Sample records for extending science learning

  1. Scale of Academic Emotion in Science Education: Development and Validation

    ERIC Educational Resources Information Center

    Chiang, Wen-Wei; Liu, Chia-Ju

    2014-01-01

    Contemporary research into science education has generally been conducted from the perspective of "conceptual change" in learning. This study sought to extend previous work by recognizing that human rationality can be influenced by the emotions generated by the learning environment and specific actions related to learning. Methods used…

  2. Instructional Design Theory: Advancements from Cognitive Science and Instructional Technology.

    ERIC Educational Resources Information Center

    Tennyson, Robert D.

    Scientific advancements in cognitive science and instructional technology extend the behaviorally-oriented learning paradigm of instructional design and management in three major areas: (1) analysis of information-to-be-learned; (2) means of evaluating learners; and (3) linkage of learning theory to instructional prescriptions. The two basic types…

  3. "Because We Weren't Actually Teaching Them, We Thought They Weren't Learning": Primary Teacher Perspectives from the "My Science" Initiative

    ERIC Educational Resources Information Center

    Forbes, Anne; Skamp, Keith

    2014-01-01

    "MyScience" is a primary science education initiative in which being in a community of practice is integral to the learning process. This paper describes the ongoing journey to date of eight primary teachers from three primary schools who actively participated in "MyScience" over an extended period. Their views of interactions…

  4. The Role of Cognitive Apprenticeship in Learning Science in a Virtual World

    ERIC Educational Resources Information Center

    Ramdass, Darshanand

    2012-01-01

    This article extends the discussion started by Margaret Beier, Leslie Miller, and Shu Wang's (2012) paper, "Science games and the development of possible selves". In this paper, I suggest that a theoretical framework based on a sociocultural theory of learning is critical in learning in a virtual environment. I will discuss relevant research on…

  5. Using the Communication in Science Inquiry Project Professional Development Model to Facilitate Learning Middle School Genetics Concepts

    ERIC Educational Resources Information Center

    Baker, Dale R.; Lewis, Elizabeth B.; Uysal, Sibel; Purzer, Senay; Lang, Michael; Baker, Perry

    2011-01-01

    This study describes the effect of embedding content in the Communication in Inquiry Science Project professional development model for science and language arts teachers. The model uses four components of successful professional development (content focus, active learning, extended duration, participation by teams of teachers from the same school…

  6. Finding science in students' talk

    NASA Astrophysics Data System (ADS)

    Yeo, Jennifer

    2009-12-01

    What does it mean to understand science? This commentary extends Brown and Kloser's argument on the role of native language for science learning by exploring the meaning of understanding in school science and discusses the extent that science educators could tolerate adulterated forms of scientific knowledge. Taking the perspective of social semiotics, this commentary looks at the extent that school science can be represented with other discourse practices. It also offers an example to illustrate how everyday language can present potential hindrance to school science learning.

  7. Technology-Enriched STEM Investigations of Place: Using Technology to Extend the Senses and Build Connections to and between Places in Science Education

    ERIC Educational Resources Information Center

    Hougham, R. Justin; Eitel, Karla C. Bradley; Miller, Brant G.

    2015-01-01

    In this article we explore how reconceptualizing the role of technology in place-based education (PBE) enhances place responsive pedagogies through technology. Combining the strengths of adventure learning (AL) and PBE, Adventure Learning @ (AL@) advances both place responsive education and online learning in science education. This is needed, as…

  8. Effective Practices for Evaluating STEM Out-of-School Time Programs

    ERIC Educational Resources Information Center

    Wilkerson, Stephanie B.; Haden, Carol M.

    2014-01-01

    Science, technology, engineering, and mathematics (STEM) programs in out-of-school time (OST) are designed to supplement school work, ignite student interest, and extend STEM learning. From interactive museum exhibits to summer-long science camps, opportunities for informal student engagement in STEM learning abound. The differences these programs…

  9. The role of cognitive apprenticeship in learning science in a virtual world

    NASA Astrophysics Data System (ADS)

    Ramdass, Darshanand

    2012-12-01

    This article extends the discussion started by Margaret Beier, Leslie Miller, and Shu Wang's (2012) paper, Science games and the development of possible selves. In this paper, I suggest that a theoretical framework based on a sociocultural theory of learning is critical in learning in a virtual environment. I will discuss relevant research on the application of various components of the sociocultural perspective of learning in classroom environments and the potential for applying them in virtual worlds. I propose that research in science education should explore the processes underlying cognitive apprenticeship and determine how these processes can be used in virtual environments to help students learn science successfully.

  10. Finding Science in Students' Talk

    ERIC Educational Resources Information Center

    Yeo, Jennifer

    2009-01-01

    What does it mean to understand science? This commentary extends Brown and Kloser's argument on the role of native language for science learning by exploring the meaning of understanding in school science and discusses the extent that science educators could tolerate adulterated forms of scientific knowledge. Taking the perspective of social…

  11. Re-envisioning scientific literacy as relational, participatory thinking and doing

    NASA Astrophysics Data System (ADS)

    Trauth-Nare, Amy

    2016-06-01

    This review explores Michelle Hollingsworth Koomen's "Inclusive science education: Learning from Wizard," a case study of a middle school student with learning exceptionalities in a mainstream science classroom. The strength of Koomen's work lies in her elucidation of the ways in which normative science instruction fails to adequately support Wizard's learning. His classroom experiences position him, if unintentionally, as deficient and incapable, which in turn serves to undermine his ability to fully engage in science or to capitalize on his strengths as a learner in the service of developing disciplinary literacy. I extend this conversation by arguing for a broader view of scientific literacy and the need for a more relational pedagogy in classrooms that supports meaningful and productive engagement in science learning and fosters positive identification with science.

  12. Shopping for Science.

    ERIC Educational Resources Information Center

    Ward, John; And Others

    1992-01-01

    Describes inexpensive science materials for doing science activities using the steps in the learning cycle: engage, explore, explain, extend, and evaluate. The hands-on activities help students construct knowledge of dissolving and filtering, chemical reactions, conductivity of metals, heat absorption, motion (frictionless puck), sound production…

  13. Writing to Learn in Science: Effects on Grade 4 Students' Understanding of Balance

    ERIC Educational Resources Information Center

    Gillespie Rouse, Amy; Graham, Steve; Compton, Donald

    2017-01-01

    In this study, we randomly assigned 69 Grade 4 students to a writing-to-learn treatment (n = 23), comparison (n = 23), or no-treatment control (n = 23). Treatment and comparison students completed a science experiment involving balance. During the experiment, treatment students wrote four short responses and an extended response to document their…

  14. The Philbrick Science Showcase

    ERIC Educational Resources Information Center

    Flynn, Erin

    2007-01-01

    The annual Philbrick Science Showcase is a family event that celebrates students' science learning and highlights an ongoing partnership with the Boston Nature Center, a Massachusetts Audubon Society sanctuary within walking distance of the Philbrick school. At least twice a year, students visit the Nature Center to extend the science curriculum,…

  15. Learning general phonological rules from distributional information: a computational model.

    PubMed

    Calamaro, Shira; Jarosz, Gaja

    2015-04-01

    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.

  16. Preschool children's Collaborative Science Learning Scaffolded by Tablets

    NASA Astrophysics Data System (ADS)

    Fridberg, Marie; Thulin, Susanne; Redfors, Andreas

    2017-06-01

    This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.

  17. Test-Enhanced Learning: The Potential for Testing to Promote Greater Learning in Undergraduate Science Courses

    PubMed Central

    Brame, Cynthia J.; Biel, Rachel

    2015-01-01

    Testing within the science classroom is commonly used for both formative and summative assessment purposes to let the student and the instructor gauge progress toward learning goals. Research within cognitive science suggests, however, that testing can also be a learning event. We present summaries of studies that suggest that repeated retrieval can enhance long-term learning in a laboratory setting; various testing formats can promote learning; feedback enhances the benefits of testing; testing can potentiate further study; and benefits of testing are not limited to rote memory. Most of these studies were performed in a laboratory environment, so we also present summaries of experiments suggesting that the benefits of testing can extend to the classroom. Finally, we suggest opportunities that these observations raise for the classroom and for further research. PMID:25999314

  18. Learning from Rookie Mistakes: Critical Incidents in Developing Pedagogical Content Knowledge for Teaching Science to Teachers

    ERIC Educational Resources Information Center

    Cite, Suleyman; Lee, Eun; Menon, Deepika; Hanuscin, Deborah L.

    2017-01-01

    While there is a growing literature focused on doctoral preparation for teaching about science teaching, rarely have recommendations extended to preparation for teaching science content to teachers. We three doctoral students employ self-study as a research methodology to investigate our developing pedagogical content knowledge for teaching…

  19. Playing Modeling Games in the Science Classroom: The Case for Disciplinary Integration

    ERIC Educational Resources Information Center

    Sengupta, Pratim; Clark, Doug

    2016-01-01

    The authors extend the theory of "disciplinary integration" of games for science education beyond the virtual world of games, and identify two key themes of a practice-based theoretical commitment to science learning: (1) materiality in the classroom, and (2) iterative design of multiple, complementary, symbolic inscriptions (e.g.,…

  20. Prospective Elementary Science Teachers and Biomythographies: An Exploratory Approach to Autobiographical Research.

    ERIC Educational Resources Information Center

    Nichols, Sharon E.; Tippins, Deborah J.

    2000-01-01

    Explores an approach to autobiographical research based on a notion of "outlaw genre" autobiography, referred to as "biomythography". Describes the use of photo essays to learn about prospective elementary teachers' stories of science and science education. Calls for an examination of hegemonies extending from students' personal histories as…

  1. Lessons Learned from Optical Payload for Lasercomm Science (OPALS) Mission Operations

    NASA Technical Reports Server (NTRS)

    Sindiy, Oleg V.; Abrahamson, Matthew J.; Biswas, Abhijit; Wright, Malcolm W.; Padams, Jordan H.; Konyha, Alexander L.

    2015-01-01

    This paper provides an overview of Optical Payload for Lasercomm Science (OPALS) activities and lessons learned during mission operations. Activities described cover the periods of commissioning, prime, and extended mission operations, during which primary and secondary mission objectives were achieved for demonstrating space-to-ground optical communications. Lessons learned cover Mission Operations System topics in areas of: architecture verification and validation, staffing, mission support area, workstations, workstation tools, interfaces with support services, supporting ground stations, team training, procedures, flight software upgrades, post-processing tools, and public outreach.

  2. Bridging STEM in a Real World Problem

    ERIC Educational Resources Information Center

    English, Lyn D.; Mousoulides, Nicholas G.

    2015-01-01

    Engineering-based modeling activities provide a rich source of meaningful situations that capitalize on and extend students' routine learning. By integrating such activities within existing curricula, students better appreciate how their school learning in mathematics and science applies to problems in the outside world. Furthermore, modeling…

  3. OceanGLOBE: an Outdoor Research and Environmental Education Program for K-12 Students

    NASA Astrophysics Data System (ADS)

    Perry, R. B.; Hamner, W. M.

    2006-12-01

    OceanGLOBE is an outdoor environmental research and education program for upper elementary, middle and high school students, supplemented by online instructional materials that are available without charge to any educator. OceanGLOBE was piloted in 1995 with support from a National Science Foundation Teacher Enhancement project, "Leadership in Marine Science" (award no.ESI-9454413 to UCLA). Continuing support by a second NSF Teacher Enhancement project (award no. ESI-9819424 to UCLA) and by COSEE-West (NSF awards OCE-215506 to UCLA and OCE-0215497 to USC) has enabled OceanGLOBE to expand to a growing number of schools and to provide an increasingly robust collection of marine science instructional materials on its website, http://www.msc.ucla.edu/oceanglobe/ OceanGLOBE provides a mechanism for students to conduct inquiry-based, hands-on marine science research, providing experiences that anchor the national and state science content standards learned in the classroom. Students regularly collect environmental and biological data from a beach site over an extended period of time. In the classroom they organize, graph and analyze their data, which can lead to a variety of student-created science products. Beach research is supported by instructional marine science materials on the OceanGLOBE website. These online materials also can be used in the classroom independent of the field component. Annotated PowerPoint slide shows explain research protocols and provide marine science content. Field guides and photographs of marine organisms (with emphasis on the Southern California Bight) and a growing collection of classroom investigations (applicable to any ocean location) support the science content presented in the beach research program and slide shows. In summary, OceanGLOBE is a comprehensive learning package grounded in hands-on, outdoor marine science research project in which students are the principal investigators. By doing scientific work repetitively over an extended time period students learn about how science is done as much as they learn science content.

  4. Putting Ideas on Paper

    ERIC Educational Resources Information Center

    Allen, Jared; Rogers, Meredith Park

    2015-01-01

    Many students find it easier to express their ideas about science through talking rather than writing. However, writing in science promotes new learning, helps students consolidate and review their scientific ideas, and aids in reformulating and extending their scientific knowledge. These practices lead to formulating and defending scientific…

  5. Meeting the Demands of Science Reforms: A Comprehensive Professional Development for Practicing Middle School Teachers

    NASA Astrophysics Data System (ADS)

    Pringle, Rose M.; Mesa, Jennifer; Hayes, Lynda

    2018-03-01

    Preparing teachers to teach science consistent with current reforms in science education is a daunting enterprise given a lack of high-quality science professional development (PD) adaptable across various contexts (Wilson 2013). This study examines the impact of a comprehensive professional development program on middle school teachers' disciplinary content knowledge and instructional practices. In this mixed methods investigation, data sources included classroom observations, content knowledge assessments, surveys, and a range of interviews. The teachers in the program showed significant improvements in their disciplinary content knowledge and demonstrated through their enactment of a reform-based curriculum, a range of ability levels to translate their knowledge into instructional practices consistent with the principles espoused in the PD. We conclude that programs that attend to elements of effective PD identified in the literature can positively impact middle school science teachers' enactment of reform-based science teaching. Our findings extend these elements to include the strategic engagement of school and district leadership and the provision of a safe learning space for teachers to collectively engage in reciprocal learning and critical practice. This study has worldwide implications for designing PD for science teachers and for extending our understanding of the impact of each element.

  6. An Examination of Teacher Understanding of Project Based Science as a Result of Participating in an Extended Professional Development Program: Implications for Implementation

    ERIC Educational Resources Information Center

    Mentzer, Gale A.; Czerniak, Charlene M.; Brooks, Lisa

    2017-01-01

    Project-based science (PBS) aligns with national standards that assert children should learn science by actively engaging in the practices of science. Understanding and implementing PBS requires a shift in teaching practices away from one that covers primarily content to one that prompts children to conduct investigations. A common challenge to…

  7. Grasshopping across the Curriculum.

    ERIC Educational Resources Information Center

    Peterson, Blanche F.

    A writing across the curriculum project at Trumbull High School (Connecticut) is based on a cross section of English, science, and career education courses: advanced composition, science fiction, physics, chemistry, biology, and vocational agriculture. It focuses on writing as a mode of learning; extending and refining the students' processes of…

  8. Awareness as an Enactivist Framework for the Mathematical Learning of Teachers, Mentors and Institutions

    ERIC Educational Resources Information Center

    Preciado-Babb, Armando Paulino; Metz, Martina; Marcotte, Chenoa

    2015-01-01

    This paper explores the learning of both individuals and organizations within the context of a 3-year professional development program for mathematics and science teachers in a middle school. We propose to extend the notion of awareness from individuals to autonomous systems as a means to study the learning of teachers, mentors, the school, and…

  9. Science through Drama: A Multiple Case Exploration of the Characteristics of Drama Activities Used in Secondary Science Lessons

    ERIC Educational Resources Information Center

    Dorion, Kirk Robert

    2009-01-01

    Over 20 years of research into the use of cross-curricular drama in secondary science has indicated that this medium enables learning of affective, cognitive and procedural knowledge. To date, academic research has tended to frame successful drama pedagogy as resulting from a Drama-in-Education approach, incorporating extended role plays and…

  10. Sharpening the Lens of Culturally Responsive Science Teaching: A Call for Liberatory Education for Oppressed Student Groups

    ERIC Educational Resources Information Center

    Codrington, Jamila

    2014-01-01

    Wallace and Brand's framing of culturally responsive science teaching through the lens of critical race theory honors the role of social justice in science education. In this article, I extend the discussion through reflections on the particular learning needs of students from oppressed cultural groups, specifically African Americans.…

  11. From Stories to Scientific Models and Back: Narrative Framing in Modern Macroscopic Physics

    ERIC Educational Resources Information Center

    Fuchs, Hans U.

    2015-01-01

    Narrative in science learning has become an important field of inquiry. Most applications of narrative are extrinsic to science--such as when they are used for creating affect and context. Where they are intrinsic, they are often limited to special cases and uses. To extend the reach of narrative in science, a hypothesis of narrative framing of…

  12. Weather Tamers

    ERIC Educational Resources Information Center

    Frazier, Wendy M.; Sterling, Donna R.

    2007-01-01

    Problem-based learning experiences that extend at least two weeks provide an opportunity for students to investigate a real-world problem while learning science content and skills in an exciting way. In this article, students are challenged by the president of the United States to serve as employees of the Federal Emergency Management Agency to…

  13. Snap! Catch Students' Attention with Mousetrap Vehicles

    ERIC Educational Resources Information Center

    Roberts, Ed; Gonzalez-Espada, Wilson J.

    2006-01-01

    The current paradigm in science education calls for greater emphasis on guiding students in active and extended scientific inquiry. This is supported by research suggesting that using a hands-on approach to learning fosters ownership in the learning process and allows students to gain greater appreciation for the design and implementation of…

  14. Assessment "as" Learning: Enhancing Discourse, Understanding, and Achievement in Innovative Science Curricula

    ERIC Educational Resources Information Center

    Hickey, Daniel T.; Taasoobshirazi, Gita; Cross, Dionne

    2012-01-01

    An assessment-oriented design-based research model was applied to existing inquiry-oriented multimedia programs in astronomy, biology, and ecology. Building on emerging situative theories of assessment, the model extends prevailing views of formative assessment "for" learning by embedding "discursive" formative assessment more directly into the…

  15. Controlled Volcanism in the Classroom: A Simulation

    ERIC Educational Resources Information Center

    Erdogan, Ibrahim

    2005-01-01

    In this extended earth science activity, students create a hands-on model of a volcano to achieve an understanding of volcanic structure, lava flows, formation of lava layers, and the scientific work of archaeologists and geoscientists. During this simulation activity, students have opportunities to learn science as inquiry and the nature of…

  16. Game-Based Learning in Science Education: A Review of Relevant Research

    NASA Astrophysics Data System (ADS)

    Li, Ming-Chaun; Tsai, Chin-Chung

    2013-12-01

    The purpose of this study is to review empirical research articles regarding game-based science learning (GBSL) published from 2000 to 2011. Thirty-one articles were identified through the Web of Science and SCOPUS databases. A qualitative content analysis technique was adopted to analyze the research purposes and designs, game design and implementation, theoretical backgrounds and learning foci of these reviewed studies. The theories and models employed by these studies were classified into four theoretical foundations including cognitivism, constructivism, the socio-cultural perspective, and enactivism. The results indicate that cognitivism and constructivism were the major theoretical foundations employed by the GBSL researchers and that the socio-cultural perspective and enactivism are two emerging theoretical paradigms that have started to draw attention from GBSL researchers in recent years. The analysis of the learning foci showed that most of the digital games were utilized to promote scientific knowledge/concept learning, while less than one-third were implemented to facilitate the students' problem-solving skills. Only a few studies explored the GBSL outcomes from the aspects of scientific processes, affect, engagement, and socio-contextual learning. Suggestions are made to extend the current GBSL research to address the affective and socio-contextual aspects of science learning. The roles of digital games as tutor, tool, and tutee for science education are discussed, while the potentials of digital games to bridge science learning between real and virtual worlds, to promote collaborative problem-solving, to provide affective learning environments, and to facilitate science learning for younger students are also addressed.

  17. Young children's emergent science competencies in family and school contexts: A case study

    NASA Astrophysics Data System (ADS)

    Andrews, Kathryn Jean

    To address the lack of research in early science learning and on young children's informal science experiences, this 6-month long case study investigated an 8-year-old boy's emergent science competencies and his science experiences in family and school contexts. The four research questions used to guide this investigation were: (1) What are Nathan's emergent science competencies? (2) What are Nathan's science experiences in a family context? How does family learning contribute to his emergent science competencies? (3) What are Nathan's science experiences in school? How does school learning contribute to his emergent science competencies? (4) What is the role of parents and teachers in fostering emergent science competencies? My intensive 6-month fieldwork generated multiple data sources including field notes of 12 classroom observations, one parent interview, eight child interviews, one classroom teacher interview, and observation of eight family produced videos. In addition, I collected a parent journal including 38 entries of the child's how and why questions, a child digital photo journal including 15 entries of when Nathan saw or participated in science, and 25 various documents of work completed in the classroom. First, I analyzed data through an on-going and recursive process. Then, I applied several cycles of open coding to compare and contrast science learning between home and school, establish clear links between research questions and data, and form categories. Finally, I applied a cycle of holistic coding to categorized data that eventually culminated into themes. As a method of quality control, I shared my interpretations with the family and classroom teacher throughout the study. Findings revealed, Nathan's pre-scientific views of science were fluid and playful, he saw differences between the science he did at home and that he did in school, but he was able to articulate a relatively complex understanding of scientists' collaborative efforts. Nathan's emergent science competencies were a result of his experiences both in the home and classroom. His science experiences at home often involved engaging in conversation with his parents about the world around him and was driven by the things he was interested in or wondered about. He enjoyed daily family activities like cooking, playing, and building models with his dad. These experiences contributed to his naive conceptions of science. By contrast, his science experiences in school were also collaborative but less facilitated by Mrs. Young. His wide range of experiences at home and in the classroom illustrated that doing, learning, knowing, and demonstrating knowledge are intertwined and not easily distinguished from each other. Nathan's emergent science competencies were fueled by a child-environment loop. The child-environment loop is a concept that captures the reciprocal nature between a child's curiosities and his or her environment. As his curiosities were met, new questions and activity were produced. As a result, Nathan's activity continually influenced the environment in which his emergent science competencies emerged. Likewise, the changing environment contributed to new curiosities, interest, and science competencies. Findings extend current research of informal science learning by illustrating how family learning contributed to a child's naive scientific views through the development of non-spontaneous concepts. Findings also extend current research by illustrating how a child with a solid foundation of spontaneous concepts might be unable to further develop non-spontaneous concepts in a classroom where learning took a similar form (working with others and talking about ideas) as learning in the classroom was less mediated. Main implications of this project include a call for research and practice to more aggressively contribute to a learning progressions approach to provide a map of educational opportunities that neither under- or overestimate children's ability. Curriculum ought to view naive science conceptions developed in family learning as a necessary element in the learning continuum rather than a deficit in science knowledge to contend with during the development of non-spontaneous concepts in classroom learning to achieve this goal. Finally, to extract meaningful experiences from inquiry-based science learning, teachers need to incorporate students' naive science conceptions by explicitly connecting everyday family learning to science through disciplinary engagement where inquiry is mediated.

  18. Scale of Academic Emotion in Science Education: Development and Validation

    NASA Astrophysics Data System (ADS)

    Chiang, Wen-Wei; Liu, Chia-Ju

    2014-04-01

    Contemporary research into science education has generally been conducted from the perspective of 'conceptual change' in learning. This study sought to extend previous work by recognizing that human rationality can be influenced by the emotions generated by the learning environment and specific actions related to learning. Methods used in educational psychology were adopted to investigate the emotional experience of science students as affected by gender, teaching methods, feedback, and learning tasks. A multidisciplinary research approach combining brain activation measurement with multivariate psychological data theory was employed in the development of a questionnaire intended to reveal the academic emotions of university students in three situations: attending science class, learning scientific subjects, and problem solving. The reliability and validity of the scale was evaluated using exploratory and confirmatory factor analyses. Results revealed differences between the genders in positive-activating and positive-deactivating academic emotions in all three situations; however, these differences manifested primarily during preparation for Science tests. In addition, the emotions experienced by male students were more intense than those of female students. Finally, the negative-deactivating emotions associated with participation in Science tests were more intense than those experienced by simply studying science. This study provides a valuable tool with which to evaluate the emotional response of students to a range of educational situations.

  19. Course Design, Quality Matters Training, and Student Outcomes

    ERIC Educational Resources Information Center

    Hollowell, Gail P.; Brooks, Racheal M.; Anderson, Yolanda B.

    2017-01-01

    North Carolina Central University (NCCU) recognized the need to address the increasing rates of Ds, Fs, and Withdrawal by students matriculating in online courses. Led by two science faculty, a faculty learning community in partnership with the NCCU Division of Extended Studies was created to assess online science course offerings and instruction.…

  20. Inquiry and Learning: Realizing Science Standards in the Classroom. The Thinking Series.

    ERIC Educational Resources Information Center

    Layman, John W.; And Others

    This book provides a focused, extended response to the question How does standards-based science instruction look and feel in the classroom? This question is addressed by considering two related issues: (1) "How can teachers cultivate the quality of scientific thinking and understanding defined by standards?" and (2) "How can…

  1. Learning to write in science: A study of English language learners' writing experience in sixth-grade science classrooms

    NASA Astrophysics Data System (ADS)

    Qi, Yang

    Writing is a predictor of academic achievement and is essential for student success in content area learning. Despite its importance, many students, including English language learners (ELLs), struggle with writing. There is thus a need to study students' writing experience in content area classrooms. Informed by systemic functional linguistics, this study examined 11 ELL students' writing experience in two sixth grade science classrooms in a southeastern state of the United States, including what they wrote, how they wrote, and why they wrote in the way they did. The written products produced by these students over one semester were collected. Also collected were teacher interviews, field notes from classroom observations, and classroom artifacts. Student writing samples were first categorized into extended and nonextended writing categories, and each extended essay was then analyzed with respect to its schematic structure and grammatical features. Teacher interviews and classroom observation notes were analyzed thematically to identify teacher expectations, beliefs, and practices regarding writing instruction for ELLs. It was found that the sixth-grade ELLs engaged in mostly non-extended writing in the science classroom, with extended writing (defined as writing a paragraph or longer) constituting roughly 11% of all writing assignments. Linguistic analysis of extended writing shows that the students (a) conveyed information through nouns, verbs, adjectives, adverbial groups and prepositional phrases; (b) constructed interpersonal context through choices of mood, modality, and verb tense; and (c) structured text through thematic choices and conjunctions. The appropriateness of these lexicogrammatical choices for particular writing tasks was related to the students' English language proficiency levels. The linguistic analysis also uncovered several grammatical problems in the students' writing, including a limited range of word choices, inappropriate use of mood, inconsistency of verb tense, and overuse of reiterating thematic patterns and everyday conjunctions to structure and organize their writing. Thematic analysis of teacher interviews and classroom observations revealed that the teachers (a) held different expectations for English language learners than mainstream students, (b) rarely provided explicit instruction on science writing, and (c) did not see themselves as having a shared responsibility of teaching writing in their subject area, despite acknowledgement of the essential role that writing plays in promoting scientific literacy. These findings provide a snapshot of the writing experience that sixth-grade English language learners had in their science classrooms. They suggest that the ELLs needed language and literacy support in science learning, but such support was largely absent in the science classrooms. The implications of the findings for science teaching and teacher education, along with the limitations of the study, are discussed.

  2. Reflections on providing sport science support for athletes with learning difficulties.

    PubMed

    Hills, Laura; Utley, Andrea

    2010-01-01

    To highlight the benefits and the need for sport science support for athletes with learning difficulties, and to reflect on our experience of working with the GB squad for athletes with learning difficulties. A review of key and relevant literature is presented, followed by a discussion of the sport science support provision and the issues that emerged in working with athletes with learning difficulties. Pre- and post- physiological tests along with evaluations of athletes' potential to benefit from sport psychology support were conducted. The aim of these tests was to provide information for the athletes and the coaches on fitness levels, to use this information to plan future training, and to identify how well the performance could be enhanced. A case study is presented for one athlete, who had competed in distance events. The focus is the psychological support that was provided. It is clear that athletes with learning difficulties require the same type of sports science support as their mainstream peers. However, sport scientists will need to consider ways to extend their practice in order to provide the appropriate level of support.

  3. Mapping the Arctic: Online Undergraduate Education Using Scientific Research in International Policy

    NASA Astrophysics Data System (ADS)

    Reed, D. L.; Edwards, B. D.; Gibbons, H.

    2011-12-01

    Ocean science education has the opportunity to span traditional academic disciplines and undergraduate curricula because of its interdisciplinary approach to address contemporary issues on a global scale. Here we report one such opportunity, which involves the development of a virtual oceanographic expedition to map the seafloor in the Arctic Ocean for use in the online Global Studies program at San Jose State University. The U.S. Extended Continental Shelf Project provides an extensive online resource to follow the activities of the third joint U.S. and Canada expedition in the Arctic Ocean, the 2010 Extended Continental Shelf survey, involving the icebreakers USCGC Healy and CCGS Louis S. St-Laurent. In the virtual expedition, students join the work of scientists from the U.S. Geological Survey and the Canadian Geological Survey by working through 21 linked web pages that combine text, audio, video, animations and graphics to first learn about the U.N. Convention on the Law of the Sea (UNCLOS). Then, students gain insight into the complexity of science and policy interactions by relating the UNCLOS to issues in the Arctic Ocean, now increasingly accessible to exploration and development as a result of climate change. By participating on the virtual expedition, students learn the criteria contained in Article 76 of UNCLOS that are used to define the extended continental shelf and the scientific methods used to visualize the seafloor in three-dimensions. In addition to experiencing life at sea aboard a research vessel, at least virtually, students begin to interpret the meaning of seafloor features and the use of seafloor sediment samples to understand the application of ocean science to international issues, such as the implications of climate change, national sovereign rights as defined by the UNCLOS, and marine resources. The virtual expedition demonstrates that ocean science education can extend beyond traditional geoscience courses by taking advantage of emerging academic disciplines, contemporary global issues and new learning delivery systems.

  4. Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory

    ERIC Educational Resources Information Center

    Westera, Wim

    2018-01-01

    This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…

  5. Creating Personal Meaning through Technology-Supported Science Inquiry Learning across Formal and Informal Settings

    ERIC Educational Resources Information Center

    Anastopoulou, Stamatina; Sharples, Mike; Ainsworth, Shaaron; Crook, Charles; O'Malley, Claire; Wright, Michael

    2012-01-01

    In this paper, a novel approach to engaging students in personal inquiry learning is described, whereby they carry out scientific investigations that are personally meaningful and relevant to their everyday lives. The learners are supported by software that guides the inquiry process, extending from the classroom into the school grounds, home, or…

  6. The Design and Validation of the Colorado Learning Attitudes about Science Survey

    NASA Astrophysics Data System (ADS)

    Adams, W. K.; Perkins, K. K.; Dubson, M.; Finkelstein, N. D.; Wieman, C. E.

    2005-09-01

    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure various facets of student attitudes and beliefs about learning physics. This instrument extends previous work by probing additional facets of student attitudes and beliefs. It has been written to be suitably worded for students in a variety of different courses. This paper introduces the CLASS and its design and validation studies, which include analyzing results from over 2400 students, interviews and factor analyses. Methodology used to determine categories and how to analyze the robustness of categories for probing various facets of student learning are also described. This paper serves as the foundation for the results and conclusions from the analysis of our survey data.

  7. Learning Robotics in a Science Museum Theatre Play: Investigation of Learning Outcomes, Contexts and Experiences

    NASA Astrophysics Data System (ADS)

    Peleg, Ran; Baram-Tsabari, Ayelet

    2017-12-01

    Theatre is often introduced into science museums to enhance visitor experience. While learning in museums exhibitions received considerable research attention, learning from museum theatre has not. The goal of this exploratory study was to investigate the potential educational role of a science museum theatre play. The study aimed to investigate (1) cognitive learning outcomes of the play, (2) how these outcomes interact with different viewing contexts and (3) experiential learning outcomes through the theatrical experience. The play `Robot and I', addressing principles in robotics, was commissioned by a science museum. Data consisted of 391 questionnaires and interviews with 47 children and 20 parents. Findings indicate that explicit but not implicit learning goals were decoded successfully. There was little synergy between learning outcomes of the play and an exhibition on robotics, demonstrating the effect of two different physical contexts. Interview data revealed that prior knowledge, experience and interest played a major role in children's understanding of the play. Analysis of the theatrical experience showed that despite strong identification with the child protagonist, children often doubted the protagonist's knowledge jeopardizing integration of scientific content. The study extends the empirical knowledge and theoretical thinking on museum theatre to better support claims of its virtues and respond to their criticism.

  8. Bridging the Gap--Using Social Media to Bring Together Science and Families

    ERIC Educational Resources Information Center

    Tyler, Toby; Vanstone, Emma

    2017-01-01

    In this article, first Toby Tyler describes how using Twitter to engage the community and to pursue the ICE principle (Introduce, Consolidate, and Extend) to enhance learning has brought his school community closer together. Then, Emma Vanstone highlights how schools can draw on support for engaging children with science at home by using social…

  9. Open-Ended Science Inquiry in Lower Secondary School: Are Students' Learning Needs Being Met?

    ERIC Educational Resources Information Center

    Whannell, Robert; Quinn, Fran; Taylor, Subhashni; Harris, Katherine; Cornish, Scott; Sharma, Manjula

    2018-01-01

    Australian science curricula have promoted the use of investigations that allow secondary students to engage deeply with the methods of scientific inquiry, through student-directed, open-ended investigations over an extended duration. This study presents the analysis of data relating to the frequency of completion and attitudes towards long…

  10. Test-enhanced learning: the potential for testing to promote greater learning in undergraduate science courses.

    PubMed

    Brame, Cynthia J; Biel, Rachel

    2015-01-01

    Testing within the science classroom is commonly used for both formative and summative assessment purposes to let the student and the instructor gauge progress toward learning goals. Research within cognitive science suggests, however, that testing can also be a learning event. We present summaries of studies that suggest that repeated retrieval can enhance long-term learning in a laboratory setting; various testing formats can promote learning; feedback enhances the benefits of testing; testing can potentiate further study; and benefits of testing are not limited to rote memory. Most of these studies were performed in a laboratory environment, so we also present summaries of experiments suggesting that the benefits of testing can extend to the classroom. Finally, we suggest opportunities that these observations raise for the classroom and for further research. © 2015 C. J. Brame and R. Biel. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Student Agency: An Analysis of Students' Networked Relations across the Informal and Formal Learning Domains

    ERIC Educational Resources Information Center

    Rappa, Natasha Anne; Tang, Kok-Sing

    2017-01-01

    Agency is a construct facilitating our examination of when and how young people extend their own learning across contexts. However, little is known about the role played by adolescent learners' sense of agency. This paper reports two cases of students' agentively employing and developing science literacy practices--one in Singapore and the other…

  12. Writing-to-Learn the Nature of Science in the Context of the Lewis Dot Structure Model

    ERIC Educational Resources Information Center

    Shultz, Ginger V.; Gere, Anne Ruggles

    2015-01-01

    Traditional methods for teaching the Lewis dot structure model emphasize rule-based learning and often neglect the purpose and function of the model. Thus, many students are unable to extend their understanding of molecular structures in new contexts. The assignment described here addresses this issue by asking students to read and write about the…

  13. An Ecological Approach to Learning with Technology: Responding to Tensions within the "Wow-Effect" Phenomenon in Teaching Practices

    ERIC Educational Resources Information Center

    Herro, Danielle

    2016-01-01

    This review explores Anne Kamstrupp's "The Wow-effect in Science Teacher Education" by examining her theorized "wow-effect" as a teaching enactment that may serve to engage students, but often fails to provide deep understanding of science content. My response extends her perspective of socio-materiality as means to understand…

  14. The Relative Influence of Formal Learning Opportunities versus Indicators of Professional Community on Changes in Science Teaching in Urban Schools

    ERIC Educational Resources Information Center

    McGee, Steven

    2016-01-01

    Previous research has shown that professional communities have the potential to be a powerful lever for continuous improvement in school settings. This research seeks to extend previous research by investigating the indicators of professional community that influence science teaching practice. This study took place in a network of urban…

  15. Teaching Computer Languages and Elementary Theory for Mixed Audiences at University Level

    NASA Astrophysics Data System (ADS)

    Christiansen, Henning

    2004-09-01

    Theoretical issues of computer science are traditionally taught in a way that presupposes a solid mathematical background and are usually considered more or less inaccessible for students without this. An effective methodology is described which has been developed for a target group of university students with different backgrounds such as natural science or humanities. It has been developed for a course that integrates theoretical material on computer languages and abstract machines with practical programming techniques. Prolog used as meta-language for describing language issues is the central instrument in the approach: Formal descriptions become running prototypes that are easy and appealing to test and modify, and can be extended into analyzers, interpreters, and tools such as tracers and debuggers. Experience shows a high learning curve, especially when the principles are extended into a learning-by-doing approach having the students to develop such descriptions themselves from an informal introduction.

  16. Accessing the elite figured world of science

    NASA Astrophysics Data System (ADS)

    Chaffee, Rachel; Gupta, Preeti

    2018-06-01

    This review explores Jackson and Seiler's "I am smart enough to study postsecondary science: A critical discourse analysis of latecomers' identity construction in an online forum" by considering the analytic framework for figured worlds guiding this study. We consider the specific affordances of cultural production theory for examining how sociohistorical and cultural discourses of science as elite impact individuals at every level of education. We then extend this discussion by exploring how an informal learning space at a prestigious science museum was designed to explicitly tackle cultural discourses of science as elite that act as barriers to identification with science.

  17. Describing students' talk about physical science phenomena outside and inside the classroom: A case of secondary school students from Maragoli, western region of Kenya

    NASA Astrophysics Data System (ADS)

    Oberrecht, Stephen Patrick

    Because of cultural and linguistic influences on science learning involving students from diverse cultural and linguistic backgrounds, calls have been made for teachers to enact teaching that is sensitive to these students' backgrounds. However, most of the research involving such students has tended to focus on students at elementary grade levels from predominantly two linguistic backgrounds, Hispanic and Haitian Creole, learning science concepts mainly in the life sciences. Also, most of the studies examined classroom interactions between teachers and the students and among students. Not much attention had been paid to how students talk about ideas inherent in scientific phenomena in an outside-the-classroom context and much less on how that talk relates to that of the classroom. Thus, this research extends knowledge in the area of science learning involving students learning science in a language other than their first language to include students from a language background other than Hispanic and Haitian Creole at not only the high school level but also their learning of ideas in a content area other than the life science (i.e., the physical sciences). More importantly, this research extends knowledge in the area by relating science learning outside and inside the classroom. This dissertation describes this exploratory research project that adopted a case study strategy. The research involved seven Form Two (tenth grade) students (three boys and four girls) from one public, mixed gender day secondary school in rural Kenya. I collected data from the students through focus group discussions as they engaged in talking about ideas inherent in selected physical science phenomena and activities they encountered in their everyday lives, as well as learned about in their science classrooms. I supplemented these data with data from one-on-one semi-structured interviews with two teachers (one for chemistry and one for physics) on their teaching of ideas investigated in this research, the secondary school syllabus (KIE, 2002) as well as the students' responses to questions on teacher-made assessments involving the ideas investigated. Three main findings emerged through this research. The findings are: (1) the students adopted everyday ways of making sense of the world (i.e., everyday language and everyday observations) in talking about ideas investigated both outside- and inside-the-classroom contexts, (2) cultural knowledge emerged from the student's talk related to the nature and form of lightning different from that emphasized in science, and (3) students who may initially seem uninterested in participating in discussions involving science ideas showed possibilities for participation in such discussions. Drawing on the work of scholars such as Aikenhead (2001), Ballenger (1997), Brock-Utne (2007), Herbel-Eisenmann (2002) and Warren et al. (2001), I argue that students' everyday ways of makings sense of the world are rich starting points from which to leverage students towards meaningful learning in science. However, this may happen only if instructional materials such as the syllabus are explicit in not only giving examples of phenomena and students' experiences with them in outside the classroom contexts, but also acknowledging that possibilities exist for cultural understanding and talk about ideas inherent in the phenomena involving ideas students learn about in their science classrooms.

  18. Building Science Identity in Disadvantaged Teenage Girls using an Apprenticeship Model

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Conner, L.; Tzou, C.

    2015-12-01

    Expeditionary science differs from laboratory science in that expeditionary science teams conduct investigations in conditions that are often physically and socially, as well as intellectually, challenging. Team members live in close quarters for extended periods of time, team building and leadership affect the scientific process, and research tools are limited to what is available on site. Girls on Ice is an expeditionary science experience primarily for disadvantaged girls; it fully immerses girls in a mini scientific expedition to study alpine, glacierized environments. In addition to mentoring the girls through conducting their own scientific research, we encourage awareness and discussion of different sociocultural perspectives on the relation between the natural world, science, and society. The experience aligns closely with the apprenticeship model of learning, which can be effective in enhancing identification with science. Using a mixed-methods approach, we show that the Girls on Ice model helps girls (1) increase their interest and engagement in science and build a stronger science identity, (2) develop confidence, importantly they develop a combined physical and intellectual confidence; (3) engage in authentic scientific thinking, including critical thinking and problem solving; and (4) enhance leadership self-confidence. We discuss these results in a learning sciences framework, which posits that learning is inseparable from the social and physical contexts in which it takes place.

  19. Electronic Tutoring as a Tool for Promoting Conceptual Change: A Case Study of In-Service Science Teacher Workshops

    ERIC Educational Resources Information Center

    Stott, Angela; Case, Jennifer M.

    2014-01-01

    Electronic tutors able to respond appropriately to a user's input have been shown to be effective in improving learning in a number of contexts. This study extends this research into the context of conceptual change during in-service science teacher workshops. Quantitative data were collected from 1,049 South African grade 12 physical sciences…

  20. College and University Earth System Science Education for the 21st Century (ESSE 21)

    NASA Astrophysics Data System (ADS)

    Johnson, D. R.; Ruzek, M.; Schweizer, D.

    2002-12-01

    The NASA/USRA Cooperative University-based Program in Earth System Science Education (ESSE), initiated over a decade ago through NASA support, has led in the creation of a nationwide collaborative effort to bring Earth system science into the undergraduate classroom. Forty-five ESSE institutions now offer over 120 Earth system courses each year, reaching thousands of students annually with interdisciplinary content. Through the course offerings by faculty from different disciplines and the organizational infrastructure of colleges and universities emphasizing cross disciplinary curricula, programs, degrees and departments, the ESSE Program has led in systemic change in the offering of a holistic view of Earth system science in the classroom. Building on this successful experience and collaborative infrastructure within and among colleges, universities and NASA partners, an expanded program called ESSE 21 is being supported by NASA to extend the legacy established during the last decade. Through its expanded focus including partnerships with under represented colleges and universities, the Program seeks to further develop broadly based educational resources, including shared courses, electronic learning materials and degree programs that will extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. Overall the thrust within the classrooms of colleges and universities is critical to extending and solidifying courses of study in Earth system and global change science. ESSE 21 solicits proposals from undergraduate institutions to create or adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. The goal for all is to effect systemic change through developing Earth system science learning materials, courses, curricula, minors or degree tracks, and programs or departments that are self-sustaining in the coming decades. Interdisciplinary college and university teams are competitively selected through a peer-reviewed Call for Participation. ESSE 21 offers an infrastructure for an interactive community of educators and researchers including under represented participants that develops interdisciplinary Earth system science content utilizing NASA resources involving global change data, models, visualizations and electronic media and networks. The Program provides for evaluation and assessment guides to help assure the pedagogical effectiveness of materials developed. The ultimate aim of ESSE 21 is to expand and accelerate the nation's realization of sound, scientific interdisciplinary educational resources for informed learning and decision-making by all from the perspective of sustainability of the Earth as a system.

  1. Validation study of the Colorado Learning Attitudes about Science Survey at a Hispanic-serving institution

    NASA Astrophysics Data System (ADS)

    Sawtelle, Vashti; Brewe, Eric; Kramer, Laird

    2009-12-01

    The Colorado Learning Attitudes about Science Survey (CLASS) has been widely acknowledged as a useful measure of student cognitive attitudes about science and learning. The initial University of Colorado validation study included only 20% non-Caucasian student populations. In this Brief Report we extend their validation to include a predominately under-represented minority population. We validated the CLASS instrument at Florida International University, a Hispanic-serving institution, by interviewing students in introductory physics classes using a semistructured protocol, examining students’ responses on the CLASS item statements, and comparing them to the items’ intended meaning. We find that in our predominately Hispanic population, 94% of the students’ interview responses indicate that the students interpret the CLASS items correctly, and thus the CLASS is a valid instrument. We also identify one potentially problematic item in the instrument which one third of the students interviewed consistently misinterpreted.

  2. Tangled paths: Three experienced teachers' growth in understanding during an extended science community of practice professional development effort

    NASA Astrophysics Data System (ADS)

    Brown, Nancy Melamed

    This qualitative investigation extends the study of teacher learning within a reform-based community of practice model of professional development. This long-term, multiple case study examined three experienced teachers' transformations in thinking about science instruction. Data were collected during the three years of the Guided Inquiry supporting Multiple Literacies research project, designed to develop instructional practices informed by a socio-cultural, inquiry-based orientation. Data sources included: transcripts of semi-structured interviews collected at strategic points, the teacher's journals, initial application information, and teachers' written case studies. Using an interpretive case study approach, tenets of the teachers' orientations were identified through a recursive process. Results are organized to reflect two principles that were integral to the design of the professional development community. The first principle describes changes in teachers' orientations about the goals and characteristics of science instruction in the elementary grades. The second describes changes about teachers' knowledge about themselves as learners and the influence of this knowledge on their thinking about science instruction and student learning. Illustrative findings indicate that: (a) it is possible for teachers' language regarding conceptions of their practice to change with only superficial change in their orientations, (b) teachers can hold dualistic ways of thinking about their practice, (c) in some cases, teachers use a significant amount of autobiography about their own learning to explain their practice; over time, this was replaced with warrants using the language that developed within the professional development community, and (d) long-term case studies revealed differences in orientations that emerged and were refined over time. These findings provide strong support for communities of practice as a model of professional development and hold implications for advancing teacher learning.

  3. A Phenomenological Examination of Perceived Skills and Concepts Necessary for Teaching Scientific Thinking

    NASA Astrophysics Data System (ADS)

    Kapetanis, Ana Cristina

    The use of high stakes testing to improve educational outcomes falls short in many settings. Proposals for improvement include providing more opportunities for students to extend their thinking, gaining experience in the social nature of science, and learning how to interpret, explain, and justify results. This phenomenological qualitative project study took place in a small independent school in the southeastern United States that lacked a cohesive elementary science program and was looking to create a vertically aligned science curriculum based on constructivism. The research question asked what skills and concepts teachers believed should be included in an elementary science program in order for students to learn scientific inquiry to be better prepared for middle and upper school science subjects. Using focus groups, observations, and interviews of a small sample of 4 teachers, data were collected, transcribed, and categorized through open coding. Inductive analysis was employed to look for patterns and emerging themes that painted a picture of how teachers viewed the current science program and what attributes they felt were important in the creation of a new curriculum. The findings revealed that teachers felt there was lack of a vertically aligned science curriculum, availability of resources throughout the school, and consistent support to provide an effective science program. The recommendations called for developing an elementary science program that includes all strands proposed by the National Science Education Standards and would provide students with opportunities to engage in scientific inquiry, conduct detailed observations, and learn to support conclusions using data. The implications for positive social change include development of programs that result in integrated science learning.

  4. Renegotiating the pedagogic contract: Teaching in digitally enhanced secondary science classrooms

    NASA Astrophysics Data System (ADS)

    Ajayi, Ajibola Oluneye

    This qualitative case study explores the effects of emerging digital technology as a teaching and learning tool in secondary school science classrooms. The study examines three teachers' perspectives on how the use of technology affects the teacher-student pedagogic relationship. The "pedagogic contract" is used as a construct to analyze the changes that took place in these teachers' classrooms amid the use of this new technology. The overarching question for this research is: How was the pedagogic contract renegotiated in three secondary science teachers' classrooms through the use of digitally enhanced science instruction. To answer this question, data was collected via semi-structured teacher interviews, classroom observations, and analysis of classroom documents such as student assignments, tests and Study Guides. This study reveals that the everyday use of digital technologies in these classrooms resulted in a re-negotiated pedagogic contract across three major dimensions: content of learning, method and management of learning activities, and assessment of learning. The extent to which the pedagogic contract was renegotiated varied with each of the teachers studied. Yet in each case, the content of learning was extended to include new topics, and greater depth of learning within the mandated curriculum. The management of learning was reshaped around metacognitive strategies, personal goal-setting, individual pacing, and small-group learning activities. With the assessment of learning, there was increased emphasis on self-directed interactive testing as a formative assessment tool. This study highlights the aspects of science classrooms that are most directly affected by the introduction of digital technologies and demonstrates how those changes are best understood as a renegotiation of the teacher-student pedagogic contract.

  5. Cognitive and learning sciences in biomedical and health instructional design: A review with lessons for biomedical informatics education.

    PubMed

    Patel, Vimla L; Yoskowitz, Nicole A; Arocha, Jose F; Shortliffe, Edward H

    2009-02-01

    Theoretical and methodological advances in the cognitive and learning sciences can greatly inform curriculum and instruction in biomedicine and also educational programs in biomedical informatics. It does so by addressing issues such as the processes related to comprehension of medical information, clinical problem-solving and decision-making, and the role of technology. This paper reviews these theories and methods from the cognitive and learning sciences and their role in addressing current and future needs in designing curricula, largely using illustrative examples drawn from medical education. The lessons of this past work are also applicable, however, to biomedical and health professional curricula in general, and to biomedical informatics training, in particular. We summarize empirical studies conducted over two decades on the role of memory, knowledge organization and reasoning as well as studies of problem-solving and decision-making in medical areas that inform curricular design. The results of this research contribute to the design of more informed curricula based on empirical findings about how people learn and think, and more specifically, how expertise is developed. Similarly, the study of practice can also help to shape theories of human performance, technology-based learning, and scientific and professional collaboration that extend beyond the domain of medicine. Just as biomedical science has revolutionized health care practice, research in the cognitive and learning sciences provides a scientific foundation for education in biomedicine, the health professions, and biomedical informatics.

  6. Consideration of learning orientations as an application of achievement goals in evaluating life science majors in introductory physics

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.; Bertram, Charles A.

    2018-06-01

    When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics such as metacognition. We investigate a sample population of 218 students in a first-semester introductory algebra-based physics course, drawn from 14 laboratory sections within six semesters of course sections, to determine the influence of achievement goals on life science majors' attitudes towards physics. Learning orientations that, respectively, pertain to mastery goals and performance goals, in addition to a learning orientation that does not report a performance goal, were recorded from students in the specific context of learning a problem-solving framework during an in-class exercise. Students' learning orientations, defined within the context of students' self-reported statements in the specific context of a problem-solving-related research-based course implementation, are compared to pre-post results on physics problem-solving items in a well-established attitudinal survey instrument, in order to establish the categories' validity. In addition, mastery-related and performance-related orientations appear to extend to overall pre-post attitudinal shifts, but not to force and motion concepts or to overall course grade, within the scope of an introductory physics course. There also appears to be differentiation regarding overall course performance within health science majors, but not within biology majors, in terms of learning orientations; however, health science majors generally appear to fare less well on all measurements in the study than do biology majors, regardless of learning orientations.

  7. Improving together: collaborative learning in science communication

    NASA Astrophysics Data System (ADS)

    Stiller-Reeve, Mathew

    2015-04-01

    Most scientists today recognise that science communication is an important part of the scientific process. Despite this recognition, science writing and communication are generally taught outside the normal academic schedule. If universities offer such courses, they are generally short-term and intensive. On the positive side, such courses rarely fail to motivate. At no fault of their own, the problem with such courses lies in their ephemeral nature. The participants rarely complete a science communication course with an immediate and pressing need to apply these skills. And so the skills fade. We believe that this stalls real progress in the improvement of science communication across the board. Continuity is one of the keys to success! Whilst we wait for the academic system to truly integrate science communication, we can test and develop other approaches. We suggest a new approach that aims to motivate scientists to continue nurturing their communication skills. This approach adopts a collaborative learning framework where scientists form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online. In this way, the participants learn and cement basic writing skills. These skills are transferrable, and can be applied to scientific articles as well as other science communication media. In this presentation we reflect on an ongoing project, which applies a collaborative learning framework to help young and early career scientists improve their writing skills. We see that this type of project could be extended to other media such as podcasts, or video shorts.

  8. An ecological approach to learning with technology: responding to tensions within the "wow-effect" phenomenon in teaching practices

    NASA Astrophysics Data System (ADS)

    Herro, Danielle

    2016-12-01

    This review explores Anne Kamstrupp's "The Wow-effect in Science Teacher Education" by examining her theorized "wow-effect" as a teaching enactment that may serve to engage students, but often fails to provide deep understanding of science content. My response extends her perspective of socio-materiality as means to understand the "wow-effect" by suggesting social constructivism provides a more accurate lens to disentangle the phenomenon. I react to her position that tension fields within the phenomenon include the relationship between new and old technologies, boredom and engagement, and active and sedentary learning. In this conversation, I point to a new way of conceptualizing using digital media in the classroom as ecology of learning that may serve to decrease problems associated with the "wow-effect".

  9. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    PubMed

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  10. The Python Project: A Unique Model for Extending Research Opportunities to Undergraduate Students

    ERIC Educational Resources Information Center

    Harvey, Pamela A.; Wall, Christopher; Luckey, Stephen W.; Langer, Stephen; Leinwand, Leslie A.

    2014-01-01

    Undergraduate science education curricula are traditionally composed of didactic instruction with a small number of laboratory courses that provide introductory training in research techniques. Research on learning methodologies suggests this model is relatively ineffective, whereas participation in independent research projects promotes enhanced…

  11. Opportunity to Participate in ESSE 21: The 2003 Call for Participation

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2003-12-01

    Earth System Science Education for the 21st Century (ESSE 21), sponsored by NASA through the Universities Space Research Association (USRA), is a collaborative undergraduate/graduate education program offering small grants to colleges and universities to engage a diverse interdisciplinary community of faculty and scientists in the development of courses, curricula and degree programs and sharing of learning resources focused on the fundamental understanding and application of Earth system principles for the classroom and laboratory. Through an expanded focus including partnerships with minority institutions, ESSE 21 is further developing broadly based courses, educational resources, electronic learning materials and degree programs that extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing the fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. The thrust to establish Earth system and global change science within the classrooms of colleges and universities is critical to laying and extending the foundation for knowledge-based decision making in the 21st century by both scientists and society in an effort to achieve sustainability. ESSE 21 released a Call for Participation (CFP) in the Fall of 2002 soliciting proposals from undergraduate institutions to create and adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. In February 2003, twelve college and university teams were competitively selected through the CFP as the Year 1 and Year 2 Program participants. Eight of the participating teams are from minority institutions. The goal for all is to effect systemic change through developing Earth system science learning materials, courses, curricula, degree tracks or programs, and departments that are self-sustaining in the coming decades. ESSE 21 offers an expanded infrastructure for an interactive community of educators and researchers including minority participants that develops interdisciplinary Earth system science content. Emphasis is on the utilization of NASA resources involving global change data, models, visualizations and electronic media and networks. The ultimate aim of ESSE 21 is to expand and accelerate the nation's realization of sound, scientific interdisciplinary educational resources for informed learning and decision-making by all from the perspective of sustainability of the Earth as a system. The next Call for Participation will be released in late 2003.

  12. Reading Research at Work: Foundations of Effective Practice

    ERIC Educational Resources Information Center

    Stahl, Katherine A. Dougherty, Ed.; McKenna, Michael C., Ed.

    2006-01-01

    This book presents state-of-the-science research on the components of successful literacy learning and how to target them in contemporary classrooms. The volume builds on and extends the work of Steven Stahl, whose pioneering contributions encompassed the key areas of phonemic awareness, phonics, vocabulary, fluency, comprehension, and assessment.…

  13. More Strategies for Educating Everybody's Children.

    ERIC Educational Resources Information Center

    Cole, Robert W., Ed.

    This book presents a collection of papers offering practical strategies that teachers can use to enhance student performance at all levels. The authors identify and describe the most effective teaching approaches for helping students learn history, civics, geography, and science. The book extends the notion of diversity by examining different…

  14. Integrated Contextual Learning and Food Science Students' Perception of Work Readiness

    ERIC Educational Resources Information Center

    Coorey, Ranil; Firth, Ann

    2013-01-01

    The expectation that universities will produce graduates with high levels of work readiness is now a commonplace in government policies and statements from industry representatives. Meeting the demand requires that students gain industry related experience before graduation. Traditionally students have done so by undertaking extended work…

  15. State Highway Maps: A Route to a Learning Adventure

    ERIC Educational Resources Information Center

    McDuffie, Thomas E.; Cifelli, Joseph

    2006-01-01

    Science within the folds of highway maps is explored through a series of hands-on experiences designed to reinforce and extend map-reading skills in grades 6-8. The increasingly sophisticated, standards-related activities include measuring distances between population centers, finding communities named after trees, animals, and geologic features,…

  16. High School Students' Learning and Perceptions of Phylogenetics of Flowering Plants

    ERIC Educational Resources Information Center

    Bokor, Julie R.; Landis, Jacob B.; Crippen, Kent J.

    2014-01-01

    Basic phylogenetics and associated "tree thinking" are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K-12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in…

  17. Key Challenges and Future Directions for Educational Research on Scientific Argumentation

    ERIC Educational Resources Information Center

    Henderson, J. Bryan; McNeill, Katherine L.; González-Howard, María; Close, Kevin; Evans, Mat

    2018-01-01

    At the 2015 "NARST: A Worldwide Organization for Improving Science Teaching and Learning Through Research" Annual International Conference, a group of scholars held an extended pre-conference workshop to discuss key challenges and future directions faced by argumentation researchers around the world. This wide-ranging group of…

  18. From Archive to Awards Ceremony: An Approach for Engaging Students in Historical Research

    ERIC Educational Resources Information Center

    Erekson, Keith A.

    2011-01-01

    Recent literature on history teaching has emphasized "doing history"--whether as "active learning", cognitive science, or with simple photocopies of primary sources. This article extends the discussion of a "signature pedagogy" of history to include all aspects of the work of historians, from archival research through…

  19. ClimateNet: A Machine Learning dataset for Climate Science Research

    NASA Astrophysics Data System (ADS)

    Prabhat, M.; Biard, J.; Ganguly, S.; Ames, S.; Kashinath, K.; Kim, S. K.; Kahou, S.; Maharaj, T.; Beckham, C.; O'Brien, T. A.; Wehner, M. F.; Williams, D. N.; Kunkel, K.; Collins, W. D.

    2017-12-01

    Deep Learning techniques have revolutionized commercial applications in Computer vision, speech recognition and control systems. The key for all of these developments was the creation of a curated, labeled dataset ImageNet, for enabling multiple research groups around the world to develop methods, benchmark performance and compete with each other. The success of Deep Learning can be largely attributed to the broad availability of this dataset. Our empirical investigations have revealed that Deep Learning is similarly poised to benefit the task of pattern detection in climate science. Unfortunately, labeled datasets, a key pre-requisite for training, are hard to find. Individual research groups are typically interested in specialized weather patterns, making it hard to unify, and share datasets across groups and institutions. In this work, we are proposing ClimateNet: a labeled dataset that provides labeled instances of extreme weather patterns, as well as associated raw fields in model and observational output. We develop a schema in NetCDF to enumerate weather pattern classes/types, store bounding boxes, and pixel-masks. We are also working on a TensorFlow implementation to natively import such NetCDF datasets, and are providing a reference convolutional architecture for binary classification tasks. Our hope is that researchers in Climate Science, as well as ML/DL, will be able to use (and extend) ClimateNet to make rapid progress in the application of Deep Learning for Climate Science research.

  20. Investigating Student Understanding of Control of Variables

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew; Heron, P. R.; Shaffer, P. S.

    2006-12-01

    The concept of control of variables is fundamental to science. A practical understanding is especially important for science teachers, who must help students design experiments and learn to interpret the results. Findings from an extended study of student and teacher facility with the reasoning underlying control of variables will be reported. This research has involved precollege science teachers, liberal arts physics students, calculus-based introductory physics students, and college science faculty. The results suggest that while most participants are familiar with the idea of controlled experiments, many lack functional skill with the underlying reasoning. Results from interviews and written questions will be used to illustrate specific difficulties.

  1. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    NASA Technical Reports Server (NTRS)

    Adams, M.; Gallagher, D. L.; Whitt, A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    For the past four years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of science communication through the web resources on the Internet. The program includes extended stories about NAS.4 science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. We give here, examples of events, problems, and lessons learned from these activities.

  2. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    NASA Astrophysics Data System (ADS)

    Trauth-Nare, Amy

    2015-08-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers' self-efficacy for teaching about the environment and to determine which aspects of the combined field-based course/service learning preservice teachers perceived as effective for enhancing their self-efficacy. Data were collected from class documents and written teaching reflections of 38 middle-level preservice teachers. Some participants ( n = 18) also completed the Environmental Education Efficacy Belief Instrument at the beginning and end of the semester. Both qualitative and quantitative data analyses indicated a significant increase in PSTs' personal efficacies for environmental teaching, t(17) = 4.50, p = .000, d = 1.30, 95 % CI (.33, .90), but not outcome expectancy, t(17) = 1.15, p = .268, d = .220, 95 % CI (-.06, .20). Preservice teachers reported three aspects of the course as important for enhancing their self-efficacies: learning about ecological concepts through place-based issues, service learning with K-5 students and EE curriculum development. Data from this study extend prior work by indicating that practical experiences with students were not the sole factor in shaping PSTs' self-efficacy; learning ecological concepts and theories in field-based activities grounded in the local landscape also influenced PSTs' self-efficacy.

  3. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    NASA Technical Reports Server (NTRS)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  4. Getting The Picture: Our Changing Climate- A new learning tool for climate science

    NASA Astrophysics Data System (ADS)

    Yager, K.; Balog, J. D.

    2014-12-01

    Earth Vision Trust (EVT), founded by James Balog- photographer and scientist, has developed a free, online, multimedia climate science education tool for students and educators. Getting The Picture (GTP) creates a new learning experience, drawing upon powerful archives of Extreme Ice Survey's unique photographs and time-lapse videos of changing glaciers around the world. GTP combines the latest in climate science through interactive tools that make the basic scientific tenets of climate science accessible and easy to understand. The aim is to use a multidisciplinary approach to encourage critical thinking about the way our planet is changing due to anthropogenic activities, and to inspire students to find their own voice regarding our changing climate The essence of this resource is storytelling through the use of inspiring images, field expedition notes and dynamic multimedia tools. EVT presents climate education in a new light, illustrating the complex interaction between humans and nature through their Art + Science approach. The overarching goal is to educate and empower young people to take personal action. GTP is aligned with national educational and science standards (NGSS, CCSS, Climate Literacy) so it may be used in conventional classrooms as well as education centers, museum kiosks or anywhere with Internet access. Getting The Picture extends far beyond traditional learning to provide an engaging experience for students, educators and all those who wish to explore the latest in climate science.

  5. Elementary school science teachers' reflection for nature of science: Workshop of NOS explicit and reflective on force and motion learning activity

    NASA Astrophysics Data System (ADS)

    Patho, Khanittha; Yuenyong, Chokchai; Chamrat, Suthida

    2018-01-01

    The nature of science has been part of Thailand's science education curriculum since 2008. However, teachers lack of understanding about the nature of science (NOS) and its teaching, particularly element school science teachers. In 2012, the Science Institute of Thailand MOE, started a project of Elementary Science Teacher Professional Development to enhance their thinking about the Nature of Science. The project aimed to enhance teachers' understanding of NOS, science teaching for explicit and reflective NOS, with the aim of extending their understanding of NOS to other teachers. This project selected 366 educational persons. The group was made up of a teacher and a teacher supervisor from 183 educational areas in 74 provinces all Thailand. The project provided a one week workshop and a year's follow up. The week-long workshop consisted of 11 activities of science teaching for explicit reflection on 8 aspects of NOS. Workshop of NOS explicit and reflective on force and motion learning activity is one of eight activities. This activity provided participants to learn force and motion and NOS from the traditional toy "Bang-Poh". The activity tried to enhance participants to explicit NOS for 5 aspects including empirical basis, subjectivity, creativity, observation and inference, and sociocultural embeddedness. The explicit NOS worksheet provided questions to ask participants to reflect their existing ideas about NOS. The paper examines elementary school science teachers' understanding of NOS from the force and motion learning activity which provided explicit reflection on 5 NOS aspects. An interpretive paradigm was used to analyse the teachers' reflections in a NOS worksheet. The findings indicated that majority of them could reflect about the empirical basis of science and creativity but few reflected on observation and inference, or sociocultural embeddedness. The paper will explain the teachers' NOS thinking and discuss the further enhancing of their understanding and organizing NOS explicit and reflective science teaching.

  6. Beyond Classroom, Lab, Studio and Field

    NASA Astrophysics Data System (ADS)

    Waller, J. L.; Brey, J. A.; DeMuynck, E.; Weglarz, T. C.

    2017-12-01

    When the arts work in tandem with the sciences, the insights of these disciplines can be easily shared and teaching and learning are enriched. Our shared experiences in classroom/lab/studio instruction and in art and science based exhibitions reward all involved. Our individual disciplines cover a wide range of content- Art, Biology, Geography, Geology- yet we connect on aspects that link to the others'. We easily move from lab to studio and back again as we teach—as do our students as they learn! Art and science education can take place outside labs and studios through study abroad, international workshops, museum or gallery spaces, and in forums like the National Academies' programs. We can reach our neighbors at local public gatherings, nature centers and libraries. Our reach is extended in printed publications and in conferences. We will describe some of our activities listed above, with special focus on exhibitions: "Layers: Places in Peril"; "small problems, BIG TROUBLE" and the in-progress "River Bookends: Headwaters, Delta and the Volume of Stories In Between". Through these, learning and edification take place between the show and gallery visitors and is extended via class visits and related assignments, field trips for child and adult learners, interviews, films and panel presentations. These exhibitions offer the important opportunities for exhibit- participating scientists to find common ground with each other about their varied work. We will highlight a recent collaborative show opening a new university-based environmental research center and the rewarding activities there with art and science students and professors. We will talk about the learning enhancement added through a project that brought together a physical geography and a painting class. We will explore how students shared the form and content of their research projects with each other and then, became the educators through paintings and text of their geoscience topics on gallery walls.

  7. A study to modify, extend, and verify, an existing model of interactive-constructivist school science teaching

    NASA Astrophysics Data System (ADS)

    Numedahl, Paul Joseph

    The purpose of this study was to gain an understanding of the effects an interactive-constructive teaching and learning approach, the use of children's literature in science teaching and parental involvement in elementary school science had on student achievement in and attitudes toward science. The study was done in the context of Science PALS, a professional development program for inservice teachers. An existing model for interactive-constructive elementary science was modified to include five model variables; student achievement, student attitudes, teacher perceptions, teacher performance, and student perceptions. Data were collected from a sample of 12 teachers and 260 third and fourth grade students. Data analysis included two components, (1) the examination of relationships between teacher performance, teacher perceptions, student achievement and attitudes, and (2) the verification of a model using path analysis. Results showed a significant correlation between teacher perceptions and student attitude. However, only one model path was significant; thus, the model could not be verified. Further examination of the significant model path was completed. Study findings included: (1) Constructivist notions of teaching and learning may cause changes in the traditional role relationship between teachers and students leading to negative student attitudes. (2) Children who perceive parental interest toward science education are likely to have a positive attitude toward science learning, increased self-confidence in science and possess accurate ideas concerning the nature of science. (3) Students who perceive science instruction as relevant are likely to possess a positive attitude toward science learning, increased self-confidence in science, and possess accurate ideas concerning the nature of science. (4) Students who perceive their classroom as aligning with constructivist principles are likely to possess a positive attitude toward science, an increased self-confidence in science, and possess accurate ideas concerning the nature of science. (5) The inclusion of children's literature in elementary school science promotes a positive attitude toward science, an increase in student self-confidence in science, and fosters accurate understandings of the nature of science. Recommendations focus on student change, constructivist pedagogy, use of literature in science, and parental involvement in science education.

  8. Designing and Developing Lesson Plans for K-12 Classrooms

    ERIC Educational Resources Information Center

    Shores, Melanie L.; Smith, Tommy G.

    2011-01-01

    The overarching goal of this four-phase, in-service project--Girls Engaged in Mathematics and Science--was to change attitudes, behavior, pedagogy, and curriculum for girls through the provision of a vibrant, engaging, digital portal program with media that extends learning beyond the traditional classroom. Described here, Phases I and II were…

  9. The Interactions of Relationships, Interest, and Self-Efficacy in Undergraduate Physics

    ERIC Educational Resources Information Center

    Dou, Remy

    2017-01-01

    This collected papers dissertation explores students' academic interactions in an active learning, introductory physics settings as they relate to the development of physics self-efficacy and interest. The motivation for this work extends from the national call to increase participation of students in the pursuit of science, technology,…

  10. Entomology: Promoting Creativity in the Science Lab

    ERIC Educational Resources Information Center

    Akcay, Behiye B.

    2013-01-01

    A class activity has been designed to help fourth grade students to identify basic insect features as a means of promoting student creativity while making an imaginary insect model. The 5Es (Engage, Explore, Explain, Extend [or Elaborate], and Evaluate) learning cycle teaching model is used. The 5Es approach allows students to work in small…

  11. A Phenomenological Examination of Perceived Skills and Concepts Necessary for Teaching Scientific Thinking

    ERIC Educational Resources Information Center

    Kapetanis, Ana Cristina

    2011-01-01

    The use of high stakes testing to improve educational outcomes falls short in many settings. Proposals for improvement include providing more opportunities for students to extend their thinking, gaining experience in the social nature of science, and learning how to interpret, explain, and justify results. This phenomenological qualitative project…

  12. Access and Opportunities to Learn Are Not Accidents: Engineering Mathematical Progress in Your School

    ERIC Educational Resources Information Center

    Tate. William F., IV

    2005-01-01

    This monograph represents an effort to build upon and extend beyond the literature on school mathematics as discussed in "Mathematics and Science: Critical Filters for the Future." Three significant changes in the political and educational landscape since 1985 are discussed. The first change is the introduction of mathematics standards…

  13. Informal Science Educators' Pedagogical Choices and Goals for Learners: The Case of Planetarium Professionals

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Small, Kim J.

    2013-01-01

    This study extends our understanding of the goals, beliefs, and pedagogical choices made by planetarium professionals. Interviews were conducted with planetarium professionals (N = 36) to assess their goals for audiences and beliefs about the design of the learning environment. Classification of participants, according to a six-facet framework on…

  14. College MOON Project Australia: Preservice Teachers Learning about the Moon's Phases

    ERIC Educational Resources Information Center

    Mulholland, Judith; Ginns, Ian

    2008-01-01

    This paper is a report of the Australian segment of an international multi-campus project centred on improving understanding of the Moon's phases for preservice teachers. Instructional strategies adopted for a science education subject enabled Australian participants to make extended observations of the Moon's phases and keep observational data…

  15. Identifying and Investigating Difficult Concepts in Engineering Mechanics and Electric Circuits. Research Brief

    ERIC Educational Resources Information Center

    Streveler, Ruth; Geist, Monica; Ammerman, Ravel; Sulzbach, Candace; Miller, Ronald; Olds, Barbara; Nelson, Mary

    2007-01-01

    This study extends ongoing work to identify difficult concepts in thermal and transport science and measure students' understanding of those concepts via a concept inventory. Two research questions provided the focal point: "What important concepts in electric circuits and engineering mechanics do students find difficult to learn?" and…

  16. Learning to teach science in a professional development school program

    NASA Astrophysics Data System (ADS)

    Hildreth, David P.

    1997-09-01

    The purpose of this study was to determine the effects of learning to teach science in a Professional Development School (PDS) program on university elementary education preservice teachers' (1) attitudes toward science, (2) science process skills achievement, and (3) sense of science teaching efficacy. Data were collected and analyzed using both quantitative and qualitative methods. Quantitative data were collected using the Science Attitude Inventory (North Carolina Math and Science Education Network (1994), the Test of Integrated Process Skills, TIPS, (Dillashaw & Okey, 1980), and the Science Teaching Efficacy Belief Instrument, STEBI, form B (Enochs & Riggs, 1990). A pretest posttest research design was used for the attitude and process skills constructs. These results were analyzed using paired t test procedures. A pre-experimental group comparison group research design was used for the efficacy construct. Results from this comparison were analyzed using unpaired t test procedures. Qualitative data were collected through students' responses to open-ended questionnaires, narrative interviews, journal entries, small messages, and unsolicited conversations. These data were analyzed via pattern analysis. Posttest scores were significantly higher than pretests scores on both the Science Attitude Inventory and the TIPS. This indicated that students had improved attitudes toward science and science teaching and higher process skills achievement after three semesters in the science-focused PDS program. Scores on the STEBI were significantly higher for students in the pre-experimental group when compared to students in the comparison group. This indicates that students in the science-focused PDS program possessed more efficacious beliefs about science teaching than did the comparison group. Quantitative data were supported by analysis of qualitative data. Implications from this study point to the effectiveness of learning to teach science in a science-focused PDS program with respect to attitudes toward science, science process skills achievement, and sense of science teaching efficacy. In addition, qualitative data indicated that the most effective components of the science-focused PDS program rests largely on the fact that students learned to teach in a collaborative cohort team and that students spent extended periods of time in clinical internships and student teaching.

  17. The Message is in the Data (not the Medium): Results From a Secondary-level Environmental Science Workshop

    NASA Astrophysics Data System (ADS)

    Fatland, D. R.

    2008-12-01

    I ran an extended (18 session) workshop during the 2007-2008 school year at a public Montessori elementary in Boulder Colorado. A reprise is running this year that extends to middle school students. The curriculum emphasis was on physical and environmental science, assembled in part using synoptic principles drawn from the National Research Council report "How People Learn". The curriculum was driven by story lines that began and ended in the students' zone of comprehension, in the interim extending through proximal development to open-ended inquiry. The workshop had four distinct purposes: i) Provide students an opportunity to problem-solve, ii) Break barriers between classroom learning and field science, iii) Determine what does and does not work with students at this age, iv) Begin building an alternative outreach path for professional scientists, specifically to avoid one-off presentation ('magic show') syndrome. New technology was incorporated in the workshop as needed--from thermochrons to virtual globes--but this was de- emphasized to keep focus on the subject matter. Data played a much stronger role particularly during early sessions where students were divided into 'phenomena' and 'scientist' groups in order to see both sides of the inquiry process. I present here workshop results, successes and failures, with two emphases: First on the idea that data can be an excellent way to build metacognitive skills in students around age 10. Second that-- with all due credit to Marshall McLuhan--the medium best serves by staying out of the way of the message.

  18. Sharpening the lens of culturally responsive science teaching: a call for liberatory education for oppressed student groups

    NASA Astrophysics Data System (ADS)

    Codrington, Jamila

    2014-12-01

    Wallace and Brand's framing of culturally responsive science teaching through the lens of critical race theory honors the role of social justice in science education. In this article, I extend the discussion through reflections on the particular learning needs of students from oppressed cultural groups, specifically African Americans. Understanding the political nature of education, I explore the importance of transforming science education so that it has the capacity to provide African American students with tools for their own liberation. I discuss Wallace and Brand's research findings in relation to the goal of liberatory education, and offer ideas for how science educators might push forward this agenda as they strive for culturally responsive teaching with oppressed student groups.

  19. Charting a path for health sciences librarians in an integrated information environment.

    PubMed

    Jones, C J

    1993-10-01

    Changes in the health information environment present a major challenge to health sciences librarians. To successfully meet this challenge, librarians must apply the concepts of informal, self-directed, lifelong learning to their own carers. The Joint Commission on Accreditation of Healthcare Organizations is creating an integrated information environment in health care organizations. The health sciences librarian brings unique knowledge and skills to this environment. The reference technique, a methodology that closely parallels other problem-solving approaches such as the physician's diagnostic technique, equips librarians with the conceptual skills to develop creative solutions to information management problems. Each health sciences librarian must assume responsibility for extending professional skills and abilities and demonstrating them in the workplace.

  20. Student involvement in learning: Collaboration in science for PreService elementary teachers

    NASA Astrophysics Data System (ADS)

    Roychoudhury, Anita; Roth, Wolff-Michael

    1992-03-01

    The present study provided insights regarding the interactions that take place in collaborative science laboratory and regarding the outcome of such interactions. Science laboratory experiences structured by teachers have been criticized for allowing very little, if any, meaningful learning. However, this study showed that even structured laboratory experiments can provide insightful experience for students when conducted in a group setting that demanded interactive participation from all its members. The findings of the present study underscored the synergistic and supportive nature of collaborative groups. Here, students patiently repeated explanations to support the meaning construction on the part of their slower peers and elaborated their own understanding in the process; groups negotiated the meaning of observations and the corresponding theoretical explanations; students developed and practiced a range of social skills necessary in today’s workplace; and off-task behavior was thwarted by the group members motivated to work toward understanding rather than simply generating answers for task completion. The current findings suggest an increased use of collaborative learning environments for the teaching of science to elementary education majors. Some teachers have already made use of such settings in their laboratory teaching. However, collaborative learning should not be limited to the laboratory only, but be extended to more traditionally structured classes. The effects of such a switch in activity structures, increased quality of peer interaction, mastery of subject matter content, and decreased anxiety levels could well lead to better attitudes toward science among preservice elementary school teachers and eventually among their own students.

  1. Changing teaching techniques and adapting new technologies to improve student learning in an introductory meteorology and climate course

    NASA Astrophysics Data System (ADS)

    Cutrim, E. M.; Rudge, D.; Kits, K.; Mitchell, J.; Nogueira, R.

    2006-06-01

    Responding to the call for reform in science education, changes were made in an introductory meteorology and climate course offered at a large public university. These changes were a part of a larger project aimed at deepening and extending a program of science content courses that model effective teaching strategies for prospective middle school science teachers. Therefore, revisions were made to address misconceptions about meteorological phenomena, foster deeper understanding of key concepts, encourage engagement with the text, and promote inquiry-based learning. Techniques introduced include: use of a flash cards, student reflection questionnaires, writing assignments, and interactive discussions on weather and forecast data using computer technology such as Integrated Data Viewer (IDV). The revision process is described in a case study format. Preliminary results (self-reflection by the instructor, surveys of student opinion, and measurements of student achievement), suggest student learning has been positively influenced. This study is supported by three grants: NSF grant No. 0202923, the Unidata Equipment Award, and the Lucia Harrison Endowment Fund.

  2. Issues in Informal Education: Event-Based Science Communication Involving Planetaria and the Internet

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Whitt, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Panel participation will be used to communicate the problems and lessons learned from these activities over the last three years.

  3. Student perceptions of secondary science: A performance technology application

    NASA Astrophysics Data System (ADS)

    Small, Belinda Rusnak

    The primary purpose of this study was to identify influences blocking or promoting science performance from the lived K-12 classroom experience. Human Performance Technology protocols were used to understand factors promoting or hindering science performance. The goal was to gain information from the individual students' perspective to enhance opportunities for stakeholders to improve the current state of performance in science education. Individual perspectives of 10 secondary science students were examined using grounded theory protocols. Findings include students' science learning behaviors are influenced by two major themes, environmental supports and individual learning behaviors. The three environmental support factors identified include the methods students receive instruction, students' opportunities to access informal help apart from formal instruction, and students' feelings of teacher likability. Additionally, findings include three major factors causing individual learners to generate knowledge in science. Factors reported include personalizing information to transform data into knowledge, customizing learning opportunities to maximize peak performance, and tapping motivational opportunities to persevere through complex concepts. The emergent theory postulated is that if a performance problem exists in an educational setting, then integrating student perspectives into the cause analysis opens opportunity to align interventions for influencing student performance outcomes. An adapted version of Gilbert's Behavioral Engineering Model is presented as an organizational tool to display the findings. The boundaries of this Performance Technology application do not extend to the identification, selection, design, or implementation of solutions to improved science performance. However, as stakeholders begin to understand learner perspectives then aligned decisions may be created to support learners of science in a direct, cost effective manner.

  4. NASA Science Served Family Style

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Mitchell, S.; Drobnes, E.

    2010-01-01

    Family oriented innovative programs extend the reach of many traditional out-of-school venues to involve the entire family in learning in comfortable and fun environments. Research shows that parental involvement is key to increasing student achievement outcomes, and family-oriented programs have a direct impact on student performance. Because families have the greatest influence on children's attitudes towards education and career choices, we have developed a Family Science program that provides families a venue where they can explore the importance of science and technology in our daily lives by engaging in learning activities that change their perception and understanding of science. NASA Family Science Night strives to change the way that students and their families participate in science, within the program and beyond. After three years of pilot implementation and assessment, our evaluation data shows that Family Science Night participants have positive change in their attitudes and involvement in science.  Even after a single session, families are more likely to engage in external science-related activities and are increasingly excited about science in their everyday lives.  As we enter our dissemination phase, NASA Family Science Night will be compiling and releasing initial evaluation results, and providing facilitator training and online support resources. Support for NASA Family Science Nights is provided in part through NASA ROSES grant NNH06ZDA001N.

  5. Integrating the Agents of Bioterrorism into the General Biology Curriculum: II. Mode of Action of the Biological Agents.

    ERIC Educational Resources Information Center

    Pommerville, Jeffrey C.

    2003-01-01

    Integrates bioterrorism into the science curriculum and explains actions against serious agents such as anthrax, plague, smallpox, botulinum toxin, and ricin toxin. Uses the learning cycle as the instructional tool which is student-centered and has three phases that include exploring, explaining, and extending. (Contains 24 references.) (YDS)

  6. Science Operations Development for Field Analogs: Lessons Learned from the 2010 Desert RATS Test

    NASA Technical Reports Server (NTRS)

    Eppler, D. B.; Ming, D. W.

    2011-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities.

  7. The development of learning materials based on core model to improve students’ learning outcomes in topic of Chemical Bonding

    NASA Astrophysics Data System (ADS)

    Avianti, R.; Suyatno; Sugiarto, B.

    2018-04-01

    This study aims to create an appropriate learning material based on CORE (Connecting, Organizing, Reflecting, Extending) model to improve students’ learning achievement in Chemical Bonding Topic. This study used 4-D models as research design and one group pretest-posttest as design of the material treatment. The subject of the study was teaching materials based on CORE model, conducted on 30 students of Science class grade 10. The collecting data process involved some techniques such as validation, observation, test, and questionnaire. The findings were that: (1) all the contents were valid, (2) the practicality and the effectiveness of all the contents were good. The conclusion of this research was that the CORE model is appropriate to improve students’ learning outcomes for studying Chemical Bonding.

  8. Examining motivational shifts in middle school: What deepens science motivation and what attenuates its decline?

    NASA Astrophysics Data System (ADS)

    Bathgate, Meghan Elizabeth

    While motivational decline towards science is common during adolescence, this dissertation asks if there are beneficial science experiences that buffer against the loss of motivation and even promote its growth. The dissertation consists of two papers (Chapter 2 & 3) with additional analyses in Chapter 4 and a summary of findings in Chapter 5. The first paper examines whether classroom science experiences are differentially associated with motivational change and science content knowledge. Using self-reports from a sample of approximately 3,000 middle school students, this study investigates the influence of perceived science classroom experiences (student engagement & perceived success), on motivational change (fascination, values, competency belief) and content learning. Controlling for demographic information, school effects, and initial levels of motivation and content knowledge, we find that dimensions of engagement (affect, behavioral-cognitive) and perceived success are differentially associated with changes in particular motivational constructs and learning. The second paper examines one of these motivational outcomes (value) in more detail. Valuing science is associated with positive learning outcomes and is often used to motivate engagement in the sciences, but less is known about what influences its development and maintenance, particularly during the critical middle school years. Using multinomial regression applied to longitudinal data from approximately 2,600 middle-school students, I test the relationship of the perceived science experiences examined in Paper 1 (affective engagement, behavioral-cognitive engagement, & perceived success) and optional formal and optional informal experiences to changes in science utility value. Furthermore, we address whether the same factors that predict growth in science value also predict absence of decline. Overall, we find that all five factors are associated with changes in value, but some have different relationships with growth vs. decline outcomes. Chapter 4 extends these findings to examine drivers of growth and decline for fascination and competency beliefs. Together, these findings provide a more nuanced view of the factors associated with science motivation and learning (both in and out of the science classroom), as well as the practical implications for educational practice.

  9. Towards a Situative View of Extending and Scaling Innovations in Education: A Case Study of the "Six Learnings" Framework

    ERIC Educational Resources Information Center

    Lim, Kenneth Y. T.; Hung, David; Huang, Junsong

    2011-01-01

    This article seeks to draw from contemporary understandings of translation science to highlight and elaborate upon possible norms and procedures which the authors have found to be critical in the successful extension and scaling of design-based research interventions in education into wider practitioner-based adoption and adaptation. The impetus…

  10. "It's 1000 Degrees in Here When I Teach": Providing Preservice Teachers with an Extended Opportunity to Approximate Ambitious Instruction

    ERIC Educational Resources Information Center

    Stroupe, David; Gotwals, Amelia Wenk

    2018-01-01

    Teacher educators have a challenging task of designing opportunities for preservice teachers (PSTs) to learn ambitious science teaching (AST). However, with limited time in methods courses and the complexities of AST, opportunities for PSTs to "try out" ambitious instruction are difficult to construct and analyze. To address this…

  11. The Nature and Role of Physical Models in Enhancing Sixth Grade Students' Mental Models of Groundwater and Groundwater Processes

    ERIC Educational Resources Information Center

    Duffy, Debra Lynne Foster

    2012-01-01

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate…

  12. Defense Science Board Task Force Report on Next-Generation Unmanned Undersea Systems

    DTIC Science & Technology

    2016-10-01

    active learning occurs in an environment that extends beyondchoreographed demonstrations designed to validate pre -determined hypotheses. Finally, when...4 OPNAV N99 should coordinate a broad-based design , development, and experimental effort to bypass traditional limitations for unmanned undersea...approaches that could facilitate rapid experimentation , operational demonstration of capabilities, and deployment of initial capabilities that show

  13. Science education for sustainability, epistemological reflections and educational practices: from natural sciences to trans-disciplinarity

    NASA Astrophysics Data System (ADS)

    Colucci-Gray, Laura; Perazzone, Anna; Dodman, Martin; Camino, Elena

    2013-03-01

    In this three-part article we seek to establish connections between the emerging framework of sustainability science and the methodological basis of research and practice in science education in order to bring forth knowledge and competences for sustainability. The first and second parts deal with the implications of taking a sustainability view in relation to knowledge processes. The complexity, uncertainty and urgency of global environmental problems challenge the foundations of reductionist Western science. Within such debate, the proposal of sustainability science advocates for inter-disciplinary and inter-paradigmatic collaboration and it includes the requirements of post- normal science proposing a respectful dialogue between experts and non-experts in the construction of new scientific knowledge. Such a change of epistemology is rooted into participation, deliberation and the gathering of extended-facts where cultural framings and values are the hard components in the face of soft facts. A reflection on language and communication processes is thus the focus of knowledge practices and educational approaches aimed at sustainability. Language contains the roots of conceptual thinking (including scientific knowledge) and each culture and society are defined and limited by the language that is used to describe and act upon the world. Within a scenario of sustainability, a discussion of scientific language is in order to retrace the connections between language and culture, and to promote a holistic view based on pluralism and dialogue. Drawing on the linguistic reflection, the third part gives examples of teaching and learning situations involving prospective science teachers in action-research contexts: these activities are set out to promote linguistic integration and to introduce reflexive process into science learning. Discussion will focus on the methodological features of a learning process that is akin to a communal and emancipatory research process within a sustainability scenario.

  14. New instrument for measuring student beliefs about physics and learning physics: The Colorado Learning Attitudes about Science Survey

    NASA Astrophysics Data System (ADS)

    Adams, W. K.; Perkins, K. K.; Podolefsky, N. S.; Dubson, M.; Finkelstein, N. D.; Wieman, C. E.

    2006-06-01

    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure student beliefs about physics and about learning physics. This instrument extends previous work by probing additional aspects of student beliefs and by using wording suitable for students in a wide variety of physics courses. The CLASS has been validated using interviews, reliability studies, and extensive statistical analyses of responses from over 5000 students. In addition, a new methodology for determining useful and statistically robust categories of student beliefs has been developed. This paper serves as the foundation for an extensive study of how student beliefs impact and are impacted by their educational experiences. For example, this survey measures the following: that most teaching practices cause substantial drops in student scores; that a student’s likelihood of becoming a physics major correlates with their “Personal Interest” score; and that, for a majority of student populations, women’s scores in some categories, including “Personal Interest” and “Real World Connections,” are significantly different from men’s scores.

  15. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  16. Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-10-01

    Neuromimetic machine vision and pattern recognition algorithms are of great interest for landscape characterization and change detection in satellite imagery in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methods to the environmental sciences, using adaptive sparse signal processing combined with machine learning. A Hebbian learning rule is used to build multispectral, multiresolution dictionaries from regional satellite normalized band difference index data. Land cover labels are automatically generated via our CoSA algorithm: Clustering of Sparse Approximations, using a clustering distance metric that combines spectral and spatial textural characteristics tomore » help separate geologic, vegetative, and hydrologie features. We demonstrate our method on example Worldview-2 satellite images of an Arctic region, and use CoSA labels to detect seasonal surface changes. In conclusion, our results suggest that neuroscience-based models are a promising approach to practical pattern recognition and change detection problems in remote sensing.« less

  17. Mothers as informal science class teachers

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis

    This study explores the participation of mothers as teachers (termed "Adult Leaders") in the Hands On Science Outreach (HOSO) informal science program for pre-kindergarten through sixth grade children. Since women continue to be underrepresented in the sciences (AAUW, 1992; AAUW 1998), there is a need to probe the nature of mothers' choices in science experiences, in the family context, and as role models. Mothers of school age children who choose to lead informal science activities are in a position to teach and learn not only within this alternative setting, but within their homes where values, attitudes, beliefs and motivations are continually cultivated by daily choices (Gordon, 1972; Tamir, 1990; Gerber, 1997). Policy makers recognize that schools are only one environment from many for learning science (National Science Board, 1983; National Research Council, 1996). Using complementary methodology, this study was conducted in two HOSO sessions that extended over six months. Twelve mothers who were HOSO teachers were case study participants. Primary data collection strategies were interviews, journals, and "draw-a-scientist." A larger sample of HOSO mother-teachers (N = 112) also contributed to a surrey, developed from an analysis of the case studies. Informal learning settings must, by their non-compulsory nature, focus on the affective component of learning as a necessity of participation. The framework for the qualitative analysis was from the affective characteristics described by Simpson et al. (1994). The interpretation is informed by sociobiology, science education and adult education theories. The study finds that the twelve mothers began their HOSO teaching believing in science as a way of knowing and valuing the processes and information from its practice. These women perceive their participation as a likely means to increase the success of their child(ren)'s education and are interested in the potential personal gains of leading an informal science education class. Study outcomes include self-reported tendencies toward increased awareness of science teaching techniques and content, as well as pleasure, confidence, and family interactions around science. The survey amplifies these findings among a larger group. Negative cases and difficulties are discussed. This study suggests that the availability of mothers' informal science teaching/learning experience is one way to create a more pervasively supportive environment for science education. There is increased opportunity for women as adult learners, to be positive role models, and to mediate family settings. Recommendations are made for recruiting mothers as teachers and fulfilling their motivations. Informal science education theory is discussed

  18. The use of a science experiment curriculum with mothers and their preschool children in an Even Start literacy setting: A case study

    NASA Astrophysics Data System (ADS)

    Cadou, Judith Ann

    The purpose of this study was to explore systematically the use of a science experiment curriculum in an Even Start program setting through an in-depth description of the verbal and nonverbal interaction of preschool children and their mothers engaged in constructing knowledge through active science experiment exploration, representative notation, and related informational text experiences. It also sought to document the mothers' perceptions of science exploration as a facilitator for their children's literacy and their awareness of ways to support such growth. Two in-depth studies were presented to profile, in detail, the process of mother and child meaning making within the structure of a science explorations context. An additional eight mother-child dyads participated for purposes of adding breadth to the study. Behaviors were documented through (a) videotape transcriptions of the mother-child interaction in this science inquiry context, (b) observation, (c) field notes, and (d) open-ended interviews with the mothers. Data were analyzed using the constant comparative method. The findings of this naturalistic study suggest the use of a linked mother-child dyad learning and literacy development process using prediction, experimentation, observation, and reflection, combined with related meaning-making verbal interaction, documentation, and reading, facilitated the child's knowledge acquisition, learning interests, and learning methodologies. Specifically, (a) the initiating setup for prediction placed the child at the center of her or his own inquiry and initiated verbal communication; (b) mother and child used the scientific thinking routine of predict, act on objects and observe, discover, evaluate, and make decisions, to be documented in second-level notation, as a mental organizer and scaffolding for inquiry and communication between them; (c) the children showed development in conceptual understanding within the context of active science exploration and across science units; (d) the children used the representative drawing and labeling of the experiment experience for extended experimentation and meaning making, thus using second-level notation for functional purposes; (e) the children showed increased initiative with expository text related to the experiment experiences; and (f) the mothers voiced perception of their children's and their own learning and a sense of efficacy in facilitating their children's learning.

  19. Astronomy4Kids: Extending STEM learning to the youngest student through an online educational outreach program

    NASA Astrophysics Data System (ADS)

    Pearson, Richard L.; Pearson, Sarah R.

    2017-06-01

    Astronomy4Kids is an online video series aimed at filling the void of effective and engaging education tools within early childhood learning. Much discussion and research has been conducted on the significance of early learning, with general trends showing significant benefits to early introductions to language, mathematics, and general science concepts. Ultimately, when ideas are introduced to a child at a young age, that child is better prepared for when the concept is re-introduced in its entirety later. National agencies—such as the AAS and NSF—have implemented Science, Technology, Engineering, and Math (STEM) initiatives to expand learning in these areas. However, despite these many resources, the education outreach available to the youngest learners (under the age of 8 or those from pre-school to about 2nd-grade) is seriously lacking. Astronomy4Kids was created to bridge this gap and provide succinct, creative-learning videos following the principles of Fred Rogers, the founder of preschool education video. We present ways to incorporate the freely accessible YouTube videos within various classroom ages and discuss how to use simple activities to promote physics, astronomy, and math learning. Current development, video statistics, and future work will be discussed. The freely accessible videos can be found at www.astronomy4kids.net.

  20. Direction discovery: A science enrichment program for high school students.

    PubMed

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  1. A Post-Final Assignment for the Methods Course: Providing an Incentive to Professional Growth for Future Teachers.

    ERIC Educational Resources Information Center

    Bentley, Michael L.

    This paper describes J. Rosengren's post-final assignment and M. Harmin's truth signs activity that were incorporated into a secondary science methods course for preservice teachers. The strength of the post-final assignment is that it is a strategy for extending student learning past the end of a course and even beyond the initial teaching…

  2. Touchstone Education: New Charter with Experienced Leader Learns from Extending Teachers' Reach. An Opportunity Culture Case Study

    ERIC Educational Resources Information Center

    Barrett, Sharon Kebschull; Han, Jiye Grace

    2013-01-01

    In 2012, Touchstone Education opened its first school, Merit Preparatory Charter School of Newark ("Merit Prep Newark"), in New Jersey, with 84 sixth-graders, 90 percent of whom are low-income, with most entering Merit Prep several years behind grade level. In reading and science, Merit Prep Newark has shown strong early results in its…

  3. Science teachers' interpretations of Islamic culture related to science education versus the Islamic epistemology and ontology of science

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser

    2010-03-01

    The debate about Islam and science extends to a debate about the relationship between Islam and science education. In this paper, I explore Egyptian teachers' views of the relationship between science and religion within the Islamic context. Teachers' key vision of the relationship between science and religion was that "religion comes first and science comes next. I will argue that teachers' personal religious beliefs are among the major constructs that drive teachers' ways of thinking and interpretation of scientific issues related with religion. Then, I discuss how teachers' personal religious beliefs have been formed and influenced their pedagogical beliefs related to science and religion issues. Finally, I will argue, how we use the personal religious beliefs model as a framework of teaching/learning scientific issues related with religion within sociocultural (Islamic) context. [InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see fulltext.

  4. Complex systems as lenses on learning and teaching

    NASA Astrophysics Data System (ADS)

    Hurford, Andrew C.

    From metaphors to mathematized models, the complexity sciences are changing the ways disciplines view their worlds, and ideas borrowed from complexity are increasingly being used to structure conversations and guide research on teaching and learning. The purpose of this corpus of research is to further those conversations and to extend complex systems ideas, theories, and modeling to curricula and to research on learning and teaching. A review of the literatures of learning and of complexity science and a discussion of the intersections between those disciplines are provided. The work reported represents an evolving model of learning qua complex system and that evolution is the result of iterative cycles of design research. One of the signatures of complex systems is the presence of scale invariance and this line of research furnishes empirical evidence of scale invariant behaviors in the activity of learners engaged in participatory simulations. The offered discussion of possible causes for these behaviors and chaotic phase transitions in human learning favors real-time optimization of decision-making as the means for producing such behaviors. Beyond theoretical development and modeling, this work includes the development of teaching activities intended to introduce pre-service mathematics and science teachers to complex systems. While some of the learning goals for this activity focused on the introduction of complex systems as a content area, we also used complex systems to frame perspectives on learning. Results of scoring rubrics and interview responses from students illustrate attributes of the proposed model of complex systems learning and also how these pre-service teachers made sense of the ideas. Correlations between established theories of learning and a complex adaptive systems model of learning are established and made explicit, and a means for using complex systems ideas for designing instruction is offered. It is a fundamental assumption of this research and researcher that complex systems ideas and understandings can be appropriated from more complexity-developed disciplines and put to use modeling and building increasingly productive understandings of learning and teaching.

  5. Geomorphological Fieldwork

    USGS Publications Warehouse

    Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    Geomorphological Fieldwork addresses a topic that always remains popular within the geosciences and environmental science. More specifically, the volume conveys a growing legacy of field-based learning for young geomorphologists that can be used as a student book for field-based university courses and postgraduate research requiring fieldwork or field schools. The editors have much experience of field-based learning within geomorphology and extend this to physical geography. The topics covered are relevant to basic geomorphology as well as applied approaches in environmental and cultural geomorphology. The book integrates a physical-human approach to geography, but focuses on physical geography and geomorphology from an integrated field-based geoscience perspective.

  6. Social networks as a tool for science communication and public engagement: focus on Twitter.

    PubMed

    López-Goñi, Ignacio; Sánchez-Angulo, Manuel

    2018-02-01

    Social networks have been used to teach and engage people about the importance of science. The integration of social networks in the daily routines of faculties and scientists is strongly recommended to increase their personal brand, improve their skills, enhance their visibility, share and communicate science to society, promote scientific culture, and even as a tool for teaching and learning. Here we review the use of Twitter in science and comment on our previous experience of using this social network as a platform for a Massive Online Open Course (MOOC) in Spain and Latin America. We propose to extend this strategy to a pan-European Microbiology MOOC in the near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Long-term Engagement in Authentic Research with NASA (LEARN): Lessons Learned from an Innovative Model for Teacher Research Experiences

    NASA Astrophysics Data System (ADS)

    Pippin, M. R.; Kollmeyer, R.; Joseph, J.; Yang, M. M.; Omar, A. H.; Harte, T.; Taylor, J.; Lewis, P. M.; Weisman, A.; Hyater-Adams, S.

    2013-12-01

    The NASA LEARN Project is an innovative program that provides long-term immersion in the practice of atmospheric science for middle and high school in-service teachers. Working alongside NASA scientists and using authentic NASA Science Mission Directorate (SMD) Research and Analysis (R&A) related and mission-based research data, teachers develop individual research topics of interest during two weeks in the summer while on-site at NASA Langley. With continued, intensive mentoring and guidance of NASA scientists, the teachers further develop their research throughout the academic year through virtual group meetings and data team meetings mirroring scientific collaborations. At the end of the first year, the LEARN teachers present scientific posters. During summer 2013, Cohort 1 (7 teachers) presented posters at an open session and discussed their research topics with Cohort 2 (6 teachers) and science and educator personnel at Langley. The LEARN experience has had such an impact that 6 teachers from Cohort 1 have elected to continue a second year of research working alongside Cohort 2 and LEARN scientists. In addition, Cohort 1 teachers have brought their LEARN experiences back to their classrooms in a variety of ways. The LEARN project evaluation has provided insights into the outcomes of this research experience for teachers and particularly effective program elements. In particular, the LEARN evaluation has focused on how an extended research experience for teachers spanning a full year influences teacher views of science and classroom integration of scientific principles. Early findings indicate that teachers' perceptions of the scientific enterprise have changed, and that LEARN provided substantial resources to help them take real-world research to their students. Teachers also valued the teamwork and cohort approach. In addition, the LEARN evaluation focuses on the experiences of scientists involved in the LEARN program and how their experiences working with teachers have changed their ability to communicate the results of research to the public. During this presentation, we will share the LEARN model, findings from the evaluation, and our lessons learned in providing meaningful scientific research experiences for teachers. Our model incorporates intensive support and mentoring, ongoing virtual and face-to-face check-ins, and flexibility to meet teachers' needs on their research projects and in their classrooms.

  8. Science and the city: A visual journey towards a critical place based science education

    NASA Astrophysics Data System (ADS)

    Ibrahim, Sheliza

    The inclusion of societal and environmental considerations during the teaching and learning of science and technology has been a central focus among science educators for many decades. Major initiatives in science and technology curriculum advocate for science, technology, society and environment (STSE). Yet, it is surprising that despite these longstanding discussions, it is only recently that a handful of researchers have turned to students' 'places' (and the literature of place based education) to serve as a source of teaching and learning in science education. In my study, I explore three issues evident in place based science education. First, it seems that past scholarship focused on place-based projects which explore issues usually proposed by government initiatives, university affiliation, or community organizations. Second, some of the studies fail to pay extended attention to the collaborative and intergenerational agency that occurs between researcher, teacher, student, and community member dynamics, nor does it share the participatory action research process in order to understand how teacher practice, student learning, and researcher/local collaborations might help pedagogy emerge. The third issue is that past place-based projects, rarely if ever, return to the projects to remember the collaborative efforts and question what aspects sustained after they were complete. To address these issues, I propose a critical place based science education (CPBSE) model. I describe a participatory action research project that develops and explores the CPBSE model. The data were gathered collaboratively among teachers, researchers, and students over 3 years (2006-2008), via digital video ethnography, photographs, and written reflections. The data were analysed using a case study approach and the constant comparative method. I discuss the implications for its practice in the field of STSE and place based education. I conclude that an effective pedagogical model of CPBSE comprises of three stages: critical visualizing, investigating, remembering, by sharing Science and the City (a case study that connects science to place using visual imagery).

  9. Vocabulary Learning in a Yorkshire Terrier: Slow Mapping of Spoken Words

    PubMed Central

    Griebel, Ulrike; Oller, D. Kimbrough

    2012-01-01

    Rapid vocabulary learning in children has been attributed to “fast mapping”, with new words often claimed to be learned through a single presentation. As reported in 2004 in Science a border collie (Rico) not only learned to identify more than 200 words, but fast mapped the new words, remembering meanings after just one presentation. Our research tests the fast mapping interpretation of the Science paper based on Rico's results, while extending the demonstration of large vocabulary recognition to a lap dog. We tested a Yorkshire terrier (Bailey) with the same procedures as Rico, illustrating that Bailey accurately retrieved randomly selected toys from a set of 117 on voice command of the owner. Second we tested her retrieval based on two additional voices, one male, one female, with different accents that had never been involved in her training, again showing she was capable of recognition by voice command. Third, we did both exclusion-based training of new items (toys she had never seen before with names she had never heard before) embedded in a set of known items, with subsequent retention tests designed as in the Rico experiment. After Bailey succeeded on exclusion and retention tests, a crucial evaluation of true mapping tested items previously successfully retrieved in exclusion and retention, but now pitted against each other in a two-choice task. Bailey failed on the true mapping task repeatedly, illustrating that the claim of fast mapping in Rico had not been proven, because no true mapping task had ever been conducted with him. It appears that the task called retention in the Rico study only demonstrated success in retrieval by a process of extended exclusion. PMID:22363421

  10. Preparing for the workplace: fostering generic attributes in allied health education programs.

    PubMed

    Higgs, J; Hunt, A

    1999-01-01

    Allied health curricula need to extend beyond the learning of discipline-specific skills to encompass broader learning goals. In particular, the acquisition of generic skills is necessary to enable graduates to function more competently and confidently within their rapidly changing work, professional, and societal environments. In health sciences education particularly, the rate of change in practice and education is rapid and unprecedented. If educators focus on components of the curriculum rather than the entire learning experience, they are likely to significantly limit the students' acquisition of such generic skills. To achieve the desired generic skills outcomes, an overarching, integrated, and consistently applied curriculum strategy is advocated. This article considers a number of such strategies relevant to allied health education.

  11. #ClimateEdCommunity : Field Workshops Bring Together Teachers and Researchers to Make Meaning of Science and Classroom Integration

    NASA Astrophysics Data System (ADS)

    Bartholow, S.; Warburton, J.; Wood, J. H.; Steiner, S. M.

    2015-12-01

    Seeing Understanding and Teaching: Climate Change in Denali is a four-day immersive teacher professional development course held in Denali National Park. Developed through three partner organizations, the course aims to develop teachers' skills for integrating climate change content into their classrooms. This presentation aims to share tangible best practices for linking researchers and teachers in the field, through four years of experience in program delivery and reported through a published external evaluation. This presentation will examine the key aspects of a successful connection between teachers, researchers, science, and classrooms: (1) Inclusion of teacher leaders, (2) dedicated program staff, (3) workshop community culture, and will expose barriers to this type of collaboration including (1) differences in learning style, (2) prior teaching experience, (3) existing/scaffolding understanding of climate change science, and (4) accessibility of enrollment and accommodations for the extended learning experience. Presentation Content Examples:Participants overwhelmingly value the deep commitment this course has to linking their field experience to the classroom attributing to the role of a teacher-leader; an expert science teacher with first-hand field research experience in the polar regions. The goal of including a teacher-leader is to enhance translatability between fieldwork and the classroom. Additionally, qualitative aspects of the report touches on the intangible successes of the workshop such as: (1) the creation of a non-judgmental learning atmosphere, (2) addressing accessibility to science learning tools in rural and under-served communities, (3) defining successful collaboration as making meaning together through exploratory questioning while in the field (4) discussed the social and cultural implications of climate change, and the difficulty of navigating these topics in educational and/or multicultural spaces. Next Steps? Create a #ClimateEdCommunity that is both teachers and researchers with teacher leaders as a catalyst for transcending our disparate disciplines and developing a community of learning, without judgment, and interpersonal connections.

  12. Education Through Exploration: Evaluating the Unknown

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.

    2015-12-01

    Mastery of the peculiar and powerful practices of science is increasingly important for the average citizen. With the rise of the Internet, most of human knowledge is at our fingertips. As content becomes a commodity, success and survival aren't about who knows the most, but who is better able to explore the unknown, actively applying and extending knowledge through critical thinking and hypothesis-driven problem-solving. This applies to the economic livelihoods of individuals and to society at large as we grapple with climate change and other science-infused challenges. Unfortunately, science is too often taught as an encyclopedic collection of settled facts to be mastered rather than as a process of exploration that embraces curiosity, inquiry, testing, and communication to reduce uncertainty about the unknown. This problem is exacerbated by the continued prevalence of teacher-centric pedagogy, which promotes learning-from-authority and passive learning. The initial wave of massively open online courses (MOOCs) generally mimic this teaching style in virtual form. It is hypothesized that emerging digital teaching technologies can help address this challenge at Internet scale in "next generation" MOOCs and flipped classroom experiences. Interactive simulations, immersive virtual field trips, gamified elements, rapid adaptive feedback, intelligent tutoring systems, and personalized pathways, should motivate and enhance learning. Through lab-like projects and tutorials, students should be able to construct knowledge from interactive experiences, modeling the authentic practice of science while mastering complex concepts. Freed from lecturing, teaching staff should be available for direct and intense student-teacher interactions. These claims are difficult to evaluate with traditional assessment instruments, but digital technologies provide powerful new ways to evaluate student learning and learn from student behaviors. We will describe ongoing experiences with such technologies, and future plans, drawing from the experiences of > 2500 students who have taken the Habitable Worlds fully online general education class at ASU, and as part of the new Inspark Science Teaching Network.

  13. High School Students’ Learning and Perceptions of Phylogenetics of Flowering Plants

    PubMed Central

    Landis, Jacob B.; Crippen, Kent J.

    2014-01-01

    Basic phylogenetics and associated “tree thinking” are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K–12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in science, technology, engineering, and mathematics (STEM) outreach activities increase awareness of college and career options and highlight interdisciplinary fields of science research and augment the science curriculum. To aid in this effort, we designed a 6-h module in which students utilized 12 flowering plant species to generate morphological and molecular phylogenies using biological techniques and bioinformatics tools. The phylogenetics module was implemented with 83 high school students during a weeklong university STEM immersion program and aimed to increase student understanding of phylogenetics and coevolution of plants and pollinators. Student response reflected positive engagement and learning gains as evidenced through content assessments, program evaluation surveys, and program artifacts. We present the results of the first year of implementation and discuss modifications for future use in our immersion programs as well as in multiple course settings at the high school and undergraduate levels. PMID:25452488

  14. The changing face of women in physics in Ghana

    NASA Astrophysics Data System (ADS)

    Andam, Aba Bentil; Amponsah, Paulina Ekua; Nsiah-Akoto, Irene; Gyamfi, Kwame; Hood, Christiana Odumah

    2013-03-01

    Ghana is said to be the first independent sub-Saharan African country outside South Africa to promote science education and the application of science in industrial and social development. It has long been recognized that many schools' science curricula extend the extracurricular activities of boys more than those of girls. In order to bridge this gap, efforts have been made to give girls extra assistance in the learning of science by exposing them to science activities through specific camps, road shows, exhibitions, and so on. The best known of such efforts is the Science, Technology, and Mathematics Education (STME) camps and clinics for girls, which started in Ghana 23 years ago. Since our attendance at the Third International Conference on Women in Physics in Seoul, Korea, a lot has been achieved to further improve female science education, and this credit goes to STME. The first female nuclear engineer from Ghana graduated from the University of Ghana in March 2010.

  15. Cool learnings - extending and communicating polar science to students and the community.

    NASA Astrophysics Data System (ADS)

    Tweedie, C. E.

    2011-12-01

    Why should scientists incorporate education and extend communicate the results of their research to the general public? - Because it is the right thing to do; it is easy, fun and usually effective; can feedback to strengthen and improve research; and from an environmental science perspective - badly needed as evidenced by some of the very strange and ill-informed decisions society is making that will affect future generations for many years to come. This presentation focuses on two case studies that extended the research activities from a relatively young and small university research lab to two minority student and community audiences. The first case study focuses on the educational and outreach experience gained by minority graduate and undergraduate students and teachers participating in an Antarctic system Science study abroad course. Students completed an online class, visited with NSF and other federal agencies in Washington DC, and experienced Patagonia and the Antarctic Peninsula on a month long capstone field course. Participants also visited the classrooms of over 750 students in El Paso, Texas before and after their trip to Antarctica, and prepared a museum exhibit that has now been visited by thousands of people. Most participants have progressed to graduate school or careers in the sciences and several have already acquired substantial funding for research - largely because of their demonstrated capacity to link research, education and outreach. The second case study describes several instances where the provision of scientific data, information and other resources were extended through cyberinfrastructure to the community of a relatively small Inuit village in northernmost Alaska. Here science data products have been used to enhance town planning and other decision making, and improve the safety of hunters participating in traditional activities such as the Spring subsistence whale harvest. This takes place on sea ice that is more dynamic and does not 'behave' in the same way as elders pass on orally to the younger generation due to the impacts from climate change.

  16. Elaborative encoding through self-generation enhances outcomes with errorless learning: Findings from the Skypekids memory study.

    PubMed

    Haslam, Catherine; Wagner, Joseph; Wegener, Signy; Malouf, Tania

    2017-01-01

    Errorless learning has demonstrated efficacy in the treatment of memory impairment in adults and older adults with acquired brain injury. In the same population, use of elaborative encoding through supported self-generation in errorless paradigms has been shown to further enhance memory performance. However, the evidence base relevant to application of both standard and self-generation forms of errorless learning in children is far weaker. We address this limitation in the present study to examine recall performance in children with brain injury (n = 16) who were taught novel age-appropriate science and social science facts through the medium of Skype. All participants were taught these facts under conditions of standard errorless learning, errorless learning with self-generation, and trial-and-error learning after which memory was tested at 5-minute, 30-minute, 1-hour and 24-hour delays. Analysis revealed no main effect of time, with participants retaining most information acquired over the 24-hour testing period, but a significant effect of condition. Notably, self-generation proved more effective than both standard errorless and trial-and-error learning. Further analysis of the data revealed that severity of attentional impairment was less detrimental to recall performance under errorless conditions. This study extends the literature to provide further evidence of the value of errorless learning methods in children with ABI and the first demonstration of the effectiveness of self-generation when delivered via the Internet.

  17. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an additional content course within a science discipline that is concurrently taught with a science methods course. Emphasizing inquiry-based activities, these bridge courses also focus on developing integrated understandings of the sciences. The continuum extends beyond the student teaching experience by tracking cohorts of science teachers during their in-service years. With funding from the National Science Foundation's Teacher Professional Continuum program, we are conducting research on this inquiry-based professional development approach for K-8 teachers across this continuum.

  18. Extending the testimony problem: evaluating the truth, scope, and source of cultural information.

    PubMed

    Bergstrom, Brian; Moehlmann, Bianca; Boyer, Pascal

    2006-01-01

    Children's learning--in the domains of science and religion specifically, but in many other cultural domains as well--relies extensively on testimony and other forms of culturally transmitted information. The cognitive processes that enable such learning must also administrate the evaluation, qualification, and storage of that information, while guarding against the dangers of false or misleading input. Currently, the development of these appraisal processes is not clearly understood. Recent work, reviewed here, has begun to address three important dimensions of the problem: how children and adults evaluate truth in communication, how they gauge the inferential potential of information, and how they encode and evaluate its source.

  19. Peer Assisted Experiential Learning (PAEL) in extending fieldwork practice in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Anderson, M. W.; FitzPatrick, M.; Truscott, J.

    2012-04-01

    Traditional approaches to developing students practical (applied) skills (most especially, but not exclusively, fieldwork) make significant demands on resources, particularly staff time. Extending opportunities for experiential learning through independent (student centred) work is acknowledged, therefore, as being vital to the successful spiralling of Kolb's experiential learning cycle. This project outlines e-learning support as a means of assisting student peer groups in extending the experiential learning cycle for fieldwork. We have developed mobile support for independent fieldwork in a small, accessible and safe area north of Kingsand village, Cornwall, UK. The area is ideal for reinforcing skills in recording basic geological observations and in formulating a simple geological history based on these observations. Independent fieldwork can be undertaken throughout the academic year by small student groups (which can comprise mixed year groups). equipped with PDA's and integrated GPS units. Students are prepared for fieldwork through a dedicated website, linked to support materials in the University's unique Labplus facility. PDA's, running MSCAPE, provide automatic prompts to locations where key observations can be made and detail the nature of the activities that should be carried out at each location. The e-guide takes students from 1st principles of observation and measurement, through recording methodology and eventually links to packages for analysis and interpretation (again using support provided through Labplus). There is no limit to the number of times any particular student can carry out the fieldwork, provided they are organised into groups of three or more. The work is not assessed but links into several components of the field skills training that are formally assessed, including independent geological mapping.

  20. NASA SMD Science Education and Public Outreach Forums: A Five-Year Retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie

    2014-06-01

    NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The objective is to enhance the overall coherence of SMD education and public outreach (E/PO), leading to more effective, efficient, and sustainable use of SMD science discoveries and learning experiences. We summarize progress and next steps towards achieving this goal with examples drawn from Astrophysics and cross-Forum efforts. Over the past five years, the Forums have enabled leaders of individual SMD mission and grant-funded E/PO programs to work together to place individual science discoveries and learning resources into context for audiences, conveying the big picture of scientific discovery based on audience needs. Forum-organized collaborations and partnerships extend the impact of individual programs to new audiences and provide resources and opportunities for educators to engage their audiences in NASA science. Similarly, Forum resources support scientists and faculty in utilizing SMD E/PO resources. Through Forum activities, mission E/PO teams and grantees have worked together to define common goals and provide unified professional development for educators (NASA’s Multiwavelength Universe); build partnerships with libraries to engage underserved/underrepresented audiences (NASA Science4Girls and Their Families); strengthen use of best practices; provide thematic, audience-based entry points to SMD learning experiences; support scientists in participating in E/PO; and, convey the impact of the SMD E/PO program. The Forums have created a single online digital library (NASA Wavelength, http://nasawavelength.org) that hosts all peer-reviewed SMD-funded education materials and worked with the SMD E/PO community to compile E/PO program metrics (http://nasamissionepometrics.org/). External evaluation shows the Forums are meeting their objectives. Specific examples of Forum-organized resources for use by scientists, faculty, and informal educators are discussed in related presentations (Meinke et al.; Manning et al.).

  1. The Information Search Process (the ISP) and the Research Essay. How One School Library Supports Student Learning by Using the ISP as the Framework for the Extended Essay

    ERIC Educational Resources Information Center

    Reynolds, Helen

    2010-01-01

    Queensland Academy for Health Sciences (QAHS) is a senior secondary high school offering the International Baccalaureate (IB) Diploma Programme (DP). As part of the Diploma, students are required to complete a referenced research essay of four thousand words. For most, this will be their first experience of such a challenging undertaking.…

  2. Cassini Titan Science Integration: Getting a 'Jumpstart' on the Process

    NASA Technical Reports Server (NTRS)

    Steadman, Kimberly B.; Pitesky, Jo E.; Ray, Trina L.; Burton, Marcia E.; Alonge, Nora K.

    2010-01-01

    The Cassini spacecraft has been in orbit for five years, returning a wealth of scientific data from Titan and the Saturn system. The mission is a cooperative undertaking between NASA, ESA and the Italian Space Agency and the project is currently planning for a second extension of the mission. The Cassini Solstice Mission (CSM) will extend the mission's lifetime until Saturn's northern summer solstice in 2017. The Titan Orbiter Science Team (TOST) has the task of integrating the science observations for all 126 targeted Titan flybys (44 in the Prime Mission, 26 in the first extension (Equinox Mission), and 56 in the second extension (Solstice Mission)) contained in the chosen trajectory. Cassini science instruments are body-fixed with limited ability to articulate; thus, the spacecraft pointing during the flybys must be allocated among the instruments to accomplish the mission's science goals. The science that can be accomplished on each Titan flyby also critically depends on the closest approach altitude, which is in turn determined by the attitude, but changing the altitude impacts the overall trajectory for the Solstice Mission. During the Prime and Extended missions, TOST has learned that the best way to achieve Cassini's Titan science goals is via a 'jumpstart' process prior to final delivery of the trajectory. The jumpstart is driven by the desire to balance Titan science across the entire set of flybys during the CSM, and to influence any changes (tweaks) to the flyby altitudes. By the end of the jumpstart, TOST produces Master Timelines for each flyby, identifying each flyby's prime science observations and allocating control of the spacecraft attitude to specific instrument teams. In addition, developing timelines early, while the science and operations teams are still fully funded, decreases the future workload in integration and implementation.

  3. School Teachers' Experiences of Science Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Ryder, Jim; Banner, Indira

    2013-02-01

    We examine teachers' experiences of a major reform of the school science curriculum for 14-16-year olds in England. This statutory reform enhances the range of available science courses and emphasises the teaching of socio-scientific issues and the nature of science, alongside the teaching of canonical science knowledge. This paper examines teachers' experiences of the reform and the factors that condition these experiences. A designed sample of 22 teachers discussed their experiences of the reform within a semi-structured interview. Our analysis considers how the external and internal structures within which teachers work interact with the personal characteristics of teachers to condition their experiences of the curriculum reform. In many cases, personal/internal/external contexts of teachers' work align, resulting in an overall working context that is supportive of teacher change. However, in other cases, tensions within these contexts result in barriers to change. We also explore cases in which external curriculum reform has stimulated the development of new contexts for teachers' work. We argue that curriculum reformers need to recognise the inevitability of multiple teaching goals within a highly differentiated department and school workplace. We also show how experiences of curriculum reform can extend beyond the learning of new knowledge and associated pedagogies to involve challenges to teachers' professional identities. We argue for the extended use of teacher role models within local communities of practice to support such 'identity work'.

  4. Re-Engineering the Mission Operations System (MOS) for the Prime and Extended Mission

    NASA Technical Reports Server (NTRS)

    Hunt, Joseph C., Jr.; Cheng, Leo Y.

    2012-01-01

    One of the most challenging tasks in a space science mission is designing the Mission Operations System (MOS). Whereas the focus of the project is getting the spacecraft built and tested for launch, the mission operations engineers must build a system to carry out the science objectives. The completed MOS design is then formally assessed in the many reviews. Once a mission has completed the reviews, the Mission Operation System (MOS) design has been validated to the Functional Requirements and is ready for operations. The design was built based on heritage processes, new technology, and lessons learned from past experience. Furthermore, our operational concepts must be properly mapped to the mission design and science objectives. However, during the course of implementing the science objective in the operations phase after launch, the MOS experiences an evolutional change to adapt for actual performance characteristics. This drives the re-engineering of the MOS, because the MOS includes the flight and ground segments. Using the Spitzer mission as an example we demonstrate how the MOS design evolved for both the prime and extended mission to enhance the overall efficiency for science return. In our re-engineering process, we ensured that no requirements were violated or mission objectives compromised. In most cases, optimized performance across the MOS, including gains in science return as well as savings in the budget profile was achieved. Finally, we suggest a need to better categorize the Operations Phase (Phase E) in the NASA Life-Cycle Phases of Formulation and Implementation

  5. Scientists and Classroom Teachers Working Together, a Win-win Scenario Demonstrated Over a Ten Year Period of Collaboration Through Arctic Research

    NASA Astrophysics Data System (ADS)

    Carvellas, B.; Grebmeier, J. M.; Cooper, L. W.

    2016-02-01

    From 2002-2012 NSF and NOAA have supported a Vermont high school biology teacher to work with Dr. Jackie Grebmeier on 8 research cruises to the Arctic. Not only was the teacher embedded in Dr. Grebmeier's research team efforts, but her students were able to follow the work on board through her daily journals and photos. Subsequently, Dr. Grebmeier traveled to Vermont for a personal visit to students in multiple classes, grades 4-12. The opportunity for teachers to be teamed with a researcher, especially over an extended period of time as we will discuss in our presentation, allows their students to share in the tremendous learning experience and gain a deeper understanding of the interdisciplinary nature of science. The result is that the students begin to understand how the content they learn in the classroom is utilized in a real world setting. We will also discuss the more subtle benefits that occurred throughout the school year through connecting academic content with personal examples of "real" science. Note that the recently released Next Generation Science Standards (NGSS), when fully implemented, will change the way students learn science. Appendix A of the NGSS lists 7 Conceptual Shifts in these new standards. #1 states "K-12 Science Education Should Reflect the Interconnected Nature of Science as it is Practiced and Experienced in the Real World" and #4 calls for a "Focus on Deeper Understanding of Content as well as Application of Content." What better way to address the standards than bringing real world science research into the classroom? Many K-12 science teachers, particularly those in elementary classrooms, have never had the opportunity to pursue their own research and even fewer have experienced first hand the real world work of a research scientist. This presentation will provide insights about our successful collaboration and value-added aspects to enhance the educational experience.

  6. The Keys to Successful Extended Missions

    NASA Technical Reports Server (NTRS)

    Seal, David A.; Manor-Chapman, Emily A.

    2012-01-01

    Many of NASA's successful missions of robotic exploration have gone on to highly productive mission extensions, from Voyager, Magellan, Ulysses, and Galileo, to the Mars Exploration Rovers Spirit and Opportunity, a variety of Mars orbiters, Spitzer, Deep Impact / EPOXI, and Cassini. These missions delivered not only a high science return during their prime science phase, but a wealth of opportunities during their extensions at a low incremental cost to the program. The success of such mission extensions can be traced to demonstration of new and unique science achievable during the extension; reduction in cost without significant increase in risk to spacecraft health; close inclusion of the science community and approval authorities in planning; intelligent design during the development and prime operations phase; and well crafted and conveyed extension proposals. This paper discusses lessons learned collected from a variety of project leaders which can be applied by current and future missions to maximize their chances of approval and success.

  7. Impact of Virtual Patients as Optional Learning Material in Veterinary Biochemistry Education.

    PubMed

    Kleinsorgen, Christin; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Branitzki-Heinemann, Katja; Kankofer, Marta; Mándoki, Míra; Adler, Martin; Tipold, Andrea; Ehlers, Jan P

    2018-01-01

    Biochemistry and physiology teachers from veterinary faculties in Hannover, Budapest, and Lublin prepared innovative, computer-based, integrative clinical case scenarios as optional learning materials for teaching and learning in basic sciences. These learning materials were designed to enhance attention and increase interest and intrinsic motivation for learning, thus strengthening autonomous, active, and self-directed learning. We investigated learning progress and success by administering a pre-test before exposure to the virtual patients (vetVIP) cases, offered vetVIP cases alongside regular biochemistry courses, and then administered a complementary post-test. We analyzed improvement in cohort performance and level of confidence in rating questions. Results of the performance in biochemistry examinations in 2014, 2015, and 2016 were correlated with the use of and performance in vetVIP cases throughout biochemistry courses in Hannover. Surveys of students reflected that interactive cases helped them understand the relevance of basic sciences in veterinary education. Differences between identical pre- and post-tests revealed knowledge improvement (correct answers: +28% in Hannover, +9% in Lublin) and enhanced confidence in decision making ("I don't know" answers: -20% in Hannover, -7.5% in Lublin). High case usage and voluntary participation (use of vetVIP cases in Hannover and Lublin >70%, Budapest <1%; response rates in pre-test 72% and post-test 48%) indicated a good increase in motivation for the subject of biochemistry. Despite increased motivation, there was only a weak correlation between performance in final exams and performance in the vetVIP cases. Case-based e-learning could be extended and generated cases should be shared across veterinary faculties.

  8. Science experiences of citizen scientists in entomology research

    NASA Astrophysics Data System (ADS)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and the value of qualitative methodologies in citizen science research. Citizen science is championed for its ability to extend the geographic, temporal and spatial reach of a research team. It can also extend the educational reach through citizen scientists that have acquired the role of expert.

  9. Bringing Global Climate Change Education to Alabama Middle School and High School Classrooms

    NASA Astrophysics Data System (ADS)

    Lee, M.; Mitra, C.; Percival, E.; Thomas, A.; Lucy, T.; Hickman, E.; Cox, J.; Chaudhury, S. R.; Rodger, C.

    2013-12-01

    A NASA-funded Innovations in Climate Education (NICE) Program has been launched in Alabama to improve high school and middle school education in climate change science. The overarching goal is to generate a better informed public that understands the consequences of climate change and can contribute to sound decision making on related issues. Inquiry based NICE modules have been incorporated into the existing course of study for 9-12 grade biology, chemistry, and physics classes. In addition, new modules in three major content areas (earth and space science, physical science, and biological science) have been introduced to selected 6-8 grade science teachers in the summer of 2013. The NICE modules employ five E's of the learning cycle: Engage, Explore, Explain, Extend and Evaluate. Modules learning activities include field data collection, laboratory measurements, and data visualization and interpretation. Teachers are trained in the use of these modules for their classroom through unique partnership with Alabama Science in Motion (ASIM) and the Alabama Math Science Technology Initiative (AMSTI). Certified AMSTI teachers attend summer professional development workshops taught by ASIM and AMSTI specialists to learn to use NICE modules. During the school year, the specialists in turn deliver the needed equipment to conduct NICE classroom exercises and serve as an in-classroom resource for teachers and their students. Scientists are partnered with learning and teaching specialists and lead teachers to implement and test efficacy of instructional materials, models, and NASA data used in classroom. The assessment by professional evaluators after the development of the modules and the training of teachers indicates that the modules are complete, clear, and user-friendly. The overall teacher satisfaction from the teacher training was 4.88/5.00. After completing the module teacher training, the teachers reported a strong agreement that the content developed in the NICE modules should be included in the Alabama secondary curriculum. Eventually, the NICE program has the potential to reach over 200,000 students when the modules are fully implemented in every school in the state of Alabama. The project can give these students access to expertise and equipment, thereby strengthening the connections between the universities, state education administrators, and the community.

  10. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    ERIC Educational Resources Information Center

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  11. The distinctiveness and effectiveness of science teaching in the Malaysian `Smart school'

    NASA Astrophysics Data System (ADS)

    Tek Ong, Eng; Ruthven, Kenneth

    2010-04-01

    A recent reform initiative in the Malaysian educational system has sought to develop 'Smart schools', intended to better prepare students for adult life in a developing economy and to increase the flow of young people prepared for scientific and technological careers. The study reported in this paper examined lower-secondary science teaching, comparing two Smart schools officially judged to be successfully implementing the reform, with two neighbouring mainstream schools. Through analysis of classroom observation, supported by teacher interview and student report, the distinctive features of science teaching in the Smart schools were found to be use of ICT-based resources and of student-centred approaches, often intertwined to provide extended support for learning; accompanied by a near absence of the note giving and copying prevalent in the mainstream schools. Through analysis of measures of student attitude to science, science process skills and general science attainment, science teaching in Smart schools was found to be relatively effective overall. However, while the positive attitude effect was general, both academic effects were much weaker amongst students who had been of lower attainment on entry to secondary school.

  12. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  13. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    NASA Astrophysics Data System (ADS)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  14. Lessons learned: A case study of an integrated way of teaching introductory physics to at-risk students at Rutgers University

    NASA Astrophysics Data System (ADS)

    Etkina, E.; Gibbons, K.; Holton, B. L.; Horton, G. K.

    1999-09-01

    In order to provide a physics instructional environment in which at-risk students (particularly women and minorities) can successfully learn and enjoy introductory physics, we have introduced Extended General Physics as an option for science, science teaching, and pre-health professions majors at Rutgers University. We have taught the course for the last five years. In this new course, we have used many elements that have been proven to be successful in physics instruction. We have added a new component, the minilab, stressing qualitative experiments performed by the students. By integrating all the elements, and structuring the time the students invest in the course, we have created a successful program for students-at-risk, indeed for all students. Our aim was not only to foster successful mastery of the traditional physics syllabus by the students, but to create a sense of community through the cooperation of students with each other and their instructors. We present a template for implementation of our program elsewhere.

  15. A philosophical analysis of David Orr's theory of ecological literacy: biophilia, ecojustice and moral education in school learning communities

    NASA Astrophysics Data System (ADS)

    Mitchell, Debra B.; Mueller, Michael P.

    2011-03-01

    In his writings, David Orr claims that the US is in an "ecological crisis" and that this stems from a crisis of education. He outlines a theory of ecological literacy, a mode by which we better learn the ecology of the Earth and live in a sustainable manner. While emphasizing a shock doctrine, the diagnosis of "crisis" may be correct, but it is short-lived for children and adults of the world. In this philosophical analysis of Orr's theory, it is argued that we move beyond the perspective of crisis. By extending Orr's ecological literacy with biophilia and ecojustice and by recognizing the importance of experience-in-learning, science education is envisioned to incorporate values and morals within a longer term ideology of educational reform.

  16. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    ERIC Educational Resources Information Center

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  17. Implementing the Next Generation Science Standards: How Instructional Coaches Mediate Standards-Based Educational Reform to Teacher Practice

    NASA Astrophysics Data System (ADS)

    Laxton, Katherine E.

    This dissertation takes a close look at how district-level instructional coaches support teachers in learning to shifting their instructional practice, related to the Next Generation Science Standards. This dissertation aims to address how re-structuring professional development to a job-embedded coaching model supports individual teacher learning of new reform-related instructional practice. Implementing the NGSS is a problem of supporting professional learning in a way that will enable educators to make fundamental changes to their teaching practice. However, there are few examples in the literature that explain how coaches interact with teachers to improve teacher learning of reform-related instructional practice. There are also few examples in the literature that specifically address how supporting teachers with extended professional learning opportunities, aligned with high-leverage practices, tools and curriculum, impacts how teachers make sense of new standards-based educational reforms and what manifests in classroom instruction. This dissertation proposes four conceptual categories of sense-making that influence how instructional coaches interpret the nature of reform, their roles and in instructional improvement and how to work with teachers. It is important to understand how coaches interpret reform because their interpretations may have unintended consequences related to privileging certain views about instruction, or establishing priorities for how to work with teachers. In this dissertation, we found that re-structuring professional development to a job-embedded coaching model supported teachers in learning new reform-related instructional practice. However, individual teacher interpretations of reform emerged and seemed to be linked to how instructional coaches supported teacher learning.

  18. Extending Students' Practice of Metacognitive Regulation Skills with the Science Writing Heuristic

    NASA Astrophysics Data System (ADS)

    van Opstal, Mary T.; Daubenmire, Patrick L.

    2015-05-01

    Metacognition can be described as an internal conversation that seeks to answer the questions, 'how much do I really know about what I am learning' and, 'how am I monitoring what I am learning?' Metacognitive regulation skills are critical to meaningful learning because they facilitate the abilities to recognize the times when one's current level of understanding is insufficient and to identify the needs for closing the gap in understanding. This research explored how using the Science Writing Heuristic (SWH) as an instructional approach in a laboratory classroom affected students' practice of metacognitive skills while solving open-ended laboratory problems. Within our qualitative research design, results demonstrate that students in the SWH environment, compared to non-SWH students, used metacognitive strategies to a different degree and to a different depth when solving open-ended laboratory problems. As students engaged in higher levels of metacognitive regulation, peer collaboration became a prominent path for supporting the use of metacognitive strategies. Students claimed that the structure of the SWH weekly laboratory experiments improved their ability to solve open-ended lab problems. Results from this study suggest that using instruction that encourages practice of metacognitive strategies can improve students' use of these strategies.

  19. Change detection in Arctic satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Wilson, Cathy J.; Rowland, Joel C.; Altmann, Garrett L.

    2015-06-01

    Advanced pattern recognition and computer vision algorithms are of great interest for landscape characterization, change detection, and change monitoring in satellite imagery, in support of global climate change science and modeling. We present results from an ongoing effort to extend neuroscience-inspired models for feature extraction to the environmental sciences, and we demonstrate our work using Worldview-2 multispectral satellite imagery. We use a Hebbian learning rule to derive multispectral, multiresolution dictionaries directly from regional satellite normalized band difference index data. These feature dictionaries are used to build sparse scene representations, from which we automatically generate land cover labels via our CoSA algorithm: Clustering of Sparse Approximations. These data adaptive feature dictionaries use joint spectral and spatial textural characteristics to help separate geologic, vegetative, and hydrologic features. Land cover labels are estimated in example Worldview-2 satellite images of Barrow, Alaska, taken at two different times, and are used to detect and discuss seasonal surface changes. Our results suggest that an approach that learns from both spectral and spatial features is promising for practical pattern recognition problems in high resolution satellite imagery.

  20. Learning Science, Learning about Science, Doing Science: Different goals demand different learning methods

    NASA Astrophysics Data System (ADS)

    Hodson, Derek

    2014-10-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that recognize key differences in learning goals and criticizes the common assertion that 'current wisdom advocates that students best learn science through an inquiry-oriented teaching approach' on the grounds that conflating the distinction between learning by inquiry and engaging in scientific inquiry is unhelpful in selecting appropriate teaching/learning approaches.

  1. Science of learning is learning of science: why we need a dialectical approach to science education research

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  2. The development and validation of the Self-Efficacy Beliefs about Equitable Science Teaching and learning instrument for prospective elementary teachers

    NASA Astrophysics Data System (ADS)

    Ritter, Jennifer M.

    1999-12-01

    The purpose of this study was to develop, validate and establish the reliability of an instrument to assess the self-efficacy beliefs of prospective elementary teachers with regards to science teaching and learning for diverse learners. The study used Bandura's theoretical framework, in that the instrument would use the self-efficacy construct to explore the beliefs of prospective elementary science teachers with regards to science teaching and learning to diverse learners: specifically the two dimensions of self-efficacy beliefs defined by Bandura (1977): personal self-efficacy and outcome expectancy. A seven step plan was designed and followed in the process of developing the instrument, which was titled the Self-Efficacy Beliefs about Equitable Science Teaching or SEBEST. Diverse learners as recognized by Science for All Americans (1989) are "those who in the past who have largely been bypassed in science and mathematics education: ethnic and language minorities and girls" (p. xviii). That definition was extended by this researcher to include children from low socioeconomic backgrounds based on the research by Gomez and Tabachnick (1992). The SEBEST was administered to 226 prospective elementary teachers at The Pennsylvania State University. Using the results from factor analyses, Coefficient Alpha, and Chi-Square a 34 item instrument was found to achieve the greatest balance across the construct validity, reliability and item balance with the content matrix. The 34 item SEBEST was found to load purely on four factors across the content matrix thus providing evidence construct validity. The Coefficient Alpha reliability for the 34 item SEBEST was .90 and .82 for the PSE sub-scale and .78 for the OE sub-scale. A Chi-Square test (X2 = 2.7 1, df = 7, p > .05) was used to confirm that the 34 items were balanced across the Personal Self-Efficacy/Outcome Expectancy and Ethnicity/LanguageMinority/Gender Socioeconomic Status/dimensions of the content matrix. Based on the standardized development procedures used and the associated evidence, the SEBEST appears to be a content and construct valid instrument, with high internal reliability and moderate test-retest reliability qualities, for use with prospective elementary teachers to assess self-efficacy beliefs for teaching and learning science for diverse learners.

  3. Textbooks vs. techbooks: Effectiveness of digital textbooks on elementary student motivation for learning

    NASA Astrophysics Data System (ADS)

    Oman, Auna

    This action research project investigated fourth grade students¡¦ motivation to learn science using a digital science techbook. Participants in the study included 29 fourth grade students in two different classrooms. One classroom of 16 students used a digital science techbook to learn science while the other classroom of 13 students used a traditional paper science textbook to learn science. Students in both classrooms answered five sets of questions regarding their experience using a digital science techbook and a paper science techbook to understand science, find science information, solve science problems, learn science, and assess learning science was fun. Results were compiled and coded based on positive and negative responses to conditions. A chi-square was used to analyze the ordinal data. Overall differences between techbooks vs. textbook were significant, X2 (1, N = 29) = 23.84, p = .000, justifying further examination of individual survey items. Three items had statistically significant difference for finding science information, solving science problems, and learning science. A gender difference was also found in one item. Females preferred to use paper science textbooks to understand science, while males preferred digital techbooks to learn science. The fourth graders in this study indicated that digital techbooks were a powerful learning tool for increasing interest, excitement and learning science. Even though students reported paper science textbooks as easy to use, they found using digital science techbooks a far more appealing way to learn science.

  4. The Moon's Moment in the Sun - Extending Public Engagement after the Total Solar Eclipse with International Observe the Moon Night

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.

    2017-12-01

    2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on the results of our efforts to engage the public with these two events, and make recommendations for extending and sustaining the engagement of the public in preparation for the 2024 total solar eclipse.

  5. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms.

    PubMed

    Piasta, Shayne B; Logan, Jessica A R; Pelatti, Christina Yeager; Capps, Janet L; Petrill, Stephen A

    2015-05-01

    Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators' provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children ( n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children's math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children's learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age.

  6. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    PubMed Central

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2014-01-01

    Because recent initiatives highlight the need to better support preschool-aged children’s math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators’ provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children (n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children’s math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children’s learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age. PMID:26257434

  7. CosmoQuest: Training Students, Teachers and the Public to do NASA Science

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Bracey, G.; Noel-Storr, J.; Murph, S.; Francis, M. R.; Strishock, L.; Cobb, W. H.; Lebofsky, L. A.; Jones, A. P.; Finkelstein, K.; Gay, P.

    2016-12-01

    Engaging individuals in science who have not been formally trained as research scientists can both capture a wider audiences in the process of science as well as crowdsource data analysis that gets more science done. CosmoQuest is a virtual research facility that leverages these benefits through citizen science projects that has community members to analyze NASA data that contributes to publishable science results. This is accomplished through an inviting experience that recruits members of the public (including students), meets their needs and motivations, and provides them the education they want so they can to be contributing members of the community. Each research project in CosmoQuest presents new training opportunities that are designed to meet the personal needs of the engaged individuals, while also leading to the production of high-quality data that meets the needs of the research teams. These educational opportunities extend into classrooms, where both teachers and students engage in analysis. Training for teachers is done through in-person and online professional development, and through conference workshops for both scientists and educators. Curricular products are available to support students' understanding of citizen science and how to engage in CosmoQuest projects. Professional development for all audiences is done through online tutorials and courses, with social media support. Our goal is to instill expertise in individuals not formally trained as research scientists. This allows them to work with and provide genuine scientific support to practicing experts in a community that benefits all stakeholders. Training focuses on increasing and supporting individuals' core content knowledge as well as building the specific skills necessary to engage in each project. These skills and knowledge are aligned with the 3-dimensional learning of the Next Generation Science Standards, and support lifelong learning opportunities for those in and out of school.

  8. Investigating the interrelationships among conceptions of, approaches to, and self-efficacy in learning science

    NASA Astrophysics Data System (ADS)

    Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar

    2018-01-01

    The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science, approaches to learning science, and self-efficacy. The exploratory factor analysis and confirmatory factor analysis were adopted to validate three instruments. The path analysis was employed to understand the relationships between conceptions of learning science, approaches to learning science, and self-efficacy. The findings indicated that students' lower level conceptions of learning science positively influenced their surface approaches in learning science. Higher level conceptions of learning science had a positive influence on deep approaches and a negative influence on surface approaches to learning science. Furthermore, self-efficacy was also a hierarchical construct and can be divided into the lower level and higher level. Only students' deep approaches to learning science had a positive influence on their lower and higher level of self-efficacy in learning science. The results were discussed in the context of the implications for teachers and future studies.

  9. Undergraduate students' earth science learning: relationships among conceptions, approaches, and learning self-efficacy in Taiwan

    NASA Astrophysics Data System (ADS)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-06-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to explore the relationships among undergraduates' conceptions of, approaches to, and self-efficacy for learning earth science by adopting the structural equation modeling technique. A total of 268 Taiwanese undergraduates (144 females) participated in this study. Three instruments were modified to assess the students' conceptions of, approaches to, and self-efficacy for learning earth science. The results indicated that students' conceptions of learning made a significant contribution to their approaches to learning, which were consequently correlated with their learning self-efficacy. More specifically, students with stronger agreement that learning earth science involves applying the knowledge and skills learned to unknown problems were prone to possess higher confidence in learning earth science. Moreover, students viewing earth science learning as understanding earth science knowledge were more likely to adopt meaningful strategies to learn earth science, and hence expressed a higher sense of self-efficacy. Based on the results, practical implications and suggestions for future research are discussed.

  10. Engaging Undergraduate Education Majors in the Practice of Astronomy through a Coherent Science Content Storyline Course

    NASA Astrophysics Data System (ADS)

    Plummer, Julia; Palma, Christopher

    2015-08-01

    For the next generation of students to learn astronomy as both a body of knowledge and a process of continually extending, refining, and revising that knowledge, teachers at all levels must learn how to engage their students in the practices of astronomy. This begins by designing science coursework for undergraduate education majors in ways that reflect how we hope they will teach their own future students. We have designed an undergraduate astronomy course for elementary education majors around a coherent science content storyline (CSCS) framework in order to investigate methods that support education majors’ uptake of astronomy practices. CSCS instruction purposefully sequences lessons in ways that make explicit the connections between science ideas in order to move students towards increasingly sophisticated explanations for a single big idea in science. We used this framework to organize our course around a series of astronomical investigations that build towards a big idea in astronomy: how the formation model explains current patterns observed in the Solar System. Each investigation helps students begin to explain observations of the Solar System from a coherent, systems-based perspective as they make choices on how to design their own data collection and analysis strategies. Through these investigations, future teachers begin to view astronomy as a process of answering scientific questions using evidence-based explanations and model-based reasoning. The course design builds on our prior research into students’ ideas about Solar System phenomena and its formation as well as students’ ideas about how astronomers carry out investigations. Preliminary results, based on analysis of student conversations during in-class investigations, science notebook entries, and scientific reports, suggest that the course helps students learn to construct evidence-based explanations while also increasing the accuracy of the explanations for astronomical phenomena. We will discuss implications for undergraduate astronomy education towards increasing future teachers’ proficiency in doing astronomy in ways that move them towards understanding how astronomers investigate the universe.

  11. Learning and teaching for an ecological sense of place: Toward environmental/science education praxis

    NASA Astrophysics Data System (ADS)

    Hug, J. William

    1998-09-01

    This research presents a teaching model designed to enable learners to construct a highly developed ecological perspective and sense of place. The contextually-based research process draws upon scientific and indigenous knowledge from multiple data sources including: autobiographical experiences, environmental literature, science and environmental education research, historical approaches to environmental education, and phenomenological accounts from research participants. Data were analyzed using the theoretical frameworks of qualitative research, hermeneutic phenomenology, heuristics, and constructivism. The resulting model synthesizes and incorporates key educational philosophies and practices from: nature study, resident outdoor education, organized camping, conservation education, environmental education, earth education, outdoor recreation, sustainability, bio-regionalism, deep ecology, ecological and environmental literacy, science and technology in society, and adventure/challenge/experiential education. The model's four components--environmental knowledge, practicing responsible environmental behaviors, community-focused involvement, and direct experience in outdoor settings--contribute in a synergistic way to the development of ecological perspective and a sense of place. The model was honed through experiential use in an environmental science methods course for elementary and secondary prospective science teachers. The instructor/researcher employed individualized instruction, community-based learning, service learning, and the modeling of reflective teaching principles in pursuit of the model's goals. The resulting pedagogical knowledge extends the model's usefulness to such formal and non-formal educational contexts as: elementary/secondary classrooms, nature centers, museums, youth groups, and community organizations. This research has implications for the fields of education, geography, recreation/leisure studies, science teaching, and environmental education. Several aspects of this work make it novel. First, autobiographical and literature-based stories anchor the representations of ecological perspective and sense of place. Second, the dissertation text visually differentiates between story narrative, researcher narrative, and meta-narrative in order to convey the positionality of the researcher's distinct voices. Finally, icons are used throughout the text to visually link the model's multi-dimensional intersections. Oh, and by the way, I hope you read it.

  12. Behavioural studies of strategic thinking in games.

    PubMed

    Camerer, Colin F.

    2003-05-01

    Game theory is a mathematical language for describing strategic interactions, in which each player's choice affects the payoff of other players (where players can be genes, people, companies, nation-states, etc.). The impact of game theory in psychology has been limited by the lack of cognitive mechanisms underlying game-theoretic predictions. 'Behavioural game theory' is a recent approach linking game theory to cognitive science by adding cognitive details about 'social utility functions', theories of limits on iterated thinking, and statistical theories of how players learn and influence others. New directions include the effects of game descriptions on choice ('framing'), strategic heuristics, and mental representation. These ideas will help root game theory more deeply in cognitive science and extend the scope of both enterprises.

  13. High school students' learning and perceptions of phylogenetics of flowering plants.

    PubMed

    Bokor, Julie R; Landis, Jacob B; Crippen, Kent J

    2014-01-01

    Basic phylogenetics and associated "tree thinking" are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K-12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in science, technology, engineering, and mathematics (STEM) outreach activities increase awareness of college and career options and highlight interdisciplinary fields of science research and augment the science curriculum. To aid in this effort, we designed a 6-h module in which students utilized 12 flowering plant species to generate morphological and molecular phylogenies using biological techniques and bioinformatics tools. The phylogenetics module was implemented with 83 high school students during a weeklong university STEM immersion program and aimed to increase student understanding of phylogenetics and coevolution of plants and pollinators. Student response reflected positive engagement and learning gains as evidenced through content assessments, program evaluation surveys, and program artifacts. We present the results of the first year of implementation and discuss modifications for future use in our immersion programs as well as in multiple course settings at the high school and undergraduate levels. © 2014 J. R. Bokor et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Extended cognition in science communication.

    PubMed

    Ludwig, David

    2014-11-01

    The aim of this article is to propose a methodological externalism that takes knowledge about science to be partly constituted by the environment. My starting point is the debate about extended cognition in contemporary philosophy and cognitive science. Externalists claim that human cognition extends beyond the brain and can be partly constituted by external devices. First, I show that most studies of public knowledge about science are based on an internalist framework that excludes the environment we usually utilize to make sense of science and does not allow the possibility of extended knowledge. In a second step, I argue that science communication studies should adopt a methodological externalism and accept that knowledge about science can be partly realized by external information resources such as Wikipedia. © The Author(s) 2013.

  15. The University of Texas Science and Engineering Apprentice Program as a Model for an REU Site

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Blankenship, D. D.; Ellins, K. E.

    2004-12-01

    The University of Texas Institute for Geophysics at (UTIG) is one of five research labs in the Austin area that hosts recent high school graduates for summer research projects through the Applied Research Lab Science and Engineering Apprenticeship Program (SEAP). The SEAP is a program designed to provide summer research opportunities to recent high school undergraduates who excel in science and math. UTIG has been a large proponent of the SEAP and has typically mentored two to four students each year and a total alumni of about twenty. The program has successfully targeted groups that are typically underrepresented in sciences and engineering. Current statistics show that 25% of past SEAP students are members of an ethnic minority and 80% of SEAP students are female. Many of these students have stayed on after the summer program and continued to work part-time or return during summers to UTIG while completing their undergraduate careers. A significant portion of these students present results at professional meetings and ultimately commit to careers in science and engineering, both in industry and academia. SEAP students at UTIG work alongside scientists and graduate students as part of a team, and, through this interaction, improve their scientific knowledge and problem solving skills. Both graduate and undergraduate students involved in NSF-funded research grants mentor the SEAP students, giving them the opportunity to work on their own research problem while contributing data and interpretation to a more fundamental research problem. By uniting student research under the umbrella of Antarctic ice sheet research, students learn how their individual research projects relate to the more unifying science problem centered on ice sheet variability, and Antarctic continental evolution. They also gain an understanding of how research is carried out. At the same time, scientists and graduate students learn how to communicate their knowledge so that it is interesting and relevant to student learning. We are interested in expanding the SEAP model for student research to a scale that can support multidisciplinary REU site activities by extending research possibilities into polar research, marine studies, seismology, planetary science, and science education at UTIG in future years.

  16. Students' online collaborative intention for group projects: Evidence from an extended version of the theory of planned behaviour.

    PubMed

    Cheng, Eddie W L; Chu, Samuel K W

    2016-08-01

    Given the increasing use of web technology for teaching and learning, this study developed and examined an extended version of the theory of planned behaviour (TPB) model, which explained students' intention to collaborate online for their group projects. Results indicated that past experience predicted the three antecedents of intention, while past behaviour was predictive of subjective norm and perceived behavioural control. Moreover, the three antecedents (attitude towards e-collaboration, subjective norm and perceived behavioural control) were found to significantly predict e-collaborative intention. This study explored the use of the "remember" type of awareness (i.e. past experience) and evaluated the value of the "know" type of awareness (i.e. past behaviour) in the TPB model. © 2015 International Union of Psychological Science.

  17. Conceptual Change in Understanding the Nature of Science Learning: An Interpretive Phenomenological Analysis

    NASA Astrophysics Data System (ADS)

    DiBenedetto, Christina M.

    This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development, secondary science education.

  18. The development of interactive online learning tools for the study of anatomy.

    PubMed

    O'Byrne, Patrick J; Patry, Anne; Carnegie, Jacqueline A

    2008-01-01

    The study of human anatomy is a core component of health science programs. However large student enrolments and the content-packed curricula associated with these programs have made it difficult for students to have regular access to cadaver laboratories. Adobe Flash MXwas used with cadaver digital photographs and textbook-derived illustrations to develop interactive anatomy images that were made available to undergraduate health science students enrolled in first-year combined anatomy and physiology (ANP) courses at the University of Ottawa. Colour coding was used to direct student attention, facilitate name-structure association, improve visualization of structure contours, assist students in the construction of anatomical pathways, and to reinforce functional or anatomical groupings. The ability of two-dimensional media to support the visualization of three-dimensional structure was extended by developing the fade-through image (students use a sliding bar to move through tissues) as well as the rotating image in which entire organs such as the skull were photographed at eight angles of rotation. Finally, students were provided with interactive exercises that they could repeatedly try to obtain immediate feedback regarding their learning progress. Survey data revealed that the learning and self-testing tools were used widely and that students found them relevant and supportive of their self-learning. Interestingly, student summative examination outcomes did not differ between those students who had access to the online tools and a corresponding student group from the previous academic year who did not. Interactive learning tools can be tailored to meet program-specific learning objectives as a cost-effective means of facilitating the study of human anatomy. Virtual interactive anatomy exercises provide learning opportunities for students outside the lecture room that are of especial value to visual and kinesthetic learners.

  19. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    ERIC Educational Resources Information Center

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  20. Stereotype Threat Effects on Learning From a Cognitively Demanding Mathematics Lesson.

    PubMed

    Lyons, Emily McLaughlin; Simms, Nina; Begolli, Kreshnik N; Richland, Lindsey E

    2018-03-01

    Stereotype threat-a situational context in which individuals are concerned about confirming a negative stereotype-is often shown to impact test performance, with one hypothesized mechanism being that cognitive resources are temporarily co-opted by intrusive thoughts and worries, leading individuals to underperform despite high content knowledge and ability (see Schmader & Beilock, ). We test here whether stereotype threat may also impact initial student learning and knowledge formation when experienced prior to instruction. Predominantly African American fifth-grade students provided either their race or the date before a videotaped, conceptually demanding mathematics lesson. Students who gave their race retained less learning over time, enjoyed the lesson less, reported a diminished desire to learn more, and were less likely to choose to engage in an optional math activity. The detrimental impact was greatest among students with high baseline cognitive resources. While stereotype threat has been well documented to harm test performance, the finding that effects extend to initial learning suggests that stereotype threat's contribution to achievement gaps may be greatly underestimated. Copyright © 2017 Cognitive Science Society, Inc.

  1. Describing the on-line graduate science student: An examination of learning style, learning strategy, and motivation

    NASA Astrophysics Data System (ADS)

    Spevak, Arlene J.

    Research in science education has presented investigations and findings related to the significance of particular learning variables. For example, the factors of learning style, learning strategy and motivational orientation have been shown to have considerable impact upon learning in a traditional classroom setting. Although these data have been somewhat generous for the face-to-face learning situation, this does not appear to be the case for distance education, particularly the Internet-based environment. The purpose of this study was to describe the on-line graduate science student, regarding the variables of learning style, learning strategy and motivational orientation. It was believed that by understanding the characteristics of adult science learners and by identifying their learning needs, Web course designers and science educators could create on-line learning programs that best utilized students' strengths in learning science. A case study method using a questionnaire, inventories, telephone interviews and documents was applied to nine graduate science students who participated for ten weeks in an asynchronous, exclusively Internet mediated graduate science course at a large, Northeastern university. Within-case and cross-case analysis indicated that these learners displayed several categories of learning styles as well as learning strategies. The students also demonstrated high levels of both intrinsic and extrinsic motivation, and this, together with varying strategy use, may have compensated for any mismatch between their preferred learning styles and their learning environment. Recommendations include replicating this study in other online graduate science courses, administration of learning style and learning strategy inventories to perspective online graduate science students, incorporation of synchronous communication into on-line science courses, and implementation of appropriate technology that supports visual and kinesthetic learners. Although the study was limited to nine participants, the implications of the findings are clear. Most adult science students experience learning in an on-line environment. Those who are independent, highly motivated learners and utilize a variety of learning strategies can adapt their learning style to the situational aspects of the learning environment. This further indicates that Internet-based graduate science education institutions should become aware of different learning styles and strategies, and be prepared to address this variety when developing and delivering such programming.

  2. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study.

    PubMed

    Nuhfer, Edward B; Cogan, Christopher B; Kloock, Carl; Wood, Gregory G; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W

    2016-03-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science's way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions' higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders.

  3. A sociocultural historical examination of youth argumentation across the settings of their lives: Implications for science education

    NASA Astrophysics Data System (ADS)

    Bricker, Leah A.

    In this dissertation, I examine youth argumentative practices as employed over time and across settings. Specifically, I examine youth perspective on argumentation and their own argumentative practices, the relationship between argumentation and learning, and the relationship between argumentation and youth, family, and community cultures. The theoretical framework I employ enables me to analyze argumentation as a set of practices employed in situated activity systems and framed by culturally-influenced ways of understanding activity associated with argumentative practice. I utilize data from a long-term team ethnography of youth science and technology learning across settings and time. Research fieldwork was conducted across dozens of social settings over the course of three years. Data includes approximately 700 hours of participant observations and interviews with thirteen upper elementary and middle school young people, as well as 128 of their parents, extended family members, peers, and teachers. Findings highlight the multitude of meanings youth associate with argumentation as it occurs in their lives (e.g., at home, in classrooms, in neighborhoods), as well as the detailed accounts of their argumentative practices and how these practices are differentially used across the social settings youth frequent. Additionally, findings highlight how historically rooted cultural practices help to frame youth perspectives on argumentation and their argumentative practices. Findings also include details about the specific communicative features of youth argumentation (e.g., linguistic elements such as discourse markers, evidentials, and indexicals, as well as non-verbal gestures) and how communicative features relate to youth learning across settings and over time. I use this dissertation in part to dialogue with the science education community, which currently argues that youth in science classrooms should learn how to argue scientifically. Designs of learning environments meant to accomplish that goal have to date not attended to the argumentation practices of youth. I argue that significant progress with respect to this goal is unlikely unless the field deeply attends to the specific details of existing argumentative practices youth employ across the settings of their lives. I use this dissertation to detail their argumentative practices in order to add to the literature in this area.

  4. Methodological pluralism in the teaching of Astronomy

    NASA Astrophysics Data System (ADS)

    de Macedo, Josué Antunes; Voelzke, Marcos Rincon

    2015-04-01

    This paper discusses the feasibility of using a teaching strategy called methodological pluralism, consisting of the use of various methodological resources in order to provide a meaningful learning. It is part of a doctoral thesis, which aims to investigate contributions to the use of traditional resources combined with digital technologies, in order to create autonomy for future teachers of Natural Sciences and Mathematics in relation to themes in Astronomy. It was offered an extension course at the "Federal Institution of Education, Science and Technology" in the North of Minas Gerais (FINMG), Campus Januaria, for thirty-two students of licentiate courses in Physics, Mathematics and Biological Sciences, involving themes of Astronomy, in order to search and contribute to improving the training of future teachers. The following aspects are used: the mixed methodology, with pre-experimental design, combined with content analysis. The results indicate the rates of students' prior knowledge in relation to Astronomy was low; meaningful learning indications of concepts related to Astronomy, and the feasibility of using digital resources Involving technologies, articulated with traditional materials in the teaching of Astronomy. This research sought to contribute to the initial teacher training, especially in relation to Astronomy Teaching, proposing new alternatives to promote the teaching of this area of knowledge, extending the methodological options of future teachers.

  5. Computer-based, Jeopardy™-like game in general chemistry for engineering majors

    NASA Astrophysics Data System (ADS)

    Ling, S. S.; Saffre, F.; Kadadha, M.; Gater, D. L.; Isakovic, A. F.

    2013-03-01

    We report on the design of Jeopardy™-like computer game for enhancement of learning of general chemistry for engineering majors. While we examine several parameters of student achievement and attitude, our primary concern is addressing the motivation of students, which tends to be low in a traditionally run chemistry lectures. The effect of the game-playing is tested by comparing paper-based game quiz, which constitutes a control group, and computer-based game quiz, constituting a treatment group. Computer-based game quizzes are Java™-based applications that students run once a week in the second part of the last lecture of the week. Overall effectiveness of the semester-long program is measured through pretest-postest conceptual testing of general chemistry. The objective of this research is to determine to what extent this ``gamification'' of the course delivery and course evaluation processes may be beneficial to the undergraduates' learning of science in general, and chemistry in particular. We present data addressing gender-specific difference in performance, as well as background (pre-college) level of general science and chemistry preparation. We outline the plan how to extend such approach to general physics courses and to modern science driven electives, and we offer live, in-lectures examples of our computer gaming experience. We acknowledge support from Khalifa University, Abu Dhabi

  6. The Python Project: A Unique Model for Extending Research Opportunities to Undergraduate Students

    PubMed Central

    Harvey, Pamela A.; Wall, Christopher; Luckey, Stephen W.; Langer, Stephen

    2014-01-01

    Undergraduate science education curricula are traditionally composed of didactic instruction with a small number of laboratory courses that provide introductory training in research techniques. Research on learning methodologies suggests this model is relatively ineffective, whereas participation in independent research projects promotes enhanced knowledge acquisition and improves retention of students in science. However, availability of faculty mentors and limited departmental budgets prevent the majority of students from participating in research. A need therefore exists for this important component in undergraduate education in both small and large university settings. A course was designed to provide students with the opportunity to engage in a research project in a classroom setting. Importantly, the course collaborates with a sponsor's laboratory, producing a symbiotic relationship between the classroom and the laboratory and an evolving course curriculum. Students conduct a novel gene expression study, with their collective data being relevant to the ongoing research project in the sponsor's lab. The success of this course was assessed based on the quality of the data produced by the students, student perception data, student learning gains, and on whether the course promoted interest in and preparation for careers in science. In this paper, we describe the strategies and outcomes of this course, which represents a model for efficiently providing research opportunities to undergraduates. PMID:25452492

  7. Conceptions of learning factors in postgraduate health sciences master students: a comparative study with non-health science students and between genders.

    PubMed

    Campos, Fernando; Sola, Miguel; Santisteban-Espejo, Antonio; Ruyffelaert, Ariane; Campos-Sánchez, Antonio; Garzón, Ingrid; Carriel, Víctor; de Dios Luna-Del-Castillo, Juan; Martin-Piedra, Miguel Ángel; Alaminos, Miguel

    2018-06-07

    The students' conceptions of learning in postgraduate health science master studies are poorly understood. The aim of this study was to compare the factors influencing conceptions of learning in health sciences and non-health sciences students enrolled in postgraduate master programs in order to obtain information that may be useful for students and for future postgraduate programs. A modified version of the Learning Inventory Conception Questionnaire (COLI) was used to compare students' conception learning factors in 131 students at the beginning of their postgraduate studies in health sciences, experimental sciences, arts and humanities and social sciences. The present study demonstrates that a set of factors may influence conception of learning of health sciences postgraduate students, with learning as gaining information, remembering, using, and understanding information, awareness of duty and social commitment being the most relevant. For these students, learning as a personal change, a process not bound by time or place or even as acquisition of professional competences, are less relevant. According to our results, this profile is not affected by gender differences. Our results show that the overall conceptions of learning differ among students of health sciences and non-health sciences (experimental sciences, arts and humanities and social sciences) master postgraduate programs. These finding are potentially useful to foster the learning process of HS students, because if they are metacognitively aware of their own conception or learning, they will be much better equipped to self-regulate their learning behavior in a postgraduate master program in health sciences.

  8. A Chinese young adult non-scientist's epistemologies and her understandings of the concept of speed

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Brizuela, Barbara M.

    2015-08-01

    Past research has investigated students' epistemologies while they were taking courses that required an integrated understanding of mathematical and scientific concepts. However, past studies have not investigated students who are not currently enrolled in such classes. Additionally, past studies have primarily focused on individuals who are native English speakers from Western cultures. In this paper, we aim to investigate whether Hammer and his colleagues' claims concerning learners' epistemologies could be extended to individuals who lack advanced mathematics and science training, have had different cultural and learning experiences, and have grown up speaking and learning in another language. To this end, we interviewed a participant with these characteristics about her understandings of the concept of speed. Our findings show that previous theoretical frameworks can be used to explain the epistemologies of the individual examined in this study. The case suggests that these theories may be relevant regardless of the learner's mathematics and science background, language, educational experience, and cultural background. In the future, more cases should be examined with learners from different academic backgrounds and cultures to further support this finding.

  9. Changing Minds about the Changing Climate: a Longitudinal Study of the Impacts of a Climate Change Curriculum on Undergraduate Student Knowledge and Attitudes.

    NASA Astrophysics Data System (ADS)

    Burkholder, K. C.; Mooney, S.

    2016-12-01

    In the fall of 2013, 24 sophomore students enrolled in a three-course Learning Community entitled "The Ethics and Science of Climate Change." This learning community was comprised of two disciplinary courses in environmental ethics and environmental science as well as a seminar course in which the students designed and delivered climate change education events in the community beyond campus. Students were surveyed prior to and upon completion of the semester using a variant of the Yale Climate Literacy Survey in order to assess their knowledge of and attitudes towards climate change. An analysis of those survey results demonstrated that the non-traditional curriculum resulted in significant improvements that extended beyond disciplinary knowledge of climate change: the student attitudes about climate change and our cultural response to the issues associated with climate change shifted as well. Finally, a third administration of the survey (n=17) plus follow up interviews with 10 of those original students conducted during the students' senior year in 2016 suggest that the changes that the students underwent as sophomores were largely retained.

  10. The search for the engram in eyeblink conditioning: A synopsis of past and present perspectives on the role of the cerebellum.

    PubMed

    Foy, Michael R; Foy, Judith G

    2016-12-01

    One of the most prolific behavioral neuroscientists of his generation, Richard F. Thompson published more than 450 research articles during his almost 60-year career before his death in 2014. The breadth and reach of his scholarship has extended to a large multidisciplinary audience of scientists. The focal point of this article is arguably his most influential paper on cerebellar classical conditioning entitled "The Neurobiology of Learning and Memory" that appeared in Science in 1986 and has been cited 700 times since its publication. Here, a summary of the initial Thompson laboratory research leading up to an understanding of the cerebellum and its critical role in memory traces will be discussed, along with conclusions from the Science article pertinent to cerebellar classical conditioning. The summary will also discuss how the original 1986 article continues to stimulate and influence new research and provide further insights into the role of the cerebellum in the neurobiology of learning and memory function relevant to studies of mammalian classical conditioning. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Student Motivation in Constructivist Learning Environment

    ERIC Educational Resources Information Center

    Cetin-Dindar, Ayla

    2016-01-01

    The purpose of this study was to investigate the relation between constructivist learning environment and students'motivation to learn science by testing whether students' self-efficacy in learning science, intrinsically and extrinsically motivated science learning increase and students' anxiety about science assessment decreases when more…

  12. Science Learning Outcomes in Alignment with Learning Environment Preferences

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Yen; Hsiao, Chien-Hua; Chang, Yueh-Hsia

    2011-04-01

    This study investigated students' learning environment preferences and compared the relative effectiveness of instructional approaches on students' learning outcomes in achievement and attitude among 10th grade earth science classes in Taiwan. Data collection instruments include the Earth Science Classroom Learning Environment Inventory and Earth Science Learning Outcomes Inventory. The results showed that most students preferred learning in a classroom environment where student-centered and teacher-centered instructional approaches coexisted over a teacher-centered learning environment. A multivariate analysis of covariance also revealed that the STBIM students' cognitive achievement and attitude toward earth science were enhanced when the learning environment was congruent with their learning environment preference.

  13. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  14. Motivating and Assisting Adult, Online Chemistry Students: A Review of the Literature

    NASA Astrophysics Data System (ADS)

    Bannier, Betsy J.

    2010-06-01

    While comprehensive texts, articles, and literature reviews presenting research in the singular arenas of motivation, help-seeking, and online science learning are relatively easy to find, syntheses and interactions between these constructs are lacking. Part I of this review addresses this knowledge gap by drawing together key research from the domains of educational psychology and adult education, addressing the constructs of motivation, self-efficacy, adult learning, and help-seeking. Part II of this review extends and applies the motivation and help-seeking discussion to the emerging and exciting field of online chemistry education. The result is a comprehensive synthesis of the strengths and limitations of the currently existing body of knowledge related to the motivation and help-seeking behaviors of adult, online chemistry students.

  15. Gender-inclusive science teaching: A feminist-constructivist approach

    NASA Astrophysics Data System (ADS)

    Roychoudhury, Anita; Tippins, Debora J.; Nichols, Sharon E.

    The underrepresentation of women in science is an extensively studied yet persistent concern of our society. Researchers have identified numerous educational and social factors thought to be responsible for this underrepresentation (Kahle, 1990a; Kelly, 1987). One of the dominant explanations, used by many researchers for years to discuss gender differences in science and mathematics achievement as well as interest, has been the differences in the cognitive abilities of men and women. This explanation, however, has been discarded in recent years (Linn & Hyde, 1989; Linn 1990). On the basis of their meta-analyses of various studies. Linn and Hyde (1989) concluded that gender differences in cognitive skills have declined and those that remain are largely explained by experiential differences. Women may not have different cognitive abilities, but they may have a different way of learning rooted in their role in society. The epistemic differences between men and women stemming from their standpoint in life can help us understand their differential interaction with the nature of science, and hence their participation in the field. In the following section, we will briefly discuss the feminist critique of science and extend the implication to science education.Received: 28 July 1993; Revised: 19 August 1994;

  16. Using a Concept Inventory to Assess the Reasoning Component of Citizen-Level Science Literacy: Results from a 17,000-Student Study†

    PubMed Central

    Nuhfer, Edward B.; Cogan, Christopher B.; Kloock, Carl; Wood, Gregory G.; Goodman, Anya; Delgado, Natalie Zayas; Wheeler, Christopher W.

    2016-01-01

    After articulating 12 concepts for the reasoning component of citizen-level science literacy and restating these as assessable student learning outcomes (SLOs), we developed a valid and reliable assessment instrument for addressing the outcomes with a brief 25-item science literacy concept inventory (SLCI). In this paper, we report the results that we obtained from assessing the citizen-level science literacy of 17,382 undergraduate students, 149 graduate students, and 181 professors. We address only findings at or above the 99.9% confidence level. We found that general education (GE) science courses do not significantly advance understanding of science as a way of knowing. However, the understanding of science’s way of knowing does increase through academic ranks, indicating that the extended overall academic experience better accounts for increasing such thinking capacity than do science courses alone. Higher mean institutional SLCI scores correlate closely with increased institutional selectivity, as measured by the institutions’ higher mean SAT and ACT scores. Socioeconomic factors of a) first-generation student, b) English as a native language, and c) interest in commitment to a science major are unequally distributed across ethnic groups. These factors proved powerful in accounting for the variations in SLCI scores across ethnicities and genders. PMID:27047612

  17. Significant Opportunities in Atmospheric Research and Science (SOARS)

    NASA Astrophysics Data System (ADS)

    Wyndam, T.

    2002-12-01

    Science education is rapidly changing. It is becoming more exciting and challenging, and also more accessible. Little more than a decade ago, the dreams of students from historically underrepresented groups to successfully pursue careers in science were admirable, but mostly elusive. Today, while African Americans, Chicano/Hispanic/LatinoAmericans, and Native Americans make up 25% of the U.S.A. population, these groups combined constitute fewer than 7% of scientists and engineers in the labor force and approximately 3% of the current AMS membership. Achieving the goal of a diverse, internationally competitive, and globally engaged workforce of scientists, engineers, and well prepared citizens calls for different educational goals and strategies. In 1995 UCAR teamed up with NSF and established a program, SOARS, that extends science education and encourages university students from diverse backgrounds to sustain interests, develop skills, and create paths that lead them to careers in the atmospheric and related sciences. SOARS combines research opportunities with a comprehensive mentoring component and a number of other proven learning strategies to create a student (protégé) centered learning community. To date, seventy-two protégés have traveled this pathway. Thirteen protégés have completed their master's degrees and are SOARS alumni: Ten have entered the professional scientific workforce; four are enrolled in Ph.D. programs; and two are Ph.D. candidates. Twenty-four protégés are enrolled in graduate programs: Three are AMS graduate fellows; one an NSF graduate fellow. Forty-two protégés have completed bachelor's degrees; three have completed associate's degrees and are now enrolled in a four-year research university. SOARS sponsorship has expanded to include DOE, NASA, and NOAA. Though SOARS continues to learn from the experiences of its community of protégés and mentors, results to date suggest that it is a successful model.

  18. Learning through projects in the training of biomedical engineers: an application experience

    NASA Astrophysics Data System (ADS)

    Gambi, José Antonio Li; Peme, Carmen

    2011-09-01

    Learning through Projects in the curriculum consists of both the identification and analysis of a problem, and the design of solution, execution and evaluation strategies, with teams of students. The project is conceived as the creation of a set of strategies articulated and developed during a certain amount of time to solve a problem contextualized in situations continually changing, where the constant evaluation provides feedback to make adjustments. In 2009, Learning through Projects was applied on the subject Hospital Facilities and three intervention projects were developed in health centers. This first stage is restricted to the analysis of the aspects that are considered to be basic to the professional training: a) Context knowledge: The future biomedical engineers must be familiarized with the complex health system where they will develop their profession; b) Team work: This is one of the essential skills in the training of students, since Biomedical Engineering connects the knowledge of sciences of life with the knowledge of exact sciences and technology; c) Regulations: The activities related to the profession require the implementation of regulations; therefore, to be aware of and to apply these regulations is a fundamental aspect to be analyzed in this stage; d) Project evaluation: It refers to the elaboration and studying of co-evaluation reports, which helps to find out if Learning through Projects contributes to the training. This new line of investigation has the purpose of discovering if the application of this learning strategy makes changes in the training of students in relation to their future professional career. The findings of this ongoing investigation will allow for the analysis of the possibility of extending its application. Key words: engineering, biomedical, learning, projects, strategies.

  19. Report of the Committee on the Extended University.

    ERIC Educational Resources Information Center

    Ohio Univ., Athens.

    To offer extended learning opportunities to persons without access to traditional residential education is the purpose of the proposed extended university of Ohio University. This new academic unit would be responsible for the development and administration of the Extended Learning Program (ELP). The ELP admits students who have successfully…

  20. A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

    2012-01-01

    A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

  1. Factors affecting construction of science discourse in the context of an extracurricular science and technology project

    NASA Astrophysics Data System (ADS)

    Webb, Horace P.

    Doing and learning science are social activities that require certain language, activities, and values. Both constitute what Gee (2005) calls Discourses. The language of learning science varies with the learning context (Lemke, 2001,1990). Science for All Americans (AAAS, 1990) and Inquiry and the National Science Education Standards (NRC, 2000) endorse inquiry science learning. In the United States, most science learning is teacher-centered; inquiry science learning is rare (NRC, 2000). This study focused on 12 high school students from two suburban high schools, their three faculty mentors, and two engineering mentors during an extracurricular robotics activity with FIRST Robotics Competition (FRC). FRC employed student-centered inquiry focus to teach science principles integrating technology. Research questions were (a) How do science teachers and their students enact Discourses as they teach and learn science? and (b) How does the pedagogical approach of a learning activity facilitate the Discourses that are enacted by students and teachers as they learn and teach science? Using Critical Discourse Analysis (CDA), the study examined participants' language during robotic activities to determine how language used in learning science shaped the learning and vice versa. Data sources included videorecordings of participant language and semi-structured interviews with study participants. Transcribed recordings were coded initially using Gee's (2005) linguistic Building Tasks as a priori codes. CDA was applied to code transcripts, to construct Discourses enacted by the participants, and to determine how context facilitated their enactment. Findings indicated that, for the students, FRC facilitated elements of Science Discourse. Wild About Robotics (W.A.R.) team became, through FRC, part of a community similar to scientists' community that promoted knowledge and sound practices, disseminated information, supported research and development and encouraged interaction of its members. The public school science classroom in the U.S. is inimical to inquiry learning because of practices and policies associated with the epistemological stance that spawned the standards and/or testing movement and No Child Left Behind (Baez & Boyles, 2009). The findings of this study provided concrete ideas to accommodate the recommendations by NRC (1996) and NSES (2000) for creating contexts that might lead to inquiry science learning for meaningful student engagement.

  2. Sustaining Student Engagement in Learning Science

    ERIC Educational Resources Information Center

    Ateh, Comfort M.; Charpentier, Alicia

    2014-01-01

    Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…

  3. User Acceptance of Social Learning Systems in Higher Education: An Application of the Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Akman, Ibrahim; Turhan, Cigdem

    2017-01-01

    This study aims to explore the users' behaviour and acceptance of social media for learning in higher educational institutions with the help of the extended Technology Acceptance Model (TAM). TAM has been extended to investigate how ethical and security awareness of users affect the actual usage of social learning applications. For this purpose, a…

  4. Perceived Convenience in an Extended Technology Acceptance Model: Mobile Technology and English Learning for College Students

    ERIC Educational Resources Information Center

    Chang, Chi-Cheng; Yan, Chi-Fang; Tseng, Ju-Shih

    2012-01-01

    Since convenience is one of the features for mobile learning, does it affect attitude and intention of using mobile technology? The technology acceptance model (TAM), proposed by David (1989), was extended with perceived convenience in the present study. With regard to English language mobile learning, the variables in the extended TAM and its…

  5. Science and management of Rocky Mountain grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.; Herrero, S.; Wright, R.G.; Pease, C.M.

    1996-01-01

    The science and management of grizzly bears (Ursus arctos horribilis) in the Rocky Mountains of North America have spawned considerable conflict and controversy. Much of this can be attributed to divergent public values, but the narrow perceptions and incomplete and fragmented problem definitions of those involved have exacerbated an inherently difficult situation. We present a conceptual model that extends the traditional description of the grizzly bear conservation system to include facets of the human domain such as the behavior of managers, elected officials, and the public. The model focuses on human-caused mortality, the key determinant of grizzly bear population growth in this region and the interactions and feedback loops among humans that have a major potential influence on bear mortality. We also briefly evaluate existing information and technical methods relevant to understanding this complex human-biophysical system. We observe not only that the extant knowledge is insufficient for prediction (and in some cases for description), but also that traditional positivistic science alone is not adequate for dealing with the problems of grizzly bear conservation. We recommend changes in science and management that could improve learning and responsiveness among the involved individuals and organizations, clarify some existing uncertainty, and thereby increase the effectiveness of grizzly bear conservation and management. Although adaptive management is a promising approach, we point out some keya??as yet unfulfilleda??contingencies for implementation of a method such as this one that relies upon social processes and structures that promote open learning and flexibility in all facets of the policy process.

  6. An examination of key experiences which contribute to a positive change in attitude toward science in two elementary education teacher candidates at the University of Wyoming

    NASA Astrophysics Data System (ADS)

    Cason, Maggie A.

    This investigation utilized life history methodology (Armstrong, 1987; Bogdan & Biklen, 1998; Lawrence-Lightfoot, 1977; Marshall & Rossman, 1995; Patton, 1987; Taylor & Bogdan; 1984) to examine lifelong science experiences of two elementary education teacher candidates at a land grant institution with a large, undergraduate teacher education program. Purposive sampling techniques (Bogdan & Biklen, 1998) led to the selection of two teacher candidates who reported high science anxiety when they began university coursework. The investigation focused on five broad questions: (a) What were key experiences in the elementary teacher education program which contributed to a positive change in attitude toward science? (b) What science experiences, in and out of school, did the teacher candidates encounter while they were in elementary school, junior high school, high school, and college? (c) How did the elementary education program's science course structure, professors, and field experiences contribute to the change in attitude toward science? (d) How much time was involved in the change in attitude toward science? and (e) What were the effects of the change in attitude on the teaching of science in the elementary classroom? Each candidate completed approximately twenty hours of interviews yielding rich descriptions of their lifelong science experiences. Data also included interviews with science and science education professors, journaling, and observations of student teaching experiences. Data analysis revealed four over-arching themes with implications for teacher educators. First, data showed the importance of relationship building between professors and teacher candidates. Professors must know and work with teacher candidates, and provide a structure that encourages question asking. Second, course structure including hands-on teaching strategies and students working in small groups over an extended period of time was vital. Third, integrating language arts with science proved important because the generally high comfort level experienced by elementary teacher candidates toward language arts may be extended to the teaching of science. Teacher candidates realize the benefits for both teaching and learning when the two subjects are integrated. Last, the study revealed the powerful effects of field experiences which include teaching science in the public schools and demonstrated the drawbacks of field experiences which do not include teaching science.

  7. An analysis of women's ways of knowing in a 10th grade integrated science classroom

    NASA Astrophysics Data System (ADS)

    Kochheiser, Karen Lynn

    All students can learn science, but how they learn science may differ. This study is about learning science and its relationship to gender. Women need to develop and establish connections with the objects that they are learning and be able to establish a voice in a science classroom. Unfortunately, traditional science classrooms still view science as a male domain and tend to discourage women from pursuing higher levels of science or science related careers. The ways that women learn science are a very complex set of interactions. In order to describe these interactions, this study explored how women's ways of knowing are represented in a high school science classroom. Nine women from an enriched integrated biology and earth science class contributed to this study. The women contributed to this study by participating in individual and group interviews, questionnaires, journals, observations and participant review of the interviews. The ways that these women learn science were described in terms of Belenky, Clinchy, Goldberger, and Tarule's Women's Ways of Knowing: The Development of Self, Voice, and Mind (1997). The women's ways of learning in this classroom tended to be situational with the women fitting different categories of knowing depending on the situation. Most of the women demonstrated periods of time where they wanted to be heard or tried to establish a voice in the classroom. The study helps to provide a theory for how women make choices in their learning of science and the struggle to be successful in a male dominated discipline. The women participating in this study gained an awareness of how they learn science and how that can be used to make them even more successful in the classroom. The awareness of how women learn science will also be of great benefit to other teachers and educators as the work for science reform continues to make science a 'science for all'.

  8. A Model for E-Education: Extended Teaching Spaces and Extended Learning Spaces

    ERIC Educational Resources Information Center

    Jung, Insung; Latchem, Colin

    2011-01-01

    The paper proposes a model for e-education in instruction, training, initiation and induction based upon the concept of extended teaching spaces involving execution, facilitation and liberation, and extended learning spaces used for acquisition, application and construction cemented by dialogue and reflection. The proposed model is based upon…

  9. Student Scientific Research within Communities-of-Practice (Abstract)

    NASA Astrophysics Data System (ADS)

    Genet, R.; Armstrong, J.; Blanko, P.; Boyce, G. B. P.; Brewer, M.; Buchheim, R.; Calanog, J.; Castaneda, D.; Chamberlin, R.; Clark, R. K.; Collins, D.; Conti, D.; Cormier, S.; FItzgerald, M.; Estrada, C.; Estrada, R.; Freed, R.; Gomez, E.; Hardersen, P.; Harshaw, R.; Johnson, J.; Kafka, S.; Kenney, J.; Monanan, K.; Ridgely, J.; Rowe, D.; Silliman, M.; Stojimirovic, I.; Tock, K.; Walker, D.

    2017-12-01

    (Abstract only) Social learning theory suggests that students who wish to become scientists will benefit by being active researchers early in their educational careers. As coauthors of published research, they identify themselves as scientists. This provides them with the inspiration, motivation, and staying power that many will need to complete the long educational process. This hypothesis was put to the test over the past decade by a one-semester astronomy research seminar where teams of students managed their own research. Well over a hundred published papers coauthored by high school and undergraduate students at a handful of schools substantiated this hypothesis. However, one could argue that this was a special case. Astronomy, after all, is supported by a large professional-amateur community-of-practice. Furthermore, the specific area of research - double star astrometry - was chosen because the observations could be quickly made, the data reduction and analysis was straight forward, and publication of the research was welcomed by the Journal of Double Star Observations. A recently initiated seminar development and expansion program - supported in part by the National Science Foundation - is testing a more general hypothesis that: (1) the seminar can be successfully adopted by many other schools; (2) research within astronomy can be extended from double star astrometry to time series photometry of variable stars, exoplanet transits, and asteroids; and (3) the seminar model can be extended to a science beyond astronomy: environmental science' specifically atmospheric science. If the more general hypothesis is also supported, seminars that similarly feature published high school and undergraduate student team research could have the potential to significantly improve science education by increasing the percentage of students who complete the education required to become professional scientists.

  10. Student Scientific Research within Communities-of-Practice

    NASA Astrophysics Data System (ADS)

    Genet, Russell; Armstrong, James; Blanko, Philip; Boyce, Grady Boyce, Pat; Brewer, Mark; Buchheim, Robert; Calanog, Jae; Castaneda, Diana; Chamberlin, Rebecca; Clark, R. Kent; Collins, Dwight; Conti, Dennis Cormier, Sebastien; Fitzgerald, Michael; Estrada, Chris; Estrada, Reed; Freed, Rachel Gomez, Edward; Hardersen, Paul; Harshaw, Richard; Johnson, Jolyon Kafka, Stella; Kenney, John; Mohanan, Kakkala; Ridgely, John; Rowe, David Silliman, Mark; Stojimirovic, Irena; Tock, Kalee; Walker, Douglas; Wallen, Vera

    2017-06-01

    Social learning theory suggests that students who wish to become scientists will benefit by being active researchers early in their educational careers. As coauthors of published research, they identify themselves as scientists. This provides them with the inspiration, motivation, and staying power that many will need to complete the long educational process. This hypothesis was put to the test over the past decade by a one-semester astronomy research seminar where teams of students managed their own research. Well over a hundred published papers coauthored by high school and undergraduate students at a handful of schools substantiated this hypothesis. However, one could argue that this was a special case. Astronomy, after all, is supported by a large professional-amateur community-of-practice. Furthermore, the specific area of research-double star astrometry-was chosen because the observations could be quickly made, the data reduction and analysis was straight forward, and publication of the research was welcomed by the Journal of Double Star Observations. A recently initiated seminar development and expansion program-supported in part by the National Science Foundation-is testing a more general hypothesis that: (1) the seminar can be successfully adopted by many other schools; (2) research within astronomy can be extended from double star astrometry to time series photometry of variable stars, exoplanet transits, and asteroids; and (3) the seminar model can be extended to a science beyond astronomy: environmental science-specifically atmospheric science. If the more general hypothesis is also supported, seminars that similarly feature published high school and undergraduate student team research could have the potential to significantly improve science education by increasing the percentage of students who complete the education required to become professional scientists.

  11. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    ERIC Educational Resources Information Center

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  12. Science of Learning Is Learning of Science: Why We Need a Dialectical Approach to Science Education Research

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2012-01-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed…

  13. Analysis of an Interactive Technology Supported Problem-Based Learning STEM Project Using Selected Learning Sciences Interest Areas (SLSIA)

    ERIC Educational Resources Information Center

    Kumar, David Devraj

    2017-01-01

    This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…

  14. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    ERIC Educational Resources Information Center

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  15. Learning with Multiple Representations: Extending Multimedia Learning beyond the Lab

    ERIC Educational Resources Information Center

    Eilam, Billie; Poyas, Yael

    2008-01-01

    The present study extended multimedia learning principles beyond the lab to an ecologically valid setting (homework). Eighteen information cards were used to perform three homework tasks. The control group students learned from single representation (SR) cards that presented all information as printed text. The multiple representation (MR) group…

  16. Statistically Modeling Individual Students' Learning over Successive Collaborative Practice Opportunities

    ERIC Educational Resources Information Center

    Olsen, Jennifer; Aleven, Vincent; Rummel, Nikol

    2017-01-01

    Within educational data mining, many statistical models capture the learning of students working individually. However, not much work has been done to extend these statistical models of individual learning to a collaborative setting, despite the effectiveness of collaborative learning activities. We extend a widely used model (the additive factors…

  17. The Effect of Integrated Learning Model and Critical Thinking Skill of Science Learning Outcomes

    NASA Astrophysics Data System (ADS)

    Fazriyah, N.; Supriyati, Y.; Rahayu, W.

    2017-02-01

    This study aimed to determine the effect of integrated learning model and critical thinking skill toward science learning outcomes. The study was conducted in SDN Kemiri Muka 1 Depok in fifth grade school year 2014/2015 using cluster random sampling was done to 80 students. Retrieval of data obtained through tests and analysis by Variance (ANOVA) and two lines with the design treatment by level 2x2. The results showed that: (1) science learning outcomes students that given thematic integrated learning model is higher than in the group of students given fragmented learning model, (2) there is an interaction effect between critical thinking skills with integrated learning model, (3) for students who have high critical thinking skills, science learning outcomes students who given by thematic integrated learning model higher than fragmented learning model and (4) for students who have the ability to think critically low yield higher learning science fragmented model. The results of this study indicate that thematic learning model with critical thinking skills can improve science learning outcomes of students.

  18. Common Core Science Standards: Implications for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  19. Influence of Psychosocial Classroom Environment on Students' Motivation and Self-Regulation in Science Learning: A Structural Equation Modeling Approach

    NASA Astrophysics Data System (ADS)

    Velayutham, Sunitadevi; Aldridge, Jill M.

    2013-04-01

    The primary aim of this study was two-fold: 1) to identify salient psychosocial features of the classroom environment that influence students' motivation and self-regulation in science learning; and 2) to examine the effect of the motivational constructs of learning goal orientation, science task value and self-efficacy in science learning on students' self-regulation in science classrooms. Data collected from 1360 science students in grades 8, 9 and 10 in five public schools in Perth, Western Australia were utilized to validate the questionnaires and to investigate the hypothesized relationships. Structural Equation Modeling analysis suggested that student cohesiveness, investigation and task orientation were the most influential predictors of student motivation and self-regulation in science learning. In addition, learning goal orientation, task value and self-efficacy significantly influenced students' self-regulation in science. The findings offer potential opportunities for educators to plan and implement effective pedagogical strategies aimed at increasing students' motivation and self-regulation in science learning.

  20. Toward a critical approach to the study of learning environments in science classrooms

    NASA Astrophysics Data System (ADS)

    Lorsbach, Anthony; Tobin, Kenneth

    1995-03-01

    Traditional learning environment research in science classrooms has been built on survey methods meant to measure students' and teachers' perceptions of variables used to define the learning environment. This research has led mainly to descriptions of learning environments. We argue that learning environment research should play a transformative role in science classrooms; that learning environment research should take into account contemporary post-positivist ways of thinking about learning and teaching to assist students and teachers to construct a more emancipatory learning environment. In particular, we argue that a critical perspective could lead to research playing a larger role in the transformation of science classroom learning environments. This argument is supplemented with an example from a middle school science classroom.

  1. Informal science education at Science City

    NASA Astrophysics Data System (ADS)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  2. Supporting Three-Dimensional Science Learning: The Role of Curiosity-Driven Classroom Discourse

    ERIC Educational Resources Information Center

    Johnson, Wendy Renae

    2017-01-01

    The National Research Council's "Framework for K-12 Science Education" (2011) presents a new vision for science education that calls for the integration of the three dimensions of science learning: science and engineering practices, crosscutting concepts, and disciplinary core ideas. Unlike previous conceptions of science learning that…

  3. Science Investigation That Best Supports Student Learning: Teachers' Understanding of Science Investigation

    ERIC Educational Resources Information Center

    Moeed, Azra

    2013-01-01

    Internationally, learning science through investigation is promoted as a preferred pedagogical approach. Research presented takes a view that such learning depends on how teachers understand science investigation. Teachers' understanding of science investigation was an aspect of an interpretive case study of the phenomenon of science investigation…

  4. Exploring students' conceptions of science learning via drawing: a cross-sectional analysis

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Min; Tsai, Chin-Chung

    2017-02-01

    This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence of specified attributes. Data analysis showed that the majority of students pictured science learning as school-based, involving certain types of experiment or teacher lecturing. In addition, notable cross-sectional differences were found in the 'Activity' and 'Emotions and attitudes' categories in students' drawings. Three major findings were made: (1) lower grade level students conceptualised science learning with a didactic approach, while higher graders might possess a quantitative view of science learning (i.e. how much is learned, not how well it is learned), (2) students' positive and negative emotions and attitudes toward science learning reversed around middle school, and (3) female students expressed significantly more positive emotions and attitudes than their male counterparts. In conclusion, higher graders' unfruitful conceptions of science learning warrant educators' attention. Moreover, further investigation of girls' more positive emotions and attitudes found in this study is needed.

  5. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    NASA Astrophysics Data System (ADS)

    Dunn, Karee E.; Lo, Wen-Juo

    2015-11-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of science study strategies was explored using structural equation modeling. In addition, the study served to validate the first two stages of Zimmerman's cyclical model of self-regulation and to address the common methodological weakness in self-regulation research in which data are all collected at one point after the learning cycle is complete. Thus, data were collected across the learning cycle rather than asking students to reflect upon each construct after the learning cycle was complete. The findings supported the hypothesized model in which it was predicted that self-efficacy would significantly and positively influence students' perceived science strategy use, and the influence of students' valuation of science learning on science study strategies would be mediated by their learning goal orientation. The findings of the study are discussed and implications for undergraduate science instructors are proposed.

  6. International Observe the Moon Night: A Worldwide Public Observing Event that Annually Engages Scientists, Educators, and Citizen Enthusiasts in NASA Science

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Jones, A. P.; Bleacher, L.; Wasser, M. L.; Day, B. H.; Shaner, A. J.; Bakerman, M. N.; Joseph, E.

    2017-12-01

    International Observe the Moon Night (InOMN) is an annual worldwide event, held in the fall, that celebrates lunar and planetary science and exploration. InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter (LRO) in collaboration with NASA's Solar System Exploration Research Virtual Institute (SSERVI), the NASA's Heliophysics Education Consortium, CosmoQuest, Night Sky Network, and Science Festival Alliance. Other key partners include the NASA Museum Alliance, Night Sky Network, and NASA Solar System Ambassadors. In 2017, InOMN will bring together thousands of people across the globe to observe and learn about the Moon and its connection to planetary science. We are partnering with the NASA Science Mission Directorate total solar eclipse team to highlight InOMN as an opportunity to harness and sustain the interest and momentum in space science and observation following the August 21st eclipse. This is part of a new partnership with the Sun-Earth Day team, through the Heliophysics Education Consortium, to better connect the two largest NASA-sponsored public engagement events, increase participation in both events, and share best practices in implementation and evaluation between the teams. Over 3,800 InOMN events have been registered between 2010 and 2016, engaging over 550,000 visitors worldwide. Most InOMN events are held in the United States, with strong representation from many other countries. InOMN events are evaluated to determine the value of the events and to allow us to improve the experience for event hosts and visitors. Our results show that InOMN events are hosted by scientists, educators, and citizen enthusiasts around the world who leverage InOMN to bring communities together, get visitors excited and learn about the Moon - and beyond, and share resources to extend engagement in lunar and planetary science and observation. Through InOMN, we annually provide resources such as event-specific Moon maps, presentations, advertising materials, and certificates of participation. Additionally, InOMN highlights partner resources such as online interfaces including Moon Trek (https://moontrek.jpl.nasa.gov) and CosmoQuest (https://cosmoquest.org/x/) to provide further opportunities to engage with NASA science. Learn more about InOMN at http://observethemoonnight.org.

  7. Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases

    NASA Astrophysics Data System (ADS)

    Zengler, Christoph; Küchlin, Wolfgang

    We extend clause learning as performed by most modern SAT Solvers by integrating the computation of Boolean Gröbner bases into the conflict learning process. Instead of learning only one clause per conflict, we compute and learn additional binary clauses from a Gröbner basis of the current conflict. We used the Gröbner basis engine of the logic package Redlog contained in the computer algebra system Reduce to extend the SAT solver MiniSAT with Gröbner basis learning. Our approach shows a significant reduction of conflicts and a reduction of restarts and computation time on many hard problems from the SAT 2009 competition.

  8. Perceptual Learning of Intonation Contour Categories in Adults and 9- to 11-Year-Old Children: Adults Are More Narrow-Minded.

    PubMed

    Kapatsinski, Vsevolod; Olejarczuk, Paul; Redford, Melissa A

    2017-03-01

    We report on rapid perceptual learning of intonation contour categories in adults and 9- to 11-year-old children. Intonation contours are temporally extended patterns, whose perception requires temporal integration and therefore poses significant working memory challenges. Both children and adults form relatively abstract representations of intonation contours: Previously encountered and novel exemplars are categorized together equally often, as long as distance from the prototype is controlled. However, age-related differences in categorization performance also exist. Given the same experience, adults form narrower categories than children. In addition, adults pay more attention to the end of the contour, while children appear to pay equal attention to the beginning and the end. The age range we examine appears to capture the tail-end of the developmental trajectory for learning intonation contour categories: There is a continuous effect of age on category breadth within the child group, but the oldest children (older than 10;3) are adult-like. Copyright © 2016 Cognitive Science Society, Inc.

  9. Prioritizing Active Learning: An Exploration of Gateway Courses in Political Science

    ERIC Educational Resources Information Center

    Archer, Candace C.; Miller, Melissa K.

    2011-01-01

    Prior research in political science and other disciplines demonstrates the pedagogical and practical benefits of active learning. Less is known, however, about the extent to which active learning is used in political science classrooms. This study assesses the prioritization of active learning in "gateway" political science courses, paying…

  10. The influence of retrieval practice on memory and comprehension of science texts

    NASA Astrophysics Data System (ADS)

    Hinze, Scott R.

    The testing effect, where retrieval practice aids performance on later tests, may be a powerful tool for improving learning and retention. Three experiments test the potentials and limitations of retrieval practice for retention and comprehension of the content of science texts. Experiment 1 demonstrated that cued recall of paragraphs, but not fill-in-the-blank tests, improved performance on new memory items. Experiment 2 manipulated test expectancy and extended cued recall benefits to inference items. Test expectancies established prior to retrieval altered processing to either be ineffective (when expecting a memory test) or effective (when expecting an inference test). In Experiment 3, the processing task engaged in during retrieval practice was manipulated. Explanation during retrieval practice led to more effective transfer than free recall instructions, especially when participants were compliant and effective in their explanations. These experiments demonstrate that some, but not all, processing during retrieval practice can influence both memory and understanding of science texts.

  11. Earth Expeditions: Telling the stories of eight NASA field campaigns by focusing on the human side of science

    NASA Astrophysics Data System (ADS)

    Bell, S.

    2016-12-01

    NASA's Earth Right Now communication team kicked off an ambitious multimedia campaign in March 2016 to tell the stories of eight major field campaigns studying regions of critical change from the land, sea and air. Earth Expeditions focused on the human side of science, with live reporting from the field, behind-the-scenes images and videos, and extended storytelling over a six-month period. We reported from Greenland to Namibia, from the eastern United States to the South Pacific. Expedition scientists explored ice sheets, air quality, coral reefs, boreal forests, marine ecosystems and greenhouse gases. All the while the campaign communications team was generating everything from blog posts and social media shareables, to Facebook Live events and a NASA TV series. We also participated in community outreach events and pursued traditional media opportunities. A massive undertaking, we will share lessons learned, best practices for social media and some of our favorite moments when science communication touched our audience's lives.

  12. The effects of contextual learning instruction on science achievement of male and female tenth-grade students

    NASA Astrophysics Data System (ADS)

    Ingram, Samantha Jones

    The purpose of this study was to investigate the effects of the contextual learning method on science performance, attitudes toward science, and motivational factors that influence high school students to learn science. Gender differences in science performance and attitudes toward science were also investigated. The sample included four tenth-grade classes of African-American students enrolled in Chemistry I. All students were required to review for the Alabama High School Graduation Exam in Science. Students were administered a science pretest and posttest to measure science performance. A two-way analysis of covariance was performed on the test data. The results showed a main effect of contextual learning instruction on science achievement and no significant differences between females' and males' performance in science. The Science Attitude and the Alabama High School Graduation Exam (AHSGE) Review Class Surveys were administered to assess students' beliefs and attitudes toward science. The Science Attitude Survey results indicated a control effect in three subscales: perception of guardian's attitude, attitude toward success in science, and perception of teacher's attitude. No significant differences resulted between males and females in their beliefs about science from the attitude survey. However, students' attitudes toward science were more favorable in the contextual learning classes based on the results of the Review Class Survey. The survey data revealed that both males and females in the contextual classes had positive attitudes toward science and toward being active participants in the learning process. Qualitative data on student motivation were collected to examine the meaningfulness of the contextual learning content and materials. The majority of the students in the treatment (96%) and the control groups (86%) reported high interest in the lesson on Newton's three laws of motion. Both the treatment and the control groups indicated their interest ratings were a result of their prior experiences. This study shows that contextual learning instruction positively influences student motivation, interest, and achievement in science. Student achievement in science improved in the contextual learning classes as a result of increased interest due to learning that emphasized relevancy and purposeful meaning.

  13. The Quality Imperative: A State Guide to Achieving the Promise of Extended Learning Opportunities

    ERIC Educational Resources Information Center

    Princiotta, Daniel; Fortune, Ayeola

    2009-01-01

    Extended learning opportunities (ELOs) provide safe, structured learning environments for students outside the traditional school day. ELOs include afterschool and summer learning programs as well as before-school, evening, and weekend programs. ELOs come in many forms and can include tutoring, volunteering, academic support, community service,…

  14. Extended--and Extending--Literacies

    ERIC Educational Resources Information Center

    Moje, Elizabeth Birr; Ellison, Tisha Lewis

    2016-01-01

    We examine the impact of "Becoming a Nation of Readers: The Report of the Commission on Reading" ("BNR") (Anderson, Hiebert, Scott, & Wilkinson, 1985) with the idea of extending literacy learning beyond the early grades, describing present-day conceptions of secondary-school literacy learning, and calling to "further…

  15. Student Visual Communication of Evolution

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Cook, Kristin

    2017-06-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  16. Application of medical cases in general genetics teaching in universities.

    PubMed

    He, Zhumei; Bie, Linsai; Li, Wei

    2018-01-20

    General genetics is a core course in life sciences, medicine, agriculture and other related fields. As one of the most fast-developing disciplines of life sciences in the 21th century, the influence of the genetics knowledge on daily life is expanding, especially on human health and reproduction. In order to make it easier for students to understand the profound principles of genetics and to better apply the theories to daily life, we have introduced appropriate medical cases in general genetics teaching and further extended them combined with theoretical basis of genetics. This approach will be beneficial to enhance students' abilities of genetic analysis and promote their enthusiasm to learn and master practical skills. In this paper, we enumerate medical cases related to the modern genetics teaching system to provide a reference for genetics teaching in general and normal universities.

  17. Factors Affecting Construction of Science Discourse in the Context of an Extracurricular Science and Technology Project

    ERIC Educational Resources Information Center

    Webb, Horace P.

    2009-01-01

    Doing and learning science are social activities that require certain language, activities, and values. Both constitute what Gee (2005) calls Discourses. The language of learning science varies with the learning context (Lemke, 2001,1990). "Science for All Americans" (AAAS, 1990) and "Inquiry and the National Science Education…

  18. Professional Development in a Reform Context: Understanding the Design and Enactment of Learning Experiences Created by Teacher Leaders for Science Educators

    NASA Astrophysics Data System (ADS)

    Shafer, Laura

    Teacher in-service learning about education reforms like NGSS often begin with professional development (PD) as a foundational component (Supovitz & Turner, 2000). Teacher Leaders, who are early implementers of education reform, are positioned to play a contributing role to the design of PD. As early implementers of reforms, Teacher Leaders are responsible for interpreting the purposes of reform, enacting reforms with fidelity to meet those intended goals, and are positioned to share their expertise with others. However, Teacher Leader knowledge is rarely accessed as a resource for the design of professional development programs. This study is unique in that I analyze the knowledge Teacher Leaders, who are positioned as developers of PD, bring to the design of PD around science education reform. I use the extended interconnected model of professional growth (Clarke & Hollingsworth, 2002; Coenders & Terlouw, 2015) to analyze the knowledge pathways Teacher Leaders' access as PD developers. I found that Teacher Leaders accessed knowledge pathways that cycled through their personal domain, domain of practice and domain of consequence. Additionally the findings indicated when Teacher Leaders did not have access to these knowledge domains they were unwilling to continue with PD design. These findings point to how Teacher Leaders prioritize their classroom experience to ground PD design and use their perceptions of student learning outcomes as an indicator of the success of the reform. Because professional development (PD) is viewed as an important resource for influencing teachers' knowledge and beliefs around the implementation of education reform efforts (Garet, et al., 2001; Suppovitz & Turner, 2000), I offer that Teacher Leaders, who are early implementers of reform measures, can contribute to the professional development system. The second part of this dissertation documents the instantiation of the knowledge of Teacher Leaders, who are positioned as designers and facilitators of PD. I examine the extent to which Teacher Leader knowledge is instantiated into specific resources and tasks during PD specifically for the Next Generation Science Standards (NGSS). The findings indicate that Teacher Leaders' knowledge is instantiated in tasks that promote and facilitate alignment of Teacher Leader goals for NGSS science practices-based instruction, which are framed around student learning outcomes. I offer a number of ways in which these findings can help educators and PD developers to better structure activities that present an alternative vision for science education that also provides the needed resources to shape how classroom tasks are designed and managed in ways that attend to and build on the practical knowledge of Teacher Leaders. The third part of this dissertation addresses the role Teacher Leaders play in this reform context with respect to their contributions to the professional development system. Based on the analyses of the Teacher Leaders in this study, I claim Teacher Leaders are essential contributors to the professional development system that extends beyond their typical role of participant. I argue that Teacher Leaders bring special expertise to the role of designers and facilitators of PD programs, and to the role of ambassadors for professional learning communities in a reform context. Because Teacher Leaders have a broader influence on the professional development system as pictured here, the Teacher Leaders in this study represent an essential piece of the reform puzzle.

  19. Learning Science beyond the Classroom.

    ERIC Educational Resources Information Center

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  20. Taking Science to School: Learning and Teaching Science in Grades K-8

    ERIC Educational Resources Information Center

    Duschl, Richard A., Ed.; Schweingruber, Heidi A., Ed.; Shouse, Andrew W., Ed.

    2007-01-01

    What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, "Taking Science to School" provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of…

  1. From a Sense of Stereotypically Foreign to Belonging in a Science Community: Ways of Experiential Descriptions about High School Students' Science Internship

    ERIC Educational Resources Information Center

    Hsu, Pei-Ling; Roth, Wolff-Michael

    2010-01-01

    Science educators often suggest that students should learn science in ways and settings that bear family resemblance with "the real thing." Internship in science laboratories constitutes one such way in which students may learn science and learn about science. However, very little is known about "how" participants experience a…

  2. Family Learning: The Missing Exemplar

    ERIC Educational Resources Information Center

    Dentzau, Michael W.

    2013-01-01

    As a supporter of informal and alternative learning environments for science learning I am pleased to add to the discussion generated by Adriana Briseno-Garzon's article, "More than science: family learning in a Mexican science museum". I am keenly aware of the value of active family involvement in education in general, and science education in…

  3. Adolescents' Declining Motivation to Learn Science: Inevitable or Not?

    ERIC Educational Resources Information Center

    Vedder-Weiss, Dana; Fortus, David

    2011-01-01

    There is a growing awareness that science education should center not just on knowledge acquisition but developing the foundation for lifelong learning. However, for intentional learning of science to occur in school, out of school, and after school, there needs to be a motivation to learn science. Prior research had shown that students'…

  4. Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students

    ERIC Educational Resources Information Center

    Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten

    2014-01-01

    The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…

  5. The Influence of Extracurricular Activities on Middle School Students' Science Learning in China

    ERIC Educational Resources Information Center

    Zhang, Danhui; Tang, Xing

    2017-01-01

    Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science…

  6. Adult learners in a novel environment use prestige-biased social learning.

    PubMed

    Atkisson, Curtis; O'Brien, Michael J; Mesoudi, Alex

    2012-08-13

    Social learning (learning from others) is evolutionarily adaptive under a wide range of conditions and is a long-standing area of interest across the social and biological sciences. One social-learning mechanism derived from cultural evolutionary theory is prestige bias, which allows a learner in a novel environment to quickly and inexpensively gather information as to the potentially best teachers, thus maximizing his or her chances of acquiring adaptive behavior. Learners provide deference to high-status individuals in order to ingratiate themselves with, and gain extended exposure to, that individual. We examined prestige-biased social transmission in a laboratory experiment in which participants designed arrowheads and attempted to maximize hunting success, measured in caloric return. Our main findings are that (1) participants preferentially learned from prestigious models (defined as those models at whom others spent longer times looking), and (2) prestige information and success-related information were used to the same degree, even though the former was less useful in this experiment than the latter. We also found that (3) participants were most likely to use social learning over individual (asocial) learning when they were performing poorly, in line with previous experiments, and (4) prestige information was not used more often following environmental shifts, contrary to predictions.  These results support previous discussions of the key role that prestige-biased transmission plays in social learning.

  7. Everyday objects of learning about health and healing and implications for science education

    NASA Astrophysics Data System (ADS)

    Gitari, Wanja

    2006-02-01

    The role of science education in rural development is of great interest to science educators. In this study I investigated how residents of rural Kirumi, Kenya, approach health and healing, through discussions and semistructured and in-depth interviews with 150 residents, 3 local herbalists, and 2 medical researchers over a period of 6 months. I constructed objects of learning by looking for similarities and differences within interpretive themes. Objects of learning found comprise four types of personal learning tools, three types of relational learning tools, three genres of moral obligation, and five genres of knowledge guarding. Findings show that rural people use (among other learning tools) inner sensing to engage thought processes that lead to health and healing knowledge. The sociocultural context is also an important component in learning. Inner sensing and residents' sociocultural context are not presently emphasized in Kenyan science teaching. I discuss the potential use of rural objects of learning in school science, with specific reference to a health topic in the Kenyan science curriculum. In addition, the findings add to the literature in the Science, Technology, Society, and Environment (STSE) approach to science education, and cross-cultural and global science education.

  8. Science Learning Outcomes in Alignment with Learning Environment Preferences

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Hsiao, Chien-Hua; Chang, Yueh-Hsia

    2011-01-01

    This study investigated students' learning environment preferences and compared the relative effectiveness of instructional approaches on students' learning outcomes in achievement and attitude among 10th grade earth science classes in Taiwan. Data collection instruments include the Earth Science Classroom Learning Environment Inventory and Earth…

  9. Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area

    NASA Astrophysics Data System (ADS)

    Chamnanwong, Pornpaka; Thathong, Kongsak

    2018-01-01

    In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.

  10. A Program for At-Risk High School Students Informed by Evolutionary Science

    PubMed Central

    Wilson, David Sloan; Kauffman, Richard A.; Purdy, Miriam S.

    2011-01-01

    Improving the academic performance of at-risk high school students has proven difficult, often calling for an extended day, extended school year, and other expensive measures. Here we report the results of a program for at-risk 9th and 10th graders in Binghamton, New York, called the Regents Academy that takes place during the normal school day and year. The design of the program is informed by the evolutionary dynamics of cooperation and learning, in general and for our species as a unique product of biocultural evolution. Not only did the Regents Academy students outperform their comparison group in a randomized control design, but they performed on a par with the average high school student in Binghamton on state-mandated exams. All students can benefit from the social environment provided for at-risk students at the Regents Academy, which is within the reach of most public school districts. PMID:22114703

  11. Learning Orthographic Structure With Sequential Generative Neural Networks.

    PubMed

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  12. The Science of Learning. 2nd Edition

    ERIC Educational Resources Information Center

    Pear, Joseph J.

    2016-01-01

    For over a century and a quarter, the science of learning has expanded at an increasing rate and has achieved the status of a mature science. It has developed powerful methodologies and applications. The rise of this science has been so swift that other learning texts often overlook the fact that, like other mature sciences, the science of…

  13. Cultivating Attitudes and Trellising Learning: A Permaculture Approach to Science and Sustainability Education

    ERIC Educational Resources Information Center

    Lebo, Nelson; Eames, Chris

    2015-01-01

    This article reports on an inquiry that used permaculture design thinking to create a science and sustainability education intervention for a secondary science class. The aims were to cultivate student attitudes towards science, towards learning science in school, and towards the environment, and to trellis learning of science and sustainability.…

  14. Mixed-Handedness Advantages in Episodic Memory Obtained under Conditions of Intentional Learning Extend to Incidental Learning

    ERIC Educational Resources Information Center

    Christman, Stephen D.; Butler, Michael

    2011-01-01

    The existence of handedness differences in the retrieval of episodic memories is well-documented, but virtually all have been obtained under conditions of intentional learning. Two experiments are reported that extend the presence of such handedness differences to memory retrieval under conditions of incidental learning. Experiment 1 used Craik…

  15. Taking Stock: Existing Resources for Assessing a New Vision of Science Learning

    ERIC Educational Resources Information Center

    Alonzo, Alicia C.; Ke, Li

    2016-01-01

    A new vision of science learning described in the "Next Generation Science Standards"--particularly the science and engineering practices and their integration with content--pose significant challenges for large-scale assessment. This article explores what might be learned from advances in large-scale science assessment and…

  16. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    ERIC Educational Resources Information Center

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-01-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the "Next Generation Science Standards," prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning…

  17. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    ERIC Educational Resources Information Center

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  18. Framing discourse for optimal learning in science and mathematics

    NASA Astrophysics Data System (ADS)

    Megowan, Mary Colleen

    2007-12-01

    This study explored the collaborative thinking and learning that occurred in physics and mathematics classes where teachers practiced Modeling Instruction. Four different classes were videotaped---a middle school mathematics resource class, a 9th grade physical science class, a high school honors physics class and a community college engineering physics course. Videotapes and transcripts were analyzed to discover connections between the conceptual structures and spatial representations that shaped students' conversations about space and time. Along the way, it became apparent that students' and teachers' cultural models of schooling were a significant influence, sometimes positive and sometimes negative, in students' engagement and metaphor selection. A growing number of researchers are exploring the importance of semiotics in physics and mathematics, but typically their unit of analysis is the individual student. To examine the distributed cognition that occurred in this unique learning setting, not just among students but also in connection with their tools, artifacts and representations, I extended the unit of analysis for my research to include small groups and their collaborative work with whiteboarded representations of contextual problems and laboratory exercises. My data revealed a number of interesting insights. Students who constructed spatial representations and used them to assist their reasoning, were more apt to demonstrate a coherent grasp of the elements, operations, relations and rules that govern the model under investigation than those who relied on propositional algebraic representations of the model. In classrooms where teachers permitted and encouraged students to take and hold the floor during whole-group discussions, students learned to probe one another more deeply and conceptually. Shared representations (whether spatial or propositional/algebraic), such as those that naturally occurred when students worked together in small groups to prepare collaborative displays of their thinking, were more apt to stimulate conceptually oriented conversations among students than individual work, i.e., what each student had written on his or her worksheet. This research was supported, in part, by grants from the National Science Foundation (#0337795 and #0312038). Any opinions, findings, conclusions or recommendations expressed herein are those of the author and do not necessarily reflect the views of the National Science Foundation.

  19. The Acadia Learning Project: Lessons Learned from Engaging High School Teachers and Students in Citizen Science Supporting National Parks

    NASA Astrophysics Data System (ADS)

    Nelson, S. J.; Zoellick, B.; Davis, Y.; Lindsey, E.

    2009-12-01

    In 2007 the authors initiated a citizen science research project, supported with funding from the Maine Department of Education, designed to extend research at Acadia National Park to a broader geographic area while also providing high school students and teachers with an opportunity to engage in authentic research in cooperation with working scientists. The scientific focus of the work has been on providing information about the mercury burden of organisms at different trophic levels across different geographic and environmental settings. The pedagogical focus has been on providing students with immersion in a substantial, field-based project, including background research, hypothesis formulation, data collection and analysis, and presentation of research findings. Starting work with 6 teachers in two schools the first year, the project expanded to involve more than 20 teachers and 350 students in a dozen schools in its second year. In coming years, with support from NOAA and cooperation from other National Parks in the region, the project will expand to include work in other states along the coast of the Gulf of Maine. In this paper the authors describe evolution in the use of the Internet over the first two years of the project, a sharpened focus on professional development for teachers, survey results regarding student views of the nature of science, the importance of focusing on rigorous, useful data collection from an educational perspective, success in establishing that samples collected by students are useful in research, the disjuncture between scientific and pedagogical outcomes, an assessment of the value of student poster presentations, and lessons learned about preparation and use of curriculum support materials. The authors also describe future directions, which include an increased focus on professional development and student work with graphs, a narrower focus in sample collection, and increased use of the Internet to provide participating teachers and students with a picture of how their fieldwork contributes to overall objectives. The authors describe the expected course of research supported by this citizen science project and the work, now underway, on developing learning progressions to support such research.

  20. Effective Models for Scientists Engaging in Meaningful Education and Outreach

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Gurule, Isaiah; InsightSTEM Teacher-Scientist-Communicator-Learner Team

    2017-01-01

    We present a central paradigm, extending the model of "Teacher-Scientist" partnerships towards a new philosophy of "Scientist-Instructor-Learner-Communicator" Partnerships. In this paradigm modes of, and expertise in, communication, and the learners themselves, are held is as high status as the experts and teachers in the learning setting.We present three distinctive models that rest on this paradigm in different educational settings. First a model in which scientists and teachers work together with a communications-related specialist to design and develop new science exploration tools for the classroom, and gather feedback from learners. Secondly, we present a model which involves an ongoing joint professional development program helping scientists and teachers to be co-communicators of knowledge exploration to their specific audience of learners. And thirdly a model in which scientists remotely support classroom research based on online data, while the teachers and their students learn to become effective communicators of their genuine scientific results.This work was funded in part by the American Association for the Advancement of Science, and by NASA awards NNX16AC68A and NNX16AJ21G. All opinions are those of the authors.

  1. Effective Models for Scientists Engaging in Meaningful Education and Outreach

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; InsightSTEM SILC Partnership Team

    2016-10-01

    We present a central paradigm, extending the model of "Teacher-Scientist" partnerships towards a new philosophy of "Scientist-Instructor-Learner-Communicator" Partnerships. In this paradigm modes of, and expertise in, communication, and the learners themselves, are held is as high status as the experts and teachers in the learning setting.We present three distinctive models that rest on this paradigm in different educational settings. First a model in which scientists and teachers work together with a communications-related specialist to design and develop new science exploration tools for the classroom, and gather feedback from learners. Secondly, we present a model which involves an ongoing joint professional development program helping scientists and teachers to be co-communicators of knowledge exploration to their specific audience of learners. And thirdly a model in which scientists remotely support classroom research based on online data, while the teachers and their students learn to become effective communicators of their genuine scientific results.This work was funded in part by the American Association for the Advancement of Science, and by NASA awards NNX16AC68A and NNX16AJ21G. All opinions are those of the authors.

  2. Uncovering Black/African American and Latina/o students' motivation to learn science: Affordances to science identity development

    NASA Astrophysics Data System (ADS)

    Mahfood, Denise Marcia

    The following dissertation reports on a qualitative exploration that serves two main goals: (1) to qualitatively define and highlight science motivation development of Black/African American and Latina/o students as they learn science in middle school, high school, and in college and (2) to reveal through personal narratives how successful entry and persistence in science by this particular group is linked to the development of their science identities. The targeted population for this study is undergraduate students of color in science fields at a college or university. The theoretical frameworks for this study are constructivist theory, motivation theory, critical theory, and identity theories. The methodological approach is narrative which includes students' science learning experiences throughout the course of their academic lives. I use The Science Motivation Questionnaire II to obtain baseline data to quantitatively assess for motivation to learn science. Data from semi-structured interviews from selected participants were collected, coded, and configured into a story, and emergent themes reveal the important role of science learning in both informal and formal settings, but especially in informal settings that contribute to better understandings of science and the development of science identities for these undergraduate students of color. The findings have implications for science teaching in schools and teacher professional development in science learning.

  3. An exploration of equitable science teaching practices for students with learning disabilities

    NASA Astrophysics Data System (ADS)

    Morales, Marlene

    In this study, a mixed methods approach was used to gather descriptive exploratory information regarding the teaching of science to middle grades students with learning disabilities within a general education classroom. The purpose of this study was to examine teachers' beliefs and their practices concerning providing equitable opportunities for students with learning disabilities in a general education science classroom. Equitable science teaching practices take into account each student's differences and uses those differences to inform instructional decisions and tailor teaching practices based on the student's individualized learning needs. Students with learning disabilities are similar to their non-disabled peers; however, they need some differentiation in instruction to perform to their highest potential achievement levels (Finson, Ormsbee, & Jensen, 2011). In the quantitative phase, the purpose of the study was to identify patterns in the beliefs of middle grades science teachers about the inclusion of students with learning disabilities in the general education classroom. In the qualitative phase, the purpose of the study was to present examples of instruction in the classrooms of science education reform-oriented middle grades science teachers. The quantitative phase of the study collected data from 274 sixth through eighth grade teachers in the State of Florida during the 2007--2008 school year using The Teaching Science to Students with Learning Disabilities Inventory. Overall, the quantitative findings revealed that middle grades science teachers held positive beliefs about the inclusion of students with learning disabilities in the general education science classroom. The qualitative phase collected data from multiple sources (interviews, classroom observations, and artifacts) to develop two case studies of reform-oriented middle grades science teachers who were expected to provide equitable science teaching practices. Based on their responses to The Teaching Science to Students with Learning Disabilities Inventory, the case study teachers demonstrated characteristics of successful teachers of diverse learners developed by Lynch (2000). Overall, the qualitative findings revealed that the case study teachers were unsure how to provide equitable science teaching practices to all students, particularly to students with learning disabilities. They provided students with a variety of learning experiences that entailed high expectations for all; however, these experiences were similar for all students. Had the teachers fully implemented equitable science teaching practices, students would have had multiple options for taking in the information and making sense of it in each lesson. Teaching that includes using a variety of validated practices that take into account students' individualized learning needs can promote aspects of equitable science teaching practices. Finally, this study provides implications for teacher education programs and professional development programs. As teachers implement science education reform efforts related to equitable science teaching practices, both teacher education programs and professional development programs should include opportunities for teachers to reflect on their beliefs about how students with learning disabilities learn and provide them with a variety of validated teaching practices that will assist them in teaching students with learning disabilities in the general education classroom while implementing science reform efforts.

  4. Learning science as a potential new source of understanding and improvement for continuing education and continuing professional development.

    PubMed

    Van Hoof, Thomas J; Doyle, Terrence J

    2018-01-15

    Learning science is an emerging interdisciplinary field that offers educators key insights about what happens in the brain when learning occurs. In addition to explanations about the learning process, which includes memory and involves different parts of the brain, learning science offers effective strategies to inform the planning and implementation of activities and programs in continuing education and continuing professional development. This article provides a brief description of learning, including the three key steps of encoding, consolidation and retrieval. The article also introduces four major learning-science strategies, known as distributed learning, retrieval practice, interleaving, and elaboration, which share the importance of considerable practice. Finally, the article describes how learning science aligns with the general findings from the most recent synthesis of systematic reviews about the effectiveness of continuing medical education.

  5. Informal Science Learning through Inquiry: Effects on Preschool Students' Achievement in Early Science Learning

    ERIC Educational Resources Information Center

    Samsudin, Mohd Ali; Haniza, Noor Hasyimah; Ismail, Juliah; Abd-Talib, Corrienna

    2015-01-01

    This study was undertaken to explore the effects of informal science learning outside the classroom on preschool students' achievement in the Early Science learning topic (plant-related topics that presented concepts about tree leaves, height and roots) using an inquiry method. A sample of 64 preschool students was selected using purposive…

  6. Predicting Turkish Preservice Elementary Teachers' Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

    ERIC Educational Resources Information Center

    Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami

    2016-01-01

    The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…

  7. A Case Study for Comparing the Effectiveness of a Computer Simulation and a Hands-on Activity on Learning Electric Circuits

    ERIC Educational Resources Information Center

    Ekmekci, Adem; Gulacar, Ozcan

    2015-01-01

    Science education reform emphasizes innovative and constructivist views of science teaching and learning that promotes active learning environments, dynamic instructions, and authentic science experiments. Technology-based and hands-on instructional designs are among innovative science teaching and learning methods. Research shows that these two…

  8. A Rights-Based Approach to Science Literacy Using Local Languages: Contextualising Inquiry-Based Learning in Africa

    ERIC Educational Resources Information Center

    Babaci-Wilhite, Zehlia

    2017-01-01

    This article addresses the importance of teaching and learning science in local languages. The author argues that acknowledging local knowledge and using local languages in science education while emphasising inquiry-based learning improve teaching and learning science. She frames her arguments with the theory of inquiry, which draws on…

  9. Redesigning Problem-Based Learning in the Knowledge Creation Paradigm for School Science Learning

    ERIC Educational Resources Information Center

    Yeo, Jennifer; Tan, Seng Chee

    2014-01-01

    The introduction of problem-based learning into K-12 science classrooms faces the challenge of achieving the dual goal of learning science content and developing problem-solving skills. To overcome this content-process tension in science classrooms, we employed the knowledge-creation approach as a boundary object between the two seemingly…

  10. Participation in Informal Science Learning Experiences: The Rich Get Richer?

    ERIC Educational Resources Information Center

    DeWitt, Jennifer; Archer, Louise

    2017-01-01

    Informal science learning (ISL) experiences have been found to provide valuable opportunities to engage with and learn about science and, as such, form a key part of the STEM learning ecosystem. However, concerns remain around issues of equity and access. The Enterprising Science study builds upon previous research in this area and uses the…

  11. College Science Students' Perception Gaps in Preferred-Actual Learning Environment in a Reformed Introductory Earth Science Course in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yeh; Chang, Yueh-Hsia

    2010-01-01

    This study used an instrument to examine undergraduate students' preferred and actual learning environment perceptions in an introductory earth science course. The results show that science students expect to learn in a learning environment combining teacher-centred and student-centred approaches. However, an expectation incongruence was found in…

  12. Promoting Shifts in Preservice Science Teachers' Thinking through Teaching and Action Research in Informal Science Settings

    NASA Astrophysics Data System (ADS)

    Wallace, Carolyn S.

    2013-08-01

    The purpose of this study was to investigate the influence of an integrated experiential learning and action research project on preservice science teachers' developing ideas about science teaching, learning, and action research itself. The qualitative, interpretive study examined the action research of 10 master's degree students who were involved in service learning with children in informal education settings. Results indicated that all of the participants enhanced their knowledge of children as diverse learners and the importance of prior knowledge in science learning. In-depth case studies for three of the participants indicated that two developed deeper understandings of science learners and learning. However, one participant was resistant to learning and gained more limited understandings.

  13. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    NASA Astrophysics Data System (ADS)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  14. Integrating Service-Learning Pedagogy for Preservice Elementary Teachers' Science Identity Development

    NASA Astrophysics Data System (ADS)

    Wilson, Rachel E.; Bradbury, Leslie U.; McGlasson, Martha A.

    2015-04-01

    The purpose of this article is to explore how preservice elementary teachers (PSETs) interpreted their service-learning experiences within a pre-methods environmentally focused course and how their interpretations shaped their science teaching identities. Along a continuum of service-learning experiences were events that emphasized science learning, that focused on science teaching, and that were transitional, with elements of both science learning and science teaching. These various service-learning experiences were designed to be "boundary experiences" for professional identity development (Geijsel & Meijers in Educational Studies, 3(4), 419-430, 2005), providing opportunities for PSETs to reflect on meanings in cultural contexts and how they are related to their own personal meanings. We analyzed written reflections and end-of-course oral reflection interviews from 42 PSETs on their various service-learning experiences. PSETs discussed themes related to the meanings they made of the service-learning experiences: (a) experiencing science in relation to their lives as humans and future teachers, (b) interacting with elementary students and other PSETs, and (c) making an impact in the physical environment and in the community. The connections that PSETs were making between the discursive spaces (service-learning contexts) and their own meaning-making of these experiences (as connected to their own interests in relation to their future professions and daily lives) shows evidence of the potential that various types of science service-learning experiences have for PSETs in developing inbound science teaching identity trajectories (Wenger in Communities of practice: Learning, meaning, and identity. Cambridge: Cambridge University Press, 1998). The findings of this study point to positive outcomes for PSETs when they participate in structured service-learning experiences along a learning to teaching continuum (246).

  15. Designing Science Learning in the First Years of Schooling. An Intervention Study with Sequenced Learning Material on the Topic of "Floating and Sinking"

    ERIC Educational Resources Information Center

    Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca

    2014-01-01

    Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus…

  16. Science Learning Cycle Method to Enhance the Conceptual Understanding and the Learning Independence on Physics Learning

    ERIC Educational Resources Information Center

    Sulisworo, Dwi; Sutadi, Novitasari

    2017-01-01

    There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…

  17. An Analysis of the Professional Learning of Science Teachers Using the Metaphor of Learning by Expanding

    ERIC Educational Resources Information Center

    Goodnough, Karen; Murphy, Elizabeth

    2017-01-01

    This study reports on the professional learning of two teachers of science who were learning to engage their grade four students in meaningful, hands-on learning. Teachers' learning took place in the context of a 10-month university-based action research program designed to help improve the practice of science, technology, engineering and…

  18. Examining Classroom Science Practice Communities: How Teachers and Students Negotiate Epistemic Agency and Learn Science-as-Practice

    ERIC Educational Resources Information Center

    Stroupe, David

    2014-01-01

    The Next Generation Science Standards and other reforms call for students to learn science-as-practice, which I argue requires students to become epistemic agents--shaping the knowledge and practice of a science community. I examined a framework for teaching--ambitious instruction--that scaffolds students' learning of science-as-practice as…

  19. Free-Choice Science Education: How We Learn Science outside of School. Ways of Knowing in Science and Mathematics Series.

    ERIC Educational Resources Information Center

    Falk, John H., Ed.

    This book describes the nature and extent of science learning in America with particular attention to the innumerable sources of science education existing outside the formal education system. Examples are provided from research and practice on how to better understand, facilitate, and communicate about free-choice science learning including…

  20. Utilizing Shulman's Table of Learning to Understand Learning in Professional Health Science Programs

    ERIC Educational Resources Information Center

    Mortier, Teresa; Yatczak, Jayne

    2016-01-01

    Understanding student learning in health science professional programs is both timely and relevant and is the focus of this article. "The Table of Learning" by Lee Shulman (2002) provided a tool for an interdisciplinary reflection surrounding student learning in clinical laboratory science and occupational therapy. Utilizing the taxonomy…

  1. How Teaching Science Using Project-Based Learning Strategies Affects the Classroom Learning Environment

    ERIC Educational Resources Information Center

    Hugerat, Muhamad

    2016-01-01

    This study involved 458 ninth-grade students from two different Arab middle schools in Israel. Half of the students learned science using project-based learning strategies and the other half learned using traditional methods (non-project-based). The classes were heterogeneous regarding their achievements in the sciences. The adapted questionnaire…

  2. 77 FR 3009 - Notice of Intent To Extend an Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... proposed data collection projects, the National Science Foundation (NSF) will publish periodic summaries of... NATIONAL SCIENCE FOUNDATION Notice of Intent To Extend an Information Collection AGENCY: National Science Foundation. ACTION: Notice and request for comments. SUMMARY: In compliance with the requirement...

  3. Learning style preferences of Australian health science students.

    PubMed

    Zoghi, Maryam; Brown, Ted; Williams, Brett; Roller, Louis; Jaberzadeh, Shapour; Palermo, Claire; McKenna, Lisa; Wright, Caroline; Baird, Marilyn; Schneider-Kolsky, Michal; Hewitt, Lesley; Sim, Jenny; Holt, Tangerine-Ann

    2010-01-01

    It has been identified that health science student groups may have distinctive learning needs. By university educators' and professional fieldwork supervisors' being aware of the unique learning style preferences of health science students, they have the capacity to adjust their teaching approaches to best fit with their students' learning preferences. The purpose of this study was to investigate the learning style preferences of a group of Australian health science students enrolled in 10 different disciplines. The Kolb Learning Style Inventory was distributed to 2,885 students enrolled in dietetics and nutrition, midwifery, nursing, occupational therapy, paramedics, pharmacy, physiotherapy, radiation therapy, radiography, and social work at one Australian university. A total of 752 usable survey forms were returned (response rate 26%). The results indicated the converger learning style to be most frequently preferred by health science students and that the diverger and accommodator learning styles were the least preferred. It is recommended that educators take learning style preferences of health science students into consideration when planning, implementing, and evaluating teaching activities, such as including more problem-solving activities that fit within the converger learning style.

  4. The Role of Research on Science Teaching and Learning

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  5. Proving or Improving Science Learning? Understanding High School Students' Conceptions of Science Assessment in Taiwan

    ERIC Educational Resources Information Center

    Lee, Min-Hsien; Lin, Tzung-Jin; Tsai, Chin-Chung

    2013-01-01

    Classroom assessment is a critical aspect of teaching and learning. In this paper, Taiwanese high school students' conceptions of science assessment and the relationship between their conceptions of science assessment and of science learning were investigated. The study used both qualitative and quantitative methods. First, 60 students were…

  6. A study of students' motivation using the augmented reality science textbook

    NASA Astrophysics Data System (ADS)

    Gopalan, Valarmathie; Zulkifli, Abdul Nasir; Bakar, Juliana Aida Abu

    2016-08-01

    Science plays a major role in assisting Malaysia to achieve the developed nation status by 2020. However, over a few decades, Malaysia is facing a downward trend in the number of students pursuing careers and higher education in science related fields. Since school is the first platform where students learn science, a new learning approach needs to be introduced to motivate them towards science learning. The aim of this study is to determine whether the intervention of the enhanced science textbook using augmented reality contributes to the learning process of lower secondary school students in science. The study was carried out among a sample of 70 lower secondary school students. Pearson Correlation and Regression analyses were used to determine the effects of ease of use, engaging, enjoyment and fun on students' motivation in using the augmented reality science textbook for science learning. The results provide empirical support for the positive and statistically significant relationship between engaging, enjoyment and fun and students' motivation for science learning. However, Ease of use is not significant but positively correlated to Motivation.

  7. Young children's emotional practices while engaged in long-term science investigation

    NASA Astrophysics Data System (ADS)

    Zembylas, Michalinos

    2004-09-01

    In this article, the role of young children's emotional practices in science learning is described and analyzed. From the standpoint of performativity theory and social-constructionist theory of emotion, it is argued that emotion is performative and the expression of emotion in the classroom has its basis in social relationships. Arising from these relationships is the emotional culture of the classroom that plays a key role in the development of classroom emotional rules as well as the legitimation of science knowledge. These relationships are reflected in two levels of classroom dialogue: talking about and doing science, and expressing emotions about science and its learning. The dynamics of the negotiations of classroom emotional rules and science knowledge legitimation may dispose students to act positively or negatively toward science learning. This analysis is illustrated in the experiences of a teacher and her students during a 3-year ethnographic study of emotions in science teaching and learning. This research suggests the importance of the interrelationship between emotions and science learning and the notion that emotional practices can be powerful in nurturing effective and exciting science learning environments.

  8. Precipitation Education: Connecting Students and Teachers with the Science of NASA's GPM Mission

    NASA Astrophysics Data System (ADS)

    Weaver, K. L. K.

    2015-12-01

    The Global Precipitation Measurement (GPM) Mission education and communication team is involved in variety of efforts to share the science of GPM via hands-on activities for formal and informal audiences and engaging students in authentic citizen science data collection, as well as connecting students and teachers with scientists and other subject matter experts. This presentation will discuss the various forms of those efforts in relation to best practices as well as lessons learned and evaluation data. Examples include: GPM partnered with the Global Observations to Benefit the Environment (GLOBE) Program to conduct a student precipitation field campaign in early 2015. Students from around the world collected precipitation data and entered it into the GLOBE database, then were invited to develop scientific questions to be answered using ground observations and satellite data available from NASA. Webinars and blogs by scientists and educators throughout the campaign extended students' and teachers' knowledge of ground validation, data analysis, and applications of precipitation data. To prepare teachers to implement the new Next Generation Science Standards, the NASA Goddard Earth science education and outreach group, led by GPM Education Specialists, held the inaugural Summer Watershed Institute in July 2015 for 30 Maryland teachers of 3rd-5th grades. Participants in the week-long in-person workshop met with scientists and engineers at Goddard, learned about NASA Earth science missions, and were trained in seven protocols of the GLOBE program. Teachers worked collaboratively to make connections to their own curricula and plan for how to implement GLOBE with their students. Adding the arts to STEM, GPM is producing a comic book story featuring the winners of an anime character contest held by the mission during 2013. Readers learn content related to the science and technology of the mission as well as applications of the data. The choice of anime/manga as the style for the comic book reflects the international and cross-cultural aspect of the GPM as a joint mission between NASA and the Japan Aerospace Exploration Agency. A limited run print version of the initial comic book is planned for Fall 2015, with an online version and supplemental resources such as a teacher guide available on the GPM education website.

  9. Posters that foster cognition in the classroom: Multimedia theory applied to educational posters

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; O'Brien, T.; Taber, J.

    2011-12-01

    Despite a decline in popularity within U.S. society, posters continue to hold a prominent place within middle and high school science classrooms. Teachers' demand for posters is largely satisfied by governmental and non-profit science organizations' education and public outreach (EPO) efforts. Here, posters are produced and disseminated as both tangible products resulting from the organization's research, and instruments to communicate scientific content to teachers and students. This study investigates the taken-for-granted good of posters through a survey/interview of science teachers who received sample posters at professional development workshops. The design of sample EPO posters were also examined for their implied, underlying assumptions about learning and their alignment to the setting of the classroom, which is unique for the genera of posters. Based on this analysis we found that rates of poster use were as low as 43% and that many EPO posters fail to achieve their potential as an instructional instrument. As a result, many EPO posters are relegated to merely a collection of pretty pictures on the wall. Leveraging existing research in both cognition and the cognitive theory of Multimedia learning, we propose a design framework for educational posters that is likely to activate students' attention, catalyze cognitive processing, provide a framework to guide students' construction of knowledge, and connect to extended learning through live or web-based exploration of phenomenon. While work to examine the implications of this framework is still on-going, we present a prototype poster and supporting website developed using the framework as a guide, as well as results from focus group discussions with classroom practitioners regarding the prototype poster and its potential in the classroom.

  10. Engaging 5th/6th Graders in Representations of Change Over Time in the Context of Adaptations to Climate Change in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Peake, L.; Young Morse, R.

    2017-12-01

    Since 2005, the Gulf of Maine Research Institute has brought 70% of Maine's 5th/6th grade cohort annually to our marine research lab for a 2.5-hour exploration of ecosystem complexity. Using a digital platform, tools of science, and live marine species, students consider the interconnections among key Gulf of Maine species while experiencing the process of authentic marine research. With funding from NASA, we are renovating the program's learning content, underlying technology, and physical interfaces to leverage NASA data sets. The new experience will emphasize development of students' data skills as they investigate the impacts of climate change in the Gulf of Maine. To do this, students will explore representations of rising ocean temperatures and connect that to representations of changes in the populations of key species like lobster and black sea bass. Past experience suggests the abstraction and synthesis required to make meaning from data visualizations is extremely challenging for this age student. We will report on an early round of informal testing with 250+ students to understand their ability to extract meaning from geospatial and graphical representations of change over time. We will also report on experiments that will be conducted in Fall 2017 to understand the kinds of informal learning experiences, and the sequences of data representations, that best support growth in students' ability to interpret a range of representations. Finally, we will discuss the project's work to extend the learning experiences 1) back into the classroom, including through citizen science; and 2) out to regional science centers for adaptation to investigations of local climate impacts.

  11. Reducing Dropout Rates through Expanded Learning Opportunities. Issue Brief

    ERIC Educational Resources Information Center

    Harris, Laura; Princiotta, Daniel

    2009-01-01

    Expanded learning opportunities (ELOs), which include afterschool, summer learning, and extended day and extended year programs, can help states reduce dropout rates and increase graduation rates. Effective elementary, middle, and high school ELOs support academic rigor, boost student engagement, and provide students with supportive relationships.…

  12. The Relationships among Scientific Epistemic Beliefs, Conceptions of Learning Science, and Motivation of Learning Science: A Study of Taiwan High School Students

    ERIC Educational Resources Information Center

    Ho, Hsin-Ning Jessie; Liang, Jyh-Chong

    2015-01-01

    This study explores the relationships among Taiwanese high school students' scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling…

  13. Applying the Science of Learning: Evidence-Based Principles for the Design of Multimedia Instruction

    ERIC Educational Resources Information Center

    Mayer, Richard E.

    2008-01-01

    During the last 100 years, a major accomplishment of psychology has been the development of a science of learning aimed at understanding how people learn. In attempting to apply the science of learning, a central challenge of psychology and education is the development of a science of instruction aimed at understanding how to present material in…

  14. The Assessment of Taiwanese College Students' Conceptions of and Approaches to Learning Computer Science and Their Relationships

    ERIC Educational Resources Information Center

    Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung

    2015-01-01

    The aim of this study was to explore Taiwanese college students' conceptions of and approaches to learning computer science and then explore the relationships between the two. Two surveys, Conceptions of Learning Computer Science (COLCS) and Approaches to Learning Computer Science (ALCS), were administered to 421 college students majoring in…

  15. Influence of Career Motivation on Science Learning in Korean High-School Students

    ERIC Educational Resources Information Center

    Shin, Sein; Lee, Jun-Ki; Ha, Minsu

    2017-01-01

    Motivation to learn is an essential element in science learning. In this study, the role of career motivation in science learning was examined. In particular, first, a science motivation model that focused on career motivation was tested. Second, the role of career motivation as a predictor of STEM track choice was examined. Third, the effect of…

  16. Cross-Cultural Comparisons of University Students' Science Learning Self-Efficacy: Structural Relationships among Factors within Science Learning Self-Efficacy

    ERIC Educational Resources Information Center

    Wang, Ya-Ling; Liang, Jyh-Chong; Tsai, Chin-Chung

    2018-01-01

    Science learning self-efficacy could be regarded as a multi-factor belief which comprises different aspects such as cognitive skills, practical work, and everyday application. However, few studies have investigated the relationships among these factors that compose science learning self-efficacy. Also, culture may play an important role in…

  17. Research Trends in Science Education from 2008 to 2012: A systematic content analysis of publications in selected journals

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Chiang; Lin, Tzung-Jin; Tsai, Chin-Chung

    2014-05-01

    This paper presents the third study of research trends in science education. In this review, a total of 990 papers published in the International Journal of Science Education, the Journal of Research in Science Teaching, and Science Education from 2008 to 2012 were analyzed. The results indicate that in the recent five years (2008-2012), the top three research topics in the published papers were those regarding the context of students' learning, science teaching, and students' conceptual learning. The changes in the most popular research topics in the past 15 years also evidentially indicate shifts in the journals' preferences and researchers' interest. For example, in 2003-2007, context of students' learning replaced students' conceptual learning, which was the most published research topic from 1998 to 2002. The research topic of students' learning contexts continued to rank the first in 2008-2012. Moreover, there was an increasing trend of research papers regarding science teaching from 1998 to 2012. The analysis of highly cited papers revealed that research topics such as argumentation, inquiry-based learning, and scientific modeling were recently highlighted by science educators. In recent 15 years, productive researchers' publications also focused on the topics about context of students' learning, science teaching, and students' conceptual learning.

  18. The Effects of Prior-knowledge and Online Learning Approaches on Students' Inquiry and Argumentation Abilities

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Tsung; Lin, Yu-Ren; She, Hsiao-Ching; Huang, Kai-Yi

    2015-07-01

    This study investigated the effects of students' prior science knowledge and online learning approaches (social and individual) on their learning with regard to three topics: science concepts, inquiry, and argumentation. Two science teachers and 118 students from 4 eighth-grade science classes were invited to participate in this research. Students in each class were divided into three groups according to their level of prior science knowledge; they then took either our social- or individual-based online science learning program. The results show that students in the social online argumentation group performed better in argumentation and online argumentation learning. Qualitative analysis indicated that the students' social interactions benefited the co-construction of sound arguments and the accurate understanding of science concepts. In constructing arguments, students in the individual online argumentation group were limited to knowledge recall and self-reflection. High prior-knowledge students significantly outperformed low prior-knowledge students in all three aspects of science learning. However, the difference in inquiry and argumentation performance between low and high prior-knowledge students decreased with the progression of online learning topics.

  19. Assessing culturally sensitive factors in the learning environment of science classrooms

    NASA Astrophysics Data System (ADS)

    Fisher, Darrell L.; Waldrip, Bruce G.

    1997-03-01

    As schools are becoming increasingly diverse in their scope and clientele, any examination of the interaction of culturally sensitive factors of students' learning environments with learning science assumes critical importance. The purpose of this exploratory study was to develop an instrument to assess learning environment factors that are culturally sensitive, to provide initial validation information on the instrument and to examine associations between students' perceptions of their learning environments and their attitudes towards science and achievement of enquiry skills. A measure of these factors of science student's learning environment, namely the Cultural Learning Environment Questionnaire (CLEQ), was developed from past learning environment instruments and influenced by Hofstede's four dimensions of culture (Power Distance, Uncertainty Avoidance, Individualism, and Masculinity/Femininity). The reliability and discriminant validity for each scale were obtained and associations between learning environment, attitude to science and enquiry skills achievement were found.

  20. NASA’s Universe of Learning: Engaging Subject Matter Experts to Support Museum Alliance Science Briefings

    NASA Astrophysics Data System (ADS)

    Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this presentation, learn how you can help contribute to the NASA’s Universe of Learning and take part in Science Briefings.

  1. Understanding the science-learning environment: A genetically sensitive approach.

    PubMed

    Haworth, Claire M A; Davis, Oliver S P; Hanscombe, Ken B; Kovas, Yulia; Dale, Philip S; Plomin, Robert

    2013-02-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000 pairs of 14-year-old twins from the UK Twins Early Development Study reported on their experiences of the science-learning environment and were assessed for their performance in science using a web-based test of scientific enquiry. Multivariate twin analyses were used to investigate the genetic and environmental links between environment and outcome. The most surprising result was that the science-learning environment was almost as heritable (43%) as performance on the science test (50%), and showed negligible shared environmental influence (3%). Genetic links explained most (56%) of the association between learning environment and science outcome, indicating gene-environment correlation.

  2. Implementation literacy strategies on health technology theme Learning to enhance Indonesian Junior High School Student's Physics Literacy

    NASA Astrophysics Data System (ADS)

    Feranie, Selly; Efendi, Ridwan; Karim, Saeful; Sasmita, Dedi

    2016-08-01

    The PISA results for Indonesian Students are lowest among Asian countries in the past two successive results. Therefore various Innovations in science learning process and its effectiveness enhancing student's science literacy is needed to enrich middle school science teachers. Literacy strategies have been implemented on health technologies theme learning to enhance Indonesian Junior high school Student's Physics literacy in three different health technologies e.g. Lasik surgery that associated with application of Light and Optics concepts, Ultra Sonographer (USG) associated with application of Sound wave concepts and Work out with stationary bike and walking associated with application of motion concepts. Science learning process involves at least teacher instruction, student learning and a science curriculum. We design two main part of literacy strategies in each theme based learning. First part is Integrated Reading Writing Task (IRWT) is given to the students before learning process, the second part is scientific investigation learning process design packed in Problem Based Learning. The first part is to enhance student's science knowledge and reading comprehension and the second part is to enhance student's science competencies. We design a transformation from complexity of physics language to Middle school physics language and from an expensive and complex science investigation to a local material and simply hands on activities. In this paper, we provide briefly how literacy strategies proposed by previous works is redesigned and applied in classroom science learning. Data were analysed using t- test. The increasing value of mean scores in each learning design (with a significance level of p = 0.01) shows that the implementation of this literacy strategy revealed a significant increase in students’ physics literacy achievement. Addition analysis of Avarage normalized gain show that each learning design is in medium-g courses effectiveness category according to Hake's classification.

  3. Best practices for measuring students' attitudes toward learning science.

    PubMed

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students' learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students' attitudes influence their learning. Students' science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students' attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students' attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data.

  4. Best Practices for Measuring Students’ Attitudes toward Learning Science

    PubMed Central

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students’ learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students’ attitudes influence their learning. Students’ science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students’ attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students’ attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data. PMID:24297288

  5. Learning Activities That Combine Science Magic Activities with the 5E Instructional Model to Influence Secondary-School Students' Attitudes to Science

    ERIC Educational Resources Information Center

    Lin, Jang-Long; Cheng, Meng-Fei; Chang, Ying-Chi; Li, Hsiao-Wen; Chang, Jih-Yuan; Lin, Deng-Min

    2014-01-01

    The purpose of this study was to investigate how learning materials based on Science Magic activities affect student attitudes to science. A quasi-experimental design was conducted to explore the combination of Science Magic with the 5E Instructional Model to develop learning materials for teaching a science unit about friction. The participants…

  6. Universal Design for Learning and Elementary School Science: Exploring the Efficacy, Use, and Perceptions of a Web-Based Science Notebook

    ERIC Educational Resources Information Center

    Rappolt-Schlichtmann, Gabrielle; Daley, Samantha G.; Lim, Seoin; Lapinski, Scott; Robinson, Kristin H.; Johnson, Mindy

    2013-01-01

    Science notebooks can play a critical role in activity-based science learning, but the tasks of recording, organizing, analyzing, and interpreting data create barriers that impede science learning for many students. This study (a) assessed in a randomized controlled trial the potential for a web-based science notebook designed using the Universal…

  7. Teaching and Learning Science for Transformative, Aesthetic Experience

    NASA Astrophysics Data System (ADS)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  8. 78 FR 1884 - Notice of Intent To Extend an Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... NATIONAL SCIENCE FOUNDATION Notice of Intent To Extend an Information Collection AGENCY: National Science Foundation. ACTION: Notice and Request for Comments. SUMMARY: Under the Paperwork Reduction Act of... paperwork and respondent burden, the National Science Foundation (NSF) is inviting the general public or...

  9. Preferred-Actual Learning Environment "Spaces" and Earth Science Outcomes in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Hsiao, Chien-Hua; Barufaldi, James P.

    2006-01-01

    This study examines the possibilities of differential impacts on students' earth science learning outcomes between different preferred-actual learning environment spaces by using a newly developed ESCLEI (Earth Science Classroom Learning Environment Instrument). The instrument emphasizes three simultaneously important classroom components:…

  10. Timepiece: Extending and Enhancing Learning Time.

    ERIC Educational Resources Information Center

    Anderson, Lorin W., Ed.; Walberg, Herbert J., Ed.

    This publication offers suggestions for making more productive use of time, a scarce and valued educational resource. The chapter authors, authorities on the use of educational time, write about how to extend and enhance learning time within and outside schools. In "Productive Use of Time," Herbert Walberg describes how learning time can be…

  11. The Application of Community Service Learning in Science Education

    ERIC Educational Resources Information Center

    Ng, Betsy Ling-Ling

    2012-01-01

    Learning of science has been traditionally conducted in classrooms or in the form of lectures. Science education is usually context-specific learning as students are taught a particular module of content in class. In problem-based learning, they are provided with examples of problems in which they learn how to solve these types of problems.…

  12. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    ERIC Educational Resources Information Center

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  13. A Major E-Learning Project to Renovate Science Learning Environment in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Lee, Greg

    2010-01-01

    This article summarizes a major e-Learning project recently funded by the National Science Council of Taiwan and envisions some of the future research directions in this area. This project intends to initiate the "Center for excellence in e-Learning Sciences (CeeLS): i[superscript 4] future learning environment" at the National Taiwan…

  14. Enabling People Who Are Blind to Experience Science Inquiry Learning through Sound-Based Mediation

    ERIC Educational Resources Information Center

    Levy, S. T.; Lahav, O.

    2012-01-01

    This paper addresses a central need among people who are blind, access to inquiry-based science learning materials, which are addressed by few other learning environments that use assistive technologies. In this study, we investigated ways in which learning environments based on sound mediation can support science learning by blind people. We used…

  15. Applying the Science of Learning to the Learning of Science: Newton's Second Law of Motion

    ERIC Educational Resources Information Center

    Lemmer, Miriam

    2018-01-01

    Science teaching and learning require knowledge about how learning takes place (cognition) and how learners interact with their surroundings (affective and sociocultural factors). The study reported on focussed on learning for understanding of Newton's second law of motion from a cognitive perspective that takes social factors into account. A…

  16. Effects of South Korean High School Students' Motivation to Learn Science and Technology on Their Concern Related to Engineering

    ERIC Educational Resources Information Center

    Lee, Eunsang

    2017-01-01

    This study investigated the gender difference among South Korean high school students in science learning motivation, technology learning motivation, and concern related engineering, as well as the correlation between these factors. It also verified effects of the sub-factors of science learning motivation and technology learning motivation on…

  17. D1 Receptor Activation in the Mushroom Bodies Rescues Sleep Loss Induced Learning Impairments in Drosophila

    PubMed Central

    Seugnet, Laurent; Suzuki, Yasuko; Vine, Lucy; Gottschalk, Laura; Shaw, Paul J

    2008-01-01

    Background Extended wakefulness disrupts acquisition of short term memories in mammals. However, the underlying molecular mechanisms triggered by extended waking and restored by sleep are unknown. Moreover, the neuronal circuits that depend on sleep for optimal learning remain unidentified. Results Learning was evaluated using Aversive Phototaxic Suppression (APS). In this task, flies learn to avoid light that is paired with an aversive stimulus (quinine /humidity). We demonstrate extensive homology in sleep deprivation induced learning impairment between flies and humans. Both 6 h and 12 h of sleep deprivation are sufficient to impair learning in Canton-S (Cs) flies. Moreover, learning is impaired at the end of the normal waking-day in direct correlation with time spent awake. Mechanistic studies indicate that this task requires intact mushroom bodies (MBs) and requires the Dopamine D1-like receptor (dDA1). Importantly, sleep deprivation induced learning impairments could be rescued by targeted gene expression of the dDA1 receptor to the MBs. Conclusion These data provide direct evidence that extended wakefulness disrupts learning in Drosophila. These results demonstrate that it is possible to prevent the effects of sleep deprivation by targeting a single neuronal structure and identify cellular and molecular targets adversely affected by extended waking in a genetically tractable model organism. PMID:18674913

  18. Seeing Students Learn Science: Integrating Assessment and Instruction in the Classroom

    ERIC Educational Resources Information Center

    Beatty, Alexandra; Schweingruber, Heidi

    2017-01-01

    Science educators in the United States are adapting to a new vision of how students learn science. Children are natural explorers and their observations and intuitions about the world around them are the foundation for science learning. Unfortunately, the way science has been taught in the United States has not always taken advantage of those…

  19. The Predictive Effects of Motivation toward Learning Science on TIMSS Grade 8 Students' Science Achievement: A Comparative Study between Malaysia and Singapore

    ERIC Educational Resources Information Center

    Lay, Yoon Fah; Chandrasegaran, A. L.

    2016-01-01

    TIMSS routinely presents very powerful evidence showing that students with more positive motivation toward learning science have substantially higher achievement. The results from TIMSS 2011 are consistent with previous assessments. This study explored the predictive effects of motivation toward learning science on science achievement among…

  20. Adaptation of Conceptions of Learning Science Questionnaire into Turkish and Science Teacher Candidates' Conceptions of Learning Science

    ERIC Educational Resources Information Center

    Bahçivan, Eralp; Kapucu, Serkan

    2014-01-01

    The purposes of this study were to (1) adapt an instrument "The Conceptions of Learning Science (COLS) questionnaire" into Turkish, and (2) to determine Turkish science teacher candidates' COLS. Adapting the instrument four steps were followed. Firstly, COLS questionnaire was translated into Turkish. Secondly, COLS questionnaire was…

  1. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    ERIC Educational Resources Information Center

    Dunn, Karee E.; Lo, Wen-Juo

    2015-01-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of…

  2. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    ERIC Educational Resources Information Center

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  3. Is Peer Interaction Necessary for Optimal Active Learning?

    PubMed

    Linton, Debra L; Farmer, Jan Keith; Peterson, Ernie

    2014-01-01

    Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of inexperience, we should try to provide more explicit implementation recommendations based on research into the key components of effective active learning. We investigated the optimal implementation of active-learning exercises within a "lecture" course. Two sections of nonmajors biology were taught by the same instructor, in the same semester, using the same instructional materials and assessments. Students in one section completed in-class active-learning exercises in cooperative groups, while students in the other section completed the same activities individually. Performance on low-level, multiple-choice assessments was not significantly different between sections. However, students who worked in cooperative groups on the in-class activities significantly outperformed students who completed the activities individually on the higher-level, extended-response questions. Our results provide additional evidence that group processing of activities should be the recommended mode of implementation for in-class active-learning exercises. © 2014 D. L. Linton et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. It's Not Maths; It's Science: Exploring Thinking Dispositions, Learning Thresholds and Mindfulness in Science Learning

    ERIC Educational Resources Information Center

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-01-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to "do maths" as part of "doing science" leads to disengagement from learning. Notions of "I can't do maths" speak of a rigidity of mind, a…

  5. Influence of Psychosocial Classroom Environment on Students' Motivation and Self-Regulation in Science Learning: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Velayutham, Sunitadevi; Aldridge, Jill M.

    2013-01-01

    The primary aim of this study was two-fold: 1) to identify salient psychosocial features of the classroom environment that influence students' motivation and self-regulation in science learning; and 2) to examine the effect of the motivational constructs of learning goal orientation, science task value and self-efficacy in science learning on…

  6. Teaching Astronomy through e-learning in Poland: Astronomical Education in teacher training conducted by the Regional Teacher Training Center in Skierniewice

    NASA Astrophysics Data System (ADS)

    Dabrowska, A. E.

    2014-12-01

    Regional Teacher Training Centre (RTTC) in Skierniewice is one of 49 public, accredited institutions in Poland carrying out it statutory goals at the regional level. It has been operating since 1989 and is responsible for organizing of support of schools, institutions, networks of teachers for cooperation and self-education, organizing various forms of in-service training and disseminating examples of good practice. It also has rich experience in teaching by using modern Interactive Computer Technology (ICT) tools and e-learning platform. I present examples about teaching of Astronomical issues through teacher training both as hands on workshops as well as through e-learning. E-learning is playing an important role in organizing educational activities not only in the field of modern didactic but also in learning Science subjects. Teachers find e-learning as a very economical, easy and convenient way of learning and developing their knowledge and skills. Moreover, they are no longer afraid of using new ICT tools and programs which help them to cooperate with students effectively. Since 2011 RTTC in Skierniewice has been an organizer of many on-line in-service programs for teachers, in learning Science. Some of them are organized as blended-learning programs which allow teachers to participate first in hands on activities then continue learning on the Moodle platform. These courses include two 15 and 30-hours of Astronomical topics. Teachers have the opportunity to gain knowledge and receive materials not only about the Universe and the Solar System but also can learn to use tools like Stellarium, Celestia, WorldWide Telescope, Your Sky and other tools. E-learning modules consist of both publishing learning materials in various forms, eg. PowerPoint Presentations, Word & PDF materials, web sites, publications, working sheets as well as practical duties like participation in chats, forums, tasks, Wiki, group workshop. Teachers use these materials for extending their knowledge as well as for preparing their own tasks, like lesson's scenarios and school projects. Realizing school projects pay an important role in students' education. It is obligatory for students representing lower secondary level to implement school project during their 3 years education. Some of these projects are devoted to Astronomy.

  7. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    NASA Astrophysics Data System (ADS)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome that swirls around this remarkable arthropod, students are exposed to interactions between the hydrosphere, atmosphere, and geosphere and they examine ways in which climate change can affect this ecosystem.

  8. What is taking place in science classrooms?: A case study analysis of teaching and learning in seventh-grade science of one Alabama school and its impact on African American student learning

    NASA Astrophysics Data System (ADS)

    Norman, Lashaunda Renea

    This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School district for better educational opportunities; and (7) Teachers were not familiar with the term "culturally responsive teaching," but there was evidence that several aspects of it were present in the seventh-grade science classroom environment. Critical Race Theory (CRT) was the framework for analysis and interpretation of this research study. The findings support the following tenets of CRT: (a) racism is normal, (b) interest-convergence or colorblindness, (c) contextual-historical analysis, (d) storytelling or counterstorytelling, and (e) social transformation. These findings indicate that racial inequalities remain an issue in the underachievement of African Americans and may be the solution to improving science learning of African Americans. The outcome of this study contributes to the limited research on utilizing culturally responsive teaching along with best teaching strategies to improve academic achievement of African American students, and CRT exposes the issues that contribute to the Black-White achievement gap in science widening.

  9. Implementation of inquiry-based science education in different countries: some reflections

    NASA Astrophysics Data System (ADS)

    Rundgren, Carl-Johan

    2017-03-01

    In this forum article, I reflect on issues related to the implementation of inquiry-based science education (IBSE) in different countries. Regarding education within the European Union (EU), the Bologna system has in later years provided extended coordination and comparability at an organizational level. However, the possibility of the EU to influence the member countries regarding the actual teaching and learning in the classrooms is more limited. In later years, several EU-projects focusing on IBSE have been funded in order to make science education in Europe better, and more motivating for students. Highlighting what Heinz and her colleagues call the policy of `soft governance' of the EU regarding how to improve science education in Europe, I discuss the focus on IBSE in the seventh framework projects, and how it is possible to maintain more long-lasting results in schools through well-designed teacher professional development programs. Another aspect highlighted by Heinz and her colleagues is how global pressures on convergence in education interact with educational structures and traditions in the individual countries. The rise of science and science education as a global culture, encompassing contributions from all around the world, is a phenomenon of great potential and value to humankind. However, it is important to bear in mind that if science and science education is going to become a truly global culture, local variation and differences regarding foci and applications of science in different cultures must be acknowledged.

  10. Architecting Learning Continuities for Families Across Informal Science Experiences

    NASA Astrophysics Data System (ADS)

    Perin, Suzanne Marie

    By first recognizing the valuable social and scientific practices taking place within families as they learn science together across multiple, everyday settings, this dissertation addresses questions of how to design and scaffold activities that build and expand on those practices to foster a deep understanding of science, and how the aesthetic experience of learning science builds connections across educational settings. Families were invited to visit a natural history museum, an aquarium, and a place or activity of the family's choice that they associated with science learning. Some families were asked to use a set of activities during their study visits based on the practices of science (National Research Council, 2012), which were delivered via smartphone app or on paper cards. I use design-based research, video data analysis and interaction analysis to examine how families build connections between informal science learning settings. Chapter 2 outlines the research-based design process of creating activities for families that fostered connections across multiple learning settings, regardless of the topical content of those settings. Implications of this study point to means for linking everyday family social practices such as questioning, observing, and disagreeing to the practices of science through activities that are not site-specific. The next paper delves into aesthetic experience of science learning, and I use video interaction analysis and linguistic analysis to show how notions of beauty and pleasure (and their opposites) are perfused throughout learning activity. Designing for aesthetic experience overtly -- building on the sensations of enjoyment and pleasure in the learning experience -- can motivate those who might feel alienated by the common conception of science as merely a dispassionate assembly of facts, discrete procedures or inaccessible theory. The third paper, a case study of a family who learns about salmon in each of the sites they visit, highlights the contributions of multiple sites of learning in an ecological view of learning. Finally, the dissertations' conclusion highlights the broad implications for conceiving of the many varied learning settings in a community as an educational infrastructure, and reflections on using aesthetic experience for broadening participation the sciences through the design of informal environments.

  11. The Use of Mobile Learning in Science: A Systematic Review

    NASA Astrophysics Data System (ADS)

    Crompton, Helen; Burke, Diane; Gregory, Kristen H.; Gräbe, Catharina

    2016-04-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This systematic review reveals the trends in mobile learning in science with a comprehensive analysis and synthesis of studies from the year 2000 onward. Major findings include that most of the studies focused on designing systems for mobile learning, followed by a combination of evaluating the effects of mobile learning and investigating the affective domain during mobile learning. The majority of the studies were conducted in the area of life sciences in informal, elementary (5-11 years) settings. Mobile devices were used in this strand of science easily within informal environments with real-world connections. A variety of research methods were employed, providing a rich research perspective. As the use of mobile learning continues to grow, further research regarding the use of mobile technologies in all areas and levels of science learning will help science educators to expand their ability to embrace these technologies.

  12. Enhancing students' science literacy using solar cell learning multimedia containing science and nano technology

    NASA Astrophysics Data System (ADS)

    Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad

    2017-05-01

    This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.

  13. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  14. Shaping Self-Regulation in Science Teachers' Professional Growth: Inquiry Skills

    ERIC Educational Resources Information Center

    Michalsky, Tova

    2012-01-01

    This study examined 188 preservice science teachers' professional growth along three dimensions--self-regulated learning (SRL) in a science pedagogical context, pedagogical content knowledge, and self-efficacy in teaching science--comparing four learner-centered, active-learning, peer-collaborative environments for learning to teach higher order…

  15. 76 FR 24061 - Notice of Intent To Seek Approval To Extend a Current Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... NATIONAL SCIENCE FOUNDATION Notice of Intent To Seek Approval To Extend a Current Information Collection AGENCY: National Science Foundation. ACTION: Notice and request for comments. SUMMARY: The National Science Foundation (NSF) is announcing plans to request renewal of this collection. In accordance...

  16. Using Science to Take a Stand: Action-Oriented Learning in an Afterschool Science Club

    NASA Astrophysics Data System (ADS)

    Hagenah, Sara

    This dissertation study investigates what happens when students participate in an afterschool science club designed around action-oriented science instruction, a set of curriculum design principles based on social justice pedagogy. Comprised of three manuscripts written for journal publication, the dissertation includes 1) Negotiating community-based action-oriented science teaching and learning: Articulating curriculum design principles, 2) Middle school girls' socio-scientific participation pathways in an afterschool science club, and 3) Laughing and learning together: Productive science learning spaces for middle school girls. By investigating how action-oriented science design principles get negotiated, female identity development in and with science, and the role of everyday social interactions as students do productive science, this research fills gaps in the understanding of how social justice pedagogy gets enacted and negotiated among multiple stakeholders including students, teachers, and community members along what identity development looks like across social and scientific activity. This study will be of interest to educators thinking about how to enact social justice pedagogy in science learning spaces and those interested in identity development in science.

  17. The graph neural network model.

    PubMed

    Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele

    2009-01-01

    Many underlying relationships among data in several areas of science and engineering, e.g., computer vision, molecular chemistry, molecular biology, pattern recognition, and data mining, can be represented in terms of graphs. In this paper, we propose a new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains. This GNN model, which can directly process most of the practically useful types of graphs, e.g., acyclic, cyclic, directed, and undirected, implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n into an m-dimensional Euclidean space. A supervised learning algorithm is derived to estimate the parameters of the proposed GNN model. The computational cost of the proposed algorithm is also considered. Some experimental results are shown to validate the proposed learning algorithm, and to demonstrate its generalization capabilities.

  18. Enhancing Astronomy Education Through Cross-Age Student Tutoring

    NASA Astrophysics Data System (ADS)

    Grundstrom, Erika; Taylor, R. S.

    2009-01-01

    Vast distances, such as those that pervade astronomy, are difficult concepts to grasp. We are all a part of the Earth-Moon system, however most people do not comprehend the sizes and distances involved. In a pilot study, the authors found that an intervention using both discussion and kinesthetic modeling resulted in students of all ages (children up through adults) acquiring a more accurate mental representation of the Earth-Moon system. We have extended this research and are currently conducting a new study in which undergraduate students serve as "tutors" in a public observatory setting. One of our conjectures is that tutors' mental representations of the Earth-Moon system will be enhanced through their active participation in the cross-age peer tutoring activity. This work is supported in part by grants from the Center for the Integration of Research, Teaching, and Learning (CIRTL), the Vanderbilt University Learning Sciences Institute, and NSF Career grant AST-0349075.

  19. Digital Learning Network Education Events for the Desert Research and Technology Studies

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Guillory, Erika R.

    2007-01-01

    NASA s Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. As part of NASA s Strategic Plan to reach the next generation of space explorers, the DLN develops and delivers educational programs that reinforce principles in the areas of science, technology, engineering and mathematics. The DLN has created a series of live education videoconferences connecting the Desert Research and Technology Studies (RATS) field test to students across the United States. The programs are also extended to students around the world via live webcasting. The primary focus of the events is the Vision for Space Exploration. During the programs, Desert RATS engineers and scientists inform and inspire students about the importance of exploration and share the importance of the field test as it correlates with plans to return to the Moon and explore Mars. This paper describes the events that took place in September 2006.

  20. A Comparative Study of the Quality of Teaching Learning Process at Post Graduate Level in the Faculty of Science and Social Science

    ERIC Educational Resources Information Center

    Shahzadi, Uzma; Shaheen, Gulnaz; Shah, Ashfaque Ahmed

    2012-01-01

    The study was intended to compare the quality of teaching learning process in the faculty of social science and science at University of Sargodha. This study was descriptive and quantitative in nature. The objectives of the study were to compare the quality of teaching learning process in the faculty of social science and science at University of…

  1. Experimental Products Development Team (EPDT) Supporting New AWIPS . Part 2; Capabilities

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.

    2015-01-01

    In 2012, the Experimental Products Development Team (EPDT) was formed within NASA's Short-term Prediction Research and Transition (SPoRT) Center to create training for development of plug-ins to extend the National Weather Service (NWS) Advanced Weather Interactive Processing System (AWIPS) version 2. The broader atmospheric science community had a need for AWIPS II development training being created at SPoRT and EPDT was expanded to include other groups who were looking for training. Since the expansion of the group occurred, EPDT has provided AWIPS II development training to over thirty participants spanning a wide variety of groups such as NWS Systems Engineering Center, NWS Meteorological Development Laboratory, and several NOAA Cooperative Institutes. Participants within EPDT solidify their learning experience through hands-on learning and by participating in a "code-sprint" in which they troubleshoot existing and develop plug-ins. The hands-on learning workshop is instructor lead with participants completing exercises within the AWIPS II Development Environment. During the code sprints EPDT groups work on projects important to the community and have worked on various plug-ins such as an RGB image recipe creation tool, and an mPing (crowd sourced precipitation type reporting system) ingest and display. EPDT has developed a well-defined training regime which prepares participants to fully develop plug-ins for the extendible AWIPS II architecture from ingest to the display of new data. SPoRT has hosted 2 learning workshops and 1 code sprint over the last two years, and continues to build and shape the EPDT group based on feedback from previous workshops. The presentation will provide an overview of EPDT current and future activities, and best practices developed within EPDT.

  2. The Cassini Solstice Mission: Streamlining Operations by Sequencing with PIEs

    NASA Technical Reports Server (NTRS)

    Vandermey, Nancy; Alonge, Eleanor K.; Magee, Kari; Heventhal, William

    2014-01-01

    The Cassini Solstice Mission (CSM) is the second extended mission phase of the highly successful Cassini/Huygens mission to Saturn. Conducted at a much-reduced funding level, operations for the CSM have been streamlined and simplified significantly. Integration of the science timeline, which involves allocating observation time in a balanced manner to each of the five different science disciplines (with representatives from the twelve different science instruments), has long been a labor-intensive endeavor. Lessons learned from the prime mission (2004-2008) and first extended mission (Equinox mission, 2008-2010) were utilized to design a new process involving PIEs (Pre-Integrated Events) to ensure the highest priority observations for each discipline could be accomplished despite reduced work force and overall simplification of processes. Discipline-level PIE lists were managed by the Science Planning team and graphically mapped to aid timeline deconfliction meetings prior to assigning discrete segments of time to the various disciplines. Periapse segments are generally discipline-focused, with the exception of a handful of PIEs. In addition to all PIEs being documented in a spreadsheet, allocated out-of-discipline PIEs were entered into the Cassini Information Management System (CIMS) well in advance of timeline integration. The disciplines were then free to work the rest of the timeline internally, without the need for frequent interaction, debate, and negotiation with representatives from other disciplines. As a result, the number of integration meetings has been cut back extensively, freeing up workforce. The sequence implementation process was streamlined as well, combining two previous processes (and teams) into one. The new Sequence Implementation Process (SIP) schedules 22 weeks to build each 10-week-long sequence, and only 3 sequence processes overlap. This differs significantly from prime mission during which 5-week-long sequences were built in 24 weeks, with 6 overlapping processes.

  3. Learning as a Members' Phenomenon: Toward an Ethnographically Adequate Science of Learning

    ERIC Educational Resources Information Center

    Stevens, Reed

    2010-01-01

    This chapter argues that for the science of learning to become a fully "human" science, it needs to move from viewing learning from an exogenous perspective to an endogenous one. Taken from Latin, the term "endogenous" translates roughly to "from within," and in the meaning the author gives to it here, it refers to a perspective on learning from…

  4. Democratic Practices in a Constructivist Science Classroom

    ERIC Educational Resources Information Center

    Daher, Wajeeh; Saifi, Abdel-Gani

    2018-01-01

    The constructivist learning approach is suggested as a means for facilitating students' learning of science and increasing their participation in this learning. Several studies have shown the contribution of this approach to the different aspects of students' learning of science, though little research has examined the contribution of this…

  5. Investigative Primary Science: A Problem-Based Learning Approach

    ERIC Educational Resources Information Center

    Etherington, Matthew B.

    2011-01-01

    This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…

  6. Possible Science Selves: Informal Learning and the Career Interest Development Process

    ERIC Educational Resources Information Center

    Mills, Leila A.

    2014-01-01

    This research examines the relationship between career related self-concept and dimensions of informal learning of science. The overlapping dimensions of career interest development and informal learning suggest that self-directed informal learning of science can advance individual self-concept for "possible scientific self." Possible…

  7. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    ERIC Educational Resources Information Center

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  8. Kitchen Science Investigators: Promoting Identity Development as Scientific Reasoners and Thinkers

    ERIC Educational Resources Information Center

    Clegg, Tamara Lynnette

    2010-01-01

    My research centers upon designing transformative learning environments and supporting technologies. Kitchen Science Investigators (KSI) is an out-of-school transformative learning environment we designed to help young people learn science through cooking. My dissertation considers the question, "How can we design a learning environment in which…

  9. Investigating Elementary Students' Learning Approaches, Motivational Goals, and Achievement in Science

    ERIC Educational Resources Information Center

    Hacieminoglu, Esme; Yilmaz-Tuzun, Ozgul; Ertepinar, Hamide

    2009-01-01

    This study examined the relationships among students' learning approaches, motivational goals, previous science grades, and their science achievement for the concepts related to atomic theory and explored the effects of gender and sociodemographic variables on students' learning approaches, motivational goals, and their science achievement for the…

  10. Approximations of Practice in the Preparation of Prospective Elementary Science Teachers

    ERIC Educational Resources Information Center

    Nelson, Michele M.

    2011-01-01

    Elementary teacher education involves learning to teach science. Even in elementary school, teaching science is demanding work--teachers must orchestrate a complex set of teaching practices to support students' science learning. This dissertation examines the application of Grossman and colleagues' (2009) cross-professional learning framework,…

  11. Drama and Learning Science: An Empty Space?

    ERIC Educational Resources Information Center

    Braund, Martin

    2015-01-01

    Constructivist teaching methods such as using drama have been promoted as productive ways of learning, especially in science. Specifically, role plays, using given roles or simulated and improvised enactments, are claimed to improve learning of concepts, understanding the nature of science and appreciation of science's relationship with…

  12. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    ERIC Educational Resources Information Center

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  13. Project LEO Studies of Science Learning Environments and Outcomes, 1968-1981.

    ERIC Educational Resources Information Center

    Matthews, Charles; And Others

    Presented is a summary of the 1977-80 Project LEO studies, which focused on science teaching strategies and learning outcomes for disruptive elementary school children and on more refined application of the "student-structured learning in science" (SSLS) teacher behavioral pattern in secondary school science classrooms. Included within…

  14. Sound Science

    ERIC Educational Resources Information Center

    Sickel, Aaron J.; Lee, Michele H.; Pareja, Enrique M.

    2010-01-01

    How can a teacher simultaneously teach science concepts through inquiry while helping students learn about the nature of science? After pondering this question in their own teaching, the authors developed a 5E learning cycle lesson (Bybee et al. 2006) that concurrently embeds opportunities for fourth-grade students to (a) learn a science concept,…

  15. Science Learning and Instruction: Taking Advantage of Technology to Promote Knowledge Integration

    ERIC Educational Resources Information Center

    Linn, Marcia C.; Eylon, Bat-Sheva

    2011-01-01

    "Science Learning and Instruction" describes advances in understanding the nature of science learning and their implications for the design of science instruction. The authors show how design patterns, design principles, and professional development opportunities coalesce to create and sustain effective instruction in each primary scientific…

  16. Implementation of Real-World Experiential Learning in a Food Science Course Using a Food Industry-Integrated Approach

    ERIC Educational Resources Information Center

    Hollis, Francine H.; Eren, Fulya

    2016-01-01

    Success skills have been ranked as the most important core competency for new food science professionals to have by food science graduates and their employers. It is imperative that food science instructors promote active learning in food science courses through experiential learning activities to enhance student success skills such as oral and…

  17. Developing the Learning Physical Science Curriculum: Adapting a Small Enrollment, Laboratory and Discussion Based Physical Science Course for Large Enrollments

    ERIC Educational Resources Information Center

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-01-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, "Physical Science and Everyday Thinking" (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new "Learning Physical Science" (LEPS) curriculum was designed around specific principles based on research on learning to meet the…

  18. Taiwanese Students' Science Learning Self-Efficacy and Teacher and Student Science Hardiness: A Multilevel Model Approach

    ERIC Educational Resources Information Center

    Wang, Ya-Ling; Tsai, Chin-Chung

    2016-01-01

    This study aimed to investigate the factors accounting for science learning self-efficacy (the specific beliefs that people have in their ability to complete tasks in science learning) from both the teacher and the student levels. We thus propose a multilevel model to delineate its relationships with teacher and student science hardiness (i.e.,…

  19. Cerebellar contributions to motor control and language comprehension: searching for common computational principles.

    PubMed

    Moberget, Torgeir; Ivry, Richard B

    2016-04-01

    The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive domains including attention, memory, and language. Drawing on evidence from neuroanatomy, physiology, neuropsychology, and computational work, sophisticated models have been developed to describe cerebellar function in sensorimotor control and learning. In contrast, mechanistic accounts of how the cerebellum contributes to cognition have remained elusive. Inspired by the homogeneous cerebellar microanatomy and a desire for parsimony, many researchers have sought to extend mechanistic ideas from motor control to cognition. One influential hypothesis centers on the idea that the cerebellum implements internal models, representations of the context-specific dynamics of an agent's interactions with the environment, enabling predictive control. We briefly review cerebellar anatomy and physiology, to review the internal model hypothesis as applied in the motor domain, before turning to extensions of these ideas in the linguistic domain, focusing on speech perception and semantic processing. While recent findings are consistent with this computational generalization, they also raise challenging questions regarding the nature of cerebellar learning, and may thus inspire revisions of our views on the role of the cerebellum in sensorimotor control. © 2016 New York Academy of Sciences.

  20. Anatomical entity mention recognition at literature scale

    PubMed Central

    Pyysalo, Sampo; Ananiadou, Sophia

    2014-01-01

    Motivation: Anatomical entities ranging from subcellular structures to organ systems are central to biomedical science, and mentions of these entities are essential to understanding the scientific literature. Despite extensive efforts to automatically analyze various aspects of biomedical text, there have been only few studies focusing on anatomical entities, and no dedicated methods for learning to automatically recognize anatomical entity mentions in free-form text have been introduced. Results: We present AnatomyTagger, a machine learning-based system for anatomical entity mention recognition. The system incorporates a broad array of approaches proposed to benefit tagging, including the use of Unified Medical Language System (UMLS)- and Open Biomedical Ontologies (OBO)-based lexical resources, word representations induced from unlabeled text, statistical truecasing and non-local features. We train and evaluate the system on a newly introduced corpus that substantially extends on previously available resources, and apply the resulting tagger to automatically annotate the entire open access scientific domain literature. The resulting analyses have been applied to extend services provided by the Europe PubMed Central literature database. Availability and implementation: All tools and resources introduced in this work are available from http://nactem.ac.uk/anatomytagger. Contact: sophia.ananiadou@manchester.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24162468

  1. Young Children's Development of Scientific Knowledge Through the Combination of Teacher-Guided Play and Child-Guided Play

    NASA Astrophysics Data System (ADS)

    Sliogeris, Marija; Almeida, Sylvia Christine

    2017-09-01

    Play-based approaches to science learning allow children to meaningfully draw on their everyday experiences and activities as they explore science concepts in context. Acknowledging the crucial role of the teacher in facilitating science learning through play, the purpose of this qualitative study was to examine how teacher-guided play, in conjunction with child-guided play, supports children's development of science concepts. While previous research on play-based science learning has mainly focused on preschool settings, this study explores the possibilities of play-based approaches to science in primary school contexts. Using a qualitative methodology grounded in the cultural-historical theoretical perspective, children's learning was examined during a science learning sequence that combined teacher-guided and child-guided play. This study revealed that the teacher-guided play explicitly introduced science concepts which children then used and explored in subsequent child-guided play. However, intentional teaching during the child-guided play continued to be important. Play-based approaches to science allowed children to make sense of the science concepts using familiar, everyday knowledge and activities. It became evident that the expectations and values communicated through classroom practices influenced children's learning through play.

  2. Affordances of Augmented Reality in Science Learning: Suggestions for Future Research

    NASA Astrophysics Data System (ADS)

    Cheng, Kun-Hung; Tsai, Chin-Chung

    2013-08-01

    Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education, which are named as image- based AR and location- based AR. These approaches may result in different affordances for science learning. It is then found that students' spatial ability, practical skills, and conceptual understanding are often afforded by image-based AR and location-based AR usually supports inquiry-based scientific activities. After examining what has been done in science learning with AR supports, several suggestions for future research are proposed. For example, more research is required to explore learning experience (e.g., motivation or cognitive load) and learner characteristics (e.g., spatial ability or perceived presence) involved in AR. Mixed methods of investigating learning process (e.g., a content analysis and a sequential analysis) and in-depth examination of user experience beyond usability (e.g., affective variables of esthetic pleasure or emotional fulfillment) should be considered. Combining image-based and location-based AR technology may bring new possibility for supporting science learning. Theories including mental models, spatial cognition, situated cognition, and social constructivist learning are suggested for the profitable uses of future AR research in science education.

  3. Unpacking the Paradox of Chinese Science Learners: Insights from Research into Asian Chinese School Students' Attitudes towards Learning Science, Science Learning Strategies, and Scientific Epistemological Views

    ERIC Educational Resources Information Center

    Cheng, May Hung May; Wan, Zhi Hong

    2016-01-01

    Chinese students' excellent science performance in large-scale international comparisons contradicts the stereotype of the Chinese non-productive classroom learning environment and learners. Most of the existing explanations of this paradox are provided from the perspective of teaching and learning in a general sense, but little work can be found…

  4. Academic language and the challenge of reading for learning about science.

    PubMed

    Snow, Catherine E

    2010-04-23

    A major challenge to students learning science is the academic language in which science is written. Academic language is designed to be concise, precise, and authoritative. To achieve these goals, it uses sophisticated words and complex grammatical constructions that can disrupt reading comprehension and block learning. Students need help in learning academic vocabulary and how to process academic language if they are to become independent learners of science.

  5. Students using visual thinking to learn science in a Web-based environment

    NASA Astrophysics Data System (ADS)

    Plough, Jean Margaret

    United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.

  6. From a Sense of Stereotypically Foreign to Belonging in a Science Community: Ways of Experiential Descriptions About High School Students' Science Internship

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Ling; Roth, Wolff-Michael

    2010-05-01

    Science educators often suggest that students should learn science in ways and settings that bear family resemblance with “the real thing.” Internship in science laboratories constitutes one such way in which students may learn science and learn about science. However, very little is known about how participants experience a science internship in an “authentic” science setting (i.e., a science laboratory). Our study was designed to understand the nature of participants’ experiences of “authentic science.” Participants included 11 high school students, one high school teacher, five laboratory technicians, and two scientists. High school students practiced science alongside technicians (young scientists) in real ongoing projects of a biology laboratory. Data sources include 19 semi-structured and video-recorded interviews held after the 2-month science internship. Drawing on phenomenographic method, we identified five categories of experiential descriptions: (a) authenticity of university science, (b) channeling and connecting different communities, (c) advanced knowledge required in and lengthy procedures mobilized by university science, (d) self-exploration and reflection, and (e) comprehensive science learning. Each category’s meaning for participants and implications for science education are illustrated and discussed. This study demonstrates positive evidence of the science internship on helping students learn different dimensions of science and reflect their relationship with science. Suggestions on facilitating the partnership between secondary and postsecondary education are provided.

  7. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    NASA Astrophysics Data System (ADS)

    Ball, Lois A.

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which influence their contributions to America's science literacy and school science education. This emergent design nested case study described how an innovative program provided professional development and enabled growth in participants' abilities to contribute to science literacy. Data were collected through interviews, participant observations, and class artifacts. The program by design and constituency was the overarching entity that accounted for members' experiences. Three principal aspects of the ISI certificate program and cohort which influenced perceptions and reported positive outcomes were (1) the cohort's composition and their collaborative activities which established a vigorous community of practice and fostered community building, mentoring, and networking, (2) long term program design and implementation which promoted experiential learning in a generative classroom, and (3) ability of some members who were able to be independent or autonomous learners to embrace science education reform strategies for greater self-efficacy and career advancement. This research extends the limited literature base for professional development of informal science educators and may benefit informal science institutions, informal and formal science educators, science education reform efforts, and public education and science-technology-society understanding. The study may raise awareness of the need to establish more professional development opportunities for ISEs and to fund professional development. Further, recognizing and appreciating informal science educators as a diverse committed community of professionals who positively influence science education for everyone is essential.

  8. Student Agency: an Analysis of Students' Networked Relations Across the Informal and Formal Learning Domains

    NASA Astrophysics Data System (ADS)

    Rappa, Natasha Anne; Tang, Kok-Sing

    2017-06-01

    Agency is a construct facilitating our examination of when and how young people extend their own learning across contexts. However, little is known about the role played by adolescent learners' sense of agency. This paper reports two cases of students' agentively employing and developing science literacy practices—one in Singapore and the other in the USA. The paper illustrates how these two adolescent learners in different ways creatively accessed, navigated and integrated in-school and out-of-school discourses to support and nurture their learning of physics. Data were gleaned from students' work and interviews with students participating in a physics curricular programme in which they made linkages between their chosen out-of-school texts and several physics concepts learnt in school. The students' agentive moves were identified by means of situational mapping, which involved a relational analysis of the students' chosen artefacts and discourses across time and space. This relational analysis enabled us to address questions of student agency—how it can be effected, realised, construed and examined. It highlights possible ways to intervene in these networked relations to facilitate adolescents' agentive moves in their learning endeavours.

  9. The South Carolina Amazing Coast Program: Using Ocean Sciences to Address Next Generation Science Standards in Grades 3-5

    NASA Astrophysics Data System (ADS)

    Bell, E. V.; Thomas, C.; Weiss, B.; Bliss, A.; Spence, L.

    2013-12-01

    The Next Generation Science Standards (NGSS) are more inclusive of ocean sciences than the National Science Standards and respective state science standards. In response, the Center for Ocean Sciences Education Excellence-SouthEast (COSEE SE) is piloting the South Carolina's Amazing Coast (SCAC) program: a three-year initiative that incorporates ocean science concepts in grades 3-5 with the goals of addressing NGSS, STEM (science-technology-engineering-math) disciplines, and inquiry skills. The SCAC program targeted two Charleston County, South Carolina elementary schools that were demographically similar: Title 1 status (75% free or reduced lunch), > 90% African American student population, grade level size <55, and proximity to tidal salt marsh or barrier islands (< 2 miles). Fourteen teachers and approximately 240 students participated in the SCAC program between 2010 and 2013. The SCAC framework uses a scaffolding and multi-pronged approach for teacher professional development and student engagement. The scaffolding approach to curriculum implementation focuses on one grade level per year (Year 1 = 3rd; Year 2 = 4th, and Year 3 = 5th), thus building student and teacher literacy in ocean sciences. The coach-mentor model of teacher professional development was also used for the implementation of the program which differs from the traditional 'train the trainer' method in allowing for more frequent and consistent interaction by COSEE SE staff with the students and teachers during the school year. The coach mentor model enabled the creation of a community of practice where teachers served as both learners and practitioners of student learning. Methods for student engagement aligned with the NGSS and included hands-on classroom activities, use of 'hook' species such as loggerhead sea turtles (Caretta caretta), diamondback terrapins (Malaclemys terrapin) and smooth cord grass (Spartina alterniflora), field experiences to explore local ecosystems, interactions with marine scientists, and a capstone project incorporating STEM and inquiry skills. Specifically, third grade students learn about coastal habitats, animal and plant adaptations, and human impacts to the environment, and engage in a salt marsh restoration capstone project. This part of the curriculum aligns with the NGSS Core Ideas 3-LS1, 3-LS3, 3-LS4, 3-ESS3. The fourth grade students learn about weather, organism responses to the environment, and engage in a weather buoy construction capstone project. This part of the curriculum aligns with the NGSSS Core Ideas 4-LS1, 4-ESS2, 4-ESS3, 3-5-ETS1. In 5th grade, students focus specifically on the ocean ecosystem, human impacts on the environment and engage in a capstone project of designing and constructing remotely operated vehicles. This part of the curriculum aligns with NGSS Core Ideas 5-PS2, 5-LS1, 5-LS2, 5-ESS2, 3-5-ETS1. Initial evaluation results indicate that the SCAC teachers value the coach mentor approach for teacher professional development as well as the impact of field based experiences, place-based learning, and a culminating capstone project on student learning. Teacher feedback also indicates elements of sustainability that extend beyond the scope of the pilot project.These initial evaluation results poise the SCAC curriculum to be replicated in other southeastern states.

  10. Science teacher's perception about science learning experiences as a foundation for teacher training program

    NASA Astrophysics Data System (ADS)

    Tapilouw, Marisa Christina; Firman, Harry; Redjeki, Sri; Chandra, Didi Teguh

    2017-05-01

    Teacher training is one form of continuous professional development. Before organizing teacher training (material, time frame), a survey about teacher's need has to be done. Science teacher's perception about science learning in the classroom, the most difficult learning model, difficulties of lesson plan would be a good input for teacher training program. This survey conducted in June 2016. About 23 science teacher filled in the questionnaire. The core of questions are training participation, the most difficult science subject matter, the most difficult learning model, the difficulties of making lesson plan, knowledge of integrated science and problem based learning. Mostly, experienced teacher participated training once a year. Science training is very important to enhance professional competency and to improve the way of teaching. The difficulties of subject matter depend on teacher's education background. The physics subject matter in class VIII and IX are difficult to teach for most respondent because of many formulas and abstract. Respondents found difficulties in making lesson plan, in term of choosing the right learning model for some subject matter. Based on the result, inquiry, cooperative, practice are frequently used in science class. Integrated science is understood as a mix between Biology, Physics and Chemistry concepts. On the other hand, respondents argue that problem based learning was difficult especially in finding contextual problem. All the questionnaire result can be used as an input for teacher training program in order to enhanced teacher's competency. Difficult concepts, integrated science, teaching plan, problem based learning can be shared in teacher training.

  11. Implicit Learning in Science: Activating and Suppressing Scientific Intuitions to Enhance Conceptual Change

    NASA Astrophysics Data System (ADS)

    Wang, Jeremy Yi-Ming

    This dissertation examines the thesis that implicit learning plays a role in learning about scientific phenomena, and subsequently, in conceptual change. Decades of research in learning science demonstrate that a primary challenge of science education is overcoming prior, naive knowledge of natural phenomena in order to gain scientific understanding. Until recently, a key assumption of this research has been that to develop scientific understanding, learners must abandon their prior scientific intuitions and replace them with scientific concepts. However, a growing body of research shows that scientific intuitions persist, even among science experts. This suggests that naive intuitions are suppressed, not supplanted, as learners gain scientific understanding. The current study examines two potential roles of implicit learning processes in the development of scientific knowledge. First, implicit learning is a source of cognitive structures that impede science learning. Second, tasks that engage implicit learning processes can be employed to activate and suppress prior intuitions, enhancing the likelihood that scientific concepts are adopted and applied. This second proposal is tested in two experiments that measure training-induced changes in intuitive and conceptual knowledge related to sinking and floating objects in water. In Experiment 1, an implicit learning task was developed to examine whether implicit learning can induce changes in performance on near and far transfer tasks. The results of this experiment provide evidence that implicit learning tasks activate and suppress scientific intuitions. Experiment 2 examined the effects of combining implicit learning with traditional, direct instruction to enhance explicit learning of science concepts. This experiment demonstrates that sequencing implicit learning task before and after direct instruction has different effects on intuitive and conceptual knowledge. Together, these results suggest a novel approach for enhancing learning for conceptual change in science education.

  12. The effect of conceptual metaphors through guided inquiry on student's conceptual change

    NASA Astrophysics Data System (ADS)

    Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana

    2017-05-01

    The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.

  13. Science learning and literacy performance of typically developing, at-risk, and disabled, non-English language background students

    NASA Astrophysics Data System (ADS)

    Larrinaga McGee, Patria Maria

    Current education reform calls for excellence, access, and equity in all areas of instruction, including science and literacy. Historically, persons of diverse backgrounds or with disabilities have been underrepresented in science. Gaps are evident between the science and literacy achievement of diverse students and their mainstream peers. The purpose of this study was to document, describe, and examine patterns of development and change in the science learning and literacy performance of Hispanic students. The two major questions of this study were: (1) How is science content knowledge, as evident in oral and written formats, manifested in the performance of typically developing, at-risk, and disabled non-English language background (NELB) students? and (2) What are the patterns of literacy performance in science, and as evident in oral and written formats, among typically developing, at-risk, and disabled NELB students? This case study was part of a larger research project, the Promise Project, undertaken at the University of Miami, Coral Gables, Florida, under the sponsorship of the National Science Foundation. The study involved 24 fourth-grade students in seven classrooms located in Promise Project schools where teachers were provided with training and materials for instruction on two units of science content: Matter and Weather. Four students were selected from among the fourth-graders for a closer analysis of their performance. Qualitative and quantitative data analysis methods were used to document, describe, and examine specific events or phenomena in the processes of science learning and literacy development. Important findings were related to (a) gains in science learning and literacy development, (b) students' science learning and literacy development needs, and (c) general and idiosyncratic attitudes toward science and literacy. Five patterns of science "explanations" identified indicated a developmental cognitive/linguistic trajectory in science learning. Students' learning needs appeared related to (a) depth of science knowledge, and (b) written communication in science. Students' performances and attitudes suggested a continuum of readiness for science inquiry. Differences in performances and attitudes revealed curricular, personal, social, cultural, cognitive, metacognitive, and linguistic aspects that could impact science learning and literacy development. Implications for instruction and assessment were discussed. Suggestions for further research were presented.

  14. Problem Solving Model for Science Learning

    NASA Astrophysics Data System (ADS)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  15. Policy forum. Data, privacy, and the greater good.

    PubMed

    Horvitz, Eric; Mulligan, Deirdre

    2015-07-17

    Large-scale aggregate analyses of anonymized data can yield valuable results and insights that address public health challenges and provide new avenues for scientific discovery. These methods can extend our knowledge and provide new tools for enhancing health and wellbeing. However, they raise questions about how to best address potential threats to privacy while reaping benefits for individuals and to society as a whole. The use of machine learning to make leaps across informational and social contexts to infer health conditions and risks from nonmedical data provides representative scenarios for reflections on directions with balancing innovation and regulation. Copyright © 2015, American Association for the Advancement of Science.

  16. Examining the literacy component of science literacy: 25 years of language arts and science research

    NASA Astrophysics Data System (ADS)

    Yore, Larry D.; Bisanz, Gay L.; Hand, Brian M.

    2003-06-01

    This review, written to celebrate the 25th anniversary of the International Journal of Science Education, revealed a period of changes in the theoretical views of the language arts, the perceived roles of language in science education, and the research approaches used to investigate oral and written language in science, science teaching, and learning. The early years were dominated by behavioralist and logico-mathematical interpretations of human learning and by reductionist research approaches, while the later years reflected an applied cognitive science and constructivist interpretations of learning and a wider array of research approaches that recognizes the holistic nature of teaching and learning. The early years focus on coding oral language into categories reflecting source of speech, functional purpose, level of question and response, reading research focused on the readability of textbooks using formulae and the reader's decoding skills, and writing research was not well documented since the advocates for writing in service of learning were grass roots practitioners and many science teachers were using writing as an evaluation technique. The advent of applied cognitive science and the constructivist perspectives ushered in interactive-constructive models of discourse, reading and writing that more clearly revealed the role of language in science and in science teaching and learning. A review of recent research revealed that the quantity and quality of oral interactions were low and unfocused in science classrooms; reading has expanded to consider comprehension strategies, metacognition, sources other than textbooks, and the design of inquiry environments for classrooms; and writing-to-learn science has focused on sequential writing tasks requiring transformation of ideas to enhance science learning. Several promising trends and future research directions flow from the synthesis of this 25-year period of examining the literacy component of science literacy - among them are critical listening and reading of various sources, multi-media presentations and representations, effective debate and argument, quality explanation and the role of information and communication technologies/environments.

  17. The Roles of Aesthetic Experience in Elementary School Science

    NASA Astrophysics Data System (ADS)

    Jakobson, Britt; Wickman, Per-Olof

    2008-01-01

    The role of aesthetic experiences for learning was examined in elementary school science. Numerous authors have argued for a science education also involving aesthetic experiences, but few have examined what this means empirically. Recordings of children’s talk with each other and with the teacher during hands-on activities in nine different science units were made. How the children and teachers used aesthetic judgements and how these judgements were part of aesthetic experiences of the science assignments were analysed. For the analysis a pragmatist perspective was used, especially drawing on Dewey and the later Wittgenstein. The results showed how aesthetic judgements occurred in moments of anticipation and moments when the science activities were brought to fulfilment. In this way children used aesthetic judgements normatively about what belonged in science class and what to include and exclude. In this way aesthetic judgements were an important part of learning how to proceed in science class. In using aesthetic judgements the children also talked about their own place in science class and whether they belonged there or not. In this way aesthetic experience is tightly related to learning science as participation. Learning science also meant learning a special kind of aesthetics, that is, learning how to distinguish the science context from other contexts. The fact that children liked or disliked something outside school did not necessarily mean that it was experienced aesthetically in the same way in school, but needed to be re-learnt. What these results mean for science education is discussed at length. The connection between aesthetics and learning to observe is also briefly discussed.

  18. Effects of Extended Time Allotments on Reading Comprehension Performance of College Students with and without Learning Disabilities

    ERIC Educational Resources Information Center

    Lewandowski, Lawrence; Cohen, Justin; Lovett, Benjamin J.

    2013-01-01

    Students with disabilities often receive test accommodations in schools and on high-stakes tests. Students with learning disabilities (LD) represent the largest disability group in schools, and extended time the most common test accommodation requested by such students. This pairing persists despite controversy over the validity of extended time…

  19. Impact of the Extended Learning Opportunities Summer Adventures in Learning (ELO SAIL) Program on Student Academic Performance: Part 1, Results from Fall 2012 to Fall 2015

    ERIC Educational Resources Information Center

    Cooper-Martin, Elizabeth; Wolanin, Natalie; Jang, Seong; Modarresi, Shahpar; Zhao, Huafang

    2016-01-01

    Extended Learning Opportunities Summer Adventures in Learning (ELO SAIL) is a Montgomery County Public Schools summer program for students in all Title I elementary schools; it targets students who will be in kindergarten-Grade 2 in the fall following the program. This report analyzed demographic characteristics of attendees and the impact of the…

  20. Flash Mob Science - Increasing Seismic Hazard Awareness and Preparedness in Oregon

    NASA Astrophysics Data System (ADS)

    Hoffman, J. S.; Lownsbery, D. S.

    2015-12-01

    Living in a region of imminent threat of a magnitude-9.0 (M­­­w ≈ ­9) earthquake is a daily reality for the millions of people predicted to be directly affected by a full rupture of the Cascadia Subduction Zone (CSZ), a fault line extending for hundreds of miles off the western coast of North America. Many coastal residents and visitors will also be affected by the tsunami caused by the rupture. How can the scientific community effectively communicate with those who are unaware of the threat and unprepared to respond? We are studying the effects of a novel approach to science outreach we have called Flash Mob Science. You have probably seen examples of flash mobs staging dynamic musical and dance routines to unsuspecting audiences. Similarly, Flash Mob Science takes the challenging (and often avoided) topic of earthquake and tsunami awareness and preparedness to unsuspecting audiences. However, Flash Mob Science seeks to move beyond having an audience of observers by engaging others as participants who enact important roles in an unfolding drama. We simulate the effects of seismic and tsunami events (e.g., prolonged surface shaking, falling debris, repeated tsunami surges) and model best practices in response (e.g., "Drop, Cover, Hold On" and moving quickly to high ground). True to the general flash mob model, when the Cascadia event inevitably does occur, it will come suddenly, and everyone affected will unavoidably be involved as actors in a real-life drama of immense scale. We seek to embed the learning of basic understandings and practices for an actual Cascadia event in a very small-scale, memorable, and sometimes even humorous, dramatization. We present here the lessons we have learned in the background, planning, and implementation of Flash Mob Science. We highlight the successes, limitations, and preliminary results evaluating the effectiveness of this outreach in developing learners' understandings and preparedness in an Oregon community affected by the CSZ.

  1. Factors which influence Texas biology teachers' decisions to emphasize fundamental concepts of evolution

    NASA Astrophysics Data System (ADS)

    Bilica, Kimberly Lynn

    The teaching of biological evolution in public science classrooms has been mitigated by a lingering and historic climate of controversy (Skoog, 1984; Skoog, 1979). This controversy has successfully stalled attempts to bring authentic science literacy to the American public (Bybee, 1997). The first encouraging signs of the abatement of this controversy occurred during the early 1990s when several prominent science organizations promoted evolution to its appropriate status as a central and unifying concept in biology (National Science Teachers Association, 1992; National Research Council, 1996; American Association for the Advancement of Science, 1990, 1993). The organizations acknowledged that not only should biological evolution be taught, evolution should stand as one of a select group of essential concepts upon which biology curricula should be built. Bandura's Social Learning theory (Bandura, 1997; Lumpe, Haney, & Czerniak, 2000) and Helms' Model of Identity (Helms, 1998) provide the theoretical basis for this study. Both Bandura and Helms explain the actions of teachers by examining the beliefs and values that influence their decisions. The models distinguish between two types of belief systems: capacity beliefs and context beliefs (Lumpe, et al, 2000; Helms, 1998). Both belief types influence and are influenced by individual actions. In this study, the action to be described is the decision that teachers make about the degree of emphasis on evolution in the classroom. The capacity beliefs that will be examined are teachers' beliefs about their capability to teach evolution. The contextual beliefs in this study are perceptions about students' capabilities to learn evolution, the status of evolution in science, the place of evolution in the biology classroom, the influence of textbooks, time, and community/school values. This study contributes to and extends the knowledge base established by studies of evolution education by exploring the relative amount of emphasis that Texas biology teachers currently as well as prefer to place on fundamental evolution concepts in relationship to specific belief factors which influence biology teachers' curricular decisions.

  2. Climate Change Student Summits: A Model that Works (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, L. T.

    2013-12-01

    The C2S2: Climate Change Student Summit project has completed four years of activities plus a year-long longitudinal evaluation with demonstrated positive impacts beyond the life of the project on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up from its Midwestern roots to achieve measurable national impact. A NOAA Environmental Literacy grant allowed ANDRILL (ANtarctic geological DRILLing) to grow a 2008 pilot program involving 2 Midwestern sites, to a program 4 years later involving 10 sites. The excellent geographical coverage included 9 of the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. Through the delivery of two professional development (PD) workshops, a unique opportunity was provided for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. For maximum contact hours, the PD experience was extended throughout the school year through the use of an online grouphub. Student teams were involved in a creative investigative science research and presentation experience culminating in a Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program was based on combining multiple aspects, such as encouraging the active involvement of scientists and early career researchers both in the professional development workshops and in the Student Summit. Another key factor was the close working relationships between informal and formal science entities, including involvement of informal science learning facilities and informal science education leaders. The program also created cutting-edge curriculum materials titled the ELF, (Environmental Literacy Framework with a focus on climate change), providing an earth systems approach to climate change education which have been successfully integrated into existing curricula in grades 4-12, as well as at numerous science museums.

  3. Ninth Graders' Learning Interests, Life Experiences and Attitudes Towards Science & Technology

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Nu; Yeung, Yau-Yuen; Cheng, May Hung

    2009-10-01

    Students' learning interests and attitudes toward science have both been studied for decades. However, the connection between them with students' life experiences about science and technology has not been addressed much. The purpose of this study is to investigate students' learning interests and life experiences about science and technology, and also their attitudes toward technology. A total of 942 urban ninth graders in Taiwan were invited to participate in this study. A Likert scale questionnaire, which was developed from an international project, ROSE, was adapted to collect students' ideas. The results indicated that boys showed higher learning interests in sustainability issues and scientific topics than girls. However, girls recalled more life experiences about science and technology in life than boys. The data also presented high values of Pearson correlation about learning interests and life experiences related to science and technology, and in the perspective on attitudes towards technology. Ways to promote girls' learning interests about science and technology and the implications of teaching and research are discussed as well.

  4. Examining Middle School Science Student Self-Regulated Learning in a Hypermedia Learning Environment through Microanalysis

    NASA Astrophysics Data System (ADS)

    Mandell, Brian E.

    The purpose of the present embedded mixed method study was to examine the self-regulatory processes used by high, average, and low achieving seventh grade students as they learned about a complex science topic from a hypermedia learning environment. Thirty participants were sampled. Participants were administered a number of measures to assess their achievement and self-efficacy. In addition, a microanalytic methodology, grounded in Zimmerman's cyclical model of self-regulated learning, was used to assess student self-regulated learning. It was hypothesized that there would be modest positive correlations between Zimmerman's three phases of self-regulated learning, that high achieving science students would deploy more self-regulatory subprocesses than average and low achieving science students, that high achieving science students would have higher self-efficacy beliefs to engage in self-regulated learning than average and low achieving science students, and that low achieving science students would over-estimate their self-efficacy for performance beliefs, average achieving science students would slightly overestimate their self-efficacy for performance beliefs, and high achieving science students would under-estimate their self-efficacy for performance beliefs. All hypotheses were supported except for the high achieving science students who under-estimated their self-efficacy for performance beliefs on the Declarative Knowledge Measure and slightly overestimated their self-efficacy for performance beliefs on the Conceptual Knowledge Measure. Finally, all measures of self-regulated learning were combined and entered into a regression formula to predict the students' scores on the two science tests, and it was revealed that the combined measure predicted 91% of the variance on the Declarative Knowledge Measure and 92% of the variance on the Conceptual Knowledge Measure. This study adds hypermedia learning environments to the contexts that the microanalytic methodology has been successfully administered. Educational implications and limitations to the study are also discussed.

  5. 2017 Hans O. Mauksch Address: Using the Science of Learning to Improve Student Learning in Sociology Classes

    ERIC Educational Resources Information Center

    Messineo, Melinda

    2018-01-01

    The 2017 Mauksch Address invites readers to consider how the field of sociology might benefit from greater inclusion of the science of learning into its pedagogy. Results from a survey of 92 teaching and learning experts in sociology reveal the degree to which the discipline's understanding of teaching and learning is informed by the science of…

  6. Family Science: An Ethnographic Case Study of the Ordinary Science and Literacy Experiences of One Family

    ERIC Educational Resources Information Center

    McCarty, Glenda M.

    2012-01-01

    Despite the copious research available on science learning, little is known about ways in which the public engages in free-choice science learning and even fewer studies have focused on how families engage in science to learn about the world around them. The same was true about studies of literacy development in the home until the 1980s when…

  7. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    ERIC Educational Resources Information Center

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  8. Nature of Science and Science Content Learning: The Relation between Students' Nature of Science Understanding and Their Learning about the Concept of Energy

    ERIC Educational Resources Information Center

    Michel, Hanno; Neumann, Irene

    2016-01-01

    Besides viewing knowledge about the nature of science (NOS) as important for its own value with respect to scientific literacy, an adequate understanding of NOS is expected to improve science content learning by fostering the ability to interrelate scientific concepts and, thus, coherently acquire scientific content knowledge. However, there is a…

  9. [Distance learning in postgraduate training of professionals. Example of occupational medicine specialization].

    PubMed

    Marcinkiewicz, Andrzej; Cybart, Adam; Chromińska-Szosland, Dorota

    2002-01-01

    The rapid development of science, technology, economy and the society has one along with the wide recognition of lifelong education and learning society concepts. Scientific centres worldwide conduct research how the access to the information and multimedia technology could bring about positive changes in our lives including improvement in education and the learning environment. Mankind development in conformity with social progress and sustainable development faces a new educational concept of learning society and open education in the information age, supported with multimedia and data processing technology. Constrains in resources availability for broadening the access to education had led to search for alternative, more time and cost-effective systems of education. One of them is distance learning, applied with success in many countries. The benefits of distance learning are well proven and can be extended to occupational medicine. Major advantages include: the integration of studies with work experience, flexibility, allowing studies to be matched to work requirements, perceived work and leisure timing, continuity of career progression. Likewise is in Poland this form of education becomes more and more popular. The distance education systems have been seen as an investment in human resource development. The vast variety of courses and educational stages makes possible the modern method of knowledge to be easily accessible. Experience of the School of Public Health in Łódź in distance learning had shown remarkable benefits of the method with comparable quality of intramural and distance learning in respect of the knowledge and experience gained by students.

  10. The connection between students' out-of-school experiences and science learning

    NASA Astrophysics Data System (ADS)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers have limited information about students' out-of-school experiences thus rarely integrate these experiences into their instructional practices. Fourth, the lack of learning objectives for activities structured in out-of-school settings coupled with the limited opportunities to integrate students' out of school experiences into classroom instructions are factors that may prevent students from making further connection of science learning across contexts.

  11. The Acquisition of Integrated Science Process Skills in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Saat, Rohaida Mohd

    2004-01-01

    Web-based learning is becoming prevalent in science learning. Some use specially designed programs, while others use materials available on the Internet. This qualitative case study examined the process of acquisition of integrated science process skills, particularly the skill of controlling variables, in a web-based learning environment among…

  12. Improving Engagement in Science: A Biosocial System Perspective.

    ERIC Educational Resources Information Center

    Hanrahan, Mary U.

    The goal of my multi-study research program has been to learn how to engage all students in learning science. Most learning theories applied to science pedagogy take either a psychological or a sociocultural perspective and hence ignore either sociocultural or motivational factors when considering classroom learning. Based on my own research…

  13. How WebQuests Can Enhance Science Learning Principles in the Classroom

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2012-01-01

    This article examines the merits of WebQuests in facilitating students' in-depth understanding of science concepts using the four principles of learning gathered from the National Research Council reports "How People Learn: Brain, Mind, Experience, and School" (1999) and the "How Students Learn: Science in the Classroom" (2005) as an analytic…

  14. Bringing ICT to Teach Science Education for Students with Learning Difficulties

    ERIC Educational Resources Information Center

    Harish, H. G. Jeya; Kumar, R. Krishna; Raja, B. William Dharma

    2013-01-01

    The purpose of the following study was to examine the impact of Information and Communication Technology (ICT) in Science classrooms of students with Learning Disabilities. Teachers were positive about the learning benefits and design of the Science curriculum. Students were more critical but still positive about these features. Learning Science…

  15. "Getting Practical" and the National Network of Science Learning Centres

    ERIC Educational Resources Information Center

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  16. Science Talk: Preservice Teachers Facilitating Science Learning in Diverse Afterschool Environments

    ERIC Educational Resources Information Center

    Cartwright, Tina Johnson

    2012-01-01

    The purpose of this study was to assess the impact a community-based service learning program might have on preservice teachers' science instruction during student teaching. Designed to promote science inquiry, preservice teachers learned how to offer students more opportunities to develop their own ways of thinking through utilization of an…

  17. Transformative Professional Development: Inquiry-Based College Science Teaching Institutes

    ERIC Educational Resources Information Center

    Zhao, Ningfeng; Witzig, Stephen B.; Weaver, Jan C.; Adams, John E.; Schmidt, Frank

    2012-01-01

    Two Summer Institutes funded by the National Science Foundation were held for current and future college science faculty. The overall goal was to promote learning and practice of inquiry-based college science teaching. We developed a collaborative and active learning format for participants that involved all phases of the 5E learning cycle of…

  18. Affordances of Augmented Reality in Science Learning: Suggestions for Future Research

    ERIC Educational Resources Information Center

    Cheng, Kun-Hung; Tsai, Chin-Chung

    2013-01-01

    Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education,…

  19. Report from the NSF/SSMA Wingspread Conference: A Network for Integrated Science and Mathematics Teaching and Learning.

    ERIC Educational Resources Information Center

    Berlin, Donna F.; White, Arthur L.

    1992-01-01

    Reports the proceedings of the Wingspread conference on integrating science and mathematics teaching and learning. Discusses (1) a literature review on integration of science and mathematics education; (2) development of definitions of integration; (3) specification of guidelines for infusing integrated teaching and learning into science and…

  20. Promoting Female Students' Learning Motivation towards Science by Exercising Hands-On Activities

    ERIC Educational Resources Information Center

    Wen-jin, Kuo; Chia-ju, Liu; Shi-an, Leou

    2012-01-01

    The purpose of this study is to design different hands-on science activities and investigate which activities could better promote female students' learning motivation towards science. This study conducted three types of science activities which contains nine hands-on activities, an experience scale and a learning motivation scale for data…

  1. Measuring Choice to Participate in Optional Science Learning Experiences during Early Adolescence

    ERIC Educational Resources Information Center

    Sha, Li; Schunn, Christian; Bathgate, Meghan

    2015-01-01

    Cumulatively, participation in optional science learning experiences in school, after school, at home, and in the community may have a large impact on student interest in and knowledge of science. Therefore, interventions can have large long-term effects if they change student choice preferences for such optional science learning experiences. To…

  2. Enacting Informal Science Learning: Exploring the Battle for Informal Learning

    ERIC Educational Resources Information Center

    Clapham, Andrew

    2016-01-01

    Informal Science Learning (ISL) is a policy narrative of interest in the United Kingdom and abroad. This paper explores how a group of English secondary school science teachers, enacted ISL science clubs through employing the Periodic Table of Videos. It examines how these teachers "battled" to enact ISL policy in performative conditions…

  3. Student Learning in Science Simulations: Design Features that Promote Learning Gains

    ERIC Educational Resources Information Center

    Scalise, Kathleen; Timms, Michael; Moorjani, Anita; Clark, LaKisha; Holtermann, Karen; Irvin, P. Shawn

    2011-01-01

    This research examines science-simulation software available for grades 6-12 science courses. The study presented, funded by the National Science Foundation, had two objectives: a literature synthesis and a product review. The literature synthesis examines research findings on grade 6-12 student learning gains and losses using virtual laboratories…

  4. Science Communication Training: What Are We Trying to Teach?

    ERIC Educational Resources Information Center

    Baram-Tsabari, Ayelet; Lewenstein, Bruce V.

    2017-01-01

    Rapid growth in public communication of science and technology has led to many diverse training programs. We ask: What are learning goals of science communication training? A comprehensive set of learning goals for future trainings will draw fully from the range of fields that contribute to science communication. Learning goals help decide what to…

  5. Science Learning Motivation as Correlate of Students' Academic Performances

    ERIC Educational Resources Information Center

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P., Jr.; Dupa, Maria Elena D.; Bautista, Romiro G.

    2016-01-01

    This study was designed to analyze the relationship of students' learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of…

  6. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    NASA Astrophysics Data System (ADS)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated that the experience validated their science and science-related career choices. Results imply that these changes have the potential to strengthen the undergraduate pursuit of science-related careers and will contribute positive influences to our education system and society at large.

  7. Challenges and Support When Teaching Science Through an Integrated Inquiry and Literacy Approach

    NASA Astrophysics Data System (ADS)

    Ødegaard, Marianne; Haug, Berit; Mork, Sonja M.; Ove Sørvik, Gard

    2014-12-01

    In the Budding Science and Literacy project, we explored how working with an integrated inquiry-based science and literacy approach may challenge and support the teaching and learning of science at the classroom level. By studying the inter-relationship between multiple learning modalities and phases of inquiry, we wished to illuminate possible dynamics between science inquiry and literacy in an integrated science approach. Six teachers and their students were recruited from a professional development course for the current classroom study. The teachers were to try out the Budding Science teaching model. This paper presents an overall video analysis of our material demonstrating variations and patterns of inquiry-based science and literacy activities. Our analysis revealed that multiple learning modalities (read it, write it, do it, and talk it) are used in the integrated approach; oral activities dominate. The inquiry phases shifted throughout the students' investigations, but the consolidating phases of discussion and communication were given less space. The data phase of inquiry seems essential as a driving force for engaging in science learning in consolidating situations. The multiple learning modalities were integrated in all inquiry phases, but to a greater extent in preparation and data. Our results indicate that literacy activities embedded in science inquiry provide support for teaching and learning science; however, the greatest challenge for teachers is to find the time and courage to exploit the discussion and communication phases to consolidate the students' conceptual learning.

  8. Students interest in learning science through fieldwork activity encourage critical thinking and problem solving skills among UPSI pre-university students

    NASA Astrophysics Data System (ADS)

    Jamil, Siti Zaheera Muhamad; Khairuddin, Raja Farhana Raja

    2017-05-01

    Graduates with good critical thinking and problem solving (CTPS) skills are likely to boost their employability to live in 21st century. The demands of graduates to be equipped with CTPS skills have shifted our education system in focusing on these elements in all levels of education, from primary, the secondary, and up to the tertiary education, by fostering interesting teaching and learning activities such as fieldwork activity in science classes. Despite the importance of the CTPS skills, little is known about whether students' interests in teaching and learning activities, such as fieldwork activity, have any influence on the students CTPS skills. Therefore, in this investigation, firstly to examine students interests in learning science through fieldwork activity. Secondly, this study examined whether the students' interest in learning science through fieldwork activity have affect on how the students employ CTPS skills. About 100 Diploma of Science students in Universiti Pendidikan Sultan Idris (UPSI) were randomly chosen to participate in this study. All of the participants completed a survey on how they find the fieldwork activity implemented in their science classes and it relevents towards their CTPS skills development. From our findings, majority of the students (91%) find that fieldwork activity is interesting and helpful in increasing their interest in learning science (learning factor) and accommodate their learning process (utility). Results suggest that students' interest on the fieldwork activity in science classes does have some influence on the students development of CTPS skills. The findings could be used as an initial guideline by incorporating students' interest on other teaching and learning activities that being implemented in science classes in order to know the impacts of these learning activities in enhancing their CTPS skills.

  9. Designing a primary science curriculum in a globalizing world: How do social constructivism and Vietnamese culture meet?

    NASA Astrophysics Data System (ADS)

    Hằng, Ngô Vũ Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2017-09-01

    The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written curriculum for primary science education in which features of social constructivist approaches to learning are synthesized with essential aspects of Vietnamese culture. The written design comprises learning aims, a framework that is the synthesis of learning functions, learning settings and educational expectations for learning phases, and exemplary curriculum units. Learning aims are formulated to comprehensively develop scientific knowledge, skills, and attitudes toward science for primary students. Derived from these learning aims, the designed framework consists of four learning phases respectively labeled as Engagement, Experience, Exchange, and Follow-up. The designed framework refers to knowledge of the "nature of science" education and characteristics of Vietnamese culture as an example of Confucian heritage culture. The curriculum design aims to serve as an educational product that addresses previously analyzed problems of primary science education in the Vietnamese culture in a globalizing world.

  10. On learning science and pseudoscience from prime-time television programming

    NASA Astrophysics Data System (ADS)

    Whittle, Christopher Henry

    The purpose of the present dissertation is to determine whether the viewing of two particular prime-time television programs, ER and The X-Files, increases viewer knowledge of science and to identify factors that may influence learning from entertainment television programming. Viewer knowledge of scientific dialogue from two science-based prime-time television programs, ER, a serial drama in a hospital emergency room and The X-Files, a drama about two Federal Bureau of Investigation agents who pursue alleged extraterrestrial life and paranormal activity, is studied. Level of viewing, education level, science education level, experiential factors, level of parasocial interaction, and demographic characteristics are assessed as independent variables affecting learning from entertainment television viewing. The present research involved a nine-month long content analysis of target television program dialogue and data collection from an Internet-based survey questionnaire posted to target program-specific on-line "chat" groups. The present study demonstrated that entertainment television program viewers incidentally learn science from entertainment television program dialogue. The more they watch, the more they learn. Viewing a pseudoscientific fictional television program does necessarily influence viewer beliefs in pseudoscience. Higher levels of formal science study are reflected in more science learning and less learning of pseudoscience from entertainment television program viewing. Pseudoscience learning from entertainment television programming is significantly related to experience with paranormal phenomena, higher levels of viewer parasocial interaction, and specifically, higher levels of cognitive parasocial interaction. In summary, the greater a viewer's understanding of science the more they learn when they watch their favorite science-based prime-time television programs. Viewers of pseudoscience-based prime-time television programming with higher levels of paranormal experiences and parasocial interaction demonstrate cognitive interest in and learning of their favorite television program characters ideas and beliefs. What television viewers learn from television is related to what they bring to the viewing experience. Television viewers are always learning, even when their intentions are to simply relax and watch the tube.

  11. Inquiry-Based Early Undergraduate Research Using High-Altitude Ballooning

    NASA Astrophysics Data System (ADS)

    Sibbernsen, K.; Sibbernsen, M.

    2012-12-01

    One common objective for undergraduate science classes is to have students learn how to do scientific inquiry. However, often in science laboratory classes, students learn to take data, analyze the data, and come to conclusions, but they are told what to study and do not have the opportunity to ask their own research questions, a crucial part of scientific inquiry. A special topics class in high-altitude ballooning (HAB) was offered at Metropolitan Community College, a large metropolitan two-year college in Omaha, Nebraska to focus on scientific inquiry for the participants through support of NASA Nebraska Space Grant. A weather balloon with payloads attached (balloonSAT) was launched to near space where the balloon burst and fell back to the ground with a parachute. Students worked in small groups to ask their research questions, they designed their payloads, participated in the launch and retrieval of equipment, analyzed data, and presented the results of their research. This type of experience has potential uses in physics, physical science, engineering, electronics, computer programming, meteorology, astronomy, and chemistry classes. The balloonSAT experience can act as a stepping-stone to designing sounding rocket payloads and it can allow students the opportunity to participate in regional competitions and present at HAB conferences. Results from the workshop are shared, as well as student responses to the experience and suggestions for administering a high-altitude ballooning program for undergraduates or extending inquiry-based ballooning experiences into high-school or middle-school.

  12. Taking an active stance: How urban elementary students connect sociocultural experiences in learning science

    NASA Astrophysics Data System (ADS)

    Upadhyay, Bhaskar; Maruyama, Geoffrey; Albrecht, Nancy

    2017-12-01

    In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards self-determining the sciences that are personally meaningful. Furthermore, tying sociocultural experiences with science learning helps generate sociopolitical awareness among students. We collected interview and observation data in an urban elementary classroom over one academic year to understand the value of urban students' sociocultural experiences in learning science and choosing science activities.

  13. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning With an iPad

    NASA Astrophysics Data System (ADS)

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-12-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, predict-observe-explain (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning process, as well as the learning progress, a pretest and a posttest were given to 152 grade 5 elementary school students. The students practiced WhyWhy during six sessions over 6 weeks, and data related to interest in learning science (ILS), cognitive anxiety (CA), and extraneous cognitive load (ECL) were collected and analyzed through confirmatory factor analysis with structure equation modeling. The results showed that students with high ILS have low CA and ECL. In addition, the results also indicated that students with a high level of self-confidence enhancement showed significant improvement in the posttest. The implications of this study suggest that by using technology-enhanced science learning, the POE model is a practical approach to motivate students to learn.

  14. Radio Galaxy Zoo: compact and extended radio source classification with deep learning

    NASA Astrophysics Data System (ADS)

    Lukic, V.; Brüggen, M.; Banfield, J. K.; Wong, O. I.; Rudnick, L.; Norris, R. P.; Simmons, B.

    2018-05-01

    Machine learning techniques have been increasingly useful in astronomical applications over the last few years, for example in the morphological classification of galaxies. Convolutional neural networks have proven to be highly effective in classifying objects in image data. In the context of radio-interferometric imaging in astronomy, we looked for ways to identify multiple components of individual sources. To this effect, we design a convolutional neural network to differentiate between different morphology classes using sources from the Radio Galaxy Zoo (RGZ) citizen science project. In this first step, we focus on exploring the factors that affect the performance of such neural networks, such as the amount of training data, number and nature of layers, and the hyperparameters. We begin with a simple experiment in which we only differentiate between two extreme morphologies, using compact and multiple-component extended sources. We found that a three-convolutional layer architecture yielded very good results, achieving a classification accuracy of 97.4 per cent on a test data set. The same architecture was then tested on a four-class problem where we let the network classify sources into compact and three classes of extended sources, achieving a test accuracy of 93.5 per cent. The best-performing convolutional neural network set-up has been verified against RGZ Data Release 1 where a final test accuracy of 94.8 per cent was obtained, using both original and augmented images. The use of sigma clipping does not offer a significant benefit overall, except in cases with a small number of training images.

  15. Perspectives on learning, learning to teach and teaching elementary science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first-year elementary teacher's specialized knowledge and practices for giving priority to evidence in science teaching. The findings of this study indicated that Jean not only articulated, but also enacted, a student-centered approach to teaching science, which emphasized giving priority to evidence in the construction of scientific explanations. It also became evident through data analysis that Jean's practices were for the most part consistent with her knowledge and beliefs. This contradicts the findings of previous studies that indicate a mismatch between beginning teachers' knowledge and practices. Furthermore, the findings of this study illustrated that critical experiences during teacher preparation and specific university coursework acted as sources through which this aspect of pedagogical content knowledge was generated. The third manuscript proposes new directions for teaching science in elementary schools in Cyprus and makes recommendations to improve the current teacher preparation program in light of the need for a reform. This manuscript is built upon contemporary perspectives of learning and cognition, and is informed by current trends in science education in the United States and United Kingdom. Issues of teaching and learning science as inquiry, engaging in scientific argumentation, and the use of software scaffolds in support of learning and learning to teach science are discussed with special attention to the unique educational setting of Cyprus.

  16. Creating Personal Meaning through Technology-Supported Science Inquiry Learning across Formal and Informal Settings

    NASA Astrophysics Data System (ADS)

    Anastopoulou, Stamatina; Sharples, Mike; Ainsworth, Shaaron; Crook, Charles; O'Malley, Claire; Wright, Michael

    2012-01-01

    In this paper, a novel approach to engaging students in personal inquiry learning is described, whereby they carry out scientific investigations that are personally meaningful and relevant to their everyday lives. The learners are supported by software that guides the inquiry process, extending from the classroom into the school grounds, home, or outdoors. We report on a case study of personal inquiry learning with 28 high school students on the topic of healthy eating. An analysis of how the personal inquiry was enacted in the classroom and at home, based on issues identified from a study of interviews with the students and their teacher, is provided. The outcomes showed that students were alerted to challenges associated with fieldwork and how they responded to the uncertainty and challenge of an open investigation. The study, moreover, raised an unexpected difficulty for researchers of finding the 'sweet spot' between scientifically objective but unengaging inquiry topics, and ones that are personally meaningful but potentially embarrassing. Implications for further research are shaped around ways of overcoming this difficulty.

  17. Understanding Children's Science Identity through Classroom Interactions

    ERIC Educational Resources Information Center

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity.…

  18. Qualitative research study of high-achieving females' life experiences impacting success

    NASA Astrophysics Data System (ADS)

    Butcher, Ann Patrice

    2003-07-01

    This qualitative study investigated the life experiences of five academically gifted female students in math and science in reflection of their elementary learning prior to enrollment at a prestigious science and mathematics high school. The elite high school limits admission to the state of Illinois' top students. The purpose of this study is to unfold the story of five academically gifted females in attendance at the elite high school reflecting on their life experiences in elementary school that contributed to their current academic success. Twelve female students, who at the time of this study were currently in their senior year (12th grade) of high school, were solicited from the top academic groups who are regarded by their teachers as highly successful in class. Students were selected as part of the study based on academic status, survey completion and interest in study, Caucasian and Asian ethnicity, locale of elementary school with preference given to the variety of school demographics---urban, suburban, and rural---further defined the group to the core group of five. All female participants were personally interviewed and communicated via Internet with the researcher. Parents and teachers completing surveys as well met the methodological requirements of triangulation. An emergent theme of paternal influence came from the research. Implications supported in the research drawn from this study to increase achievement of academically gifted females include: (a) proper early identification of learner strengths plays a role; (b) learning with appropriate intellectual peers is more important than learning with their age group; (c) teachers are the greatest force for excellent instruction; (d) effective teaching strategies include cooperative learning, multi-sensory learning, problem-based learning, and hands-on science; (e) rigor in math is important; (f) gender and stereotypes need not be barriers; (g) outside interests and activities are important for self-concept; (h) high parental expectations and the parental role, especially the father's role, are imperative; and (i) reading avidly was preferred over watching television. Further research is needed to verify all components and interactions of the same with a greater sample of gifted students, by extending the study to include the male counterpart and by providing additional validity to elementary instruction and the success of academically gifted students.

  19. A case of learning to teach elementary science: Investigating beliefs, experiences, and tensions

    NASA Astrophysics Data System (ADS)

    Bryan, Lynn Ann

    This study examines how preservice elementary teacher beliefs and experiences within the context of reflective science teacher education influence the development of professional knowledge. From a cognitive constructivist theoretical perspective, I conducted a case analysis to investigate the beliefs about science teaching and learning held by a preservice teacher (Barbara), identify the tensions she encountered in learning to teach elementary science, understand the frames from which she identified problems of practice, and discern how her experiences influenced the process of reflecting on her own science teaching. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs about science teaching and learning. Her foundational beliefs concerned: (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about: (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. The dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in life-long science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well-grounded in experience, embraced a hands-on approach and predominantly guided her vision of practice. Barbara encountered tensions in thinking about science teaching and learning as a result of inconsistencies between her vision of science teaching and her actual practice. Confronting these tensions prompted Barbara to rethink the connections between her classroom actions and students' learning, create new perspectives for viewing her practice, and consider alternative practices more resonant with her visionary beliefs. However, the self-reinforcing belief system created by her didactic nest of beliefs, control beliefs, and belief about the goals of science instruction prevented Barbara from enacting new frames in practice. The findings contribute to an understanding of the relationship between beliefs and experiences in learning to teach and indicate that reframing is crucial in developing professional knowledge. Furthermore, the findings underscore the significance of (a) identifying prospective teachers' beliefs for designing teacher preparation programs, and (b) offering experiences as professionals early in the careers of prospective teachers.

  20. Conceptualizing science learning as a collective social practice: changing the social pedagogical compass for a child with visual impairment

    NASA Astrophysics Data System (ADS)

    Fleer, Marilyn; March, Sue

    2015-09-01

    The international literature on science learning in inclusive settings has a long history, but it is generally very limited in scope. Few studies have been undertaken that draw upon a cultural-historical reading of inclusive pedagogy, and even less in the area of science education. In addition, we know next to nothing about the science learning of preschool children with visual impairment using cultural-historical theory. This paper seeks to fill this gap by presenting a study of one child with Albinism who participated in a unit of early childhood science where fairy tales were used for learning about the concepts of sound and growth. This paper reports upon the social and material conditions that were created to support learning in the preschool, whilst also examining how the learning of growth and sound were supported at home. The study found three new pedagogical features for inclusion: Imagination in science; Ongoing scientific narrative; and Scientific mirroring. It was found that when a dialectical reading of home and centre practices feature, greater insights into inclusive pedagogy for science learning are afforded, and a view of science as a collective enterprise emerges. It is argued that a cultural-historical conception of inclusion demands that the social conditions, rather than the biology of the child, is foregrounded, and through this greater insights into how science learning for children with visual impairment is gained.

  1. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    NASA Astrophysics Data System (ADS)

    Zhai, Junqing; Tan, Aik-Ling

    2015-12-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers can play the role of (1) dispenser of knowledge (giver), (2) mentor of learning (advisor), (3) monitor of students' activities (police), and (4) partner in inquiry (colearner). These roles are dynamic, and while teachers show a preference for one of the four roles, factors such as the nature of the task, the types of students, as well as the availability of time and resources affect the role that teachers adopt. The roles that teachers play in the classroom have implications for the practice of science as inquiry in the classroom as well as the identities that teachers and students form in the science learning process.

  2. Controversy in the classroom: How eighth-grade and undergraduate students reason about tradeoffs of genetically modified food

    NASA Astrophysics Data System (ADS)

    Seethaler, Sherry Lynn

    Current issues in science provide a rich context for learning because they can involve complex tradeoffs that cut across traditional disciplinary boundaries. Despite this potential benefit, and the need for citizens to make decisions about such issues, science controversy remains rare in the classroom. Consequently, there is much unknown about how students make sense of complex, multidisciplinary science. This research examined eighth-grade (n = 190) and undergraduate (n = 9) students' reasoning about tradeoffs in the genetically modified food controversy (main study). To extend the findings from the main study, undergraduate students' reasoning was followed as they learned about ten additional science controversies (extension). The studies took place in the context of curricula designed on the basis of the Scaffolded Knowledge Integration Framework, which posits a set of design principles that help students form a rich, integrated network of ideas about a topic. Two new methodologies were developed for this work. The Embedded Perspective of Science Controversy was used to study students' integration of content in their written arguments (main study) and oral and written questions (extension). The Perspective views science controversy as a set of nested levels, where tradeoffs are one of the levels, but connecting to other levels (underlying scientific details, bigger picture context, etc.) is important for the weighing of tradeoffs. A scheme based on Toulmin's (1958) work on argumentation provided a way of comparing the structure of students' arguments. As indicated by pre and post test scores, the curriculum helped both eighth-grade students (t = 11.7, p < 0.0001) and undergraduates (t = 13.9, p < 0.0001) learn about genetically modified food. In their final papers, both eighth-grade and undergraduate students presented evidence for and against their positions, in contrast with prior literature showing individuals have difficulty coming up with evidence against their positions. The students were also moving across the levels in the Embedded Perspective, also in contrast with work that has shown individuals fail to consider tradeoffs in an appropriate context. There were differences in eighth-grade and undergraduate students' reasoning, including how well they weighed tradeoffs. These differences were linked to differences in content knowledge, metacognition, and students' views of what constitutes good evidence.

  3. An investigation of components of the studio model and supplemental online materials, on student achievement and attitudes in science at the high school level

    NASA Astrophysics Data System (ADS)

    Faro, Salvatore T.

    With the increase of the student population, and meeting the demands driven by society public schools are scrambling to find ways to enhance learning and improve student achievement (Lee, 1993). Schools are examining and investing more time in the development of new approaches needed to strengthen, reach, and spark the interest of students both in and outside of classroom. One direction public schools are taking is to incorporate technology and more peer-directed group activities into instruction. Technological advancements today have enhanced the learning process by providing alternatives that stimulate the interest of the learner. Having these technology options available, allows the student to move at his or her own pace giving them time to reflect and make connections between what they already know and what they have learned in class. Using the conceptual framework of the Studio Model, which was developed in the 1980s at Rensselaer Polytechnic Institute for undergraduate and graduate level science courses, this study investigated the nature and extent to which the components in the Studio Model (cooperative collaboration and online materials) can be extended to the high school science level. A quasi-experimental, pretest-posttest design was selected for this study. Classes were randomly assigned to one of the four treatment groups, an experimental "Studio Model" condition in which students worked cooperatively and had access to online materials, an "Augmented Only" condition in which students had access to online materials only, a "Cooperative Only" condition in which students worked in cooperative groups only, and a "Control" condition in which students neither had access to online materials nor worked cooperatively. The data was collected for this study using 77 ninth-grade students studying Earth Science. Students were trained for a period of 20 weeks in the procedures of their particular treatment. To determine the effects of each treatment on student achievement three separate tests (aptitude, pretest and posttest) were administered over a seven-month period. Twelve interviews were also carried out at the end of the eight weeks to determine whether the students' attitude about science had changed since the beginning of the year. This study provides evidence supporting the usage of the Studio Model to raise student achievement and student attitudes about science at the high school level.

  4. Advancing the prevention agenda for HIV and other sexually transmitted infections in South China: social science research to inform effective public health interventions

    PubMed Central

    Muessig, Kathryn E.; Smith, M. Kumi; Maman, Suzanne; Huang, Yingying; Chen, Xiang-sheng

    2014-01-01

    Despite widespread biomedical advances in treatment, HIV and other sexually transmitted infections (STI) continue to affect a large portion of the world's population. The profoundly social nature of behaviorally driven epidemics and disparities across socioeconomic divides in the distribution of HIV/STI and care outcomes emphasize the need for innovative, multilevel interventions. Interdisciplinary approaches to HIV/STI control are needed to combine insights from the social and biological sciences and public health fields. In this concluding essay to a Special Issue on HIV/STI in south China, we describe the evolution of China's HIV/STI epidemics and the government response; then synthesize findings from the 11 studies presented in this issues to extend seven recommendations for future HIV/STI prevention and care research in China. We discuss lessons learned from forging international collaborations between social science and public health to inform a shared research agenda to better meet the needs of those most affected by HIV and other STI. PMID:24443101

  5. The Center for Informal Learning and Schools' Informal Learning Certificate (ILC) Program: Professional Development and Community for Informal Science Educators Working with Schools. An Evaluation Report

    ERIC Educational Resources Information Center

    Smith, Anita; Helms, Jenifer V.; St. John, Mark

    2007-01-01

    Inverness Research Associates served as external evaluators for the Center for Informal Learning and Schools (CILS) from its inception in 2002 as a National Science Foundation (NSF)-funded Center for Learning and Teaching. One of the programs that CILS developed was the Informal Learning Certificate (ILC) for informal science educators (mostly…

  6. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning with an iPad

    ERIC Educational Resources Information Center

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-01-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, "predict-observe-explain" (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning…

  7. Influence of Professional Learning Community (PLC) on Learning a Constructivist Teaching Approach (POE): A Case of Secondary Science Teachers in Bangladesh

    ERIC Educational Resources Information Center

    Rahman, S. M. Hafizur

    2012-01-01

    No major change has occurred up until now with regard to the teaching-learning methods of science used in Bangladesh. Teachers, in most cases, tend to teach the same things in the same ways they were taught when they were students. This study will, therefore, investigate how science teachers' learning in a professional learning community (PLC)…

  8. From dioramas to the dinner table: An ethnographic case study of the role of science museums in family life

    NASA Astrophysics Data System (ADS)

    Ellenbogen, Kirsten M.

    What we know about learning in museums tends to come from studies of single museum visits evaluating success according to the museum's agenda, neglecting the impressive cooperative learning strategies and resources that families bring to their museum experiences. This is a report of an ethnographic case study of four families that visit science museums frequently. The study used ethnographic research and discourse analysis as combined methodological approaches, and was grounded in a sociocultural perspective that frames science as a socially and culturally constituted activity. Over eighteen months, data were collected during observations of the families in science museums, at home, and at other leisure sites. The study generated two types of findings. First, macroanalysis based on established frameworks for understanding learning in museums revealed differences in the orientation and extent of the museum visits. Additionally, a hierarchical framework for measuring science learning in museums proved insensitive. These findings underscore limitations of some of the traditional frameworks for understanding family learning in science museums. Second, microanalysis of interactions around science objects at home and in museums revealed that parents provided children with opportunities to understand the "middle ground" of science. Analysis also revealed that families adapted the science content of the museum to renegotiate family identities. Interestingly, the types of discourse most valued in science education were least important for establishing family identity. These frequent museumgoers eliminated the distance between them and science objects by transforming their meanings to establish family identity. This study demonstrates that the families' mediating strategies shape not just an understanding of science, but also a family identity that is constructed in and through interactions with science. The results of this study provide a foundation for examining how families use museums over time and the network of learning resources that support family life. This study suggests possible ways for museum professionals to reconsider the design of learning activities, museum environments, and a shift in focus from the learning institution of the science museum to the learning institution of the family.

  9. Situated Learning in Computer Science Education

    ERIC Educational Resources Information Center

    Ben-Ari, Mordechai

    2004-01-01

    Sociocultural theories of learning such as Wenger and Lave's situated learning have been suggested as alternatives to cognitive theories of learning like constructivism. This article examines situated learning within the context of computer science (CS) education. Situated learning accurately describes some CS communities like open-source software…

  10. Does Variability Across Events Affect Verb Learning in English, Mandarin and Korean?

    PubMed Central

    Childers, Jane B.; Paik, Jae H.; Flores, Melissa; Lai, Gabrielle; Dolan, Megan

    2016-01-01

    Extending new verbs is important to becoming a productive speaker of a language. Prior results show children have difficulty extending verbs when they have seen events with varied agents. This paper further examines the impact of variability on verb learning, and asks whether this interacts with event complexity or differs by language. Children (aged 2 ½- to 3-years) in the U.S., China, Korea and Singapore learned verbs linked to simple and complex events. Sets of events included one or three agents, and children were asked to extend the verb at test. Children learning verbs linked to simple movements performed similarly across conditions. However, children learning verbs linked to events with multiple objects were less successful if those events were enacted by multiple agents. A follow-up study rules out an influence of event order. Overall, similar patterns of results emerged across languages, suggesting common cognitive processes support children’s verb learning. PMID:27457679

  11. Learning Robotics in a Science Museum Theatre Play: Investigation of Learning Outcomes, Contexts and Experiences

    ERIC Educational Resources Information Center

    Peleg, Ran; Baram-Tsabari, Ayelet

    2017-01-01

    Theatre is often introduced into science museums to enhance visitor experience. While learning in museums exhibitions received considerable research attention, learning from museum theatre has not. The goal of this exploratory study was to investigate the potential educational role of a science museum theatre play. The study aimed to investigate…

  12. Utilization of Smartphones in Science Teaching and Learning in Selected Universities in Ghana

    ERIC Educational Resources Information Center

    Twum, Rosemary

    2017-01-01

    This study was designed to examine the use of mobile phone, a widespread technology, and determined how this technology influences science students' learning. The study intended to examine the use of smartphones in science teaching and learning and propose of model in the use of smartphones for teaching and learning. The research design employed…

  13. Test-Enhanced Learning: The Potential for Testing to Promote Greater Learning in Undergraduate Science Courses

    ERIC Educational Resources Information Center

    Brame, Cynthia J.; Biel, Rachel

    2015-01-01

    Testing within the science classroom is commonly used for both formative and summative assessment purposes to let the student and the instructor gauge progress toward learning goals. Research within cognitive science suggests, however, that testing can also be a learning event. We present summaries of studies that suggest that repeated retrieval…

  14. Families Support Their Children's Success in Science Learning by Influencing Interest and Self-efficacy

    ERIC Educational Resources Information Center

    Sha, Li; Schunn, Christian; Bathgate, Meghan; Ben-Eliyahu, Adar

    2016-01-01

    How is a child's successful participation in science learning shaped by their family's support? We focus on the critical time period of early adolescents, testing (i) whether the child's perception of family support is important for both choice preferences to participate in optional learning experiences and engagement during science learning, and…

  15. "Wow! Look at That!": Discourse as a Means to Improve Teachers' Science Content Learning in Informal Science Institutions

    ERIC Educational Resources Information Center

    Holliday, Gary M.; Lederman, Judith S.; Lederman, Norman G.

    2014-01-01

    Currently, it is not clear whether professional development staff at Informal Science Institutions (ISIs) are considering the way exhibits contribute to the social aspects of learning as described by the contextual model of learning (CML) (Falk & Dierking in "The museum experience." Whalesback, Washington, 1992; "Learning from…

  16. Food Science Education and the Cognitive Science of Learning

    ERIC Educational Resources Information Center

    Chew, Stephen L.

    2014-01-01

    In this essay, I argue that the traditional view of teaching, that the teacher's responsibility is to present information that students are solely responsible for learning, has been rendered untenable by cognitive science research in learning. The teacher can have a powerful effect on student learning by teaching not only content, but how to…

  17. The Effectiveness of Three Experiential Teaching Approaches on Student Science Learning in Fifth-Grade Public School Classrooms.

    ERIC Educational Resources Information Center

    Powell, Kristin; Wells, Marcella

    2002-01-01

    Compares the effects of three experiential science lessons in meeting the objectives of the Colorado model content science standards. Uses Kolb's (1984) experiential learning model as a framework for understanding the process by which students engage in learning when participating in experiential learning activities. Uses classroom exams and…

  18. Development and Validation of an Instrument to Measure Students' Motivation and Self-Regulation in Science Learning

    ERIC Educational Resources Information Center

    Velayutham, Sunitadevi; Aldridge, Jill; Fraser, Barry

    2011-01-01

    Students' motivational beliefs and self-regulatory practices have been identified as instrumental in influencing the engagement of students in the learning process. An important aim of science education is to empower students by nurturing the belief that they can succeed in science learning and to cultivate the adaptive learning strategies…

  19. Addressing Diversity in Health Science Students by Enhancing Flexibility through e-Learning

    ERIC Educational Resources Information Center

    Penman, Joy; Thalluri, Jyothi

    2014-01-01

    The technological advancements for teaching and learning sciences for health science students are embedded in the Thalluri-Penman Good Practice Model, which aims to improve the learning experiences of science students and increase student retention and success rates. The model also links students from urban and rural areas, studying both on-and…

  20. Investigation of Primary Education Second Level Students' Motivations toward Science Learning in Terms of Various Factors

    ERIC Educational Resources Information Center

    Sert Çibik, Ayse

    2014-01-01

    The purpose of this research was to investigate the primary education second level students' motivations towards science learning in terms of various factors. Within the research, the variation of the total motivational scores in science learning according to the gender, class, socio-economic levels, success in science-technology course and…

  1. Science Teacher Learning Progressions: A Review of Science Teachers' Pedagogical Content Knowledge Development

    ERIC Educational Resources Information Center

    Schneider, Rebecca M.; Plasman, Kellie

    2011-01-01

    Learning progressions are the successively more sophisticated ways of thinking about an idea that follow one another over a broad span of time. This review examines the research on science teachers' pedagogical content knowledge (PCK) in order to refine ideas about science teacher learning progressions and how to support them. Research published…

  2. Parental Attitudes and the Effects of Ethnicity: How They Influence Children's Attitudes toward Science Education

    ERIC Educational Resources Information Center

    Alrehaly, Essa D.

    2011-01-01

    The purpose of this study was to explore the manner in which parents' attitudes toward science learning influences their children's attitudes and the effect of ethnicity on attitudes toward science learning. The results of this study show that parental attitudes toward science learning were influenced by both parents' early life experiences and…

  3. Teaching and Learning Science through Song: Exploring the Experiences of Students and Teachers

    ERIC Educational Resources Information Center

    Governor, Donna; Hall, Jori; Jackson, David

    2013-01-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and…

  4. The Effects of Prior-Knowledge and Online Learning Approaches on Students' Inquiry and Argumentation Abilities

    ERIC Educational Resources Information Center

    Yang, Wen-Tsung; Lin, Yu-Ren; She, Hsiao-Ching; Huang, Kai-Yi

    2015-01-01

    This study investigated the effects of students' prior science knowledge and online learning approaches (social and individual) on their learning with regard to three topics: science concepts, inquiry, and argumentation. Two science teachers and 118 students from 4 eighth-grade science classes were invited to participate in this research. Students…

  5. Pathways in Learning to Teach Elementary Science: Navigating Contexts, Roles, Affordances and Constraints

    ERIC Educational Resources Information Center

    Smith, Deborah C.; Jang, Shinho

    2011-01-01

    This case study of a fifth-year elementary intern's pathway in learning to teach science focused on her science methods course, placement science teaching, and reflections as a first-year teacher. We studied the sociocultural contexts within which the intern learned, their affordances and constraints, and participants' perspectives on their roles…

  6. Fifth Graders' Flow Experience in a Digital Game-Based Science Learning Environment

    ERIC Educational Resources Information Center

    Zheng, Meixun

    2012-01-01

    This mixed methods study examined the flow experience of 5th graders in the CRYSTAL ISLAND game-based science learning environment. Participants were 73 5th graders from a suburban public school in the southeastern US. Quantitative data about students' science content learning and attitudes towards science was collected via pre-and post surveys.…

  7. Bridging the Design-Science Gap with Tools: Science Learning and Design Behaviors in a Simulated Environment for Engineering Design

    ERIC Educational Resources Information Center

    Chao, Jie; Xie, Charles; Nourian, Saeid; Chen, Guanhua; Bailey, Siobhan; Goldstein, Molly H.; Purzer, Senay; Adams, Robin S.; Tutwiler, M. Shane

    2017-01-01

    Many pedagogical innovations aim to integrate engineering design and science learning. However, students frequently show little attempt or have difficulties in connecting their design projects with the underlying science. Drawing upon the Cultural-Historical Activity Theory, we argue that the design tools available in a learning environment…

  8. Science Practical Work Instructional Technologies and Open Distance Learning in Science Teacher Training: A Case Study in Zimbabwe

    ERIC Educational Resources Information Center

    Bhukuvhani, Crispen; Mupa, Mathew; Mhishi, Misheck; Dziva, Daimond

    2012-01-01

    The practical work component offers unique challenges for university science courses. This is even more pertinent in an Open and Distance Learning (ODL) environment like the Bindura University of Science Education's Virtual and Open Distance Learning (VODL) programme. Effective ODL education should be flexible enough to accommodate science…

  9. Our Practice, Their Readiness: Teacher Educators Collaborate to Explore and Improve Preservice Teacher Readiness for Science and Math Instruction

    NASA Astrophysics Data System (ADS)

    Steele, Astrid; Brew, Christine; Rees, Carol; Ibrahim-Khan, Sheliza

    2013-02-01

    Since many preservice teachers (PTs) display anxiety over teaching math and science, four PT educators collaborated to better understand the PTs' background experiences and attitudes toward those subjects. The research project provided two avenues for professional learning: the data collected from the PTs and the opportunity for collaborative action research. The mixed method study focused on: the relationship between gender and undergraduate major (science versus non-science) with respect to previous and current engagement in science and math, understanding the processes of inquiry, and learning outside the classroom. A field trip to a science center provided the setting for the data collection. From a sample of 132 PTs, a multivariate analysis showed that the science major of PTs explained most of the gender differences with respect to the PTs' attitudes toward science and mathematics. The process of inquiry is generally poorly interpreted by PTs, and non-science majors prefer a more social approach in their learning to teach science and math. The four educators/collaborators reflect on the impacts of the research on their individual practices, for example, the need to: include place-based learning, attend to the different learning strategies taken by non-science majors, emphasize social and environmental contexts for learning science and math, be more explicit regarding the processes of science inquiry, and provide out-of-classroom experiences for PTs. They conclude that the collaboration, though difficult at times, provided powerful opportunities for examining individual praxis.

  10. The Effects of Aesthetic Science Activities on Improving At-Risk Families Children's Anxiety About Learning Science and Positive Thinking

    NASA Astrophysics Data System (ADS)

    Hong, Zuway-R.; Lin, Huann-shyang; Chen, Hsiang-Ting; Wang, Hsin-Hui; Lin, Chia-Jung

    2014-01-01

    The purpose of this study was to explore the effects of aesthetic science activities on improving elementary school at-risk families' children's positive thinking, attitudes toward science, and decreasing their anxiety about learning science. Thirty-six 4th-grade children from at-risk families volunteered to participate in a 12-week intervention and formed the experimental group; another 97 typical 4th graders were randomly selected to participant in the assessment and were used as the comparison group. The treatment for experimental group children emphasized scaffolding aesthetic science activities and inquiry strategies. The Elementary School Student Questionnaire was administered to assess all children's positive thinking, attitudes toward science, and anxiety about learning science. In addition, nine target children from the experimental group with the lowest scores on either positive thinking, or attitudes toward science, or with the highest scores on anxiety about learning science in the pre-test were recruited to be interviewed at the end of the intervention and observed weekly. Confirmatory factor analyses, analyses of covariance, and content theme analysis assessed the similarities and differences between groups. It was found that the at-risk families' children were motivated by the treatment and made significant progress on positive thinking and attitudes toward science, and also decreased their anxiety about learning science. The findings from interviews and classroom observations also revealed that the intervention made differences in children's affective perceptions of learning science. Implication and research recommendation are discussed.

  11. Validity of "Hi_Science" as instructional media based-android refer to experiential learning model

    NASA Astrophysics Data System (ADS)

    Qamariah, Jumadi, Senam, Wilujeng, Insih

    2017-08-01

    Hi_Science is instructional media based-android in learning science on material environmental pollution and global warming. This study is aimed: (a) to show the display of Hi_Science that will be applied in Junior High School, and (b) to describe the validity of Hi_Science. Hi_Science as instructional media created with colaboration of innovative learning model and development of technology at the current time. Learning media selected is based-android and collaborated with experiential learning model as an innovative learning model. Hi_Science had adapted student worksheet by Taufiq (2015). Student worksheet had very good category by two expert lecturers and two science teachers (Taufik, 2015). This student worksheet is refined and redeveloped in android as an instructional media which can be used by students for learning science not only in the classroom, but also at home. Therefore, student worksheet which has become instructional media based-android must be validated again. Hi_Science has been validated by two experts. The validation is based on assessment of meterials aspects and media aspects. The data collection was done by media assessment instrument. The result showed the assessment of material aspects has obtained the average value 4,72 with percentage of agreement 96,47%, that means Hi_Science on the material aspects is in excellent category or very valid category. The assessment of media aspects has obtained the average value 4,53 with percentage of agreement 98,70%, that means Hi_Science on the media aspects is in excellent category or very valid category. It was concluded that Hi_Science as instructional media can be applied in the junior high school.

  12. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  13. A learning performance study between the conventional approach and augmented reality textbook among secondary school students

    NASA Astrophysics Data System (ADS)

    Gopalan, Valarmathie; Zulkifli, Abdul Nasir; Bakar, Juliana Aida Abu

    2016-08-01

    Malaysia is moving towards becoming a developed nation by 2020. As such, the need for adequate human resources in science-related fields is one of the requirements to achieve a developed nation status. Unfortunately, there is a downward trend in the number of students pursuing the science stream at the secondary school level. This paper introduces an enhanced science textbook using Augmented Reality (eSTAR) that is intended to motivate students to be interested in science. The eSTAR was implemented to provide a supplement to the conventional science teaching and learning methods in the secondary schools. A learning performance study with a control group was conducted to investigate the effectiveness of the eSTAR for science learning among a sample of 140 Form Two secondary school students. The results indicate that the learning performance of the students in both groups had a significant difference in mean scores between the pre-test and post-test. Students using the eSTAR have a better score in the post-test and eventually resulted in a better learning performance compared to those who were exposed to the conventional science learning. Overall, the results show that the students benefited from the use of the conventional and eSTAR learning approaches.

  14. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult concepts, make connections between class activities, and launch and wrap-up PBL problems. Labs will include activities from elementary science kits as launching points for in-depth investigations that demonstrate the continuity of science concepts and pedagogies across age levels. In the methods course, students will critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. Field placements in elementary classrooms will allow students to ground their studies of science and pedagogy in actual practice.

  15. "From the Beginning, I Felt Empowered": Incorporating an Ecological Approach to Learning in Elementary Science Teacher Education

    NASA Astrophysics Data System (ADS)

    Birmingham, Daniel; Smetana, Lara; Coleman, Elizabeth

    2017-09-01

    While a renewed national dialog promotes the importance of science education for future technological and economic viability, students must find science personally relevant to themselves and their communities if the goals set forth in recent reform movements are to be achieved. In this paper, we investigate how incorporating an ecological perspective to learning in teacher education, including opportunities to participate with science in connection to their everyday lives, influenced the ways in which elementary teacher candidates (TCs) envisioned learning and doing science and its potential role in their future classroom. We draw from data collected across three sections of a field-based elementary methods course focused on learning to teach science and social studies through inquiry. We argue that participating in an authentic interdisciplinary inquiry project impacted the ways in which TCs conceived of science, their identities as science learners and teachers and their commitments to bringing inquiry-based science instruction to their future classrooms. This paper addresses issues regarding access to quality science learning experiences in elementary classrooms through empowering TCs to build identities as science learners and teachers in order to impact conditions in their future classrooms.

  16. ENERGY-NET (Energy, Environment and Society Learning Network): Enhancing opportunities for learning using an Earth systems science framework

    NASA Astrophysics Data System (ADS)

    Elliott, E. M.; Bain, D. J.; Divers, M. T.; Crowley, K. J.; Povis, K.; Scardina, A.; Steiner, M.

    2012-12-01

    We describe a newly funded collaborative NSF initiative, ENERGY-NET (Energy, Environment and Society Learning Network), that brings together the Carnegie Museum of Natural History (CMNH) with the Learning Science and Geoscience research strengths at the University of Pittsburgh. ENERGY-NET aims to create rich opportunities for participatory learning and public education in the arena of energy, the environment, and society using an Earth systems science framework. We build upon a long-established teen docent program at CMNH and to form Geoscience Squads comprised of underserved teens. Together, the ENERGY-NET team, including museum staff, experts in informal learning sciences, and geoscientists spanning career stage (undergraduates, graduate students, faculty) provides inquiry-based learning experiences guided by Earth systems science principles. Together, the team works with Geoscience Squads to design "Exploration Stations" for use with CMNH visitors that employ an Earth systems science framework to explore the intersecting lenses of energy, the environment, and society. The goals of ENERGY-NET are to: 1) Develop a rich set of experiential learning activities to enhance public knowledge about the complex dynamics between Energy, Environment, and Society for demonstration at CMNH; 2) Expand diversity in the geosciences workforce by mentoring underrepresented teens, providing authentic learning experiences in earth systems science and life skills, and providing networking opportunities with geoscientists; and 3) Institutionalize ENERGY-NET collaborations among geosciences expert, learning researchers, and museum staff to yield long-term improvements in public geoscience education and geoscience workforce recruiting.

  17. Learning nanotechnology with texts and comics: the impacts on students of different achievement levels

    NASA Astrophysics Data System (ADS)

    Lin, Shu-Fen; Lin, Huann-shyang

    2016-05-01

    Comics are popular with adolescents because of their features of humor, narrative, and visual imagery. The purposes of this study were to examine the learning outcomes and emotional perceptions of reading a science comic book and a science text booklet for students of different levels of achievement, and to explore the main factors of the two media which attract high-school students to learn science. A mixed-method quasi-experimental design was adopted. The participants were 697 grade ten students from eight schools with different levels of academic achievement. Two similar classes in each of the eight schools were assigned as the comic group or the text group. The results indicated that the science comic book benefited medium achievers more than the science text booklet did, but the contrary result was found for the high achievers. In comparison, the two media benefited the low achievers equally, but both had only a limited effect due to the students' lack of prior knowledge. We conclude four kinds of evidence, including perceived difficulty of comprehension, reasons for interest/disinterest, emotional perceptions of learning science, and learning time, to support the phenomenon of the learning benefit of media specific to certain achievers' science learning.

  18. Cross-cultural comparisons of university students' science learning self-efficacy: structural relationships among factors within science learning self-efficacy

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ling; Liang, Jyh-Chong; Tsai, Chin-Chung

    2018-04-01

    Science learning self-efficacy could be regarded as a multi-factor belief which comprises different aspects such as cognitive skills, practical work, and everyday application. However, few studies have investigated the relationships among these factors that compose science learning self-efficacy. Also, culture may play an important role in explaining the relationships among these factors. Accordingly, this study aimed to investigate cultural differences in science learning self-efficacy and examine the relationships within factors constituting science learning self-efficacy by adopting a survey instrument for administration to students in the U.S. and Taiwan. A total of 218 university students (62.40% females) were surveyed in the U.S.A, and 224 university students (49.10% females) in Taiwan were also invited to take part in the study. The results of the structural equation modelling revealed cultural differences in the relationships among the factors of science learning self-efficacy. It was found that U.S. students' confidence in their ability to employ higher-order cognitive skills tended to promote their confidence in their ability to accomplish practical work, strengthening their academic self-efficacy. However, the aforementioned mediation was not found for the Taiwanese participants.

  19. Building Future Directions for Teacher Learning in Science Education

    NASA Astrophysics Data System (ADS)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  20. Explainers' development of science-learner identities through participation in a community of practice

    NASA Astrophysics Data System (ADS)

    Richardson, Anne E.

    The urgent environmental issues of today require science-literate adults to engage in business and political decisions to create solutions. Despite the need, few adults have the knowledge and skills of science literacy. This doctoral dissertation is an analytical case study examining the science-learner identity development of Exploratorium Field Trip Explainers. Located in San Francisco, CA, the Exploratorium is a museum of science, art, and human perception dedicated to nurturing curiosity and exploration. Data collected included semi-structured interviews with sixteen former Field Trip Explainers, participant observation of the current Field Trip Explainer Program, and review of relevant documentation. Data analysis employed constant comparative analysis, guided by the communities of practice theoretical framework (Wenger, 1998) and the National Research Council's (2009) Six Strands of Science Learning. Findings of this research indicate that Exploratorium Field Trip Explainers participate in a community of practice made up of a diverse group of people that values curiosity and openness to multiple ways of learning. Many participants entered the Field Trip Explainer Program with an understanding of science learning as a rigid process reserved for a select group of people; through participation in the Field Trip Explainer community of practice, participants developed an understanding of science learning as accessible and a part of everyday life. The findings of this case study have implications for research, theory, and practice in informal adult science learning, access of non-dominant groups to science learning, and adult workplace learning in communities of practice.

  1. Teacher learning from girls' informal science experiences

    NASA Astrophysics Data System (ADS)

    Birmingham, Daniel J.

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP, 2010). Despite the success, little is known about how teachers can learn from informal science practices to support student engagement in science. In this study, I examine the impact informal science experiences has for the teaching and learning of science in school contexts. This study is focused on eliciting girls' stories of informal science learning experiences and sharing these stories with science teachers to examine what they notice and make meaning of in connection with their classroom practices (van Es & Sherin, 2002). I co-constructed cases of informal science experiences with middle school females who participate in an after school science program in an urban area. These cases consisted of the girls' written stories, their explicit messages to science teachers, examples of actions taken when investigating community based science issues and transcripts of conversations between the girls and researchers. These cases were shared with local science teachers in order to investigate what they "notice" (van Es & Sherin, 2002) regarding girls' participation in informal science learning, how they make meaning of youths' stories and whether the stories influence their classroom practices. I found that the girls' use their cases to share experiences of how, where and why science matters, to express hope for school science and to critique stereotypical views that young, female, students of color from lower SES backgrounds are not interested or capable of making contributions to scientific investigations. Additionally, I found that teachers noticed powerful messages within and across the girls' cases. The messages include; 1) students' desire to be active participants in science investigations, 2) the need to provide spaces for students to leverage their strengths when learning and doing science, 3) the importance of building connections between science and community, and 4) expanding the outcomes of scientific investigations beyond traditional school measures. However, their individual meaning making was influenced by tensions between what they found powerful in the cases, the institutional narratives that often guide practice in schools and the societal and personal narratives connected to participation of girls from non dominant communities in science. Thus, each of the three teachers took different pathways as they implemented new science learning experiences based upon what each found most salient in the girls' stories as well as the influence of institutional, societal and personal narratives, resulting in varied learning experiences for their students.

  2. Assessment of Teaching Methods and Critical Thinking in a Course for Science Majors

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A. G.

    2014-01-01

    Ability to think critically is a key ingredient to the scientific mindset. Students who take science courses may or may not be predisposed to critical thinking - the ability to evaluate information analytically. Regardless of their initial stages, students can significantly improve their critical thinking through learning and practicing their reasoning skills, critical assessments, conducting and reflecting on observations and experiments, building their questioning and communication skills, and through the use of other techniques. While, there are several of teaching methods that may help to improve critical thinking, there are only a few assessment instruments that can help in evaluating the efficacy of these methods. Critical thinking skills and improvement in those skills are notoriously difficult to measure. Assessments that are based on multiple-choice questions demonstrate students’ final decisions but not their thinking processes. In addition, during the course of studies students may develop subject-based critical thinking while not being able to extend the skills to the general critical thinking. As such, we wanted to design and conduct a study on efficacy of several teaching methods in which we would learn how students’ improve their thinking processes within a science discipline as well as in everyday life situations. We conducted a study among 20 astronomy, physics and geology majors-- both graduate and undergraduate students-- enrolled in our Solar System Science course (mostly seniors and early graduate students) at the University of Missouri. We used the Ennis-Weir Critical Thinking Essay test to assess students’ general critical thinking and, in addition, we implemented our own subject-based critical thinking assessment. Here, we present the results of this study and share our experience on designing a subject-based critical thinking assessment instrument.

  3. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    NASA Astrophysics Data System (ADS)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  4. Home Culture, Science, School and Science Learning: Is Reconciliation Possible?

    ERIC Educational Resources Information Center

    Tan, Aik-Ling

    2011-01-01

    In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when…

  5. Promoting Single-Parent Family Children's Attitudes toward Science and Science Performance through Extracurricular Science Intervention in Taiwan

    ERIC Educational Resources Information Center

    Hong, Zuway-R.; Lin, Huann-shyang; Lawrenz, Frances

    2008-01-01

    This study investigated the efficacy of extracurricular science intervention in promoting students' science learning performance and attitudes toward science. The Junior High School Student Questionnaire (JSSQ) was used to measure attitudes toward science, sexist attitudes and perceptions of the classroom learning environment. Twenty-eight eighth…

  6. Identity and science learning in African American students in informal science education contexts

    NASA Astrophysics Data System (ADS)

    James, Sylvia M.

    2007-12-01

    Science education researchers are recognizing the need to consider identity and other sociocultural factors when examining causes of the science achievement gap for African American students. Non-school settings may hold greater promise than formal schooling to promote identities that are conductive to science learning in African Americans. This mixed-methods study explored the relationship between participation in out-of-school-time (OST) science enrichment programs and African American middle and high school students' racial and ethnic identity (RED, social identity as science learners, and achievement. Pre-post questionnaires used a previously validated model of REI combined with an original subscale that was developed to measure social identity as science learners. Case studies of two programs allowed for an analysis of the informal learning setting. The treatment group (N = 36) consisted of African American middle and high school students in five OST science programs, while the control group (N = 54) students were enrolled in science classes in public schools in the mid-Atlantic region. Results of a t-test of independent means indicated that there was no significant difference between the treatment and control group on measures of REI or science identity. However, the treatment group earned significantly higher science grades compared to the control group, and an ANOVA revealed a significant relationship between science identity and the intention to pursue post-secondary science studies. Although not significant, MANOVA results indicated that students who participated in OST programs exhibited gradual increases in RD and science identity over time according to grade level and gender. Follow-up analysis revealed significant relationships between awareness of racism, gender, and length of time in OST programs. The case studies illustrated that a unique community of practice exists within the OST programs. Access to authentic science learning experiences, youth development, social interactions, and relationships with staff emerged as key elements of successful science enrichment programs, Collectively, the results suggest that informal learning settings are supportive environments for science learning. Further study is needed to examine the pattern of increasing REI and science identity over time, the impact of youth development and agency, and potential implications for science in school and informal learning contexts.

  7. The use of meteorological station in Science Park during May floods

    NASA Astrophysics Data System (ADS)

    Marković-Topalović, Tatjana; Božić, Mirjana; Stojićević, Goran

    2015-04-01

    A lot of educators and education process researchers have noticed and pointed out the need of broader learning space than a mere classroom, in learning physics and natural sciences. Many cognitive installations and didactic patterns for an extended school space have been proposed and implemented in schools [1, 2] and outdoor science parks [3]. From their side, school designers have argued that the learning environments can be more educationally and optimally useful if the architecture of the built, natural and cultural environment would be used as a teaching tool [4]. Through the merge of these two tendencies the concept of a school as a three-dimensional textbook was created [2]. The growing team of educators and researchers in Serbia [2] has been promoting this idea among students, teachers, and cultural and educational authorities, ranging from individual schools and municipality to state level, with emphasis on the school buildings investors and public. The net of schools and educational institutions has been implementing this concept [5]. Their activities have attracted the attention of newspapers and e-media [5]. The Science Park in Šabac, developed in the town in the vicinity of Belgrade, was completed in 2010. The Science Park is a part of the Center for professional advancement of educators (CSU) [6] that is surrounded by the eight-year Primary school, kindergarten, water tower and the church. Twenty-six interactive installations are connected to teaching units from all science subjects. For example: The periodic system of elements was placed on the building facade, the structure of graphene, sodium-chloride crystal structure, planetary model of atom (Chemistry) Pythagorean theorem, pyramid related to Tales doubt, golden ratio (Mathematics); model of DNA (Biology); globe-DING, educative fountain, brachistochrone, Newton's pendulum (Physics), the Greenwich meridian replica, sundial and meteorological station (Earth's science). During May 2014, when big floods hit our region, the meteorological station was the most useful and visited installation in the Science Park. Inside CSU students observed parameters at the touch screen connected to the outdoor measuring instruments. Continuous observations and recording of rainfall, air pressure and temperature made them witnesses and researchers of catastrophic floods. The scale of this flood was biggest in the last one hundred twenty years, since we have had recordings in Serbia. Besides observing rainfall, air pressure and temperature the students updated data in charts and graphs, and then they compared to those updated by the meteorological station. Observing the data enabled the students to study this phenomena quantitatively and to face the problem courageously in their town, which was one of the maximally affected during May floods (14 - 21 May 2014). References 1.Interactive Physics Demonstrations, edited by Joe Pizzo (AAPT, College Park, MD, 2001). 2.http://www2.pef.uni-lj.si/SEEMPE/index_files/Bozic.pdf 3. R. Mir, Outdoor Science Parks, 13th Int. Public Communication of Science and Technology Conf., Salvador, Brazil, 2014. 4. Anne Taylor, The Learning Environment as a Three-Dimensional Textbook, Children's Environments, 10 (2) (1993) 104. 5. http://www.poko.ipb.ac.rs 6. http://www.csusabac.rs/galerija.php?lan=cir&id=223

  8. Robot education peers in a situated primary school study: Personalisation promotes child learning.

    PubMed

    Baxter, Paul; Ashurst, Emily; Read, Robin; Kennedy, James; Belpaeme, Tony

    2017-01-01

    The benefit of social robots to support child learning in an educational context over an extended period of time is evaluated. Specifically, the effect of personalisation and adaptation of robot social behaviour is assessed. Two autonomous robots were embedded within two matched classrooms of a primary school for a continuous two week period without experimenter supervision to act as learning companions for the children for familiar and novel subjects. Results suggest that while children in both personalised and non-personalised conditions learned, there was increased child learning of a novel subject exhibited when interacting with a robot that personalised its behaviours, with indications that this benefit extended to other class-based performance. Additional evidence was obtained suggesting that there is increased acceptance of the personalised robot peer over a non-personalised version. These results provide the first evidence in support of peer-robot behavioural personalisation having a positive influence on learning when embedded in a learning environment for an extended period of time.

  9. Robot education peers in a situated primary school study: Personalisation promotes child learning

    PubMed Central

    Ashurst, Emily; Read, Robin; Kennedy, James; Belpaeme, Tony

    2017-01-01

    The benefit of social robots to support child learning in an educational context over an extended period of time is evaluated. Specifically, the effect of personalisation and adaptation of robot social behaviour is assessed. Two autonomous robots were embedded within two matched classrooms of a primary school for a continuous two week period without experimenter supervision to act as learning companions for the children for familiar and novel subjects. Results suggest that while children in both personalised and non-personalised conditions learned, there was increased child learning of a novel subject exhibited when interacting with a robot that personalised its behaviours, with indications that this benefit extended to other class-based performance. Additional evidence was obtained suggesting that there is increased acceptance of the personalised robot peer over a non-personalised version. These results provide the first evidence in support of peer-robot behavioural personalisation having a positive influence on learning when embedded in a learning environment for an extended period of time. PMID:28542648

  10. The College Science Learning Cycle: An Instructional Model for Reformed Teaching

    PubMed Central

    Withers, Michelle

    2016-01-01

    Finding the time for developing or locating new class materials is one of the biggest barriers for instructors reforming their teaching approaches. Even instructors who have taken part in training workshops may feel overwhelmed by the task of transforming passive lecture content to engaging learning activities. Learning cycles have been instrumental in helping K–12 science teachers design effective instruction for decades. This paper introduces the College Science Learning Cycle adapted from the popular Biological Sciences Curriculum Study 5E to help science, technology, engineering, and mathematics faculty develop course materials to support active, student-centered teaching approaches in their classrooms. The learning cycle is embedded in backward design, a learning outcomes–oriented instructional design approach, and is accompanied by resources and examples to help faculty transform their teaching in a time-efficient manner. PMID:27909030

  11. The influence of extracurricular activities on middle school students' science learning in China

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Tang, Xing

    2017-07-01

    Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science achievement. Structural equation modelling was used to investigate the influence of students' self-chosen and school-organised extracurricular activities on science achievement through mediating interests and the academic self-concept. Chi-square tests were used to determine whether there was an opportunity gap in the student's engagement in extracurricular activities. The students' volunteer and school-organised participation in extracurricular science activities had a positive and indirect influence on their science achievement through the mediating variables of their learning interests and academic self-concept. However, there were opportunity gaps between different groups of students in terms of school location, family background, and especially the mother's education level. Students from urban areas with better-educated mothers or higher socioeconomic status are more likely to access diverse science-related extracurricular activities.

  12. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    NASA Astrophysics Data System (ADS)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning strategy, constructivist learning strategy, learning cycle strategy, SCALE technique strategy, conceptual change strategy, inquiry-based strategy, cognitive academic language learning approach (CALLA) strategy, and learning from text strategy provide effective science teaching instruction to English learners. These science instructional strategies assist elementary science teachers by providing additional support to make science instruction more comprehensible for English learners.

  13. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    NASA Astrophysics Data System (ADS)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  14. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  15. Extending radiative transfer models by use of Bayes rule. [in atmospheric science

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1977-01-01

    This paper presents a procedure that extends some existing radiative transfer modeling techniques to problems in atmospheric science where curvature and layering of the medium and dynamic range and angular resolution of the signal are important. Example problems include twilight and limb scan simulations. Techniques that are extended include successive orders of scattering, matrix operator, doubling, Gauss-Seidel iteration, discrete ordinates and spherical harmonics. The procedure for extending them is based on Bayes' rule from probability theory.

  16. Investigating Your School's Science Teaching and Learning Culture

    ERIC Educational Resources Information Center

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  17. Crossing the Cartesian Divide: An Investigation into the Role of Emotion in Science Learning

    ERIC Educational Resources Information Center

    Staus, Nancy L.

    2012-01-01

    Although many science educators and researchers believe that emotion is an important part of the learning process, few researchers have dealt with the topic in a systematic fashion. The purpose of this study was to examine the role of emotion in the learning process, particularly in the learning of science content. My study utilized a dimensional…

  18. A Study of Learning and Motivation in a New Media Enriched Environment for Middle School Science

    ERIC Educational Resources Information Center

    Liu, Min; Horton, Lucas; Olmanson, Justin; Toprac, Paul

    2011-01-01

    This study examines middle school students' learning and motivation as they engaged in a new media enriched problem-based learning (PBL) environment for middle school science. Using a mixed-method design with both quantitative and qualitative data, we investigated the effect of a new media environment on sixth graders' science learning, their…

  19. Using the Learning Cycle To Teach Physical Science: A Hands-on Approach for the Middle Grades.

    ERIC Educational Resources Information Center

    Beisenherz, Paul; Dantonio, Marylou

    The Learning Cycle Strategy enables students themselves to construct discrete science concepts and includes an exploration phase, introduction phase, and application phase. This book focuses on the use of the Learning Cycle to teach physical sciences and is divided into three sections. Section I develops a rationale for the Learning Cycle as an…

  20. Crumpled Molecules and Edible Plastic: Science Learning Activation in Out-of-School Time

    ERIC Educational Resources Information Center

    Dorph, Rena; Schunn, Christian D.; Crowley, Kevin

    2017-01-01

    The Coalition for Science After School highlights the dual nature of outcomes for science learning during out-of- school time (OST): Learning experiences should not only be positive in the moment, but also position youth for future success. Several frameworks speak to the first set of immediate outcomes--what youth learn, think, and feel as the…

  1. A Study on Learning Effect among Different Learning Styles in a Web-Based Lab of Science for Elementary School Students

    ERIC Educational Resources Information Center

    Sun, Koun-tem; Lin, Yuan-cheng; Yu, Chia-jui

    2008-01-01

    The purpose of this study is to explore the learning effect related to different learning styles in a Web-based virtual science laboratory for elementary school students. The online virtual lab allows teachers to integrate information and communication technology (ICT) into science lessons. The results of this experimental teaching method…

  2. Use of Digital Game Based Learning and Gamification in Secondary School Science: The Effect on Student Engagement, Learning and Gender Difference

    ERIC Educational Resources Information Center

    Khan, Amna; Ahmad, Farzana Hayat; Malik, Muhammad Muddassir

    2017-01-01

    This study aimed to identify the impact of a game based learning (GBL) application using computer technologies on student engagement in secondary school science classrooms. The literature reveals that conventional Science teaching techniques (teacher-centered lecture and teaching), which foster rote learning among students, are one of the major…

  3. Commentary on "Distributed Revisiting: An Analytic for Retention of Coherent Science Learning"

    ERIC Educational Resources Information Center

    Hewitt, Jim

    2015-01-01

    The article, "Distributed Revisiting: An Analytic for Retention of Coherent Science Learning" is an interesting study that operates at the intersection of learning theory and learning analytics. The authors observe that the relationship between learning theory and research in the learning analytics field is constrained by several…

  4. Evaluating Primary School Student's Deep Learning Approach to Science Lessons

    ERIC Educational Resources Information Center

    Ilkörücü Göçmençelebi, Sirin; Özkan, Muhlis; Bayram, Nuran

    2012-01-01

    This study examines the variables which help direct students to a deep learning approach to science lessons, with the aim of guiding programmers and teachers in primary education. The sample was composed of a total of 164 primary school students. The Learning Approaches to Science Scale developed by Ünal (2005) for Science and Technology lessons…

  5. The Effects of Integrating Service Learning into Computer Science: An Inter-Institutional Longitudinal Study

    ERIC Educational Resources Information Center

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-01-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…

  6. Impact of Project-Based Curriculum Materials on Student Learning in Science: Results of a Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Harris, Christopher J.; Penuel, William R.; D'Angelo, Cynthia M.; DeBarger, Angela Haydel; Gallagher, Lawrence P.; Kennedy, Cathleen A.; Cheng, Britte Haugen; Krajcik, Joseph S.

    2015-01-01

    The "Framework for K-12 Science Education" (National Research Council, 2012) sets an ambitious vision for science learning by emphasizing that for students to achieve proficiency in science they will need to participate in the authentic practices of scientists. To realize this vision, all students will need opportunities to learn from…

  7. Confronting Dilemmas Posed by Three-Dimensional Classroom Assessment: Introduction to a Virtual Issue of "Science Education"

    ERIC Educational Resources Information Center

    Furtak, Erin Marie

    2017-01-01

    Wide-scale adoption of the "Next Generation Science Standards" has raised new challenges for classroom teachers as they learn not only how to engage students in this new vision of science learning, but also how to assess students' engagement in that learning. This paper introduces a virtual special issue of "Science Education"…

  8. Teacher Candidates in an Online Post-Baccalaureate Science Methods Course: Implications for Teaching Science Inquiry with Technology

    ERIC Educational Resources Information Center

    Colon, Erica L.

    2010-01-01

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods…

  9. Discerning Selective Traditions in Science Education: A Qualitative Study of Teachers' Responses to What Is Important in Science Teaching

    ERIC Educational Resources Information Center

    Sund, Per

    2016-01-01

    Science teachers have differing views about what students should learn. Their teaching experience often leads them to develop habitual answers to students' questions, such as--why should I learn this? Some teachers argue that students need to learn more "canonical" science knowledge so that they can become scientists, while others tell…

  10. Comparison of Science-Technology-Society Approach and Textbook Oriented Instruction on Students' Abilities to Apply Science Concepts

    ERIC Educational Resources Information Center

    Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.

    2017-01-01

    It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…

  11. Science Learning: A Path Analysis of Its Links with Reading Comprehension, Question-Asking in Class and Science Achievement

    ERIC Educational Resources Information Center

    Cano, Francisco; García, Ángela; Berbén, A. B. G.; Justicia, Fernando

    2014-01-01

    The purpose of this research was to build and test a conceptual model of the complex interrelationships between students' learning in science (learning approaches and self-regulation), their reading comprehension, question-asking in class and science achievement. These variables were measured by means of a test and a series of questionnaires…

  12. Inquiry-based Learning and Digital Libraries in Undergraduate Science Education

    NASA Astrophysics Data System (ADS)

    Apedoe, Xornam S.; Reeves, Thomas C.

    2006-12-01

    The purpose of this paper is twofold: to describe robust rationales for integrating inquiry-based learning into undergraduate science education, and to propose that digital libraries are potentially powerful technological tools that can support inquiry-based learning goals in undergraduate science courses. Overviews of constructivism and situated cognition are provided with regard to how these two theoretical perspectives have influenced current science education reform movements, especially those that involve inquiry-based learning. The role that digital libraries can play in inquiry-based learning environments is discussed. Finally, the importance of alignment among critical pedagogical dimensions of an inquiry-based pedagogical framework is stressed in the paper, and an example of how this can be done is presented using earth science education as a context.

  13. It's not maths; it's science: exploring thinking dispositions, learning thresholds and mindfulness in science learning

    NASA Astrophysics Data System (ADS)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-09-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.

  14. The Delphi Technique in Identifying Learning Objectives for the Development of Science, Technology and Society Modules for Palestinian Ninth Grade Science Curriculum

    NASA Astrophysics Data System (ADS)

    Abualrob, Marwan M. A.; Gnanamalar Sarojini Daniel, Esther

    2013-10-01

    This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second, using this list, ninth grade science textbooks and curriculum document contents were analyzed. Third, based on this content analysis, a possible list of 71 learning objectives for the integration of STS elements was prepared. This list of learning objectives was refined by using a two-round Delphi technique. The Delphi study was used to rate and to determine the consensus regarding which items (i.e. learning objectives for STS in the ninth grade science textbooks in Palestine) are to be accepted for inclusion. The results revealed that of the initial 71 objectives in round one, 59 objectives within round two had a mean score of 5.683 or higher, which indicated that the learning objectives could be included in the development of STS modules for ninth grade science in Palestine.

  15. Designing and Implementing Collaborative Improvement in the Extended Manufacturing Enterprise: Action Learning and Action Research (ALAR) in CO-IMPROVE

    ERIC Educational Resources Information Center

    Coghlan, David; Coughlan, Paul

    2006-01-01

    Purpose: The purpose of this article is to provide a design and implementation framework for ALAR (action learning action research) programme which aims to address collaborative improvement in the extended manufacturing enterprise. Design/methodology/approach: This article demonstrates the design of a programme in which action learning and action…

  16. Towards a Science of Science Teaching

    ERIC Educational Resources Information Center

    Yates, Carolyn

    2009-01-01

    This article is a contribution to the search for evidence-based models of learning to improve science education. The author believes that modern teachers should look to the sciences of cognitive psychology and neuroscience to build a science of science teaching. Understanding the relationships between learning and the brain's structure and…

  17. Assessing the Science Knowledge of University Students: Perils, Pitfalls and Possibilities

    ERIC Educational Resources Information Center

    Jones, Susan M.

    2014-01-01

    Science content knowledge is internationally regarded as a fundamentally important learning outcome for graduates of bachelor level science degrees: the Science Threshold Learning Outcomes (TLOs) recently adopted in Australia as a nationally agreed framework include "Science Knowledge" as TLO 2. Science knowledge is commonly assessed…

  18. Exploring How Families Do Science Together: Adult-Child Interactions at Community Science Events

    ERIC Educational Resources Information Center

    Tuttle, Nicole; Mentzer, Gale A.; Strickler, Lacey; Bloomquist, Debra; Hapgood, Susanna; Molitor, Scott; Kaderavek, Joan; Czerniak, Charlene M.

    2017-01-01

    Promoting family learning around science represents an important opportunity to reinforce science learning during out-of-school time. Evidence suggests that parent-child discourse around science can promote inferential thinking by children and help solidify their understanding of science concepts. While teacher professional development that…

  19. The Effect of Reform-Based Science Teaching on SES-Associated Achievement Gap on PISA 2006: A Comparative Study of the United States and Taiwan

    NASA Astrophysics Data System (ADS)

    Tang, Nai-En

    The goal of this study is to examine how reform-based science teaching has been implemented and whether reform-based science teaching has promoted education equity through being available and beneficial for students from different socioeconomic status (SES) family backgrounds in the U.S. and Taiwan. No existing study used large-scale assessment to investigate the implementation and outcomes of the science reform movement in the U.S. and Taiwan. This study was developed to fill this gap using the Program of International Student Assessment (PISA) 2006 data including 5,611 students in the United States and 5995 students in Taiwan. A Latent Profile Analysis (LPA) was used to classify students into different science learning subgroups to understand how broadly reform-based science learning has been implemented in classrooms. The results showed that students in the U.S. had more opportunity to learn science through the reform-based learning activities than students in Taiwan. Latent Class Regression (LCR) and Structural Equation Modeling (SEM) were used for examining the availability of reform-based science teaching in both countries. The results showed that in the U.S., higher SES students had more opportunity to learn science reform-based learning activities. On the other hand, students' SES had no association with reform-based science learning in Taiwan. Regression Mixture Modeling and SEM were used to examine whether there was an association between reform-based science teaching and SES-associated achievement gaps. The results found no evidence to support the claim that reform-based science teaching helps to minimize SES-associated achievement gaps in both countries.

  20. Summary of Stirling Convertor Testing at NASA Glenn Research Center in Support of Stirling Radioisotope Power System Development

    NASA Technical Reports Server (NTRS)

    Schifer, Nicholas A.; Oriti, Salvatore M.

    2013-01-01

    The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.

Top