Sample records for extensible object-based kernel

  1. Kernel-aligned multi-view canonical correlation analysis for image recognition

    NASA Astrophysics Data System (ADS)

    Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao

    2016-09-01

    Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.

  2. Multiple kernel learning in protein-protein interaction extraction from biomedical literature.

    PubMed

    Yang, Zhihao; Tang, Nan; Zhang, Xiao; Lin, Hongfei; Li, Yanpeng; Yang, Zhiwei

    2011-03-01

    Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. The volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database administrators, responsible for content input and maintenance to detect and manually update protein interaction information. The objective of this work is to develop an effective approach to automatic extraction of PPI information from biomedical literature. We present a weighted multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, graph and part-of-speech (POS) path. In particular, we extend the shortest path-enclosed tree (SPT) and dependency path tree to capture richer contextual information. Our experimental results show that the combination of SPT and dependency path tree extensions contributes to the improvement of performance by almost 0.7 percentage units in F-score and 2 percentage units in area under the receiver operating characteristics curve (AUC). Combining two or more appropriately weighed individual will further improve the performance. Both on the individual corpus and cross-corpus evaluation our combined kernel can achieve state-of-the-art performance with respect to comparable evaluations, with 64.41% F-score and 88.46% AUC on the AImed corpus. As different kernels calculate the similarity between two sentences from different aspects. Our combined kernel can reduce the risk of missing important features. More specifically, we use a weighted linear combination of individual kernels instead of assigning the same weight to each individual kernel, thus allowing the introduction of each kernel to incrementally contribute to the performance improvement. In addition, SPT and dependency path tree extensions can improve the performance by including richer context information. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Multiple Kernel Sparse Representation based Orthogonal Discriminative Projection and Its Cost-Sensitive Extension.

    PubMed

    Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen

    2016-07-07

    Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.

  4. SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL

    PubMed Central

    Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Ling, Fan

    2013-01-01

    Object recognition is a fundamental problem in computer vision. Part-based models offer a sparse, flexible representation of objects, but suffer from difficulties in training and often use standard kernels. In this paper, we propose a positive definite kernel called “structure kernel”, which measures the similarity of two part-based represented objects. The structure kernel has three terms: 1) the global term that measures the global visual similarity of two objects; 2) the part term that measures the visual similarity of corresponding parts; 3) the spatial term that measures the spatial similarity of geometric configuration of parts. The contribution of this paper is to generalize the discriminant capability of local kernels to complex part-based object models. Experimental results show that the proposed kernel exhibit higher accuracy than state-of-art approaches using standard kernels. PMID:23666108

  5. An Efficient Method Coupling Kernel Principal Component Analysis with Adjoint-Based Optimal Control and Its Goal-Oriented Extensions

    NASA Astrophysics Data System (ADS)

    Thimmisetty, C.; Talbot, C.; Tong, C. H.; Chen, X.

    2016-12-01

    The representativeness of available data poses a significant fundamental challenge to the quantification of uncertainty in geophysical systems. Furthermore, the successful application of machine learning methods to geophysical problems involving data assimilation is inherently constrained by the extent to which obtainable data represent the problem considered. We show how the adjoint method, coupled with optimization based on methods of machine learning, can facilitate the minimization of an objective function defined on a space of significantly reduced dimension. By considering uncertain parameters as constituting a stochastic process, the Karhunen-Loeve expansion and its nonlinear extensions furnish an optimal basis with respect to which optimization using L-BFGS can be carried out. In particular, we demonstrate that kernel PCA can be coupled with adjoint-based optimal control methods to successfully determine the distribution of material parameter values for problems in the context of channelized deformable media governed by the equations of linear elasticity. Since certain subsets of the original data are characterized by different features, the convergence rate of the method in part depends on, and may be limited by, the observations used to furnish the kernel principal component basis. By determining appropriate weights for realizations of the stochastic random field, then, one may accelerate the convergence of the method. To this end, we present a formulation of Weighted PCA combined with a gradient-based means using automatic differentiation to iteratively re-weight observations concurrent with the determination of an optimal reduced set control variables in the feature space. We demonstrate how improvements in the accuracy and computational efficiency of the weighted linear method can be achieved over existing unweighted kernel methods, and discuss nonlinear extensions of the algorithm.

  6. Adaptive Multilevel Middleware for Object Systems

    DTIC Science & Technology

    2006-12-01

    the system at the system-call level or using the CORBA-standard Extensible Transport Framework ( ETF ). Transparent insertion is highly desirable from an...often as it needs to. This is remedied by using the real-time scheduling class in a stock Linux kernel. We used schedsetscheduler system call (with...real-time scheduling class (SCHEDFIFO) for all the ML-NFD programs, later experiments with CPU load indicate that a stock Linux kernel is not

  7. Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition

    PubMed Central

    Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Zheng, Yuan F.

    2017-01-01

    Detecting generic object categories in images and videos are a fundamental issue in computer vision. However, it faces the challenges from inter and intraclass diversity, as well as distortions caused by viewpoints, poses, deformations, and so on. To solve object variations, this paper constructs a structure kernel and proposes a multiscale part-based model incorporating the discriminative power of kernels. The structure kernel would measure the resemblance of part-based objects in three aspects: 1) the global similarity term to measure the resemblance of the global visual appearance of relevant objects; 2) the part similarity term to measure the resemblance of the visual appearance of distinctive parts; and 3) the spatial similarity term to measure the resemblance of the spatial layout of parts. In essence, the deformation of parts in the structure kernel is penalized in a multiscale space with respect to horizontal displacement, vertical displacement, and scale difference. Part similarities are combined with different weights, which are optimized efficiently to maximize the intraclass similarities and minimize the interclass similarities by the normalized stochastic gradient ascent algorithm. In addition, the parameters of the structure kernel are learned during the training process with regard to the distribution of the data in a more discriminative way. With flexible part sizes on scale and displacement, it can be more robust to the intraclass variations, poses, and viewpoints. Theoretical analysis and experimental evaluations demonstrate that the proposed multiscale part-based representation model with structure kernel exhibits accurate and robust performance, and outperforms state-of-the-art object classification approaches. PMID:24808345

  8. Brain tumor image segmentation using kernel dictionary learning.

    PubMed

    Jeon Lee; Seung-Jun Kim; Rong Chen; Herskovits, Edward H

    2015-08-01

    Automated brain tumor image segmentation with high accuracy and reproducibility holds a big potential to enhance the current clinical practice. Dictionary learning (DL) techniques have been applied successfully to various image processing tasks recently. In this work, kernel extensions of the DL approach are adopted. Both reconstructive and discriminative versions of the kernel DL technique are considered, which can efficiently incorporate multi-modal nonlinear feature mappings based on the kernel trick. Our novel discriminative kernel DL formulation allows joint learning of a task-driven kernel-based dictionary and a linear classifier using a K-SVD-type algorithm. The proposed approaches were tested using real brain magnetic resonance (MR) images of patients with high-grade glioma. The obtained preliminary performances are competitive with the state of the art. The discriminative kernel DL approach is seen to reduce computational burden without much sacrifice in performance.

  9. A Novel Weighted Kernel PCA-Based Method for Optimization and Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Thimmisetty, C.; Talbot, C.; Chen, X.; Tong, C. H.

    2016-12-01

    It has been demonstrated that machine learning methods can be successfully applied to uncertainty quantification for geophysical systems through the use of the adjoint method coupled with kernel PCA-based optimization. In addition, it has been shown through weighted linear PCA how optimization with respect to both observation weights and feature space control variables can accelerate convergence of such methods. Linear machine learning methods, however, are inherently limited in their ability to represent features of non-Gaussian stochastic random fields, as they are based on only the first two statistical moments of the original data. Nonlinear spatial relationships and multipoint statistics leading to the tortuosity characteristic of channelized media, for example, are captured only to a limited extent by linear PCA. With the aim of coupling the kernel-based and weighted methods discussed, we present a novel mathematical formulation of kernel PCA, Weighted Kernel Principal Component Analysis (WKPCA), that both captures nonlinear relationships and incorporates the attribution of significance levels to different realizations of the stochastic random field of interest. We also demonstrate how new instantiations retaining defining characteristics of the random field can be generated using Bayesian methods. In particular, we present a novel WKPCA-based optimization method that minimizes a given objective function with respect to both feature space random variables and observation weights through which optimal snapshot significance levels and optimal features are learned. We showcase how WKPCA can be applied to nonlinear optimal control problems involving channelized media, and in particular demonstrate an application of the method to learning the spatial distribution of material parameter values in the context of linear elasticity, and discuss further extensions of the method to stochastic inversion.

  10. Out-of-Sample Extensions for Non-Parametric Kernel Methods.

    PubMed

    Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang

    2017-02-01

    Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.

  11. A Kernel-Based Low-Rank (KLR) Model for Low-Dimensional Manifold Recovery in Highly Accelerated Dynamic MRI.

    PubMed

    Nakarmi, Ukash; Wang, Yanhua; Lyu, Jingyuan; Liang, Dong; Ying, Leslie

    2017-11-01

    While many low rank and sparsity-based approaches have been developed for accelerated dynamic magnetic resonance imaging (dMRI), they all use low rankness or sparsity in input space, overlooking the intrinsic nonlinear correlation in most dMRI data. In this paper, we propose a kernel-based framework to allow nonlinear manifold models in reconstruction from sub-Nyquist data. Within this framework, many existing algorithms can be extended to kernel framework with nonlinear models. In particular, we have developed a novel algorithm with a kernel-based low-rank model generalizing the conventional low rank formulation. The algorithm consists of manifold learning using kernel, low rank enforcement in feature space, and preimaging with data consistency. Extensive simulation and experiment results show that the proposed method surpasses the conventional low-rank-modeled approaches for dMRI.

  12. Nonlinear Deep Kernel Learning for Image Annotation.

    PubMed

    Jiu, Mingyuan; Sahbi, Hichem

    2017-02-08

    Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.

  13. The Flux OSKit: A Substrate for Kernel and Language Research

    DTIC Science & Technology

    1997-10-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 tions. Our own microkernel -based OS, Fluke [17], puts almost all of the OSKit to use...kernels distance the language from the hardware; even microkernels and other extensible kernels enforce some default policy which often conflicts with a...be particu- larly useful in these research projects. 6.1.1 The Fluke OS In 1996 we developed an entirely new microkernel - based system called Fluke

  14. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    PubMed Central

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  15. Visual tracking using objectness-bounding box regression and correlation filters

    NASA Astrophysics Data System (ADS)

    Mbelwa, Jimmy T.; Zhao, Qingjie; Lu, Yao; Wang, Fasheng; Mbise, Mercy

    2018-03-01

    Visual tracking is a fundamental problem in computer vision with extensive application domains in surveillance and intelligent systems. Recently, correlation filter-based tracking methods have shown a great achievement in terms of robustness, accuracy, and speed. However, such methods have a problem of dealing with fast motion (FM), motion blur (MB), illumination variation (IV), and drifting caused by occlusion (OCC). To solve this problem, a tracking method that integrates objectness-bounding box regression (O-BBR) model and a scheme based on kernelized correlation filter (KCF) is proposed. The scheme based on KCF is used to improve the tracking performance of FM and MB. For handling drift problem caused by OCC and IV, we propose objectness proposals trained in bounding box regression as prior knowledge to provide candidates and background suppression. Finally, scheme KCF as a base tracker and O-BBR are fused to obtain a state of a target object. Extensive experimental comparisons of the developed tracking method with other state-of-the-art trackers are performed on some of the challenging video sequences. Experimental comparison results show that our proposed tracking method outperforms other state-of-the-art tracking methods in terms of effectiveness, accuracy, and robustness.

  16. Differential evolution algorithm-based kernel parameter selection for Fukunaga-Koontz Transform subspaces construction

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin

    2015-10-01

    The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.

  17. A multi-label learning based kernel automatic recommendation method for support vector machine.

    PubMed

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.

  18. A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine

    PubMed Central

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896

  19. A fast and objective multidimensional kernel density estimation method: fastKDE

    DOE PAGES

    O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.; ...

    2016-03-07

    Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less

  20. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies

    PubMed Central

    Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300

  1. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.

    PubMed

    Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.

  2. Design of a multiple kernel learning algorithm for LS-SVM by convex programming.

    PubMed

    Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou

    2011-06-01

    As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Implicit kernel sparse shape representation: a sparse-neighbors-based objection segmentation framework.

    PubMed

    Yao, Jincao; Yu, Huimin; Hu, Roland

    2017-01-01

    This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.

  4. Pearson correlation estimation for irregularly sampled time series

    NASA Astrophysics Data System (ADS)

    Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.

    2012-04-01

    Many applications in the geosciences call for the joint and objective analysis of irregular time series. For automated processing, robust measures of linear and nonlinear association are needed. Up to now, the standard approach would have been to reconstruct the time series on a regular grid, using linear or spline interpolation. Interpolation, however, comes with systematic side-effects, as it increases the auto-correlation in the time series. We have searched for the best method to estimate Pearson correlation for irregular time series, i.e. the one with the lowest estimation bias and variance. We adapted a kernel-based approach, using Gaussian weights. Pearson correlation is calculated, in principle, as a mean over products of previously centralized observations. In the regularly sampled case, observations in both time series were observed at the same time and thus the allocation of measurement values into pairs of products is straightforward. In the irregularly sampled case, however, measurements were not necessarily observed at the same time. Now, the key idea of the kernel-based method is to calculate weighted means of products, with the weight depending on the time separation between the observations. If the lagged correlation function is desired, the weights depend on the absolute difference between observation time separation and the estimation lag. To assess the applicability of the approach we used extensive simulations to determine the extent of interpolation side-effects with increasing irregularity of time series. We compared different approaches, based on (linear) interpolation, the Lomb-Scargle Fourier Transform, the sinc kernel and the Gaussian kernel. We investigated the role of kernel bandwidth and signal-to-noise ratio in the simulations. We found that the Gaussian kernel approach offers significant advantages and low Root-Mean Square Errors for regular, slightly irregular and very irregular time series. We therefore conclude that it is a good (linear) similarity measure that is appropriate for irregular time series with skewed inter-sampling time distributions.

  5. Local coding based matching kernel method for image classification.

    PubMed

    Song, Yan; McLoughlin, Ian Vince; Dai, Li-Rong

    2014-01-01

    This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK) method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method.

  6. Multineuron spike train analysis with R-convolution linear combination kernel.

    PubMed

    Tezuka, Taro

    2018-06-01

    A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A prototype computer-aided modelling tool for life-support system models

    NASA Technical Reports Server (NTRS)

    Preisig, H. A.; Lee, Tae-Yeong; Little, Frank

    1990-01-01

    Based on the canonical decomposition of physical-chemical-biological systems, a prototype kernel has been developed to efficiently model alternative life-support systems. It supports (1) the work in an interdisciplinary group through an easy-to-use mostly graphical interface, (2) modularized object-oriented model representation, (3) reuse of models, (4) inheritance of structures from model object to model object, and (5) model data base. The kernel is implemented in Modula-II and presently operates on an IBM PC.

  8. Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.; Buhl, W.F.

    1988-07-15

    The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed andmore » an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.« less

  9. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.

    Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less

  11. Effect of kernel size and mill type on protein, milling yield, and baking quality of hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end-use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, ...

  12. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    PubMed

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Margin-maximizing feature elimination methods for linear and nonlinear kernel-based discriminant functions.

    PubMed

    Aksu, Yaman; Miller, David J; Kesidis, George; Yang, Qing X

    2010-05-01

    Feature selection for classification in high-dimensional spaces can improve generalization, reduce classifier complexity, and identify important, discriminating feature "markers." For support vector machine (SVM) classification, a widely used technique is recursive feature elimination (RFE). We demonstrate that RFE is not consistent with margin maximization, central to the SVM learning approach. We thus propose explicit margin-based feature elimination (MFE) for SVMs and demonstrate both improved margin and improved generalization, compared with RFE. Moreover, for the case of a nonlinear kernel, we show that RFE assumes that the squared weight vector 2-norm is strictly decreasing as features are eliminated. We demonstrate this is not true for the Gaussian kernel and, consequently, RFE may give poor results in this case. MFE for nonlinear kernels gives better margin and generalization. We also present an extension which achieves further margin gains, by optimizing only two degrees of freedom--the hyperplane's intercept and its squared 2-norm--with the weight vector orientation fixed. We finally introduce an extension that allows margin slackness. We compare against several alternatives, including RFE and a linear programming method that embeds feature selection within the classifier design. On high-dimensional gene microarray data sets, University of California at Irvine (UCI) repository data sets, and Alzheimer's disease brain image data, MFE methods give promising results.

  14. Object-Oriented Design for Sparse Direct Solvers

    NASA Technical Reports Server (NTRS)

    Dobrian, Florin; Kumfert, Gary; Pothen, Alex

    1999-01-01

    We discuss the object-oriented design of a software package for solving sparse, symmetric systems of equations (positive definite and indefinite) by direct methods. At the highest layers, we decouple data structure classes from algorithmic classes for flexibility. We describe the important structural and algorithmic classes in our design, and discuss the trade-offs we made for high performance. The kernels at the lower layers were optimized by hand. Our results show no performance loss from our object-oriented design, while providing flexibility, case of use, and extensibility over solvers using procedural design.

  15. Multilevel image recognition using discriminative patches and kernel covariance descriptor

    NASA Astrophysics Data System (ADS)

    Lu, Le; Yao, Jianhua; Turkbey, Evrim; Summers, Ronald M.

    2014-03-01

    Computer-aided diagnosis of medical images has emerged as an important tool to objectively improve the performance, accuracy and consistency for clinical workflow. To computerize the medical image diagnostic recognition problem, there are three fundamental problems: where to look (i.e., where is the region of interest from the whole image/volume), image feature description/encoding, and similarity metrics for classification or matching. In this paper, we exploit the motivation, implementation and performance evaluation of task-driven iterative, discriminative image patch mining; covariance matrix based descriptor via intensity, gradient and spatial layout; and log-Euclidean distance kernel for support vector machine, to address these three aspects respectively. To cope with often visually ambiguous image patterns for the region of interest in medical diagnosis, discovery of multilabel selective discriminative patches is desired. Covariance of several image statistics summarizes their second order interactions within an image patch and is proved as an effective image descriptor, with low dimensionality compared with joint statistics and fast computation regardless of the patch size. We extensively evaluate two extended Gaussian kernels using affine-invariant Riemannian metric or log-Euclidean metric with support vector machines (SVM), on two medical image classification problems of degenerative disc disease (DDD) detection on cortical shell unwrapped CT maps and colitis detection on CT key images. The proposed approach is validated with promising quantitative results on these challenging tasks. Our experimental findings and discussion also unveil some interesting insights on the covariance feature composition with or without spatial layout for classification and retrieval, and different kernel constructions for SVM. This will also shed some light on future work using covariance feature and kernel classification for medical image analysis.

  16. A coarse-to-fine kernel matching approach for mean-shift based visual tracking

    NASA Astrophysics Data System (ADS)

    Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.

    2009-03-01

    Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.

  17. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    DTIC Science & Technology

    2016-01-05

    SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model , is able to model the rate of occurrence of...which adds specificity to the model and can make nonlinear data more manageable. Early results show that the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE

  18. Object Management Group object transaction service based on an X/Open and International Organization for Standardization open systems interconnection transaction processing kernel

    NASA Astrophysics Data System (ADS)

    Liang, J.; Sédillot, S.; Traverson, B.

    1997-09-01

    This paper addresses federation of a transactional object standard - Object Management Group (OMG) object transaction service (OTS) - with the X/Open distributed transaction processing (DTP) model and International Organization for Standardization (ISO) open systems interconnection (OSI) transaction processing (TP) communication protocol. The two-phase commit propagation rules within a distributed transaction tree are similar in the X/Open, ISO and OMG models. Building an OTS on an OSI TP protocol machine is possible because the two specifications are somewhat complementary. OTS defines a set of external interfaces without specific internal protocol machine, while OSI TP specifies an internal protocol machine without any application programming interface. Given these observations, and having already implemented an X/Open two-phase commit transaction toolkit based on an OSI TP protocol machine, we analyse the feasibility of using this implementation as a transaction service provider for OMG interfaces. Based on the favourable result of this feasibility study, we are implementing an OTS compliant system, which, by initiating the extensibility and openness strengths of OSI TP, is able to provide interoperability between X/Open DTP and OMG OTS models.

  19. A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression.

    PubMed

    Stock, Michiel; Pahikkala, Tapio; Airola, Antti; De Baets, Bernard; Waegeman, Willem

    2018-06-12

    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction, or network inference problems. During the past decade, kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression, and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency, and spectral filtering properties. Our theoretical results provide valuable insights into assessing the advantages and limitations of existing pairwise learning methods.

  20. Nonparametric probability density estimation by optimization theoretic techniques

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1976-01-01

    Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.

  1. Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing.

    PubMed

    Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng

    2014-10-01

    Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA's CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream . Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels.

  2. Learning object-to-class kernels for scene classification.

    PubMed

    Zhang, Lei; Zhen, Xiantong; Shao, Ling

    2014-08-01

    High-level image representations have drawn increasing attention in visual recognition, e.g., scene classification, since the invention of the object bank. The object bank represents an image as a response map of a large number of pretrained object detectors and has achieved superior performance for visual recognition. In this paper, based on the object bank representation, we propose the object-to-class (O2C) distances to model scene images. In particular, four variants of O2C distances are presented, and with the O2C distances, we can represent the images using the object bank by lower-dimensional but more discriminative spaces, called distance spaces, which are spanned by the O2C distances. Due to the explicit computation of O2C distances based on the object bank, the obtained representations can possess more semantic meanings. To combine the discriminant ability of the O2C distances to all scene classes, we further propose to kernalize the distance representation for the final classification. We have conducted extensive experiments on four benchmark data sets, UIUC-Sports, Scene-15, MIT Indoor, and Caltech-101, which demonstrate that the proposed approaches can significantly improve the original object bank approach and achieve the state-of-the-art performance.

  3. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  4. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  5. Community-Based Prevention Using Simple, Low-Cost, Evidence-Based Kernels and Behavior Vaccines

    ERIC Educational Resources Information Center

    Embry, Dennis D.

    2004-01-01

    A paradox exists in community prevention of violence and drugs. Good research now exists on evidence-based programs, yet extensive expenditures on prevention have not produced community-level results. Various multiproblems are quite prevalent in the United States, such as violence, Attention Deficit Hyperactivity Disorder (ADHD), conduct problems,…

  6. Model selection for anomaly detection

    NASA Astrophysics Data System (ADS)

    Burnaev, E.; Erofeev, P.; Smolyakov, D.

    2015-12-01

    Anomaly detection based on one-class classification algorithms is broadly used in many applied domains like image processing (e.g. detection of whether a patient is "cancerous" or "healthy" from mammography image), network intrusion detection, etc. Performance of an anomaly detection algorithm crucially depends on a kernel, used to measure similarity in a feature space. The standard approaches (e.g. cross-validation) for kernel selection, used in two-class classification problems, can not be used directly due to the specific nature of a data (absence of a second, abnormal, class data). In this paper we generalize several kernel selection methods from binary-class case to the case of one-class classification and perform extensive comparison of these approaches using both synthetic and real-world data.

  7. Super-resolution fusion of complementary panoramic images based on cross-selection kernel regression interpolation.

    PubMed

    Chen, Lidong; Basu, Anup; Zhang, Maojun; Wang, Wei; Liu, Yu

    2014-03-20

    A complementary catadioptric imaging technique was proposed to solve the problem of low and nonuniform resolution in omnidirectional imaging. To enhance this research, our paper focuses on how to generate a high-resolution panoramic image from the captured omnidirectional image. To avoid the interference between the inner and outer images while fusing the two complementary views, a cross-selection kernel regression method is proposed. First, in view of the complementarity of sampling resolution in the tangential and radial directions between the inner and the outer images, respectively, the horizontal gradients in the expected panoramic image are estimated based on the scattered neighboring pixels mapped from the outer, while the vertical gradients are estimated using the inner image. Then, the size and shape of the regression kernel are adaptively steered based on the local gradients. Furthermore, the neighboring pixels in the next interpolation step of kernel regression are also selected based on the comparison between the horizontal and vertical gradients. In simulation and real-image experiments, the proposed method outperforms existing kernel regression methods and our previous wavelet-based fusion method in terms of both visual quality and objective evaluation.

  8. Bands selection and classification of hyperspectral images based on hybrid kernels SVM by evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Yan-Yan; Li, Dong-Sheng

    2016-01-01

    The hyperspectral images(HSI) consist of many closely spaced bands carrying the most object information. While due to its high dimensionality and high volume nature, it is hard to get satisfactory classification performance. In order to reduce HSI data dimensionality preparation for high classification accuracy, it is proposed to combine a band selection method of artificial immune systems (AIS) with a hybrid kernels support vector machine (SVM-HK) algorithm. In fact, after comparing different kernels for hyperspectral analysis, the approach mixed radial basis function kernel (RBF-K) with sigmoid kernel (Sig-K) and applied the optimized hybrid kernels in SVM classifiers. Then the SVM-HK algorithm used to induce the bands selection of an improved version of AIS. The AIS was composed of clonal selection and elite antibody mutation, including evaluation process with optional index factor (OIF). Experimental classification performance was on a San Diego Naval Base acquired by AVIRIS, the HRS dataset shows that the method is able to efficiently achieve bands redundancy removal while outperforming the traditional SVM classifier.

  9. Gaussian mass optimization for kernel PCA parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Wang, Zulin

    2011-10-01

    This paper proposes a novel kernel parameter optimization method based on Gaussian mass, which aims to overcome the current brute force parameter optimization method in a heuristic way. Generally speaking, the choice of kernel parameter should be tightly related to the target objects while the variance between the samples, the most commonly used kernel parameter, doesn't possess much features of the target, which gives birth to Gaussian mass. Gaussian mass defined in this paper has the property of the invariance of rotation and translation and is capable of depicting the edge, topology and shape information. Simulation results show that Gaussian mass leads a promising heuristic optimization boost up for kernel method. In MNIST handwriting database, the recognition rate improves by 1.6% compared with common kernel method without Gaussian mass optimization. Several promising other directions which Gaussian mass might help are also proposed at the end of the paper.

  10. A shock-capturing SPH scheme based on adaptive kernel estimation

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; López, Hender; Donoso, Arnaldo; Sira, Eloy; Klapp, Jaime

    2006-02-01

    Here we report a method that converts standard smoothed particle hydrodynamics (SPH) into a working shock-capturing scheme without relying on solutions to the Riemann problem. Unlike existing adaptive SPH simulations, the present scheme is based on an adaptive kernel estimation of the density, which combines intrinsic features of both the kernel and nearest neighbor approaches in a way that the amount of smoothing required in low-density regions is effectively controlled. Symmetrized SPH representations of the gas dynamic equations along with the usual kernel summation for the density are used to guarantee variational consistency. Implementation of the adaptive kernel estimation involves a very simple procedure and allows for a unique scheme that handles strong shocks and rarefactions the same way. Since it represents a general improvement of the integral interpolation on scattered data, it is also applicable to other fluid-dynamic models. When the method is applied to supersonic compressible flows with sharp discontinuities, as in the classical one-dimensional shock-tube problem and its variants, the accuracy of the results is comparable, and in most cases superior, to that obtained from high quality Godunov-type methods and SPH formulations based on Riemann solutions. The extension of the method to two- and three-space dimensions is straightforward. In particular, for the two-dimensional cylindrical Noh's shock implosion and Sedov point explosion problems the present scheme produces much better results than those obtained with conventional SPH codes.

  11. Performance Modeling in CUDA Streams - A Means for High-Throughput Data Processing

    PubMed Central

    Li, Hao; Yu, Di; Kumar, Anand; Tu, Yi-Cheng

    2015-01-01

    Push-based database management system (DBMS) is a new type of data processing software that streams large volume of data to concurrent query operators. The high data rate of such systems requires large computing power provided by the query engine. In our previous work, we built a push-based DBMS named G-SDMS to harness the unrivaled computational capabilities of modern GPUs. A major design goal of G-SDMS is to support concurrent processing of heterogenous query processing operations and enable resource allocation among such operations. Understanding the performance of operations as a result of resource consumption is thus a premise in the design of G-SDMS. With NVIDIA’s CUDA framework as the system implementation platform, we present our recent work on performance modeling of CUDA kernels running concurrently under a runtime mechanism named CUDA stream. Specifically, we explore the connection between performance and resource occupancy of compute-bound kernels and develop a model that can predict the performance of such kernels. Furthermore, we provide an in-depth anatomy of the CUDA stream mechanism and summarize the main kernel scheduling disciplines in it. Our models and derived scheduling disciplines are verified by extensive experiments using synthetic and real-world CUDA kernels. PMID:26566545

  12. Seismic Imaging of VTI, HTI and TTI based on Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Rusmanugroho, H.; Tromp, J.

    2014-12-01

    Recent studies show that isotropic seismic imaging based on adjoint method reduces low-frequency artifact caused by diving waves, which commonly occur in two-wave wave-equation migration, such as Reverse Time Migration (RTM). Here, we derive new expressions of sensitivity kernels for Vertical Transverse Isotropy (VTI) using the Thomsen parameters (ɛ, δ, γ) plus the P-, and S-wave speeds (α, β) as well as via the Chen & Tromp (GJI 2005) parameters (A, C, N, L, F). For Horizontal Transverse Isotropy (HTI), these parameters depend on an azimuthal angle φ, where the tilt angle θ is equivalent to 90°, and for Tilted Transverse Isotropy (TTI), these parameters depend on both the azimuth and tilt angles. We calculate sensitivity kernels for each of these two approaches. Individual kernels ("images") are numerically constructed based on the interaction between the regular and adjoint wavefields in smoothed models which are in practice estimated through Full-Waveform Inversion (FWI). The final image is obtained as a result of summing all shots, which are well distributed to sample the target model properly. The impedance kernel, which is a sum of sensitivity kernels of density and the Thomsen or Chen & Tromp parameters, looks crisp and promising for seismic imaging. The other kernels suffer from low-frequency artifacts, similar to traditional seismic imaging conditions. However, all sensitivity kernels are important for estimating the gradient of the misfit function, which, in combination with a standard gradient-based inversion algorithm, is used to minimize the objective function in FWI.

  13. Reconstruction of noisy and blurred images using blur kernel

    NASA Astrophysics Data System (ADS)

    Ellappan, Vijayan; Chopra, Vishal

    2017-11-01

    Blur is a common in so many digital images. Blur can be caused by motion of the camera and scene object. In this work we proposed a new method for deblurring images. This work uses sparse representation to identify the blur kernel. By analyzing the image coordinates Using coarse and fine, we fetch the kernel based image coordinates and according to that observation we get the motion angle of the shaken or blurred image. Then we calculate the length of the motion kernel using radon transformation and Fourier for the length calculation of the image and we use Lucy Richardson algorithm which is also called NON-Blind(NBID) Algorithm for more clean and less noisy image output. All these operation will be performed in MATLAB IDE.

  14. Predicting drug-target interactions by dual-network integrated logistic matrix factorization

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.

  15. KSOS Computer Program Development Specifications (Type B-5). (Kernelized Secure Operating System). I. Security Kernel (CDRL 0002AF). II. UNIX Emulator (CDRL 0002AG). III. Security-Related Software (CDRL 0002AH).

    DTIC Science & Technology

    1980-12-01

    Commun- ications Corporation, Palo Alto, CA (March 1978). g. [Walter at al. 74] Walter, K.G. et al., " Primitive Models for Computer .. Security", ESD-TR...discussion is followed by a presenta- tion of the Kernel primitive operations upon these objects. All Kernel objects shall be referenced by a common...set of sizes. All process segments, regardless of domain, shall be manipulated by the same set of Kernel segment primitives . User domain segments

  16. Proceedings of the second SISAL users` conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feo, J T; Frerking, C; Miller, P J

    1992-12-01

    This report contains papers on the following topics: A sisal code for computing the fourier transform on S{sub N}; five ways to fill your knapsack; simulating material dislocation motion in sisal; candis as an interface for sisal; parallelisation and performance of the burg algorithm on a shared-memory multiprocessor; use of genetic algorithm in sisal to solve the file design problem; implementing FFT`s in sisal; programming and evaluating the performance of signal processing applications in the sisal programming environment; sisal and Von Neumann-based languages: translation and intercommunication; an IF2 code generator for ADAM architecture; program partitioning for NUMA multiprocessor computer systems;more » mapping functional parallelism on distributed memory machines; implicit array copying: prevention is better than cure ; mathematical syntax for sisal; an approach for optimizing recursive functions; implementing arrays in sisal 2.0; Fol: an object oriented extension to the sisal language; twine: a portable, extensible sisal execution kernel; and investigating the memory performance of the optimizing sisal compiler.« less

  17. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    PubMed

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.

  18. Robust active contour via additive local and global intensity information based on local entropy

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Monkam, Patrice; Zhang, Feng; Luan, Fangjun; Koomson, Ben Alfred

    2018-01-01

    Active contour-based image segmentation can be a very challenging task due to many factors such as high intensity inhomogeneity, presence of noise, complex shape, weak boundaries objects, and dependence on the position of the initial contour. We propose a level set-based active contour method to segment complex shape objects from images corrupted by noise and high intensity inhomogeneity. The energy function of the proposed method results from combining the global intensity information and local intensity information with some regularization factors. First, the global intensity term is proposed based on a scheme formulation that considers two intensity values for each region instead of one, which outperforms the well-known Chan-Vese model in delineating the image information. Second, the local intensity term is formulated based on local entropy computed considering the distribution of the image brightness and using the generalized Gaussian distribution as the kernel function. Therefore, it can accurately handle high intensity inhomogeneity and noise. Moreover, our model is not dependent on the position occupied by the initial curve. Finally, extensive experiments using various images have been carried out to illustrate the performance of the proposed method.

  19. A Kernel for Open Source Drug Discovery in Tropical Diseases

    PubMed Central

    Ortí, Leticia; Carbajo, Rodrigo J.; Pieper, Ursula; Eswar, Narayanan; Maurer, Stephen M.; Rai, Arti K.; Taylor, Ginger; Todd, Matthew H.; Pineda-Lucena, Antonio; Sali, Andrej; Marti-Renom, Marc A.

    2009-01-01

    Background Conventional patent-based drug development incentives work badly for the developing world, where commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation with alternative R&D institutions ranging from private–public partnerships to development prizes. Despite extensive discussion, however, one of the most promising avenues—open source drug discovery—has remained elusive. We argue that the stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. Historically, open source software collaborations have almost never succeeded without such “kernels”. Methodology/Principal Findings Here, we use a computational pipeline for: (i) comparative structure modeling of target proteins, (ii) predicting the localization of ligand binding sites on their surfaces, and (iii) assessing the similarity of the predicted ligands to known drugs. Our kernel currently contains 143 and 297 protein targets from ten pathogen genomes that are predicted to bind a known drug or a molecule similar to a known drug, respectively. The kernel provides a source of potential drug targets and drug candidates around which an online open source community can nucleate. Using NMR spectroscopy, we have experimentally tested our predictions for two of these targets, confirming one and invalidating the other. Conclusions/Significance The TDI kernel, which is being offered under the Creative Commons attribution share-alike license for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldisease.org. We hope that the kernel will facilitate collaborative efforts towards the discovery of new drugs against parasites that cause tropical diseases. PMID:19381286

  20. Unconventional protein sources: apricot seed kernels.

    PubMed

    Gabrial, G N; El-Nahry, F I; Awadalla, M Z; Girgis, S M

    1981-09-01

    Hamawy apricot seed kernels (sweet), Amar apricot seed kernels (bitter) and treated Amar apricot kernels (bitterness removed) were evaluated biochemically. All kernels were found to be high in fat (42.2--50.91%), protein (23.74--25.70%) and fiber (15.08--18.02%). Phosphorus, calcium, and iron were determined in all experimental samples. The three different apricot seed kernels were used for extensive study including the qualitative determination of the amino acid constituents by acid hydrolysis, quantitative determination of some amino acids, and biological evaluation of the kernel proteins in order to use them as new protein sources. Weanling albino rats failed to grow on diets containing the Amar apricot seed kernels due to low food consumption because of its bitterness. There was no loss in weight in that case. The Protein Efficiency Ratio data and blood analysis results showed the Hamawy apricot seed kernels to be higher in biological value than treated apricot seed kernels. The Net Protein Ratio data which accounts for both weight, maintenance and growth showed the treated apricot seed kernels to be higher in biological value than both Hamawy and Amar kernels. The Net Protein Ratio for the last two kernels were nearly equal.

  1. A Computational Procedure for Identifying Bilinear Representations of Nonlinear Systems Using Volterra Kernels

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Silva, Walter A.

    2008-01-01

    A computational procedure for identifying the state-space matrices corresponding to discrete bilinear representations of nonlinear systems is presented. A key feature of the method is the use of first- and second-order Volterra kernels (first- and second-order pulse responses) to characterize the system. The present method is based on an extension of a continuous-time bilinear system identification procedure given in a 1971 paper by Bruni, di Pillo, and Koch. The analytical and computational considerations that underlie the original procedure and its extension to the title problem are presented and described, pertinent numerical considerations associated with the process are discussed, and results obtained from the application of the method to a variety of nonlinear problems from the literature are presented. The results of these exploratory numerical studies are decidedly promising and provide sufficient credibility for further examination of the applicability of the method.

  2. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation.

    PubMed

    Sun, Rui; Zhang, Guanghai; Yan, Xiaoxing; Gao, Jun

    2016-08-16

    Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods.

  3. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation

    PubMed Central

    Sun, Rui; Zhang, Guanghai; Yan, Xiaoxing; Gao, Jun

    2016-01-01

    Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods. PMID:27537888

  4. Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.

    PubMed

    Li, Shuang; Liu, Bing; Zhang, Chen

    2016-01-01

    Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios.

  5. Distinguishing Nonpareil marketing group almond cultivars through multivariate analyses.

    PubMed

    Ledbetter, Craig A; Sisterson, Mark S

    2013-09-01

    More than 80% of the world's almonds are grown in California with several dozen almond cultivars available commercially. To facilitate promotion and sale, almond cultivars are categorized into marketing groups based on kernel shape and appearance. Several marketing groups are recognized, with the Nonpareil Marketing Group (NMG) demanding the highest prices. Placement of cultivars into the NMG is historical and no objective standards exist for deciding whether newly developed cultivars belong in the NMG. Principal component analyses (PCA) were used to identify nut and kernel characteristics best separating the 4 NMG cultivars (Nonpareil, Jeffries, Kapareil, and Milow) from a representative of the California Marketing Group (cultivar Carmel) and the Mission Marketing Group (cultivar Padre). In addition, discriminant analyses were used to determine cultivar misclassification rates between and within the marketing groups. All 19 evaluated carpological characters differed significantly among the 6 cultivars and during 2 harvest seasons. A clear distinction of NMG cultivars from representatives of the California and Mission Marketing Groups was evident from a PCA involving the 6 cultivars. Further, NMG kernels were successfully discriminated from kernels representing the California and Mission Marketing Groups with overall kernel misclassification of only 2% using 16 of the 19 evaluated characters. Pellicle luminosity was the most discriminating character, regardless of the character set used in analyses. Results provide an objective classification of NMG almond kernels, clearly distinguishing them from kernels of cultivars representing the California and Mission Marketing Groups. Journal of Food Science © 2013 Institute of Food Technologists® No claim to original US government works.

  6. The structure of the clouds distributed operating system

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1989-01-01

    A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data and fault-tolerance.

  7. Gnuastro: GNU Astronomy Utilities

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Mohammad

    2018-01-01

    Gnuastro (GNU Astronomy Utilities) manipulates and analyzes astronomical data. It is an official GNU package of a large collection of programs and C/C++ library functions. Command-line programs perform arithmetic operations on images, convert FITS images to common types like JPG or PDF, convolve an image with a given kernel or matching of kernels, perform cosmological calculations, crop parts of large images (possibly in multiple files), manipulate FITS extensions and keywords, and perform statistical operations. In addition, it contains programs to make catalogs from detection maps, add noise, make mock profiles with a variety of radial functions using monte-carlo integration for their centers, match catalogs, and detect objects in an image among many other operations. The command-line programs share the same basic command-line user interface for the comfort of both the users and developers. Gnuastro is written to comply fully with the GNU coding standards and integrates well with all Unix-like operating systems. This enables astronomers to expect a fully familiar experience in the source code, building, installing and command-line user interaction that they have seen in all the other GNU software that they use. Gnuastro's extensive library is included for users who want to build their own unique programs.

  8. Community detection using Kernel Spectral Clustering with memory

    NASA Astrophysics Data System (ADS)

    Langone, Rocco; Suykens, Johan A. K.

    2013-02-01

    This work is related to the problem of community detection in dynamic scenarios, which for instance arises in the segmentation of moving objects, clustering of telephone traffic data, time-series micro-array data etc. A desirable feature of a clustering model which has to capture the evolution of communities over time is the temporal smoothness between clusters in successive time-steps. In this way the model is able to track the long-term trend and in the same time it smooths out short-term variation due to noise. We use the Kernel Spectral Clustering with Memory effect (MKSC) which allows to predict cluster memberships of new nodes via out-of-sample extension and has a proper model selection scheme. It is based on a constrained optimization formulation typical of Least Squares Support Vector Machines (LS-SVM), where the objective function is designed to explicitly incorporate temporal smoothness as a valid prior knowledge. The latter, in fact, allows the model to cluster the current data well and to be consistent with the recent history. Here we propose a generalization of the MKSC model with an arbitrary memory, not only one time-step in the past. The experiments conducted on toy problems confirm our expectations: the more memory we add to the model, the smoother over time are the clustering results. We also compare with the Evolutionary Spectral Clustering (ESC) algorithm which is a state-of-the art method, and we obtain comparable or better results.

  9. Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.

    PubMed

    Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao

    2017-06-21

    In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.

  10. Evaluation of a scattering correction method for high energy tomography

    NASA Astrophysics Data System (ADS)

    Tisseur, David; Bhatia, Navnina; Estre, Nicolas; Berge, Léonie; Eck, Daniel; Payan, Emmanuel

    2018-01-01

    One of the main drawbacks of Cone Beam Computed Tomography (CBCT) is the contribution of the scattered photons due to the object and the detector. Scattered photons are deflected from their original path after their interaction with the object. This additional contribution of the scattered photons results in increased measured intensities, since the scattered intensity simply adds to the transmitted intensity. This effect is seen as an overestimation in the measured intensity thus corresponding to an underestimation of absorption. This results in artifacts like cupping, shading, streaks etc. on the reconstructed images. Moreover, the scattered radiation provides a bias for the quantitative tomography reconstruction (for example atomic number and volumic mass measurement with dual-energy technique). The effect can be significant and difficult in the range of MeV energy using large objects due to higher Scatter to Primary Ratio (SPR). Additionally, the incident high energy photons which are scattered by the Compton effect are more forward directed and hence more likely to reach the detector. Moreover, for MeV energy range, the contribution of the photons produced by pair production and Bremsstrahlung process also becomes important. We propose an evaluation of a scattering correction technique based on the method named Scatter Kernel Superposition (SKS). The algorithm uses a continuously thickness-adapted kernels method. The analytical parameterizations of the scatter kernels are derived in terms of material thickness, to form continuously thickness-adapted kernel maps in order to correct the projections. This approach has proved to be efficient in producing better sampling of the kernels with respect to the object thickness. This technique offers applicability over a wide range of imaging conditions and gives users an additional advantage. Moreover, since no extra hardware is required by this approach, it forms a major advantage especially in those cases where experimental complexities must be avoided. This approach has been previously tested successfully in the energy range of 100 keV - 6 MeV. In this paper, the kernels are simulated using MCNP in order to take into account both photons and electronic processes in scattering radiation contribution. We present scatter correction results on a large object scanned with a 9 MeV linear accelerator.

  11. Improved object optimal synthetic description, modeling, learning, and discrimination by GEOGINE computational kernel

    NASA Astrophysics Data System (ADS)

    Fiorini, Rodolfo A.; Dacquino, Gianfranco

    2005-03-01

    GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous, similar approaches are: 1) Progressive Automated Invariant Model Generation, 2) Invariant Minimal Complete Description Set for computational efficiency, 3) Arbitrary Model Precision for robust object description and identification.

  12. Long-term scale adaptive tracking with kernel correlation filters

    NASA Astrophysics Data System (ADS)

    Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui

    2018-04-01

    Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.

  13. Explaining Support Vector Machines: A Color Based Nomogram

    PubMed Central

    Van Belle, Vanya; Van Calster, Ben; Van Huffel, Sabine; Suykens, Johan A. K.; Lisboa, Paulo

    2016-01-01

    Problem setting Support vector machines (SVMs) are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models. Objective In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto) not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables. Results Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant). When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable. Conclusions This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method. PMID:27723811

  14. Online Feature Transformation Learning for Cross-Domain Object Category Recognition.

    PubMed

    Zhang, Xuesong; Zhuang, Yan; Wang, Wei; Pedrycz, Witold

    2017-06-09

    In this paper, we introduce a new research problem termed online feature transformation learning in the context of multiclass object category recognition. The learning of a feature transformation is viewed as learning a global similarity metric function in an online manner. We first consider the problem of online learning a feature transformation matrix expressed in the original feature space and propose an online passive aggressive feature transformation algorithm. Then these original features are mapped to kernel space and an online single kernel feature transformation (OSKFT) algorithm is developed to learn a nonlinear feature transformation. Based on the OSKFT and the existing Hedge algorithm, a novel online multiple kernel feature transformation algorithm is also proposed, which can further improve the performance of online feature transformation learning in large-scale application. The classifier is trained with k nearest neighbor algorithm together with the learned similarity metric function. Finally, we experimentally examined the effect of setting different parameter values in the proposed algorithms and evaluate the model performance on several multiclass object recognition data sets. The experimental results demonstrate the validity and good performance of our methods on cross-domain and multiclass object recognition application.

  15. Scatter correction for cone-beam computed tomography using self-adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Xie, Shi-Peng; Luo, Li-Min

    2012-06-01

    The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.

  16. Automatic Polyp Detection via A Novel Unified Bottom-up and Top-down Saliency Approach.

    PubMed

    Yuan, Yixuan; Li, Dengwang; Meng, Max Q-H

    2017-07-31

    In this paper, we propose a novel automatic computer-aided method to detect polyps for colonoscopy videos. To find the perceptually and semantically meaningful salient polyp regions, we first segment images into multilevel superpixels. Each level corresponds to different sizes of superpixels. Rather than adopting hand-designed features to describe these superpixels in images, we employ sparse autoencoder (SAE) to learn discriminative features in an unsupervised way. Then a novel unified bottom-up and top-down saliency method is proposed to detect polyps. In the first stage, we propose a weak bottom-up (WBU) saliency map by fusing the contrast based saliency and object-center based saliency together. The contrast based saliency map highlights image parts that show different appearances compared with surrounding areas while the object-center based saliency map emphasizes the center of the salient object. In the second stage, a strong classifier with Multiple Kernel Boosting (MKB) is learned to calculate the strong top-down (STD) saliency map based on samples directly from the obtained multi-level WBU saliency maps. We finally integrate these two stage saliency maps from all levels together to highlight polyps. Experiment results achieve 0.818 recall for saliency calculation, validating the effectiveness of our method. Extensive experiments on public polyp datasets demonstrate that the proposed saliency algorithm performs favorably against state-of-the-art saliency methods to detect polyps.

  17. An ensemble method for extracting adverse drug events from social media.

    PubMed

    Liu, Jing; Zhao, Songzheng; Zhang, Xiaodi

    2016-06-01

    Because adverse drug events (ADEs) are a serious health problem and a leading cause of death, it is of vital importance to identify them correctly and in a timely manner. With the development of Web 2.0, social media has become a large data source for information on ADEs. The objective of this study is to develop a relation extraction system that uses natural language processing techniques to effectively distinguish between ADEs and non-ADEs in informal text on social media. We develop a feature-based approach that utilizes various lexical, syntactic, and semantic features. Information-gain-based feature selection is performed to address high-dimensional features. Then, we evaluate the effectiveness of four well-known kernel-based approaches (i.e., subset tree kernel, tree kernel, shortest dependency path kernel, and all-paths graph kernel) and several ensembles that are generated by adopting different combination methods (i.e., majority voting, weighted averaging, and stacked generalization). All of the approaches are tested using three data sets: two health-related discussion forums and one general social networking site (i.e., Twitter). When investigating the contribution of each feature subset, the feature-based approach attains the best area under the receiver operating characteristics curve (AUC) values, which are 78.6%, 72.2%, and 79.2% on the three data sets. When individual methods are used, we attain the best AUC values of 82.1%, 73.2%, and 77.0% using the subset tree kernel, shortest dependency path kernel, and feature-based approach on the three data sets, respectively. When using classifier ensembles, we achieve the best AUC values of 84.5%, 77.3%, and 84.5% on the three data sets, outperforming the baselines. Our experimental results indicate that ADE extraction from social media can benefit from feature selection. With respect to the effectiveness of different feature subsets, lexical features and semantic features can enhance the ADE extraction capability. Kernel-based approaches, which can stay away from the feature sparsity issue, are qualified to address the ADE extraction problem. Combining different individual classifiers using suitable combination methods can further enhance the ADE extraction effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Towards the Geometry of Reproducing Kernels

    NASA Astrophysics Data System (ADS)

    Galé, J. E.

    2010-11-01

    It is shown here how one is naturally led to consider a category whose objects are reproducing kernels of Hilbert spaces, and how in this way a differential geometry for such kernels may be settled down.

  19. Detection of Splice Sites Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Varadwaj, Pritish; Purohit, Neetesh; Arora, Bhumika

    Automatic identification and annotation of exon and intron region of gene, from DNA sequences has been an important research area in field of computational biology. Several approaches viz. Hidden Markov Model (HMM), Artificial Intelligence (AI) based machine learning and Digital Signal Processing (DSP) techniques have extensively and independently been used by various researchers to cater this challenging task. In this work, we propose a Support Vector Machine based kernel learning approach for detection of splice sites (the exon-intron boundary) in a gene. Electron-Ion Interaction Potential (EIIP) values of nucleotides have been used for mapping character sequences to corresponding numeric sequences. Radial Basis Function (RBF) SVM kernel is trained using EIIP numeric sequences. Furthermore this was tested on test gene dataset for detection of splice site by window (of 12 residues) shifting. Optimum values of window size, various important parameters of SVM kernel have been optimized for a better accuracy. Receiver Operating Characteristic (ROC) curves have been utilized for displaying the sensitivity rate of the classifier and results showed 94.82% accuracy for splice site detection on test dataset.

  20. Robust kernel representation with statistical local features for face recognition.

    PubMed

    Yang, Meng; Zhang, Lei; Shiu, Simon Chi-Keung; Zhang, David

    2013-06-01

    Factors such as misalignment, pose variation, and occlusion make robust face recognition a difficult problem. It is known that statistical features such as local binary pattern are effective for local feature extraction, whereas the recently proposed sparse or collaborative representation-based classification has shown interesting results in robust face recognition. In this paper, we propose a novel robust kernel representation model with statistical local features (SLF) for robust face recognition. Initially, multipartition max pooling is used to enhance the invariance of SLF to image registration error. Then, a kernel-based representation model is proposed to fully exploit the discrimination information embedded in the SLF, and robust regression is adopted to effectively handle the occlusion in face images. Extensive experiments are conducted on benchmark face databases, including extended Yale B, AR (A. Martinez and R. Benavente), multiple pose, illumination, and expression (multi-PIE), facial recognition technology (FERET), face recognition grand challenge (FRGC), and labeled faces in the wild (LFW), which have different variations of lighting, expression, pose, and occlusions, demonstrating the promising performance of the proposed method.

  1. Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test

    PubMed Central

    Zhao, Ni; Chen, Jun; Carroll, Ian M.; Ringel-Kulka, Tamar; Epstein, Michael P.; Zhou, Hua; Zhou, Jin J.; Ringel, Yehuda; Li, Hongzhe; Wu, Michael C.

    2015-01-01

    High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Distance-based analysis is a popular strategy for evaluating the overall association between microbiome diversity and outcome, wherein the phylogenetic distance between individuals’ microbiome profiles is computed and tested for association via permutation. Despite their practical popularity, distance-based approaches suffer from important challenges, especially in selecting the best distance and extending the methods to alternative outcomes, such as survival outcomes. We propose the microbiome regression-based kernel association test (MiRKAT), which directly regresses the outcome on the microbiome profiles via the semi-parametric kernel machine regression framework. MiRKAT allows for easy covariate adjustment and extension to alternative outcomes while non-parametrically modeling the microbiome through a kernel that incorporates phylogenetic distance. It uses a variance-component score statistic to test for the association with analytical p value calculation. The model also allows simultaneous examination of multiple distances, alleviating the problem of choosing the best distance. Our simulations demonstrated that MiRKAT provides correctly controlled type I error and adequate power in detecting overall association. “Optimal” MiRKAT, which considers multiple candidate distances, is robust in that it suffers from little power loss in comparison to when the best distance is used and can achieve tremendous power gain in comparison to when a poor distance is chosen. Finally, we applied MiRKAT to real microbiome datasets to show that microbial communities are associated with smoking and with fecal protease levels after confounders are controlled for. PMID:25957468

  2. EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    NASA Technical Reports Server (NTRS)

    Campbell, R. H.; Essick, R. B.; Grass, J.; Johnston, G.; Kenny, K.; Russo, V.

    1986-01-01

    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing.

  3. Kernel analysis in TeV gamma-ray selection

    NASA Astrophysics Data System (ADS)

    Moriarty, P.; Samuelson, F. W.

    2000-06-01

    We discuss the use of kernel analysis as a technique for selecting gamma-ray candidates in Atmospheric Cherenkov astronomy. The method is applied to observations of the Crab Nebula and Markarian 501 recorded with the Whipple 10 m Atmospheric Cherenkov imaging system, and the results are compared with the standard Supercuts analysis. Since kernel analysis is computationally intensive, we examine approaches to reducing the computational load. Extension of the technique to estimate the energy of the gamma-ray primary is considered. .

  4. System and method for automated object detection in an image

    DOEpatents

    Kenyon, Garrett T.; Brumby, Steven P.; George, John S.; Paiton, Dylan M.; Schultz, Peter F.

    2015-10-06

    A contour/shape detection model may use relatively simple and efficient kernels to detect target edges in an object within an image or video. A co-occurrence probability may be calculated for two or more edge features in an image or video using an object definition. Edge features may be differentiated between in response to measured contextual support, and prominent edge features may be extracted based on the measured contextual support. The object may then be identified based on the extracted prominent edge features.

  5. Sub-Network Kernels for Measuring Similarity of Brain Connectivity Networks in Disease Diagnosis.

    PubMed

    Jie, Biao; Liu, Mingxia; Zhang, Daoqiang; Shen, Dinggang

    2018-05-01

    As a simple representation of interactions among distributed brain regions, brain networks have been widely applied to automated diagnosis of brain diseases, such as Alzheimer's disease (AD) and its early stage, i.e., mild cognitive impairment (MCI). In brain network analysis, a challenging task is how to measure the similarity between a pair of networks. Although many graph kernels (i.e., kernels defined on graphs) have been proposed for measuring the topological similarity of a pair of brain networks, most of them are defined using general graphs, thus ignoring the uniqueness of each node in brain networks. That is, each node in a brain network denotes a particular brain region, which is a specific characteristics of brain networks. Accordingly, in this paper, we construct a novel sub-network kernel for measuring the similarity between a pair of brain networks and then apply it to brain disease classification. Different from current graph kernels, our proposed sub-network kernel not only takes into account the inherent characteristic of brain networks, but also captures multi-level (from local to global) topological properties of nodes in brain networks, which are essential for defining the similarity measure of brain networks. To validate the efficacy of our method, we perform extensive experiments on subjects with baseline functional magnetic resonance imaging data obtained from the Alzheimer's disease neuroimaging initiative database. Experimental results demonstrate that the proposed method outperforms several state-of-the-art graph-based methods in MCI classification.

  6. Kernelized correlation tracking with long-term motion cues

    NASA Astrophysics Data System (ADS)

    Lv, Yunqiu; Liu, Kai; Cheng, Fei

    2018-04-01

    Robust object tracking is a challenging task in computer vision due to interruptions such as deformation, fast motion and especially, occlusion of tracked object. When occlusions occur, image data will be unreliable and is insufficient for the tracker to depict the object of interest. Therefore, most trackers are prone to fail under occlusion. In this paper, an occlusion judgement and handling method based on segmentation of the target is proposed. If the target is occluded, the speed and direction of it must be different from the objects occluding it. Hence, the value of motion features are emphasized. Considering the efficiency and robustness of Kernelized Correlation Filter Tracking (KCF), it is adopted as a pre-tracker to obtain a predicted position of the target. By analyzing long-term motion cues of objects around this position, the tracked object is labelled. Hence, occlusion could be detected easily. Experimental results suggest that our tracker achieves a favorable performance and effectively handles occlusion and drifting problems.

  7. Spatio-temporal Event Classification using Time-series Kernel based Structured Sparsity

    PubMed Central

    Jeni, László A.; Lőrincz, András; Szabó, Zoltán; Cohn, Jeffrey F.; Kanade, Takeo

    2016-01-01

    In many behavioral domains, such as facial expression and gesture, sparse structure is prevalent. This sparsity would be well suited for event detection but for one problem. Features typically are confounded by alignment error in space and time. As a consequence, high-dimensional representations such as SIFT and Gabor features have been favored despite their much greater computational cost and potential loss of information. We propose a Kernel Structured Sparsity (KSS) method that can handle both the temporal alignment problem and the structured sparse reconstruction within a common framework, and it can rely on simple features. We characterize spatio-temporal events as time-series of motion patterns and by utilizing time-series kernels we apply standard structured-sparse coding techniques to tackle this important problem. We evaluated the KSS method using both gesture and facial expression datasets that include spontaneous behavior and differ in degree of difficulty and type of ground truth coding. KSS outperformed both sparse and non-sparse methods that utilize complex image features and their temporal extensions. In the case of early facial event classification KSS had 10% higher accuracy as measured by F1 score over kernel SVM methods1. PMID:27830214

  8. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.

    PubMed

    Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E; Re, Matteo

    2014-06-01

    In the context of "network medicine", gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different "informativeness" embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further enhance disease gene ranking results, by adopting both local and global learning strategies, able to exploit the overall topology of the network. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning.

    PubMed

    Airola, Antti; Pyysalo, Sampo; Björne, Jari; Pahikkala, Tapio; Ginter, Filip; Salakoski, Tapio

    2008-11-19

    Automated extraction of protein-protein interactions (PPI) is an important and widely studied task in biomedical text mining. We propose a graph kernel based approach for this task. In contrast to earlier approaches to PPI extraction, the introduced all-paths graph kernel has the capability to make use of full, general dependency graphs representing the sentence structure. We evaluate the proposed method on five publicly available PPI corpora, providing the most comprehensive evaluation done for a machine learning based PPI-extraction system. We additionally perform a detailed evaluation of the effects of training and testing on different resources, providing insight into the challenges involved in applying a system beyond the data it was trained on. Our method is shown to achieve state-of-the-art performance with respect to comparable evaluations, with 56.4 F-score and 84.8 AUC on the AImed corpus. We show that the graph kernel approach performs on state-of-the-art level in PPI extraction, and note the possible extension to the task of extracting complex interactions. Cross-corpus results provide further insight into how the learning generalizes beyond individual corpora. Further, we identify several pitfalls that can make evaluations of PPI-extraction systems incomparable, or even invalid. These include incorrect cross-validation strategies and problems related to comparing F-score results achieved on different evaluation resources. Recommendations for avoiding these pitfalls are provided.

  10. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    PubMed

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  11. 3DRT-MPASS

    NASA Technical Reports Server (NTRS)

    Lickly, Ben

    2005-01-01

    Data from all current JPL missions are stored in files called SPICE kernels. At present, animators who want to use data from these kernels have to either read through the kernels looking for the desired data, or write programs themselves to retrieve information about all the needed objects for their animations. In this project, methods of automating the process of importing the data from the SPICE kernels were researched. In particular, tools were developed for creating basic scenes in Maya, a 3D computer graphics software package, from SPICE kernels.

  12. Protein subcellular localization prediction using multiple kernel learning based support vector machine.

    PubMed

    Hasan, Md Al Mehedi; Ahmad, Shamim; Molla, Md Khademul Islam

    2017-03-28

    Predicting the subcellular locations of proteins can provide useful hints that reveal their functions, increase our understanding of the mechanisms of some diseases, and finally aid in the development of novel drugs. As the number of newly discovered proteins has been growing exponentially, which in turns, makes the subcellular localization prediction by purely laboratory tests prohibitively laborious and expensive. In this context, to tackle the challenges, computational methods are being developed as an alternative choice to aid biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging issue, particularly, when query proteins have multi-label characteristics, i.e., if they exist simultaneously in more than one subcellular location or if they move between two or more different subcellular locations. To date, to address this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM) has been employed to provide potential solutions to the protein subcellular localization prediction problem. However, the practicability of an SVM is affected by the challenges of selecting an appropriate kernel and selecting the parameters of the selected kernel. To address this difficulty, in this study, we aimed to develop an efficient multi-label protein subcellular localization prediction system, named as MKLoc, by introducing multiple kernel learning (MKL) based SVM. We evaluated MKLoc using a combined dataset containing 5447 single-localized proteins (originally published as part of the Höglund dataset) and 3056 multi-localized proteins (originally published as part of the DBMLoc set). Note that this dataset was used by Briesemeister et al. in their extensive comparison of multi-localization prediction systems. Finally, our experimental results indicate that MKLoc not only achieves higher accuracy than a single kernel based SVM system but also shows significantly better results than those obtained from other top systems (MDLoc, BNCs, YLoc+). Moreover, MKLoc requires less computation time to tune and train the system than that required for BNCs and single kernel based SVM.

  13. Multiscale tomography of buried magnetic structures: its use in the localization and characterization of archaeological structures

    NASA Astrophysics Data System (ADS)

    Saracco, Ginette; Moreau, Frédérique; Mathé, Pierre-Etienne; Hermitte, Daniel; Michel, Jean-Marie

    2007-10-01

    We have previously developed a method for characterizing and localizing `homogeneous' buried sources, from the measure of potential anomalies at a fixed height above ground (magnetic, electric and gravity). This method is based on potential theory and uses the properties of the Poisson kernel (real by definition) and the continuous wavelet theory. Here, we relax the assumption on sources and introduce a method that we call the `multiscale tomography'. Our approach is based on the harmonic extension of the observed magnetic field to produce a complex source by use of a complex Poisson kernel solution of the Laplace equation for complex potential field. A phase and modulus are defined. We show that the phase provides additional information on the total magnetic inclination and the structure of sources, while the modulus allows us to characterize its spatial location, depth and `effective degree'. This method is compared to the `complex dipolar tomography', extension of the Patella method that we previously developed. We applied both methods and a classical electrical resistivity tomography to detect and localize buried archaeological structures like antique ovens from magnetic measurements on the Fox-Amphoux site (France). The estimates are then compared with the results of excavations.

  14. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach

    PubMed Central

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-01-01

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202

  15. An introduction to kernel-based learning algorithms.

    PubMed

    Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B

    2001-01-01

    This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.

  16. Robust Kernel-Based Object Tracking with Multiple Kernel Centers

    DTIC Science & Technology

    2009-07-09

    orientation and scale estimation, which will be added in Section 4. 1017 where gji ,l represents g(‖ rl(y j)−xi h0 ‖2) for short. Note that y j cancels out...ρ(zj)]g j i,l hj ∑N i=1 ∑L l=1 w j i,lg j i,l (47) where, vji,l = (xi − yj)T ∂∆rl(φ j) ∂φ (48) sji,l = (xi − yj)T (xi − rl(zj)) (49) and gji ,l

  17. Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves

    NASA Astrophysics Data System (ADS)

    Tape, Carl; Liu, Qinya; Tromp, Jeroen

    2007-03-01

    We employ adjoint methods in a series of synthetic seismic tomography experiments to recover surface wave phase-speed models of southern California. Our approach involves computing the Fréchet derivative for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a 2-D spectral-element method (SEM) and a phase-speed model for southern California. A `target' phase-speed model is used to generate the `data' at the receivers. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the remaining differences between data and synthetics are time-reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernels. An event kernel may be thought of as a weighted sum of phase-specific (e.g. P) banana-doughnut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, that is, the Fréchet derivative. A non-linear conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. We illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions and joint source-structure inversions. Finally, we draw connections between classical Hessian-based tomography and gradient-based adjoint tomography.

  18. An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Gidden, Matthew J.

    Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.

  19. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  20. On the Kernel function of the integral equation relating lift and downwash distributions of oscillating wings in supersonic flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E; Berman, Julian H

    1956-01-01

    This report treats the Kernel function of the integral equation that relates a known or prescribed downwash distribution to an unknown lift distribution for harmonically oscillating wings in supersonic flow. The treatment is essentially an extension to supersonic flow of the treatment given in NACA report 1234 for subsonic flow. For the supersonic case the Kernel function is derived by use of a suitable form of acoustic doublet potential which employs a cutoff or Heaviside unit function. The Kernel functions are reduced to forms that can be accurately evaluated by considering the functions in two parts: a part in which the singularities are isolated and analytically expressed, and a nonsingular part which can be tabulated.

  1. A trace ratio maximization approach to multiple kernel-based dimensionality reduction.

    PubMed

    Jiang, Wenhao; Chung, Fu-lai

    2014-01-01

    Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Robust visual tracking based on deep convolutional neural networks and kernelized correlation filters

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Zhong, Donghong; Liu, Chenyi; Song, Kaiyou; Yin, Zhouping

    2018-03-01

    Object tracking is still a challenging problem in computer vision, as it entails learning an effective model to account for appearance changes caused by occlusion, out of view, plane rotation, scale change, and background clutter. This paper proposes a robust visual tracking algorithm called deep convolutional neural network (DCNNCT) to simultaneously address these challenges. The proposed DCNNCT algorithm utilizes a DCNN to extract the image feature of a tracked target, and the full range of information regarding each convolutional layer is used to express the image feature. Subsequently, the kernelized correlation filters (CF) in each convolutional layer are adaptively learned, the correlation response maps of that are combined to estimate the location of the tracked target. To avoid the case of tracking failure, an online random ferns classifier is employed to redetect the tracked target, and a dual-threshold scheme is used to obtain the final target location by comparing the tracking result with the detection result. Finally, the change in scale of the target is determined by building scale pyramids and training a CF. Extensive experiments demonstrate that the proposed algorithm is effective at tracking, especially when evaluated using an index called the overlap rate. The DCNNCT algorithm is also highly competitive in terms of robustness with respect to state-of-the-art trackers in various challenging scenarios.

  3. A kernel-based novelty detection scheme for the ultra-fast detection of chirp evoked Auditory Brainstem Responses.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J

    2010-01-01

    Auditory Brainstem Responses (ABRs) are used as objective method for diagnostics and quantification of hearing loss. Many methods for automatic recognition of ABRs have been developed, but none of them include the individual measurement setup in the analysis. The purpose of this work was to design a fast recognition scheme for chirp-evoked ABRs that is adjusted to the individual measurement condition using spontaneous electroencephalographic activity (SA). For the classification, the kernel-based novelty detection scheme used features based on the inter-sweep instantaneous phase synchronization as well as energy and entropy relations in the time-frequency domain. This method provided SA discrimination from stimulations above the hearing threshold with a minimum number of sweeps, i.e., 200 individual responses. It is concluded that the proposed paradigm, processing procedures and stimulation techniques improve the detection of ABRs in terms of the degree of objectivity, i.e., automation of procedure, and measurement time.

  4. Multicluster

    DTIC Science & Technology

    1993-03-01

    CLUSTER A CLUSTER B .UDP D "Orequeqes ProxyDistribute 0 Figure 4-4: HOSTALL Implementation HOST_ALL is implemented as follows. The kernel looks up the...it includes the HOSTALL request as an argument. The generic CronusHost object is managed by the Cronus Kernel. A kernel that receives a ProxyDistnbute...request uses its cached service information to send the HOSTALL request to each host in its cluster via UDP. If the kernel has no cached information

  5. Custom controls

    NASA Astrophysics Data System (ADS)

    Butell, Bart

    1996-02-01

    Microsoft's Visual Basic (VB) and Borland's Delphi provide an extremely robust programming environment for delivering multimedia solutions for interactive kiosks, games and titles. Their object oriented use of standard and custom controls enable a user to build extremely powerful applications. A multipurpose, database enabled programming environment that can provide an event driven interface functions as a multimedia kernel. This kernel can provide a variety of authoring solutions (e.g. a timeline based model similar to Macromedia Director or a node authoring model similar to Icon Author). At the heart of the kernel is a set of low level multimedia components providing object oriented interfaces for graphics, audio, video and imaging. Data preparation tools (e.g., layout, palette and Sprite Editors) could be built to manage the media database. The flexible interface for VB allows the construction of an infinite number of user models. The proliferation of these models within a popular, easy to use environment will allow the vast developer segment of 'producer' types to bring their ideas to the market. This is the key to building exciting, content rich multimedia solutions. Microsoft's VB and Borland's Delphi environments combined with multimedia components enable these possibilities.

  6. Density Deconvolution With EPI Splines

    DTIC Science & Technology

    2015-09-01

    effects of various substances on test subjects [11], [12]. Whereas in geophysics, a shot may be fired into the ground, in pharmacokinetics, a signal is...be significant, including medicine, bioinformatics, chemistry, as- tronomy, and econometrics , as well as an extensive review of kernel based methods...demonstrate the effectiveness of our model in simulations motivated by test instances in [32]. We consider an additive measurement model scenario where

  7. Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.

    PubMed

    Lima, Clodoaldo A M; Coelho, André L V

    2011-10-01

    We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely, Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Experiences in autotuning matrix multiplication for energy minimization on GPUs

    DOE PAGES

    Anzt, Hartwig; Haugen, Blake; Kurzak, Jakub; ...

    2015-05-20

    In this study, we report extensive results and analysis of autotuning the computationally intensive graphics processing units kernel for dense matrix–matrix multiplication in double precision. In contrast to traditional autotuning and/or optimization for runtime performance only, we also take the energy efficiency into account. For kernels achieving equal performance, we show significant differences in their energy balance. We also identify the memory throughput as the most influential metric that trades off performance and energy efficiency. Finally, as a result, the performance optimal case ends up not being the most efficient kernel in overall resource use.

  9. Using Adjoint Methods to Improve 3-D Velocity Models of Southern California

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Tape, C.; Maggi, A.; Tromp, J.

    2006-12-01

    We use adjoint methods popular in climate and ocean dynamics to calculate Fréchet derivatives for tomographic inversions in southern California. The Fréchet derivative of an objective function χ(m), where m denotes the Earth model, may be written in the generic form δχ=int Km(x) δln m(x) d3x, where δln m=δ m/m denotes the relative model perturbation. For illustrative purposes, we construct the 3-D finite-frequency banana-doughnut kernel Km, corresponding to the misfit of a single traveltime measurement, by simultaneously computing the 'adjoint' wave field s† forward in time and reconstructing the regular wave field s backward in time. The adjoint wave field is produced by using the time-reversed velocity at the receiver as a fictitious source, while the regular wave field is reconstructed on the fly by propagating the last frame of the wave field saved by a previous forward simulation backward in time. The approach is based upon the spectral-element method, and only two simulations are needed to produce density, shear-wave, and compressional-wave sensitivity kernels. This method is applied to the SCEC southern California velocity model. Various density, shear-wave, and compressional-wave sensitivity kernels are presented for different phases in the seismograms. We also generate 'event' kernels for Pnl, S and surface waves, which are the Fréchet kernels of misfit functions that measure the P, S or surface wave traveltime residuals at all the receivers simultaneously for one particular event. Effectively, an event kernel is a sum of weighted Fréchet kernels, with weights determined by the associated traveltime anomalies. By the nature of the 3-D simulation, every event kernel is also computed based upon just two simulations, i.e., its construction costs the same amount of computation time as an individual banana-doughnut kernel. One can think of the sum of the event kernels for all available earthquakes, called the 'misfit' kernel, as a graphical representation of the gradient of the misfit function. With the capability of computing both the value of the misfit function and its gradient, which assimilates the traveltime anomalies, we are ready to use a non-linear conjugate gradient algorithm to iteratively improve velocity models of southern California.

  10. Collaborative WorkBench for Researchers - Work Smarter, Not Harder

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kuo, Kwo-sen; Maskey, Manil; Lynnes, Christopher

    2014-01-01

    It is important to define some commonly used terminology related to collaboration to facilitate clarity in later discussions. We define provisioning as infrastructure capabilities such as computation, storage, data, and tools provided by some agency or similarly trusted institution. Sharing is defined as the process of exchanging data, programs, and knowledge among individuals (often strangers) and groups. Collaboration is a specialized case of sharing. In collaboration, sharing with others (usually known colleagues) is done in pursuit of a common scientific goal or objective. Collaboration entails more dynamic and frequent interactions and can occur at different speeds. Synchronous collaboration occurs in real time such as editing a shared document on the fly, chatting, video conference, etc., and typically requires a peer-to-peer connection. Asynchronous collaboration is episodic in nature based on a push-pull model. Examples of asynchronous collaboration include email exchanges, blogging, repositories, etc. The purpose of a workbench is to provide a customizable framework for different applications. Since the workbench will be common to all the customized tools, it promotes building modular functionality that can be used and reused by multiple tools. The objective of our Collaborative Workbench (CWB) is thus to create such an open and extensible framework for the Earth Science community via a set of plug-ins. Our CWB is based on the Eclipse [2] Integrated Development Environment (IDE), which is designed as a small kernel containing a plug-in loader for hundreds of plug-ins. The kernel itself is an implementation of a known specification to provide an environment for the plug-ins to execute. This design enables modularity, where discrete chunks of functionality can be reused to build new applications. The minimal set of plug-ins necessary to create a client application is called the Eclipse Rich Client Platform (RCP) [3]; The Eclipse RCP also supports thousands of community-contributed plug-ins, making it a popular development platform for many diverse applications including the Science Activity Planner developed at JPL for the Mars rovers [4] and the scientific experiment tool Gumtree [5]. By leveraging the Eclipse RCP to provide an open, extensible framework, a CWB supports customizations via plug-ins to build rich user applications specific for Earth Science. More importantly, CWB plug-ins can be used by existing science tools built off Eclipse such as IDL or PyDev to provide seamless collaboration functionalities.

  11. Stable Local Volatility Calibration Using Kernel Splines

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas F.; Li, Yuying; Wang, Cheng

    2010-09-01

    We propose an optimization formulation using L1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances the calibration accuracy with the model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a kernel function generating splines and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of the support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.

  12. Creating an anthropomorphic digital MR phantom—an extensible tool for comparing and evaluating quantitative imaging algorithms

    NASA Astrophysics Data System (ADS)

    Bosca, Ryan J.; Jackson, Edward F.

    2016-01-01

    Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland-Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms.

  13. Deep Restricted Kernel Machines Using Conjugate Feature Duality.

    PubMed

    Suykens, Johan A K

    2017-08-01

    The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.

  14. Using Mosix for Wide-Area Compuational Resources

    USGS Publications Warehouse

    Maddox, Brian G.

    2004-01-01

    One of the problems with using traditional Beowulf-type distributed processing clusters is that they require an investment in dedicated computer resources. These resources are usually needed in addition to pre-existing ones such as desktop computers and file servers. Mosix is a series of modifications to the Linux kernel that creates a virtual computer, featuring automatic load balancing by migrating processes from heavily loaded nodes to less used ones. An extension of the Beowulf concept is to run a Mosixenabled Linux kernel on a large number of computer resources in an organization. This configuration would provide a very large amount of computational resources based on pre-existing equipment. The advantage of this method is that it provides much more processing power than a traditional Beowulf cluster without the added costs of dedicating resources.

  15. Abiotic stress growth conditions induce different responses in kernel iron concentration across genotypically distinct maize inbred varieties

    PubMed Central

    Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.

    2013-01-01

    The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659

  16. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM.

    PubMed

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2016-10-14

    A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  17. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  18. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nataf, J.M.; Winkelmann, F.

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less

  19. KMgene: a unified R package for gene-based association analysis for complex traits.

    PubMed

    Yan, Qi; Fang, Zhou; Chen, Wei; Stegle, Oliver

    2018-02-09

    In this report, we introduce an R package KMgene for performing gene-based association tests for familial, multivariate or longitudinal traits using kernel machine (KM) regression under a generalized linear mixed model (GLMM) framework. Extensive simulations were performed to evaluate the validity of the approaches implemented in KMgene. http://cran.r-project.org/web/packages/KMgene. qi.yan@chp.edu or wei.chen@chp.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2018. Published by Oxford University Press.

  20. Protecting Cryptographic Keys and Functions from Malware Attacks

    DTIC Science & Technology

    2010-12-01

    registers. modifies RSA private key signing in OpenSSL to use the technique. The resulting system has the following features: 1. No special hardware is...the above method based on OpenSSL , by exploiting the Streaming SIMD Extension (SSE) XMM registers of modern Intel and AMD x86-compatible CPU’s [22...one can store a 2048-bit exponent.1 Our prototype is based on OpenSSL 0.9.8e, the Ubuntu 6.06 Linux distribution with a 2.6.15 kernel, and SSE2 which

  1. A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice.

    PubMed

    Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah

    2016-01-01

    One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.

  2. Does money matter in inflation forecasting?

    NASA Astrophysics Data System (ADS)

    Binner, J. M.; Tino, P.; Tepper, J.; Anderson, R.; Jones, B.; Kendall, G.

    2010-11-01

    This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two nonlinear techniques, namely, recurrent neural networks and kernel recursive least squares regression-techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naïve random walk model. The best models were nonlinear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. Beyond its economic findings, our study is in the tradition of physicists’ long-standing interest in the interconnections among statistical mechanics, neural networks, and related nonparametric statistical methods, and suggests potential avenues of extension for such studies.

  3. Training set expansion: an approach to improving the reconstruction of biological networks from limited and uneven reliable interactions

    PubMed Central

    Yip, Kevin Y.; Gerstein, Mark

    2009-01-01

    Motivation: An important problem in systems biology is reconstructing complete networks of interactions between biological objects by extrapolating from a few known interactions as examples. While there are many computational techniques proposed for this network reconstruction task, their accuracy is consistently limited by the small number of high-confidence examples, and the uneven distribution of these examples across the potential interaction space, with some objects having many known interactions and others few. Results: To address this issue, we propose two computational methods based on the concept of training set expansion. They work particularly effectively in conjunction with kernel approaches, which are a popular class of approaches for fusing together many disparate types of features. Both our methods are based on semi-supervised learning and involve augmenting the limited number of gold-standard training instances with carefully chosen and highly confident auxiliary examples. The first method, prediction propagation, propagates highly confident predictions of one local model to another as the auxiliary examples, thus learning from information-rich regions of the training network to help predict the information-poor regions. The second method, kernel initialization, takes the most similar and most dissimilar objects of each object in a global kernel as the auxiliary examples. Using several sets of experimentally verified protein–protein interactions from yeast, we show that training set expansion gives a measurable performance gain over a number of representative, state-of-the-art network reconstruction methods, and it can correctly identify some interactions that are ranked low by other methods due to the lack of training examples of the involved proteins. Contact: mark.gerstein@yale.edu Availability: The datasets and additional materials can be found at http://networks.gersteinlab.org/tse. PMID:19015141

  4. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize

    USDA-ARS?s Scientific Manuscript database

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6−12.5%) than those of the wild-type (WT) counterparts (12...

  5. Coronary Stent Artifact Reduction with an Edge-Enhancing Reconstruction Kernel - A Prospective Cross-Sectional Study with 256-Slice CT.

    PubMed

    Tan, Stéphanie; Soulez, Gilles; Diez Martinez, Patricia; Larrivée, Sandra; Stevens, Louis-Mathieu; Goussard, Yves; Mansour, Samer; Chartrand-Lefebvre, Carl

    2016-01-01

    Metallic artifacts can result in an artificial thickening of the coronary stent wall which can significantly impair computed tomography (CT) imaging in patients with coronary stents. The objective of this study is to assess in vivo visualization of coronary stent wall and lumen with an edge-enhancing CT reconstruction kernel, as compared to a standard kernel. This is a prospective cross-sectional study involving the assessment of 71 coronary stents (24 patients), with blinded observers. After 256-slice CT angiography, image reconstruction was done with medium-smooth and edge-enhancing kernels. Stent wall thickness was measured with both orthogonal and circumference methods, averaging thickness from diameter and circumference measurements, respectively. Image quality was assessed quantitatively using objective parameters (noise, signal to noise (SNR) and contrast to noise (CNR) ratios), as well as visually using a 5-point Likert scale. Stent wall thickness was decreased with the edge-enhancing kernel in comparison to the standard kernel, either with the orthogonal (0.97 ± 0.02 versus 1.09 ± 0.03 mm, respectively; p<0.001) or the circumference method (1.13 ± 0.02 versus 1.21 ± 0.02 mm, respectively; p = 0.001). The edge-enhancing kernel generated less overestimation from nominal thickness compared to the standard kernel, both with the orthogonal (0.89 ± 0.19 versus 1.00 ± 0.26 mm, respectively; p<0.001) and the circumference (1.06 ± 0.26 versus 1.13 ± 0.31 mm, respectively; p = 0.005) methods. The edge-enhancing kernel was associated with lower SNR and CNR, as well as higher background noise (all p < 0.001), in comparison to the medium-smooth kernel. Stent visual scores were higher with the edge-enhancing kernel (p<0.001). In vivo 256-slice CT assessment of coronary stents shows that the edge-enhancing CT reconstruction kernel generates thinner stent walls, less overestimation from nominal thickness, and better image quality scores than the standard kernel.

  6. Half-blind remote sensing image restoration with partly unknown degradation

    NASA Astrophysics Data System (ADS)

    Xie, Meihua; Yan, Fengxia

    2017-01-01

    The problem of image restoration has been extensively studied for its practical importance and theoretical interest. This paper mainly discusses the problem of image restoration with partly unknown kernel. In this model, the degraded kernel function is known but its parameters are unknown. With this model, we should estimate the parameters in Gaussian kernel and the real image simultaneity. For this new problem, a total variation restoration model is put out and an intersect direction iteration algorithm is designed. Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measurement (SSIM) are used to measure the performance of the method. Numerical results show that we can estimate the parameters in kernel accurately, and the new method has both much higher PSNR and much higher SSIM than the expectation maximization (EM) method in many cases. In addition, the accuracy of estimation is not sensitive to noise. Furthermore, even though the support of the kernel is unknown, we can also use this method to get accurate estimation.

  7. Joint and collaborative representation with local Volterra kernels convolution feature for face recognition

    NASA Astrophysics Data System (ADS)

    Feng, Guang; Li, Hengjian; Dong, Jiwen; Chen, Xi; Yang, Huiru

    2018-04-01

    In this paper, we proposed a joint and collaborative representation with Volterra kernel convolution feature (JCRVK) for face recognition. Firstly, the candidate face images are divided into sub-blocks in the equal size. The blocks are extracted feature using the two-dimensional Voltera kernels discriminant analysis, which can better capture the discrimination information from the different faces. Next, the proposed joint and collaborative representation is employed to optimize and classify the local Volterra kernels features (JCR-VK) individually. JCR-VK is very efficiently for its implementation only depending on matrix multiplication. Finally, recognition is completed by using the majority voting principle. Extensive experiments on the Extended Yale B and AR face databases are conducted, and the results show that the proposed approach can outperform other recently presented similar dictionary algorithms on recognition accuracy.

  8. Noise kernels of stochastic gravity in conformally-flat spacetimes

    NASA Astrophysics Data System (ADS)

    Cho, H. T.; Hu, B. L.

    2015-03-01

    The central object in the theory of semiclassical stochastic gravity is the noise kernel, which is the symmetric two point correlation function of the stress-energy tensor. Using the corresponding Wightman functions in Minkowski, Einstein and open Einstein spaces, we construct the noise kernels of a conformally coupled scalar field in these spacetimes. From them we show that the noise kernels in conformally-flat spacetimes, including the Friedmann-Robertson-Walker universes, can be obtained in closed analytic forms by using a combination of conformal and coordinate transformations.

  9. Study on Energy Productivity Ratio (EPR) at palm kernel oil processing factory: case study on PT-X at Sumatera Utara Plantation

    NASA Astrophysics Data System (ADS)

    Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.

    2018-02-01

    The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.

  10. On Pfaffian Random Point Fields

    NASA Astrophysics Data System (ADS)

    Kargin, V.

    2014-02-01

    We study Pfaffian random point fields by using the Moore-Dyson quaternion determinants. First, we give sufficient conditions that ensure that a self-dual quaternion kernel defines a valid random point field, and then we prove a CLT for Pfaffian point fields. The proofs are based on a new quaternion extension of the Cauchy-Binet determinantal identity. In addition, we derive the Fredholm determinantal formulas for the Pfaffian point fields which use the quaternion determinant.

  11. Face recognition by applying wavelet subband representation and kernel associative memory.

    PubMed

    Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam

    2004-01-01

    In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.

  12. Direct discriminant locality preserving projection with Hammerstein polynomial expansion.

    PubMed

    Chen, Xi; Zhang, Jiashu; Li, Defang

    2012-12-01

    Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.

  13. Improved scatter correction using adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Sun, M.; Star-Lack, J. M.

    2010-11-01

    Accurate scatter correction is required to produce high-quality reconstructions of x-ray cone-beam computed tomography (CBCT) scans. This paper describes new scatter kernel superposition (SKS) algorithms for deconvolving scatter from projection data. The algorithms are designed to improve upon the conventional approach whose accuracy is limited by the use of symmetric kernels that characterize the scatter properties of uniform slabs. To model scatter transport in more realistic objects, nonstationary kernels, whose shapes adapt to local thickness variations in the projection data, are proposed. Two methods are introduced: (1) adaptive scatter kernel superposition (ASKS) requiring spatial domain convolutions and (2) fast adaptive scatter kernel superposition (fASKS) where, through a linearity approximation, convolution is efficiently performed in Fourier space. The conventional SKS algorithm, ASKS, and fASKS, were tested with Monte Carlo simulations and with phantom data acquired on a table-top CBCT system matching the Varian On-Board Imager (OBI). All three models accounted for scatter point-spread broadening due to object thickening, object edge effects, detector scatter properties and an anti-scatter grid. Hounsfield unit (HU) errors in reconstructions of a large pelvis phantom with a measured maximum scatter-to-primary ratio over 200% were reduced from -90 ± 58 HU (mean ± standard deviation) with no scatter correction to 53 ± 82 HU with SKS, to 19 ± 25 HU with fASKS and to 13 ± 21 HU with ASKS. HU accuracies and measured contrast were similarly improved in reconstructions of a body-sized elliptical Catphan phantom. The results show that the adaptive SKS methods offer significant advantages over the conventional scatter deconvolution technique.

  14. Database technology and the management of multimedia data in the Mirror project

    NASA Astrophysics Data System (ADS)

    de Vries, Arjen P.; Blanken, H. M.

    1998-10-01

    Multimedia digital libraries require an open distributed architecture instead of a monolithic database system. In the Mirror project, we use the Monet extensible database kernel to manage different representation of multimedia objects. To maintain independence between content, meta-data, and the creation of meta-data, we allow distribution of data and operations using CORBA. This open architecture introduces new problems for data access. From an end user's perspective, the problem is how to search the available representations to fulfill an actual information need; the conceptual gap between human perceptual processes and the meta-data is too large. From a system's perspective, several representations of the data may semantically overlap or be irrelevant. We address these problems with an iterative query process and active user participating through relevance feedback. A retrieval model based on inference networks assists the user with query formulation. The integration of this model into the database design has two advantages. First, the user can query both the logical and the content structure of multimedia objects. Second, the use of different data models in the logical and the physical database design provides data independence and allows algebraic query optimization. We illustrate query processing with a music retrieval application.

  15. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  16. Carbothermic Synthesis of 820 m UN Kernels: Literature Review, Thermodynamics, Analysis, and Related Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemer, Terrence; Voit, Stewart L; Silva, Chinthaka M

    2014-01-01

    The U.S. Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with large, dense uranium nitride (UN) kernels. This effort explores many factors involved in using gel-derived uranium oxide-carbon microspheres to make large UN kernels. Analysis of recent studies with sufficient experimental details is provided. Extensive thermodynamic calculations are used to predict carbon monoxide and other pressures for several different reactions that may be involved in conversion of uranium oxides and carbides to UN. Experimentally, the method for making themore » gel-derived microspheres is described. These were used in a microbalance with an attached mass spectrometer to determine details of carbothermic conversion in argon, nitrogen, or vacuum. A quantitative model is derived from experiments for vacuum conversion to an uranium oxide-carbide kernel.« less

  17. Robust kernel collaborative representation for face recognition

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Wang, Xiaohui; Ma, Yanbo; Jiang, Yuzheng; Zhu, Yinghui; Jin, Zhong

    2015-05-01

    One of the greatest challenges of representation-based face recognition is that the training samples are usually insufficient. In other words, the training set usually does not include enough samples to show varieties of high-dimensional face images caused by illuminations, facial expressions, and postures. When the test sample is significantly different from the training samples of the same subject, the recognition performance will be sharply reduced. We propose a robust kernel collaborative representation based on virtual samples for face recognition. We think that the virtual training set conveys some reasonable and possible variations of the original training samples. Hence, we design a new object function to more closely match the representation coefficients generated from the original and virtual training sets. In order to further improve the robustness, we implement the corresponding representation-based face recognition in kernel space. It is noteworthy that any kind of virtual training samples can be used in our method. We use noised face images to obtain virtual face samples. The noise can be approximately viewed as a reflection of the varieties of illuminations, facial expressions, and postures. Our work is a simple and feasible way to obtain virtual face samples to impose Gaussian noise (and other types of noise) specifically to the original training samples to obtain possible variations of the original samples. Experimental results on the FERET, Georgia Tech, and ORL face databases show that the proposed method is more robust than two state-of-the-art face recognition methods, such as CRC and Kernel CRC.

  18. Feature and Region Selection for Visual Learning.

    PubMed

    Zhao, Ji; Wang, Liantao; Cabral, Ricardo; De la Torre, Fernando

    2016-03-01

    Visual learning problems, such as object classification and action recognition, are typically approached using extensions of the popular bag-of-words (BoWs) model. Despite its great success, it is unclear what visual features the BoW model is learning. Which regions in the image or video are used to discriminate among classes? Which are the most discriminative visual words? Answering these questions is fundamental for understanding existing BoW models and inspiring better models for visual recognition. To answer these questions, this paper presents a method for feature selection and region selection in the visual BoW model. This allows for an intermediate visualization of the features and regions that are important for visual learning. The main idea is to assign latent weights to the features or regions, and jointly optimize these latent variables with the parameters of a classifier (e.g., support vector machine). There are four main benefits of our approach: 1) our approach accommodates non-linear additive kernels, such as the popular χ(2) and intersection kernel; 2) our approach is able to handle both regions in images and spatio-temporal regions in videos in a unified way; 3) the feature selection problem is convex, and both problems can be solved using a scalable reduced gradient method; and 4) we point out strong connections with multiple kernel learning and multiple instance learning approaches. Experimental results in the PASCAL VOC 2007, MSR Action Dataset II and YouTube illustrate the benefits of our approach.

  19. Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient.

    PubMed

    Chen, Juan; Cui, Baotong; Chen, YangQuan

    2018-06-11

    This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Towards Seismic Tomography Based Upon Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Liu, Q.; Tape, C.; Maggi, A.

    2006-12-01

    We outline the theory behind tomographic inversions based on 3D reference models, fully numerical 3D wave propagation, and adjoint methods. Our approach involves computing the Fréchet derivatives for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a spectral-element method (SEM) and a heterogeneous wave-speed model, and stored as synthetic seismograms at particular receivers for which there is data. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the differences between the data and the synthetics are time reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernel. These kernels may be thought of as weighted sums of measurement-specific banana-donut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, i.e., the Fréchet derivatives. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, i.e., the Fréchet derivatives. A conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. Using 2D examples for Rayleigh wave phase-speed maps of southern California, we illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions, and joint source-structure inversions. We also illustrate the characteristics of these 3D finite-frequency kernels based upon adjoint simulations for a variety of global arrivals, e.g., Pdiff, P'P', and SKS, and we illustrate how the approach may be used to investigate body- and surface-wave anisotropy. In adjoint tomography any time segment in which the data and synthetics match reasonably well is suitable for measurement, and this implies a much greater number of phases per seismogram can be used compared to classical tomography in which the sensitivity of the measurements is determined analytically for specific arrivals, e.g., P. We use an automated picking algorithm based upon short-term/long-term averages and strict phase and amplitude anomaly criteria to determine arrivals and time windows suitable for measurement. For shallow global events the algorithm typically identifies of the order of 1000~windows suitable for measurement, whereas for a deep event the number can reach 4000. For southern California earthquakes the number of phases is of the order of 100 for a magnitude 4.0 event and up to 450 for a magnitude 5.0 event. We will show examples of event kernels for both global and regional earthquakes. These event kernels form the basis of adjoint tomography.

  1. GEEC All the Way Down

    DTIC Science & Technology

    2015-01-13

    applying formal methods to systems software, e.g., IronClad [16] and seL4 [19], promise that this vision is not a fool’s er- rand after all. In this...kernel seL4 [19] is fully verified for functional correct- ness and it runs with other deprivileged services. How- ever, the verification process used...portion, which is non-trivial for theorem proving-based approaches. In our COSS example, adding the trusted network logging extensions to seL4 will

  2. Generalized multiple kernel learning with data-dependent priors.

    PubMed

    Mao, Qi; Tsang, Ivor W; Gao, Shenghua; Wang, Li

    2015-06-01

    Multiple kernel learning (MKL) and classifier ensemble are two mainstream methods for solving learning problems in which some sets of features/views are more informative than others, or the features/views within a given set are inconsistent. In this paper, we first present a novel probabilistic interpretation of MKL such that maximum entropy discrimination with a noninformative prior over multiple views is equivalent to the formulation of MKL. Instead of using the noninformative prior, we introduce a novel data-dependent prior based on an ensemble of kernel predictors, which enhances the prediction performance of MKL by leveraging the merits of the classifier ensemble. With the proposed probabilistic framework of MKL, we propose a hierarchical Bayesian model to learn the proposed data-dependent prior and classification model simultaneously. The resultant problem is convex and other information (e.g., instances with either missing views or missing labels) can be seamlessly incorporated into the data-dependent priors. Furthermore, a variety of existing MKL models can be recovered under the proposed MKL framework and can be readily extended to incorporate these priors. Extensive experiments demonstrate the benefits of our proposed framework in supervised and semisupervised settings, as well as in tasks with partial correspondence among multiple views.

  3. A UML profile for framework modeling.

    PubMed

    Xu, Xiao-liang; Wang, Le-yu; Zhou, Hong

    2004-01-01

    The current standard Unified Modeling Language(UML) could not model framework flexibility and extendability adequately due to lack of appropriate constructs to distinguish framework hot-spots from kernel elements. A new UML profile that may customize UML for framework modeling was presented using the extension mechanisms of UML, providing a group of UML extensions to meet the needs of framework modeling. In this profile, the extended class diagrams and sequence diagrams were defined to straightforwardly identify the hot-spots and describe their instantiation restrictions. A transformation model based on design patterns was also put forward, such that the profile based framework design diagrams could be automatically mapped to the corresponding implementation diagrams. It was proved that the presented profile makes framework modeling more straightforwardly and therefore easier to understand and instantiate.

  4. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.

    PubMed

    Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila

    2018-05-07

    Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.

  5. Partial Deconvolution with Inaccurate Blur Kernel.

    PubMed

    Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei

    2017-10-17

    Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.

  6. Learning molecular energies using localized graph kernels.

    PubMed

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-21

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  7. Learning molecular energies using localized graph kernels

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  8. Optimum-AIV: A planning and scheduling system for spacecraft AIV

    NASA Technical Reports Server (NTRS)

    Arentoft, M. M.; Fuchs, Jens J.; Parrod, Y.; Gasquet, Andre; Stader, J.; Stokes, I.; Vadon, H.

    1991-01-01

    A project undertaken for the European Space Agency (ESA) is presented. The project is developing a knowledge based software system for planning and scheduling of activities for spacecraft assembly, integration, and verification (AIV). The system extends into the monitoring of plan execution and the plan repair phase. The objectives are to develop an operational kernel of a planning, scheduling, and plan repair tool, called OPTIMUM-AIV, and to provide facilities which will allow individual projects to customize the kernel to suit its specific needs. The kernel shall consist of a set of software functionalities for assistance in initial specification of the AIV plan, in verification and generation of valid plans and schedules for the AIV activities, and in interactive monitoring and execution problem recovery for the detailed AIV plans. Embedded in OPTIMUM-AIV are external interfaces which allow integration with alternative scheduling systems and project databases. The current status of the OPTIMUM-AIV project, as of Jan. 1991, is that a further analysis of the AIV domain has taken place through interviews with satellite AIV experts, a software requirement document (SRD) for the full operational tool was approved, and an architectural design document (ADD) for the kernel excluding external interfaces is ready for review.

  9. Utilizing fluorescence hyperspectral imaging to differentiate corn inoculated with toxigenic and atoxigenic fungal strains

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2012-05-01

    Naturally occurring Aspergillus flavus strains can be either toxigenic or atoxigenic, indicating their ability to produce aflatoxin or not, under specific conditions. Corn contaminated with toxigenic strains of A. flavus can result in great losses to the agricultural industry and pose threats to public health. Past research showed that fluorescence hyperspectral imaging could be a potential tool for rapid and non-invasive detection of aflatoxin contaminated corn. The objective of the current study was to assess, with the use of a hyperspectral sensor, the difference in fluorescence emission between corn kernels inoculated with toxigenic and atoxigenic inoculums of A. flavus. Corn ears were inoculated with AF13, a toxigenic strain of A. flavus, and AF38, an atoxigenic strain of A. flavus, at dough stage of development and harvested 8 weeks after inoculation. After harvest, single corn kernels were divided into three groups prior to imaging: control, adjacent, and glowing. Both sides of the kernel, germplasm and endosperm, were imaged separately using a fluorescence hyperspectral imaging system. It was found that the classification accuracies of the three manually designated groups were not promising. However, the separation of corn kernels based on different fungal inoculums yielded better results. The best result was achieved with the germplasm side of the corn kernels. Results are expected to enhance the potential of fluorescence hyperspectral imaging for the detection of aflatoxin contaminated corn.

  10. Evidence-based Kernels: Fundamental Units of Behavioral Influence

    PubMed Central

    Biglan, Anthony

    2008-01-01

    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior. PMID:18712600

  11. Detection of maize kernels breakage rate based on K-means clustering

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping

    2017-04-01

    In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.

  12. Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization

    PubMed Central

    Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu

    2012-01-01

    When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance. PMID:22778600

  13. Palmprint and face multi-modal biometric recognition based on SDA-GSVD and its kernelization.

    PubMed

    Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu

    2012-01-01

    When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.

  14. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    PubMed

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.

  15. Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency.

    PubMed

    Zhang, Ying-Ying; Yang, Cai; Zhang, Ping

    2017-05-01

    In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Kernels, Degrees of Freedom, and Power Properties of Quadratic Distance Goodness-of-Fit Tests

    PubMed Central

    Lindsay, Bruce G.; Markatou, Marianthi; Ray, Surajit

    2014-01-01

    In this article, we study the power properties of quadratic-distance-based goodness-of-fit tests. First, we introduce the concept of a root kernel and discuss the considerations that enter the selection of this kernel. We derive an easy to use normal approximation to the power of quadratic distance goodness-of-fit tests and base the construction of a noncentrality index, an analogue of the traditional noncentrality parameter, on it. This leads to a method akin to the Neyman-Pearson lemma for constructing optimal kernels for specific alternatives. We then introduce a midpower analysis as a device for choosing optimal degrees of freedom for a family of alternatives of interest. Finally, we introduce a new diffusion kernel, called the Pearson-normal kernel, and study the extent to which the normal approximation to the power of tests based on this kernel is valid. Supplementary materials for this article are available online. PMID:24764609

  17. A framework for optimal kernel-based manifold embedding of medical image data.

    PubMed

    Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma

    2015-04-01

    Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Approach to explosive hazard detection using sensor fusion and multiple kernel learning with downward-looking GPR and EMI sensor data

    NASA Astrophysics Data System (ADS)

    Pinar, Anthony; Masarik, Matthew; Havens, Timothy C.; Burns, Joseph; Thelen, Brian; Becker, John

    2015-05-01

    This paper explores the effectiveness of an anomaly detection algorithm for downward-looking ground penetrating radar (GPR) and electromagnetic inductance (EMI) data. Threat detection with GPR is challenged by high responses to non-target/clutter objects, leading to a large number of false alarms (FAs), and since the responses of target and clutter signatures are so similar, classifier design is not trivial. We suggest a method based on a Run Packing (RP) algorithm to fuse GPR and EMI data into a composite confidence map to improve detection as measured by the area-under-ROC (NAUC) metric. We examine the value of a multiple kernel learning (MKL) support vector machine (SVM) classifier using image features such as histogram of oriented gradients (HOG), local binary patterns (LBP), and local statistics. Experimental results on government furnished data show that use of our proposed fusion and classification methods improves the NAUC when compared with the results from individual sensors and a single kernel SVM classifier.

  19. Increasing accuracy of dispersal kernels in grid-based population models

    USGS Publications Warehouse

    Slone, D.H.

    2011-01-01

    Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.

  20. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  1. Extensive screening for herbal extracts with potent antioxidant properties

    PubMed Central

    Niwano, Yoshimi; Saito, Keita; Yoshizaki, Fumihiko; Kohno, Masahiro; Ozawa, Toshihiko

    2011-01-01

    This paper summarizes our research for herbal extracts with potent antioxidant activity obtained from a large scale screening based on superoxide radical (O2•−) scavenging activity followed by characterization of antioxidant properties. Firstly, scavenging activity against O2•− was extensively screened from ethanol extracts of approximately 1000 kinds of herbs by applying an electron spin resonance (ESR)-spin trapping method, and we chose four edible herbal extracts with prominently potent ability to scavenge O2•−. They are the extracts from Punica granatum (Peel), Syzygium aromaticum (Bud), Mangifera indica (Kernel), and Phyllanthus emblica (Fruit). These extracts were further examined to determine if they also scavenge hydroxyl radical (•OH), by applying the ESR spin-trapping method, and if they have heat resistance as a desirable characteristic feature. Experiments with the Fenton reaction and photolysis of H2O2 induced by UV irradiation demonstrated that all four extracts have potent ability to directly scavenge •OH. Furthermore, the scavenging activities against O2•− and •OH of the extracts of P. granatum (peel), M. indica (kernel) and P. emblica (fruit) proved to be heat-resistant. The results of the review might give useful information when choosing a potent antioxidant as a foodstuff. For instance, the four herbal extracts chosen from extensive screening possess desirable antioxidant properties. In particular, the extracts of the aforementioned three herbs are expected to be suitable for food processing in which thermal devices are used, because of their heat resistance. PMID:21297917

  2. Kernel Regression Estimation of Fiber Orientation Mixtures in Diffusion MRI

    PubMed Central

    Cabeen, Ryan P.; Bastin, Mark E.; Laidlaw, David H.

    2016-01-01

    We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III. PMID:26691524

  3. Graph Kernels for Molecular Similarity.

    PubMed

    Rupp, Matthias; Schneider, Gisbert

    2010-04-12

    Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Manual sorting to eliminate aflatoxin from peanuts.

    PubMed

    Galvez, F C F; Francisco, M L D L; Villarino, B J; Lustre, A O; Resurreccion, A V A

    2003-10-01

    A manual sorting procedure was developed to eliminate aflatoxin contamination from peanuts. The efficiency of the sorting process in eliminating aflatoxin-contaminated kernels from lots of raw peanuts was verified. The blanching of 20 kg of peanuts at 140 degrees C for 25 min in preheated roasters facilitated the manual sorting of aflatoxin-contaminated kernels after deskinning. The manual sorting of raw materials with initially high aflatoxin contents (300 ppb) resulted in aflatoxin-free peanuts (i.e., peanuts in which no aflatoxin was detected). Verification procedures showed that the sorted sound peanuts contained no aflatoxin or contained low levels (<15 ppb) of aflatoxin. The results obtained confirmed that the sorting process was effective in separating contaminated peanuts whether or nor contamination was extensive. At the commercial level, when roasters were not preheated, the dry blanching of 50 kg of peanuts for 45 to 55 min facilitated the proper deskinning and subsequent manual sorting of aflatoxin-contaminated peanut kernels from sound kernels.

  5. graphkernels: R and Python packages for graph comparison

    PubMed Central

    Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-01-01

    Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902

  6. graphkernels: R and Python packages for graph comparison.

    PubMed

    Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-02-01

    Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.

  7. Adaptive wiener image restoration kernel

    DOEpatents

    Yuan, Ding [Henderson, NV

    2007-06-05

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  8. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  9. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  10. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  11. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  12. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  13. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature

    PubMed Central

    Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar

    2017-01-01

    Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838

  14. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature.

    PubMed

    Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar

    2017-01-01

    Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.

  15. Intraear Compensation of Field Corn, Zea mays, from Simulated and Naturally Occurring Injury by Ear-Feeding Larvae.

    PubMed

    Steckel, S; Stewart, S D

    2015-06-01

    Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Robust infrared target tracking using discriminative and generative approaches

    NASA Astrophysics Data System (ADS)

    Asha, C. S.; Narasimhadhan, A. V.

    2017-09-01

    The process of designing an efficient tracker for thermal infrared imagery is one of the most challenging tasks in computer vision. Although a lot of advancement has been achieved in RGB videos over the decades, textureless and colorless properties of objects in thermal imagery pose hard constraints in the design of an efficient tracker. Tracking of an object using a single feature or a technique often fails to achieve greater accuracy. Here, we propose an effective method to track an object in infrared imagery based on a combination of discriminative and generative approaches. The discriminative technique makes use of two complementary methods such as kernelized correlation filter with spatial feature and AdaBoost classifier with pixel intesity features to operate in parallel. After obtaining optimized locations through discriminative approaches, the generative technique is applied to determine the best target location using a linear search method. Unlike the baseline algorithms, the proposed method estimates the scale of the target by Lucas-Kanade homography estimation. To evaluate the proposed method, extensive experiments are conducted on 17 challenging infrared image sequences obtained from LTIR dataset and a significant improvement of mean distance precision and mean overlap precision is accomplished as compared with the existing trackers. Further, a quantitative and qualitative assessment of the proposed approach with the state-of-the-art trackers is illustrated to clearly demonstrate an overall increase in performance.

  17. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  18. L2-norm multiple kernel learning and its application to biomedical data fusion

    PubMed Central

    2010-01-01

    Background This paper introduces the notion of optimizing different norms in the dual problem of support vector machines with multiple kernels. The selection of norms yields different extensions of multiple kernel learning (MKL) such as L∞, L1, and L2 MKL. In particular, L2 MKL is a novel method that leads to non-sparse optimal kernel coefficients, which is different from the sparse kernel coefficients optimized by the existing L∞ MKL method. In real biomedical applications, L2 MKL may have more advantages over sparse integration method for thoroughly combining complementary information in heterogeneous data sources. Results We provide a theoretical analysis of the relationship between the L2 optimization of kernels in the dual problem with the L2 coefficient regularization in the primal problem. Understanding the dual L2 problem grants a unified view on MKL and enables us to extend the L2 method to a wide range of machine learning problems. We implement L2 MKL for ranking and classification problems and compare its performance with the sparse L∞ and the averaging L1 MKL methods. The experiments are carried out on six real biomedical data sets and two large scale UCI data sets. L2 MKL yields better performance on most of the benchmark data sets. In particular, we propose a novel L2 MKL least squares support vector machine (LSSVM) algorithm, which is shown to be an efficient and promising classifier for large scale data sets processing. Conclusions This paper extends the statistical framework of genomic data fusion based on MKL. Allowing non-sparse weights on the data sources is an attractive option in settings where we believe most data sources to be relevant to the problem at hand and want to avoid a "winner-takes-all" effect seen in L∞ MKL, which can be detrimental to the performance in prospective studies. The notion of optimizing L2 kernels can be straightforwardly extended to ranking, classification, regression, and clustering algorithms. To tackle the computational burden of MKL, this paper proposes several novel LSSVM based MKL algorithms. Systematic comparison on real data sets shows that LSSVM MKL has comparable performance as the conventional SVM MKL algorithms. Moreover, large scale numerical experiments indicate that when cast as semi-infinite programming, LSSVM MKL can be solved more efficiently than SVM MKL. Availability The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/l2lssvm.html. PMID:20529363

  19. Nature and composition of fat bloom from palm kernel stearin and hydrogenated palm kernel stearin compound chocolates.

    PubMed

    Smith, Kevin W; Cain, Fred W; Talbot, Geoff

    2004-08-25

    Palm kernel stearin and hydrogenated palm kernel stearin can be used to prepare compound chocolate bars or coatings. The objective of this study was to characterize the chemical composition, polymorphism, and melting behavior of the bloom that develops on bars of compound chocolate prepared using these fats. Bars were stored for 1 year at 15, 20, or 25 degrees C. At 15 and 20 degrees C the bloom was enriched in cocoa butter triacylglycerols, with respect to the main fat phase, whereas at 25 degrees C the enrichment was with palm kernel triacylglycerols. The bloom consisted principally of solid fat and was sharper melting than was the fat in the chocolate. Polymorphic transitions from the initial beta' phase to the beta phase accompanied the formation of bloom at all temperatures.

  20. Link predication based on matrix factorization by fusion of multi class organizations of the network.

    PubMed

    Jiao, Pengfei; Cai, Fei; Feng, Yiding; Wang, Wenjun

    2017-08-21

    Link predication aims at forecasting the latent or unobserved edges in the complex networks and has a wide range of applications in reality. Almost existing methods and models only take advantage of one class organization of the networks, which always lose important information hidden in other organizations of the network. In this paper, we propose a link predication framework which makes the best of the structure of networks in different level of organizations based on nonnegative matrix factorization, which is called NMF 3 here. We first map the observed network into another space by kernel functions, which could get the different order organizations. Then we combine the adjacency matrix of the network with one of other organizations, which makes us obtain the objective function of our framework for link predication based on the nonnegative matrix factorization. Third, we derive an iterative algorithm to optimize the objective function, which converges to a local optimum, and we propose a fast optimization strategy for large networks. Lastly, we test the proposed framework based on two kernel functions on a series of real world networks under different sizes of training set, and the experimental results show the feasibility, effectiveness, and competitiveness of the proposed framework.

  1. Searching Remote Homology with Spectral Clustering with Symmetry in Neighborhood Cluster Kernels

    PubMed Central

    Maulik, Ujjwal; Sarkar, Anasua

    2013-01-01

    Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of “recent” paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. Contact: sarkar@labri.fr. PMID:23457439

  2. Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.

    PubMed

    Maulik, Ujjwal; Sarkar, Anasua

    2013-01-01

    Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. sarkar@labri.fr.

  3. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Efficient nonparametric n -body force fields from machine learning

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro

    2018-05-01

    We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.

  5. Carbothermic Synthesis of ~820- m UN Kernels. Investigation of Process Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemer, Terrence; Silva, Chinthaka M; Henry, Jr, John James

    2015-06-01

    This report details the continued investigation of process variables involved in converting sol-gel-derived, urainia-carbon microspheres to ~820-μm-dia. UN fuel kernels in flow-through, vertical refractory-metal crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO 3-H 2O-C microspheres in Ar and H 2-containing gases, conversion of the resulting UO 2-C kernels to dense UO 2:2UC in the same gases and vacuum, and its conversion in N 2 to in UC 1-xN x. The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO 2:2UC kernel of ~96% theoretical densitymore » was required, but its subsequent conversion to UC 1-xN x at 2123 K was not accompanied by sintering and resulted in ~83-86% of theoretical density. Decreasing the UC 1-xN x kernel carbide component via HCN evolution was shown to be quantitatively consistent with present and past experiments and the only useful application of H2 in the entire process.« less

  6. Normed kernel function-based fuzzy possibilistic C-means (NKFPCM) algorithm for high-dimensional breast cancer database classification with feature selection is based on Laplacian Score

    NASA Astrophysics Data System (ADS)

    Lestari, A. W.; Rustam, Z.

    2017-07-01

    In the last decade, breast cancer has become the focus of world attention as this disease is one of the primary leading cause of death for women. Therefore, it is necessary to have the correct precautions and treatment. In previous studies, Fuzzy Kennel K-Medoid algorithm has been used for multi-class data. This paper proposes an algorithm to classify the high dimensional data of breast cancer using Fuzzy Possibilistic C-means (FPCM) and a new method based on clustering analysis using Normed Kernel Function-Based Fuzzy Possibilistic C-Means (NKFPCM). The objective of this paper is to obtain the best accuracy in classification of breast cancer data. In order to improve the accuracy of the two methods, the features candidates are evaluated using feature selection, where Laplacian Score is used. The results show the comparison accuracy and running time of FPCM and NKFPCM with and without feature selection.

  7. A novel SURE-based criterion for parametric PSF estimation.

    PubMed

    Xue, Feng; Blu, Thierry

    2015-02-01

    We propose an unbiased estimate of a filtered version of the mean squared error--the blur-SURE (Stein's unbiased risk estimate)--as a novel criterion for estimating an unknown point spread function (PSF) from the degraded image only. The PSF is obtained by minimizing this new objective functional over a family of Wiener processings. Based on this estimated blur kernel, we then perform nonblind deconvolution using our recently developed algorithm. The SURE-based framework is exemplified with a number of parametric PSF, involving a scaling factor that controls the blur size. A typical example of such parametrization is the Gaussian kernel. The experimental results demonstrate that minimizing the blur-SURE yields highly accurate estimates of the PSF parameters, which also result in a restoration quality that is very similar to the one obtained with the exact PSF, when plugged into our recent multi-Wiener SURE-LET deconvolution algorithm. The highly competitive results obtained outline the great potential of developing more powerful blind deconvolution algorithms based on SURE-like estimates.

  8. Integrating semantic information into multiple kernels for protein-protein interaction extraction from biomedical literatures.

    PubMed

    Li, Lishuang; Zhang, Panpan; Zheng, Tianfu; Zhang, Hongying; Jiang, Zhenchao; Huang, Degen

    2014-01-01

    Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many machine learning methods for PPI extraction have achieved promising results. However, the performance is still not satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly, we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine (SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-of-the-art systems by integrating semantic information.

  9. A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael J.; Pankavich, Stephen; Benson, David A.

    2017-05-01

    Current Lagrangian (particle-tracking) algorithms used to simulate diffusion-reaction equations must employ a certain number of particles to properly emulate the system dynamics-particularly for imperfectly-mixed systems. The number of particles is tied to the statistics of the initial concentration fields of the system at hand. Systems with shorter-range correlation and/or smaller concentration variance require more particles, potentially limiting the computational feasibility of the method. For the well-known problem of bimolecular reaction, we show that using kernel-based, rather than Dirac delta, particles can significantly reduce the required number of particles. We derive the fixed width of a Gaussian kernel for a given reduced number of particles that analytically eliminates the error between kernel and Dirac solutions at any specified time. We also show how to solve for the fixed kernel size by minimizing the squared differences between solutions over any given time interval. Numerical results show that the width of the kernel should be kept below about 12% of the domain size, and that the analytic equations used to derive kernel width suffer significantly from the neglect of higher-order moments. The simulations with a kernel width given by least squares minimization perform better than those made to match at one specific time. A heuristic time-variable kernel size, based on the previous results, performs on par with the least squares fixed kernel size.

  10. Peculiarities of use of ECOC and AdaBoost based classifiers for thematic processing of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Dementev, A. O.; Dmitriev, E. V.; Kozoderov, V. V.; Egorov, V. D.

    2017-10-01

    Hyperspectral imaging is up-to-date promising technology widely applied for the accurate thematic mapping. The presence of a large number of narrow survey channels allows us to use subtle differences in spectral characteristics of objects and to make a more detailed classification than in the case of using standard multispectral data. The difficulties encountered in the processing of hyperspectral images are usually associated with the redundancy of spectral information which leads to the problem of the curse of dimensionality. Methods currently used for recognizing objects on multispectral and hyperspectral images are usually based on standard base supervised classification algorithms of various complexity. Accuracy of these algorithms can be significantly different depending on considered classification tasks. In this paper we study the performance of ensemble classification methods for the problem of classification of the forest vegetation. Error correcting output codes and boosting are tested on artificial data and real hyperspectral images. It is demonstrates, that boosting gives more significant improvement when used with simple base classifiers. The accuracy in this case in comparable the error correcting output code (ECOC) classifier with Gaussian kernel SVM base algorithm. However the necessity of boosting ECOC with Gaussian kernel SVM is questionable. It is demonstrated, that selected ensemble classifiers allow us to recognize forest species with high enough accuracy which can be compared with ground-based forest inventory data.

  11. Online selective kernel-based temporal difference learning.

    PubMed

    Chen, Xingguo; Gao, Yang; Wang, Ruili

    2013-12-01

    In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.

  12. A new EEMD-based scheme for detection of insect damaged wheat kernels using impact acoustics

    USDA-ARS?s Scientific Manuscript database

    Internally feeding insects inside wheat kernels cause significant, but unseen economic damage to stored grain. In this paper, a new scheme based on ensemble empirical mode decomposition (EEMD) using impact acoustics is proposed for detection of insect-damaged wheat kernels, based on its capability t...

  13. fMRat: an extension of SPM for a fully automatic analysis of rodent brain functional magnetic resonance series.

    PubMed

    Chavarrías, Cristina; García-Vázquez, Verónica; Alemán-Gómez, Yasser; Montesinos, Paula; Pascau, Javier; Desco, Manuel

    2016-05-01

    The purpose of this study was to develop a multi-platform automatic software tool for full processing of fMRI rodent studies. Existing tools require the usage of several different plug-ins, a significant user interaction and/or programming skills. Based on a user-friendly interface, the tool provides statistical parametric brain maps (t and Z) and percentage of signal change for user-provided regions of interest. The tool is coded in MATLAB (MathWorks(®)) and implemented as a plug-in for SPM (Statistical Parametric Mapping, the Wellcome Trust Centre for Neuroimaging). The automatic pipeline loads default parameters that are appropriate for preclinical studies and processes multiple subjects in batch mode (from images in either Nifti or raw Bruker format). In advanced mode, all processing steps can be selected or deselected and executed independently. Processing parameters and workflow were optimized for rat studies and assessed using 460 male-rat fMRI series on which we tested five smoothing kernel sizes and three different hemodynamic models. A smoothing kernel of FWHM = 1.2 mm (four times the voxel size) yielded the highest t values at the somatosensorial primary cortex, and a boxcar response function provided the lowest residual variance after fitting. fMRat offers the features of a thorough SPM-based analysis combined with the functionality of several SPM extensions in a single automatic pipeline with a user-friendly interface. The code and sample images can be downloaded from https://github.com/HGGM-LIM/fmrat .

  14. On some new properties of fractional derivatives with Mittag-Leffler kernel

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Fernandez, Arran

    2018-06-01

    We establish a new formula for the fractional derivative with Mittag-Leffler kernel, in the form of a series of Riemann-Liouville fractional integrals, which brings out more clearly the non-locality of fractional derivatives and is easier to handle for certain computational purposes. We also prove existence and uniqueness results for certain families of linear and nonlinear fractional ODEs defined using this fractional derivative. We consider the possibility of a semigroup property for these derivatives, and establish extensions of the product rule and chain rule, with an application to fractional mechanics.

  15. Factors affecting cadmium absorbed by pistachio kernel in calcareous soils, southeast of Iran.

    PubMed

    Shirani, H; Hosseinifard, S J; Hashemipour, H

    2018-03-01

    Cadmium (Cd) which does not have a biological role is one of the most toxic heavy metals for organisms. This metal enters environment through industrial processes and fertilizers. The main objective of this study was to determine the relationships between absorbed Cd by pistachio kernel and some of soil physical and chemical characteristics using modeling by stepwise regression and Artificial Neural Network (ANN), in calcareous soils in Rafsanjan region, southeast of Iran. For these purposes, 220 pistachio orchards were selected, and soil samples were taken from two depths of 0-40 and 40-80cm. Besides, fruit and leaf samples from branches with and without fruit were taken in each sampling point. The results showed that affecting factors on absorbed Cd by pistachio kernel which were obtained by regression method (pH and clay percent) were not interpretable, and considering unsuitable vales of determinant coefficient (R 2 ) and Root Mean Squares Error (RMSE), the model did not have sufficient validity. However, ANN modeling was highly accurate and reliable. Based on its results, soil available P and Zn and soil salinity were the most important factors affecting the concentration of Cd in pistachio kernel in pistachio growing areas of Rafsanjan. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aflatoxin contamination of developing corn kernels.

    PubMed

    Amer, M A

    2005-01-01

    Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.

  17. Dissection of Genetic Factors underlying Wheat Kernel Shape and Size in an Elite × Nonadapted Cross using a High Density SNP Linkage Map.

    PubMed

    Kumar, Ajay; Mantovani, E E; Seetan, R; Soltani, A; Echeverry-Solarte, M; Jain, S; Simsek, S; Doehlert, D; Alamri, M S; Elias, E M; Kianian, S F; Mergoum, M

    2016-03-01

    Wheat kernel shape and size has been under selection since early domestication. Kernel morphology is a major consideration in wheat breeding, as it impacts grain yield and quality. A population of 160 recombinant inbred lines (RIL), developed using an elite (ND 705) and a nonadapted genotype (PI 414566), was extensively phenotyped in replicated field trials and genotyped using Infinium iSelect 90K assay to gain insight into the genetic architecture of kernel shape and size. A high density genetic map consisting of 10,172 single nucleotide polymorphism (SNP) markers, with an average marker density of 0.39 cM/marker, identified a total of 29 genomic regions associated with six grain shape and size traits; ∼80% of these regions were associated with multiple traits. The analyses showed that kernel length (KL) and width (KW) are genetically independent, while a large number (∼59%) of the quantitative trait loci (QTL) for kernel shape traits were in common with genomic regions associated with kernel size traits. The most significant QTL was identified on chromosome 4B, and could be an ortholog of major rice grain size and shape gene or . Major and stable loci also were identified on the homeologous regions of Group 5 chromosomes, and in the regions of (6A) and (7A) genes. Both parental genotypes contributed equivalent positive QTL alleles, suggesting that the nonadapted germplasm has a great potential for enhancing the gene pool for grain shape and size. This study provides new knowledge on the genetic dissection of kernel morphology, with a much higher resolution, which may aid further improvement in wheat yield and quality using genomic tools. Copyright © 2016 Crop Science Society of America.

  18. Relationship of source and sink in determining kernel composition of maize

    PubMed Central

    Seebauer, Juliann R.; Singletary, George W.; Krumpelman, Paulette M.; Ruffo, Matías L.; Below, Frederick E.

    2010-01-01

    The relative role of the maternal source and the filial sink in controlling the composition of maize (Zea mays L.) kernels is unclear and may be influenced by the genotype and the N supply. The objective of this study was to determine the influence of assimilate supply from the vegetative source and utilization of assimilates by the grain sink on the final composition of maize kernels. Intermated B73×Mo17 recombinant inbred lines (IBM RILs) which displayed contrasting concentrations of endosperm starch were grown in the field with deficient or sufficient N, and the source supply altered by ear truncation (45% reduction) at 15 d after pollination (DAP). The assimilate supply into the kernels was determined at 19 DAP using the agar trap technique, and the final kernel composition was measured. The influence of N supply and kernel ear position on final kernel composition was also determined for a commercial hybrid. Concentrations of kernel protein and starch could be altered by genotype or the N supply, but remained fairly constant along the length of the ear. Ear truncation also produced a range of variation in endosperm starch and protein concentrations. The C/N ratio of the assimilate supply at 19 DAP was directly related to the final kernel composition, with an inverse relationship between the concentrations of starch and protein in the mature endosperm. The accumulation of kernel starch and protein in maize is uniform along the ear, yet adaptable within genotypic limits, suggesting that kernel composition is source limited in maize. PMID:19917600

  19. Comparing Alternative Kernels for the Kernel Method of Test Equating: Gaussian, Logistic, and Uniform Kernels. Research Report. ETS RR-08-12

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; von Davier, Alina A.

    2008-01-01

    The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score distributions. While the classical equipercentile, or percentile-rank, equating method carries out the continuization step by linear interpolation,…

  20. Kernel Machine SNP-set Testing under Multiple Candidate Kernels

    PubMed Central

    Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.

    2013-01-01

    Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868

  1. Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.

    PubMed

    Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe

    2018-02-19

    Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.

  2. Computed tomography coronary stent imaging with iterative reconstruction: a trade-off study between medium kernel and sharp kernel.

    PubMed

    Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming

    2014-01-01

    To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P

  3. An Approximate Approach to Automatic Kernel Selection.

    PubMed

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  4. The maximum vector-angular margin classifier and its fast training on large datasets using a core vector machine.

    PubMed

    Hu, Wenjun; Chung, Fu-Lai; Wang, Shitong

    2012-03-01

    Although pattern classification has been extensively studied in the past decades, how to effectively solve the corresponding training on large datasets is a problem that still requires particular attention. Many kernelized classification methods, such as SVM and SVDD, can be formulated as the corresponding quadratic programming (QP) problems, but computing the associated kernel matrices requires O(n2)(or even up to O(n3)) computational complexity, where n is the size of the training patterns, which heavily limits the applicability of these methods for large datasets. In this paper, a new classification method called the maximum vector-angular margin classifier (MAMC) is first proposed based on the vector-angular margin to find an optimal vector c in the pattern feature space, and all the testing patterns can be classified in terms of the maximum vector-angular margin ρ, between the vector c and all the training data points. Accordingly, it is proved that the kernelized MAMC can be equivalently formulated as the kernelized Minimum Enclosing Ball (MEB), which leads to a distinctive merit of MAMC, i.e., it has the flexibility of controlling the sum of support vectors like v-SVC and may be extended to a maximum vector-angular margin core vector machine (MAMCVM) by connecting the core vector machine (CVM) method with MAMC such that the corresponding fast training on large datasets can be effectively achieved. Experimental results on artificial and real datasets are provided to validate the power of the proposed methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Nonlinear association criterion, nonlinear Granger causality and related issues with applications to neuroimage studies.

    PubMed

    Tao, Chenyang; Feng, Jianfeng

    2016-03-15

    Quantifying associations in neuroscience (and many other scientific disciplines) is often challenged by high-dimensionality, nonlinearity and noisy observations. Many classic methods have either poor power or poor scalability on data sets of the same or different scales such as genetical, physiological and image data. Based on the framework of reproducing kernel Hilbert spaces we proposed a new nonlinear association criteria (NAC) with an efficient numerical algorithm and p-value approximation scheme. We also presented mathematical justification that links the proposed method to related methods such as kernel generalized variance, kernel canonical correlation analysis and Hilbert-Schmidt independence criteria. NAC allows the detection of association between arbitrary input domain as long as a characteristic kernel is defined. A MATLAB package was provided to facilitate applications. Extensive simulation examples and four real world neuroscience examples including functional MRI causality, Calcium imaging and imaging genetic studies on autism [Brain, 138(5):13821393 (2015)] and alcohol addiction [PNAS, 112(30):E4085-E4093 (2015)] are used to benchmark NAC. It demonstrates the superior performance over the existing procedures we tested and also yields biologically significant results for the real world examples. NAC beats its linear counterparts when nonlinearity is presented in the data. It also shows more robustness against different experimental setups compared with its nonlinear counterparts. In this work we presented a new and robust statistical approach NAC for measuring associations. It could serve as an interesting alternative to the existing methods for datasets where nonlinearity and other confounding factors are present. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Reprint of "Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency".

    PubMed

    Zhang, Ying-Ying; Yang, Cai; Zhang, Ping

    2017-08-01

    In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data

    PubMed Central

    2013-01-01

    Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755

  8. A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm

    NASA Astrophysics Data System (ADS)

    Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina

    The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.

  9. Electrochemical Immunosensor for the Detection of Aflatoxin B₁ in Palm Kernel Cake and Feed Samples.

    PubMed

    Azri, Farah Asilah; Selamat, Jinap; Sukor, Rashidah

    2017-11-30

    Palm kernel cake (PKC) is the solid residue following oil extraction of palm kernels and useful to fatten animals either as a single feed with only minerals and vitamins supplementation, or mixed with other feedstuffs such as corn kernels or soy beans. The occurrence of mycotoxins (aflatoxins, ochratoxins, zearalenone, and fumonisins) in feed samples affects the animal's health and also serves as a secondary contamination to humans via consumption of eggs, milk and meats. Of these, aflatoxin B₁ (AFB₁) is the most toxically potent and a confirmed carcinogen to both humans and animals. Methods such as High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Mass Spectrometry (LC-MS/MS) are common in the determination of mycotoxins. However, these methods usually require sample pre-treatment, extensive cleanup and skilled operator. Therefore, in the present work, a rapid method of electrochemical immunosensor for the detection of AFB₁ was developed based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). Multi-walled carbon nanotubes (MWCNT) and chitosan (CS) were used as the electrode modifier for signal enhancement. N -ethyl- N '-(3-dimethylaminopropyl)-carbodiimide (EDC) and N -hydroxysuccinimide (NHS) activated the carboxyl groups at the surface of nanocomposite for the attachment of AFB₁-BSA antigen by covalent bonding. An indirect competitive reaction occurred between AFB₁-BSA and free AFB₁ for the binding site of a fixed amount of anti-AFB₁ antibody. A catalytic signal based on horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H₂O₂) and 3,3',5,5'-tetramethylbenzidine (TMB) mediator was observed as a result of attachment of the secondary antibody to the immunoassay system. As a result, the reduction peak of TMB (Ox) was measured by using differential pulse voltammetry (DPV) analysis. Based on the results, the electrochemical surface area was increased from 0.396 cm² to 1.298 cm² due to the electrode modification with MWCNT/CS. At the optimal conditions, the working range of the electrochemical immunosensor was from 0.0001 to 10 ng/mL with limit of detection of 0.1 pg/mL. Good recoveries were obtained for the detection of spiked feed samples (PKC, corn kernels, soy beans). The developed method could be used for the screening of AFB₁ in real samples.

  10. Microarray-Based Mapping for the Detection of Molecular Markers in Response to Aspergillus flavus Infection in Susceptible and Resistant Maize Lines

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were (1) to evaluate differential gene expression levels for resistance to A. flavus kernel infection in susceptible (Va35) and resistant (Mp313E) maize lines using Oligonucleotide and cDNA microarray analysis, (2) to evaluate differences in A. flavus accumulation betwee...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boris, J.P.; Picone, J.M.; Lambrakos, S.G.

    The Surveillance, Correlation, and Tracking (SCAT) problem is the computation-limited kernel of future battle-management systems currently being developed, for example, under the Strategic Defense Initiative (SDI). This report shows how high-performance SCAT can be performed in this decade. Estimates suggest that an increase by a factor of at least one thousand in computational capacity will be necessary to track 10/sup 5/ SDI objects in real time. This large improvement is needed because standard algorithms for data organization in important segments of the SCAT problem scale as N/sup 2/ and N/sup 3/, where N is the number of perceived objects. Itmore » is shown that the required speed-up factor can now be achieved because of two new developments: 1) a heterogeneous element supercomputer system based on available parallel-processing technology can account for over one order of magnitude performance improvement today over existing supercomputers; and 2) algorithmic innovations development recently by the NRL Laboratory for Computational Physics will account for another two orders of magnitude improvement. Based on these advances, a comprehensive, high-performance kernel for a simulator/system to perform the SCAT portion of SDI battle management is described.« less

  12. Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method

    NASA Astrophysics Data System (ADS)

    Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao

    2017-03-01

    Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.

  13. Evidence-Based Kernels: Fundamental Units of Behavioral Influence

    ERIC Educational Resources Information Center

    Embry, Dennis D.; Biglan, Anthony

    2008-01-01

    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior-influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of…

  14. Learning molecular energies using localized graph kernels

    DOE PAGES

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    2017-03-21

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  15. Exact combinatorial approach to finite coagulating systems

    NASA Astrophysics Data System (ADS)

    Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr

    2018-02-01

    This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.

  16. Learning molecular energies using localized graph kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  17. A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel

    NASA Astrophysics Data System (ADS)

    Kumar, Devendra; Singh, Jagdev; Baleanu, Dumitru

    2018-02-01

    The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.

  18. Free Fermions and the Classical Compact Groups

    NASA Astrophysics Data System (ADS)

    Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil

    2018-06-01

    There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.

  19. Limit of a nonpreferential attachment multitype network model

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2017-02-01

    Here, we deal with a model of multitype network with nonpreferential attachment growth. The connection between two nodes depends asymmetrically on their types, reflecting the implication of time order in temporal networks. Based upon graph limit theory, we analytically determined the limit of the network model characterized by a kernel, in the sense that the number of copies of any fixed subgraph converges when network size tends to infinity. The results are confirmed by extensive simulations. Our work thus provides a theoretical framework for quantitatively understanding grown temporal complex networks as a whole.

  20. Perl Extension to the Bproc Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunau, Daryl W.

    2004-06-07

    The Beowulf Distributed process Space (Bproc) software stack is comprised of UNIX/Linux kernel modifications and a support library by which a cluster of machines, each running their own private kernel, can present itself as a unified process space to the user. A Bproc cluster contains a single front-end machine and many back-end nodes which receive and run processes given to them by the front-end. Any process which is migrated to a back-end node is also visible as a ghost process on the fron-end, and may be controlled there using traditional UNIX semantics (e.g. ps(1), kill(1), etc). This software is amore » Perl extension to the Bproc library which enables the Perl programmer to make direct calls to functions within the Bproc library. See http://www.clustermatic.org, http://bproc.sourceforge.net, and http://www.perl.org« less

  1. Kernel K-Means Sampling for Nyström Approximation.

    PubMed

    He, Li; Zhang, Hong

    2018-05-01

    A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.

  2. Cepstrum based feature extraction method for fungus detection

    NASA Astrophysics Data System (ADS)

    Yorulmaz, Onur; Pearson, Tom C.; Çetin, A. Enis

    2011-06-01

    In this paper, a method for detection of popcorn kernels infected by a fungus is developed using image processing. The method is based on two dimensional (2D) mel and Mellin-cepstrum computation from popcorn kernel images. Cepstral features that were extracted from popcorn images are classified using Support Vector Machines (SVM). Experimental results show that high recognition rates of up to 93.93% can be achieved for both damaged and healthy popcorn kernels using 2D mel-cepstrum. The success rate for healthy popcorn kernels was found to be 97.41% and the recognition rate for damaged kernels was found to be 89.43%.

  3. Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1992-01-01

    Recently, Freund and Nachtigal have proposed a novel polynominal-based iteration, the quasi-minimal residual algorithm (QMR), for solving general nonsingular non-Hermitian linear systems. Motivated by the QMR method, we have introduced the general concept of quasi-kernel polynomials, and we have shown that the QMR algorithm is based on a particular instance of quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel polynomials. In particular, we derive bounds for the norms of quasi-kernel polynomials. These results are then applied to obtain convergence theorems both for the QMR method and for a transpose-free variant of QMR, the TFQMR algorithm.

  4. Application of kernel method in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Baikejiang, Reheman; Li, Changqing

    2017-02-01

    Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.

  5. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods

    NASA Astrophysics Data System (ADS)

    Liu, Qinya; Tromp, Jeroen

    2008-07-01

    We determine adjoint equations and Fréchet kernels for global seismic wave propagation based upon a Lagrange multiplier method. We start from the equations of motion for a rotating, self-gravitating earth model initially in hydrostatic equilibrium, and derive the corresponding adjoint equations that involve motions on an earth model that rotates in the opposite direction. Variations in the misfit function χ then may be expressed as , where δlnm = δm/m denotes relative model perturbations in the volume V, δlnd denotes relative topographic variations on solid-solid or fluid-solid boundaries Σ, and ∇Σδlnd denotes surface gradients in relative topographic variations on fluid-solid boundaries ΣFS. The 3-D Fréchet kernel Km determines the sensitivity to model perturbations δlnm, and the 2-D kernels Kd and Kd determine the sensitivity to topographic variations δlnd. We demonstrate also how anelasticity may be incorporated within the framework of adjoint methods. Finite-frequency sensitivity kernels are calculated by simultaneously computing the adjoint wavefield forward in time and reconstructing the regular wavefield backward in time. Both the forward and adjoint simulations are based upon a spectral-element method. We apply the adjoint technique to generate finite-frequency traveltime kernels for global seismic phases (P, Pdiff, PKP, S, SKS, depth phases, surface-reflected phases, surface waves, etc.) in both 1-D and 3-D earth models. For 1-D models these adjoint-generated kernels generally agree well with results obtained from ray-based methods. However, adjoint methods do not have the same theoretical limitations as ray-based methods, and can produce sensitivity kernels for any given phase in any 3-D earth model. The Fréchet kernels presented in this paper illustrate the sensitivity of seismic observations to structural parameters and topography on internal discontinuities. These kernels form the basis of future 3-D tomographic inversions.

  6. Weighted graph cuts without eigenvectors a multilevel approach.

    PubMed

    Dhillon, Inderjit S; Guan, Yuqiang; Kulis, Brian

    2007-11-01

    A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.

  7. Online learning control using adaptive critic designs with sparse kernel machines.

    PubMed

    Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo

    2013-05-01

    In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.

  8. Performance Evaluation of Remote Memory Access (RMA) Programming on Shared Memory Parallel Computers

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The purpose of this study is to evaluate the feasibility of remote memory access (RMA) programming on shared memory parallel computers. We discuss different RMA based implementations of selected CFD application benchmark kernels and compare them to corresponding message passing based codes. For the message-passing implementation we use MPI point-to-point and global communication routines. For the RMA based approach we consider two different libraries supporting this programming model. One is a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is the MPI-2 extensions to the MPI Standard. We give timing comparisons for the different implementation strategies and discuss the performance.

  9. Manycore Performance-Portability: Kokkos Multidimensional Array Library

    DOE PAGES

    Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...

    2012-01-01

    Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less

  10. Discriminant analysis for fast multiclass data classification through regularized kernel function approximation.

    PubMed

    Ghorai, Santanu; Mukherjee, Anirban; Dutta, Pranab K

    2010-06-01

    In this brief we have proposed the multiclass data classification by computationally inexpensive discriminant analysis through vector-valued regularized kernel function approximation (VVRKFA). VVRKFA being an extension of fast regularized kernel function approximation (FRKFA), provides the vector-valued response at single step. The VVRKFA finds a linear operator and a bias vector by using a reduced kernel that maps a pattern from feature space into the low dimensional label space. The classification of patterns is carried out in this low dimensional label subspace. A test pattern is classified depending on its proximity to class centroids. The effectiveness of the proposed method is experimentally verified and compared with multiclass support vector machine (SVM) on several benchmark data sets as well as on gene microarray data for multi-category cancer classification. The results indicate the significant improvement in both training and testing time compared to that of multiclass SVM with comparable testing accuracy principally in large data sets. Experiments in this brief also serve as comparison of performance of VVRKFA with stratified random sampling and sub-sampling.

  11. G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.

    PubMed

    Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H

    2009-01-01

    Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.

  12. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores.

    PubMed

    Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D

    2010-05-01

    The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to 0.91 when a threshold of either 20 or 100 ng g(-1) was used. Overall, the results indicate that fluorescence hyperspectral imaging may be applicable in estimating aflatoxin content in individual corn kernels.

  13. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.

    PubMed

    Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford

    2017-10-01

    Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  14. Automatic segmentation and classification of mycobacterium tuberculosis with conventional light microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Zhou, Dongxiang; Zhai, Yongping; Liu, Yunhui

    2015-12-01

    This paper realizes the automatic segmentation and classification of Mycobacterium tuberculosis with conventional light microscopy. First, the candidate bacillus objects are segmented by the marker-based watershed transform. The markers are obtained by an adaptive threshold segmentation based on the adaptive scale Gaussian filter. The scale of the Gaussian filter is determined according to the color model of the bacillus objects. Then the candidate objects are extracted integrally after region merging and contaminations elimination. Second, the shape features of the bacillus objects are characterized by the Hu moments, compactness, eccentricity, and roughness, which are used to classify the single, touching and non-bacillus objects. We evaluated the logistic regression, random forest, and intersection kernel support vector machines classifiers in classifying the bacillus objects respectively. Experimental results demonstrate that the proposed method yields to high robustness and accuracy. The logistic regression classifier performs best with an accuracy of 91.68%.

  15. Classifying four-category visual objects using multiple ERP components in single-trial ERP.

    PubMed

    Qin, Yu; Zhan, Yu; Wang, Changming; Zhang, Jiacai; Yao, Li; Guo, Xiaojuan; Wu, Xia; Hu, Bin

    2016-08-01

    Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.

  16. a Comparison Study of Different Kernel Functions for Svm-Based Classification of Multi-Temporal Polarimetry SAR Data

    NASA Astrophysics Data System (ADS)

    Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.

    2014-10-01

    In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.

  17. Kernel Partial Least Squares for Nonlinear Regression and Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.

  18. THE CANADA-FRANCE ECLIPTIC PLANE SURVEY-FULL DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, J.-M.; Rousselot, P.; Mousis, O.

    2011-10-15

    We report the orbital distribution of the trans-Neptunian objects (TNOs) discovered during the Canada-France Ecliptic Plane Survey (CFEPS), whose discovery phase ran from early 2003 until early 2007. The follow-up observations started just after the first discoveries and extended until late 2009. We obtained characterized observations of 321 deg{sup 2} of sky to depths in the range g {approx} 23.5-24.4 AB mag. We provide a database of 169 TNOs with high-precision dynamical classification and known discovery efficiency. Using this database, we find that the classical belt is a complex region with sub-structures that go beyond the usual splitting of innermore » (interior to 3:2 mean-motion resonance [MMR]), main (between 3:2 and 2:1 MMR), and outer (exterior to 2:1 MMR). The main classical belt (a = 40-47 AU) needs to be modeled with at least three components: the 'hot' component with a wide inclination distribution and two 'cold' components (stirred and kernel) with much narrower inclination distributions. The hot component must have a significantly shallower absolute magnitude (H{sub g} ) distribution than the other two components. With 95% confidence, there are 8000{sup +1800}{sub -1600} objects in the main belt with H{sub g} {<=} 8.0, of which 50% are from the hot component, 40% from the stirred component, and 10% from the kernel; the hot component's fraction drops rapidly with increasing H{sub g} . Because of this, the apparent population fractions depend on the depth and ecliptic latitude of a trans-Neptunian survey. The stirred and kernel components are limited to only a portion of the main belt, while we find that the hot component is consistent with a smooth extension throughout the inner, main, and outer regions of the classical belt; in fact, the inner and outer belts are consistent with containing only hot-component objects. The H{sub g} {<=} 8.0 TNO population estimates are 400 for the inner belt and 10,000 for the outer belt to within a factor of two (95% confidence). We show how the CFEPS Survey Simulator can be used to compare a cosmogonic model for the orbital element distribution to the real Kuiper Belt.« less

  19. Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.

    PubMed

    Kwak, Nojun

    2016-05-20

    Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.

  20. Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)

    2002-01-01

    We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.

  1. Rapid scatter estimation for CBCT using the Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Sun, Mingshan; Maslowski, Alex; Davis, Ian; Wareing, Todd; Failla, Gregory; Star-Lack, Josh

    2014-03-01

    Scatter in cone-beam computed tomography (CBCT) is a significant problem that degrades image contrast, uniformity and CT number accuracy. One means of estimating and correcting for detected scatter is through an iterative deconvolution process known as scatter kernel superposition (SKS). While the SKS approach is efficient, clinically significant errors on the order 2-4% (20-40 HU) still remain. We have previously shown that the kernel method can be improved by perturbing the kernel parameters based on reference data provided by limited Monte Carlo simulations of a first-pass reconstruction. In this work, we replace the Monte Carlo modeling with a deterministic Boltzmann solver (AcurosCTS) to generate the reference scatter data in a dramatically reduced time. In addition, the algorithm is improved so that instead of adjusting kernel parameters, we directly perturb the SKS scatter estimates. Studies were conducted on simulated data and on a large pelvis phantom scanned on a tabletop system. The new method reduced average reconstruction errors (relative to a reference scan) from 2.5% to 1.8%, and significantly improved visualization of low contrast objects. In total, 24 projections were simulated with an AcurosCTS execution time of 22 sec/projection using an 8-core computer. We have ported AcurosCTS to the GPU, and current run-times are approximately 4 sec/projection using two GPU's running in parallel.

  2. Design of CT reconstruction kernel specifically for clinical lung imaging

    NASA Astrophysics Data System (ADS)

    Cody, Dianna D.; Hsieh, Jiang; Gladish, Gregory W.

    2005-04-01

    In this study we developed a new reconstruction kernel specifically for chest CT imaging. An experimental flat-panel CT scanner was used on large dogs to produce 'ground-truth" reference chest CT images. These dogs were also examined using a clinical 16-slice CT scanner. We concluded from the dog images acquired on the clinical scanner that the loss of subtle lung structures was due mostly to the presence of the background noise texture when using currently available reconstruction kernels. This qualitative evaluation of the dog CT images prompted the design of a new recon kernel. This new kernel consisted of the combination of a low-pass and a high-pass kernel to produce a new reconstruction kernel, called the 'Hybrid" kernel. The performance of this Hybrid kernel fell between the two kernels on which it was based, as expected. This Hybrid kernel was also applied to a set of 50 patient data sets; the analysis of these clinical images is underway. We are hopeful that this Hybrid kernel will produce clinical images with an acceptable tradeoff of lung detail, reliable HU, and image noise.

  3. Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-Based Sparse Representation.

    PubMed

    Yuan, Shasha; Zhou, Weidong; Wu, Qi; Zhang, Yanli

    2016-05-01

    Epileptic seizure detection plays an important role in the diagnosis of epilepsy and reducing the massive workload of reviewing electroencephalography (EEG) recordings. In this work, a novel algorithm is developed to detect seizures employing log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings. Unlike the traditional SR for vector data in Euclidean space, the log-Euclidean Gaussian kernel-based SR framework is proposed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Since the Riemannian manifold is nonlinear, the log-Euclidean Gaussian kernel function is applied to embed it into a reproducing kernel Hilbert space (RKHS) for performing SR. The EEG signals of all channels are divided into epochs and the SPD matrices representing EEG epochs are generated by covariance descriptors. Then, the testing samples are sparsely coded over the dictionary composed by training samples utilizing log-Euclidean Gaussian kernel-based SR. The classification of testing samples is achieved by computing the minimal reconstructed residuals. The proposed method is evaluated on the Freiburg EEG dataset of 21 patients and shows its notable performance on both epoch-based and event-based assessments. Moreover, this method handles multiple channels of EEG recordings synchronously which is more speedy and efficient than traditional seizure detection methods.

  4. Kernel-based Linux emulation for Plan 9.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minnich, Ronald G.

    2010-09-01

    CNKemu is a kernel-based system for the 9k variant of the Plan 9 kernel. It is designed to provide transparent binary support for programs compiled for IBM's Compute Node Kernel (CNK) on the Blue Gene series of supercomputers. This support allows users to build applications with the standard Blue Gene toolchain, including C++ and Fortran compilers. While the CNK is not Linux, IBM designed the CNK so that the user interface has much in common with the Linux 2.0 system call interface. The Plan 9 CNK emulator hence provides the foundation of kernel-based Linux system call support on Plan 9.more » In this paper we discuss cnkemu's implementation and some of its more interesting features, such as the ability to easily intermix Plan 9 and Linux system calls.« less

  5. Text categorization of biomedical data sets using graph kernels and a controlled vocabulary.

    PubMed

    Bleik, Said; Mishra, Meenakshi; Huan, Jun; Song, Min

    2013-01-01

    Recently, graph representations of text have been showing improved performance over conventional bag-of-words representations in text categorization applications. In this paper, we present a graph-based representation for biomedical articles and use graph kernels to classify those articles into high-level categories. In our representation, common biomedical concepts and semantic relationships are identified with the help of an existing ontology and are used to build a rich graph structure that provides a consistent feature set and preserves additional semantic information that could improve a classifier's performance. We attempt to classify the graphs using both a set-based graph kernel that is capable of dealing with the disconnected nature of the graphs and a simple linear kernel. Finally, we report the results comparing the classification performance of the kernel classifiers to common text-based classifiers.

  6. X-ray photoelectron spectroscopic analysis of rice kernels and flours: Measurement of surface chemical composition.

    PubMed

    Nawaz, Malik A; Gaiani, Claire; Fukai, Shu; Bhandari, Bhesh

    2016-12-01

    The objectives of this study were to evaluate the ability of X-ray photoelectron spectroscopy (XPS) to differentiate rice macromolecules and to calculate the surface composition of rice kernels and flours. The uncooked kernels and flours surface composition of the two selected rice varieties, Thadokkham-11 (TDK11) and Doongara (DG) demonstrated an over-expression of lipids and proteins and an under-expression of starch compared to the bulk composition. The results of the study showed that XPS was able to differentiate rice polysaccharides (mainly starch), proteins and lipids in uncooked rice kernels and flours. Nevertheless, it was unable to distinguish components in cooked rice samples possibly due to complex interactions between gelatinized starch, denatured proteins and lipids. High resolution imaging methods (Scanning Electron Microscopy and Confocal Laser Scanning Microscopy) were employed to obtain complementary information about the properties and location of starch, proteins and lipids in rice kernels and flours. Copyright © 2016. Published by Elsevier Ltd.

  7. Optimized data fusion for K-means Laplacian clustering

    PubMed Central

    Yu, Shi; Liu, Xinhai; Tranchevent, Léon-Charles; Glänzel, Wolfgang; Suykens, Johan A. K.; De Moor, Bart; Moreau, Yves

    2011-01-01

    Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix. Availability: The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html. Contact: shiyu@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20980271

  8. Mission and Safety Critical (MASC) plans for the MASC Kernel simulation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report discusses a prototype for Mission and Safety Critical (MASC) kernel simulation which explains the intended approach and how the simulation will be used. Smalltalk is chosen for the simulation because of usefulness in quickly building working models of the systems and its object-oriented approach to software. A scenario is also introduced to give details about how the simulation works. The eventual system will be a fully object-oriented one implemented in Ada via Dragoon. To implement the simulation, a scenario using elements typical of those in the Space Station, was created.

  9. Gradient-based adaptation of general gaussian kernels.

    PubMed

    Glasmachers, Tobias; Igel, Christian

    2005-10-01

    Gradient-based optimizing of gaussian kernel functions is considered. The gradient for the adaptation of scaling and rotation of the input space is computed to achieve invariance against linear transformations. This is done by using the exponential map as a parameterization of the kernel parameter manifold. By restricting the optimization to a constant trace subspace, the kernel size can be controlled. This is, for example, useful to prevent overfitting when minimizing radius-margin generalization performance measures. The concepts are demonstrated by training hard margin support vector machines on toy data.

  10. Bread Wheat Quality: Some Physical, Chemical and Rheological Characteristics of Syrian and English Bread Wheat Samples.

    PubMed

    Al-Saleh, Abboud; Brennan, Charles S

    2012-11-22

    The relationships between breadmaking quality, kernel properties (physical and chemical), and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%-95.0%), 1000-kernel weight (35.2-46.9 g) and the test weight (82.2-88.0 kg/hL). All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours). A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **), as well as with the vitreousness of the kernel (r = 0.54 *). Protein content was also correlated with dough stability (r = 0.86 **), extensibility (r = 0.8 **), and negatively correlated with dough weakness (r = -0.69 **). Bread firmness and dough weakness were positively correlated (r = 0.66 **). Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making.

  11. Bread Wheat Quality: Some Physical, Chemical and Rheological Characteristics of Syrian and English Bread Wheat Samples

    PubMed Central

    Al-Saleh, Abboud; Brennan, Charles S.

    2012-01-01

    The relationships between breadmaking quality, kernel properties (physical and chemical), and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%–95.0%), 1000-kernel weight (35.2–46.9 g) and the test weight (82.2–88.0 kg/hL). All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours). A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **), as well as with the vitreousness of the kernel (r = 0.54 *). Protein content was also correlated with dough stability (r = 0.86 **), extensibility (r = 0.8 **), and negatively correlated with dough weakness (r = −0.69 **). Bread firmness and dough weakness were positively correlated (r = 0.66 **). Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making. PMID:28239087

  12. Sepsis mortality prediction with the Quotient Basis Kernel.

    PubMed

    Ribas Ripoll, Vicent J; Vellido, Alfredo; Romero, Enrique; Ruiz-Rodríguez, Juan Carlos

    2014-05-01

    This paper presents an algorithm to assess the risk of death in patients with sepsis. Sepsis is a common clinical syndrome in the intensive care unit (ICU) that can lead to severe sepsis, a severe state of septic shock or multi-organ failure. The proposed algorithm may be implemented as part of a clinical decision support system that can be used in combination with the scores deployed in the ICU to improve the accuracy, sensitivity and specificity of mortality prediction for patients with sepsis. In this paper, we used the Simplified Acute Physiology Score (SAPS) for ICU patients and the Sequential Organ Failure Assessment (SOFA) to build our kernels and algorithms. In the proposed method, we embed the available data in a suitable feature space and use algorithms based on linear algebra, geometry and statistics for inference. We present a simplified version of the Fisher kernel (practical Fisher kernel for multinomial distributions), as well as a novel kernel that we named the Quotient Basis Kernel (QBK). These kernels are used as the basis for mortality prediction using soft-margin support vector machines. The two new kernels presented are compared against other generative kernels based on the Jensen-Shannon metric (centred, exponential and inverse) and other widely used kernels (linear, polynomial and Gaussian). Clinical relevance is also evaluated by comparing these results with logistic regression and the standard clinical prediction method based on the initial SAPS score. As described in this paper, we tested the new methods via cross-validation with a cohort of 400 test patients. The results obtained using our methods compare favourably with those obtained using alternative kernels (80.18% accuracy for the QBK) and the standard clinical prediction method, which are based on the basal SAPS score or logistic regression (71.32% and 71.55%, respectively). The QBK presented a sensitivity and specificity of 79.34% and 83.24%, which outperformed the other kernels analysed, logistic regression and the standard clinical prediction method based on the basal SAPS score. Several scoring systems for patients with sepsis have been introduced and developed over the last 30 years. They allow for the assessment of the severity of disease and provide an estimate of in-hospital mortality. Physiology-based scoring systems are applied to critically ill patients and have a number of advantages over diagnosis-based systems. Severity score systems are often used to stratify critically ill patients for possible inclusion in clinical trials. In this paper, we present an effective algorithm that combines both scoring methodologies for the assessment of death in patients with sepsis that can be used to improve the sensitivity and specificity of the currently available methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Universal Approximation by Using the Correntropy Objective Function.

    PubMed

    Nayyeri, Mojtaba; Sadoghi Yazdi, Hadi; Maskooki, Alaleh; Rouhani, Modjtaba

    2017-10-16

    Several objective functions have been proposed in the literature to adjust the input parameters of a node in constructive networks. Furthermore, many researchers have focused on the universal approximation capability of the network based on the existing objective functions. In this brief, we use a correntropy measure based on the sigmoid kernel in the objective function to adjust the input parameters of a newly added node in a cascade network. The proposed network is shown to be capable of approximating any continuous nonlinear mapping with probability one in a compact input sample space. Thus, the convergence is guaranteed. The performance of our method was compared with that of eight different objective functions, as well as with an existing one hidden layer feedforward network on several real regression data sets with and without impulsive noise. The experimental results indicate the benefits of using a correntropy measure in reducing the root mean square error and increasing the robustness to noise.

  14. An algorithm of adaptive scale object tracking in occlusion

    NASA Astrophysics Data System (ADS)

    Zhao, Congmei

    2017-05-01

    Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there are still some problems in handling scale variations, object occlusion, fast motions and so on. In this paper, a multi-scale kernel correlation filter algorithm based on random fern detector was proposed. The tracking task was decomposed into the target scale estimation and the translation estimation. At the same time, the Color Names features and HOG features were fused in response level to further improve the overall tracking performance of the algorithm. In addition, an online random fern classifier was trained to re-obtain the target after the target was lost. By comparing with some algorithms such as KCF, DSST, TLD, MIL, CT and CSK, experimental results show that the proposed approach could estimate the object state accurately and handle the object occlusion effectively.

  15. A Frequency-Domain Implementation of a Sliding-Window Traffic Sign Detector for Large Scale Panoramic Datasets

    NASA Astrophysics Data System (ADS)

    Creusen, I. M.; Hazelhoff, L.; De With, P. H. N.

    2013-10-01

    In large-scale automatic traffic sign surveying systems, the primary computational effort is concentrated at the traffic sign detection stage. This paper focuses on reducing the computational load of particularly the sliding window object detection algorithm which is employed for traffic sign detection. Sliding-window object detectors often use a linear SVM to classify the features in a window. In this case, the classification can be seen as a convolution of the feature maps with the SVM kernel. It is well known that convolution can be efficiently implemented in the frequency domain, for kernels larger than a certain size. We show that by careful reordering of sliding-window operations, most of the frequency-domain transformations can be eliminated, leading to a substantial increase in efficiency. Additionally, we suggest to use the overlap-add method to keep the memory use within reasonable bounds. This allows us to keep all the transformed kernels in memory, thereby eliminating even more domain transformations, and allows all scales in a multiscale pyramid to be processed using the same set of transformed kernels. For a typical sliding-window implementation, we have found that the detector execution performance improves with a factor of 5.3. As a bonus, many of the detector improvements from literature, e.g. chi-squared kernel approximations, sub-class splitting algorithms etc., can be more easily applied at a lower performance penalty because of an improved scalability.

  16. Finite-frequency structural sensitivities of short-period compressional body waves

    NASA Astrophysics Data System (ADS)

    Fuji, Nobuaki; Chevrot, Sébastien; Zhao, Li; Geller, Robert J.; Kawai, Kenji

    2012-07-01

    We present an extension of the method recently introduced by Zhao & Chevrot for calculating Fréchet kernels from a precomputed database of strain Green's tensors by normal mode summation. The extension involves two aspects: (1) we compute the strain Green's tensors using the Direct Solution Method, which allows us to go up to frequencies as high as 1 Hz; and (2) we develop a spatial interpolation scheme so that the Green's tensors can be computed with a relatively coarse grid, thus improving the efficiency in the computation of the sensitivity kernels. The only requirement is that the Green's tensors be computed with a fine enough spatial sampling rate to avoid spatial aliasing. The Green's tensors can then be interpolated to any location inside the Earth, avoiding the need to store and retrieve strain Green's tensors for a fine sampling grid. The interpolation scheme not only significantly reduces the CPU time required to calculate the Green's tensor database and the disk space to store it, but also enhances the efficiency in computing the kernels by reducing the number of I/O operations needed to retrieve the Green's tensors. Our new implementation allows us to calculate sensitivity kernels for high-frequency teleseismic body waves with very modest computational resources such as a laptop. We illustrate the potential of our approach for seismic tomography by computing traveltime and amplitude sensitivity kernels for high frequency P, PKP and Pdiff phases. A comparison of our PKP kernels with those computed by asymptotic ray theory clearly shows the limits of the latter. With ray theory, it is not possible to model waves diffracted by internal discontinuities such as the core-mantle boundary, and it is also difficult to compute amplitudes for paths close to the B-caustic of the PKP phase. We also compute waveform partial derivatives for different parts of the seismic wavefield, a key ingredient for high resolution imaging by waveform inversion. Our computations of partial derivatives in the time window where PcP precursors are commonly observed show that the distribution of sensitivity is complex and counter-intuitive, with a large contribution from the mid-mantle region. This clearly emphasizes the need to use accurate and complete partial derivatives in waveform inversion.

  17. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Aspergillus flavus.

    PubMed

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E

    2017-01-01

    Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus . Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus , were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points.

  18. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Aspergillus flavus

    PubMed Central

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2017-01-01

    Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus. Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus, were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points. PMID:28966606

  19. Hydrothermal treatment of maize: Changes in physical, chemical, and functional properties.

    PubMed

    Rocha-Villarreal, Verónica; Hoffmann, Jessica Fernanda; Vanier, Nathan Levien; Serna-Saldivar, Sergio O; García-Lara, Silverio

    2018-10-15

    The objective of this work was to assess the effects of a traditional parboiling treatment on physical, chemical and functional properties of yellow maize kernels. For this, maize kernels were subjected to the three main stages of a traditional parboiling process (soaking, steaming, and drying) at different moisture contents (15%, 25%, or 35%), and different pressure steaming times (0, 15, or 30 min). Kernels were evaluated for physical and chemical changes, while manually generated endosperm fractions were further evaluated for nutritional and functional changes. The parboiling process negatively altered the maize kernels properties by increasing the number of kernels with burst pericarp and decreasing the total carotenoid content in the endosperm by 42%. However, the most intense conditions (35% moisture and 30 min steam) lowered the number of broken kernels by 41%, and the number of stress cracks by 36%. Results also demonstrated that soaking enhanced the nutritional value of soaked yellow maize by increasing the thiamine content and the bound phenolic content in the endosperm fraction up to 102%. The proper implementation of this hydrothermal treatment could lead to significant enhancements in nutritional and functionality of maize products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. CW-SSIM kernel based random forest for image classification

    NASA Astrophysics Data System (ADS)

    Fan, Guangzhe; Wang, Zhou; Wang, Jiheng

    2010-07-01

    Complex wavelet structural similarity (CW-SSIM) index has been proposed as a powerful image similarity metric that is robust to translation, scaling and rotation of images, but how to employ it in image classification applications has not been deeply investigated. In this paper, we incorporate CW-SSIM as a kernel function into a random forest learning algorithm. This leads to a novel image classification approach that does not require a feature extraction or dimension reduction stage at the front end. We use hand-written digit recognition as an example to demonstrate our algorithm. We compare the performance of the proposed approach with random forest learning based on other kernels, including the widely adopted Gaussian and the inner product kernels. Empirical evidences show that the proposed method is superior in its classification power. We also compared our proposed approach with the direct random forest method without kernel and the popular kernel-learning method support vector machine. Our test results based on both simulated and realworld data suggest that the proposed approach works superior to traditional methods without the feature selection procedure.

  1. Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.

    PubMed

    Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing

    2017-12-14

    Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.

  2. A no-reference video quality assessment metric based on ROI

    NASA Astrophysics Data System (ADS)

    Jia, Lixiu; Zhong, Xuefei; Tu, Yan; Niu, Wenjuan

    2015-01-01

    A no reference video quality assessment metric based on the region of interest (ROI) was proposed in this paper. In the metric, objective video quality was evaluated by integrating the quality of two compressed artifacts, i.e. blurring distortion and blocking distortion. The Gaussian kernel function was used to extract the human density maps of the H.264 coding videos from the subjective eye tracking data. An objective bottom-up ROI extraction model based on magnitude discrepancy of discrete wavelet transform between two consecutive frames, center weighted color opponent model, luminance contrast model and frequency saliency model based on spectral residual was built. Then only the objective saliency maps were used to compute the objective blurring and blocking quality. The results indicate that the objective ROI extraction metric has a higher the area under the curve (AUC) value. Comparing with the conventional video quality assessment metrics which measured all the video quality frames, the metric proposed in this paper not only decreased the computation complexity, but improved the correlation between subjective mean opinion score (MOS) and objective scores.

  3. SVM and SVM Ensembles in Breast Cancer Prediction.

    PubMed

    Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong

    2017-01-01

    Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.

  4. SVM and SVM Ensembles in Breast Cancer Prediction

    PubMed Central

    Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong

    2017-01-01

    Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers. PMID:28060807

  5. The pre-image problem in kernel methods.

    PubMed

    Kwok, James Tin-yau; Tsang, Ivor Wai-hung

    2004-11-01

    In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.

  6. Development of a kernel function for clinical data.

    PubMed

    Daemen, Anneleen; De Moor, Bart

    2009-01-01

    For most diseases and examinations, clinical data such as age, gender and medical history guides clinical management, despite the rise of high-throughput technologies. To fully exploit such clinical information, appropriate modeling of relevant parameters is required. As the widely used linear kernel function has several disadvantages when applied to clinical data, we propose a new kernel function specifically developed for this data. This "clinical kernel function" more accurately represents similarities between patients. Evidently, three data sets were studied and significantly better performances were obtained with a Least Squares Support Vector Machine when based on the clinical kernel function compared to the linear kernel function.

  7. A new randomized Kaczmarz based kernel canonical correlation analysis algorithm with applications to information retrieval.

    PubMed

    Cai, Jia; Tang, Yi

    2018-02-01

    Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Inference of Spatio-Temporal Functions Over Graphs via Multikernel Kriged Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Ioannidis, Vassilis N.; Romero, Daniel; Giannakis, Georgios B.

    2018-06-01

    Inference of space-time varying signals on graphs emerges naturally in a plethora of network science related applications. A frequently encountered challenge pertains to reconstructing such dynamic processes, given their values over a subset of vertices and time instants. The present paper develops a graph-aware kernel-based kriged Kalman filter that accounts for the spatio-temporal variations, and offers efficient online reconstruction, even for dynamically evolving network topologies. The kernel-based learning framework bypasses the need for statistical information by capitalizing on the smoothness that graph signals exhibit with respect to the underlying graph. To address the challenge of selecting the appropriate kernel, the proposed filter is combined with a multi-kernel selection module. Such a data-driven method selects a kernel attuned to the signal dynamics on-the-fly within the linear span of a pre-selected dictionary. The novel multi-kernel learning algorithm exploits the eigenstructure of Laplacian kernel matrices to reduce computational complexity. Numerical tests with synthetic and real data demonstrate the superior reconstruction performance of the novel approach relative to state-of-the-art alternatives.

  9. Kernel-PCA data integration with enhanced interpretability

    PubMed Central

    2014-01-01

    Background Nowadays, combining the different sources of information to improve the biological knowledge available is a challenge in bioinformatics. One of the most powerful methods for integrating heterogeneous data types are kernel-based methods. Kernel-based data integration approaches consist of two basic steps: firstly the right kernel is chosen for each data set; secondly the kernels from the different data sources are combined to give a complete representation of the available data for a given statistical task. Results We analyze the integration of data from several sources of information using kernel PCA, from the point of view of reducing dimensionality. Moreover, we improve the interpretability of kernel PCA by adding to the plot the representation of the input variables that belong to any dataset. In particular, for each input variable or linear combination of input variables, we can represent the direction of maximum growth locally, which allows us to identify those samples with higher/lower values of the variables analyzed. Conclusions The integration of different datasets and the simultaneous representation of samples and variables together give us a better understanding of biological knowledge. PMID:25032747

  10. CLAss-Specific Subspace Kernel Representations and Adaptive Margin Slack Minimization for Large Scale Classification.

    PubMed

    Yu, Yinan; Diamantaras, Konstantinos I; McKelvey, Tomas; Kung, Sun-Yuan

    2018-02-01

    In kernel-based classification models, given limited computational power and storage capacity, operations over the full kernel matrix becomes prohibitive. In this paper, we propose a new supervised learning framework using kernel models for sequential data processing. The framework is based on two components that both aim at enhancing the classification capability with a subset selection scheme. The first part is a subspace projection technique in the reproducing kernel Hilbert space using a CLAss-specific Subspace Kernel representation for kernel approximation. In the second part, we propose a novel structural risk minimization algorithm called the adaptive margin slack minimization to iteratively improve the classification accuracy by an adaptive data selection. We motivate each part separately, and then integrate them into learning frameworks for large scale data. We propose two such frameworks: the memory efficient sequential processing for sequential data processing and the parallelized sequential processing for distributed computing with sequential data acquisition. We test our methods on several benchmark data sets and compared with the state-of-the-art techniques to verify the validity of the proposed techniques.

  11. A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.

    NASA Astrophysics Data System (ADS)

    Ho, Chi Ming

    1995-01-01

    Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth rates of the appropriate mixtures, the positive and negative effects of preferential diffusion and flame stretch on the developing flame are clearly demonstrated.

  12. Vis- and NIR-based instruments for detection of black-tip damaged wheat kernels: A comparative study

    USDA-ARS?s Scientific Manuscript database

    Black-tip (BT) present in wheat kernels is a non-mycotoxic fungus that attacks the kernels wherein any of a number of molds forms a dark brown or black sooty mold at the tip of the wheat kernel. Three spectrometers covering the spectral ranges 950-1636nm (Spec1), 600-1045nm (Spec2), and 380-780nm (S...

  13. An Operating Environment for the Jellybean Machine

    DTIC Science & Technology

    1988-05-01

    MODEL 48 5.4.4 Restarting a Context The operating system provides one primitive message (RESTART-CONTEXT) and two system calls (XFERID and XFER.ADDR) to...efficient, powerful services is reqired to support this "stem. To provide this supportive operating environment, I developed an operating system kernel that...serves many of the initial needs of our machine. This Jellybean Operating System Software provides an object- based storage model, where typed

  14. A Multi Agent System for Flow-Based Intrusion Detection

    DTIC Science & Technology

    2013-03-01

    Student t-test, as it is less likely to spuriously indicate significance because of the presence of outliers [128]. We use the MATLAB ranksum function [77...effectiveness of self-organization and “ entangled hierarchies” for accomplishing scenario objectives. One of the interesting features of SOMAS is the ability...cross-validation and automatic model selection. It has interfaces for Java, Python, R, Splus, MATLAB , Perl, Ruby, and LabVIEW. Kernels: linear

  15. A Group Recommender System for Tourist Activities

    NASA Astrophysics Data System (ADS)

    Garcia, Inma; Sebastia, Laura; Onaindia, Eva; Guzman, Cesar

    This paper introduces a method for giving recommendations of tourist activities to a group of users. This method makes recommendations based on the group tastes, their demographic classification and the places visited by the users in former trips. The group recommendation is computed from individual personal recommendations through the use of techniques such as aggregation, intersection or incremental intersection. This method is implemented as an extension of the e-Tourism tool, which is a user-adapted tourism and leisure application, whose main component is the Generalist Recommender System Kernel (GRSK), a domain-independent taxonomy-driven search engine that manages the group recommendation.

  16. Oversampling the Minority Class in the Feature Space.

    PubMed

    Perez-Ortiz, Maria; Gutierrez, Pedro Antonio; Tino, Peter; Hervas-Martinez, Cesar

    2016-09-01

    The imbalanced nature of some real-world data is one of the current challenges for machine learning researchers. One common approach oversamples the minority class through convex combination of its patterns. We explore the general idea of synthetic oversampling in the feature space induced by a kernel function (as opposed to input space). If the kernel function matches the underlying problem, the classes will be linearly separable and synthetically generated patterns will lie on the minority class region. Since the feature space is not directly accessible, we use the empirical feature space (EFS) (a Euclidean space isomorphic to the feature space) for oversampling purposes. The proposed method is framed in the context of support vector machines, where the imbalanced data sets can pose a serious hindrance. The idea is investigated in three scenarios: 1) oversampling in the full and reduced-rank EFSs; 2) a kernel learning technique maximizing the data class separation to study the influence of the feature space structure (implicitly defined by the kernel function); and 3) a unified framework for preferential oversampling that spans some of the previous approaches in the literature. We support our investigation with extensive experiments over 50 imbalanced data sets.

  17. Tracking of Maneuvering Complex Extended Object with Coupled Motion Kinematics and Extension Dynamics Using Range Extent Measurements

    PubMed Central

    Sun, Lifan; Ji, Baofeng; Lan, Jian; He, Zishu; Pu, Jiexin

    2017-01-01

    The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches. PMID:28937629

  18. RTOS kernel in portable electrocardiograph

    NASA Astrophysics Data System (ADS)

    Centeno, C. A.; Voos, J. A.; Riva, G. G.; Zerbini, C.; Gonzalez, E. A.

    2011-12-01

    This paper presents the use of a Real Time Operating System (RTOS) on a portable electrocardiograph based on a microcontroller platform. All medical device digital functions are performed by the microcontroller. The electrocardiograph CPU is based on the 18F4550 microcontroller, in which an uCOS-II RTOS can be embedded. The decision associated with the kernel use is based on its benefits, the license for educational use and its intrinsic time control and peripherals management. The feasibility of its use on the electrocardiograph is evaluated based on the minimum memory requirements due to the kernel structure. The kernel's own tools were used for time estimation and evaluation of resources used by each process. After this feasibility analysis, the migration from cyclic code to a structure based on separate processes or tasks able to synchronize events is used; resulting in an electrocardiograph running on one Central Processing Unit (CPU) based on RTOS.

  19. Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters

    PubMed Central

    Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun

    2017-01-01

    Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475

  20. Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.

    PubMed

    Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun

    2017-02-23

    Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.

  1. Fuzzy Kernel k-Medoids algorithm for anomaly detection problems

    NASA Astrophysics Data System (ADS)

    Rustam, Z.; Talita, A. S.

    2017-07-01

    Intrusion Detection System (IDS) is an essential part of security systems to strengthen the security of information systems. IDS can be used to detect the abuse by intruders who try to get into the network system in order to access and utilize the available data sources in the system. There are two approaches of IDS, Misuse Detection and Anomaly Detection (behavior-based intrusion detection). Fuzzy clustering-based methods have been widely used to solve Anomaly Detection problems. Other than using fuzzy membership concept to determine the object to a cluster, other approaches as in combining fuzzy and possibilistic membership or feature-weighted based methods are also used. We propose Fuzzy Kernel k-Medoids that combining fuzzy and possibilistic membership as a powerful method to solve anomaly detection problem since on numerical experiment it is able to classify IDS benchmark data into five different classes simultaneously. We classify IDS benchmark data KDDCup'99 data set into five different classes simultaneously with the best performance was achieved by using 30 % of training data with clustering accuracy reached 90.28 percent.

  2. A dose assessment method for arbitrary geometries with virtual reality in the nuclear facilities decommissioning

    NASA Astrophysics Data System (ADS)

    Chao, Nan; Liu, Yong-kuo; Xia, Hong; Ayodeji, Abiodun; Bai, Lu

    2018-03-01

    During the decommissioning of nuclear facilities, a large number of cutting and demolition activities are performed, which results in a frequent change in the structure and produce many irregular objects. In order to assess dose rates during the cutting and demolition process, a flexible dose assessment method for arbitrary geometries and radiation sources was proposed based on virtual reality technology and Point-Kernel method. The initial geometry is designed with the three-dimensional computer-aided design tools. An approximate model is built automatically in the process of geometric modeling via three procedures namely: space division, rough modeling of the body and fine modeling of the surface, all in combination with collision detection of virtual reality technology. Then point kernels are generated by sampling within the approximate model, and when the material and radiometric attributes are inputted, dose rates can be calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The effectiveness and accuracy of the proposed method was verified by means of simulations using different geometries and the dose rate results were compared with that derived from CIDEC code, MCNP code and experimental measurements.

  3. Unified Heat Kernel Regression for Diffusion, Kernel Smoothing and Wavelets on Manifolds and Its Application to Mandible Growth Modeling in CT Images

    PubMed Central

    Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.

    2014-01-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435

  4. Wavelet SVM in Reproducing Kernel Hilbert Space for hyperspectral remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Tan, Kun; Xing, Xiaoshi

    2010-12-01

    Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.

  5. Hadamard Kernel SVM with applications for breast cancer outcome predictions.

    PubMed

    Jiang, Hao; Ching, Wai-Ki; Cheung, Wai-Shun; Hou, Wenpin; Yin, Hong

    2017-12-21

    Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem still needs further investigation. Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of real-world data sets are adopted to test the performance of different methods. Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to the current SVM kernel families. We hope it will contribute to the wider biology and related communities.

  6. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images.

    PubMed

    Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P

    2017-01-01

    Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  7. Deblurring traffic sign images based on exemplars

    PubMed Central

    Qiu, Tianshuang; Luan, Shengyang; Song, Haiyu; Wu, Linxiu

    2018-01-01

    Motion blur appearing in traffic sign images may lead to poor recognition results, and therefore it is of great significance to study how to deblur the images. In this paper, a novel method for deblurring traffic sign is proposed based on exemplars and several related approaches are also made. First, an exemplar dataset construction method is proposed based on multiple-size partition strategy to lower calculation cost of exemplar matching. Second, a matching criterion based on gradient information and entropy correlation coefficient is also proposed to enhance the matching accuracy. Third, L0.5-norm is introduced as the regularization item to maintain the sparsity of blur kernel. Experiments verify the superiority of the proposed approaches and extensive evaluations against state-of-the-art methods demonstrate the effectiveness of the proposed algorithm. PMID:29513677

  8. Modeling adaptive kernels from probabilistic phylogenetic trees.

    PubMed

    Nicotra, Luca; Micheli, Alessio

    2009-01-01

    Modeling phylogenetic interactions is an open issue in many computational biology problems. In the context of gene function prediction we introduce a class of kernels for structured data leveraging on a hierarchical probabilistic modeling of phylogeny among species. We derive three kernels belonging to this setting: a sufficient statistics kernel, a Fisher kernel, and a probability product kernel. The new kernels are used in the context of support vector machine learning. The kernels adaptivity is obtained through the estimation of the parameters of a tree structured model of evolution using as observed data phylogenetic profiles encoding the presence or absence of specific genes in a set of fully sequenced genomes. We report results obtained in the prediction of the functional class of the proteins of the budding yeast Saccharomyces cerevisae which favorably compare to a standard vector based kernel and to a non-adaptive tree kernel function. A further comparative analysis is performed in order to assess the impact of the different components of the proposed approach. We show that the key features of the proposed kernels are the adaptivity to the input domain and the ability to deal with structured data interpreted through a graphical model representation.

  9. Ranking support vector machine for multiple kernels output combination in protein-protein interaction extraction from biomedical literature.

    PubMed

    Yang, Zhihao; Lin, Yuan; Wu, Jiajin; Tang, Nan; Lin, Hongfei; Li, Yanpeng

    2011-10-01

    Knowledge about protein-protein interactions (PPIs) unveils the molecular mechanisms of biological processes. However, the volume and content of published biomedical literature on protein interactions is expanding rapidly, making it increasingly difficult for interaction database curators to detect and curate protein interaction information manually. We present a multiple kernel learning-based approach for automatic PPI extraction from biomedical literature. The approach combines the following kernels: feature-based, tree, and graph and combines their output with Ranking support vector machine (SVM). Experimental evaluations show that the features in individual kernels are complementary and the kernel combined with Ranking SVM achieves better performance than those of the individual kernels, equal weight combination and optimal weight combination. Our approach can achieve state-of-the-art performance with respect to the comparable evaluations, with 64.88% F-score and 88.02% AUC on the AImed corpus. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. On the role of cost-sensitive learning in multi-class brain-computer interfaces.

    PubMed

    Devlaminck, Dieter; Waegeman, Willem; Wyns, Bart; Otte, Georges; Santens, Patrick

    2010-06-01

    Brain-computer interfaces (BCIs) present an alternative way of communication for people with severe disabilities. One of the shortcomings in current BCI systems, recently put forward in the fourth BCI competition, is the asynchronous detection of motor imagery versus resting state. We investigated this extension to the three-class case, in which the resting state is considered virtually lying between two motor classes, resulting in a large penalty when one motor task is misclassified into the other motor class. We particularly focus on the behavior of different machine-learning techniques and on the role of multi-class cost-sensitive learning in such a context. To this end, four different kernel methods are empirically compared, namely pairwise multi-class support vector machines (SVMs), two cost-sensitive multi-class SVMs and kernel-based ordinal regression. The experimental results illustrate that ordinal regression performs better than the other three approaches when a cost-sensitive performance measure such as the mean-squared error is considered. By contrast, multi-class cost-sensitive learning enables us to control the number of large errors made between two motor tasks.

  11. Generalization Performance of Regularized Ranking With Multiscale Kernels.

    PubMed

    Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin

    2016-05-01

    The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.

  12. Kolkhoung (Pistacia khinjuk) Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability 
and Nutritional Value.

    PubMed

    Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi

    2015-03-01

    In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.

  13. ArrayBridge: Interweaving declarative array processing with high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros

    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less

  14. Three-Dimensional Sensitivity Kernels of Z/H Amplitude Ratios of Surface and Body Waves

    NASA Astrophysics Data System (ADS)

    Bao, X.; Shen, Y.

    2017-12-01

    The ellipticity of Rayleigh wave particle motion, or Z/H amplitude ratio, has received increasing attention in inversion for shallow Earth structures. Previous studies of the Z/H ratio assumed one-dimensional (1D) velocity structures beneath the receiver, ignoring the effects of three-dimensional (3D) heterogeneities on wave amplitudes. This simplification may introduce bias in the resulting models. Here we present 3D sensitivity kernels of the Z/H ratio to Vs, Vp, and density perturbations, based on finite-difference modeling of wave propagation in 3D structures and the scattering-integral method. Our full-wave approach overcomes two main issues in previous studies of Rayleigh wave ellipticity: (1) the finite-frequency effects of wave propagation in 3D Earth structures, and (2) isolation of the fundamental mode Rayleigh waves from Rayleigh wave overtones and converted Love waves. In contrast to the 1D depth sensitivity kernels in previous studies, our 3D sensitivity kernels exhibit patterns that vary with azimuths and distances to the receiver. The laterally-summed 3D sensitivity kernels and 1D depth sensitivity kernels, based on the same homogeneous reference model, are nearly identical with small differences that are attributable to the single period of the 1D kernels and a finite period range of the 3D kernels. We further verify the 3D sensitivity kernels by comparing the predictions from the kernels with the measurements from numerical simulations of wave propagation for models with various small-scale perturbations. We also calculate and verify the amplitude kernels for P waves. This study shows that both Rayleigh and body wave Z/H ratios provide vertical and lateral constraints on the structure near the receiver. With seismic arrays, the 3D kernels afford a powerful tool to use the Z/H ratios to obtain accurate and high-resolution Earth models.

  15. Deep neural mapping support vector machines.

    PubMed

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.

    PubMed

    Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D

    2016-04-01

    Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the kernel fraction was redried at 60°C for 48 h in a forced-air oven and dry sieved to determine GMPS and surface area. Linear relationships between CSPS from WPCS (n=80) and kernel fraction GMPS, surface area, and proportion passing through the 4.75-mm screen were poor. Strong quadratic relationships between proportion of kernel fraction passing through the 4.75-mm screen and kernel fraction GMPS and surface area were observed. These findings suggest that hydrodynamic separation and dry sieving of the kernel fraction may provide a better assessment of kernel breakage in WPCS than CSPS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Short Message Service (SMS) Command and Control (C2) Awareness in Android-based Smartphones Using Kernel-Level Auditing

    DTIC Science & Technology

    2012-06-14

    Display 480 x 800 pixels (3.7 inches) CPU Qualcomm QSD8250 1GHz Memory (internal) 512MB RAM / 512 MB ROM Kernel version 2.6.35.7-ge0fb012 Figure 3.5: HTC...development and writing). The 34 MSM kernel provided by the AOSP and compatible with the HTC Nexus One’s motherboard and Qualcomm chipset, is used for this...building the kernel is having the prebuilt toolchains and the right kernel for the hardware. Many HTC products use Qualcomm processors which uses the

  18. Data consistency criterion for selecting parameters for k-space-based reconstruction in parallel imaging.

    PubMed

    Nana, Roger; Hu, Xiaoping

    2010-01-01

    k-space-based reconstruction in parallel imaging depends on the reconstruction kernel setting, including its support. An optimal choice of the kernel depends on the calibration data, coil geometry and signal-to-noise ratio, as well as the criterion used. In this work, data consistency, imposed by the shift invariance requirement of the kernel, is introduced as a goodness measure of k-space-based reconstruction in parallel imaging and demonstrated. Data consistency error (DCE) is calculated as the sum of squared difference between the acquired signals and their estimates obtained based on the interpolation of the estimated missing data. A resemblance between DCE and the mean square error in the reconstructed image was found, demonstrating DCE's potential as a metric for comparing or choosing reconstructions. When used for selecting the kernel support for generalized autocalibrating partially parallel acquisition (GRAPPA) reconstruction and the set of frames for calibration as well as the kernel support in temporal GRAPPA reconstruction, DCE led to improved images over existing methods. Data consistency error is efficient to evaluate, robust for selecting reconstruction parameters and suitable for characterizing and optimizing k-space-based reconstruction in parallel imaging.

  19. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  20. Improving the Bandwidth Selection in Kernel Equating

    ERIC Educational Resources Information Center

    Andersson, Björn; von Davier, Alina A.

    2014-01-01

    We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…

  1. CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.

    2015-10-20

    We present a modular, extensible likelihood framework for spectroscopic inference based on synthetic model spectra. The subtraction of an imperfect model from a continuously sampled spectrum introduces covariance between adjacent datapoints (pixels) into the residual spectrum. For the high signal-to-noise data with large spectral range that is commonly employed in stellar astrophysics, that covariant structure can lead to dramatically underestimated parameter uncertainties (and, in some cases, biases). We construct a likelihood function that accounts for the structure of the covariance matrix, utilizing the machinery of Gaussian process kernels. This framework specifically addresses the common problem of mismatches in model spectralmore » line strengths (with respect to data) due to intrinsic model imperfections (e.g., in the atomic/molecular databases or opacity prescriptions) by developing a novel local covariance kernel formalism that identifies and self-consistently downweights pathological spectral line “outliers.” By fitting many spectra in a hierarchical manner, these local kernels provide a mechanism to learn about and build data-driven corrections to synthetic spectral libraries. An open-source software implementation of this approach is available at http://iancze.github.io/Starfish, including a sophisticated probabilistic scheme for spectral interpolation when using model libraries that are sparsely sampled in the stellar parameters. We demonstrate some salient features of the framework by fitting the high-resolution V-band spectrum of WASP-14, an F5 dwarf with a transiting exoplanet, and the moderate-resolution K-band spectrum of Gliese 51, an M5 field dwarf.« less

  2. An efficient method to determine double Gaussian fluence parameters in the eclipse™ proton pencil beam model.

    PubMed

    Shen, Jiajian; Liu, Wei; Stoker, Joshua; Ding, Xiaoning; Anand, Aman; Hu, Yanle; Herman, Michael G; Bues, Martin

    2016-12-01

    To find an efficient method to configure the proton fluence for a commercial proton pencil beam scanning (PBS) treatment planning system (TPS). An in-water dose kernel was developed to mimic the dose kernel of the pencil beam convolution superposition algorithm, which is part of the commercial proton beam therapy planning software, eclipse™ (Varian Medical Systems, Palo Alto, CA). The field size factor (FSF) was calculated based on the spot profile reconstructed by the in-house dose kernel. The workflow of using FSFs to find the desirable proton fluence is presented. The in-house derived spot profile and FSF were validated by a direct comparison with those calculated by the eclipse TPS. The validation included 420 comparisons of the FSFs from 14 proton energies, various field sizes from 2 to 20 cm and various depths from 20% to 80% of proton range. The relative in-water lateral profiles between the in-house calculation and the eclipse TPS agree very well even at the level of 10 -4 . The FSFs between the in-house calculation and the eclipse TPS also agree well. The maximum deviation is within 0.5%, and the standard deviation is less than 0.1%. The authors' method significantly reduced the time to find the desirable proton fluences of the clinical energies. The method is extensively validated and can be applied to any proton centers using PBS and the eclipse TPS.

  3. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction

    PubMed Central

    Bandeira e Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose

    2017-01-01

    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. PMID:28455415

  4. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.

    PubMed

    Bandeira E Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose

    2017-06-07

    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. Copyright © 2017 Bandeira e Sousa et al.

  5. Differential evolution-based multi-objective optimization for the definition of a health indicator for fault diagnostics and prognostics

    NASA Astrophysics Data System (ADS)

    Baraldi, P.; Bonfanti, G.; Zio, E.

    2018-03-01

    The identification of the current degradation state of an industrial component and the prediction of its future evolution is a fundamental step for the development of condition-based and predictive maintenance approaches. The objective of the present work is to propose a general method for extracting a health indicator to measure the amount of component degradation from a set of signals measured during operation. The proposed method is based on the combined use of feature extraction techniques, such as Empirical Mode Decomposition and Auto-Associative Kernel Regression, and a multi-objective Binary Differential Evolution (BDE) algorithm for selecting the subset of features optimal for the definition of the health indicator. The objectives of the optimization are desired characteristics of the health indicator, such as monotonicity, trendability and prognosability. A case study is considered, concerning the prediction of the remaining useful life of turbofan engines. The obtained results confirm that the method is capable of extracting health indicators suitable for accurate prognostics.

  6. Home range and survival of breeding painted buntings on Sapelo Island, Georgia

    USGS Publications Warehouse

    Springborn, E.G.; Meyers, J.M.

    2005-01-01

    The southeastern United States population of the painted bunting (Passerina ciris) has decreased approximately 75% from 1966-1996 based on Breeding Bird Survey trends. Partners in Flight guidelines recommend painted bunting conservation as a high priority with a need for management by state and federal agencies. Basic information on home range and survival of breeding painted buntings will provide managers with required habitat types and estimates of land areas necessary to maintain minimum population sizes for this species. We radiotracked after-second-year male and after-hatching-year female buntings on Sapelo Island, Georgia, during the breeding seasons (late April-early August) of 1997 and 1998. We used the animal movement extension in ArcView to determine fixed-kernel home range in an unmanaged maritime shrub and managed 60-80-year-old pine (Pinus spp.)-oak Quercus spp.) forest. Using the Kaplan-Meier method, we estimated an adult breeding season survival of 1.00 for males (n = 36) and 0.94 (SE = 0.18) for females(n=27). Painted bunting home ranges were smaller in unmanaged maritime shrub (female: kernel (x) over bar = 3.5 ha [95% CI: 2.5-4.51; male: kernel (x) over bar = 3.1 ha [95% CI: 2.3-3.9]) compared to those in managed pine-oak forests (female: kernel (x) over bar = 4.7 ha [95% CI: 2.8-6.6]; male: kernel (x) over bar = 7.0 ha [95% CI: 4.9-9.1]). Buntings nesting in the managed pine-oak forest flew long distances (>= 300 m) to forage in salt marshes, freshwater wetlands, and moist forest clearings. In maritime shrub buntings occupied a compact area and rarely moved long distances. The painted bunting population of Sapelo Island requires conservation of maritime shrub as potential optimum nesting habitat and management of nesting habitat in open-canopy pine-oak sawtimber forests by periodic prescribed fire (every 4-6 years) and timber thinning within a landscape that contains salt marsh or freshwater wetland openings within 700 m of those forests.

  7. Efficient similarity-based data clustering by optimal object to cluster reallocation.

    PubMed

    Rossignol, Mathias; Lagrange, Mathieu; Cont, Arshia

    2018-01-01

    We present an iterative flat hard clustering algorithm designed to operate on arbitrary similarity matrices, with the only constraint that these matrices be symmetrical. Although functionally very close to kernel k-means, our proposal performs a maximization of average intra-class similarity, instead of a squared distance minimization, in order to remain closer to the semantics of similarities. We show that this approach permits the relaxing of some conditions on usable affinity matrices like semi-positiveness, as well as opening possibilities for computational optimization required for large datasets. Systematic evaluation on a variety of data sets shows that compared with kernel k-means and the spectral clustering methods, the proposed approach gives equivalent or better performance, while running much faster. Most notably, it significantly reduces memory access, which makes it a good choice for large data collections. Material enabling the reproducibility of the results is made available online.

  8. Metabolic network prediction through pairwise rational kernels.

    PubMed

    Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian

    2014-09-26

    Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times. The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.

  9. Weighted Feature Gaussian Kernel SVM for Emotion Recognition

    PubMed Central

    Jia, Qingxuan

    2016-01-01

    Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. Then, we get a weighted feature Gaussian kernel function and construct a classifier based on Support Vector Machine (SVM). At last, the experimental results suggest that the approach based on weighted feature Gaussian kernel function has good performance on the correct rate in emotion recognition. The experiments on the extended Cohn-Kanade (CK+) dataset show that our method has achieved encouraging recognition results compared to the state-of-the-art methods. PMID:27807443

  10. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  11. Modular Affective Reasoning-Based Versatile Introspective Architecture (MARVIN)

    DTIC Science & Technology

    2008-08-14

    monolithic kernels found in most mass market OSs, where these kinds of system processes run within the kernel , and thus need to be highly optimized as well as...without modifying pre- existing process management elements, we expect the process of transitioning this component from MINIX to monolithic kernels to...necessary to incorporate them into a monolithic kernel . To demonstrate how the APMM would work in practice, we used it as the basis for building a simulated

  12. Putting Priors in Mixture Density Mercer Kernels

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd

    2004-01-01

    This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly infinite dimensional feature space. We describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using predefined kernels. These data adaptive kernels can en- code prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS). The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains template for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic- algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code. The results show that the Mixture Density Mercer-Kernel described here outperforms tree-based classification in distinguishing high-redshift galaxies from low- redshift galaxies by approximately 16% on test data, bagged trees by approximately 7%, and bagged trees built on a much larger sample of data by approximately 2%.

  13. Pyrolytic carbon-coated nuclear fuel

    DOEpatents

    Lindemer, Terrence B.; Long, Jr., Ernest L.; Beatty, Ronald L.

    1978-01-01

    An improved nuclear fuel kernel having at least one pyrolytic carbon coating and a silicon carbon layer is provided in which extensive interaction of fission product lanthanides with the silicon carbon layer is avoided by providing sufficient UO.sub.2 to maintain the lanthanides as oxides during in-reactor use of said fuel.

  14. Multiple kernels learning-based biological entity relationship extraction method.

    PubMed

    Dongliang, Xu; Jingchang, Pan; Bailing, Wang

    2017-09-20

    Automatic extracting protein entity interaction information from biomedical literature can help to build protein relation network and design new drugs. There are more than 20 million literature abstracts included in MEDLINE, which is the most authoritative textual database in the field of biomedicine, and follow an exponential growth over time. This frantic expansion of the biomedical literature can often be difficult to absorb or manually analyze. Thus efficient and automated search engines are necessary to efficiently explore the biomedical literature using text mining techniques. The P, R, and F value of tag graph method in Aimed corpus are 50.82, 69.76, and 58.61%, respectively. The P, R, and F value of tag graph kernel method in other four evaluation corpuses are 2-5% higher than that of all-paths graph kernel. And The P, R and F value of feature kernel and tag graph kernel fuse methods is 53.43, 71.62 and 61.30%, respectively. The P, R and F value of feature kernel and tag graph kernel fuse methods is 55.47, 70.29 and 60.37%, respectively. It indicated that the performance of the two kinds of kernel fusion methods is better than that of simple kernel. In comparison with the all-paths graph kernel method, the tag graph kernel method is superior in terms of overall performance. Experiments show that the performance of the multi-kernels method is better than that of the three separate single-kernel method and the dual-mutually fused kernel method used hereof in five corpus sets.

  15. Scuba: scalable kernel-based gene prioritization.

    PubMed

    Zampieri, Guido; Tran, Dinh Van; Donini, Michele; Navarin, Nicolò; Aiolli, Fabio; Sperduti, Alessandro; Valle, Giorgio

    2018-01-25

    The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .

  16. Small convolution kernels for high-fidelity image restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1991-01-01

    An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.

  17. Embedded real-time operating system micro kernel design

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-hui; Li, Ming-qiang; Wang, Xin-zheng

    2005-12-01

    Embedded systems usually require a real-time character. Base on an 8051 microcontroller, an embedded real-time operating system micro kernel is proposed consisting of six parts, including a critical section process, task scheduling, interruption handle, semaphore and message mailbox communication, clock managent and memory managent. Distributed CPU and other resources are among tasks rationally according to the importance and urgency. The design proposed here provides the position, definition, function and principle of micro kernel. The kernel runs on the platform of an ATMEL AT89C51 microcontroller. Simulation results prove that the designed micro kernel is stable and reliable and has quick response while operating in an application system.

  18. Protein fold recognition using geometric kernel data fusion.

    PubMed

    Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves

    2014-07-01

    Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.

  19. On one solution of Volterra integral equations of second kind

    NASA Astrophysics Data System (ADS)

    Myrhorod, V.; Hvozdeva, I.

    2016-10-01

    A solution of Volterra integral equations of the second kind with separable and difference kernels based on solutions of corresponding equations linking the kernel and resolvent is suggested. On the basis of a discrete functions class, the equations linking the kernel and resolvent are obtained and the methods of their analytical solutions are proposed. A mathematical model of the gas-turbine engine state modification processes in the form of Volterra integral equation of the second kind with separable kernel is offered.

  20. Quantification of process variables for carbothermic synthesis of UC 1-xN x fuel microspheres

    DOE PAGES

    Lindemer, Terrance B.; Silva, Chinthaka M.; Henry, Jr, John James; ...

    2016-11-05

    This report details the continued investigation of process variables involved in converting sol-gel-derived, urania-carbon microspheres to ~820-μm-dia. UC 1-xN x fuel kernels in flow-through, vertical Mo and W crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO 3-H 2O-C microspheres in Ar and H 2-containing gases, conversion of the resulting UO 2-C kernels to dense UO2:2UC in the same gases and vacuum, and its conversion in N 2 to UC 1-xN x (x = ~0.85). The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO 2:2UCmore » kernel of ~96% theoretical density was required, but its subsequent conversion to UC 1-xN x at 2123 K was not accompanied by sintering and resulted in ~83-86% of theoretical density. Increasing the UC 1-xN x kernel nitride component to ~0.98 in flowing N 2-H 2 mixtures to evolve HCN was shown to be quantitatively consistent with present and past experiments and the only useful application of H 2 in the entire process.« less

  1. Quantification of process variables for carbothermic synthesis of UC1-xNx fuel microspheres

    NASA Astrophysics Data System (ADS)

    Lindemer, T. B.; Silva, C. M.; Henry, J. J.; McMurray, J. W.; Voit, S. L.; Collins, J. L.; Hunt, R. D.

    2017-01-01

    This report details the continued investigation of process variables involved in converting sol-gel-derived, urania-carbon microspheres to ∼820-μm-dia. UC1-xNx fuel kernels in flow-through, vertical Mo and W crucibles at temperatures up to 2123 K. Experiments included calcining of air-dried UO3-H2O-C microspheres in Ar and H2-containing gases, conversion of the resulting UO2-C kernels to dense UO2:2UC in the same gases and vacuum, and its conversion in N2 to UC1-xNx (x = ∼0.85). The thermodynamics of the relevant reactions were applied extensively to interpret and control the process variables. Producing the precursor UO2:2UC kernel of ∼96% theoretical density was required, but its subsequent conversion to UC1-xNx at 2123 K was not accompanied by sintering and resulted in ∼83-86% of theoretical density. Increasing the UC1-xNx kernel nitride component to ∼0.98 in flowing N2-H2 mixtures to evolve HCN was shown to be quantitatively consistent with present and past experiments and the only useful application of H2 in the entire process.

  2. Employing OpenCL to Accelerate Ab Initio Calculations on Graphics Processing Units.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2017-06-13

    We present an extension of our graphics processing units (GPU)-accelerated quantum chemistry package to employ OpenCL compute kernels, which can be executed on a wide range of computing devices like CPUs, Intel Xeon Phi, and AMD GPUs. Here, we focus on the use of AMD GPUs and discuss differences as compared to CUDA-based calculations on NVIDIA GPUs. First illustrative timings are presented for hybrid density functional theory calculations using serial as well as parallel compute environments. The results show that AMD GPUs are as fast or faster than comparable NVIDIA GPUs and provide a viable alternative for quantum chemical applications.

  3. Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.

    PubMed

    Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen

    2017-08-29

    In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.

  4. Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm.

    PubMed

    de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Héctor Casimiro; Galvão, Roberto Kawakami Harrop; Araújo, Mario Cesar Ugulino

    2018-05-01

    This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions. Published by Elsevier B.V.

  5. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.

    PubMed

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  6. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    PubMed Central

    Yuan, Xianfeng; Song, Mumin; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526

  7. A new discrete dipole kernel for quantitative susceptibility mapping.

    PubMed

    Milovic, Carlos; Acosta-Cabronero, Julio; Pinto, José Miguel; Mattern, Hendrik; Andia, Marcelo; Uribe, Sergio; Tejos, Cristian

    2018-09-01

    Most approaches for quantitative susceptibility mapping (QSM) are based on a forward model approximation that employs a continuous Fourier transform operator to solve a differential equation system. Such formulation, however, is prone to high-frequency aliasing. The aim of this study was to reduce such errors using an alternative dipole kernel formulation based on the discrete Fourier transform and discrete operators. The impact of such an approach on forward model calculation and susceptibility inversion was evaluated in contrast to the continuous formulation both with synthetic phantoms and in vivo MRI data. The discrete kernel demonstrated systematically better fits to analytic field solutions, and showed less over-oscillations and aliasing artifacts while preserving low- and medium-frequency responses relative to those obtained with the continuous kernel. In the context of QSM estimation, the use of the proposed discrete kernel resulted in error reduction and increased sharpness. This proof-of-concept study demonstrated that discretizing the dipole kernel is advantageous for QSM. The impact on small or narrow structures such as the venous vasculature might by particularly relevant to high-resolution QSM applications with ultra-high field MRI - a topic for future investigations. The proposed dipole kernel has a straightforward implementation to existing QSM routines. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Dynamic characteristics of oxygen consumption.

    PubMed

    Ye, Lin; Argha, Ahmadreza; Yu, Hairong; Celler, Branko G; Nguyen, Hung T; Su, Steven

    2018-04-23

    Previous studies have indicated that oxygen uptake ([Formula: see text]) is one of the most accurate indices for assessing the cardiorespiratory response to exercise. In most existing studies, the response of [Formula: see text] is often roughly modelled as a first-order system due to the inadequate stimulation and low signal to noise ratio. To overcome this difficulty, this paper proposes a novel nonparametric kernel-based method for the dynamic modelling of [Formula: see text] response to provide a more robust estimation. Twenty healthy non-athlete participants conducted treadmill exercises with monotonous stimulation (e.g., single step function as input). During the exercise, [Formula: see text] was measured and recorded by a popular portable gas analyser ([Formula: see text], COSMED). Based on the recorded data, a kernel-based estimation method was proposed to perform the nonparametric modelling of [Formula: see text]. For the proposed method, a properly selected kernel can represent the prior modelling information to reduce the dependence of comprehensive stimulations. Furthermore, due to the special elastic net formed by [Formula: see text] norm and kernelised [Formula: see text] norm, the estimations are smooth and concise. Additionally, the finite impulse response based nonparametric model which estimated by the proposed method can optimally select the order and fit better in terms of goodness-of-fit comparing to classical methods. Several kernels were introduced for the kernel-based [Formula: see text] modelling method. The results clearly indicated that the stable spline (SS) kernel has the best performance for [Formula: see text] modelling. Particularly, based on the experimental data from 20 participants, the estimated response from the proposed method with SS kernel was significantly better than the results from the benchmark method [i.e., prediction error method (PEM)] ([Formula: see text] vs [Formula: see text]). The proposed nonparametric modelling method is an effective method for the estimation of the impulse response of VO 2 -Speed system. Furthermore, the identified average nonparametric model method can dynamically predict [Formula: see text] response with acceptable accuracy during treadmill exercise.

  9. Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models

    NASA Astrophysics Data System (ADS)

    Challamel, Noël

    2018-04-01

    The static and dynamic behaviour of a nonlocal bar of finite length is studied in this paper. The nonlocal integral models considered in this paper are strain-based and relative displacement-based nonlocal models; the latter one is also labelled as a peridynamic model. For infinite media, and for sufficiently smooth displacement fields, both integral nonlocal models can be equivalent, assuming some kernel correspondence rules. For infinite media (or finite media with extended reflection rules), it is also shown that Eringen's differential model can be reformulated into a consistent strain-based integral nonlocal model with exponential kernel, or into a relative displacement-based integral nonlocal model with a modified exponential kernel. A finite bar in uniform tension is considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar in tension is analyzed for different kernels available in the literature. It is shown that the kernel has to fulfil some normalization and end compatibility conditions in order to preserve the uniform strain field associated with this homogeneous stress state. Such a kernel can be built by combining a local and a nonlocal strain measure with compatible boundary conditions, or by extending the domain outside its finite size while preserving some kinematic compatibility conditions. The same results are shown for the nonlocal peridynamic bar where a homogeneous strain field is also analytically obtained in the elastic bar for consistent compatible kinematic boundary conditions at the vicinity of the end conditions. The results are extended to the vibration of a fixed-fixed finite bar where the natural frequencies are calculated for both the strain-based and the peridynamic models.

  10. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    PubMed

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  11. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    PubMed

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  12. Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection

    NASA Astrophysics Data System (ADS)

    Wang, Jinjin; Ma, Yi; Zhang, Jingyu

    2018-03-01

    Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.

  13. A flexible, extendable, modular and computationally efficient approach to scattering-integral-based seismic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Schumacher, F.; Friederich, W.; Lamara, S.

    2016-02-01

    We present a new conceptual approach to scattering-integral-based seismic full waveform inversion (FWI) that allows a flexible, extendable, modular and both computationally and storage-efficient numerical implementation. To achieve maximum modularity and extendability, interactions between the three fundamental steps carried out sequentially in each iteration of the inversion procedure, namely, solving the forward problem, computing waveform sensitivity kernels and deriving a model update, are kept at an absolute minimum and are implemented by dedicated interfaces. To realize storage efficiency and maximum flexibility, the spatial discretization of the inverted earth model is allowed to be completely independent of the spatial discretization employed by the forward solver. For computational efficiency reasons, the inversion is done in the frequency domain. The benefits of our approach are as follows: (1) Each of the three stages of an iteration is realized by a stand-alone software program. In this way, we avoid the monolithic, unflexible and hard-to-modify codes that have often been written for solving inverse problems. (2) The solution of the forward problem, required for kernel computation, can be obtained by any wave propagation modelling code giving users maximum flexibility in choosing the forward modelling method. Both time-domain and frequency-domain approaches can be used. (3) Forward solvers typically demand spatial discretizations that are significantly denser than actually desired for the inverted model. Exploiting this fact by pre-integrating the kernels allows a dramatic reduction of disk space and makes kernel storage feasible. No assumptions are made on the spatial discretization scheme employed by the forward solver. (4) In addition, working in the frequency domain effectively reduces the amount of data, the number of kernels to be computed and the number of equations to be solved. (5) Updating the model by solving a large equation system can be done using different mathematical approaches. Since kernels are stored on disk, it can be repeated many times for different regularization parameters without need to solve the forward problem, making the approach accessible to Occam's method. Changes of choice of misfit functional, weighting of data and selection of data subsets are still possible at this stage. We have coded our approach to FWI into a program package called ASKI (Analysis of Sensitivity and Kernel Inversion) which can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. It is written in modern FORTRAN language using object-oriented concepts that reflect the modular structure of the inversion procedure. We validate our FWI method by a small-scale synthetic study and present first results of its application to high-quality seismological data acquired in the southern Aegean.

  14. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits

    PubMed Central

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges

    2016-01-01

    Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903

  15. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits.

    PubMed

    Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges

    2016-03-01

    The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis.

  16. Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Sapan; Quach, Tu -Thach; Parekh, Ojas

    In this study, the exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-basedmore » architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.« less

  17. Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding

    DOE PAGES

    Agarwal, Sapan; Quach, Tu -Thach; Parekh, Ojas; ...

    2016-01-06

    In this study, the exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-basedmore » architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.« less

  18. DANCING IN THE DARK: NEW BROWN DWARF BINARIES FROM KERNEL PHASE INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Benjamin; Tuthill, Peter; Martinache, Frantz, E-mail: bjsp@physics.usyd.edu.au, E-mail: p.tuthill@physics.usyd.edu.au, E-mail: frantz@naoj.org

    2013-04-20

    This paper revisits a sample of ultracool dwarfs in the solar neighborhood previously observed with the Hubble Space Telescope's NICMOS NIC1 instrument. We have applied a novel high angular resolution data analysis technique based on the extraction and fitting of kernel phases to archival data. This was found to deliver a dramatic improvement over earlier analysis methods, permitting a search for companions down to projected separations of {approx}1 AU on NIC1 snapshot images. We reveal five new close binary candidates and present revised astrometry on previously known binaries, all of which were recovered with the technique. The new candidate binariesmore » have sufficiently close separation to determine dynamical masses in a short-term observing campaign. We also present four marginal detections of objects which may be very close binaries or high-contrast companions. Including only confident detections within 19 pc, we report a binary fraction of at least #Greek Lunate Epsilon Symbol#{sub b} = 17.2{sub -3.7}{sup +5.7}%. The results reported here provide new insights into the population of nearby ultracool binaries, while also offering an incisive case study of the benefits conferred by the kernel phase approach in the recovery of companions within a few resolution elements of the point-spread function core.« less

  19. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.

    PubMed

    Bartzsch, Stefan; Oelfke, Uwe

    2013-11-01

    The advent of widespread kV-cone beam computer tomography in image guided radiation therapy and special therapeutic application of keV photons, e.g., in microbeam radiation therapy (MRT) require accurate and fast dose calculations for photon beams with energies between 40 and 200 keV. Multiple photon scattering originating from Compton scattering and the strong dependence of the photoelectric cross section on the atomic number of the interacting tissue render these dose calculations by far more challenging than the ones established for corresponding MeV beams. That is why so far developed analytical models of kV photon dose calculations fail to provide the required accuracy and one has to rely on time consuming Monte Carlo simulation techniques. In this paper, the authors introduce a novel analytical approach for kV photon dose calculations with an accuracy that is almost comparable to the one of Monte Carlo simulations. First, analytical point dose and pencil beam kernels are derived for homogeneous media and compared to Monte Carlo simulations performed with the Geant4 toolkit. The dose contributions are systematically separated into contributions from the relevant orders of multiple photon scattering. Moreover, approximate scaling laws for the extension of the algorithm to inhomogeneous media are derived. The comparison of the analytically derived dose kernels in water showed an excellent agreement with the Monte Carlo method. Calculated values deviate less than 5% from Monte Carlo derived dose values, for doses above 1% of the maximum dose. The analytical structure of the kernels allows adaption to arbitrary materials and photon spectra in the given energy range of 40-200 keV. The presented analytical methods can be employed in a fast treatment planning system for MRT. In convolution based algorithms dose calculation times can be reduced to a few minutes.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlou, A. T.; Betzler, B. R.; Burke, T. P.

    Uncertainties in the composition and fabrication of fuel compacts for the Fort St. Vrain (FSV) high temperature gas reactor have been studied by performing eigenvalue sensitivity studies that represent the key uncertainties for the FSV neutronic analysis. The uncertainties for the TRISO fuel kernels were addressed by developing a suite of models for an 'average' FSV fuel compact that models the fuel as (1) a mixture of two different TRISO fuel particles representing fissile and fertile kernels, (2) a mixture of four different TRISO fuel particles representing small and large fissile kernels and small and large fertile kernels and (3)more » a stochastic mixture of the four types of fuel particles where every kernel has its diameter sampled from a continuous probability density function. All of the discrete diameter and continuous diameter fuel models were constrained to have the same fuel loadings and packing fractions. For the non-stochastic discrete diameter cases, the MCNP compact model arranged the TRISO fuel particles on a hexagonal honeycomb lattice. This lattice-based fuel compact was compared to a stochastic compact where the locations (and kernel diameters for the continuous diameter cases) of the fuel particles were randomly sampled. Partial core configurations were modeled by stacking compacts into fuel columns containing graphite. The differences in eigenvalues between the lattice-based and stochastic models were small but the runtime of the lattice-based fuel model was roughly 20 times shorter than with the stochastic-based fuel model. (authors)« less

  1. Palm kernel cake obtained from biodiesel production in diets for goats: feeding behavior and physiological parameters.

    PubMed

    de Oliveira, R L; de Carvalho, G G P; Oliveira, R L; Tosto, M S L; Santos, E M; Ribeiro, R D X; Silva, T M; Correia, B R; de Rufino, L M A

    2017-10-01

    The objective of this study was to evaluate the effects of the inclusion of palm kernel (Elaeis guineensis) cake in diets for goats on feeding behaviors, rectal temperature, and cardiac and respiratory frequencies. Forty crossbred Boer male, non-castrated goats (ten animals per treatment), with an average age of 90 days and an initial body weight of 15.01 ± 1.76 kg, were used. The goats were fed Tifton 85 (Cynodon spp.) hay and palm kernel supplemented at the rates of 0, 7, 14, and 21% of dry matter (DM). The feeding behaviors (rumination, feeding, and idling times) were observed for three 24-h periods. DM and neutral detergent fiber (NDF) intake values were estimated as the difference between the total DM and NDF contents of the feed offered and the total DM and NDF contents of the orts. There was no effect of palm kernel cake inclusion in goat diets on DM intake (P > 0.05). However, palm kernel cake promoted a linear increase (P < 0.05) in NDF intake and time spent feeding and ruminating (min/day; %; period) and a linear decrease in time spent idling. Palm kernel cakes had no effects (P > 0.05) on the chewing, feeding, and rumination efficiency (DM and NDF) or on physiological variables. The use up to 21% palm kernel cake in the diet of crossbred Boer goats maintained the feeding behaviors and did not change the physiological parameters of goats; therefore, its use is recommended in the diet of these animals.

  2. Standard Errors of Equating Differences: Prior Developments, Extensions, and Simulations

    ERIC Educational Resources Information Center

    Moses, Tim; Zhang, Wenmin

    2011-01-01

    The purpose of this article was to extend the use of standard errors for equated score differences (SEEDs) to traditional equating functions. The SEEDs are described in terms of their original proposal for kernel equating functions and extended so that SEEDs for traditional linear and traditional equipercentile equating functions can be computed.…

  3. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  4. Sensitivity kernels for viscoelastic loading based on adjoint methods

    NASA Astrophysics Data System (ADS)

    Al-Attar, David; Tromp, Jeroen

    2014-01-01

    Observations of glacial isostatic adjustment (GIA) allow for inferences to be made about mantle viscosity, ice sheet history and other related parameters. Typically, this inverse problem can be formulated as minimizing the misfit between the given observations and a corresponding set of synthetic data. When the number of parameters is large, solution of such optimization problems can be computationally challenging. A practical, albeit non-ideal, solution is to use gradient-based optimization. Although the gradient of the misfit required in such methods could be calculated approximately using finite differences, the necessary computation time grows linearly with the number of model parameters, and so this is often infeasible. A far better approach is to apply the `adjoint method', which allows the exact gradient to be calculated from a single solution of the forward problem, along with one solution of the associated adjoint problem. As a first step towards applying the adjoint method to the GIA inverse problem, we consider its application to a simpler viscoelastic loading problem in which gravitationally self-consistent ocean loading is neglected. The earth model considered is non-rotating, self-gravitating, compressible, hydrostatically pre-stressed, laterally heterogeneous and possesses a Maxwell solid rheology. We determine adjoint equations and Fréchet kernels for this problem based on a Lagrange multiplier method. Given an objective functional J defined in terms of the surface deformation fields, we show that its first-order perturbation can be written δ J = int _{MS}K_{η }δ ln η dV +int _{t0}^{t1}int _{partial M}K_{dot{σ }} δ dot{σ } dS dt, where δ ln η = δη/η denotes relative viscosity variations in solid regions MS, dV is the volume element, δ dot{σ } is the perturbation to the time derivative of the surface load which is defined on the earth model's surface ∂M and for times [t0, t1] and dS is the surface element on ∂M. The `viscosity kernel' Kη determines the linearized sensitivity of J to viscosity perturbations defined with respect to a laterally heterogeneous reference earth model, while the `rate-of-loading kernel' K_{dot{σ }} determines the sensitivity to variations in the time derivative of the surface load. By restricting attention to spherically symmetric viscosity perturbations, we also obtain a `radial viscosity kernel' overline{K}_{η } such that the associated contribution to δJ can be written int _{IS}overline{K}_{η }δ ln η dr, where IS denotes the subset of radii lying in solid regions. In order to illustrate this theory, we describe its numerical implementation in the case of a spherically symmetric earth model using a 1-D spectral element method, and calculate sensitivity kernels for a range of realistic observables.

  5. Exploiting graph kernels for high performance biomedical relation extraction.

    PubMed

    Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri

    2018-01-30

    Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM performed better than APG kernel for the BioInfer dataset, in the Area Under Curve (AUC) measure (74% vs 69%). However, for all the other PPI datasets, namely AIMed, HPRD50, IEPA and LLL, ASM is substantially outperformed by the APG kernel in F-score and AUC measures. We demonstrate a high performance Chemical Induced Disease relation extraction, without employing external knowledge sources or task specific heuristics. Our work shows that graph kernels are effective in extracting relations that are expressed in multiple sentences. We also show that the graph kernels, namely the ASM and APG kernels, substantially outperform the tree kernels. Among the graph kernels, we showed the ASM kernel as effective for biomedical relation extraction, with comparable performance to the APG kernel for datasets such as the CID-sentence level relation extraction and BioInfer in PPI. Overall, the APG kernel is shown to be significantly more accurate than the ASM kernel, achieving better performance on most datasets.

  6. Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction

    NASA Astrophysics Data System (ADS)

    Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc

    2018-02-01

    Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.

  7. An iterative kernel based method for fourth order nonlinear equation with nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Azarnavid, Babak; Parand, Kourosh; Abbasbandy, Saeid

    2018-06-01

    This article discusses an iterative reproducing kernel method with respect to its effectiveness and capability of solving a fourth-order boundary value problem with nonlinear boundary conditions modeling beams on elastic foundations. Since there is no method of obtaining reproducing kernel which satisfies nonlinear boundary conditions, the standard reproducing kernel methods cannot be used directly to solve boundary value problems with nonlinear boundary conditions as there is no knowledge about the existence and uniqueness of the solution. The aim of this paper is, therefore, to construct an iterative method by the use of a combination of reproducing kernel Hilbert space method and a shooting-like technique to solve the mentioned problems. Error estimation for reproducing kernel Hilbert space methods for nonlinear boundary value problems have yet to be discussed in the literature. In this paper, we present error estimation for the reproducing kernel method to solve nonlinear boundary value problems probably for the first time. Some numerical results are given out to demonstrate the applicability of the method.

  8. Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Yang, Gang; Wu, Ke; Li, Weiyue; Zhang, Dianfa

    2017-09-01

    A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the image scene. First, it improves the re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimization problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robustness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its computational efficiency in realistic implementations of RKADA, respectively. The optimization equation of RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make comparisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factorization (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline operations and shows significant improvement in identifying pure endmembers for ground objects with smaller spectrum differences. Therefore, the RKADA could be an alternative for pure endmember extraction from hyperspectral images.

  9. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.

    PubMed

    Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak

    2006-06-06

    To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.

  10. A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation

    PubMed Central

    Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen

    2013-01-01

    In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218

  11. A numerical solution for two-dimensional Fredholm integral equations of the second kind with kernels of the logarithmic potential form

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Uenal, A.

    1981-01-01

    Two dimensional Fredholm integral equations with logarithmic potential kernels are numerically solved. The explicit consequence of these solutions to their true solutions is demonstrated. The results are based on a previous work in which numerical solutions were obtained for Fredholm integral equations of the second kind with continuous kernels.

  12. Bivariate discrete beta Kernel graduation of mortality data.

    PubMed

    Mazza, Angelo; Punzo, Antonio

    2015-07-01

    Various parametric/nonparametric techniques have been proposed in literature to graduate mortality data as a function of age. Nonparametric approaches, as for example kernel smoothing regression, are often preferred because they do not assume any particular mortality law. Among the existing kernel smoothing approaches, the recently proposed (univariate) discrete beta kernel smoother has been shown to provide some benefits. Bivariate graduation, over age and calendar years or durations, is common practice in demography and actuarial sciences. In this paper, we generalize the discrete beta kernel smoother to the bivariate case, and we introduce an adaptive bandwidth variant that may provide additional benefits when data on exposures to the risk of death are available; furthermore, we outline a cross-validation procedure for bandwidths selection. Using simulations studies, we compare the bivariate approach proposed here with its corresponding univariate formulation and with two popular nonparametric bivariate graduation techniques, based on Epanechnikov kernels and on P-splines. To make simulations realistic, a bivariate dataset, based on probabilities of dying recorded for the US males, is used. Simulations have confirmed the gain in performance of the new bivariate approach with respect to both the univariate and the bivariate competitors.

  13. Genomic similarity and kernel methods I: advancements by building on mathematical and statistical foundations.

    PubMed

    Schaid, Daniel J

    2010-01-01

    Measures of genomic similarity are the basis of many statistical analytic methods. We review the mathematical and statistical basis of similarity methods, particularly based on kernel methods. A kernel function converts information for a pair of subjects to a quantitative value representing either similarity (larger values meaning more similar) or distance (smaller values meaning more similar), with the requirement that it must create a positive semidefinite matrix when applied to all pairs of subjects. This review emphasizes the wide range of statistical methods and software that can be used when similarity is based on kernel methods, such as nonparametric regression, linear mixed models and generalized linear mixed models, hierarchical models, score statistics, and support vector machines. The mathematical rigor for these methods is summarized, as is the mathematical framework for making kernels. This review provides a framework to move from intuitive and heuristic approaches to define genomic similarities to more rigorous methods that can take advantage of powerful statistical modeling and existing software. A companion paper reviews novel approaches to creating kernels that might be useful for genomic analyses, providing insights with examples [1]. Copyright © 2010 S. Karger AG, Basel.

  14. Metabolite identification through multiple kernel learning on fragmentation trees.

    PubMed

    Shen, Huibin; Dührkop, Kai; Böcker, Sebastian; Rousu, Juho

    2014-06-15

    Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate molecular structures. Here, we combine fragmentation tree computations with kernel-based machine learning to predict molecular fingerprints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmentation trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction accuracy. These improvements result in better metabolite identification, doubling the number of metabolites ranked at the top position of the candidates list. © The Author 2014. Published by Oxford University Press.

  15. Image registration using stationary velocity fields parameterized by norm-minimizing Wendland kernel

    NASA Astrophysics Data System (ADS)

    Pai, Akshay; Sommer, Stefan; Sørensen, Lauge; Darkner, Sune; Sporring, Jon; Nielsen, Mads

    2015-03-01

    Interpolating kernels are crucial to solving a stationary velocity field (SVF) based image registration problem. This is because, velocity fields need to be computed in non-integer locations during integration. The regularity in the solution to the SVF registration problem is controlled by the regularization term. In a variational formulation, this term is traditionally expressed as a squared norm which is a scalar inner product of the interpolating kernels parameterizing the velocity fields. The minimization of this term using the standard spline interpolation kernels (linear or cubic) is only approximative because of the lack of a compatible norm. In this paper, we propose to replace such interpolants with a norm-minimizing interpolant - the Wendland kernel which has the same computational simplicity like B-Splines. An application on the Alzheimer's disease neuroimaging initiative showed that Wendland SVF based measures separate (Alzheimer's disease v/s normal controls) better than both B-Spline SVFs (p<0.05 in amygdala) and B-Spline freeform deformation (p<0.05 in amygdala and cortical gray matter).

  16. Kernel Temporal Differences for Neural Decoding

    PubMed Central

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  17. Efficient Multiple Kernel Learning Algorithms Using Low-Rank Representation.

    PubMed

    Niu, Wenjia; Xia, Kewen; Zu, Baokai; Bai, Jianchuan

    2017-01-01

    Unlike Support Vector Machine (SVM), Multiple Kernel Learning (MKL) allows datasets to be free to choose the useful kernels based on their distribution characteristics rather than a precise one. It has been shown in the literature that MKL holds superior recognition accuracy compared with SVM, however, at the expense of time consuming computations. This creates analytical and computational difficulties in solving MKL algorithms. To overcome this issue, we first develop a novel kernel approximation approach for MKL and then propose an efficient Low-Rank MKL (LR-MKL) algorithm by using the Low-Rank Representation (LRR). It is well-acknowledged that LRR can reduce dimension while retaining the data features under a global low-rank constraint. Furthermore, we redesign the binary-class MKL as the multiclass MKL based on pairwise strategy. Finally, the recognition effect and efficiency of LR-MKL are verified on the datasets Yale, ORL, LSVT, and Digit. Experimental results show that the proposed LR-MKL algorithm is an efficient kernel weights allocation method in MKL and boosts the performance of MKL largely.

  18. Classification of corn kernels contaminated with aflatoxins using fluorescence and reflectance hyperspectral images analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas

    2015-05-01

    Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.

  19. Kernel-based whole-genome prediction of complex traits: a review.

    PubMed

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  20. Evaluation of the OpenCL AES Kernel using the Intel FPGA SDK for OpenCL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal

    The OpenCL standard is an open programming model for accelerating algorithms on heterogeneous computing system. OpenCL extends the C-based programming language for developing portable codes on different platforms such as CPU, Graphics processing units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to abstract away the complex FPGA-based development flow for a high-level software development flow. Users can focus on the design of hardware-accelerated kernel functions in OpenCL and then direct the tools to generate the low-level FPGA implementations. The approach makes themore » FPGA-based development more accessible to software users as the needs for hybrid computing using CPUs and FPGAs are increasing. It can also significantly reduce the hardware development time as users can evaluate different ideas with high-level language without deep FPGA domain knowledge. In this report, we evaluate the performance of the kernel using the Intel FPGA SDK for OpenCL and Nallatech 385A FPGA board. Compared to the M506 module, the board provides more hardware resources for a larger design exploration space. The kernel performance is measured with the compute kernel throughput, an upper bound to the FPGA throughput. The report presents the experimental results in details. The Appendix lists the kernel source code.« less

  1. Accurate identification of motor unit discharge patterns from high-density surface EMG and validation with a novel signal-based performance metric

    NASA Astrophysics Data System (ADS)

    Holobar, A.; Minetto, M. A.; Farina, D.

    2014-02-01

    Objective. A signal-based metric for assessment of accuracy of motor unit (MU) identification from high-density surface electromyograms (EMG) is introduced. This metric, so-called pulse-to-noise-ratio (PNR), is computationally efficient, does not require any additional experimental costs and can be applied to every MU that is identified by the previously developed convolution kernel compensation technique. Approach. The analytical derivation of the newly introduced metric is provided, along with its extensive experimental validation on both synthetic and experimental surface EMG signals with signal-to-noise ratios ranging from 0 to 20 dB and muscle contraction forces from 5% to 70% of the maximum voluntary contraction. Main results. In all the experimental and simulated signals, the newly introduced metric correlated significantly with both sensitivity and false alarm rate in identification of MU discharges. Practically all the MUs with PNR > 30 dB exhibited sensitivity >90% and false alarm rates <2%. Therefore, a threshold of 30 dB in PNR can be used as a simple method for selecting only reliably decomposed units. Significance. The newly introduced metric is considered a robust and reliable indicator of accuracy of MU identification. The study also shows that high-density surface EMG can be reliably decomposed at contraction forces as high as 70% of the maximum.

  2. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging.

    PubMed

    Makanza, R; Zaman-Allah, M; Cairns, J E; Eyre, J; Burgueño, J; Pacheco, Ángela; Diepenbrock, C; Magorokosho, C; Tarekegne, A; Olsen, M; Prasanna, B M

    2018-01-01

    Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure. A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed. The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants.

  3. Introducing etch kernels for efficient pattern sampling and etch bias prediction

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2018-01-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.

  4. Multi-object segmentation using coupled nonparametric shape and relative pose priors

    NASA Astrophysics Data System (ADS)

    Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep

    2009-02-01

    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.

  5. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.

    2013-02-01

    Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  6. [Searching for Rare Celestial Objects Automatically from Stellar Spectra of the Sloan Digital Sky Survey Data Release Eight].

    PubMed

    Si, Jian-min; Luo, A-li; Wu, Fu-zhao; Wu, Yi-hong

    2015-03-01

    There are many valuable rare and unusual objects in spectra dataset of Sloan Digital Sky Survey (SDSS) Data Release eight (DR8), such as special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on, so it is extremely significant to search for rare and unusual celestial objects from massive spectra dataset. A novel algorithm based on Kernel dense estimation and K-nearest neighborhoods (KNN) has been presented, and applied to search for rare and unusual celestial objects from 546 383 stellar spectra of SDSS DR8. Their densities are estimated using Gaussian kernel density estimation, the top 5 000 spectra in descend order by their densities are selected as rare objects, and the top 300 000 spectra in ascend order by their densities are selected as normal objects. Then, KNN were used to classify the rest objects, and simultaneously K nearest neighbors of the 5 000 rare spectra are also selected as rare objects. As a result, there are totally 21 193 spectra selected as initial rare spectra, which include error spectra caused by deletion, redden, bad calibration, spectra consisting of different physically irrelevant components, planetary nebulas, QSOs, special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on. By cross identification with SIMBAD, NED, ADS and major literature, it is found that three DZ white dwarfs, one WDMS, two CVs with company of G-type star, three CVs candidates, six DC white dwarfs, one DC white dwarf candidate and one BL Lacertae (BL lac) candidate are our new findings. We also have found one special DA white dwarf with emission lines of Ca II triple and Mg I, and one unknown object whose spectrum looks like a late M star with emission lines and its image looks like a galaxy or nebula.

  7. Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach.

    PubMed

    Koutroumpas, Konstantinos; Ballarini, Paolo; Votsi, Irene; Cournède, Paul-Henry

    2016-09-01

    Likelihood-free methods, like Approximate Bayesian Computation (ABC), have been extensively used in model-based statistical inference with intractable likelihood functions. When combined with Sequential Monte Carlo (SMC) algorithms they constitute a powerful approach for parameter estimation and model selection of mathematical models of complex biological systems. A crucial step in the ABC-SMC algorithms, significantly affecting their performance, is the propagation of a set of parameter vectors through a sequence of intermediate distributions using Markov kernels. In this article, we employ Dirichlet process mixtures (DPMs) to design optimal transition kernels and we present an ABC-SMC algorithm with DPM kernels. We illustrate the use of the proposed methodology using real data for the canonical Wnt signaling pathway. A multi-compartment model of the pathway is developed and it is compared to an existing model. The results indicate that DPMs are more efficient in the exploration of the parameter space and can significantly improve ABC-SMC performance. In comparison to alternative sampling schemes that are commonly used, the proposed approach can bring potential benefits in the estimation of complex multimodal distributions. The method is used to estimate the parameters and the initial state of two models of the Wnt pathway and it is shown that the multi-compartment model fits better the experimental data. Python scripts for the Dirichlet Process Gaussian Mixture model and the Gibbs sampler are available at https://sites.google.com/site/kkoutroumpas/software konstantinos.koutroumpas@ecp.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Antagonistic Action of Bacillus subtilis Strain SG6 on Fusarium graminearum

    PubMed Central

    Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Song, Huimin; Tan, Xinxin; Sun, Lichao; Sangare, Lancine; Folly, Yawa Minnie Elodie; Liu, Yang

    2014-01-01

    Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P≤0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins. PMID:24651513

  9. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    PubMed

    Zhao, Yueju; Selvaraj, Jonathan Nimal; Xing, Fuguo; Zhou, Lu; Wang, Yan; Song, Huimin; Tan, Xinxin; Sun, Lichao; Sangare, Lancine; Folly, Yawa Minnie Elodie; Liu, Yang

    2014-01-01

    Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P ≤ 0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  10. Innovative edible packaging from mango kernel starch for the shelf life extension of red chili powder.

    PubMed

    Nawab, Anjum; Alam, Feroz; Haq, Mohammad Abdul; Haider, Mohammad Samee; Lutfi, Zubala; Kamaluddin, Sheikh; Hasnain, Abid

    2018-07-15

    In this study mango kernel starch (MKS) based heat sealable pouches were developed for packing of red chili powder. The films were prepared by casting technique using glycerol, sorbitol and 1:1 mixture of glycerol and sorbitol and were sealed. All films showed better heat sealing capacity but glycerol films plasticized exhibited higher seal strength than their counterparts. The red chili powder was packed in the MKS film pouches while commercially available polyethylene (PE) film was used as control. The pungency and color of red chili powder was monitored during six months storage at 40°C. The capsaicinoid content was extracted from the red chili with acetonitrile and evaluated quantitatively using spectrophotometric method. The extractable color was measured by ASTA method using acetone. The results showed significant differences in color and pungency of chili packed in MKS and PE pouches. The highest reduction in capsaicinoid content (pungency) of chili powder was observed in PE pouch (25.9%) while lowest was observed in MKS pouch containing sorbitol (15.7%). Similarly color loss was also highest in chili packed in PE pouch while lowest in MKS-sorbitol pouch. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Improved Online Support Vector Machines Spam Filtering Using String Kernels

    NASA Astrophysics Data System (ADS)

    Amayri, Ola; Bouguila, Nizar

    A major bottleneck in electronic communications is the enormous dissemination of spam emails. Developing of suitable filters that can adequately capture those emails and achieve high performance rate become a main concern. Support vector machines (SVMs) have made a large contribution to the development of spam email filtering. Based on SVMs, the crucial problems in email classification are feature mapping of input emails and the choice of the kernels. In this paper, we present thorough investigation of several distance-based kernels and propose the use of string kernels and prove its efficiency in blocking spam emails. We detail a feature mapping variants in text classification (TC) that yield improved performance for the standard SVMs in filtering task. Furthermore, to cope for realtime scenarios we propose an online active framework for spam filtering.

  12. Deploy Nalu/Kokkos algorithmic infrastructure with performance benchmarking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domino, Stefan P.; Ananthan, Shreyas; Knaus, Robert C.

    The former Nalu interior heterogeneous algorithm design, which was originally designed to manage matrix assembly operations over all elemental topology types, has been modified to operate over homogeneous collections of mesh entities. This newly templated kernel design allows for removal of workset variable resize operations that were formerly required at each loop over a Sierra ToolKit (STK) bucket (nominally, 512 entities in size). Extensive usage of the Standard Template Library (STL) std::vector has been removed in favor of intrinsic Kokkos memory views. In this milestone effort, the transition to Kokkos as the underlying infrastructure to support performance and portability onmore » many-core architectures has been deployed for key matrix algorithmic kernels. A unit-test driven design effort has developed a homogeneous entity algorithm that employs a team-based thread parallelism construct. The STK Single Instruction Multiple Data (SIMD) infrastructure is used to interleave data for improved vectorization. The collective algorithm design, which allows for concurrent threading and SIMD management, has been deployed for the core low-Mach element- based algorithm. Several tests to ascertain SIMD performance on Intel KNL and Haswell architectures have been carried out. The performance test matrix includes evaluation of both low- and higher-order methods. The higher-order low-Mach methodology builds on polynomial promotion of the core low-order control volume nite element method (CVFEM). Performance testing of the Kokkos-view/SIMD design indicates low-order matrix assembly kernel speed-up ranging between two and four times depending on mesh loading and node count. Better speedups are observed for higher-order meshes (currently only P=2 has been tested) especially on KNL. The increased workload per element on higher-order meshes bene ts from the wide SIMD width on KNL machines. Combining multiple threads with SIMD on KNL achieves a 4.6x speedup over the baseline, with assembly timings faster than that observed on Haswell architecture. The computational workload of higher-order meshes, therefore, seems ideally suited for the many-core architecture and justi es further exploration of higher-order on NGP platforms. A Trilinos/Tpetra-based multi-threaded GMRES preconditioned by symmetric Gauss Seidel (SGS) represents the core solver infrastructure for the low-Mach advection/diffusion implicit solves. The threaded solver stack has been tested on small problems on NREL's Peregrine system using the newly developed and deployed Kokkos-view/SIMD kernels. fforts are underway to deploy the Tpetra-based solver stack on NERSC Cori system to benchmark its performance at scale on KNL machines.« less

  13. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT).

    PubMed

    Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C

    Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.

  14. Effective Alternating Direction Optimization Methods for Sparsity-Constrained Blind Image Deblurring.

    PubMed

    Xiong, Naixue; Liu, Ryan Wen; Liang, Maohan; Wu, Di; Liu, Zhao; Wu, Huisi

    2017-01-18

    Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.

  15. A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram.

    PubMed

    Wu, Chung Kit; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei

    2016-05-09

    Globally, 1.2 million people die and 50 million people are injured annually due to traffic accidents. These traffic accidents cost $500 billion dollars. Drunk drivers are found in 40% of the traffic crashes. Existing drunk driving detection (DDD) systems do not provide accurate detection and pre-warning concurrently. Electrocardiogram (ECG) is a proven biosignal that accurately and simultaneously reflects human's biological status. In this letter, a classifier for DDD based on ECG is investigated in an attempt to reduce traffic accidents caused by drunk drivers. At this point, it appears that there is no known research or literature found on ECG classifier for DDD. To identify drunk syndromes, the ECG signals from drunk drivers are studied and analyzed. As such, a precise ECG-based DDD (ECG-DDD) using a weighted kernel is developed. From the measurements, 10 key features of ECG signals were identified. To incorporate the important features, the feature vectors are weighted in the customization of kernel functions. Four commonly adopted kernel functions are studied. Results reveal that weighted feature vectors improve the accuracy by 11% compared to the computation using the prime kernel. Evaluation shows that ECG-DDD improved the accuracy by 8% to 18% compared to prevailing methods.

  16. Accelerating the Original Profile Kernel.

    PubMed

    Hamp, Tobias; Goldberg, Tatyana; Rost, Burkhard

    2013-01-01

    One of the most accurate multi-class protein classification systems continues to be the profile-based SVM kernel introduced by the Leslie group. Unfortunately, its CPU requirements render it too slow for practical applications of large-scale classification tasks. Here, we introduce several software improvements that enable significant acceleration. Using various non-redundant data sets, we demonstrate that our new implementation reaches a maximal speed-up as high as 14-fold for calculating the same kernel matrix. Some predictions are over 200 times faster and render the kernel as possibly the top contender in a low ratio of speed/performance. Additionally, we explain how to parallelize various computations and provide an integrative program that reduces creating a production-quality classifier to a single program call. The new implementation is available as a Debian package under a free academic license and does not depend on commercial software. For non-Debian based distributions, the source package ships with a traditional Makefile-based installer. Download and installation instructions can be found at https://rostlab.org/owiki/index.php/Fast_Profile_Kernel. Bugs and other issues may be reported at https://rostlab.org/bugzilla3/enter_bug.cgi?product=fastprofkernel.

  17. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    PubMed

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  18. Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Travis W.

    2010-01-31

    The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressuresmore » and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This work has generated four journal publications, one conference proceeding paper, and one additional journal paper submitted for publication (under review). The greater significance of the work can be understood in that it achieved an objective of the DOE Generation IV (GenIV) roadmap for GFR Fuel—namely the demonstration of a composite carbide fuel with 30% volume fuel. This near-term accomplishment is even more significant given the expected or possible time frame for implementation of the GFR in the years 2030 -2050 or beyond.« less

  19. Kernel-based least squares policy iteration for reinforcement learning.

    PubMed

    Xu, Xin; Hu, Dewen; Lu, Xicheng

    2007-07-01

    In this paper, we present a kernel-based least squares policy iteration (KLSPI) algorithm for reinforcement learning (RL) in large or continuous state spaces, which can be used to realize adaptive feedback control of uncertain dynamic systems. By using KLSPI, near-optimal control policies can be obtained without much a priori knowledge on dynamic models of control plants. In KLSPI, Mercer kernels are used in the policy evaluation of a policy iteration process, where a new kernel-based least squares temporal-difference algorithm called KLSTD-Q is proposed for efficient policy evaluation. To keep the sparsity and improve the generalization ability of KLSTD-Q solutions, a kernel sparsification procedure based on approximate linear dependency (ALD) is performed. Compared to the previous works on approximate RL methods, KLSPI makes two progresses to eliminate the main difficulties of existing results. One is the better convergence and (near) optimality guarantee by using the KLSTD-Q algorithm for policy evaluation with high precision. The other is the automatic feature selection using the ALD-based kernel sparsification. Therefore, the KLSPI algorithm provides a general RL method with generalization performance and convergence guarantee for large-scale Markov decision problems (MDPs). Experimental results on a typical RL task for a stochastic chain problem demonstrate that KLSPI can consistently achieve better learning efficiency and policy quality than the previous least squares policy iteration (LSPI) algorithm. Furthermore, the KLSPI method was also evaluated on two nonlinear feedback control problems, including a ship heading control problem and the swing up control of a double-link underactuated pendulum called acrobot. Simulation results illustrate that the proposed method can optimize controller performance using little a priori information of uncertain dynamic systems. It is also demonstrated that KLSPI can be applied to online learning control by incorporating an initial controller to ensure online performance.

  20. On-Plant Larval Movement and Feeding Behavior of Fall Armyworm (Lepidoptera: Noctuidae) on Reproductive Corn Stages.

    PubMed

    Pannuti, L E R; Baldin, E L L; Hunt, T E; Paula-Moraes, S V

    2016-02-01

    Spodoptera frugiperda J.E. Smith (fall armyworm) is considered one of the most destructive pests of corn throughout the Americas. Although this pest has been extensively studied, little is known about its larval movement and feeding behavior on reproductive compared to vegetative corn stages. Thus, we conducted studies with two corn stages (R1 and R3) and four corn plant zones (tassel, above ear, ear zone, and below ear) in the field at Concord, NE (USA), and in the field and greenhouse at Botucatu, SP (Brazil), to investigate on-plant larval movement. The effects of different corn tissues (opened tassel, closed tassel, silk, kernel, and leaf), two feeding sequence scenarios (closed tassel-leaf-silk-kernel and leaf-silk-kernel), and artificial diet (positive control) on larval survival and development were also evaluated in the laboratory. Ear zone has a strong effect on feeding choice and survival of fall armyworm larvae regardless of reproductive corn stage. Feeding site choice is made by first-instar. Corn leaves of reproductive plants were not suitable for early instar development, but silk and kernel tissues had a positive effect on survival and development of fall armyworm larvae on reproductive stage corn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population.

    PubMed

    Cheng, Ruiru; Kong, Zhongxin; Zhang, Liwei; Xie, Quan; Jia, Haiyan; Yu, Dong; Huang, Yulong; Ma, Zhengqiang

    2017-07-01

    Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.

  2. Kernel learning at the first level of inference.

    PubMed

    Cawley, Gavin C; Talbot, Nicola L C

    2014-05-01

    Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A multispectral sorting device for isolating single wheat kernels with high protein content

    USDA-ARS?s Scientific Manuscript database

    Automated sorting of single wheat kernels according to protein content was demonstrated using two novel multispectral sorting devices with different spectral ranges; 470-1070 nm (silicone based detector) and 910nm-1550 nm (InGaAs based detector). The multispectral data were acquired by rapidly (~12...

  4. Graphical and Numerical Descriptive Analysis: Exploratory Tools Applied to Vietnamese Data

    ERIC Educational Resources Information Center

    Haughton, Dominique; Phong, Nguyen

    2004-01-01

    This case study covers several exploratory data analysis ideas, the histogram and boxplot, kernel density estimates, the recently introduced bagplot--a two-dimensional extension of the boxplot--as well as the violin plot, which combines a boxplot with a density shape plot. We apply these ideas and demonstrate how to interpret the output from these…

  5. Research on offense and defense technology for iOS kernel security mechanism

    NASA Astrophysics Data System (ADS)

    Chu, Sijun; Wu, Hao

    2018-04-01

    iOS is a strong and widely used mobile device system. It's annual profits make up about 90% of the total profits of all mobile phone brands. Though it is famous for its security, there have been many attacks on the iOS operating system, such as the Trident apt attack in 2016. So it is important to research the iOS security mechanism and understand its weaknesses and put forward targeted protection and security check framework. By studying these attacks and previous jailbreak tools, we can see that an attacker could only run a ROP code and gain kernel read and write permissions based on the ROP after exploiting kernel and user layer vulnerabilities. However, the iOS operating system is still protected by the code signing mechanism, the sandbox mechanism, and the not-writable mechanism of the system's disk area. This is far from the steady, long-lasting control that attackers expect. Before iOS 9, breaking these security mechanisms was usually done by modifying the kernel's important data structures and security mechanism code logic. However, after iOS 9, the kernel integrity protection mechanism was added to the 64-bit operating system and none of the previous methods were adapted to the new versions of iOS [1]. But this does not mean that attackers can not break through. Therefore, based on the analysis of the vulnerability of KPP security mechanism, this paper implements two possible breakthrough methods for kernel security mechanism for iOS9 and iOS10. Meanwhile, we propose a defense method based on kernel integrity detection and sensitive API call detection to defense breakthrough method mentioned above. And we make experiments to prove that this method can prevent and detect attack attempts or invaders effectively and timely.

  6. A Hybrid Index for Characterizing Drought Based on a Nonparametric Kernel Estimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong

    This study develops a nonparametric multivariate drought index, namely, the Nonparametric Multivariate Standardized Drought Index (NMSDI), by considering the variations of both precipitation and streamflow. Building upon previous efforts in constructing Nonparametric Multivariate Drought Index, we use the nonparametric kernel estimator to derive the joint distribution of precipitation and streamflow, thus providing additional insights in drought index development. The proposed NMSDI are applied in the Wei River Basin (WRB), based on which the drought evolution characteristics are investigated. Results indicate: (1) generally, NMSDI captures the drought onset similar to Standardized Precipitation Index (SPI) and drought termination and persistence similar tomore » Standardized Streamflow Index (SSFI). The drought events identified by NMSDI match well with historical drought records in the WRB. The performances are also consistent with that by an existing Multivariate Standardized Drought Index (MSDI) at various timescales, confirming the validity of the newly constructed NMSDI in drought detections (2) An increasing risk of drought has been detected for the past decades, and will be persistent to a certain extent in future in most areas of the WRB; (3) the identified change points of annual NMSDI are mainly concentrated in the early 1970s and middle 1990s, coincident with extensive water use and soil reservation practices. This study highlights the nonparametric multivariable drought index, which can be used for drought detections and predictions efficiently and comprehensively.« less

  7. Graph embedding and extensions: a general framework for dimensionality reduction.

    PubMed

    Yan, Shuicheng; Xu, Dong; Zhang, Benyu; Zhang, Hong-Jiang; Yang, Qiang; Lin, Stephen

    2007-01-01

    Over the past few decades, a large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions.

  8. Analytical properties of time-of-flight PET data.

    PubMed

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  9. Analytical properties of time-of-flight PET data

    NASA Astrophysics Data System (ADS)

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2008-06-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  10. Nagy-Soper Subtraction: a Review

    NASA Astrophysics Data System (ADS)

    Robens, Tania

    2013-07-01

    In this review, we present a review on an alternative NLO subtraction scheme, based on the splitting kernels of an improved parton shower that promises to facilitate the inclusion of higher-order corrections into Monte Carlo event generators. We give expressions for the scheme for massless emitters, and point to work on the extension for massive cases. As an example, we show results for the C parameter of the process e+e-→3 jets at NLO which have recently been published as a verification of this scheme. We equally provide analytic expressions for integrated counterterms that have not been presented in previous work, and comment on the possibility of analytic approximations for the remaining numerical integrals.

  11. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOEpatents

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  12. Carcass characteristics and meat quality of lambs that are fed diets with palm kernel cake

    PubMed Central

    da Conceição dos Santos, Rozilda; Gomes, Daiany Iris; Alves, Kaliandra Souza; Mezzomo, Rafael; Oliveira, Luis Rennan Sampaio; Cutrim, Darley Oliveira; Sacramento, Samara Bianca Moraes; de Moura Lima, Elizanne; de Carvalho, Francisco Fernando Ramos

    2017-01-01

    Objective The aim was to evaluate carcass characteristics, cut yield, and meat quality in lambs that were fed different inclusion levels of palm kernel cake. Methods Forty-five woolless castrated male Santa Inês crossbred sheep with an initial average body weight of 23.16±0.35 kg were used. The experimental design was a completely randomized design with five treatments, with palm kernel cake in the proportions of 0.0%, 7.5%, 15.0%, 22.5%, and 30.0% with nine replications per treatment. After slaughter, the gastrointestinal tract was weighed when it was full, after which it was then emptied. The heart, liver, kidney, pancreas perirenal fat were also collected and weighed. The carcass was split into two identical longitudinal halves and weighed to determine the quantitative and qualitative characteristics. Results The empty body weight, carcass weight and yield, and fat thickness decreased linearly (p<0.05) as a function of palm kernel inclusion in the diet. There was no difference (p>0.05) for the rib eye area of animals that were fed palm kernel cake. There was a reduction in the commercial cut weight (p<0.05), except for the neck weight. The weights of the heart, liver, kidney fat, small, and large intestine, and gastrointestinal tract decreased. Nevertheless, the gastrointestinal content was greater for animals that were fed increasing levels of cake. For the other organs and viscera, differences were not verified (p>0.05). The sarcomere length decreased linearly (p<0.05), although an effect of the inclusion of palm kernel cake was not observed in other meat quality variables. It is worth noting that the red staining intensity, indicated as A, had a tendency to decrease (p = 0.050). Conclusion The inclusion of palm kernel cake up to 30% in the diet does not lead to changes in meat quality characteristics, except for sarcomere length. Nevertheless, carcass quantitative characteristics decrease with the use of palm kernel cake. PMID:27857029

  13. The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis.

    PubMed

    Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K

    2017-10-17

    Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  14. Kernel analysis of partial least squares (PLS) regression models.

    PubMed

    Shinzawa, Hideyuki; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro

    2011-05-01

    An analytical technique based on kernel matrix representation is demonstrated to provide further chemically meaningful insight into partial least squares (PLS) regression models. The kernel matrix condenses essential information about scores derived from PLS or principal component analysis (PCA). Thus, it becomes possible to establish the proper interpretation of the scores. A PLS model for the total nitrogen (TN) content in multiple Thai fish sauces is built with a set of near-infrared (NIR) transmittance spectra of the fish sauce samples. The kernel analysis of the scores effectively reveals that the variation of the spectral feature induced by the change in protein content is substantially associated with the total water content and the protein hydration. Kernel analysis is also carried out on a set of time-dependent infrared (IR) spectra representing transient evaporation of ethanol from a binary mixture solution of ethanol and oleic acid. A PLS model to predict the elapsed time is built with the IR spectra and the kernel matrix is derived from the scores. The detailed analysis of the kernel matrix provides penetrating insight into the interaction between the ethanol and the oleic acid.

  15. Ultralow dose dentomaxillofacial CT imaging and iterative reconstruction techniques: variability of Hounsfield units and contrast-to-noise ratio

    PubMed Central

    Bischel, Alexander; Stratis, Andreas; Kakar, Apoorv; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben

    2016-01-01

    Objective: The aim of this study was to evaluate whether application of ultralow dose protocols and iterative reconstruction technology (IRT) influence quantitative Hounsfield units (HUs) and contrast-to-noise ratio (CNR) in dentomaxillofacial CT imaging. Methods: A phantom with inserts of five types of materials was scanned using protocols for (a) a clinical reference for navigated surgery (CT dose index volume 36.58 mGy), (b) low-dose sinus imaging (18.28 mGy) and (c) four ultralow dose imaging (4.14, 2.63, 0.99 and 0.53 mGy). All images were reconstructed using: (i) filtered back projection (FBP); (ii) IRT: adaptive statistical iterative reconstruction-50 (ASIR-50), ASIR-100 and model-based iterative reconstruction (MBIR); and (iii) standard (std) and bone kernel. Mean HU, CNR and average HU error after recalibration were determined. Each combination of protocols was compared using Friedman analysis of variance, followed by Dunn's multiple comparison test. Results: Pearson's sample correlation coefficients were all >0.99. Ultralow dose protocols using FBP showed errors of up to 273 HU. Std kernels had less HU variability than bone kernels. MBIR reduced the error value for the lowest dose protocol to 138 HU and retained the highest relative CNR. ASIR could not demonstrate significant advantages over FBP. Conclusions: Considering a potential dose reduction as low as 1.5% of a std protocol, ultralow dose protocols and IRT should be further tested for clinical dentomaxillofacial CT imaging. Advances in knowledge: HU as a surrogate for bone density may vary significantly in CT ultralow dose imaging. However, use of std kernels and MBIR technology reduce HU error values and may retain the highest CNR. PMID:26859336

  16. Gene function prediction with gene interaction networks: a context graph kernel approach.

    PubMed

    Li, Xin; Chen, Hsinchun; Li, Jiexun; Zhang, Zhu

    2010-01-01

    Predicting gene functions is a challenge for biologists in the postgenomic era. Interactions among genes and their products compose networks that can be used to infer gene functions. Most previous studies adopt a linkage assumption, i.e., they assume that gene interactions indicate functional similarities between connected genes. In this study, we propose to use a gene's context graph, i.e., the gene interaction network associated with the focal gene, to infer its functions. In a kernel-based machine-learning framework, we design a context graph kernel to capture the information in context graphs. Our experimental study on a testbed of p53-related genes demonstrates the advantage of using indirect gene interactions and shows the empirical superiority of the proposed approach over linkage-assumption-based methods, such as the algorithm to minimize inconsistent connected genes and diffusion kernels.

  17. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-01

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  18. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization.

    PubMed

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-10

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R 2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  19. Dancing in the Dark: New Brown Dwarf Binaries from Kernel Phase Interferometry

    NASA Astrophysics Data System (ADS)

    Pope, Benjamin; Martinache, Frantz; Tuthill, Peter

    2013-04-01

    This paper revisits a sample of ultracool dwarfs in the solar neighborhood previously observed with the Hubble Space Telescope's NICMOS NIC1 instrument. We have applied a novel high angular resolution data analysis technique based on the extraction and fitting of kernel phases to archival data. This was found to deliver a dramatic improvement over earlier analysis methods, permitting a search for companions down to projected separations of ~1 AU on NIC1 snapshot images. We reveal five new close binary candidates and present revised astrometry on previously known binaries, all of which were recovered with the technique. The new candidate binaries have sufficiently close separation to determine dynamical masses in a short-term observing campaign. We also present four marginal detections of objects which may be very close binaries or high-contrast companions. Including only confident detections within 19 pc, we report a binary fraction of at least \\epsilon _b = 17.2^{+5.7}_{-3.7} %. The results reported here provide new insights into the population of nearby ultracool binaries, while also offering an incisive case study of the benefits conferred by the kernel phase approach in the recovery of companions within a few resolution elements of the point-spread function core. Based on observations performed with the NASA/ESA Hubble Space Telescope. The Hubble observations are associated with proposal ID 10143 and 10879 and were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  20. Parsimonious kernel extreme learning machine in primal via Cholesky factorization.

    PubMed

    Zhao, Yong-Ping

    2016-08-01

    Recently, extreme learning machine (ELM) has become a popular topic in machine learning community. By replacing the so-called ELM feature mappings with the nonlinear mappings induced by kernel functions, two kernel ELMs, i.e., P-KELM and D-KELM, are obtained from primal and dual perspectives, respectively. Unfortunately, both P-KELM and D-KELM possess the dense solutions in direct proportion to the number of training data. To this end, a constructive algorithm for P-KELM (CCP-KELM) is first proposed by virtue of Cholesky factorization, in which the training data incurring the largest reductions on the objective function are recruited as significant vectors. To reduce its training cost further, PCCP-KELM is then obtained with the application of a probabilistic speedup scheme into CCP-KELM. Corresponding to CCP-KELM, a destructive P-KELM (CDP-KELM) is presented using a partial Cholesky factorization strategy, where the training data incurring the smallest reductions on the objective function after their removals are pruned from the current set of significant vectors. Finally, to verify the efficacy and feasibility of the proposed algorithms in this paper, experiments on both small and large benchmark data sets are investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Encoding Dissimilarity Data for Statistical Model Building.

    PubMed

    Wahba, Grace

    2010-12-01

    We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.

  2. An improved robust blind motion de-blurring algorithm for remote sensing images

    NASA Astrophysics Data System (ADS)

    He, Yulong; Liu, Jin; Liang, Yonghui

    2016-10-01

    Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.

  3. Pattern sampling for etch model calibration

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2017-06-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.

  4. A Network-Based Kernel Machine Test for the Identification of Risk Pathways in Genome-Wide Association Studies

    PubMed Central

    Freytag, Saskia; Manitz, Juliane; Schlather, Martin; Kneib, Thomas; Amos, Christopher I.; Risch, Angela; Chang-Claude, Jenny; Heinrich, Joachim; Bickeböller, Heike

    2014-01-01

    Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). Here, the kernel converts genomic information of two individuals to a quantitative value reflecting their genetic similarity. With the selection of the kernel one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms. PMID:24434848

  5. A kernel adaptive algorithm for quaternion-valued inputs.

    PubMed

    Paul, Thomas K; Ogunfunmi, Tokunbo

    2015-10-01

    The use of quaternion data can provide benefit in applications like robotics and image recognition, and particularly for performing transforms in 3-D space. Here, we describe a kernel adaptive algorithm for quaternions. A least mean square (LMS)-based method was used, resulting in the derivation of the quaternion kernel LMS (Quat-KLMS) algorithm. Deriving this algorithm required describing the idea of a quaternion reproducing kernel Hilbert space (RKHS), as well as kernel functions suitable with quaternions. A modified HR calculus for Hilbert spaces was used to find the gradient of cost functions defined on a quaternion RKHS. In addition, the use of widely linear (or augmented) filtering is proposed to improve performance. The benefit of the Quat-KLMS and widely linear forms in learning nonlinear transformations of quaternion data are illustrated with simulations.

  6. Characteristics of uranium carbonitride microparticles synthesized using different reaction conditions

    NASA Astrophysics Data System (ADS)

    Silva, Chinthaka M.; Lindemer, Terrence B.; Voit, Stewart R.; Hunt, Rodney D.; Besmann, Theodore M.; Terrani, Kurt A.; Snead, Lance L.

    2014-11-01

    Three sets of experimental conditions were tested to synthesize uranium carbonitride (UC1-xNx) kernels from gel-derived urania-carbon microspheres. Primarily, three sequences of gases were used, N2 to N2-4%H2 to Ar, Ar to N2 to Ar, and Ar-4%H2 to N2-4%H2 to Ar-4%H2. Physical and chemical characteristics such as geometrical density, phase purity, and chemical compositions of the synthesized UC1-xNx were measured. Single-phase kernels were commonly obtained with densities generally ranging from 85% to 93% TD and values of x as high as 0.99. In-depth analysis of the microstrutures of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.

  7. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize.

    PubMed

    Chen, Lin; Li, Yong-xiang; Li, Chunhui; Wu, Xun; Qin, Weiwei; Li, Xin; Jiao, Fuchao; Zhang, Xiaojing; Zhang, Dengfeng; Shi, Yunsu; Song, Yanchun; Li, Yu; Wang, Tianyu

    2016-04-12

    Kernel weight and size are important components of grain yield in cereals. Although some information is available concerning the map positions of quantitative trait loci (QTL) for kernel weight and size in maize, little is known about the molecular mechanisms of these QTLs. qGW4.05 is a major QTL that is associated with kernel weight and size in maize. We combined linkage analysis and association mapping to fine-map and identify candidate gene(s) at qGW4.05. QTL qGW4.05 was fine-mapped to a 279.6-kb interval in a segregating population derived from a cross of Huangzaosi with LV28. By combining the results of regional association mapping and linkage analysis, we identified GRMZM2G039934 as a candidate gene responsible for qGW4.05. Candidate gene-based association mapping was conducted using a panel of 184 inbred lines with variable kernel weights and kernel sizes. Six polymorphic sites in the gene GRMZM2G039934 were significantly associated with kernel weight and kernel size. The results of linkage analysis and association mapping revealed that GRMZM2G039934 is the most likely candidate gene for qGW4.05. These results will improve our understanding of the genetic architecture and molecular mechanisms underlying kernel development in maize.

  8. Helium: lifting high-performance stencil kernels from stripped x86 binaries to halide DSL code

    DOE PAGES

    Mendis, Charith; Bosboom, Jeffrey; Wu, Kevin; ...

    2015-06-03

    Highly optimized programs are prone to bit rot, where performance quickly becomes suboptimal in the face of new hardware and compiler techniques. In this paper we show how to automatically lift performance-critical stencil kernels from a stripped x86 binary and generate the corresponding code in the high-level domain-specific language Halide. Using Halide's state-of-the-art optimizations targeting current hardware, we show that new optimized versions of these kernels can replace the originals to rejuvenate the application for newer hardware. The original optimized code for kernels in stripped binaries is nearly impossible to analyze statically. Instead, we rely on dynamic traces to regeneratemore » the kernels. We perform buffer structure reconstruction to identify input, intermediate and output buffer shapes. Here, we abstract from a forest of concrete dependency trees which contain absolute memory addresses to symbolic trees suitable for high-level code generation. This is done by canonicalizing trees, clustering them based on structure, inferring higher-dimensional buffer accesses and finally by solving a set of linear equations based on buffer accesses to lift them up to simple, high-level expressions. Helium can handle highly optimized, complex stencil kernels with input-dependent conditionals. We lift seven kernels from Adobe Photoshop giving a 75 % performance improvement, four kernels from Irfan View, leading to 4.97 x performance, and one stencil from the mini GMG multigrid benchmark netting a 4.25 x improvement in performance. We manually rejuvenated Photoshop by replacing eleven of Photoshop's filters with our lifted implementations, giving 1.12 x speedup without affecting the user experience.« less

  9. Three-dimensional holoscopic image coding scheme using high-efficiency video coding with kernel-based minimum mean-square-error estimation

    NASA Astrophysics Data System (ADS)

    Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai

    2016-07-01

    Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.

  10. Estimating Mixture of Gaussian Processes by Kernel Smoothing

    PubMed Central

    Huang, Mian; Li, Runze; Wang, Hansheng; Yao, Weixin

    2014-01-01

    When the functional data are not homogeneous, e.g., there exist multiple classes of functional curves in the dataset, traditional estimation methods may fail. In this paper, we propose a new estimation procedure for the Mixture of Gaussian Processes, to incorporate both functional and inhomogeneous properties of the data. Our method can be viewed as a natural extension of high-dimensional normal mixtures. However, the key difference is that smoothed structures are imposed for both the mean and covariance functions. The model is shown to be identifiable, and can be estimated efficiently by a combination of the ideas from EM algorithm, kernel regression, and functional principal component analysis. Our methodology is empirically justified by Monte Carlo simulations and illustrated by an analysis of a supermarket dataset. PMID:24976675

  11. Automated skin lesion segmentation with kernel density estimation

    NASA Astrophysics Data System (ADS)

    Pardo, A.; Real, E.; Fernandez-Barreras, G.; Madruga, F. J.; López-Higuera, J. M.; Conde, O. M.

    2017-07-01

    Skin lesion segmentation is a complex step for dermoscopy pathological diagnosis. Kernel density estimation is proposed as a segmentation technique based on the statistic distribution of color intensities in the lesion and non-lesion regions.

  12. Evaluation of popcorn germplasm for resistance to Sesamia nonagrioides attack.

    PubMed

    Butrón, A; Sandoya, G; Revilla, P; Ordás, A; Malvar, R A

    2005-10-01

    Popcorn adapted to Spanish conditions could be an interesting and profitable alternative to field corn. However, little is known about breeding popcorn germplasm for adaptation to Spain. Sesamia nonagrioides Lefèvbre is the main insect pest affecting popcorn quality and yield under Spanish growing conditions. The objectives of the study were the search for sources of resistance to S. nonagrioides among popcorn germplasm and to study the genetics of the resistance to S. nonagrioides attack. Eight breeding populations along with a five-inbred line diallel and two popcorn commercial checks were evaluated under S. nonagrioides infestation in 2 yr. Significant differences were found among general combining ability (GCA) effects for days to silking, S. nonagrioides tunnel length, general appearance of the ear, kernel moisture, and yield. Specific combining ability (SCA) effects were found to be significant for yield and ear damage. Therefore, heterotic patterns among popcorn materials should be taken into account to generate new popcorn hybrids that are not only more productive but also have higher kernel quality. Breeding popcorn populations BSP4APC0 and PSPW1C1 could be base germplasms in a breeding program for obtaining parental inbreds of healthy kernel popcorn hybrids. New inbred lines could be generated from the cross BP1 x BP2 that would have improved GCA and SCA effects for S. nonagrioides resistance when crossed to South American inbreds.

  13. Detecting peanuts inoculated with toxigenic and atoxienic Aspergillus flavus strains with fluorescence hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Xing, Fuguo; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Zhu, Fengle; Brown, Robert L.; Bhatnagar, Deepak; Liu, Yang

    2017-05-01

    Aflatoxin contamination in peanut products has been an important and long-standing problem around the world. Produced mainly by Aspergillus flavus and Aspergillus parasiticus, aflatoxins are the most toxic and carcinogenic compounds among toxins. This study investigated the application of fluorescence visible near-infrared (VNIR) hyperspectral images to assess the spectral difference between peanut kernels inoculated with toxigenic and atoxigenic inocula of A. flavus and healthy kernels. Peanut kernels were inoculated with NRRL3357, a toxigenic strain of A. flavus, and AF36, an atoxigenic strain of A. flavus, respectively. Fluorescence hyperspectral images under ultraviolet (UV) excitation were recorded on peanut kernels with and without skin. Contaminated kernels exhibited different fluorescence features compared with healthy kernels. For the kernels without skin, the inoculated kernels had a fluorescence peaks shifted to longer wavelengths with lower intensity than healthy kernels. In addition, the fluorescence intensity of peanuts without skin was higher than that of peanuts with skin (10 times). The fluorescence spectra of kernels with skin are significantly different from that of the control group (p<0.001). Furthermore, the fluorescence intensity of the toxigenic, AF3357 peanuts with skin was lower than that of the atoxigenic AF36 group. Discriminate analysis showed that the inoculation group can be separated from the controls with 100% accuracy. However, the two inoculation groups (AF3357 vis AF36) can be separated with only ∼80% accuracy. This study demonstrated the potential of fluorescence hyperspectral imaging techniques for screening of peanut kernels contaminated with A. flavus, which could potentially lead to the production of rapid and non-destructive scanning-based detection technology for the peanut industry.

  14. Kernel-Based Sensor Fusion With Application to Audio-Visual Voice Activity Detection

    NASA Astrophysics Data System (ADS)

    Dov, David; Talmon, Ronen; Cohen, Israel

    2016-12-01

    In this paper, we address the problem of multiple view data fusion in the presence of noise and interferences. Recent studies have approached this problem using kernel methods, by relying particularly on a product of kernels constructed separately for each view. From a graph theory point of view, we analyze this fusion approach in a discrete setting. More specifically, based on a statistical model for the connectivity between data points, we propose an algorithm for the selection of the kernel bandwidth, a parameter, which, as we show, has important implications on the robustness of this fusion approach to interferences. Then, we consider the fusion of audio-visual speech signals measured by a single microphone and by a video camera pointed to the face of the speaker. Specifically, we address the task of voice activity detection, i.e., the detection of speech and non-speech segments, in the presence of structured interferences such as keyboard taps and office noise. We propose an algorithm for voice activity detection based on the audio-visual signal. Simulation results show that the proposed algorithm outperforms competing fusion and voice activity detection approaches. In addition, we demonstrate that a proper selection of the kernel bandwidth indeed leads to improved performance.

  15. Structured Kernel Subspace Learning for Autonomous Robot Navigation.

    PubMed

    Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai

    2018-02-14

    This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.

  16. GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.

    PubMed

    Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin

    2017-07-01

    Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.

  17. Non-parametric wall model and methods of identifying boundary conditions for moments in gas flow equations

    NASA Astrophysics Data System (ADS)

    Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent

    2018-03-01

    In this paper, we use the molecular dynamics simulation method to study gas-wall boundary conditions. Discrete scattering information of gas molecules at the wall surface is obtained from collision simulations. The collision data can be used to identify the accommodation coefficients for parametric wall models such as Maxwell and Cercignani-Lampis scattering kernels. Since these scattering kernels are based on a limited number of accommodation coefficients, we adopt non-parametric statistical methods to construct the kernel to overcome these issues. Different from parametric kernels, the non-parametric kernels require no parameter (i.e. accommodation coefficients) and no predefined distribution. We also propose approaches to derive directly the Navier friction and Kapitza thermal resistance coefficients as well as other interface coefficients associated with moment equations from the non-parametric kernels. The methods are applied successfully to systems composed of CH4 or CO2 and graphite, which are of interest to the petroleum industry.

  18. Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion

    NASA Astrophysics Data System (ADS)

    Komatitsch, Dimitri; Xie, Zhinan; Bozdaǧ, Ebru; Sales de Andrade, Elliott; Peter, Daniel; Liu, Qinya; Tromp, Jeroen

    2016-09-01

    We introduce a technique to compute exact anelastic sensitivity kernels in the time domain using parsimonious disk storage. The method is based on a reordering of the time loop of time-domain forward/adjoint wave propagation solvers combined with the use of a memory buffer. It avoids instabilities that occur when time-reversing dissipative wave propagation simulations. The total number of required time steps is unchanged compared to usual acoustic or elastic approaches. The cost is reduced by a factor of 4/3 compared to the case in which anelasticity is partially accounted for by accommodating the effects of physical dispersion. We validate our technique by performing a test in which we compare the Kα sensitivity kernel to the exact kernel obtained by saving the entire forward calculation. This benchmark confirms that our approach is also exact. We illustrate the importance of including full attenuation in the calculation of sensitivity kernels by showing significant differences with physical-dispersion-only kernels.

  19. Density separation as a strategy to reduce the enzyme load of preharvest sprouted wheat and enhance its bread making quality.

    PubMed

    Olaerts, Heleen; De Bondt, Yamina; Courtin, Christophe M

    2018-02-15

    As preharvest sprouting of wheat impairs its use in food applications, postharvest solutions for this problem are required. Due to the high kernel to kernel variability in enzyme activity in a batch of sprouted wheat, the potential of eliminating severely sprouted kernels based on density differences in NaCl solutions was evaluated. Compared to higher density kernels, lower density kernels displayed higher α-amylase, endoxylanase, and peptidase activities as well as signs of (incipient) protein, β-glucan and arabinoxylan breakdown. By discarding lower density kernels of mildly and severely sprouted wheat batches (11% and 16%, respectively), density separation increased flour FN of the batch from 280 to 345s and from 135 to 170s and increased RVA viscosity. This in turn improved dough handling, bread crumb texture and crust color. These data indicate that density separation is a powerful technique to increase the quality of a batch of sprouted wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    PubMed Central

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS were found to be different due to the difference in the tomosynthesis image reconstruction algorithms. Conclusions: It is feasible to simultaneously generate x-ray differential phase contrast, phase contrast, and absorption contrast tomosynthesis images using a grating-based data acquisition setup. The method shows promise in improving the visibility of several low-density materials and therefore merits further investigation. PMID:24387511

  1. Optimization of fixture layouts of glass laser optics using multiple kernel regression.

    PubMed

    Su, Jianhua; Cao, Enhua; Qiao, Hong

    2014-05-10

    We aim to build an integrated fixturing model to describe the structural properties and thermal properties of the support frame of glass laser optics. Therefore, (a) a near global optimal set of clamps can be computed to minimize the surface shape error of the glass laser optic based on the proposed model, and (b) a desired surface shape error can be obtained by adjusting the clamping forces under various environmental temperatures based on the model. To construct the model, we develop a new multiple kernel learning method and call it multiple kernel support vector functional regression. The proposed method uses two layer regressions to group and order the data sources by the weights of the kernels and the factors of the layers. Because of that, the influences of the clamps and the temperature can be evaluated by grouping them into different layers.

  2. A nonlinear quality-related fault detection approach based on modified kernel partial least squares.

    PubMed

    Jiao, Jianfang; Zhao, Ning; Wang, Guang; Yin, Shen

    2017-01-01

    In this paper, a new nonlinear quality-related fault detection method is proposed based on kernel partial least squares (KPLS) model. To deal with the nonlinear characteristics among process variables, the proposed method maps these original variables into feature space in which the linear relationship between kernel matrix and output matrix is realized by means of KPLS. Then the kernel matrix is decomposed into two orthogonal parts by singular value decomposition (SVD) and the statistics for each part are determined appropriately for the purpose of quality-related fault detection. Compared with relevant existing nonlinear approaches, the proposed method has the advantages of simple diagnosis logic and stable performance. A widely used literature example and an industrial process are used for the performance evaluation for the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.

    PubMed

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-09-07

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, S.; Paschal, C.B.; Galloway, R.L.

    Four methods of producing maximum intensity projection (MIP) images were studied and compared. Three of the projection methods differ in the interpolation kernel used for ray tracing. The interpolation kernels include nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation. The fourth projection method is a voxel projection method that is not explicitly a ray-tracing technique. The four algorithms` performance was evaluated using a computer-generated model of a vessel and using real MR angiography data. The evaluation centered around how well an algorithm transferred an object`s width to the projection plane. The voxel projection algorithm does not suffer from artifactsmore » associated with the nearest neighbor algorithm. Also, a speed-up in the calculation of the projection is seen with the voxel projection method. Linear interpolation dramatically improves the transfer of width information from the 3D MRA data set over both nearest neighbor and voxel projection methods. Even though the cubic convolution interpolation kernel is theoretically superior to the linear kernel, it did not project widths more accurately than linear interpolation. A possible advantage to the nearest neighbor interpolation is that the size of small vessels tends to be exaggerated in the projection plane, thereby increasing their visibility. The results confirm that the way in which an MIP image is constructed has a dramatic effect on information contained in the projection. The construction method must be chosen with the knowledge that the clinical information in the 2D projections in general will be different from that contained in the original 3D data volume. 27 refs., 16 figs., 2 tabs.« less

  5. Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy

    PubMed Central

    Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei

    2014-01-01

    Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544

  6. Discovery of a loose star cluster in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2016-06-01

    We present results for an up-to-date uncatalogued star cluster projected towards the Eastern side of the Large Magellanic Cloud (LMC) outer disc. The new object was discovered from a search of loose star cluster in the Magellanic Clouds' (MCs) outskirts using kernel density estimators on Washington CT1 deep images. Contrarily to what would be commonly expected, the star cluster resulted to be a young object (log(t yr-1) = 8.45) with a slightly subsolar metal content (Z = 0.013) and a total mass of 650 M⊙. Its core, half-mass and tidal radii also are within the frequent values of LMC star clusters. However, the new star cluster is placed at the Small Magellanic Cloud distance and at 11.3 kpc from the LMC centre. We speculate with the possibility that it was born in the inner body of the LMC and soon after expelled into the intergalactic space during the recent Milky Way/MCs interaction. Nevertheless, radial velocity and chemical abundance measurements are needed to further understand its origin, as well as extensive search for loose star clusters in order to constrain the effectiveness of star cluster scattering during galaxy interactions.

  7. A support architecture for reliable distributed computing systems

    NASA Technical Reports Server (NTRS)

    Mckendry, Martin S.

    1986-01-01

    The Clouds kernel design was through several design phases and is nearly complete. The object manager, the process manager, the storage manager, the communications manager, and the actions manager are examined.

  8. Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology.

    PubMed

    Poon, Art F Y

    2015-09-01

    The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees in an efficient and comprehensive way. In this study, I demonstrate that a new distance measure, based on a subset tree kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape for classifying trees generated under different epidemiological scenarios. Next, I incorporate this kernel-based distance measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. I validate this "kernel-ABC" method for phylodynamic inference by estimating parameters from data simulated under a simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with virus transmission than leading software on the same data sets. Finally, I apply the kernel-ABC framework to study a recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Multidimensional NMR inversion without Kronecker products: Multilinear inversion

    NASA Astrophysics Data System (ADS)

    Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos

    2016-08-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.

  10. Volterra series truncation and kernel estimation of nonlinear systems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Billings, S. A.

    2017-02-01

    The Volterra series model is a direct generalisation of the linear convolution integral and is capable of displaying the intrinsic features of a nonlinear system in a simple and easy to apply way. Nonlinear system analysis using Volterra series is normally based on the analysis of its frequency-domain kernels and a truncated description. But the estimation of Volterra kernels and the truncation of Volterra series are coupled with each other. In this paper, a novel complex-valued orthogonal least squares algorithm is developed. The new algorithm provides a powerful tool to determine which terms should be included in the Volterra series expansion and to estimate the kernels and thus solves the two problems all together. The estimated results are compared with those determined using the analytical expressions of the kernels to validate the method. To further evaluate the effectiveness of the method, the physical parameters of the system are also extracted from the measured kernels. Simulation studies demonstrates that the new approach not only can truncate the Volterra series expansion and estimate the kernels of a weakly nonlinear system, but also can indicate the applicability of the Volterra series analysis in a severely nonlinear system case.

  11. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model.

    PubMed

    Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang

    2018-04-28

    The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.

  12. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang

    2018-04-01

    The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.

  13. On supervised graph Laplacian embedding CA model & kernel construction and its application

    NASA Astrophysics Data System (ADS)

    Zeng, Junwei; Qian, Yongsheng; Wang, Min; Yang, Yongzhong

    2017-01-01

    There are many methods to construct kernel with given data attribute information. Gaussian radial basis function (RBF) kernel is one of the most popular ways to construct a kernel. The key observation is that in real-world data, besides the data attribute information, data label information also exists, which indicates the data class. In order to make use of both data attribute information and data label information, in this work, we propose a supervised kernel construction method. Supervised information from training data is integrated into standard kernel construction process to improve the discriminative property of resulting kernel. A supervised Laplacian embedding cellular automaton model is another key application developed for two-lane heterogeneous traffic flow with the safe distance and large-scale truck. Based on the properties of traffic flow in China, we re-calibrate the cell length, velocity, random slowing mechanism and lane-change conditions and use simulation tests to study the relationships among the speed, density and flux. The numerical results show that the large-scale trucks will have great effects on the traffic flow, which are relevant to the proportion of the large-scale trucks, random slowing rate and the times of the lane space change.

  14. Assessing opportunities for physical activity in the built environment of children: interrelation between kernel density and neighborhood scale.

    PubMed

    Buck, Christoph; Kneib, Thomas; Tkaczick, Tobias; Konstabel, Kenn; Pigeot, Iris

    2015-12-22

    Built environment studies provide broad evidence that urban characteristics influence physical activity (PA). However, findings are still difficult to compare, due to inconsistent measures assessing urban point characteristics and varying definitions of spatial scale. Both were found to influence the strength of the association between the built environment and PA. We simultaneously evaluated the effect of kernel approaches and network-distances to investigate the association between urban characteristics and physical activity depending on spatial scale and intensity measure. We assessed urban measures of point characteristics such as intersections, public transit stations, and public open spaces in ego-centered network-dependent neighborhoods based on geographical data of one German study region of the IDEFICS study. We calculated point intensities using the simple intensity and kernel approaches based on fixed bandwidths, cross-validated bandwidths including isotropic and anisotropic kernel functions and considering adaptive bandwidths that adjust for residential density. We distinguished six network-distances from 500 m up to 2 km to calculate each intensity measure. A log-gamma regression model was used to investigate the effect of each urban measure on moderate-to-vigorous physical activity (MVPA) of 400 2- to 9.9-year old children who participated in the IDEFICS study. Models were stratified by sex and age groups, i.e. pre-school children (2 to <6 years) and school children (6-9.9 years), and were adjusted for age, body mass index (BMI), education and safety concerns of parents, season and valid weartime of accelerometers. Association between intensity measures and MVPA strongly differed by network-distance, with stronger effects found for larger network-distances. Simple intensity revealed smaller effect estimates and smaller goodness-of-fit compared to kernel approaches. Smallest variation in effect estimates over network-distances was found for kernel intensity measures based on isotropic and anisotropic cross-validated bandwidth selection. We found a strong variation in the association between the built environment and PA of children based on the choice of intensity measure and network-distance. Kernel intensity measures provided stable results over various scales and improved the assessment compared to the simple intensity measure. Considering different spatial scales and kernel intensity methods might reduce methodological limitations in assessing opportunities for PA in the built environment.

  15. Constraints and System Primitives in Achieving Multilevel Security in Real Time Distributed System Environment

    DTIC Science & Technology

    1994-04-18

    because they represent a microkernel and monolithic kernel approach to MLS operating system issues. TMACH is I based on MACH, a distributed operating...the operating system is [L.sed on a microkernel design or a monolithic kernel design. This distinction requires some caution since monolithic operating...are provided by 3 user-level processes, in contrast to standard UNIX, which has a large monolithic kernel that pro- I - 22 - Distributed O)perating

  16. Mutual information estimation for irregularly sampled time series

    NASA Astrophysics Data System (ADS)

    Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.

    2012-04-01

    For the automated, objective and joint analysis of time series, similarity measures are crucial. Used in the analysis of climate records, they allow for a complimentary, unbiased view onto sparse datasets. The irregular sampling of many of these time series, however, makes it necessary to either perform signal reconstruction (e.g. interpolation) or to develop and use adapted measures. Standard linear interpolation comes with an inevitable loss of information and bias effects. We have recently developed a Gaussian kernel-based correlation algorithm with which the interpolation error can be substantially lowered, but this would not work should the functional relationship in a bivariate setting be non-linear. We therefore propose an algorithm to estimate lagged auto and cross mutual information from irregularly sampled time series. We have extended the standard and adaptive binning histogram estimators and use Gaussian distributed weights in the estimation of the (joint) probabilities. To test our method we have simulated linear and nonlinear auto-regressive processes with Gamma-distributed inter-sampling intervals. We have then performed a sensitivity analysis for the estimation of actual coupling length, the lag of coupling and the decorrelation time in the synthetic time series and contrast our results to the performance of a signal reconstruction scheme. Finally we applied our estimator to speleothem records. We compare the estimated memory (or decorrelation time) to that from a least-squares estimator based on fitting an auto-regressive process of order 1. The calculated (cross) mutual information results are compared for the different estimators (standard or adaptive binning) and contrasted with results from signal reconstruction. We find that the kernel-based estimator has a significantly lower root mean square error and less systematic sampling bias than the interpolation-based method. It is possible that these encouraging results could be further improved by using non-histogram mutual information estimators, like k-Nearest Neighbor or Kernel-Density estimators, but for short (<1000 points) and irregularly sampled datasets the proposed algorithm is already a great improvement.

  17. MPACT Subgroup Self-Shielding Efficiency Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane; Liu, Yuxuan; Collins, Benjamin S.

    Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The nextmore » improvement that is covered is what is currently being termed as “Lumped Parameter MOC”. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.« less

  18. L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction.

    PubMed

    Zheng, Wenming; Lin, Zhouchen; Wang, Haixian

    2014-04-01

    A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.

  19. Blind motion image deblurring using nonconvex higher-order total variation model

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Chen, Rui; Xu, Shangwen; Gong, Weiguo

    2016-09-01

    We propose a nonconvex higher-order total variation (TV) method for blind motion image deblurring. First, we introduce a nonconvex higher-order TV differential operator to define a new model of the blind motion image deblurring, which can effectively eliminate the staircase effect of the deblurred image; meanwhile, we employ an image sparse prior to improve the edge recovery quality. Second, to improve the accuracy of the estimated motion blur kernel, we use L1 norm and H1 norm as the blur kernel regularization term, considering the sparsity and smoothing of the motion blur kernel. Third, because it is difficult to solve the numerically computational complexity problem of the proposed model owing to the intrinsic nonconvexity, we propose a binary iterative strategy, which incorporates a reweighted minimization approximating scheme in the outer iteration, and a split Bregman algorithm in the inner iteration. And we also discuss the convergence of the proposed binary iterative strategy. Last, we conduct extensive experiments on both synthetic and real-world degraded images. The results demonstrate that the proposed method outperforms the previous representative methods in both quality of visual perception and quantitative measurement.

  20. Improving KPCA Online Extraction by Orthonormalization in the Feature Space.

    PubMed

    Souza Filho, Joao B O; Diniz, Paulo S R

    2018-04-01

    Recently, some online kernel principal component analysis (KPCA) techniques based on the generalized Hebbian algorithm (GHA) were proposed for use in large data sets, defining kernel components using concise dictionaries automatically extracted from data. This brief proposes two new online KPCA extraction algorithms, exploiting orthogonalized versions of the GHA rule. In both the cases, the orthogonalization of kernel components is achieved by the inclusion of some low complexity additional steps to the kernel Hebbian algorithm, thus not substantially affecting the computational cost of the algorithm. Results show improved convergence speed and accuracy of components extracted by the proposed methods, as compared with the state-of-the-art online KPCA extraction algorithms.

  1. Problematic projection to the in-sample subspace for a kernelized anomaly detector

    DOE PAGES

    Theiler, James; Grosklos, Guen

    2016-03-07

    We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performance for distances that are large compared to the bandwidth. By comparing KRX to two other anomaly detectors, we can trace the problem to a projection in feature space, which arises when a pseudoinverse is used on the covariance matrix in that feature space. Here, we show that a regularized variant of KRX overcomes this difficulty and achieves superior performance over a widemore » range of bandwidths.« less

  2. Providing Observation Context via Kernel Visualization and Informatics for Planning and Data Analysis

    NASA Astrophysics Data System (ADS)

    Kidd, J. N.; Selznick, S.; Hergenrother, C. W.

    2018-04-01

    From our lessons learned and SPICE expertise, we lay out the features and capabilities of a new web-based tool to provide an accessible platform to obtain context and informatics from a planetary mission's SPICE kernels.

  3. Sensitivities Kernels of Seismic Traveltimes and Amplitudes for Quality Factor and Boundary Topography

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Zhao, L.; Ma, K.

    2010-12-01

    Finite-frequency approach enables seismic tomography to fully utilize the spatial and temporal distributions of the seismic wavefield to improve resolution. In achieving this goal, one of the most important tasks is to compute efficiently and accurately the (Fréchet) sensitivity kernels of finite-frequency seismic observables such as traveltime and amplitude to the perturbations of model parameters. In scattering-integral approach, the Fréchet kernels are expressed in terms of the strain Green tensors (SGTs), and a pre-established SGT database is necessary to achieve practical efficiency for a three-dimensional reference model in which the SGTs must be calculated numerically. Methods for computing Fréchet kernels for seismic velocities have long been established. In this study, we develop algorithms based on the finite-difference method for calculating Fréchet kernels for the quality factor Qμ and seismic boundary topography. Kernels for the quality factor can be obtained in a way similar to those for seismic velocities with the help of the Hilbert transform. The effects of seismic velocities and quality factor on either traveltime or amplitude are coupled. Kernels for boundary topography involve spatial gradient of the SGTs and they also exhibit interesting finite-frequency characteristics. Examples of quality factor and boundary topography kernels will be shown for a realistic model for the Taiwan region with three-dimensional velocity variation as well as surface and Moho discontinuity topography.

  4. Reduction of Aflatoxins in Apricot Kernels by Electronic and Manual Color Sorting.

    PubMed

    Zivoli, Rosanna; Gambacorta, Lucia; Piemontese, Luca; Solfrizzo, Michele

    2016-01-19

    The efficacy of color sorting on reducing aflatoxin levels in shelled apricot kernels was assessed. Naturally-contaminated kernels were submitted to an electronic optical sorter or blanched, peeled, and manually sorted to visually identify and sort discolored kernels (dark and spotted) from healthy ones. The samples obtained from the two sorting approaches were ground, homogenized, and analysed by HPLC-FLD for their aflatoxin content. A mass balance approach was used to measure the distribution of aflatoxins in the collected fractions. Aflatoxin B₁ and B₂ were identified and quantitated in all collected fractions at levels ranging from 1.7 to 22,451.5 µg/kg of AFB₁ + AFB₂, whereas AFG₁ and AFG₂ were not detected. Excellent results were obtained by manual sorting of peeled kernels since the removal of discolored kernels (2.6%-19.9% of total peeled kernels) removed 97.3%-99.5% of total aflatoxins. The combination of peeling and visual/manual separation of discolored kernels is a feasible strategy to remove 97%-99% of aflatoxins accumulated in naturally-contaminated samples. Electronic optical sorter gave highly variable results since the amount of AFB₁ + AFB₂ measured in rejected fractions (15%-18% of total kernels) ranged from 13% to 59% of total aflatoxins. An improved immunoaffinity-based HPLC-FLD method having low limits of detection for the four aflatoxins (0.01-0.05 µg/kg) was developed and used to monitor the occurrence of aflatoxins in 47 commercial products containing apricot kernels and/or almonds commercialized in Italy. Low aflatoxin levels were found in 38% of the tested samples and ranged from 0.06 to 1.50 μg/kg for AFB₁ and from 0.06 to 1.79 μg/kg for total aflatoxins.

  5. Multiscale approach to contour fitting for MR images

    NASA Astrophysics Data System (ADS)

    Rueckert, Daniel; Burger, Peter

    1996-04-01

    We present a new multiscale contour fitting process which combines information about the image and the contour of the object at different levels of scale. The algorithm is based on energy minimizing deformable models but avoids some of the problems associated with these models. The segmentation algorithm starts by constructing a linear scale-space of an image through convolution of the original image with a Gaussian kernel at different levels of scale, where the scale corresponds to the standard deviation of the Gaussian kernel. At high levels of scale large scale features of the objects are preserved while small scale features, like object details as well as noise, are suppressed. In order to maximize the accuracy of the segmentation, the contour of the object of interest is then tracked in scale-space from coarse to fine scales. We propose a hybrid multi-temperature simulated annealing optimization to minimize the energy of the deformable model. At high levels of scale the SA optimization is started at high temperatures, enabling the SA optimization to find a global optimal solution. At lower levels of scale the SA optimization is started at lower temperatures (at the lowest level the temperature is close to 0). This enforces a more deterministic behavior of the SA optimization at lower scales and leads to an increasingly local optimization as high energy barriers cannot be crossed. The performance and robustness of the algorithm have been tested on spin-echo MR images of the cardiovascular system. The task was to segment the ascending and descending aorta in 15 datasets of different individuals in order to measure regional aortic compliance. The results show that the algorithm is able to provide more accurate segmentation results than the classic contour fitting process and is at the same time very robust to noise and initialization.

  6. A self-calibrated angularly continuous 2D GRAPPA kernel for propeller trajectories

    PubMed Central

    Skare, Stefan; Newbould, Rexford D; Nordell, Anders; Holdsworth, Samantha J; Bammer, Roland

    2008-01-01

    The k-space readout of propeller-type sequences may be accelerated by the use of parallel imaging (PI). For PROPELLER, the main benefits are reduced blurring due to T2 decay and SAR reduction, while for EPI-based propeller acquisitions such as Turbo-PROP and SAP-EPI, the faster k-space traversal alleviates geometric distortions. In this work, the feasibility of calculating a 2D GRAPPA kernel on only the undersampled propeller blades themselves is explored, using the matching orthogonal undersampled blade. It is shown that the GRAPPA kernel varies slowly across blades, therefore an angularly continuous 2D GRAPPA kernel is proposed, in which the angular variation of the weights is parameterized. This new angularly continuous kernel formulation greatly increases the numerical stability of the GRAPPA weight estimation, allowing the generation of fully sampled diagnostic quality images using only the undersampled propeller data. PMID:19025911

  7. A Fast Reduced Kernel Extreme Learning Machine.

    PubMed

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.

    PubMed

    Mohr, Johannes A; Jain, Brijnesh J; Obermayer, Klaus

    2008-09-01

    Quantitative structure activity relationship (QSAR) analysis is traditionally based on extracting a set of molecular descriptors and using them to build a predictive model. In this work, we propose a QSAR approach based directly on the similarity between the 3D structures of a set of molecules measured by a so-called molecule kernel, which is independent of the spatial prealignment of the compounds. Predictors can be build using the molecule kernel in conjunction with the potential support vector machine (P-SVM), a recently proposed machine learning method for dyadic data. The resulting models make direct use of the structural similarities between the compounds in the test set and a subset of the training set and do not require an explicit descriptor construction. We evaluated the predictive performance of the proposed method on one classification and four regression QSAR datasets and compared its results to the results reported in the literature for several state-of-the-art descriptor-based and 3D QSAR approaches. In this comparison, the proposed molecule kernel method performed better than the other QSAR methods.

  9. In silico toxicity prediction by support vector machine and SMILES representation-based string kernel.

    PubMed

    Cao, D-S; Zhao, J-C; Yang, Y-N; Zhao, C-X; Yan, J; Liu, S; Hu, Q-N; Xu, Q-S; Liang, Y-Z

    2012-01-01

    There is a great need to assess the harmful effects or toxicities of chemicals to which man is exposed. In the present paper, the simplified molecular input line entry specification (SMILES) representation-based string kernel, together with the state-of-the-art support vector machine (SVM) algorithm, were used to classify the toxicity of chemicals from the US Environmental Protection Agency Distributed Structure-Searchable Toxicity (DSSTox) database network. In this method, the molecular structure can be directly encoded by a series of SMILES substrings that represent the presence of some chemical elements and different kinds of chemical bonds (double, triple and stereochemistry) in the molecules. Thus, SMILES string kernel can accurately and directly measure the similarities of molecules by a series of local information hidden in the molecules. Two model validation approaches, five-fold cross-validation and independent validation set, were used for assessing the predictive capability of our developed models. The results obtained indicate that SVM based on the SMILES string kernel can be regarded as a very promising and alternative modelling approach for potential toxicity prediction of chemicals.

  10. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    NASA Astrophysics Data System (ADS)

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.

  11. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    PubMed Central

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods. PMID:28120883

  12. An improved numerical method for the kernel density functional estimation of disperse flow

    NASA Astrophysics Data System (ADS)

    Smith, Timothy; Ranjan, Reetesh; Pantano, Carlos

    2014-11-01

    We present an improved numerical method to solve the transport equation for the one-point particle density function (pdf), which can be used to model disperse flows. The transport equation, a hyperbolic partial differential equation (PDE) with a source term, is derived from the Lagrangian equations for a dilute particle system by treating position and velocity as state-space variables. The method approximates the pdf by a discrete mixture of kernel density functions (KDFs) with space and time varying parameters and performs a global Rayleigh-Ritz like least-square minimization on the state-space of velocity. Such an approximation leads to a hyperbolic system of PDEs for the KDF parameters that cannot be written completely in conservation form. This system is solved using a numerical method that is path-consistent, according to the theory of non-conservative hyperbolic equations. The resulting formulation is a Roe-like update that utilizes the local eigensystem information of the linearized system of PDEs. We will present the formulation of the base method, its higher-order extension and further regularization to demonstrate that the method can predict statistics of disperse flows in an accurate, consistent and efficient manner. This project was funded by NSF Project NSF-DMS 1318161.

  13. Numerically Exact Long Time Magnetization Dynamics Near the Nonequilibrium Kondo Regime

    NASA Astrophysics Data System (ADS)

    Cohen, Guy; Gull, Emanuel; Reichman, David; Millis, Andrew; Rabani, Eran

    2013-03-01

    The dynamical and steady-state spin response of the nonequilibrium Anderson impurity model to magnetic fields, bias voltages, and temperature is investigated by a numerically exact method which allows access to unprecedentedly long times. The method is based on using real, continuous time bold Monte Carlo techniques--quantum Monte Carlo sampling of diagrammatic corrections to a partial re-summation--in order to compute the kernel of a memory function, which is then used to determine the reduced density matrix. The method owes its effectiveness to the fact that the memory kernel is dominated by relatively short-time properties even when the system's dynamics are long-ranged. We make predictions regarding the non-monotonic temperature dependence of the system at high bias voltage and the oscillatory quench dynamics at high magnetic fields. We also discuss extensions of the method to the computation of transport properties and correlation functions, and its suitability as an impurity solver free from the need for analytical continuation in the context of dynamical mean field theory. This work is supported by the US Department of Energy under grant DE-SC0006613, by NSF-DMR-1006282 and by the US-Israel Binational Science Foundation. GC is grateful to the Yad Hanadiv-Rothschild Foundation for the award of a Rothschild Fellowship.

  14. Poroelastic Modeling as a Proof of Concept for Modular Representation of Coupled Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Walker, R. L., II; Knepley, M.; Aminzadeh, F.

    2017-12-01

    We seek to use the tools provided by the Portable, Extensible Toolkit for Scientific Computation (PETSc) to represent a multiphysics problem in a form that decouples the element definition from the fully coupled equation through the use of pointwise functions that imitate the strong form of the governing equation. This allows allows individual physical processes to be expressed as independent kernels that may be then coupled with the existing finite element framework, PyLith, and capitalizes upon the flexibility offered by the solver, data management, and time stepping algorithms offered by PETSc. To demonstrate a characteristic example of coupled geophysical simulation devised in this manner, we present a model of a synthetic poroelastic environment, with and without the consideration of inertial effects, with fluid initially represented as a single phase. Matrix displacement and fluid pressure serve as the desired unknowns, with the option for various model parameters represented as dependent variables of the central unknowns. While independent of PyLith, this model also serves to showcase the adaptability of physics kernels for synthetic forward modeling. In addition, we seek to expand the base case to demonstrate the impact of modeling fluid as single phase compressible versus a single incompressible phase. As a goal, we also seek to include multiphase fluid modeling, as well as capillary effects.

  15. McIDAS-eXplorer: A version of McIDAS for planetary applications

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.; Saunders, R. Stephen; Sromovsky, Lawrence A.; Martin, Michael

    1994-01-01

    McIDAS-eXplorer is a set of software tools developed for analysis of planetary data published by the Planetary Data System on CD-ROM's. It is built upon McIDAS-X, an environment which has been in use nearly two decades now for earth weather satellite data applications in research and routine operations. The environment allows convenient access, navigation, analysis, display, and animation of planetary data by utilizing the full calibration data accompanying the planetary data. Support currently exists for Voyager images of the giant planets and their satellites; Magellan radar images (F-MIDR and C-MIDR's, global map products (GxDR's), and altimetry data (ARCDR's)); Galileo SSI images of the earth, moon, and Venus; Viking Mars images and MDIM's as well as most earth based telescopic images of solar system objects (FITS). The NAIF/JPL SPICE kernels are used for image navigation when available. For data without the SPICE kernels (such as the bulk of the Voyager Jupiter and Saturn imagery and Pioneer Orbiter images of Venus), tools based on NAIF toolkit allow the user to navigate the images interactively. Multiple navigation types can be attached to a given image (e.g., for ring navigation and planet navigation in the same image). Tools are available to perform common image processing tasks such as digital filtering, cartographic mapping, map overlays, and data extraction. It is also possible to have different planetary radii for an object such as Venus which requires a different radius for the surface and for the cloud level. A graphical user interface based on Tel-Tk scripting language is provided (UNIX only at present) for using the environment and also to provide on-line help. It is possible for end users to add applications of their own to the environment at any time.

  16. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Dejun, E-mail: dejun.lin@gmail.com

    2015-09-21

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between themore » kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A software library based on this algorithm has been implemented in C++11 and has been released.« less

  17. Analytical Properties of Time-of-Flight PET Data

    PubMed Central

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2015-01-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the “bow-tie” property of the 2D Radon transform to the time of flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data. PMID:18460746

  18. Nagy-Soper subtraction scheme for multiparton final states

    NASA Astrophysics Data System (ADS)

    Chung, Cheng-Han; Robens, Tania

    2013-04-01

    In this work, we present the extension of an alternative subtraction scheme for next-to-leading order QCD calculations to the case of an arbitrary number of massless final state partons. The scheme is based on the splitting kernels of an improved parton shower and comes with a reduced number of final state momentum mappings. While a previous publication including the setup of the scheme has been restricted to cases with maximally two massless partons in the final state, we here provide the final state real emission and integrated subtraction terms for processes with any number of massless partons. We apply our scheme to three jet production at lepton colliders at next-to-leading order and present results for the differential C parameter distribution.

  19. Computational statistics using the Bayesian Inference Engine

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.

    2013-09-01

    This paper introduces the Bayesian Inference Engine (BIE), a general parallel, optimized software package for parameter inference and model selection. This package is motivated by the analysis needs of modern astronomical surveys and the need to organize and reuse expensive derived data. The BIE is the first platform for computational statistics designed explicitly to enable Bayesian update and model comparison for astronomical problems. Bayesian update is based on the representation of high-dimensional posterior distributions using metric-ball-tree based kernel density estimation. Among its algorithmic offerings, the BIE emphasizes hybrid tempered Markov chain Monte Carlo schemes that robustly sample multimodal posterior distributions in high-dimensional parameter spaces. Moreover, the BIE implements a full persistence or serialization system that stores the full byte-level image of the running inference and previously characterized posterior distributions for later use. Two new algorithms to compute the marginal likelihood from the posterior distribution, developed for and implemented in the BIE, enable model comparison for complex models and data sets. Finally, the BIE was designed to be a collaborative platform for applying Bayesian methodology to astronomy. It includes an extensible object-oriented and easily extended framework that implements every aspect of the Bayesian inference. By providing a variety of statistical algorithms for all phases of the inference problem, a scientist may explore a variety of approaches with a single model and data implementation. Additional technical details and download details are available from http://www.astro.umass.edu/bie. The BIE is distributed under the GNU General Public License.

  20. Baker-Akhiezer Spinor Kernel and Tau-functions on Moduli Spaces of Meromorphic Differentials

    NASA Astrophysics Data System (ADS)

    Kalla, C.; Korotkin, D.

    2014-11-01

    In this paper we study the Baker-Akhiezer spinor kernel on moduli spaces of meromorphic differentials on Riemann surfaces. We introduce the Baker-Akhiezer tau-function which is related to both the Bergman tau-function (which was studied before in the context of Hurwitz spaces and spaces of holomorphic Abelian and quadratic differentials) and the KP tau-function on such spaces. In particular, we derive variational formulas of Rauch-Ahlfors type on moduli spaces of meromorphic differentials with prescribed singularities: we use the system of homological coordinates, consisting of absolute and relative periods of the meromorphic differential, and show how to vary the fundamental objects associated to a Riemann surface (the matrix of b-periods, normalized Abelian differentials, the Bergman bidifferential, the Szegö kernel and the Baker-Akhiezer spinor kernel) with respect to these coordinates. The variational formulas encode dependence both on the moduli of the Riemann surface and on the choice of meromorphic differential (variation of the meromorphic differential while keeping the Riemann surface fixed corresponds to flows of KP type). Analyzing the global properties of the Bergman and Baker-Akhiezer tau-functions, we establish relationships between various divisor classes on the moduli spaces.

  1. Determining the Parameters of Fractional Exponential Hereditary Kernels for Nonlinear Viscoelastic Materials

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Pavlyuk, Ya. V.; Fernati, P. V.

    2013-03-01

    The parameters of fractional-exponential hereditary kernels for nonlinear viscoelastic materials are determined. Methods for determining the parameters used in the third-order theory of viscoelasticity and in nonlinear theories based on the similarity of primary creep curves and the similarity of isochronous creep curves are analyzed. The parameters of fractional-exponential hereditary kernels are determined and tested against experimental data for microplastic, TC-8/3-250 glass-reinforced plastics, SVAM glass-reinforced plastics. The results (tables and plots) are analyzed

  2. Behavioral Vaccines and Evidence Based Kernels: Non-Pharmaceutical Approaches for the Prevention of Mental, Emotional and Behavioral Disorders 1

    PubMed Central

    Embry, Dennis D.

    2011-01-01

    In March of 2009, the Institute of Medicine issued a new report on the Prevention of Mental, Emotional and Behavioral Disorders Among Young People.1 Fundamentally, the report calls for ending the rationing of prevention of mental, emotional and behavioral disorders (MEBs) among America’s children, youth and young adults. Continued rationing of access to scientifically proven prevention causes a serious threat to the country’s national security2 and to our economic competitiveness compared to 22 other rich countries.3 Such MEBs are also the leading preventable cost center for local, state and the federal governments.1, 4 These preventable MEBs cause health-care costs to continue to spiral up. The IOM Report calls for a public-health approach to MEBs—basically like how America and Canada dealt with the polio epidemic, measles, mumps, car passenger injuries to children, and accidental poisoning from medications and toxic chemicals. Why is this necessary? America’s rates of some of these mental, emotional and behavioral problems are worse than other developed countries,5, 6 and rates of some of these problems have objectively increased over the past 20-50 years in America.7 The attributes of a public-health approach for MEBs are defined in the article. The article discusses multiple examples of how public health approaches might reduce or prevent MEBs using low-cost evidence based kernels, which are fundamental units of behavior. Such kernels can be used repeatedly, which then act as “behavioral vaccines” to reduce morbidity or mortality and/or improve human wellbeing. This document calls for six key policy actions to improve mental, emotional and behavioral health in young people—with resulting wellbeing and economic competiveness of North America and reducing health-care costs. PMID:21333837

  3. Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn) by Measurement of Oil Content

    PubMed Central

    Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao

    2016-01-01

    One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427

  4. Resource Efficient Hardware Architecture for Fast Computation of Running Max/Min Filters

    PubMed Central

    Torres-Huitzil, Cesar

    2013-01-01

    Running max/min filters on rectangular kernels are widely used in many digital signal and image processing applications. Filtering with a k × k kernel requires of k 2 − 1 comparisons per sample for a direct implementation; thus, performance scales expensively with the kernel size k. Faster computations can be achieved by kernel decomposition and using constant time one-dimensional algorithms on custom hardware. This paper presents a hardware architecture for real-time computation of running max/min filters based on the van Herk/Gil-Werman (HGW) algorithm. The proposed architecture design uses less computation and memory resources than previously reported architectures when targeted to Field Programmable Gate Array (FPGA) devices. Implementation results show that the architecture is able to compute max/min filters, on 1024 × 1024 images with up to 255 × 255 kernels, in around 8.4 milliseconds, 120 frames per second, at a clock frequency of 250 MHz. The implementation is highly scalable for the kernel size with good performance/area tradeoff suitable for embedded applications. The applicability of the architecture is shown for local adaptive image thresholding. PMID:24288456

  5. Mixed kernel function support vector regression for global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  6. K-space reconstruction with anisotropic kernel support (KARAOKE) for ultrafast partially parallel imaging.

    PubMed

    Miao, Jun; Wong, Wilbur C K; Narayan, Sreenath; Wilson, David L

    2011-11-01

    Partially parallel imaging (PPI) greatly accelerates MR imaging by using surface coil arrays and under-sampling k-space. However, the reduction factor (R) in PPI is theoretically constrained by the number of coils (N(C)). A symmetrically shaped kernel is typically used, but this often prevents even the theoretically possible R from being achieved. Here, the authors propose a kernel design method to accelerate PPI faster than R = N(C). K-space data demonstrates an anisotropic pattern that is correlated with the object itself and to the asymmetry of the coil sensitivity profile, which is caused by coil placement and B(1) inhomogeneity. From spatial analysis theory, reconstruction of such pattern is best achieved by a signal-dependent anisotropic shape kernel. As a result, the authors propose the use of asymmetric kernels to improve k-space reconstruction. The authors fit a bivariate Gaussian function to the local signal magnitude of each coil, then threshold this function to extract the kernel elements. A perceptual difference model (Case-PDM) was employed to quantitatively evaluate image quality. A MR phantom experiment showed that k-space anisotropy increased as a function of magnetic field strength. The authors tested a K-spAce Reconstruction with AnisOtropic KErnel support ("KARAOKE") algorithm with both MR phantom and in vivo data sets, and compared the reconstructions to those produced by GRAPPA, a popular PPI reconstruction method. By exploiting k-space anisotropy, KARAOKE was able to better preserve edges, which is particularly useful for cardiac imaging and motion correction, while GRAPPA failed at a high R near or exceeding N(C). KARAOKE performed comparably to GRAPPA at low Rs. As a rule of thumb, KARAOKE reconstruction should always be used for higher quality k-space reconstruction, particularly when PPI data is acquired at high Rs and/or high field strength.

  7. K-space reconstruction with anisotropic kernel support (KARAOKE) for ultrafast partially parallel imaging

    PubMed Central

    Miao, Jun; Wong, Wilbur C. K.; Narayan, Sreenath; Wilson, David L.

    2011-01-01

    Purpose: Partially parallel imaging (PPI) greatly accelerates MR imaging by using surface coil arrays and under-sampling k-space. However, the reduction factor (R) in PPI is theoretically constrained by the number of coils (NC). A symmetrically shaped kernel is typically used, but this often prevents even the theoretically possible R from being achieved. Here, the authors propose a kernel design method to accelerate PPI faster than R = NC. Methods: K-space data demonstrates an anisotropic pattern that is correlated with the object itself and to the asymmetry of the coil sensitivity profile, which is caused by coil placement and B1 inhomogeneity. From spatial analysis theory, reconstruction of such pattern is best achieved by a signal-dependent anisotropic shape kernel. As a result, the authors propose the use of asymmetric kernels to improve k-space reconstruction. The authors fit a bivariate Gaussian function to the local signal magnitude of each coil, then threshold this function to extract the kernel elements. A perceptual difference model (Case-PDM) was employed to quantitatively evaluate image quality. Results: A MR phantom experiment showed that k-space anisotropy increased as a function of magnetic field strength. The authors tested a K-spAce Reconstruction with AnisOtropic KErnel support (“KARAOKE”) algorithm with both MR phantom and in vivo data sets, and compared the reconstructions to those produced by GRAPPA, a popular PPI reconstruction method. By exploiting k-space anisotropy, KARAOKE was able to better preserve edges, which is particularly useful for cardiac imaging and motion correction, while GRAPPA failed at a high R near or exceeding NC. KARAOKE performed comparably to GRAPPA at low Rs. Conclusions: As a rule of thumb, KARAOKE reconstruction should always be used for higher quality k-space reconstruction, particularly when PPI data is acquired at high Rs and∕or high field strength. PMID:22047378

  8. The correlation of chemical and physical corn kernel traits with production performance in broiler chickens and laying hens.

    PubMed

    Moore, S M; Stalder, K J; Beitz, D C; Stahl, C H; Fithian, W A; Bregendahl, K

    2008-04-01

    A study was conducted to determine the influence on broiler chicken growth and laying hen performance of chemical and physical traits of corn kernels from different hybrids. A total of 720 male 1-d-old Ross-308 broiler chicks were allotted to floor pens in 2 replicated experiments with a randomized complete block design. A total of 240 fifty-two-week-old Hy-Line W-36 laying hens were allotted to cages in a randomized complete block design. Corn-soybean meal diets were formulated for 3 broiler growth phases and one 14-wk-long laying hen phase to be marginally deficient in Lys and TSAA to allow for the detection of differences or correlations attributable to corn kernel chemical or physical traits. The broiler chicken diets were also marginally deficient in Ca and nonphytate P. Within a phase, corn- and soybean-based diets containing equal amounts of 1 of 6 different corn hybrids were formulated. The corn hybrids were selected to vary widely in chemical and physical traits. Feed consumption and BW were recorded for broiler chickens every 2 wk from 0 to 6 wk of age. Egg production was recorded daily, and feed consumption and egg weights were recorded weekly for laying hens between 53 and 67 wk of age. Physical and chemical composition of kernels was correlated with performance measures by multivariate ANOVA. Chemical and physical kernel traits were weakly correlated with performance in broiler chickens from 0 to 2 wk of age (P<0.05, | r |<0.42). However, from 4 to 6 wk of age and 0 to 6 wk of age, only kernel chemical traits were correlated with broiler chicken performance (P<0.05, | r |<0.29). From 53 to 67 wk of age, correlations were observed between both kernel physical and chemical traits and laying hen performance (P<0.05, | r |<0.34). In both experiments, the correlations of performance measures with individual kernel chemical and physical traits for any single kernel trait were not large enough to base corn hybrid selection on for feeding poultry.

  9. Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population.

    PubMed

    Raihan, Mohammad Sharif; Liu, Jie; Huang, Juan; Guo, Huan; Pan, Qingchun; Yan, Jianbing

    2016-08-01

    Sixteen major QTLs regulating maize kernel traits were mapped in multiple environments and one of them, qKW - 9.2 , was restricted to 630 Kb, harboring 28 putative gene models. To elucidate the genetic basis of kernel traits, a quantitative trait locus (QTL) analysis was conducted in a maize recombinant inbred line population derived from a cross between two diverse parents Zheng58 and SK, evaluated across eight environments. Construction of a high-density linkage map was based on 13,703 single-nucleotide polymorphism markers, covering 1860.9 cM of the whole genome. In total, 18, 26, 23, and 19 QTLs for kernel length, width, thickness, and 100-kernel weight, respectively, were detected on the basis of a single-environment analysis, and each QTL explained 3.2-23.7 % of the phenotypic variance. Sixteen major QTLs, which could explain greater than 10 % of the phenotypic variation, were mapped in multiple environments, implying that kernel traits might be controlled by many minor and multiple major QTLs. The major QTL qKW-9.2 with physical confidence interval of 1.68 Mbp, affecting kernel width, was then selected for fine mapping using heterogeneous inbred families. At final, the location of the underlying gene was narrowed down to 630 Kb, harboring 28 putative candidate-gene models. This information will enhance molecular breeding for kernel traits and simultaneously assist the gene cloning underlying this QTL, helping to reveal the genetic basis of kernel development in maize.

  10. Credit scoring analysis using weighted k nearest neighbor

    NASA Astrophysics Data System (ADS)

    Mukid, M. A.; Widiharih, T.; Rusgiyono, A.; Prahutama, A.

    2018-05-01

    Credit scoring is a quatitative method to evaluate the credit risk of loan applications. Both statistical methods and artificial intelligence are often used by credit analysts to help them decide whether the applicants are worthy of credit. These methods aim to predict future behavior in terms of credit risk based on past experience of customers with similar characteristics. This paper reviews the weighted k nearest neighbor (WKNN) method for credit assessment by considering the use of some kernels. We use credit data from a private bank in Indonesia. The result shows that the Gaussian kernel and rectangular kernel have a better performance based on the value of percentage corrected classified whose value is 82.4% respectively.

  11. Registering Cortical Surfaces Based on Whole-Brain Structural Connectivity and Continuous Connectivity Analysis

    PubMed Central

    Gutman, Boris; Leonardo, Cassandra; Jahanshad, Neda; Hibar, Derrek; Eschen-burg, Kristian; Nir, Talia; Villalon, Julio; Thompson, Paul

    2014-01-01

    We present a framework for registering cortical surfaces based on tractography-informed structural connectivity. We define connectivity as a continuous kernel on the product space of the cortex, and develop a method for estimating this kernel from tractography fiber models. Next, we formulate the kernel registration problem, and present a means to non-linearly register two brains’ continuous connectivity profiles. We apply theoretical results from operator theory to develop an algorithm for decomposing the connectome into its shared and individual components. Lastly, we extend two discrete connectivity measures to the continuous case, and apply our framework to 98 Alzheimer’s patients and controls. Our measures show significant differences between the two groups. PMID:25320795

  12. Learning a peptide-protein binding affinity predictor with kernel ridge regression

    PubMed Central

    2013-01-01

    Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting peptide-protein binding affinities. The proposed approach is flexible and can be applied to predict any quantitative biological activity. Moreover, generating reliable peptide-protein binding affinities will also improve system biology modelling of interaction pathways. Lastly, the method should be of value to a large segment of the research community with the potential to accelerate the discovery of peptide-based drugs and facilitate vaccine development. The proposed kernel is freely available at http://graal.ift.ulaval.ca/downloads/gs-kernel/. PMID:23497081

  13. Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression.

    PubMed

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Abdul Wahab, Ahmad Khairi; Hasnan, Nazirah; Olatunji, Sunday Olusanya; Davis, Glen M

    2016-07-19

    The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES) in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG) of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR) due to its good generalization ability in related fields. Inputs to the proposed model were MMG amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle. Gaussian kernel function, as well as its optimal parameters were identified with the best performance measure and were applied as the SVR kernel function to build an effective knee torque estimation model. To train and test the model, the data were partitioned into training (70%) and testing (30%) subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R²) between the actual and the estimated torque values was up to 94% and 89% during the training and testing cases, with root mean square errors (RMSE) of 9.48 and 12.95, respectively. The knee torque estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic dynamometer. These findings support the realization of a closed-loop NMES system for functional tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation.

  14. A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD.

    PubMed

    Cao, Peng; Liu, Xiaoli; Zhang, Jian; Li, Wei; Zhao, Dazhe; Huang, Min; Zaiane, Osmar

    2017-03-01

    The aim of this paper is to describe a novel algorithm for False Positive Reduction in lung nodule Computer Aided Detection(CAD). In this paper, we describes a new CT lung CAD method which aims to detect solid nodules. Specially, we proposed a multi-kernel classifier with a ℓ 2, 1 norm regularizer for heterogeneous feature fusion and selection from the feature subset level, and designed two efficient strategies to optimize the parameters of kernel weights in non-smooth ℓ 2, 1 regularized multiple kernel learning algorithm. The first optimization algorithm adapts a proximal gradient method for solving the ℓ 2, 1 norm of kernel weights, and use an accelerated method based on FISTA; the second one employs an iterative scheme based on an approximate gradient descent method. The results demonstrates that the FISTA-style accelerated proximal descent method is efficient for the ℓ 2, 1 norm formulation of multiple kernel learning with the theoretical guarantee of the convergence rate. Moreover, the experimental results demonstrate the effectiveness of the proposed methods in terms of Geometric mean (G-mean) and Area under the ROC curve (AUC), and significantly outperforms the competing methods. The proposed approach exhibits some remarkable advantages both in heterogeneous feature subsets fusion and classification phases. Compared with the fusion strategies of feature-level and decision level, the proposed ℓ 2, 1 norm multi-kernel learning algorithm is able to accurately fuse the complementary and heterogeneous feature sets, and automatically prune the irrelevant and redundant feature subsets to form a more discriminative feature set, leading a promising classification performance. Moreover, the proposed algorithm consistently outperforms the comparable classification approaches in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.

    2010-04-01

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.

  16. The Dent Stage of Maize Kernels Is the Most Conducive for Fumonisin Biosynthesis under Field Conditions ▿

    PubMed Central

    Picot, Adeline; Barreau, Christian; Pinson-Gadais, Laëtitia; Piraux, François; Caron, Daniel; Lannou, Christian; Richard-Forget, Florence

    2011-01-01

    The fungal pathogen Fusarium verticillioides infects maize ears and produces fumonisins, known for their adverse effects on human and animal health. Basic questions remain unanswered regarding the kernel stage(s) associated with fumonisin biosynthesis and the kernel components involved in fumonisin regulation during F. verticillioides-maize interaction under field conditions. In this 2-year field study, the time course of F. verticillioides growth and fumonisin accumulation in developing maize kernels, along with the variations in kernel pH and amylopectin content, were monitored using relevant and accurate analytical tools. In all experiments, the most significant increase in fumonisin accumulation or in fumonisin productivity (i.e., fumonisin production per unit of fungus) was shown to occur within a very short period of time, between 22/32 and 42 days after inoculation and corresponding to the dent stage. This stage was also characterized by acidification in the kernel pH and a maximum level of amylopectin content. Our data clearly support published results based on in vitro experiments suggesting that the physiological stages of the maize kernel play a major role in regulating fumonisin production. Here we have validated this result for in planta and field conditions, and we demonstrate that under such conditions the dent stage is the most conducive for fumonisin accumulation. PMID:21984235

  17. An Ensemble Approach to Building Mercer Kernels with Prior Information

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Schumann, Johann; Fischer, Bernd

    2005-01-01

    This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive definite mappings from the original image space to a very high, possibly dimensional feature space. we describe a new method called Mixture Density Mercer Kernels to learn kernel function directly from data, rather than using pre-defined kernels. These data adaptive kernels can encode prior knowledge in the kernel using a Bayesian formulation, thus allowing for physical information to be encoded in the model. Specifically, we demonstrate the use of the algorithm in situations with extremely small samples of data. We compare the results with existing algorithms on data from the Sloan Digital Sky Survey (SDSS) and demonstrate the method's superior performance against standard methods. The code for these experiments has been generated with the AUTOBAYES tool, which automatically generates efficient and documented C/C++ code from abstract statistical model specifications. The core of the system is a schema library which contains templates for learning and knowledge discovery algorithms like different versions of EM, or numeric optimization methods like conjugate gradient methods. The template instantiation is supported by symbolic-algebraic computations, which allows AUTOBAYES to find closed-form solutions and, where possible, to integrate them into the code.

  18. Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data

    PubMed Central

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-01-01

    Background Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Methodology/Principal Findings Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. Conclusions/Significance The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice. PMID:21359184

  19. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.

    PubMed

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-02-16

    Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.

  20. GPU-Accelerated Forward and Back-Projections with Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction.

    PubMed

    Ha, S; Matej, S; Ispiryan, M; Mueller, K

    2013-02-01

    We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.

  1. GPU-Accelerated Forward and Back-Projections With Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction

    NASA Astrophysics Data System (ADS)

    Ha, S.; Matej, S.; Ispiryan, M.; Mueller, K.

    2013-02-01

    We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.

  2. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  3. Kernel spectral clustering with memory effect

    NASA Astrophysics Data System (ADS)

    Langone, Rocco; Alzate, Carlos; Suykens, Johan A. K.

    2013-05-01

    Evolving graphs describe many natural phenomena changing over time, such as social relationships, trade markets, metabolic networks etc. In this framework, performing community detection and analyzing the cluster evolution represents a critical task. Here we propose a new model for this purpose, where the smoothness of the clustering results over time can be considered as a valid prior knowledge. It is based on a constrained optimization formulation typical of Least Squares Support Vector Machines (LS-SVM), where the objective function is designed to explicitly incorporate temporal smoothness. The latter allows the model to cluster the current data well and to be consistent with the recent history. We also propose new model selection criteria in order to carefully choose the hyper-parameters of our model, which is a crucial issue to achieve good performances. We successfully test the model on four toy problems and on a real world network. We also compare our model with Evolutionary Spectral Clustering, which is a state-of-the-art algorithm for community detection of evolving networks, illustrating that the kernel spectral clustering with memory effect can achieve better or equal performances.

  4. Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.

    PubMed

    Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2012-11-08

    A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.

  5. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  6. Multi-PSF fusion in image restoration of range-gated systems

    NASA Astrophysics Data System (ADS)

    Wang, Canjin; Sun, Tao; Wang, Tingfeng; Miao, Xikui; Wang, Rui

    2018-07-01

    For the task of image restoration, an accurate estimation of degrading PSF/kernel is the premise of recovering a visually superior image. The imaging process of range-gated imaging system in atmosphere associates with lots of factors, such as back scattering, background radiation, diffraction limit and the vibration of the platform. On one hand, due to the difficulty of constructing models for all factors, the kernels from physical-model based methods are not strictly accurate and practical. On the other hand, there are few strong edges in images, which brings significant errors to most of image-feature-based methods. Since different methods focus on different formation factors of the kernel, their results often complement each other. Therefore, we propose an approach which combines physical model with image features. With an fusion strategy using GCRF (Gaussian Conditional Random Fields) framework, we get a final kernel which is closer to the actual one. Aiming at the problem that ground-truth image is difficult to obtain, we then propose a semi data-driven fusion method in which different data sets are used to train fusion parameters. Finally, a semi blind restoration strategy based on EM (Expectation Maximization) and RL (Richardson-Lucy) algorithm is proposed. Our methods not only models how the lasers transfer in the atmosphere and imaging in the ICCD (Intensified CCD) plane, but also quantifies other unknown degraded factors using image-based methods, revealing how multiple kernel elements interact with each other. The experimental results demonstrate that our method achieves better performance than state-of-the-art restoration approaches.

  7. Applications of discrete element method in modeling of grain postharvest operations

    USDA-ARS?s Scientific Manuscript database

    Grain kernels are finite and discrete materials. Although flowing grain can behave like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be simulated solely with conventional continuum-based computer modeling such as finite-element or finite-difference methods...

  8. Membership within the Nonpareil Marketing Group: Examination of an unclassified accession

    USDA-ARS?s Scientific Manuscript database

    California almonds are categorized into marketing groups based on kernel shape and appearance to facilitate promotion and sale. Market prices for Nonpareil Marketing Group (NMG) kernels are 30% higher than for almonds in other marketing groups. Accordingly, there is economic incentive for breeders ...

  9. Person detection, tracking and following using stereo camera

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Zhang, Lilian; Wang, Duo; Hu, Xiaoping

    2018-04-01

    Person detection, tracking and following is a key enabling technology for mobile robots in many human-robot interaction applications. In this article, we present a system which is composed of visual human detection, video tracking and following. The detection is based on YOLO(You only look once), which applies a single convolution neural network(CNN) to the full image, thus can predict bounding boxes and class probabilities directly in one evaluation. Then the bounding box provides initial person position in image to initialize and train the KCF(Kernelized Correlation Filter), which is a video tracker based on discriminative classifier. At last, by using a stereo 3D sparse reconstruction algorithm, not only the position of the person in the scene is determined, but also it can elegantly solve the problem of scale ambiguity in the video tracker. Extensive experiments are conducted to demonstrate the effectiveness and robustness of our human detection and tracking system.

  10. Implementing real-time robotic systems using CHIMERA II

    NASA Technical Reports Server (NTRS)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1990-01-01

    A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.

  11. Enhancing Team Composition in Professional Networks: Problem Definitions and Fast Solutions

    PubMed Central

    Li, Liangyue; Tong, Hanghang; Cao, Nan; Ehrlich, Kate; Lin, Yu-Ru; Buchler, Norbou

    2017-01-01

    In this paper, we study ways to enhance the composition of teams based on new requirements in a collaborative environment. We focus on recommending team members who can maintain the team’s performance by minimizing changes to the team’s skills and social structure. Our recommendations are based on computing team-level similarity, which includes skill similarity, structural similarity as well as the synergy between the two. Current heuristic approaches are one-dimensional and not comprehensive, as they consider the two aspects independently. To formalize team-level similarity, we adopt the notion of graph kernel of attributed graphs to encompass the two aspects and their interaction. To tackle the computational challenges, we propose a family of fast algorithms by (a) designing effective pruning strategies, and (b) exploring the smoothness between the existing and the new team structures. Extensive empirical evaluations on real world datasets validate the effectiveness and efficiency of our algorithms. PMID:29104408

  12. An information theoretic approach of designing sparse kernel adaptive filters.

    PubMed

    Liu, Weifeng; Park, Il; Principe, José C

    2009-12-01

    This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented.

  13. Extending Mondrian Memory Protection

    DTIC Science & Technology

    2010-11-01

    a kernel semaphore is locked or unlocked. In addition, we extended the system call interface to receive notifications about user-land locking...operations (such as calls to the mutex and semaphore code provided by the C library). By patching the dynamically loadable GLibC5, we are able to test... semaphores , and spinlocks. RTO-MP-IST-091 10- 9 Extending Mondrian Memory Protection to loading extension plugins. This prevents any untrusted code

  14. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    PubMed Central

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo

    2016-01-01

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970

  15. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.

    PubMed

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo

    2017-01-05

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.

  16. gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels.

    PubMed

    Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J

    2017-05-01

    Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.

  17. Effect of Aspergillus niger xylanase on dough characteristics and bread quality attributes.

    PubMed

    Ahmad, Zulfiqar; Butt, Masood Sadiq; Ahmed, Anwaar; Riaz, Muhammad; Sabir, Syed Mubashar; Farooq, Umar; Rehman, Fazal Ur

    2014-10-01

    The present study was conducted to investigate the impact of various treatments of xylanase produced by Aspergillus niger applied in bread making processes like during tempering of wheat kernels and dough mixing on the dough quality characteristics i.e. dryness, stiffness, elasticity, extensibility, coherency and bread quality parameters i.e. volume, specific volume, density, moisture retention and sensory attributes. Different doses (200, 400, 600, 800 and 1,000 IU) of purified enzyme were applied to 1 kg of wheat grains during tempering and 1 kg of flour (straight grade flour) during mixing of dough in parallel. The samples of wheat kernels were agitated at different intervals for uniformity in tempering. After milling and dough making of both types of flour (having enzyme treatment during tempering and flour mixing) showed improved dough characteristics but the improvement was more prominent in the samples receiving enzyme treatment during tempering. Moreover, xylanase decreased dryness and stiffness of the dough whereas, resulted in increased elasticity, extensibility and coherency and increase in volume & decrease in bread density. Xylanase treatments also resulted in higher moisture retention and improvement of sensory attributes of bread. From the results, it is concluded that dough characteristics and bread quality improved significantly in response to enzyme treatments during tempering as compared to application during mixing.

  18. Weighted Bergman Kernels and Quantization}

    NASA Astrophysics Data System (ADS)

    Engliš, Miroslav

    Let Ω be a bounded pseudoconvex domain in CN, φ, ψ two positive functions on Ω such that - log ψ, - log φ are plurisubharmonic, and z∈Ω a point at which - log φ is smooth and strictly plurisubharmonic. We show that as k-->∞, the Bergman kernels with respect to the weights φkψ have an asymptotic expansion for x,y near z, where φ(x,y) is an almost-analytic extension of &\\phi(x)=φ(x,x) and similarly for ψ. Further, . If in addition Ω is of finite type, φ,ψ behave reasonably at the boundary, and - log φ, - log ψ are strictly plurisubharmonic on Ω, we obtain also an analogous asymptotic expansion for the Berezin transform and give applications to the Berezin quantization. Finally, for Ω smoothly bounded and strictly pseudoconvex and φ a smooth strictly plurisubharmonic defining function for Ω, we also obtain results on the Berezin-Toeplitz quantization.

  19. A scalable kernel-based semisupervised metric learning algorithm with out-of-sample generalization ability.

    PubMed

    Yeung, Dit-Yan; Chang, Hong; Dai, Guang

    2008-11-01

    In recent years, metric learning in the semisupervised setting has aroused a lot of research interest. One type of semisupervised metric learning utilizes supervisory information in the form of pairwise similarity or dissimilarity constraints. However, most methods proposed so far are either limited to linear metric learning or unable to scale well with the data set size. In this letter, we propose a nonlinear metric learning method based on the kernel approach. By applying low-rank approximation to the kernel matrix, our method can handle significantly larger data sets. Moreover, our low-rank approximation scheme can naturally lead to out-of-sample generalization. Experiments performed on both artificial and real-world data show very promising results.

  20. Evaluation of corn germplasm lines for multiple ear-colonizing insect and disease resistance.

    PubMed

    Ni, Xinzhi; Xu, Wenwei; Blanco, Michael H; Wilson, Jeffrey P

    2012-08-01

    Ear-colonizing insects and diseases that reduce yield and impose health threats by mycotoxin contaminations in the grain, are critical impediments for corn (Zea mays L.) production in the southern United States. Ten germplasm lines from the Germplasm Enhancement of Maize (GEM) Program in Ames, IA, and Raleigh, NC, and 10 lines (derived from GEM germplasm) from the Texas Agricultural Experiment Station in Lubbock, TX, were examined in 2007 and 2008 with local resistant and susceptible controls. Four types of insect damage and smut disease (Ustilago maydis) infection, as well as gene X environment (G X E) interaction, was assessed on corn ears under field conditions. Insect damage on corn ears was further separated as cob and kernel damage. Cob penetration rating was used to assess corn earworm [Helicoverpa zea (Boddie)] and fall armyworm [Spodoptera frugiperda (J.E. Smith)] feeding on corn cobs, whereas kernel damage was assessed using three parameters: 1) percentage of kernels discolored by stink bugs (i.e., brown stink bug [Euschistus serous (Say)], southern green stink bug [Nezara viridula (L.)], and green stink bug [Chinavia (Acrosternum) hilare (Say)]; 2) percentage of maize weevil (Sitophilus zeamais Motschulsky)-damaged kernels; and 3) percentage of kernels damaged by sap beetle (Carpophilus spp.), "chocolate milkworm" (Moodna spp.), and pink scavenger caterpillar [Pyroderces (Anatrachyntis) rileyi (Walsingham)]. The smut infection rates on ears, tassels, and nodes also were assessed. Ear protection traits (i.e., husk tightness and extension) in relation to insect damage and smut infection also were examined. Significant differences in insect damage, smut infection, and husk protection traits were detected among the germplasm lines. Three of the 20 germplasm lines were identified as being multiple insect and smut resistant. Of the three lines, entries 5 and 7 were derived from DKXL370, which was developed using corn germplasm from Brazil, whereas entry 14 was derived from CUBA117.

Top