
2015-01-01
Electrodynamic ion funnels are used to enhance the transmission of ions in electrospray-based ion injection systems in 0.1 to 30 Torr pressure range. Jet disrupters are commonly employed to prevent droplets and high pressure jets from entering subsequent vacuum regions. This study presents the simulation and testing of an ion funnel containing a jet disrupter using computational fluid dynamics (CFD) and SIMION ion trajectory simulations. Traditional modeling approaches have utilized approximations for the bulk fluid flow fields without including the time-varying nature of the turbulent flow present in the system, thus yielding idealized results. In this study, the fluid flow fields are calculated using CFD. In an effort to include time dependence, a random velocity vector, whose magnitude is proportional to the square root of the turbulence kinetic energy, was calculated at each time step and added to the velocity of the background gas. These simulations predicted that the transmitted ion current is effectively modulated by the variation of the jet disrupter voltage. The addition of the random velocity vector produced results that closely matched the experiments. The simulations yielded the dependence of the transmission on the jet disrupter voltage, and the voltage necessary for maximum ion throughput was accurately predicted. In addition, the magnitude of the predicted transmission closely matched that of the experimental results. This modeling approach could be extended to similar ion transport and filtering systems in which the effects of turbulent fluid flow cannot be ignored.
Turbulent Dufour effect and Onsager-type relations.
Sancho, P
1999-08-01
In this paper we extend the work of Elperin et al. [Phys. Rev. Lett. 80, 69 (1998)] by showing that a turbulent Dufour-type effect is also present in chemically nonreacting gaseous admixtures. This result is used to analyze the possibility of obtaining turbulent analogs of the Onsager relations, a fundamental result for molecular crossed effects in irreversible thermodynamics.
NASA Astrophysics Data System (ADS)
Braat, Joseph J. M.; Dirksen, Peter; Janssen, Augustus J. E. M.; van Haver, Sven; van de Nes, Arthur S.
2005-12-01
The judgment of the imaging quality of an optical system can be carried out by examining its through-focus intensity distribution. It has been shown in a previous paper that a scalar-wave analysis of the imaging process according to the extended Nijboer-Zernike theory allows the retrieval of the complex pupil function of the imaging system, including aberrations as well as transmission variations. However, the applicability of the scalar analysis is limited to systems with a numerical aperture (NA) value of the order of 0.60 or less; beyond these values polarization effects become significant. In this scalar retrieval method, the complex pupil function is represented by means of the coefficients of its expansion in a series involving the Zernike polynomials. This representation is highly efficient, in terms of number and magnitude of the required coefficients, and lends itself quite well to matching procedures in the focal region. This distinguishes the method from the retrieval schemes in the literature, which are normally not based on Zernike-type expansions, and rather rely on point-by-point matching procedures. In a previous paper [J. Opt. Soc. Am. A20, 2281 (2003)] we have incorporated the extended Nijboer-Zernike approach into the Ignatowsky-Richards/Wolf formalism for the vectorial treatment of optical systems with high NA. In the present paper we further develop this approach by defining an appropriate set of functions that describe the energy density distribution in the focal region. Using this more refined analysis, we establish the set of equations that allow the retrieval of aberrations and birefringence from the intensity point-spread function in the focal volume for high-NA systems. It is shown that one needs four analyses of the intensity distribution in the image volume with different states of polarization in the entrance pupil. Only in this way will it be possible to retrieve the "vectorial" pupil function that includes the effects of
Linear Controllers for Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Lim, Junwoo; Kim, John; Kang, Sung-Moon; Speyer, Jason
2000-11-01
Several recent studies have shown that controllers based on a linear system theory work surprisingly well in turbulent flows, suggesting that a linear mechanism may play an important role even in turbulent flows. It has been also shown that non-normality of the linearized Navier-Stokes equations is an essential characteristic in the regeneration of near-wall turbulence structures in turbulent boundary layers. A few controllers designed to reduce the role of different linear mechanisms, including that to minimize the non-normality of the linearized Navier-Stokes equations, have been developed and applied to a low Reynolds nubmer turbulent channel flow. A reduced-order model containing the most controllable and observables modes is derived for each system. Other existing control schemes, such as Choi et al's opposition control, have been examined from the point of a linear system control. Further discussion on controller design, such as choice of cost function and other control parameters, will be presented.
Wiegand, Irith; Geiss, Heinrich K; Mack, Dietrich; Stürenburg, Enno; Seifert, Harald
2007-04-01
Three commercially available microbiology identification and susceptibility testing systems were compared with regard to their ability to detect extended-spectrum beta-lactamase (ESBL) production in Enterobacteriaceae, i.e., the Phoenix Automated Microbiology System (BD Diagnostic Systems, Sparks, MD), the VITEK 2 System (bioMérieux, Marcy l'Etoile, France), and the MicroScan WalkAway-96 System (Dade Behring, Inc., West Sacramento, CA), using routine testing panels. One hundred fifty putative ESBL producers were distributed blindly to three participating laboratories. Conventional phenotypic confirmatory tests such as the disk approximation method, the CLSI double-disk synergy test, and the Etest ESBL were also evaluated. Biochemical and molecular characterization of beta-lactamases performed at an independent laboratory was used as the reference method. One hundred forty-seven isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii, Serratia marcescens, Proteus mirabilis, Proteus vulgaris, and Morganella morganii were investigated. Of these isolates, 85 were identified as ESBL producers by the reference method. The remaining isolates were identified as non-ESBL producers; they were either hyperproducers of their chromosomal AmpC, Koxy, or SHV enzymes or lacked any detectable beta-lactamase activity. The system with the highest sensitivity for the detection of ESBLs was the Phoenix (99%), followed by the VITEK 2 (86%) and the MicroScan (84%); however, specificity was more variable, ranging from 52% (Phoenix) to 78% (VITEK 2). The performance of the semiautomated systems differed widely with the species investigated. The sensitivities of the conventional test methods ranged from 93 to 94%. The double-disk synergy test showed the highest specificity and positive predictive value among all test methods, i.e., 97% and 98%, respectively.
NASA Astrophysics Data System (ADS)
He, Ping
2012-01-01
The long-standing puzzle surrounding the statistical mechanics of self-gravitating systems has not yet been solved successfully. We formulate a systematic theoretical framework of entropy-based statistical mechanics for spherically symmetric collisionless self-gravitating systems. We use an approach that is very different from that of the conventional statistical mechanics of short-range interaction systems. We demonstrate that the equilibrium states of self-gravitating systems consist of both mechanical and statistical equilibria, with the former characterized by a series of velocity-moment equations and the latter by statistical equilibrium equations, which should be derived from the entropy principle. The velocity-moment equations of all orders are derived from the steady-state collisionless Boltzmann equation. We point out that the ergodicity is invalid for the whole self-gravitating system, but it can be re-established locally. Based on the local ergodicity, using Fermi-Dirac-like statistics, with the non-degenerate condition and the spatial independence of the local microstates, we rederive the Boltzmann-Gibbs entropy. This is consistent with the validity of the collisionless Boltzmann equation, and should be the correct entropy form for collisionless self-gravitating systems. Apart from the usual constraints of mass and energy conservation, we demonstrate that the series of moment or virialization equations must be included as additional constraints on the entropy functional when performing the variational calculus; this is an extension to the original prescription by White & Narayan. Any possible velocity distribution can be produced by the statistical-mechanical approach that we have developed with the extended Boltzmann-Gibbs/White-Narayan statistics. Finally, we discuss the questions of negative specific heat and ensemble inequivalence for self-gravitating systems.
Dynamical properties of superfluid turbulence
Lorenson, C.P.
1985-01-01
Despite all the experimental work done in recent years to study superfluid turbulence, the understanding of the dynamical properties of this system is still poor. The author designed a new cryogenic probe to perform a series of experiments to study the dynamical response of the vortex line density in turbulent thermal counterflow. The apparatus uses a small glass flow tube to probe the fluctuations in the line density around the two turbulent states (TI, TII) present in this system. A chemical potential gradiometer is used that measures the chemical potential across the flow tube. This quantity is directly related to the vortex line density. The gradiometer also enabled both the steady state and the dynamical properties of the turbulence to be studied. These experiments have established the existence of fluctuations in the chemical potential in turbulent counterflow. For the first time fluctuations in the dissipation were observed in the TI/TII transition region. The fluctuations are characteristic of broad-band noise showing no evidence of fluctuations at preferred frequency. The TI/TII transition is characterized by a sharp increase in the noise power amplitude and its variation with heat current reveals a complex structure.
Learning to soar in turbulent environments
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J.; Vergassola, Massimo
2016-01-01
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments. PMID:27482099
Learning to soar in turbulent environments.
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J; Vergassola, Massimo
2016-08-16
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.