Limits of Brazil's Forest Code as a means to end illegal deforestation.
Azevedo, Andrea A; Rajão, Raoni; Costa, Marcelo A; Stabile, Marcelo C C; Macedo, Marcia N; Dos Reis, Tiago N P; Alencar, Ane; Soares-Filho, Britaldo S; Pacheco, Rayane
2017-07-18
The 2012 Brazilian Forest Code governs the fate of forests and savannas on Brazil's 394 Mha of privately owned lands. The government claims that a new national land registry (SICAR), introduced under the revised law, could end illegal deforestation by greatly reducing the cost of monitoring, enforcement, and compliance. This study evaluates that potential, using data from state-level land registries (CAR) in Pará and Mato Grosso that were precursors of SICAR. Using geospatial analyses and stakeholder interviews, we quantify the impact of CAR on deforestation and forest restoration, investigating how landowners adjust their behaviors over time. Our results indicate rapid adoption of CAR, with registered properties covering a total of 57 Mha by 2013. This suggests that the financial incentives to join CAR currently exceed the costs. Registered properties initially showed lower deforestation rates than unregistered ones, but these differences varied by property size and diminished over time. Moreover, only 6% of registered producers reported taking steps to restore illegally cleared areas on their properties. Our results suggest that, from the landowner's perspective, full compliance with the Forest Code offers few economic benefits. Achieving zero illegal deforestation in this context would require the private sector to include full compliance as a market criterion, while state and federal governments develop SICAR as a de facto enforcement mechanism. These results are relevant to other tropical countries and underscore the importance of developing a policy mix that creates lasting incentives for sustainable land-use practices.
Limits of Brazil’s Forest Code as a means to end illegal deforestation
Azevedo, Andrea A.; Rajão, Raoni; Costa, Marcelo A.; Stabile, Marcelo C. C.; dos Reis, Tiago N. P.; Alencar, Ane; Soares-Filho, Britaldo S.; Pacheco, Rayane
2017-01-01
The 2012 Brazilian Forest Code governs the fate of forests and savannas on Brazil’s 394 Mha of privately owned lands. The government claims that a new national land registry (SICAR), introduced under the revised law, could end illegal deforestation by greatly reducing the cost of monitoring, enforcement, and compliance. This study evaluates that potential, using data from state-level land registries (CAR) in Pará and Mato Grosso that were precursors of SICAR. Using geospatial analyses and stakeholder interviews, we quantify the impact of CAR on deforestation and forest restoration, investigating how landowners adjust their behaviors over time. Our results indicate rapid adoption of CAR, with registered properties covering a total of 57 Mha by 2013. This suggests that the financial incentives to join CAR currently exceed the costs. Registered properties initially showed lower deforestation rates than unregistered ones, but these differences varied by property size and diminished over time. Moreover, only 6% of registered producers reported taking steps to restore illegally cleared areas on their properties. Our results suggest that, from the landowner's perspective, full compliance with the Forest Code offers few economic benefits. Achieving zero illegal deforestation in this context would require the private sector to include full compliance as a market criterion, while state and federal governments develop SICAR as a de facto enforcement mechanism. These results are relevant to other tropical countries and underscore the importance of developing a policy mix that creates lasting incentives for sustainable land-use practices. PMID:28674015
Gold-rush in a forested El Dorado: deforestation leakages and the need for regional cooperation
NASA Astrophysics Data System (ADS)
Dezécache, Camille; Faure, Emmanuel; Gond, Valéry; Salles, Jean-Michel; Vieilledent, Ghislain; Hérault, Bruno
2017-03-01
Tropical forests of the Guiana Shield are the most affected by gold-mining in South America, experiencing an exponential increase in deforestation since the early 2000’s. Using yearly deforestation data encompassing Guyana, Suriname, French Guiana and the Brazilian State of Amapá, we demonstrated a strong relationship between deforestation due to gold-mining and gold-prices at the regional scale. In order to assess additional drivers of deforestation due to gold-mining, we focused on the national scale and highlighted the heterogeneity of the response to gold-prices under different political contexts. Deforestation due to gold-mining over the Guiana Shield occurs mainly in Guyana and Suriname. On the contrary, past and current repressive policies in Amapá and French Guiana likely contribute to the decorrelation of deforestation and gold prices. In this work, we finally present a case study focusing on French Guiana and Suriname, two neighbouring countries with very different levels of law enforcement against illegal gold-mining. We developed a modelling framework to estimate potential deforestation leakages from French Guiana to Suriname in the border areas. Based on our assumptions, we estimated a decrease in deforestation due to gold-mining of approx. 4300 hectares in French Guiana and an increase of approx. 12 100 hectares in Suriname in response to the active military repression of illegal gold-mining launched in French Guiana. Gold-mining in the Guiana Shield provides challenging questions regarding REDD+ implementation. These questions are discussed at the end of this study and are important to policy makers who need to provide sustainable alternative employment to local populations in order to ensure the effectiveness of environmental policies.
Breaking the vicious circle of illegal logging in Indonesia.
Linkie, Matthew; Sloan, Sean; Kasia, Rahmad; Kiswayadi, Dedy; Azmi, Wahdi
2014-08-01
The government of Indonesia, which presides over 10% of the world's tropical forests, has set ambitious targets to cut its high deforestation rates through an REDD+ scheme (Reducing Emissions from Deforestation and forest Degradation). This will require strong law enforcement to succeed. Yet, strategies that have accomplished this are rare and, along with past failures, tend not to be documented. We evaluated a multistakeholder approach that seeks to tackle illegal logging in the carbon-rich province of Aceh, Sumatra. From 2008 to 2009, Fauna & Flora International established and supported a community-based informant network for the 738,000 ha Ulu Masen ecosystem. The network reported 190 forest offenses to local law enforcement agencies, which responded with 86 field operations that confiscated illicit vehicles, equipment, and timber, and arrested 138 illegal logging suspects. From 45 cases subsequently monitored, 64.4% proceeded to court, from which 90.0% of defendants received a prison sentence or a verbal warning for a first offense. Spatial analyses of illegal logging and timber storage incidents predicted that illegal activities would be more effectively deterred by law enforcement operations that targeted the storage sites. Although numerous clusters of incidents were identified, they were still widespread reflecting the ubiquity of illegal activities. The multistakeholder results were promising, but illegal logging still persisted at apparently similar levels at the project's end, indicating that efforts need to be further strengthened. Nevertheless, several actions contributed to the law enforcement achievements: strong political will; strong stakeholder support; and funding that could be promptly accessed. These factors are highlighted as prerequisites for achieving Indonesia's ambitious REDD+ goals. © 2014 Society for Conservation Biology.
Remote sensing of fire and deforestation in the tropics from the International Space Station
NASA Astrophysics Data System (ADS)
Hoffman, James W.; Riggan, Philip J.; Brass, James A.
2000-01-01
In August of 1999 over 30,000 fire counts were registered by the Advanced Very High Resolution Radiometer aboard NOAA satellites over central Brazil, and an extensive smoke pall produced a health hazard and hindered commercial aviation across large portions of the states of Mato Grosso and Mato Grosso do Sul. Clearly fire was an important part of the Brazilian environment, but limitations in satellite and airborne remote sensing prevented a clear picture of what was burning, how much biomass was consumed, where the most critical resources were threatened, or exactly what was the global environmental impact. Another important problem that must be addressed is the deforestation of the rain forest by unauthorized logging operations. To detect these illegal clear cutting activities, continuous, high resolution monitoring must be initiated. The low altitude Space Station offers an ideal platform from which to monitor the tropical regions for both fires and deforestation from an equatorial orbit. A new micro-bolometer-based thermal imager, the FireMapper, has been designed to provide a solution for these problems in fire and resource monitoring. In this paper we describe potential applications of the FireMapper aboard the International Space Station for demonstration of space-borne fire detection and measurement. .
Environment Industry, Industry Study, Spring 2008
2008-01-01
challenge is deforestation of the Amazon rainforest due to illegal logging, cattle ranching, commercial agriculture and settlement/ subsistence farming...Since the Amazon accounts for thirty percent of all remaining tropical forest in the world, the challenge is immense.24 Understandably, Brazil is a
The Flawed Strategy in Columbia
2002-04-09
reviews the aerial spraying. They admit that the spraying of commonly used agricultural chemical, glyphosate , can be slightly toxic to birds and...34 practically non- toxic " to fish because it rapidly decomposes in soil and water.61 They also claim the deforestation is caused by the illegal drug
A Near Real-time Decision Support System Improving Forest Management in the Tropics
NASA Astrophysics Data System (ADS)
Tabor, K.; Musinsky, J.; Ledezma, J.; Rasolohery, A.; Mendoza, E.; Kistler, H.; Steininger, M.; Morton, D. C.; Melton, F. S.; Manwell, J.; Koenig, K.
2013-12-01
Conservation International (CI) has a decade of experience developing near real-time fire and deforestation monitoring and forecasting systems that channel monitoring information from satellite observations directly to national and sub-national government agencies, Non-Government Organizations (NGOs), and local communities. These systems are used to strengthen forest surveillance and monitoring, fire management and prevention, protected areas management and sustainable land use planning. With support from a NASA Wildland Fires grant, in September 2013 CI will launch a brand new near real-time alert system (FIRECAST) to better meet the outstanding needs and challenges users face in addressing ecosystem degradation from wildland fire and illegal forest activities. Outreach efforts and user feedback have indicated the need for seasonal fire forecasts for effective land use planning, faster alert delivery to enhance response to illegal forest activities, and expanded forest monitoring capabilities that enable proactive responses and that strengthen forest conservation and sustainable development actions. The new FIRECAST system addresses these challenges by integrating the current fire alert and deforestation systems and adding improved ecological forecasting of fire risk; expanding data exchange capabilities with mobile technologies; and delivering a deforestation alert product that can inform policies related to land use management and Reduced Emissions from Deforestation and forest Degradation (REDD+). In addition to demonstrating the capabilities of this new real-time alert system, we also highlight how coordination with host-country institutions enhances the system's capacity to address the implementation needs of REDD+ forest carbon projects, improve tropical forest management, strengthen environmental law enforcement, and facilitate the uptake of near real-time satellite monitoring data into business practices of these national/sub-national institutions.
Selective logging and its relation to deforestation
Gregory P. Asner; Michael Keller; Marco Lentini; Frank Merry; Souza Jr. Carlos
2009-01-01
Selective logging is a major contributor to the social, economic, and ecological dynamics of Brazilian Amazonia. Logging activities have expanded from low-volume floodplain harvests in past centuries to high-volume operations today that take about 25 million m3 of wood from the forest each year. The most common high-impact conventional and often illegal logging...
Katherine Unger; Divya Abhat.; Constance Millar; Greg [featured scientists] McPherson
2010-01-01
It would appear that forests are finally having their dayâand not a moment too soon. Around the world, trees are dying at an alarming rate, besieged by illegal logging, agricultural conversion, wildfire, and drought. According to the United Nations Food and Agriculture Organization, 13 million  hectares of the worldâs forests are now lost to deforestation every year....
Illicit Crops in Tropical America: Deforestation, Landslides, and the Terrestrial Carbon Stocks.
Sara R. Lopez-Rodriguez; Juan F. Blanco-Libreros
2008-01-01
The 250 landslides that simultaneously occurred in the Río Tarazá basin, Antioquia Department, in Colombia after the torrential rains of 19 and 20 May 2007 (Fig. 1) rank among the major rainfalltriggered disasters in this country (1). According to an official report, about 3000 ha, mostly covered by illegal cash crops, were wasted, thus reviving...
Forest transition in Vietnam and displacement of deforestation abroad
Meyfroidt, Patrick; Lambin, Eric F.
2009-01-01
In some countries across the globe, tropical forest cover is increasing. The national-scale reforestation of Vietnam since 1992 is assumed to contribute to this recovery. It is achieved, however, by the displacement of forest extraction to other countries on the order of 49 (34–70) M m3, or ≈39% of the regrowth of Vietnam's forests from 1987 to 2006. Approximately half of wood imports to Vietnam during this period were illegal. Leakage due to policies restricting forest exploitation and displacement due to growing domestic consumption and exports contributed respectively to an estimated 58% and 42% of total displacement. Exports of wood products from Vietnam also grew rapidly, amounting to 84% of the displacement, which is a remarkable feature of the forest transition in Vietnam. Attribution of the displacement and corresponding forest extraction to Vietnam, the source countries or the final consumers is thus debatable. Sixty-one percent of the regrowth in Vietnam was, thus, not associated with displacement abroad. Policies allocating credits to countries for reducing deforestation and forest degradation should monitor illegal timber trade and take into account the policy-induced leakage of wood extraction to other countries. PMID:19805270
Forest transition in Vietnam and displacement of deforestation abroad.
Meyfroidt, Patrick; Lambin, Eric F
2009-09-22
In some countries across the globe, tropical forest cover is increasing. The national-scale reforestation of Vietnam since 1992 is assumed to contribute to this recovery. It is achieved, however, by the displacement of forest extraction to other countries on the order of 49 (34-70) M m(3), or approximately 39% of the regrowth of Vietnam's forests from 1987 to 2006. Approximately half of wood imports to Vietnam during this period were illegal. Leakage due to policies restricting forest exploitation and displacement due to growing domestic consumption and exports contributed respectively to an estimated 58% and 42% of total displacement. Exports of wood products from Vietnam also grew rapidly, amounting to 84% of the displacement, which is a remarkable feature of the forest transition in Vietnam. Attribution of the displacement and corresponding forest extraction to Vietnam, the source countries or the final consumers is thus debatable. Sixty-one percent of the regrowth in Vietnam was, thus, not associated with displacement abroad. Policies allocating credits to countries for reducing deforestation and forest degradation should monitor illegal timber trade and take into account the policy-induced leakage of wood extraction to other countries.
Weisse, Mikaela J; Naughton-Treves, Lisa C
2016-08-01
Many researchers have tested whether protected areas save tropical forest, but generally focus on parks and reserves, management units that have internationally recognized standing and clear objectives. Buffer zones have received considerably less attention because of their ambiguous rules and often informal status. Although buffer zones are frequently dismissed as ineffective, they warrant attention given the need for landscape-level approaches to conservation and their prevalence around the world-in Peru, buffer zones cover >10 % of the country. This study examines the effectiveness of buffer zones in the Peruvian Amazon to (a) prevent deforestation and (b) limit the extent of mining concessions. We employ covariate matching to determine the impact of 13 buffer zones on deforestation and mining concessions from 2007 to 2012. Despite variation between sites, these 13 buffer zones have prevented ~320 km(2) of forest loss within their borders during the study period and ~1739 km(2) of mining concessions, an outcome associated with the special approval process for granting formal concessions in these areas. However, a closer look at the buffer zone around the Tambopata National Reserve reveals the difficulties of controlling illegal and informal activities. According to interviews with NGO employees, government officials, and community leaders, enforcement of conservation is limited by uncertain institutional responsibilities, inadequate budgets, and corruption, although formal and community-based efforts to block illicit mining are on the rise. Landscape-level conservation not only requires clear legal protocol for addressing large-scale, formal extractive activities, but there must also be strategies and coordination to combat illegal activities.
NASA Astrophysics Data System (ADS)
Weisse, Mikaela J.; Naughton-Treves, Lisa C.
2016-08-01
Many researchers have tested whether protected areas save tropical forest, but generally focus on parks and reserves, management units that have internationally recognized standing and clear objectives. Buffer zones have received considerably less attention because of their ambiguous rules and often informal status. Although buffer zones are frequently dismissed as ineffective, they warrant attention given the need for landscape-level approaches to conservation and their prevalence around the world—in Peru, buffer zones cover >10 % of the country. This study examines the effectiveness of buffer zones in the Peruvian Amazon to (a) prevent deforestation and (b) limit the extent of mining concessions. We employ covariate matching to determine the impact of 13 buffer zones on deforestation and mining concessions from 2007 to 2012. Despite variation between sites, these 13 buffer zones have prevented ~320 km2 of forest loss within their borders during the study period and ~1739 km2 of mining concessions, an outcome associated with the special approval process for granting formal concessions in these areas. However, a closer look at the buffer zone around the Tambopata National Reserve reveals the difficulties of controlling illegal and informal activities. According to interviews with NGO employees, government officials, and community leaders, enforcement of conservation is limited by uncertain institutional responsibilities, inadequate budgets, and corruption, although formal and community-based efforts to block illicit mining are on the rise. Landscape-level conservation not only requires clear legal protocol for addressing large-scale, formal extractive activities, but there must also be strategies and coordination to combat illegal activities.
Using "Journeys in Film" to Bring Authentic STEM Activities to the K-12 Classroom.
NASA Astrophysics Data System (ADS)
Rock, B. N.
2017-12-01
The "Journeys in Film" project brings important films and documentaries ("The Martian," "Hidden Figures," "River of Gold" and others) and curriculum-based, educational support activities to the classroom. Faculty from the University of New Hampshire, in partnership with selected local middle and high school teachers, developed a STEM Lesson Plan for Journeys in Film" focused on the soon-to-released documentary "River of Gold" which highlights tropical deforestation and illegal gold mining activities in the Peruvian jungles of the Amazon Basin. Using film clips (the Trailer) from the movie and the Lesson Plan, this approach allows pre-college students to learn how to use "Google Earth" to monitor chang-over-time and to quantify the areas of deforestation and mining using multi-date NOAA/USGS Landsat Thematic Mapper and ESA Copernicus satellite data. This approach will allow students to dconduct authentic hands-on science and mathematics to address a wide range of social and environmental issues associated with tropical deforestation in Peru.
Jeffrey P. Prestemon
2000-01-01
A common popular assertion is that trade liberalization encourages deforestation. But whether this is true depends on how trade policies affect the allocation of land among competing uses and how they influence illegal cutting of public forests. A model is presented that allows for forests to be either public or private, and public forests are divided into protected (...
Development of Early Warning System Using ALOS-2/PALSAR-2 Data to Detect and Prevent Deforestation
NASA Astrophysics Data System (ADS)
Hayashi, M.; Nagatani, I.; Watanabe, T.; Tadono, T.; Miyoshi, H.; Watanabe, M.; Koyama, C.; Shimada, M.; Ogawa, T.; Ishii, K.; Higashiuwatoko, T.; Miura, M.; Okonogi, H.; Adachi, K.; Morita, T.
2017-12-01
Satellite observation is an efficient method for monitoring deforestation, and a synthetic aperture radar (SAR) is useful especially in cloudy tropical forest regions. In this context, JICA and JAXA cooperate to operate the deforestation monitoring system acquired data by the Phased Array type L-band SAR-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), which is named as "JICA-JAXA Forest Early Warning System in the Tropics" (JJ-FAST), and it have been released on November 2016. JJ-FAST detects deforestation areas, and provides their positional information for 77 countries, which is covering almost all tropical forests. It uses PALSAR-2 ScanSAR observation mode (wide-observation swath width) image, which is 50 m spatial resolution acquired at 1.5 months interval. The dark change areas compared with in two acquisitions by PALSAR-2 HV-polarization images are identified as deforestations in the system. We conducted field surveys to validate detection accuracy of the JJ-FAST in Peru (November and December, 2016), Botswana (April, 2017), and Gabon (July, 2017). As the results, 15 of 18 detected areas were correct deforestation areas, therefore user's accuracy could be confirmed as 83.3 % from limited number of the validation data. Erroneous detection areas were caused by seasonal change in agricultural land and open burning in grass land. For improvement of the accuracy, such areas must be excluded from the analysis by additional algorithms e.g. estimation of accurate masking for non-forested areas. Therefore, we are revising the forest map used for pre-processing step in the system. The JJ-FAST can be expected to contribute to monitor and reduce illegal deforestation activities in tropical forests.
VIDAL, OMAR; LÓPEZ-GARCÍA, JOSÉ; RENDÓN-SALINAS, EDUARDO
2014-01-01
We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world’s most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had <10% canopy cover), 925 ha were degraded (i.e., areas for which canopy forest decreased), and 122 ha were affected by climatic conditions. Of the total 2179 ha of affected area, 2057 ha were affected by illegal logging: 1503 ha by large-scale logging and 554 ha by small-scale logging. Mexican authorities effectively enforced efforts to protect the monarch reserve, particularly from 2007 to 2012. Those efforts, together with the decade-long financial support from Mexican and international philanthropists and businesses to create local alternative-income generation and employment, resulted in the decrease of large-scale illegal logging from 731 ha affected in 2005–2007 to none affected in 2012, although small-scale logging is of growing concern. However, dire regional social and economic problems remain, and they must be addressed to ensure the reserve’s long-term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico—which engage in one of the longest known insect migrations—are threatened by deforestation, and a multistakeholder, regional, sustainable-development strategy is needed to protect the reserve. PMID:24001209
Vidal, Omar; López-García, José; Rendón-Salinas, Eduardo
2014-02-01
We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world's most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had <10% canopy cover), 925 ha were degraded (i.e., areas for which canopy forest decreased), and 122 ha were affected by climatic conditions. Of the total 2179 ha of affected area, 2057 ha were affected by illegal logging: 1503 ha by large-scale logging and 554 ha by small-scale logging. Mexican authorities effectively enforced efforts to protect the monarch reserve, particularly from 2007 to 2012. Those efforts, together with the decade-long financial support from Mexican and international philanthropists and businesses to create local alternative-income generation and employment, resulted in the decrease of large-scale illegal logging from 731 ha affected in 2005-2007 to none affected in 2012, although small-scale logging is of growing concern. However, dire regional social and economic problems remain, and they must be addressed to ensure the reserve's long-term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico-which engage in one of the longest known insect migrations-are threatened by deforestation, and a multistakeholder, regional, sustainable-development strategy is needed to protect the reserve. © 2013 Society for Conservation Biology.
Factors Associated with Illegal Drug Use in Rural Georgia.
ERIC Educational Resources Information Center
Napier, Ted L.; And Others
1983-01-01
Assessed the extent of illegal drug use among 2,060 junior and senior high school students in rural Georgia, and found extensive illegal drug use, especially among older White male students. Paper presented at the annual meeting of the Southern Association of Agricultural Scientists, Orlando, Florida, February 1982. (JAC)
Evaluating biodiversity conservation around a large Sumatran protected area.
Linkie, Matthew; Smith, Robert J; Zhu, Yu; Martyr, Deborah J; Suedmeyer, Beth; Pramono, Joko; Leader-Williams, Nigel
2008-06-01
Many of the large, donor-funded community-based conservation projects that seek to reduce biodiversity loss in the tropics have been unsuccessful. There is, therefore, a need for empirical evaluations to identify the driving factors and to provide evidence that supports the development of context-specific conservation projects. We used a quantitative approach to measure, post hoc, the effectiveness of a US$19 million Integrated Conservation and Development Project (ICDP) that sought to reduce biodiversity loss through the development of villages bordering Kerinci Seblat National Park, a UNESCO World Heritage Site in Indonesia. We focused on the success of the ICDP component that disbursed a total of US$1.5 million through development grants to 66 villages in return for their commitment to stop illegally clearing the forest. To investigate whether the ICDP lowered deforestation rates in focal villages, we selected a subset of non-ICDP villages that had similar physical and socioeconomic features and compared their respective deforestation rates. Village participation in the ICDP and its development schemes had no effect on deforestation. Instead, accessible areas where village land-tenure had been undermined by the designation of selective-logging concessions tended to have the highest deforestation rates. Our results indicate that the goal of the ICDP was not met and, furthermore, suggest that both law enforcement inside the park and local property rights outside the park need to be strengthened. Our results also emphasize the importance of quantitative approaches in helping to inform successful and cost-effective strategies for tropical biodiversity conservation.
NASA Astrophysics Data System (ADS)
Barraza Bernadas, V.; Grings, F.; Roitberg, E.; Perna, P.; Karszenbaum, H.
2017-12-01
The Dry Chaco region (DCF) has the highest absolute deforestation rates of all Argentinian forests. The most recent report indicates a current deforestation rate of 200,000 Ha year-1. In order to better monitor this process, DCF was chosen to implement an early warning program for illegal deforestation. Although the area is intensively studied using medium resolution imagery (Landsat), the products obtained have a yearly pace and therefore unsuited for an early warning program. In this paper, we evaluated the performance of an online Bayesian change-point detection algorithm for MODIS Enhanced Vegetation Index (EVI) and Land Surface Temperature (LST) datasets. The goal was to to monitor the abrupt changes in vegetation dynamics associated with deforestation events. We tested this model by simulating 16-day EVI and 8-day LST time series with varying amounts of seasonality, noise, length of the time series and by adding abrupt changes with different magnitudes. This model was then tested on real satellite time series available through the Google Earth Engine, over a pilot area in DCF, where deforestation was common in the 2004-2016 period. A comparison with yearly benchmark products based on Landsat images is also presented (REDAF dataset). The results shows the advantages of using an automatic model to detect a changepoint in the time series than using only visual inspection techniques. Simulating time series with varying amounts of seasonality and noise, and by adding abrupt changes at different times and magnitudes, revealed that this model is robust against noise, and is not influenced by changes in amplitude of the seasonal component. Furthermore, the results compared favorably with REDAF dataset (near 65% of agreement). These results show the potential to combine LST and EVI to identify deforestation events. This work is being developed within the frame of the national Forest Law for the protection and sustainable development of Native Forest in Argentina in agreement with international legislation (REDD+).
Mining drives extensive deforestation in the Brazilian Amazon.
Sonter, Laura J; Herrera, Diego; Barrett, Damian J; Galford, Gillian L; Moran, Chris J; Soares-Filho, Britaldo S
2017-10-18
Mining poses significant and potentially underestimated risks to tropical forests worldwide. In Brazil's Amazon, mining drives deforestation far beyond operational lease boundaries, yet the full extent of these impacts is unknown and thus neglected in environmental licensing. Here we quantify mining-induced deforestation and investigate the aspects of mining operations, which most likely contribute. We find mining significantly increased Amazon forest loss up to 70 km beyond mining lease boundaries, causing 11,670 km 2 of deforestation between 2005 and 2015. This extent represents 9% of all Amazon forest loss during this time and 12 times more deforestation than occurred within mining leases alone. Pathways leading to such impacts include mining infrastructure establishment, urban expansion to support a growing workforce, and development of mineral commodity supply chains. Mining-induced deforestation is not unique to Brazil; to mitigate adverse impacts of mining and conserve tropical forests globally, environmental assessments and licensing must considered both on- and off-lease sources of deforestation.
Near real-time monitoring systems for adaptive management and improved forest governance
NASA Astrophysics Data System (ADS)
Musinsky, J.; Tabor, K.; Cano, A.
2012-12-01
The destruction and degradation of the world's forests from deforestation, illegal logging and fire has wide-ranging environmental and economic impacts, including biodiversity loss, the degradation of ecosystem services and the emission of greenhouse gases. In an effort to strengthen local capacity to respond to these threats, Conservation International has developed a suite of near real-time satellite monitoring systems generating daily alerts, maps and reports of forest fire, fire risk, deforestation and degradation that are used by national and sub-national government agencies, NGO's, scientists, communities, and the media to respond to and report on threats to forest resources. Currently, the systems support more than 1000 subscribers from 45 countries, focusing on Madagascar, Indonesia, Bolivia and Peru. This presentation will explore the types of innovative applications users have found for these data, challenges they've encountered in data acquisition and accuracy, and feedback they've given on the usefulness of these systems for REDD+ implementation, protected areas management and improved forest governance.;
Small farmers and deforestation in Amazonia
NASA Astrophysics Data System (ADS)
Brondízio, Eduardo S.; Cak, Anthony; Caldas, Marcellus M.; Mena, Carlos; Bilsborrow, Richard; Futemma, Celia T.; Ludewigs, Thomas; Moran, Emilio F.; Batistella, Mateus
This chapter discusses the relationship between small farmers' land use and deforestation, with particular attention paid to the past 30 years of Amazonian colonization in Brazil and Ecuador. Our analysis calls attention to common features uniting different social groups as small farmers (e.g., social identity, access to land and resources, technology, market, and credit), as well as the variability between small farmers in terms of time in the region (from native populations to recent colonists), contribution to regional deforestation, types of land use systems. At a regional level, small farmers contribute to the majority of deforestation events, but are responsible for only a fraction of the total deforested area in Amazonia. We discuss three misconceptions that have been used to define small farmers and their contribution to the regional economy, development, and deforestation: (1) small farmers have backward land use systems associated with low productivity and extensive deforestation and subsistence production, (2) small farmers contribute to Amazonian deforestation as much as large farmers, and (3) small farmers, particularly colonist farmers, follow an inexorable path of deforestation unless curbed by government action. We conclude the chapter discussing their growing regional importance and the need for more inclusive public policies concerning infrastructure and services and valorization of resources produced in rural areas of Amazonia.
New land use scenarios for the Brazilian Amazonia: how to reach a sustainable future?
NASA Astrophysics Data System (ADS)
Aguiar, A. P. D.; Vieira, I.; Toledo, P.; Araujo, R.; Coelho, A.; Pinho, P.; Assis, T.; Dalla-Nora, E. L.; Kawakami Savaget, E.; Batistella, M.
2014-12-01
Following an intense deforestation process initiated in the 1960s, clear-cut deforestation rates in the Brazilian Amazon have decreased significantly since 2004. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring and control systems, and credit restriction mechanisms. Although regional social indicators have also slightly improved, society remains unequal and violent, both in urban and rural areas. Furthermore, the combined results of the fall of deforestation and the increased economic importance of the agribusiness sector have led to the political weakening of the so-called socio-environmental model. Thus, the current situation indicates a future of low (clear-cut) carbon emissions and low social conditions. On the other hand, other threats remain, including forest degradation derived from illegal logging and forest fires. There is also considerable uncertainty about the fate of the remaining forest areas as multiple forces can contribute to the return of high deforestation, including the rapidly expanding global markets for agricultural commodities, large-scale transportation and energy infrastructure projects, and weak institutions. We present the results of a participatory scenario process, in which we discussed the future of the region until 2050 combining normative and exploratory approaches. We include an ideal "Sustainability" scenario (Scenario A) in which we envision major socioeconomic, institutional and environmental achievements. Scenario B stays in the "Middle of the road", in which the society maintains some of the positive environmental trends of the last decade, but not reversing the structural situation of social inequities. Scenario C is a pessimistic vision, named "Fragmentation" with high deforestation rates and low social development. The goal of the work was twofold: (a) to propose a method to enrich the discussion among different private and governmental stakeholders on how to build a trajectory towards sustainability; (b) to support the parameterization of spatially-explicit LUCC models in the scope of the AMAZALERT project.
Deforestation and threats to the biodiversity of Amazonia.
Vieira, I C G; Toledo, P M; Silva, J M C; Higuchi, H
2008-11-01
This is a review of the main factors currently perceived as threats to the biodiversity of Amazonia. Deforestation and the expansion of the agricultural frontier go hand in hand within the context of occupation and land use in the region, followed by a hasty process of industrialization since the 1950s and, more recently, by a nation-wide attempt to adapt Brazil to economic globalization. Intensive agriculture and cattle-raising, lack of territorial planning, the monoculture of certain crops often promoted by official agencies, and the introduction of exotic species by cultivation are some of the factors affecting Amazonian biodiversity. There are still large gaps in knowledge that need to be dealt with for a better understanding of the local ecosystems so as to allow their preservation, but such investigation is subjected to manifold hindrances by misinformation, disinformation and sheer ignorance from the legal authorities and influential media. Data available for select groups of organisms indicate that the magnitude of the loss and waste of natural resources associated with deforestation is staggering, with estimated numbers of lost birds and primates being over ten times that of such animals illegally commercialized around the world in one year. The challenges to be met for an eventual reversal of this situation demand more systematic and concerted studies, the consolidation of new and existing research groups, and a call for a halt to activities depleting the Amazonian rainforest.
Verifying the geographic origin of mahogany (Swietenia macrophylla King) with DNA-fingerprints.
Degen, B; Ward, S E; Lemes, M R; Navarro, C; Cavers, S; Sebbenn, A M
2013-01-01
Illegal logging is one of the main causes of ongoing worldwide deforestation and needs to be eradicated. The trade in illegal timber and wood products creates market disadvantages for products from sustainable forestry. Although various measures have been established to counter illegal logging and the subsequent trade, there is a lack of practical mechanisms for identifying the origin of timber and wood products. In this study, six nuclear microsatellites were used to generate DNA fingerprints for a genetic reference database characterising the populations of origin of a large set of mahogany (Swietenia macrophylla King, Meliaceae) samples. For the database, leaves and/or cambium from 1971 mahogany trees sampled in 31 stands from Mexico to Bolivia were genotyped. A total of 145 different alleles were found, showing strong genetic differentiation (δ(Gregorious)=0.52, F(ST)=0.18, G(ST(Hedrick))=0.65) and clear correlation between genetic and spatial distances among stands (r=0.82, P<0.05). We used the genetic reference database and Bayesian assignment testing to determine the geographic origins of two sets of mahogany wood samples, based on their multilocus genotypes. In both cases the wood samples were assigned to the correct country of origin. We discuss the overall applicability of this methodology to tropical timber trading. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Alvarez, Nora L; Naughton-Treves, Lisa
2003-06-01
Amazonian deforestation rates vary regionally, and ebb and flow according to macroeconomic policy and local social factors. We used remote sensing and field interviews to investigate deforestation patterns and drivers at a Peruvian frontier during 1986-1991, when rural credit and guaranteed markets were available; and 1991-1997, when structural adjustment measures were imposed. The highest rate of clearing (1.5% gross) was observed along roads during 1986-1991. Roadside deforestation slowed in 1991-1997 (0.7% gross) and extensive regrowth yielded a net increase in forest cover (0.5%). Deforestation along rivers was relatively constant. Riverside farms today retain more land in both crops and forest than do roadside farms where pasture and successional growth predominate. Long-term residents maintain more forest on their farms than do recent colonists, but proximity to urban markets is the strongest predictor of forest cover. Future credit programs must reflect spatial patterns of development and ecological vulnerability, and support the recuperation of fallow lands and secondary forest.
Forest extent and deforestation in tropical Africa since 1900.
Aleman, Julie C; Jarzyna, Marta A; Staver, A Carla
2018-01-01
Accurate estimates of historical forest extent and associated deforestation rates are crucial for quantifying tropical carbon cycles and formulating conservation policy. In Africa, data-driven estimates of historical closed-canopy forest extent and deforestation at the continental scale are lacking, and existing modelled estimates diverge substantially. Here, we synthesize available palaeo-proxies and historical maps to reconstruct forest extent in tropical Africa around 1900, when European colonization accelerated markedly, and compare these historical estimates with modern forest extent to estimate deforestation. We find that forests were less extensive in 1900 than bioclimatic models predict. Resultantly, across tropical Africa, ~ 21.7% of forests have been deforested, yielding substantially slower deforestation than previous estimates (35-55%). However, deforestation was heterogeneous: West and East African forests have undergone almost complete decline (~ 83.3 and 93.0%, respectively), while Central African forests have expanded at the expense of savannahs (~ 1.4% net forest expansion, with ~ 135,270 km 2 of savannahs encroached). These results suggest that climate alone does not determine savannah and forest distributions and that many savannahs hitherto considered to be degraded forests are instead relatively old. These data-driven reconstructions of historical biome distributions will inform tropical carbon cycle estimates, carbon mitigation initiatives and conservation planning in both forest and savannah systems.
Forest plunder in Southeast Asia: an environmental security nexus in Burma and Cambodia.
Talbott, K; Brown, M
1998-01-01
This article discusses the cycle of conversion, consumption, and corruption that undermines the environment and civil society in Cambodia and Burma (Myanmar). In these countries, forests are declining in patterns similar to other Southeast Asian deforestation. Illegal logging, prostitution, and heroin trafficking constitute the bulk of Cambodia's shadow economy. Revenues are used to provide financial support for political causes and build the private wealth of the elite. Major political and guerilla groups and the Cambodian military have been major beneficiaries of logging revenue, supported private sector forestry in many military zones, and facilitated logging and trade. About 40% of land goes to forest concessions granted to Southeast Asian companies, and revenues bypass the regular state budget. In Burma, the cease fire agreements in the early 1990s, led to remote border area forests being opened up to large, nonsustainable commercial timber mining. Land was divided into ethnic and government controlled areas. Timber profits were funneled into a business owned by members of the new ruling force, the SLORC, and used to launder drug exports and profits. Trading partners include Thailand, and most recently, China. It is speculated that deforested areas are replanted with opium poppies, and trade routes carry timber and heroin. The unregulated logging industry and the lack of financial accounting of the timber trade undermine the structures of civil society and good governance. Forest policies appear progressive but are in reality unenforced. Politics and agreements in both countries are closely tied to deforestation issues.
Attribution of CO2 emissions from Brazilian deforestation to domestic and international drivers
NASA Astrophysics Data System (ADS)
Karstensen, J.; Peters, G.
2011-12-01
Efforts to address extensive deforestation to reduce climate change and save primary forests are taking place on a global scale. Whilst several studies have estimated the emissions occurring from deforestation in large rainforests, few studies have investigated the domestic and international drivers sustaining and increasing the deforestation rates. Brazil, having the largest rainforest in the world and one of the highest deforestation rates, is also currently one of the world's largest exporters of soybeans and beef. In this case study we establish the link between Brazilian deforestation and cattle and soybean production, and further attribute emissions to countries and economic sectors through export and import of Brazilian commodities. The emissions from deforestation can therefore be allocated to the countries and sectors consuming goods and services produced on deforested land in Brazil. A land-use change model and deforestation data is coupled with a carbon cycle model to create yearly emission estimates and different emission allocation schemes, depending on emission amortizations and discounting functions for past deforestation. We use an economic multi-regional input-output model (with 112 regions and 57 sectors) to distribute these emissions along agricultural trade routes, through domestic and international consumption in 2004. With our implementation we find that around 80 % of emissions from deforested land is due to cattle grazing, while agricultural transition effects suggests soy beans are responsible for about 20 % of the emissions occurring in 2004. Nearly tree quarters of the soy beans are consumed outside Brazil, of which China, Germany and France are the biggest consumers. Soy beans are consumed by a variety of sectors in the food industry. Brazil exports about 30 % of the cattle it produces, where Russia, USA and Germany are among the largest consumers. Cattle consumption mainly occurs in the meat sectors. In this study we estimate the CO2 emissions allocated to the consuming countries and economic sectors, to ultimately distribute responsibility and find the main drivers of Brazilian deforestation.
Pre-Columbian deforestation as an amplifier of drought in Mesoamerica
NASA Astrophysics Data System (ADS)
Cook, B. I.; Anchukaitis, K. J.; Kaplan, J. O.; Puma, M. J.; Kelley, M.; Gueyffier, D.
2012-08-01
Droughts in pre-Columbian Mesoamerica caused significant societal disruptions during the Late Classic and Post-Classic Periods. While the primary causes of these droughts are still debated, it has been speculated that they may be linked to extensive deforestation associated with high population densities during these intervals. Here we show that pre-Columbian deforestation would have biased the climate in Mesoamerica towards a drier mean state, amplifying drought in the region. In climate model simulations using a pre-Columbian land cover reconstruction, annual precipitation decreases by 5%-15% throughout southern Mexico and the Yucatán compared to simulations using either natural forest cover or forest regrowth associated with population declines after 1500 C.E. These changes are driven primarily by large reductions (10%-20%) in precipitation during the late summer wet season (August-September). When compared to precipitation changes estimated to have occurred during the Maya collapse, our results suggest that deforestation could account for up to sixty percent of the mean drying during this interval. Many regions previously deforested in the pre-Columbian era are now under dense forest cover, indicating potential future climate impacts should tropical deforestation of these areas accelerate.
Quantifying the risk of deforestation in Latin America and the Caribbean.
NASA Astrophysics Data System (ADS)
Manners, Rhys; Varela-Ortega, Consuelo
2015-04-01
Latin American and Caribbean countries have seen considerable deforestation due to a complex web of interconnected and interdependent causes, which include agricultural expansion, infrastructure development, social demographics and governmental policies and activity. It is necessary for successful and efficient policy development to understand how variability in these causes can potentially result in increased or decreased deforestation. The purpose of this study is to develop a tool that can quantify the risk, as in the threat or pressure, of potential deforestation, whilst identifying the key indicators that contribute to this risk. This tool will take the form of a composite index that will provide spatial and temporal trends of deforestation risk across Latin America and the Caribbean. The development of the Deforestation Risk Index (DRI) was based upon work performed in the EU project ROBIN1. Indicators of deforestation included in the index were identified based upon the multi-scalar approach adopted in ROBIN- nationally from principal component analysis and econometric modelling, provincially from extensive interviews with experts and farmers (subsistence and commercial) in Amazonian regions of Bolivia and Brazil, and locally from stakeholder workshops in Bolivia, Brazil and Mexico. The identification process was supported by an extensive literature review. In total, 11 indicators were identified and grouped into four components (biophysical, economic, governance and social) capable of explaining the risk of deforestation in Latin America and Caribbean countries. The DRI was calculated for 24 Latin American and Caribbean countries in the years 2000, 2005 and 2010 using national-level data collected from open access databases (FAOStat, WorldBank and UNDP). The DRI was subjected to two weighting schemes; the first based upon the opinions of experts from ROBIN (weighted biophysical and governance components heavily), and the second developed from the results of the ROBIN stakeholder workshops (heavily weighted the governance component). The results from the DRI were categorised as; low risk, moderate risk, at risk, elevated risk, high risk and extreme risk. The DRI demonstrated that in over 60% of countries, the risk of deforestation reduced between 2000-2010 with Belize, Costa Rica, Guyana and Venezuela being notable exceptions. Countries that saw reductions in their risk did so through economic growth (per capita GDP), institutional development (governmental effectiveness and regulatory quality), as well reductions in the scale of agricultural expansion. Despite the general trend towards lower risk, Amazonian countries were still found to be subject to potential deforestation. Bolivia, Ecuador, Guyana and Suriname were estimated to have an elevated risk of deforestation, with Brazil, Colombia and Peru considered to be at risk in 2010. The DRI provides an innovative, potentially multi-scalar tool, that can be used by national policy makers to identify where policies should be developed and directed, where specific measures in international programs such as REDD/+ could be most effectively pursued, and for international policy makers to identify and to tailor development or aid packages that reduce rather than contribute to deforestation.
Predicting Deforestation Patterns in Loreto, Peru from 2000-2010 Using a Nested GLM Approach
NASA Astrophysics Data System (ADS)
Vijay, V.; Jenkins, C.; Finer, M.; Pimm, S.
2013-12-01
Loreto is the largest province in Peru, covering about 370,000 km2. Because of its remote location in the Amazonian rainforest, it is also one of the most sparsely populated. Though a majority of the region remains covered by forest, deforestation is being driven by human encroachment through industrial activities and the spread of colonization and agriculture. The importance of accurate predictive modeling of deforestation has spawned an extensive body of literature on the topic. We present a nested GLM approach based on predictions of deforestation from 2000-2010 and using variables representing the expected drivers of deforestation. Models were constructed using 2000 to 2005 changes and tested against data for 2005 to 2010. The most complex model, which included transportation variables (roads and navigable rivers), spatial contagion processes, population centers and industrial activities, performed better in predicting the 2005 to 2010 changes (75.8% accurate) than did a simpler model using only transportation variables (69.2% accurate). Finally we contrast the GLM approach with a more complex spatially articulated model.
Defaunation affects carbon storage in tropical forests
Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F.; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro
2015-01-01
Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067
Potential trajectories of the upcoming forest trading mechanism in Pará State, Brazilian Amazon
2017-01-01
In 2012, the Brazilian government revised the federal Forest Code that governs the use of forest resources on rural properties. The revisions included a forest trading mechanism whereby landowners who deforested more than what is legally allowed before 2008 could absolve their deforestation “debts” by purchasing Environmental Reserve Quotas (CRA) from landowners who conserved more forest than legally required. CRA holds promise as a tool to complement command-and-control initiatives to reduce deforestation and incentivize restoration. However, the success of this instrument depends on how its implementation is governed. This study builds on a few recent assessments of the potential of the CRA in Brazil–but that are focused on biophysical potential–by assessing how a few key implementation decisions may influence the CRA market development. Specifically, this study estimates how decisions on who can participate will likely influence the potential forest surplus and forest debt for the CRA market, and takes into account governance characteristics relevant to the State of Pará, eastern Amazonia. In particular, the study evaluates the effects in the CRA market eligibility after simulating a validation of properties in the environmental rural registry (CAR) and assessing different scenarios surrounding land tenure status of properties. Results show how regulatory decisions on CRA market eligibility will determine the extent to which CRA will serve as a tool to support forest conservation or as a low-cost path to help illegal deforesters to comply with legislation, but with limited additional environmental benefits. The study reviews regulatory options that would reduce the risk of forest oversupply, and thereby increase the additionality of the areas eligible for CRA. Overall, the study demonstrates the importance of including governance as well as biophysical characteristics in assessing the potential of forest trading tools to deliver additional environmental conservation and restoration benefits. PMID:28379984
Potential trajectories of the upcoming forest trading mechanism in Pará State, Brazilian Amazon.
Brito, Brenda
2017-01-01
In 2012, the Brazilian government revised the federal Forest Code that governs the use of forest resources on rural properties. The revisions included a forest trading mechanism whereby landowners who deforested more than what is legally allowed before 2008 could absolve their deforestation "debts" by purchasing Environmental Reserve Quotas (CRA) from landowners who conserved more forest than legally required. CRA holds promise as a tool to complement command-and-control initiatives to reduce deforestation and incentivize restoration. However, the success of this instrument depends on how its implementation is governed. This study builds on a few recent assessments of the potential of the CRA in Brazil-but that are focused on biophysical potential-by assessing how a few key implementation decisions may influence the CRA market development. Specifically, this study estimates how decisions on who can participate will likely influence the potential forest surplus and forest debt for the CRA market, and takes into account governance characteristics relevant to the State of Pará, eastern Amazonia. In particular, the study evaluates the effects in the CRA market eligibility after simulating a validation of properties in the environmental rural registry (CAR) and assessing different scenarios surrounding land tenure status of properties. Results show how regulatory decisions on CRA market eligibility will determine the extent to which CRA will serve as a tool to support forest conservation or as a low-cost path to help illegal deforesters to comply with legislation, but with limited additional environmental benefits. The study reviews regulatory options that would reduce the risk of forest oversupply, and thereby increase the additionality of the areas eligible for CRA. Overall, the study demonstrates the importance of including governance as well as biophysical characteristics in assessing the potential of forest trading tools to deliver additional environmental conservation and restoration benefits.
Deforestation in Brazil: motivations, journeys and tendencies
NASA Astrophysics Data System (ADS)
Leite, J. C.; Ferreira, A. J. D.; Esteves, T. C. J.; Bento, C. P. M.
2012-04-01
José Carlos Leite1; António José Dinis Ferreira2; Tanya Cristina de Jesus Esteves2; Célia Patrícia Martins Bento2 1Universidade Federal de Mato Grosso, Brazil; 2IPC - Escola Superior Agrária de Coimbra, Portugal Over the last three decades, deforestation in Brazil occurred systematically in the area known as the "arc of deforestation", an extensive geographical area located in the interface of the Cerrado and the Amazon biomes. This work encompasses the reasons, causes and/or motivations of that recent deforestation, focusing on the Central-West and Northern regions. A number of reasons will be presented, seeking to build an approach able to identify the deepest roots of deforestation of those regions. Our actions over the environment are framed by our cultural matrix that stream from a western philosophic attitude. This way, to understand the framework where the deforestation actions are justified requires a multidisciplinary approach to understand the deforestation of the Cerrado and Amazon biomes, since the motivations for forest destruction in Brazil are complex and not entirely understood within the domains of a single disciplinary area. To search for an isolated cause to understand the recent deforestation can only be plausible if we ignore information on what actually happens. The methodology used in this work is based on a bibliographical revision, analysis of georeferrenced information, participative processes implementation and observation of stakeholder behavior, and field research. It departs from a general vision on deforestation that initially occurred at the littoral region, by the Atlantic Rainforest, right after the arrival of the Europeans, and throughout the centuries penetrates towards the interior, hitting the Cerrado and Amazon biomes. In this last case, we focused on the Vale do Alto Guaporé region, near Bolivia, where the intensity of the deforestation was verified from 1970 to 1990. Ultimately, the final result is a mosaic of reasons for deforestation - that has been done by both large and small land owners - that incorporates other views that have been absent in the explanations given by so-called specialized literature of Brazil's deforestation.
Spatial and temporal patterns of deforestation in Rio Cajarí Extrative Reserve, Amapá, Brazil.
Funi, Claudia; Paese, Adriana
2012-01-01
The Rio Cajarí Extractive Reserve (RCER) is a sustainable use protected area located in Southern Amapá state, Brazil. This protected area is home to traditional agro-extractive families, but has been increasingly invaded by commercial agriculture producers. In this work, we test the hypothesis that the RCER implementation has distinctly affected spatial patterns of deforestation and rates of bare soil and secondary forest formation by the social groups occupying the protected area and its surrounding area. Detailed maps of vegetation cover and deforestation were elaborated, based on Landsat TM images from 1991, 1998, 2007 and 2008 and Linear Spectral Mixture Models. Based on an extensive fieldwork, patches were classified according to the agents causing deforestation and characterized with ten explanatory variables. A discriminant function analysis was used to identify homogeneous groups based on the data. Results show increased rates and distinct spatial patterns of deforestation by three groups: extractivists, non traditional commercial agriculture producers, and a less representative group constituted of miners, cattle and timber producers. In all analyzed dates, clearings by the extrativist community presented the highest total area and smaller average sizes and were located in close proximity to villages. Deforestation patches by the non-traditional group were exclusively associated with ombrophilous forests; these presented higher average sizes and proximity indexes, and showed increased aggregation and large cluster formation. No significant differences were observed in deforestation patterns by the three groups inside or outside the reserve.
Spatial and Temporal Patterns of Deforestation in Rio Cajarí Extrative Reserve, Amapá, Brazil
Funi, Claudia; Paese, Adriana
2012-01-01
The Rio Cajarí Extractive Reserve (RCER) is a sustainable use protected area located in Southern Amapá state, Brazil. This protected area is home to traditional agro-extractive families, but has been increasingly invaded by commercial agriculture producers. In this work, we test the hypothesis that the RCER implementation has distinctly affected spatial patterns of deforestation and rates of bare soil and secondary forest formation by the social groups occupying the protected area and its surrounding area. Detailed maps of vegetation cover and deforestation were elaborated, based on Landsat TM images from 1991, 1998, 2007 and 2008 and Linear Spectral Mixture Models. Based on an extensive fieldwork, patches were classified according to the agents causing deforestation and characterized with ten explanatory variables. A discriminant function analysis was used to identify homogeneous groups based on the data. Results show increased rates and distinct spatial patterns of deforestation by three groups: extractivists, non traditional commercial agriculture producers, and a less representative group constituted of miners, cattle and timber producers. In all analyzed dates, clearings by the extrativist community presented the highest total area and smaller average sizes and were located in close proximity to villages. Deforestation patches by the non-traditional group were exclusively associated with ombrophilous forests; these presented higher average sizes and proximity indexes, and showed increased aggregation and large cluster formation. No significant differences were observed in deforestation patterns by the three groups inside or outside the reserve. PMID:23284806
NASA Astrophysics Data System (ADS)
Armstrong, A. H.; Fatoyinbo, T. E.; Fischer, R.; Huth, A.; Shugart, H. H.
2013-12-01
In the species rich tropics, forest conservation is often eclipsed by anthropogenic disturbance, resulting in a heightened need for an accurate assessment of biomass and the gaining of predictive capability before these ecosystems disappear. The combination of multi-temporal remote sensing data, field data and forest growth modeling to quantify carbon stocks and flux is therefore of great importance. In this study, we utilize these methods to (1) improve forest biomass and carbon flux estimates for the study region in Eastern Madagascar, and (2) initialize an individual-based growth model that incorporates the anthropogenic factors causing deforestation to project ecosystem response to future environmental change. Recent studies have shown that there is a direct correlation between the international rice market and rates of deforestation in tropical countries such as Madagascar (see Minten et al., 2006). Further, although law protects the remaining forest areas, dictatorships and recent political unrest have lead to poor or non-existent enforcement of precious wood and forest protection over the past 35 years. Our approach combined multi-temporal remote sensing analysis and ecological modeling using a theoretical and mathematical approach to assess biomass change and to understand how tree growth and life history (growth response patterns) relate to past and present economic variability in Madagascar forests of the eastern Toamasina region. We measured rates of change of deforestation with respect to politics and the price of rice by classifying and comparing biomass using 30m Landsat during 5 political regime time periods (1985-1992, 1993-1996, 1997-2001, 2002-2008, 2009 to present). Forest biomass estimations were calibrated using forest inventory data collected over 3 growing seasons over the study region (130 small circular plots in primary forest). This information was then built into the previously parameterized (Armstrong et al., in prep and Fischer et al in review) Madagascar FORMIX3 Model (see Huth and Ditzer, 2000) by incorporating rice economy, selective logging and political stability modules into the model to control certain species groups (i.e. selective harvest) and fire frequency (encroachment). The improved FORMIX3 model was then used to investigate and project forest growth response to a variety of impact scenarios ranging from an increase in overall deforestation to a decrease in deforestation and increase in protection enforcement. Our findings showed a significant positive correlation between increasing deforestation rates and higher local rice prices due to political regime and international market factors. This research resulted in the first quantitative analysis of the relationship between the international rice market and local land-use in terms of slash and burn agriculture, illegal logging of precious hardwood in Madagascar.
Spatiotemporal trends of illegal activities from ranger-collected data in a Ugandan national park.
Critchlow, R; Plumptre, A J; Driciru, M; Rwetsiba, A; Stokes, E J; Tumwesigye, C; Wanyama, F; Beale, C M
2015-10-01
Within protected areas, biodiversity loss is often a consequence of illegal resource use. Understanding the patterns and extent of illegal activities is therefore essential for effective law enforcement and prevention of biodiversity declines. We used extensive data, commonly collected by ranger patrols in many protected areas, and Bayesian hierarchical models to identify drivers, trends, and distribution of multiple illegal activities within the Queen Elizabeth Conservation Area (QECA), Uganda. Encroachment (e.g., by pastoralists with cattle) and poaching of noncommercial animals (e.g., snaring bushmeat) were the most prevalent illegal activities within the QECA. Illegal activities occurred in different areas of the QECA. Poaching of noncommercial animals was most widely distributed within the national park. Overall, ecological covariates, although significant, were not useful predictors for occurrence of illegal activities. Instead, the location of illegal activities in previous years was more important. There were significant increases in encroachment and noncommercial plant harvesting (nontimber products) during the study period (1999-2012). We also found significant spatiotemporal variation in the occurrence of all activities. Our results show the need to explicitly model ranger patrol effort to reduce biases from existing uncorrected or capture per unit effort analyses. Prioritization of ranger patrol strategies is needed to target illegal activities; these strategies are determined by protected area managers, and therefore changes at a site-level can be implemented quickly. These strategies should also be informed by the location of past occurrences of illegal activity: the most useful predictor of future events. However, because spatial and temporal changes in illegal activities occurred, regular patrols throughout the protected area, even in areas of low occurrence, are also required. © 2015 Society for Conservation Biology.
NASA Technical Reports Server (NTRS)
2002-01-01
Indonesia is rapidly losing its lowland forests to logging, much of it illegal. At present, logging is claiming the forests at a rate of nearly two million hectares (slightly less than 5 million acres: roughly the same area as the state of Massachusetts) each year. At this rate, the island of Sumatra will have no more lowland forests by 2005, a fate already befallen the island of Sulawesi. Indonesia's lowland forests are home to a wide variety of wildlife and are considered among the richest ecosystems in the world. Among the unique life forms in these forests are the Orangutan and the Sumatra Tiger. Sixteen percent of the entire world's bird species, eleven percent of its plants, and ten percent of all mammals on Earth call these forests home. Many are found nowhere else. In the two Landsat scenes shown above, the pattern of deforestation can be clearly discerned. Deep green in these images shows lush vegetation in the forest cover. In both scenes, deep and pale red shows areas where there is little or no vegetation, often bare ground from where forest has been completely stripped. The latter Landsat scene from 2001 not only shows extensive clear cut areas, but also new logging roads built into the remaining forest to facilitate future cutting. This lowland forest region is located on Indonesia's largest island, Sumatra, roughly 100 km southwest of the provincial capital of Jambi. The first image was acquired by Landsat 5's Thematic Mapper (TM) sensor on June 22, 1992, the second by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on January 14, 2001. Both are false-color composite images made using shortwave infrared, infrared, and green wavelengths. The area shown above is roughly 30 km x 22 km (19 miles x 14 miles). The large versions of these images show the same general area covering 60 km x 60 km. Images provided by the Tropical Rain Forest Information Center (TRFIC) through the Basic Science and Remote Sensing Initiative (BSRSI) based at Michigan State University, and the Landsat 7 Project Science Office at NASA Goddard Space Flight Center
Factors driving deforestation in common-pool resources in northern Mexico.
Perez-Verdin, Gustavo; Kim, Yeon-Su; Hospodarsky, Denver; Tecle, Aregai
2009-01-01
The theory of collective action has been extensively used to explain the relationship between common-based property regimes and the conservation of natural resources. However, there are two key components of the theory that literature reports as puzzles in which no consensus exists about their effect on the performance of common-pool resources. These are group size and heterogeneity. This study analyzes the effects of these two key components on the effectiveness of community-based forestry, called ejidos, to protect their forest resources in northern Mexico. We used a multinomial logit model to determine the contribution of 16 explanatory variables to the dependent variable, a measure of success of ejidos defined by the presence of deforested, degraded, or forested conditions. The results show that corn yield, marginality, percent of forest area, total population, a forest value index, distance to markets, roads and towns, were all statistically significant in driving deforested conditions. Deforestation becomes more attractive for poor communities and as corn yield and distance to towns, roads, and markets decrease. In general, group size and heterogeneity had no significant effects on the presence of deforested conditions. Deforestation is driven by resource-specific characteristics, such as location and soil productivity, not by ejidos' attributes, such as total area or number of members. We argue that current institutional policies focusing on the structure of property right arrangements should be shifted (1) to provide better technology for land cultivation; (2) to reduce the marginality problem in poor communities; and (3) to strengthen local institutions.
Observations of increased tropical rainfall preceded by air passage over forests.
Spracklen, D V; Arnold, S R; Taylor, C M
2012-09-13
Vegetation affects precipitation patterns by mediating moisture, energy and trace-gas fluxes between the surface and atmosphere. When forests are replaced by pasture or crops, evapotranspiration of moisture from soil and vegetation is often diminished, leading to reduced atmospheric humidity and potentially suppressing precipitation. Climate models predict that large-scale tropical deforestation causes reduced regional precipitation, although the magnitude of the effect is model and resolution dependent. In contrast, observational studies have linked deforestation to increased precipitation locally but have been unable to explore the impact of large-scale deforestation. Here we use satellite remote-sensing data of tropical precipitation and vegetation, combined with simulated atmospheric transport patterns, to assess the pan-tropical effect of forests on tropical rainfall. We find that for more than 60 per cent of the tropical land surface (latitudes 30 degrees south to 30 degrees north), air that has passed over extensive vegetation in the preceding few days produces at least twice as much rain as air that has passed over little vegetation. We demonstrate that this empirical correlation is consistent with evapotranspiration maintaining atmospheric moisture in air that passes over extensive vegetation. We combine these empirical relationships with current trends of Amazonian deforestation to estimate reductions of 12 and 21 per cent in wet-season and dry-season precipitation respectively across the Amazon basin by 2050, due to less-efficient moisture recycling. Our observation-based results complement similar estimates from climate models, in which the physical mechanisms and feedbacks at work could be explored in more detail.
Policies for reduced deforestation and their impact on agricultural production.
Angelsen, Arild
2010-11-16
Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and--more importantly--create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win-lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3-3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future.
Afrane, Yaw A; Zhou, Goufa; Lawson, Bernard W; Githeko, Andrew K; Yan, Guiyun
2007-10-01
In high-elevation areas in western Kenya, the abundance of Anopheles arabiensis is either very low or absent. The western Kenya highlands (an area with an elevation > 1,500m above sea level) have also been experiencing extensive deforestation, and deforestation has been suggested as one of the important factors that facilitate malaria transmission in the highlands. This study investigated whether climate conditions in the western Kenya highlands (Kakamega, elevation 1,500 m above sea level) were permissive to the development and survival of An. arabiensis and whether deforestation promoted An. arabiensis survivorship of immature and adult stages, using life-table analysis. We found that in larval habitats located in forested areas, only 4-9% of first-instar larvae developed into adults and the development length exceeded 20 days. Mean water temperature of aquatic habitats in the deforested area was 4.8-6.1 degrees C higher than that in the forested area, larval-to-adult survivorship was increased to 65-82%, and larval-to-adult development time was shortened by 8-9 days. The average indoor temperature in houses in the deforested area was 1.7-1.8 degrees C higher than in the forested area, and the relative humidity was 22-25% lower. The median survival time of adult mosquitoes in the deforested area was 49-55% higher than those in the forested area. The net reproductive rate of female mosquitoes in the deforested area was 1.7- to 2.6-fold higher than that in the forested area. Compared with previously published data on An. gambiae, the net reproductive rate of An. arabiensis was only 0.8-1.3% of Anopheles gambiae in the forested area and 2.3-2.6% in the deforested area. Therefore, the current ambient climate condition is less permissive to An. arabiensis than to An. gambiae in western Kenya highlands. However, environmental changes such as deforestation and global warming may facilitate the establishment of An. arabiensis populations in the highlands.
47 CFR 1.1311 - Environmental information to be included in the environmental assessment (EA).
Code of Federal Regulations, 2010 CFR
2010-10-01
... facilities on any district, site, building, structure or object listed, or eligible for listing, in the... land utilized (e.g., deforestation, water diversion, wetland fill, or other extensive change of surface...
Deforestation scenarios for the Bolivian lowlands.
Tejada, Graciela; Dalla-Nora, Eloi; Cordoba, Diana; Lafortezza, Raffaele; Ovando, Alex; Assis, Talita; Aguiar, Ana Paula
2016-01-01
Tropical forests in South America play a key role in the provision of ecosystem services such as carbon sinks, biodiversity conservation, and global climate regulation. In previous decades, Bolivian forests have mainly been deforested by the expansion of agricultural frontier development, driven by the growing demands for beef and other productions. In the mid-2000s the Movimiento al Socialismo (MAS) party rose to power in Bolivia with the promise of promoting an alternative development model that would respect the environment. The party passed the world's first laws granting rights to the environment, which they termed Mother Earth (Law No. 300 of 2012), and proposed an innovative framework that was expected to develop radical new conservation policies. The MAS conservationist discourse, policies, and productive practices, however, have since been in permanent tension. The government continues to guarantee food production through neo-extractivist methods by promoting the notion to expand agriculture from 3 to 13 million ha, risking the tropical forests and their ecosystem services. These actions raise major environmental and social concerns, as the potential impacts of such interventions are still unknown. The objective of this study is to explore an innovative land use modeling approach to simulate how the growing demand for land could affect future deforestation trends in Bolivia. We use the LuccME framework to create a spatially-explicit land cover change model and run it under three different deforestation scenarios, spanning from the present-2050. In the Sustainability scenario, deforestation reaches 17,703,786 ha, notably in previously deforested or degraded areas, while leaving forest extensions intact. In the Middle of the road scenario, deforestation and degradation move toward new or paved roads spreading across 25,698,327 ha in 2050, while intact forests are located in Protected Areas (PAs). In the Fragmentation scenario, deforestation expands to almost all Bolivian lowlands reaching 37,944,434 ha and leaves small forest patches in a few PAs. These deforestation scenarios are not meant to predict the future but to show how current and future decisions carried out by the neo-extractivist practices of MAS government could affect deforestation and carbon emission trends. In this perspective, recognizing land use systems as open and dynamic systems is a central challenge in designing efficient land use policies and managing a transition towards sustainable land use. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Müller-Hansen, Finn; Heitzig, Jobst; Donges, Jonathan F.; Cardoso, Manoel F.; Kurths, Jürgen; Thonicke, Kirsten
2017-04-01
Deforestation in the tropics - with vast consequences for the ecosystem and climate - is mainly driven by subsequent land use, which is not only determined by environmental and economic constraints but also influenced by the use of different production technologies. Inefficient production technologies can lead to excessive use of land, especially in areas where land is easily available and accessible. Here, the adoption of new technologies could help to use already converted land more intensively and ease pressures on ecologically valuable areas. In this study, we take the Brazilian Amazon as a prominent example region to explore the interplay of land-use decisions with environmental and economic dynamics in the process of land-use intensification and frontier expansion. Expansion of pasture land for cattle ranching to satisfy increasing domestic and international demands is one of the important drivers for deforestation in the Brazilian Amazon. Pasture run-down and following land abandonment further drive the expansion of deforestation frontiers into pristine forests. Therefore, intensification of livestock production, especially better pasture management, could potentially reduce deforestation. However, a number of reasons including the large spatial extent of the region make the process of comparing the effectiveness of different management techniques, technologies and policies in the region difficult. Therefore, the effectiveness and possible outcomes of policies to foster intensification are highly debated in the literature. Some authors deny that intensification policies are a viable option to spare forests as long as they are not a scarce resource [1] while others insist that intensification has an effect if only supported by the right policies [2]. In this presentation, we introduce a concise agent-based model to study conditions under which intensification can reduce deforestation and explore the trade-offs between intensified and extensive land uses. While most agent-based models in land science are developed for small study regions, our approach is scalable also to regional levels and for this purpose abstracts from many local specificities. In the proposed model, a collection of cattle ranchers interacts with the local environment via decisions to convert forest into pasture land and manage this pasture. Deforestation and land abandonment is traced by simple land-cover succession equations and ecological dynamics consider the evolution of pasture productivity depending on pasture management, deforestation and tree regrowth. Agent decisions are captured by heuristic strategies depending on economic and ecological constraints. Agents can follow either an extensive strategy, corresponding to traditional cattle ranching with fallow periods and slash-and-burn fertilization, or an intensive strategy, i.e. cattle ranching with high inputs such as machinery and industrial fertilizers. The choice of the production strategy is modeled as a social learning process: Agents are located on a geometric network representing neighborhood and acquaintance relations and imitate the successful strategies of their neighbors. We will present a comprehensive analysis of the model and discuss conditions that foster sustainable land use. Finally, we will give an outlook at possible extensions of the model and applications to issues such as compliance with Brazil's Forest Code and feedbacks from changes in climate. References: [1] Kaimowitz, David and Arild Angelsen (2008). "Will Livestock Intensification Help Save Latin America's Tropical Forests?" In: Journal of Sustainable Forestry 27.1-2, pp. 6-24. [2] Cohn, Avery S, Aline Mosnier, Petr Havlík, Hugo Valin, Mario Herrero, Erwin Schmid, Michael O'Hare, and Michael Obersteiner (2014). "Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation." In: Proceedings of the National Academy of Sciences of the United States of America 111.20, pp. 7236-7241.
NASA Astrophysics Data System (ADS)
Rubas, L. C.
2012-12-01
Forest resources sequester and store carbon, and serve as a natural brake on climate change. In the tropics, the largest source of greenhouse emission is from deforestation and forest degradation (Gibbs et al 2007). This paper attempts to compile sixty (60) existing studies on using remote sensing to measure key environmental forest indicators at two levels of scales: biome and landscape level. At the tropical forest biome level, there is not as much remote sensing studies that have been done as compared to other forest biomes. Also, existing studies on tropical Asia is still sparse compared to other tropical regions in Latin America and Africa. Biomass map is also produced for the tropical biome using keyhole macro language (KML) which is projected on Google Earth. The compiled studies showed there are four indicators being measured using remote sensors in tropical forest. These are biomass, landcover classification, deforestation and cloud cover. The landscape level will focus on Mount Apo National Park in the Philippines which is encompassing a total area of 54,974.87 hectares. It is one of the ten priority sites targeted in the World Bank-assisted Biodiversity Conservation Program. This park serves as the major watershed for the three provinces with 19 major rivers emanating from the montane formations. Only a small fraction of the natural forest that once covered the country remains. In spite of different policies that aim to reduce logging recent commercial deforestation, illegal logging and agricultural expansion pose an important threat to the remaining forest areas. In some locations in the country, these hotspots of deforestation overlap with the protected areas (Verburg et al 2006). The study site was clipped using ArcGIS from the forest biomass carbon density map produced by Gibbs and Brown (2007). Characterization on this national park using vegetation density, elevation, slope, land cover and precipitation will be conducted to determine factors that would affect the magnitude of stored carbon. Vegetation density will be derived from 5m SPOT imagery. Digital elevation model at a resolution of 90m will be obtained as part of NASA's Shuttle Radar Topography Mission (SRTM). Land cover data will be sourced from Landsat imagery. Mean annual precipitation data (MAP) will be collected from Worldclim dataset. Change detection analysis will be made using 2-time period of Landsat imagery. Accuracy assessment will be conducted following image classification. Changes in land cover will further be related to recommending necessary land use policies for reducing deforestation and the preservation of this protected area.
Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil.
Kastens, Jude H; Brown, J Christopher; Coutinho, Alexandre Camargo; Bishop, Christopher R; Esquerdo, Júlio César D M
2017-01-01
Previous research has established the usefulness of remotely sensed vegetation index (VI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to characterize the spatial dynamics of agriculture in the state of Mato Grosso (MT), Brazil. With these data it has become possible to track MT agriculture, which accounts for ~85% of Brazilian Amazon soy production, across periods of several years. Annual land cover (LC) maps support investigation of the spatiotemporal dynamics of agriculture as they relate to forest cover and governance and policy efforts to lower deforestation rates. We use a unique, spatially extensive 9-year (2005-2013) ground reference dataset to classify, with approximately 80% accuracy, MODIS VI data, merging the results with carefully processed annual forest and sugarcane coverages developed by Brazil's National Institute for Space Research to produce LC maps for MT for the 2001-2014 crop years. We apply the maps to an evaluation of forest and agricultural intensification dynamics before and after the Soy Moratorium (SoyM), a governance effort enacted in July 2006 to halt deforestation for the purpose of soy production in the Brazilian Amazon. We find the pre-SoyM deforestation rate to be more than five times the post-SoyM rate, while simultaneously observing the pre-SoyM forest-to-soy conversion rate to be more than twice the post-SoyM rate. These observations support the hypothesis that SoyM has played a role in reducing both deforestation and subsequent use for soy production. Additional analyses explore the land use tendencies of deforested areas and the conceptual framework of horizontal and vertical agricultural intensification, which distinguishes production increases attributable to cropland expansion into newly deforested areas as opposed to implementation of multi-cropping systems on existing cropland. During the 14-year study period, soy production was found to shift from predominantly single-crop systems to majority double-crop systems.
NASA Astrophysics Data System (ADS)
Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Gille, J. C.; Clerbaux, C.; George, M.
2014-12-01
Deforestation fires in the Amazon Basin abound during the dry season (July to October) and are mostly associated with "slash and burn" agricultural practices. Understory fires occur when fires escape from deforested areas into neighboring standing forests; they spread slowly below the canopy, affecting areas that may be comparable or even larger than clear-cut areas. The interannual variabilities of understory fires and deforestation rates appear to be uncorrelated. Areas burned in understory fires are particularly extensive during droughts. Because they progress below a canopy of living trees, understory fires and their effects are not as easily identifiable from space as deforestation fires. Here we analyze satellite remote sensing products for CO and fire to investigate differences between deforestation fires and understory fires in the Amazon Basin under varying climatic conditions. The MOPITT (Measurements Of Pollution In The Troposphere) instrument on board NASA's Terra satellite has been measuring tropospheric CO since 2000, providing the longest global CO record to date. IASI (the Infrared Atmospheric Sounding Interferometer) A and B are two instruments on board METOP-A and -B, respectively, measuring, among others, CO since 2006 and 2012. MODIS (the Moderate Resolution Imaging Spectroradiometer) instruments on board NASA's Terra and Aqua satellites provide, among other products, a daily record of fires and their effects since 2000 and 2002, respectively. The temporal extent of all these datasets allows for the detailed analysis of drought versus non-drought years. Initial results indicate that MOPITT CO emissions during the dry season peaked in 2005, 2007, and 2010. Those were draught years and coincide with peaks in area affected by understory fires.
Mapping Of Construction Waste Illegal Dumping Using Geographical Information System (GIS)
NASA Astrophysics Data System (ADS)
Zainun, Noor Yasmin; Rahman, Ismail Abdul; Azwana Rothman, Rosfazreen
2016-11-01
Illegal dumping of solid waste not only affecting the environment but also social life of communities, hence authorities should have an effective system to cater this problem. Malaysia is experiencing extensive physical developments and this has led to an increase of construction waste illegal dumping. However, due to the lack of proper data collection, the actual figure for construction waste illegal dumping in Malaysia are not available. This paper presents a mapping of construction waste illegal dumping in Kluang district, Johor using Geographic Information System (GIS) software. Information of the dumped waste such as coordinate, photos, types of material and quantity of waste were gathered manually through site observation for three months period. For quantifying the dumped waste, two methods were used which are the first method is based on shape of the waste (pyramids or squares) while the second method is based weighing approach. All information regarding the waste was assigned to the GIS for the mapping process. Results indicated a total of 12 types of construction waste which are concrete, tiles, wood, gypsum board, mixed construction waste, brick and concrete, bricks, sand, iron, glass, pavement and tiles, and concrete at 64 points locations of illegal dumping on construction waste in Kluang. These wastes were accounted to an estimated volume of 427.2636 m3. Hopefully, this established map will assist Kluang authority to improve their solid waste management system in Kluang.
Policies for reduced deforestation and their impact on agricultural production
Angelsen, Arild
2010-01-01
Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and—more importantly—create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win–lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3–3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future. PMID:20643935
NASA Astrophysics Data System (ADS)
Simmons, C. T.; Mysak, L. A.; Matthews, D.
2012-12-01
The University of Victoria Earth System Climate Model (version v.9) is used to investigate carbon cycle dynamics from the Last Glacial Maximum (21000 years Before Present (BP)) to the beginning of the Industrial Revolution (150 BP). A series of simulations with prescribed and freely-evolving CO2 infer that a combination of two factors, a faster overturning of the oceans during the interglacial and a release of carbon from deep-sea sediments, are likely responsible for a substantial proportion of the glacial-interglacial CO2 increase from 190 (23000 BP) to 280 ppm (150 BP). The simulations also indicate that a realistic glacial-interglacial change in the meridional overturning circulation can be generated without accounting for runoff from melting ice sheets. A series of model experiments also investigated the mechanisms behind the Holocene increase in CO2 after 8000 BP. Without the explicit representation of peatlands, permafrost, coral reefs, or human land use, the UVic model simulation of the natural carbon cycle over the period produced a decline in the atmospheric CO2 from 260 to around 250 ppm, in contrast to the increase from 260 to 280 ppm actually observed. Surprisingly, sensitivity simulations with global deforestation actually yielded lower CO2 concentrations (249-254 ppm) at 150 BP than the same simulations with no deforestation; however, deforestation of certain vegetation types lead to higher concentrations (~270 ppm). Even without deforestation, the decrease in CO2 is highly sensitive to the configuration of land ice shelves near Antarctica, with more extensive land ice leading to deeper local circulation in the Southern Ocean, less Antarctic-generated bottom waters globally, and a higher atmospheric CO2 concentrations (260 ppm) at 150 BP. The 5-8 ppm contribution of ice shelf extent may well be an important contributor to the higher analogue CO2 levels during the Holocene interglacial, as current data and reconstructions suggests that these ice shelves are indeed more extensive today than during many previous interglacial periods.
78 FR 20123 - Extension of the Designation of Honduras for Temporary Protected Status
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... deforestation and erosion, and Honduras's largest source of fresh water (the Lago de Yojoa) is heavily polluted... the potable water distribution systems and sewage treatment facilities in urban and rural Honduras... situation with funds designated for [[Page 20125
Economics and Migration: NAFTA’s Impact on Mexico
2011-10-28
immigrants to the U.S. 1 No nation was ever ruined by trade, even seemingly the most disadvantageous . -Benjamin...NAFTA forced rural farmers to cultivate marginal land due to lost income caused by falling commodity prices, leading to extensive deforestation in
Future prospects for Nearctic migrants wintering in Carribbean forest
Joseph M. Wunderler JR.; Robert B. Waide
1994-01-01
Wintering nearctic migrants constitute a high proportion of the birds present in many terrestrial habitats in the Bahamas and greater Antilles, But their proportions decline southward through the Lesser Antilles. many migrants winter on densely populate islands which have been extensively deforested.
NASA Astrophysics Data System (ADS)
Bristow, Mila; Hutley, Lindsay B.; Beringer, Jason; Livesley, Stephen J.; Edwards, Andrew C.; Arndt, Stefan K.
2016-11-01
The clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHGs); however there is large uncertainty relating to the magnitude of this flux. Australia's tropical savannas occupy the northern quarter of the continent, a region of increasing interest for further exploitation of land and water resources. Land use decisions across this vast biome have the potential to influence the national greenhouse gas budget. To better quantify emissions from savanna deforestation and investigate the impact of deforestation on national GHG emissions, we undertook a paired site measurement campaign where emissions were quantified from two tropical savanna woodland sites; one that was deforested and prepared for agricultural land use and a second analogue site that remained uncleared for the duration of a 22-month campaign. At both sites, net ecosystem exchange of CO2 was measured using the eddy covariance method. Observations at the deforested site were continuous before, during and after the clearing event, providing high-resolution data that tracked CO2 emissions through nine phases of land use change. At the deforested site, post-clearing debris was allowed to cure for 6 months and was subsequently burnt, followed by extensive soil preparation for cropping. During the debris burning, fluxes of CO2 as measured by the eddy covariance tower were excluded. For this phase, emissions were estimated by quantifying on-site biomass prior to deforestation and applying savanna-specific emission factors to estimate a fire-derived GHG emission that included both CO2 and non-CO2 gases. The total fuel mass that was consumed during the debris burning was 40.9 Mg C ha-1 and included above- and below-ground woody biomass, course woody debris, twigs, leaf litter and C4 grass fuels. Emissions from the burning were added to the net CO2 fluxes as measured by the eddy covariance tower for other post-deforestation phases to provide a total GHG emission from this land use change. The total emission from this savanna woodland was 148.3 Mg CO2-e ha-1 with the debris burning responsible for 121.9 Mg CO2-e ha-1 or 82 % of the total emission. The remaining emission was attributed to CO2 efflux from soil disturbance during site preparation for agriculture (10 % of the total emission) and decay of debris during the curing period prior to burning (8 %). Over the same period, fluxes at the uncleared savanna woodland site were measured using a second flux tower and over the 22-month observation period, cumulative net ecosystem exchange (NEE) was a net carbon sink of -2.1 Mg C ha-1, or -7.7 Mg CO2-e ha-1. Estimated emissions for this savanna type were then extrapolated to a regional-scale to (1) provide estimates of the magnitude of GHG emissions from any future deforestation and (2) compare them with GHG emissions from prescribed savanna burning that occurs across the northern Australian savanna every year. Emissions from current rate of annual savanna deforestation across northern Australia was double that of reported (non-CO2 only) savanna burning. However, if the total GHG emission, CO2 plus non-CO2 emissions, is accounted for, burning emissions are an order of magnitude larger than that arising from savanna deforestation. We examined a scenario of expanded land use that required additional deforestation of savanna woodlands over and above current rates. This analysis suggested that significant expansion of deforestation area across the northern savanna woodlands could add an additional 3 % to Australia's national GHG account for the duration of the land use change. This bottom-up study provides data that can reduce uncertainty associated with land use change for this extensive tropical ecosystem and provide an assessment of the relative magnitude of GHG emissions from savanna burning and deforestation. Such knowledge can contribute to informing land use decision making processes associated with land and water resource development.
Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012.
Richards, Daniel R; Friess, Daniel A
2016-01-12
The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation.
Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012
Richards, Daniel R.; Friess, Daniel A.
2016-01-01
The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation. PMID:26712025
2014-08-19
ISS040-E-103496 (19 Aug. 2014) --- On an unusually cloud-free day at the height of the dry season in Amazonia, several fires were burning, giving rise to a broad smoke pall easily seen from the International Space Station, photographed by an Expedition 40 crew member. Parts of the space station appear along the margins of the image. Against the backdrop of the dark green rainforest, several fires follow the major highway BR 163 (lower center of the image to the top left). Fires are set to clear patches of forest for agriculture, a process that reveals red-brown soils. A long line of new cleared patches snakes east from BR 163 towards the remote valley of the Rio Crepori. Extensive deforested areas in Brazil?s state of Mato Grosso appear as tan areas across the top of the image. Fires show the advance of deforestation into the state of Para, the area shown in most of this view. Para is now second after Mato Grosso in terms of deforestation acreage.
Condition and fate of logged forests in the Brazilian Amazon.
Asner, Gregory P; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Knapp, David E; Silva, José N M
2006-08-22
The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16+/-1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained.
Condition and fate of logged forests in the Brazilian Amazon
Asner, Gregory P.; Broadbent, Eben N.; Oliveira, Paulo J. C.; Keller, Michael; Knapp, David E.; Silva, José N. M.
2006-01-01
The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16 ± 1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained. PMID:16901980
Conservation challenges for the Austral and Neotropical America section.
Ceballos, Gerardo; Vale, Mariana M; Bonacic, Cristian; Calvo-Alvarado, Julio; List, Rurik; Bynum, Nora; Medellín, Rodrigo A; Simonetti, Javier A; Rodríguez, Jon Paul
2009-08-01
The Austral and Neotropical America (ANA) section of the Society for Conservation Biology includes a vast territory with some of the largest relatively pristine ecosystems in the world. With more than 573 million people, the economic growth of the region still depends strongly on natural resource exploitation and still has high rates of environmental degradation and biodiversity loss. A survey among the ANA section membership, with more than 700 members, including most of the section's prominent ecologists and conservationists, indicates that lack of capacity building for conservation, corruption, and threats such as deforestation and illegal trade of species, are among the most urgent problems that need to be addressed to improve conservation in the region. There are, however, strong universities and ecology groups taking the lead in environmental research and conservation, a most important issue to enhance the ability of the region to solve conservation and development conflicts.
Anthropogenic albedo changes and the earth's climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagan, C.; Toole, O.B.; Pollack, J.B.
1979-12-21
Investigators have long discounted the possibility that anthropogenic environmental changes not involving sophisticated modern technology could significantly influence climate. However, physical models suggest a causal connection between several such changes and significant climatic variation experienced in many regions of the world. In the Rajasthan Desert, parts of the Sahara, and Lebanon, overgrazing and lack of vegetation have led to desertification of once-fertile areas. The deforestation of parts of Brazil, Indonesia, and African equatorial forests by residents of those areas, and the extensive North American and European deforestation that occurred during the Little Ice Age demonstrate the relationship between temperate deforestationmore » and macroclimatic change. (32 references, 2 tables)« less
Penetrating head injury with bilateral eye avulsion due to Himalayan bear bite.
Roka, Yam B; Roka, Narayani; Shrestha, Manzil; Puri, Puspa R; Adhikari, Hari B
2012-12-01
The Himalayan black bear (Ursus thibetanus or Selenarctos thibetanus), although an omnivore, is more carnivorous than its American counterpart. It is also more aggressive towards humans and is a threatened species because of the deforestation in the Himalayas. Furthermore, poverty, encroachment of the forest, extensive deforestation, lack of education and living near the forest are factors that increase the probability of such animal injuries. We report the case of a 35-year-old woman who suffered a severe penetrating head injury with scalp and bilateral eye avulsion, which was managed successfully. © 2012 The Authors. EMA © 2012 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
[Ischemic strokes in young adults and illegal drugs].
Barbieux, M; Véran, O; Detante, O
2012-01-01
One out of four ischemic strokes in France occurs in adults under 65 years old. About a third of them remain unexplained even after an extensive etiological assessment. A large part of these unexplained strokes could be linked to illegal drug abuse, and 10 % are estimated to be directly linked to illegal drugs in some international studies. The most frequently incriminated recreational drug remains cocaine, via several mechanisms. However, several other illegal drugs, some very commonly used such as cannabis, are suspected to have an important role in neurovascular diseases. In this article, we reviewed the epidemiological, pathophysiological and clinical studies, published in the international literature over the past 30 years. The drug-caused stroke epidemiology needs to be more precisely studied, as well as the underlying mechanisms depending on each drug. This is a public health issue that affects an economically active population, as stroke is the first cause of acquired handicap in adults. Copyright © 2011 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Implications of changing national policies on land use in the Chittagong Hill Tracts of Bangladesh.
Thapa, Gopal B; Rasul, Golam
2006-12-01
Land use in the Chittagong Hill Tracts (CHT) of Bangladesh had undergone changes over the past several centuries. The landscape, which was mostly covered with forest with interspersed shifting cultivation plots until the beginning of the colonial period, has gradually changed into a landscape with a blend of land uses. Overall, the forest area has gradually declined, while the area under shifting cultivation and sedentary agriculture has expanded. The process of the change was multi-directional. National forestry, land use, land taxation, population migration policies, and development activities, such as construction of a hydroelectric dam and roads, played an important role in this process. Shifting cultivation had inflicted little damage on the forest until the beginning of the colonial period. The pace of deforestation accelerated with the nationalization of forests which abolished tribal people's customary use and management rights to the forest, and allowed large-scale commercial logging both legally and illegally. The pace was further intensified by the policy encouraging population migration to CHT and construction of a reservoir on the Karnafuli River. Efforts were made to replace shifting cultivation with more productive types of sedentary agriculture. However, much change could not take place in the absence of secure land rights, supportive trade policies, and the required support services and facilities, including infrastructure. Locationally suitable land use evolved in areas where transportation facilities were available and farmers were granted land title with the necessary extension services and credit facilities. These findings have important policy implications for the promotion of environmentally and economically sound land use in CHT.
NASA Astrophysics Data System (ADS)
Leite, José C.; Ferreira, António A. J.
2014-05-01
Over the last four decades, deforestation in Brazil occurred systematically in the area known as the "arcof deforestation", an extensive geographical area located in the interface of the Cerrado and the Amazon biomes. The deforestation process replaces the forest and the slash and burn agriculture systems by modern intensive agriculture systems targeted at the production of cash crops like cotton, maize or soybeans, and to graze cattle.The so called "agronegócio" system. The reduction of pristine forest areas where traditional (indigenous, maroons and riverside) population conduct slash and burn agriculture, reduces the recovery time of the abandoned fields after exhaustion by agriculture crops, reason why the return to the same spots for another cycle of slash and burn occurs before the forest recovers completely from the previous cycle. In fact, the frequency of the cycles is increasing with the expansion of farm land and the reduction of available forest. This work encompasses the reasons, causes and/or motivations of the deforestation trends in the Vila Bela da SantíssimaTrindade, near the Bolivian border of Mato Grosso in Brazil, over a time span of four decades. The arc of deforestation has passed the region in the 1980's, leaving yet a large area of pristine forest where the traditional communities kept practicing a slash and burn agriculture system. Nevertheless, due to the reduction of available area, and specially due to the exposure of traditional communities to the "western civilization culture", there is an increasing abandonment of the traditional systems and associated culture and knowledge. In this context, the traditional communities may become a deforestation/degradation factor. To prevent this situation, the GUYAGROFOR project was implemented, to value traditional knowledge, identify bottlenecks in the increase of added value to the local traditional products, and to test methodologies to maintain and if possible improve soil fertility near the small households. The deforestation/degradation processes and the impacts of the proposed mitigation action are discussed.
Daily monitoring of the land surface of the Earth
NASA Astrophysics Data System (ADS)
Mascaro, J.
2016-12-01
Planet is an integrated aerospace and data analytics company that operates the largest fleet of Earth-imaging satellites. With more than 140 cube-sats successfully launched to date, Planet is now collecting approximately 10 million square kilometers of imagery per day (3-5m per pixel, in red, green, blue and near infrared spectral bands). By early 2017, Planet's constellation will image the entire land surface of the Earth on a daily basis. Due to investments in cloud storage and computing, approximately 75% of imagery collected is available to Planet's partners within 24 hours of capture through an Application Program Interface. This unique dataset has enormous applications for monitoring the status of Earth's natural ecosystems, as well as human settlements and agricultural welfare. Through our Ambassadors Program, Planet has made data available for researchers in areas as disparate as human rights monitoring in refugee camps, to assessments of the impact of hydroelectric installations, to tracking illegal gold mining in Amazon forests, to assessing the status of the cryosphere. Here, we share early results from Planet's research partner network, including enhanced spatial and temporal resolution of NDVI data for agricultural health in Saudi Arabia, computation of rates of illegal deforestation in Southern Peru, estimates of tropical forest carbon stocks based on data integration with active sensors, and estimates of glacial flow rates. We synthesize the potentially enormous research and scientific value of Planet's persistent monitoring capability, and discuss methods by which the data will be disseminated into the scientific community.
Paracoccidioidomycosis after Highway Construction, Rio de Janeiro, Brazil.
do Valle, Antonio C Francesconi; Marques de Macedo, Priscila; Almeida-Paes, Rodrigo; Romão, Anselmo R; Lazéra, Marcia Dos Santos; Wanke, Bodo
2017-11-01
Transmission of Paracoccidioides spp. fungi to humans is usually related to manipulation of soil. Rural workers are the most affected group. We report an outbreak of paracoccidioidomycosis after deforestation and massive earth removal during construction of a highway in Rio de Janeiro, Brazil. Extensive environmental disturbances might be involved in fungal transmission.
Agro-pastoral expansion and land use/land cover (LU/LC) change dynamics in Central-western Brazil
NASA Astrophysics Data System (ADS)
Sanga-Ngoie, K.; Yoshikawa, S.; Kanae, S.
2011-12-01
In Brazil, large-scale land cover changes following extensive deforestations are expected to generate big impacts onto the climate and the environment over this area, with eventually many negative feedbacks on the global scale. Mato Grosso State, located in the central western Brazil, is known to be the Brazilian state with the highest deforestation rate. Land use/land cover (LU/LC) changes have been reported to occur over large areas in this state due to the introduction of large-scale mechanized agriculture, extensive cattle ranching and uncontrolled slash-and-burn cultivation since the 1980s. In this study, we specifically aim at doing more detailed analysis for the causes of deforestation and savannization in this area, with special attention to agriculture and cattle ranching industry at the municipal district level in this state. Using GIS techniques and remotely-sensed NOAA/AVHRR data, we created 5-year Digital Vegetation Model Maps characterizing LU/LC features for every five years during the 1981-2001 periods using the PCA first components of the NOAA/AVHRR multi-spectral data. Our results make it clear that: (1) LU/LC changes among the phases are of the following 3 major types: degradation, recovery or transition; (2) The changes in LU/LC features are concomitant with the advance of cattle ranching and corn production activities toward the northern parts of the state, and with the expansion of soybean production in the central and western Mato Grosso; (3) Most of the agro-pastoral business are found in the southern Mato Grosso where about 46% of the state's deforestation during the 1981-2001 period occurred; (4) Rates of vegetation change are larger over non-inhabited areas (56%), especially in the north, than over the populated zones in the south (42%). Moreover, this work sheds some new light on the patterns of the changes in LU/LC features (deforestation and savannization) for each municipal district of Mato Grosso. In general, the following activities are shown to be the main contributors to the deforestation of tropical rainforests in Mato Grosso: cattle ranches or corn croplands in northwestern, and soybean fields in the central areas. On the other side, savannization due to soybean or corn cultivation is found mainly in the west and the southeast, respectively. It has to be noted that corn production seems to bring forth more savannization impacts than soybean cultivation over this Brazilian state. All these findings highlight the non-sustainable characteristics of resources development processes occurring not only in Mato Grosso State, but also over all the tropical rainforests in the Amazonian Basin subcontinent.
NASA Astrophysics Data System (ADS)
Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.
2015-12-01
In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.
Environmental impact of geometric earthwork construction in pre-Columbian Amazonia.
Carson, John Francis; Whitney, Bronwen S; Mayle, Francis E; Iriarte, José; Prümers, Heiko; Soto, J Daniel; Watling, Jennifer
2014-07-22
There is considerable controversy over whether pre-Columbian (pre-A.D. 1492) Amazonia was largely "pristine" and sparsely populated by slash-and-burn agriculturists, or instead a densely populated, domesticated landscape, heavily altered by extensive deforestation and anthropogenic burning. The discovery of hundreds of large geometric earthworks beneath intact rainforest across southern Amazonia challenges its status as a pristine landscape, and has been assumed to indicate extensive pre-Columbian deforestation by large populations. We tested these assumptions using coupled local- and regional-scale paleoecological records to reconstruct land use on an earthwork site in northeast Bolivia within the context of regional, climate-driven biome changes. This approach revealed evidence for an alternative scenario of Amazonian land use, which did not necessitate labor-intensive rainforest clearance for earthwork construction. Instead, we show that the inhabitants exploited a naturally open savanna landscape that they maintained around their settlement despite the climatically driven rainforest expansion that began ∼2,000 y ago across the region. Earthwork construction and agriculture on terra firme landscapes currently occupied by the seasonal rainforests of southern Amazonia may therefore not have necessitated large-scale deforestation using stone tools. This finding implies far less labor--and potentially lower population density--than previously supposed. Our findings demonstrate that current debates over the magnitude and nature of pre-Columbian Amazonian land use, and its impact on global biogeochemical cycling, are potentially flawed because they do not consider this land use in the context of climate-driven forest-savanna biome shifts through the mid-to-late Holocene.
Environmental impact of geometric earthwork construction in pre-Columbian Amazonia
Carson, John Francis; Whitney, Bronwen S.; Mayle, Francis E.; Iriarte, José; Prümers, Heiko; Soto, J. Daniel; Watling, Jennifer
2014-01-01
There is considerable controversy over whether pre-Columbian (pre-A.D. 1492) Amazonia was largely “pristine” and sparsely populated by slash-and-burn agriculturists, or instead a densely populated, domesticated landscape, heavily altered by extensive deforestation and anthropogenic burning. The discovery of hundreds of large geometric earthworks beneath intact rainforest across southern Amazonia challenges its status as a pristine landscape, and has been assumed to indicate extensive pre-Columbian deforestation by large populations. We tested these assumptions using coupled local- and regional-scale paleoecological records to reconstruct land use on an earthwork site in northeast Bolivia within the context of regional, climate-driven biome changes. This approach revealed evidence for an alternative scenario of Amazonian land use, which did not necessitate labor-intensive rainforest clearance for earthwork construction. Instead, we show that the inhabitants exploited a naturally open savanna landscape that they maintained around their settlement despite the climatically driven rainforest expansion that began ∼2,000 y ago across the region. Earthwork construction and agriculture on terra firme landscapes currently occupied by the seasonal rainforests of southern Amazonia may therefore not have necessitated large-scale deforestation using stone tools. This finding implies far less labor—and potentially lower population density—than previously supposed. Our findings demonstrate that current debates over the magnitude and nature of pre-Columbian Amazonian land use, and its impact on global biogeochemical cycling, are potentially flawed because they do not consider this land use in the context of climate-driven forest–savanna biome shifts through the mid-to-late Holocene. PMID:25002502
Fire patterns in the Amazonian biome
NASA Astrophysics Data System (ADS)
Aragao, Luiz E. O. C.; Shimabukuro, Yosio E.; Lima, Andre; Anderson, Liana O.; Barbier, Nicolas; Saatchi, Sassan
2010-05-01
This paper aims to provide an overview of our recent findings on the interplay between climate and land use dynamics in defining fire patterns in Amazonia. Understanding these relationships is currently a fundamental concern for assessing the vulnerability of Amazonia to climate change and its potential for mitigating current increases in atmospheric greenhouse gases. Reducing carbon emissions from tropical deforestation and forest degradation (REDD), for instance, could contribute to a cumulative emission reduction of 13-50 billion tons of carbon (GtC) by 2100. In Amazonia, though, forest fires can release similar quantities of carbon to the atmosphere (~0.2 GtC yr-1) as deforestation alone. Therefore, to achieve carbon savings through REDD mechanism there is an urgent need of understanding and subsequently restraining related Amazonian fire drivers. In this study, we analyze satellite-derived monthly and annual time-series of fires, rainfall and deforestation in Amazonia to: (1) quantify the seasonal patterns and relationships between these variables; (2) quantify fire and rainfall anomalies to evaluate the impact of recent drought on fire patterns; (3) quantify recent trends in fire and deforestation to understand how land use affects fire patterns in Amazonia. Our results demonstrate a marked seasonality of fires. The majority of fires occurs along the Arc of Deforestation, the expanding agricultural frontier in southern and eastern Amazonia, indicating humans are the major ignition sources determining fire seasonality, spatial distribution and long-term patterns. There is a marked seasonality of fires, which is highly correlated (p<0.05) with monthly rainfall and deforestation rates. Deforestation and fires reach their highest values three and six months, respectively, after the peak of the rainy season. This result clearly describes the impact of major human activities on fire incidence, which is generally characterized by the slash-and-burn of Amazonian vegetation for implementation of pastures and agricultural fields. The cumulative number of hot pixels is exponentially related to the monthly rainfall, which ultimately defines where and when fire can potentially strike. During the 2005 Amazonian drought, the number of hot pixels increased 33% in relation to mean 1998-2005. However, even with a large fraction of the basin experiencing considerable water deficits, fires have only affect areas with extensive human activity. Our spatially explicit trend analysis on deforestation and fire data revealed that more than half of the area experiencing increased fire occurrence have reduced deforestation rates. This reverse pattern is likely to be associated with the slash-and-burn of secondary forests and the increase of fragmentation and forest edges, favouring the leakage of fires from deforested lands into forests. Finally, our analysis points towards a reduction of fire incidence due to land use intensification in this region. In this study, we demonstrated that anthropogenic forcing, such as deforestation rates, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region exacerbating human impacts in Amazonia. Due to ongoing deforestation and the predicted intensification of climate change induced droughts, it is anticipated that a large area of forest edge will be under increased risk of fires and carbon savings from REDD may be partially offset by increased emissions following fire events. Improved fire-free land management practices may provide a sustainable solution for reducing emissions from the world's largest rainforest. Acknowledges The first author would like to thank the financial support of the Natural Environment Research Council (NERC-UK/grant NE/F015356/1).
Dissecting the Illegal Ivory Trade: An Analysis of Ivory Seizures Data
Underwood, Fiona M.; Burn, Robert W.; Milliken, Tom
2013-01-01
Reliable evidence of trends in the illegal ivory trade is important for informing decision making for elephants but it is difficult to obtain due to the covert nature of the trade. The Elephant Trade Information System, a global database of reported seizures of illegal ivory, holds the only extensive information on illicit trade available. However inherent biases in seizure data make it difficult to infer trends; countries differ in their ability to make and report seizures and these differences cannot be directly measured. We developed a new modelling framework to provide quantitative evidence on trends in the illegal ivory trade from seizures data. The framework used Bayesian hierarchical latent variable models to reduce bias in seizures data by identifying proxy variables that describe the variability in seizure and reporting rates between countries and over time. Models produced bias-adjusted smoothed estimates of relative trends in illegal ivory activity for raw and worked ivory in three weight classes. Activity is represented by two indicators describing the number of illegal ivory transactions – Transactions Index – and the total weight of illegal ivory transactions – Weights Index – at global, regional or national levels. Globally, activity was found to be rapidly increasing and at its highest level for 16 years, more than doubling from 2007 to 2011 and tripling from 1998 to 2011. Over 70% of the Transactions Index is from shipments of worked ivory weighing less than 10 kg and the rapid increase since 2007 is mainly due to increased consumption in China. Over 70% of the Weights Index is from shipments of raw ivory weighing at least 100 kg mainly moving from Central and East Africa to Southeast and East Asia. The results tie together recent findings on trends in poaching rates, declining populations and consumption and provide detailed evidence to inform international decision making on elephants. PMID:24250744
Dissecting the illegal ivory trade: an analysis of ivory seizures data.
Underwood, Fiona M; Burn, Robert W; Milliken, Tom
2013-01-01
Reliable evidence of trends in the illegal ivory trade is important for informing decision making for elephants but it is difficult to obtain due to the covert nature of the trade. The Elephant Trade Information System, a global database of reported seizures of illegal ivory, holds the only extensive information on illicit trade available. However inherent biases in seizure data make it difficult to infer trends; countries differ in their ability to make and report seizures and these differences cannot be directly measured. We developed a new modelling framework to provide quantitative evidence on trends in the illegal ivory trade from seizures data. The framework used Bayesian hierarchical latent variable models to reduce bias in seizures data by identifying proxy variables that describe the variability in seizure and reporting rates between countries and over time. Models produced bias-adjusted smoothed estimates of relative trends in illegal ivory activity for raw and worked ivory in three weight classes. Activity is represented by two indicators describing the number of illegal ivory transactions--Transactions Index--and the total weight of illegal ivory transactions--Weights Index--at global, regional or national levels. Globally, activity was found to be rapidly increasing and at its highest level for 16 years, more than doubling from 2007 to 2011 and tripling from 1998 to 2011. Over 70% of the Transactions Index is from shipments of worked ivory weighing less than 10 kg and the rapid increase since 2007 is mainly due to increased consumption in China. Over 70% of the Weights Index is from shipments of raw ivory weighing at least 100 kg mainly moving from Central and East Africa to Southeast and East Asia. The results tie together recent findings on trends in poaching rates, declining populations and consumption and provide detailed evidence to inform international decision making on elephants.
Emile S. Gardiner; Daniel C. Dey; John A. Stanturf; Brian Roy Lockhart
2010-01-01
The lowlands associated with the Mississippi River and its tributaries historically supported extensive broadleaf forests that were particularly rich in oak (Quercus spp.) species. Beginning in the 1700s, deforestation for agriculture substantially reduced the extent of the original forest, and fragmented the remainder into small parcels. More...
SIAM-SERVIR: An Environmental Monitoring and Decision Support System for Mesoamerica
NASA Technical Reports Server (NTRS)
Irwin, D. E.; Sever, T. L.; Graves, S.; Hardin, Dan
2004-01-01
In 2002/2003 NASA, the World Bank and the United States Agency for International Development (USAID) joined with the Central American Commission for Environment and Development (CCAD) to develop an advanced decision support system for Mesoamerica (named SERVIR) as part of the Mesoamerican Environmental Information System (SIAM). Mesoamerica, composed of the seven Central American countries and the five southernmost states of Mexico, make up only a small fraction of the world's land surface. However, the region is home to seven to eight percent of the planet's biodiversity (14 biosphere reserves, 31 Ramsar sites, 8 world heritage sites, 589 protected areas) and 45 million people including more than 50 different ethnic groups. Today Mesoamerica's biological and cultural diversity is severely threatened by extensive deforestation, illegal logging, water pollution, and uncontrolled slash and burn agriculture. Additionally, Mesoamerica's distinct geology and geography result in disproportionate vulnerability to natural disasters such as earthquakes, hurricanes, drought, and volcanic eruptions. NASA Marshall Space Flight Center, together with the University of Alabama in Huntsville (UAH) and the SIAM-SERVIR partners are developing state-of-the-art decision support tools for environmental monitoring as well as disaster prevention and mitigation in Mesoamerica. These partners are contributing expertise in space-based observation with information management technologies and intimate knowledge of local ecosystems to create a system that is being used by scientists, educators, and policy makers to monitor and forecast ecological changes, respond to natural disasters and better understand both natural and human induced effects. In its first year of development and operation, the SIAM-SERVIR project has already yielded valuable information on Central American fires, weather conditions, and the first ever real-time data on red tides. This paper presents the progress thus far in the development of SIAM-SERVIR and the plans for the future.
Disabusing cocaine: pervasive myths and enduring realities of a globalised commodity.
Dávalos, Liliana M; Bejarano, Adriana C; Correa, H Leonardo
2009-09-01
For more than 30 years Colombia has waged an internal War on Drugs with the support of the international community. During this time, the illegal economy has evolved toward integrating cultivation with processing and trafficking, making Colombia the largest grower of coca in the world. The environmental impact of coca production and processing is vast, accounting for large quantities of toxic chemicals directly dumped onto the soil and watersheds, as well as most deforestation since the 1990s. The policies pursued to stem the coca economy, however, are based on unfounded assumptions about the behaviour of coca growers in the context of international markets. Despite their unfounded premises, these assumptions have acquired a mythical stature. In this article we review the most persistent myths about coca production with a view to understanding its links to environmental degradation. To this end, we present data on the economic and demographic background of coca growers, their impact on the environment, and their behaviour in the larger context of international markets and current eradication policies.
NASA Technical Reports Server (NTRS)
Flores Cordova, Africa I.; Cherrington, Emil A.; Vadrevu, Krishna; Thapa, Rajesh Bahadur; Odour, Phoebe; Mehmood, Hamid; Quyen, Nguyen Hanh; Saah, David; Yero, Kadidia; Mamane, Bako;
2017-01-01
Forests represent a key natural resource, for which degradation or disturbance is directly associated to economic implications, particularly in the context of the United Nations program REDD+ in supporting national policies to fight illegal deforestation. SERVIR, a joint NASA-USAID initiative that brings Earth observations (EO) for improved environmental decision making in developing countries, works with established institutions, called SERVIR hubs, in four regions around the world. SERVIR is partnering with global programs with great experience in providing best practices in forest monitoring systems, such as SilvaCarbon and the Global Forest Observation Initiative (GFOI), to develop a capacity building plan that prioritizes user needs. Representatives from the SERVIR global network met in February 2017 with experts in the field of Synthetic Aperture Radar (SAR) for forest applications to envisage this capacity building plan that aims to leverage the state-of-the-art knowledge on remote sensing to enhance forest monitoring for user agencies in SERVIR regions.
Land-use systems and resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico.
García-Romero, Arturo; Oropeza-Orozco, Oralia; Galicia-Sarmiento, Leopoldo
2004-12-01
Land-cover types were analyzed for 1970, 1990 and 2000 as the bases for determining land-use systems and their influence on the resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Deforestation (DR) and mean annual transformation rates were calculated from land-cover change data; thus, the classification of land-use change processes was determined according to their impact on resilience: a) Modification, including land-cover conservation and intensification, and b) Conversion, including disturbance and regeneration processes. Regeneration processes, from secondary vegetation under extensive use, cultivated vegetation under intensive use, and cultivated or induced vegetation under extensive use to mature or secondary vegetation, have high resilience capacity. In contrast, cattle-raising is characterized by rapid expansion, long-lasting change, and intense damages; thus, recent disturbance processes, which include the conversion to cattle-raising, provoke the downfall of the traditional agricultural system, and nullify the capacity of resilience of tropical rain forest. The land-use cover change processes reveal a) the existence of four land-use systems (forestry, extensive agriculture, extensive cattle-raising, and intensive uses) and b) a trend towards the replacement of agricultural and forestry systems by extensive cattle-raising, which was consolidated during 1990-2000 (DR of evergreen tropical rain forest = 4.6%). Only the forestry system, which is not subject to deforestation, but is affected by factors such as selective timber, extraction, firewood collection, grazing, or human-induced fire, is considered to have high resilience (2 years), compared to agriculture (2-10 years) or cattle-raising (nonresilient). It is concluded that the analysis of land-use systems is essential for understanding the implications of land-use cover dynamics on forest recovery and land degradation in tropical rain forests.
Spatial and temporal land cover changes in Terminos Lagoon Reserve, Mexico.
Soto-Galera, Ernesto; Piera, Jaume; López, Pilar
2010-06-01
Terminos Lagoon ecosystem is the largest fluvial-lagoon estuarine system in the country and one of the most important reserves of coastal flora and fauna in Mexico. Since the seventies, part of the main infrastructure for country's oil extraction is located in this area. Its high biodiversity has motivated different type of studies including deforestation processes and land use planning. In this work we used satellite image analysis to determine land cover changes in the area from 1974 to 2001. Our results indicate that tropical forest and mangroves presented the most extensive losses in its coverage. In contrast, urban areas and induced grassland increased considerably. In 2001 more than half of the ecosystem area showed changes from its original land cover, and a third part of it was deteriorated. The main causes of deforestation were both the increase in grassland and the growth of urban areas. However, deforestation was attenuated by natural reforestation and plant canopy recovery. We conclude that the introduction of cattle and urban development were the main causes for the land cover changes; however, the oil industry activity located in the ecosystem, has promoted indirectly to urban growth and rancher boom.
Savage, Anne; Thomas, Len; Kidney, Darren; Soto, Luis H.; Pearson, Mackenzie; Medina, Felix S.; Emeris, German; Guillen, Rosamira R.
2016-01-01
Numerous animals have declining populations due to habitat loss, illegal wildlife trade, and climate change. The cotton-top tamarin (Saguinus oedipus) is a Critically Endangered primate species, endemic to northwest Colombia, threatened by deforestation and illegal trade. In order to assess the current state of this species, we analyzed changes in the population of cotton-top tamarins and its habitat from 2005 to 2012. We used a tailor-made “lure strip transect” method to survey 43 accessible forest parcels that represent 30% of the species’ range. Estimated population size in the surveyed region was approximately 2,050 in 2005 and 1,900 in 2012, with a coefficient of variation of approximately 10%. The estimated population change between surveys was -7% (a decline of approximately 1.3% per year) suggesting a relatively stable population. If densities of inaccessible forest parcels are similar to those of surveyed samples, the estimated population of cotton-top tamarins in the wild in 2012 was 6,946 individuals. We also recorded little change in the amount of suitable habitat for cotton-top tamarins between sample periods: in 2005, 18% of surveyed forest was preferred habitat for cotton-top tamarins, while in 2012, 17% percent was preferred. We attribute the relatively stable population of this Critically Endangered species to increased conservation efforts of Proyecto Tití, conservation NGOs, and the Colombian government. Due to continued threats to cotton-top tamarins and their habitat such as agriculture and urban expansion, ongoing conservation efforts are needed to ensure the long-term survival of cotton-top tamarins in Colombia. PMID:28030570
Chaves, Camila L; Degen, Bernd; Pakull, Birte; Mader, Malte; Honorio, Euridice; Ruas, Paulo; Tysklind, Niklas; Sebbenn, Alexandre M
2018-06-27
Deforestation-reinforced by illegal logging-is a serious problem in many tropical regions and causes pervasive environmental and economic damage. Existing laws that intend to reduce illegal logging need efficient, fraud resistant control methods. We developed a genetic reference database for Jatoba (Hymenaea courbaril), an important, high value timber species from the Neotropics. The data set can be used for controls on declarations of wood origin. Samples from 308 Hymenaea trees from 12 locations in Brazil, Bolivia, Peru, and French Guiana have been collected and genotyped on 10 nuclear microsatellites (nSSRs), 13 chloroplast SNPs (cpSNP), and 1 chloroplast indel marker. The chloroplast gene markers have been developed using Illumina DNA sequencing. Bayesian cluster analysis divided the individuals based on the nSSRs into 8 genetic groups. Using self-assignment tests, the power of the genetic reference database to judge on declarations on the location has been tested for 3 different assignment methods. We observed a strong genetic differentiation among locations leading to high and reliable self-assignment rates for the locations between 50% to 100% (average of 88%). Although all 3 assignment methods came up with similar mean self-assignment rates, there were differences for some locations linked to the level of genetic diversity, differentiation, and heterozygosity. Our results show that the nuclear and chloroplast gene markers are effective to be used for a genetic certification system and can provide national and international authorities with a robust tool to confirm legality of timber.
Hassold, Sonja; Lowry, Porter P; Bauert, Martin R; Razafintsalama, Annick; Ramamonjisoa, Lolona; Widmer, Alex
2016-01-01
Illegal selective logging of tropical timber is of increasing concern worldwide. Madagascar is a biodiversity hotspot and home to some of the world's most sought after tropical timber species. Malagasy rosewoods belong to the genus Dalbergia (Fabaceae), which is highly diverse and has a pantropical distribution, but these timber species are among the most threatened as a consequence of intensive illegal selective logging and deforestation. Reliable identification of Dalbergia species from Madagascar is important for law enforcement but is almost impossible without fertile plant material, which is often unavailable during forest inventories or when attempting to identify logged trees of cut wood. DNA barcoding has been promoted as a promising tool for species identification in such cases. In this study we tested whether DNA barcoding with partial sequences of three plastid markers (matK, rbcL and trnL (UAA)) can distinguish between Dalbergia from Madagascar and from other areas of its distributional range, and whether Malagasy species can be distinguished from one another. Phylogenetic analyses revealed that the Malagasy Dalbergia species studied form two monophyletic groups, each containing two subgroups, only one of which corresponds to a single species. We characterized diagnostic polymorphisms in the three DNA barcoding markers that allow rapid discrimination between Dalbergia from Madagascar and from other areas of its distribution range. Species identification success based on individual barcoding markers or combinations was poor, whereas subgroup identification success was much higher (up to 98%), revealing both the value and limitations of a DNA barcoding approach for the identification of closely related Malagasy rosewoods.
Decadal changes and delayed avian species losses due to deforestation in the northern Neotropics.
Shaw, David W; Escalante, Patricia; Rappole, John H; Ramos, Mario A; Oehlenschlager, Richard J; Warner, Dwain W; Winker, Kevin
2013-01-01
How avifauna respond to the long-term loss and fragmentation of tropical forests is a critical issue in biodiversity management. We use data from over 30 years to gain insights into such changes in the northernmost Neotropical rainforest in the Sierra de Los Tuxtlas of southern Veracruz, Mexico. This region has been extensively deforested over the past half-century. The Estación de Biología Tropical Los Tuxtlas, of the Universidad Nacional Autónoma de México (UNAM), protects a 640 ha tract of lowland forest. It became relatively isolated from other forested tracts between 1975 and 1985, but it retains a corridor of forest to more extensive forests at higher elevations on Volcán San Martín. Most deforestation in this area occurred during the 1970s and early 1980s. Forest birds were sampled on the station and surrounding areas using mist nets during eight non-breeding seasons from 1973 to 2004 (though in some seasons netting extended into the local breeding season for some species). Our data suggested extirpations or declines in 12 species of birds subject to capture in mist nets. Six of the eight species no longer present were captured in 1992-95, but not in 2003-2004. Presence/absence data from netting and observational data suggested that another four low-density species also disappeared since sampling began. This indicates a substantial time lag between the loss of habitat and the apparent extirpation of these species. Delayed species loss and the heterogeneous nature of the species affected will be important factors in tropical forest management and conservation.
Decadal changes and delayed avian species losses due to deforestation in the northern Neotropics
Shaw, David W.; Escalante, Patricia; Rappole, John H.; Oehlenschlager, Richard J.
2013-01-01
How avifauna respond to the long-term loss and fragmentation of tropical forests is a critical issue in biodiversity management. We use data from over 30 years to gain insights into such changes in the northernmost Neotropical rainforest in the Sierra de Los Tuxtlas of southern Veracruz, Mexico. This region has been extensively deforested over the past half-century. The Estación de Biología Tropical Los Tuxtlas, of the Universidad Nacional Autónoma de México (UNAM), protects a 640 ha tract of lowland forest. It became relatively isolated from other forested tracts between 1975 and 1985, but it retains a corridor of forest to more extensive forests at higher elevations on Volcán San Martín. Most deforestation in this area occurred during the 1970s and early 1980s. Forest birds were sampled on the station and surrounding areas using mist nets during eight non-breeding seasons from 1973 to 2004 (though in some seasons netting extended into the local breeding season for some species). Our data suggested extirpations or declines in 12 species of birds subject to capture in mist nets. Six of the eight species no longer present were captured in 1992–95, but not in 2003–2004. Presence/absence data from netting and observational data suggested that another four low-density species also disappeared since sampling began. This indicates a substantial time lag between the loss of habitat and the apparent extirpation of these species. Delayed species loss and the heterogeneous nature of the species affected will be important factors in tropical forest management and conservation. PMID:24133637
Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy
USDA-ARS?s Scientific Manuscript database
The presence of Sudan dye used illegally for coloring in food stuffs has become a point of food safety concern, especially in paprika- and chili-containing food products. Fourier transform infrared (FTIR) spectroscopy has been extensively used as an analytical method for quality control and safety m...
Maya Traditional Knowledge: Preserving Forests in Guatemala.
ERIC Educational Resources Information Center
Bernstein, Jacob
1996-01-01
In the mountains of western Guatemala, Maya K'iche communities draw on extensive indigenous knowledge of the local ecosystem to manage sections of forest allocated as community responsibility for generations. Supported by spiritual beliefs, community elders seek to guide the use and preservation of the forest despite illegal loggers, corrupt…
Misconduct in the Prosecution of Severe Crimes: Theory and Experimental Test
ERIC Educational Resources Information Center
Lucas, Jeffrey W.; Graif, Corina; Lovaglia, Michael J.
2006-01-01
Prosecutorial misconduct involves the intentional use of illegal or improper methods for attaining convictions against defendants in criminal trials. Previous research documented extensive errors in the prosecution of severe crimes. A theory formulated to explain this phenomenon proposes that in serious cases, increased pressure to convict…
Remote sensing for illegal dumps detection: a case study in southern Italy
NASA Astrophysics Data System (ADS)
Vincenzo Angelino, Cesario; Focareta, Mariano; Meoli, Giuseppe; Piacquadio, Giovanni; Cicala, Luca; Parrilli, Sara; De Mizio, Marco
2017-04-01
This paper presents a case study about the detection of illegal dumps from optical satellite images in a large territory falling in the provinces of Naples and Caserta, Southern Italy. This location is also known with the term "Terra dei Fuochi" because in this area is particularly widespread the phenomenon of waste burning and, over the past decades, there have been many landfills of hazardous waste of industrial origin. In addition to the potential damage caused to the environmental matrices, this situation has led to considerable concerns over the health of citizens and a serious economic impact on the agricultural sector. In order to contrast this phenomenon, the government of the Campania Region organized some prevention, monitoring and repression activities. In particular, the monitoring activities are employed by periodic inspection of sites, which are often object of illegal deposits (former quarries, illegal dumps, as well as city and country roads). The periodic inspection is usually performed by patrols of the company SMA Campania (the in-house regional company, specialized in environmental protection), and law enforcement. As part of a project, the remote sensing company MAPSAT srl and CIRA (the Italian Aerospace Research Center), have proposed to SMA Campania to support the periodic monitoring inspection of the patrols, with optical satellite acquisitions. This paper describes the proposed approach, the type of data used, the technical problems encountered and solutions introduced. The periodic monitoring with biannual satellite acquisitions, was effective for both finding new illegal spills and to follow the evolution (in terms of extension) of landfills already found in the past.
NASA Astrophysics Data System (ADS)
Welch, R. M.; Ray, D. K.; Lawton, R. O.; Nair, U.
2005-12-01
In the region stretching between Mexico and Panama, the proposed Mesoamerican Biological Corridor (MBC) is an ambitious effort to stem and turn back the erosion of biodiversity in one of the world's biologically richest regions by connecting large existing parks and reserves with new protected areas by means of an extensive network of biological corridors. The success of this effort will depend in part on the ability of the connecting corridors to provide adequate habitats permitting the sustainability of some populations and the migratory movements of others. Ideally these connecting corridors would contain the biological communities which were originally present. Currently, however, many of these connecting corridors do not contain their original forest, but are instead occupied by agricultural landscapes containing croplands, grasslands and degraded woodlands. The forest types in northern Mesoamerica generally are those that require dry season rainfall for their survival, and it is not clear whether current environmental and climatological conditions are sufficient to maintain existing forests and regenerate the pristine forests in the deforested patches. Hourly climatological rainfall rates have been averaged for the time period of 1961 to 1997 at 266 stations in Guatemala and adjacent areas. These climatological rainfall rates have been segregated for forested and deforested regions of each of the major Holdridge life zones. Dry season cloud frequency of occurrences derived from GOES satellite imagery then are. correlated with the March climalogical data in order to generate regression estimates of current local rainfall. Differences between estimated current rainfall and historical values define regions under increased dry season water stress. In general dry season rainfall in March is markedly lower in deforested areas than in forested areas of the same life zone for most of the Holdridge life zones. In some deforested areas within the Holdridge wet forest life zones, estimated March rainfall deficits are >25 mm. Dry season deforested habitats tend to have higher daytime temperatures, are less cloudy, have lower estimated soil moisture and lower values of Normalized Difference Vegetation Index (NDVI) than do forested habitats in the same life zone. The result is hotter and drier air over deforested regions, with lower values of cloud formation and precipitation. The data suggest that deforestation is locally intensifying the dry season and increasing the risk of fire, especially for the long corridor connecting regions. In addition, forest regeneration in some parts of the MBC may not result in second-growth forest that is characteristic of that life zone but rather in forest regeneration more typical of drier conditions. The extent to which this would influence the conservation utility of any given corridor depends upon the ecological requirements of the organisms concerned.
A modelling approach to estimate carbon emissions from D.R.C. deforestation
NASA Astrophysics Data System (ADS)
Najdovski, Nicolas; Poulter, Benjamin; Defourny, Pierre; Moreau, Inès; Maignan, Fabienne; Ciais, Philippe; Verhegghen, Astrid; Kibambe Lubamba, Jean-Paul; Jungers, Quentin; De Weirdt, Marjolein; Verbeeck, Hans; MacBean, Natasha; Peylin, Philippe
2014-05-01
With its 1.8 million squared kilometres, the Congo basin dense forest represents the second largest contiguous forest of the world. These extensive forest ecosystems play a significant role in the regulation of global climate by their potential carbon dioxide emissions and carbon storage. Under a stable climate, the vegetation, assumed to be at the equilibrium, is known to present neutral emissions over a year with seasonal variations. However, modifications in temperatures, precipitations, CO2 atmospheric concentrations have the potential to modify this balance leading to higher or lower biomass storage. In addition, deforestation and forest degradation have played a significant role over the past several decades and are expected to become increasingly important in the future. Here, we quantify the relative effects of deforestation and 21st century climate change on carbon emissions in Congo Basin over the next three decades (2005-2035). Carbon dioxide emissions are estimated using a series of moderate resolution (10 km) vegetation maps merged with spatially explicit deforestation projections and developed to work with a prognostic carbon cycle model. The inversion of the deforestation model allowed hindcast land-use patterns back to 1800 by using land cover change rates based on the HYDE database. Simulations were made over the Democratic Republic of Congo (DRC) using the ORCHIDEE dynamic global vegetation model with climate forcing from the CMIP5 Representative Concentration Pathway 8.5 scenario for the HadGEM2. Two simulations were made, a reference simulation with land cover fixed at 2005 and a land cover change simulation with changing climate and CO2, to quantify the net land cover change emissions and climate emissions directly. Because of the relatively high resolution of the model simulations, the spatial patterns of human-driven carbon losses can be tracked in the context of climate change, providing information for mitigation and vulnerability activities.
Narco-scapes: Cocaine Trafficking and Deforestation in Central America
NASA Astrophysics Data System (ADS)
Wrathall, D.; McSweeney, K.; Nielsen, E.; Pearson, Z.
2015-12-01
Narcotics trafficking and drug interdiction efforts have resulted in a well-documented social crisis in Central America, but more recently, has been tightly linked to environmental catastrophe and accelerated deforestation in transit zones. This talk will outline synthesis findings from multi-country, interdisciplinary research on cocaine trafficking as an engine of forest loss in Central America. During the "narco-boom" of the mid-2000s, we observed a geographical evolution of cocaine flows into Central America, and the transit of cocaine through new spaces, accompanied by specific patterns of social and environmental change in new nodes of transit. We coarsely estimated that the total amount of cocaine flowing through Central America increased from 70 metric tons in 2000 to 350 mt in 2012, implying that total cocaine trafficking revenue in the region increased from roughly 600 million dollars to 3.5 billion in that time. We describe the mechanism by which these locally captured cocaine rents resulted in a rapid conversion of forest into cattle pasture. Narco-traffickers are drawn to invest in the cattle economy, as a direct means of laundering and formalizing proceeds. Ranching is a land intensive activity, and new narco-enriched cattle pastures can be isolated from other forms forest loss solely by their spatial and temporal change characteristics. A preliminary forest change study in Honduras, for example, indicated that areas of accelerated deforestation were in close proximity to known narcotics trafficking routes and were thirteen times more extensive on average than other forest clearings. Deforested areas commonly appeared in isolated and biodiverse lowland tropical rainforest regions that often intersected with protected areas and indigenous reserves. We find that narco-deforestation is a readily identifiable signal of the extent and health of the cocaine economy. This talk will feature summaries of both ethnographic and land cover change we have observed in cocaine transfer nodes in Honduras, Nicaragua, and Guatemala.
Implications of land use change on the national terrestrial carbon budget of Georgia.
Olofsson, Pontus; Torchinava, Paata; Woodcock, Curtis E; Baccini, Alessandro; Houghton, Richard A; Ozdogan, Mutlu; Zhao, Feng; Yang, Xiaoyuan
2010-09-13
Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990. The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions. We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests.
26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.
Code of Federal Regulations, 2013 CFR
2013-04-01
... on one page of the four page pamphlet. In this situation, $400 of preparation costs and $2,500 (25... the world's whale population, particularly because of the illegal hunting of whales by foreign... solar energy systems, thereby helping to preserve the environment. P charges for its extensive...
26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.
Code of Federal Regulations, 2014 CFR
2014-04-01
... on one page of the four page pamphlet. In this situation, $400 of preparation costs and $2,500 (25... the world's whale population, particularly because of the illegal hunting of whales by foreign... solar energy systems, thereby helping to preserve the environment. P charges for its extensive...
26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.
Code of Federal Regulations, 2012 CFR
2012-04-01
... on one page of the four page pamphlet. In this situation, $400 of preparation costs and $2,500 (25... the world's whale population, particularly because of the illegal hunting of whales by foreign... solar energy systems, thereby helping to preserve the environment. P charges for its extensive...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye, Jayant; Andrasko, Ken; Chan, Peter
Greenhouse gas emissions from the forestry sector are estimated to be 8.4 GtCO2-eq./year or about 17percent of the global emissions. We estimate that the cost forreducing deforestation is low in Africa and several times higher in Latin America and Southeast Asia. These cost estimates are sensitive to the uncertainties of how muchunsustainable high-revenue logging occurs, little understood transaction and program implementation costs, and barriers to implementation including governance issues. Due to lack of capacity in the affected countries, achieving reduction or avoidance of carbon emissions will require extensive REDD-plus programs. Preliminary REDD-plus Readiness cost estimates and program descriptions for Indonesia,more » Democratic Republic of the Congo, Ghana, Guyana and Mexico show that roughly one-third of potential REDD-plus mitigation benefits might come from avoided deforestation and the rest from avoided forest degradation and other REDD-plus activities.« less
Bordes, Frédéric; Morand, Serge; Pilosof, Shai; Claude, Julien; Krasnov, Boris R; Cosson, Jean-François; Chaval, Yannick; Ribas, Alexis; Chaisiri, Kittipong; Blasdell, Kim; Herbreteau, Vincent; Dupuy, Stéphane; Tran, Annelise
2015-09-01
1. While the effects of deforestation and habitat fragmentation on parasite prevalence or richness are well investigated, host-parasite networks are still understudied despite their importance in understanding the mechanisms of these major disturbances. Because fragmentation may negatively impact species occupancy, abundance and co-occurrence, we predict a link between spatiotemporal changes in habitat and the architecture of host-parasite networks. 2. For this, we used an extensive data set on 16 rodent species and 29 helminth species from seven localities of South-East Asia. We analysed the effects of rapid deforestation on connectance and modularity of helminth-parasite networks. We estimated both the degree of fragmentation and the rate of deforestation through the development of land uses and their changes through the last 20 to 30 years in order to take into account the dynamics of habitat fragmentation in our statistical analyses. 3. We found that rapid fragmentation does not affect helminth species richness per se but impacts host-parasite interactions as the rodent-helminth network becomes less connected and more modular. 4. Our results suggest that parasite sharing among host species may become more difficult to maintain with the increase of habitat disturbance. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Zhu, Shanyou; Zhang, Hailong; Liu, Ronggao; Cao, Yun; Zhang, Guixin
2014-01-01
Sampling designs are commonly used to estimate deforestation over large areas, but comparisons between different sampling strategies are required. Using PRODES deforestation data as a reference, deforestation in the state of Mato Grosso in Brazil from 2005 to 2006 is evaluated using Landsat imagery and a nearly synchronous MODIS dataset. The MODIS-derived deforestation is used to assist in sampling and extrapolation. Three sampling designs are compared according to the estimated deforestation of the entire study area based on simple extrapolation and linear regression models. The results show that stratified sampling for strata construction and sample allocation using the MODIS-derived deforestation hotspots provided more precise estimations than simple random and systematic sampling. Moreover, the relationship between the MODIS-derived and TM-derived deforestation provides a precise estimate of the total deforestation area as well as the distribution of deforestation in each block.
Zhu, Shanyou; Zhang, Hailong; Liu, Ronggao; Cao, Yun; Zhang, Guixin
2014-01-01
Sampling designs are commonly used to estimate deforestation over large areas, but comparisons between different sampling strategies are required. Using PRODES deforestation data as a reference, deforestation in the state of Mato Grosso in Brazil from 2005 to 2006 is evaluated using Landsat imagery and a nearly synchronous MODIS dataset. The MODIS-derived deforestation is used to assist in sampling and extrapolation. Three sampling designs are compared according to the estimated deforestation of the entire study area based on simple extrapolation and linear regression models. The results show that stratified sampling for strata construction and sample allocation using the MODIS-derived deforestation hotspots provided more precise estimations than simple random and systematic sampling. Moreover, the relationship between the MODIS-derived and TM-derived deforestation provides a precise estimate of the total deforestation area as well as the distribution of deforestation in each block. PMID:25258742
Desvaux, S; Nguyen, C O; Vu, D T; Henriquez, C; Ky, V D; Roger, F; Fenwick, S; Goutard, F
2016-08-01
Poultry movement is known to contribute to the dissemination of highly pathogenic avian influenza (HPAI) viruses. In Northern Vietnam, the illegal trade of poultry from China is a source of concern and is considered as responsible for the regular introduction of new H5N1 viruses. The general objective of this study was to get a better understanding of this illegal trade (organization, volume, actors involved and drivers) to propose adequate preventive and control options. The information was also used to qualitatively evaluate the risk of exposure of susceptible poultry to HPAI H5N1 virus introduced from China by illegally traded poultry. We found that the main products imported from China are spent hens, day-old chicks (DOCs) and ducklings; spent hens being introduced in very large number. The drivers of this trade are multiple: economic (especially for spent hens) but also technical (demand for improved genetic potential for DOC and ducklings). Furthermore, these introductions also meet a high consumer demand at certain periods of the year. We also found that spatial dispersion of a batch of poultry illegally introduced from China is extensive and rapid, making any prediction of possible new outbreaks very hazardous. Finally, a risk mitigation plan should include measures to tackle the drivers of this trade or to legally organize it, to limit the threat to the local poultry sector. It is also essential for traders to be progressively better organized and biosecure and for hygienic practices to be enforced, as our study confirmed that at-risk behaviours are still very common among this profession. © 2014 Blackwell Verlag GmbH.
Rachel Pérez; Tamara Heartsill Scalley
2008-01-01
In Puerto Rico, brackish water wetlands were dominated by Pterocarpus officinalis previous to extensive deforestation due to agriculture. Today remnant wetlands are limited to small areas that are threatened by rise in sea level. We examined the root nodules of P. officinalis in montane and coastal sites and at 0, 10, 20 cm from the surface to determine if site...
The neglected nonlocal effects of deforestation
NASA Astrophysics Data System (ADS)
Winckler, Johannes; Reick, Christian; Pongratz, Julia
2017-04-01
Deforestation changes surface temperature locally via biogeophysical effects by changing the water, energy and momentum balance. Adding to these locally induced changes (local effects), deforestation at a given location can cause changes in temperature elsewhere (nonlocal effects). Most previous studies have not considered local and nonlocal effects separately, but investigated the total (local plus nonlocal) effects, for which global deforestation was found to cause a global mean cooling. Recent modeling and observational studies focused on the isolated local effects: The local effects are relevant for local living conditions, and they can be obtained from in-situ and satellite observations. Observational studies suggest that the local effects of potential deforestation cause a warming when averaged globally. This contrast between local warming and total cooling indicates that the nonlocal effects of deforestation are causing a cooling and thus counteract the local effects. It is still unclear how the nonlocal effects depend on the spatial scale of deforestation, and whether they still compensate the local warming in a more realistic spatial distribution of deforestation. To investigate this, we use a fully coupled climate model and separate local and nonlocal effects of deforestation in three steps: Starting from a forest world, we simulate deforestation in one out of four grid boxes using a regular spatial pattern and increase the number of deforestation grid boxes step-wise up to three out of four boxes in subsequent simulations. To compare these idealized spatial distributions of deforestation to a more realistic case, we separate local and nonlocal effects in a simulation where deforestation is applied in regions where it occurred historically. We find that the nonlocal effects scale nearly linearly with the number of deforested grid boxes, and the spatial distribution of the nonlocal effects is similar for the regular spatial distribution of deforestation and the more realistic pattern. Globally averaged, the deforestation-induced warming of the local effects is counteracted by the nonlocal effects, which are about three times as strong as the local effects (up to 0.1K local warming versus -0.3K nonlocal cooling). Thus, the nonlocal effects are more cooling than the local effects are warming, and this is valid not only for idealized simulations of large-scale deforestation, but also for a more realistic deforestation scenario. We conclude that the local effects of deforestation only yield an incomplete picture of the total climate effects by biogeophysical pathways. While the local effects capture the direct climatic response at the site of deforestation, the nonlocal effects have to be included if the biogeophysical effects of deforestation are considered for an implementation in climate policies.
"Ghana faces ecological disaster".
Asmah, G F
1990-05-01
The rate of deforestation in Ghana is alarming and urgent steps need to be taken to reverse the trend, Robert D. Mann, a British tropical agriculturist, has warned. He says, "There will be further disintegration of the local climate, deterioration of soil fertility and reduced food-crop production, if the present trend of denudation by felling trees and uncontrolled bush fires is not halted and reversed." Mann, who has conducted research on "deforestation, drought and famine in Africa" was in Ghana recently to speak on the "role of the Church in West Africa in stimulating action to combat desertification". Representatives of protestant churches in Ghana, Togo, Liberia, Gambia, Nigeria, Cote d'Ivoire and Sierra Leone attended the 3-day conference which was organized by the Overseas Department of the British Methodist Church. It was to enable participants to share perspectives on the nature, scale and seriousness of the deforestation problem. Participants also exchanged experiences on village-based projects for promoting tree planting and agro-forestry, and developed strategies for the rural development programs. Robert Mann noted that Ghana was not only affected by its proximity to the Sahel, but also by its own deforestation. The situation in Ghana, once renowned for her extensive forests and woodland, has now drastically changed. By 1980/81 the area of closed forest had been reduced to 17,000 sq km from 47,9000 sq km in 1937/38. He said in 1939 the volume of wood exported from Ghana was 42,450 cubic meters but it rose to 1,471,600 cubic meters by 1987. Such activities, Mann said, put severe strain on the environment and affected both the economy and sociocultural basis of the country. full text
NASA Astrophysics Data System (ADS)
Garrett, R.; Koh, I.; le Polain de Waroux, Y.; Lambin, E.; Kastens, J.; Brown, J. C.
2017-12-01
Agricultural expansion, extensive cattle ranching, and deforestation remain pressing challenges for sustainable development and climate mitigation throughout South America. In response to these challenges, national and local governments, as well as private and non-governmental actors have developed new forest conservation governance mechanisms. The objective of this study is to better understand how conservation policies interact with supply chain development to influence land use. In particular, we endeavor to understand the timing and spatial patterns of crop and cattle intensification, an understudied phenomenon that is critical to understanding the future of agricultural-forest frontiers and the impacts of conservation policies. We focus on Mato Grosso, the largest soy and cattle producing state in Brazil, which spans the Cerrado and Amazon biomes and has experienced higher levels of deforestation for agricultural expansion than any other state globally over the last decade. Using a newly created spatially explicit data set of land use intensity, supply chain development, and forest policy, we find that agricultural intensification is occurring rapidly in the region, but is only partially driven by changes in conservation policies. The intensification of cattle production is the result of improvements in deforestation monitoring, penalties, and enforcement, and increased land scarcity. Crop intensification, in contrast, preceded increases in conservation restrictions, and is associated with the positive spillovers resulting from agribusiness agglomeration and development. These results suggest that intensification is not a foregone conclusion of increasing forest conservation restrictions, but is highly dependent on wider development processes. A combined effort to direct agribusiness development away from forest regions via tax credits and subsidized credit, when applied in concert with stringent conservation requirements, could help promote intensification and reduce deforestation leakage.
Moving forward socio-economically focused models of deforestation.
Dezécache, Camille; Salles, Jean-Michel; Vieilledent, Ghislain; Hérault, Bruno
2017-09-01
Whilst high-resolution spatial variables contribute to a good fit of spatially explicit deforestation models, socio-economic processes are often beyond the scope of these models. Such a low level of interest in the socio-economic dimension of deforestation limits the relevancy of these models for decision-making and may be the cause of their failure to accurately predict observed deforestation trends in the medium term. This study aims to propose a flexible methodology for taking into account multiple drivers of deforestation in tropical forested areas, where the intensity of deforestation is explicitly predicted based on socio-economic variables. By coupling a model of deforestation location based on spatial environmental variables with several sub-models of deforestation intensity based on socio-economic variables, we were able to create a map of predicted deforestation over the period 2001-2014 in French Guiana. This map was compared to a reference map for accuracy assessment, not only at the pixel scale but also over cells ranging from 1 to approximately 600 sq. km. Highly significant relationships were explicitly established between deforestation intensity and several socio-economic variables: population growth, the amount of agricultural subsidies, gold and wood production. Such a precise characterization of socio-economic processes allows to avoid overestimation biases in high deforestation areas, suggesting a better integration of socio-economic processes in the models. Whilst considering deforestation as a purely geographical process contributes to the creation of conservative models unable to effectively assess changes in the socio-economic and political contexts influencing deforestation trends, this explicit characterization of the socio-economic dimension of deforestation is critical for the creation of deforestation scenarios in REDD+ projects. © 2017 John Wiley & Sons Ltd.
Changes in size of deforested patches in the Brazilian Amazon.
Rosa, Isabel M D; Souza, Carlos; Ewers, Robert M
2012-10-01
Different deforestation agents, such as small farmers and large agricultural businesses, create different spatial patterns of deforestation. We analyzed the proportion of deforestation associated with different-sized clearings in the Brazilian Amazon from 2002 through 2009. We used annual deforestation maps to determine total area deforested and the size distribution of deforested patches per year. The size distribution of deforested areas changed over time in a consistent, directional manner. Large clearings (>1000 ha) comprised progressively smaller amounts of total annual deforestation. The number of smaller clearings (6.25-50.00 ha) remained unchanged over time. Small clearings accounted for 73% of all deforestation in 2009, up from 30% in 2002, whereas the proportion of deforestation attributable to large clearings decreased from 13% to 3% between 2002 and 2009. Large clearings were concentrated in Mato Grosso, but also occurred in eastern Pará and in Rondônia. In 2002 large clearings accounted for 17%, 15%, and 10% of all deforestation in Mato Grosso, Pará, and Rondônia, respectively. Even in these states, where there is a highly developed agricultural business dominated by soybean production and cattle ranching, the proportional contribution of large clearings to total deforestation declined. By 2009 large clearings accounted for 2.5%, 3.5%, and 1% of all deforestation in Mato Grosso, Pará, and Rondônia, respectively. These changes in deforestation patch size are coincident with the implementation of new conservation policies by the Brazilian government, which suggests that these policies are not effectively reducing the number of small clearings in primary forest, whether these are caused by large landholders or smallholders, but have been more effective at reducing the frequency of larger clearings. ©2012 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Müller, Hannes; Griffiths, Patrick; Hostert, Patrick
2016-02-01
The great success of the Brazilian deforestation programme "PRODES digital" has shown the importance of annual deforestation information for understanding and mitigating deforestation and its consequences in Brazil. However, there is a lack of similar information on deforestation for the 1990s and 1980s. Such maps are essential to understand deforestation frontier development and related carbon emissions. This study aims at extending the deforestation mapping record backwards into the 1990s and 1980s for one of the major deforestation frontiers in the Amazon. We use an image compositing approach to transform 2224 Landsat images in a spatially continuous and cloud free annual time series of Tasseled Cap Wetness metrics from 1984 to 2012. We then employ a random forest classifier to derive annual deforestation patterns. Our final deforestation map has an overall accuracy of 85% with half of the overall deforestation being detected before the year 2000. The results show for the first time detailed patterns of the expanding deforestation frontier before the 2000s. The high degree of automatization exhibits the great potential for mapping the whole Amazon biome using long-term and freely accessible remote sensing collections, such as the Landsat archive and forthcoming Sentinel-2 data.
Predictive modelling of contagious deforestation in the Brazilian Amazon.
Rosa, Isabel M D; Purves, Drew; Souza, Carlos; Ewers, Robert M
2013-01-01
Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges "bottom up", as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated-pre- and post-PPCDAM ("Plano de Ação para Proteção e Controle do Desmatamento na Amazônia")-the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently experiencing low deforestation rates due to its isolation.
Predictive Modelling of Contagious Deforestation in the Brazilian Amazon
Rosa, Isabel M. D.; Purves, Drew; Souza, Carlos; Ewers, Robert M.
2013-01-01
Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges “bottom up”, as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated–pre- and post-PPCDAM (“Plano de Ação para Proteção e Controle do Desmatamento na Amazônia”)–the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently experiencing low deforestation rates due to its isolation. PMID:24204776
Measurement of deforestation in the Brazilian Amazon using satellite remote sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skole, D.L.
1992-01-01
Understanding of the role of the biota in the global carbon cycle is limited by an absence of accurate measurements of deforestation rates in the tropics. This study measures the rate and extent of deforestation in the Brazilian Amazon, the largest extant tropical forest biome in the world. The study uses remote sensing measurements of deforestation rates, the area of secondary vegetation, and tabular data to document deforestation. The analysis concludes: (1) AVHRR will greatly overestimate deforestation and be highly variable; the use of a brightness temperature threshold is highly sensitive and unreliable. The upward bias of AVHRR is amore » function of the density of deforestation. (2) Accurate measurement of deforestation requires Landsat TM data, and can be accomplished using low cost visual interpretation of photographic products at 1:250,000 scales. (3) Secondary growth in the Brazilian Amazon represents a large fraction of the total deforested area, and the abandonment of agricultural land is an important land cover transition. Abandonment rates were 70--83% of clearing rates from primary forests. At any one point in time, approximately 30% of the deforested area is in some stage of abandonment, and quite likely nearly all deforested land becomes abandoned after approximately 5 years. (4) Previous estimates of the total area deforested in the Amazon, as well as deforestation rates, have been too high by as much as 4-fold. A complete assessment of the entire Legal Amazon using over 200 Landsat images measures 251 [times] 10[sup 3] km[sup 2] deforestation as of 1988, or approximately 6% of the closed forests of the region. The average annual rate of deforestation between 1978 and 1988 was 18 [times] 10[sup 3] km[sup 2] yr[sup [minus]1]. These findings suggest the estimates of carbon emissions from the Amazon for the late 1980s have been too high, since the area of regrowth is large and rates of deforestation are lower than previously believed.« less
The stork, the plow, rural social structure and tropical deforestation in poor countries?
Rock, M T
1996-01-01
This study is an exploration of the relationships between income, demographic pressure, technological change in agriculture, and the structure of political economies in light of cross-country differences in deforestation. The study focuses on small farmers and shifting cultivation. The analysis is based on a model developed by Larson (1994) that accounts for rural poverty, rootlessness, and distribution of landholdings. Regression equations model the average annual rate of deforestation, the relative area under forests, and a recursive model that includes both the deforestation rate and the forested area. Deforestation was reasonably well explained by a dummy variable for Asia, a rank order variable of the amount of forested area in 1980, the gross domestic product per capita in 1990, the average annual population growth rate during 1981-90, and the percentage increase in value added to agriculture during 1981-90 in 1990 dollars. Findings indicate that a 10% increase in the population growth rate increased the rate of deforestation by 10.6%. A 10% increase in income per capita increased deforestation by 49.5%. The influence of income on deforestation followed Kuznet's U-shaped curve. The turning point for reduced deforestation was income of $3500 per capita. Only Central and South America are near this income level. An increase in 1 agricultural worker per household increased deforestation by 50%. A 10% increase in smallholders' share of agricultural land reduced deforestation by 3.4%. Countries with high rural rootlessness had 23.6% less relative area under forests, suggesting that rural rootlessness rather than poverty per se leads to deforestation. The recursive model shows that demographic pressures led to deforestation and were mediated by technological change. Political economy theories of deforestation received strong empirical support.
Deforestation Induced Climate Change: Effects of Spatial Scale.
Longobardi, Patrick; Montenegro, Alvaro; Beltrami, Hugo; Eby, Michael
2016-01-01
Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT) response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change.
Deforestation Induced Climate Change: Effects of Spatial Scale
Longobardi, Patrick; Montenegro, Alvaro; Beltrami, Hugo; Eby, Michael
2016-01-01
Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT) response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change. PMID:27100667
Regional dry-season climate changes due to three decades of Amazonian deforestation
NASA Astrophysics Data System (ADS)
Khanna, Jaya; Medvigy, David; Fueglistaler, Stephan; Walko, Robert
2017-02-01
More than 20% of the Amazon rainforest has been cleared in the past three decades, triggering important hydroclimatic changes. Small-scale (a few kilometres) deforestation in the 1980s has caused thermally triggered atmospheric circulations that increase regional cloudiness and precipitation frequency. However, these circulations are predicted to diminish as deforestation increases. Here we use multi-decadal satellite records and numerical model simulations to show a regime shift in the regional hydroclimate accompanying increasing deforestation in Rondônia, Brazil. Compared with the 1980s, present-day deforested areas in downwind western Rondônia are found to be wetter than upwind eastern deforested areas during the local dry season. The resultant precipitation change in the two regions is approximately +/-25% of the deforested area mean. Meso-resolution simulations robustly reproduce this transition when forced with increasing deforestation alone, showing that large-scale climate variability plays a negligible role. Furthermore, deforestation-induced surface roughness reduction is found to play an essential role in the present-day dry-season hydroclimate. Our study illustrates the strong scale sensitivity of the climatic response to Amazonian deforestation and suggests that deforestation is sufficiently advanced to have caused a shift from a thermally to a dynamically driven hydroclimatic regime.
The spectral changes of deforestation in the Brazilian tropical savanna.
Trancoso, Ralph; Sano, Edson E; Meneses, Paulo R
2015-01-01
The Cerrado is a biome in Brazil that is experiencing the most rapid loss in natural vegetation. The objective of this study was to analyze the changes in the spectral response in the red, near infrared (NIR), middle infrared (MIR), and normalized difference vegetation index (NDVI) when native vegetation in the Cerrado is deforested. The test sites were regions of the Cerrado located in the states of Bahia, Minas Gerais, and Mato Grosso. For each region, a pair of Landsat Thematic Mapper (TM) scenes from 2008 (before deforestation) and 2009 (after deforestation) was compared. A set of 1,380 samples of deforested polygons and an equal number of samples of native vegetation have their spectral properties statistically analyzed. The accuracy of deforestation detections was also evaluated using high spatial resolution imagery. Results showed that the spectral data of deforested areas and their corresponding native vegetation were statistically different. The red band showed the highest difference between the reflectance data from deforested areas and native vegetation, while the NIR band showed the lowest difference. A consistent pattern of spectral change when native vegetation in the Cerrado is deforested was identified regardless of the location in the biome. The overall accuracy of deforestation detections was 97.75%. Considering both the marked pattern of spectral changes and the high deforestation detection accuracy, this study suggests that deforestation in Cerrado can be accurately monitored, but a strong seasonal and spatial variability of spectral changes might be expected.
Protecting the Amazon with protected areas
Walker, Robert; Moore, Nathan J.; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio
2009-01-01
This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively. PMID:19549819
Protecting the Amazon with protected areas.
Walker, Robert; Moore, Nathan J; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio
2009-06-30
This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively.
Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon.
Godar, Javier; Gardner, Toby A; Tizado, E Jorge; Pacheco, Pablo
2014-10-28
Annual deforestation rates in the Brazilian Amazon fell by 77% between 2004 and 2011, yet have stabilized since 2009 at 5,000-7,000 km(2). We provide the first submunicipality assessment, to our knowledge, of actor-specific contributions to the deforestation slowdown by linking agricultural census and remote-sensing data on deforestation and forest degradation. Almost half (36,158 km(2)) of the deforestation between 2004 and 2011 occurred in areas dominated by larger properties (>500 ha), whereas only 12% (9,720 km(2)) occurred in areas dominated by smallholder properties (<100 ha). In addition, forests in areas dominated by smallholders tend to be less fragmented and less degraded. However, although annual deforestation rates fell during this period by 68-85% for all actors, the contribution of the largest landholders (>2,500 ha) to annual deforestation decreased over time (63% decrease between 2005 and 2011), whereas that of smallholders went up by a similar amount (69%) during the same period. In addition, the deforestation share attributable to remote areas increased by 88% between 2009 and 2011. These observations are consistent across the Brazilian Amazon, regardless of geographical differences in actor dominance or socioenvironmental context. Our findings suggest that deforestation policies to date, which have been particularly focused on command and control measures on larger properties in deforestation hotspots, may be increasingly limited in their effectiveness and fail to address all actors equally. Further reductions in deforestation are likely to be increasingly costly and require actor-tailored approaches, including better monitoring to detect small-scale deforestation and a shift toward more incentive-based conservation policies.
Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon
NASA Astrophysics Data System (ADS)
Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.
2011-10-01
Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.
Threshold responses of Amazonian stream fishes to timing and extent of deforestation.
Brejão, Gabriel L; Hoeinghaus, David J; Pérez-Mayorga, María Angélica; Ferraz, Silvio F B; Casatti, Lilian
2017-12-06
Deforestation is a primary driver of biodiversity change through habitat loss and fragmentation. Stream biodiversity may not respond to deforestation in a simple linear relationship. Rather, threshold responses to extent and timing of deforestation may occur. Identification of critical deforestation thresholds is needed for effective conservation and management. We tested for threshold responses of fish species and functional groups to degree of watershed and riparian zone deforestation and time since impact in 75 streams in the western Brazilian Amazon. We used remote sensing to assess deforestation from 1984 to 2011. Fish assemblages were sampled with seines and dip nets in a standardized manner. Fish species (n = 84) were classified into 20 functional groups based on ecomorphological traits associated with habitat use, feeding, and locomotion. Threshold responses were quantified using threshold indicator taxa analysis. Negative threshold responses to deforestation were common and consistently occurred at very low levels of deforestation (<20%) and soon after impact (<10 years). Sensitive species were functionally unique and associated with complex habitats and structures of allochthonous origin found in forested watersheds. Positive threshold responses of species were less common and generally occurred at >70% deforestation and >10 years after impact. Findings were similar at the community level for both taxonomic and functional analyses. Because most negative threshold responses occurred at low levels of deforestation and soon after impact, even minimal change is expected to negatively affect biodiversity. Delayed positive threshold responses to extreme deforestation by a few species do not offset the loss of sensitive taxa and likely contribute to biotic homogenization. © 2017 Society for Conservation Biology.
Local and Remote Climate Response to Deforestation in Maritime Continent
NASA Astrophysics Data System (ADS)
Chen, C. C.; Lo, M. H.; Yu, J. Y.
2016-12-01
Deforestation in tropical regions would lead to changes in local energy and moisture budget, resulting in further impacts on regional and global climate. Previous studies have indicated that the reduction of evapotranspiration dominates the influence of tropical deforestation, which causes a warmer and drier climate. Most studies agree that the deforestation leads to an increase in temperature and decline in precipitation over the deforested area. However, unlike Amazon or Africa, Maritime Continent consists of islands surrounded by oceans so the drying effects found in Amazon or Africa may not be the case in Maritime Continent. Thus, our objective is to investigate the local and remote climate responses to deforestation in such unique region. We conduct deforestation experiments using NCAR Community Earth System Model (CESM) and through converting the tropical rainforest into grassland. The preliminary results show that deforestation in Maritime Continent leads to an increase in both temperature and precipitation, which is not predicted by earlier studies. We will further perform moisture budget analysis to explore how the precipitation changes with the deforestation forcing.
SIAM-SERVIR: An Environmental Monitoring and Decision Support System for Mesoamerica
NASA Technical Reports Server (NTRS)
Irwin, Daniel E.; Sever, Tom; Graves, Sara; Hardin, Danny
2005-01-01
In 2002/2003 NASA, the World Bank and the United States Agency for International Development (USAID) joined with the Central American Commission for Environment and Development (CCAD) to develop an advanced decision support system for Mesoamerica (named SERVIR) as part of the Mesoamerican Environmental Information System (SIAM). Mesoamerica - composed of the seven Central American countries and the five southernmost states of Mexico - make up only a small fraction of the world s land surface. However, the region is home to seven to eight percent of the planet s biodiversity (14 biosphere reserves, 31 Ramsar sites, 8 world heritage sites, 589 protected areas) and 45 million people including more than 50 different ethnic groups. Today Mesoamerica s biological and cultural diversity is severely threatened by extensive deforestation, illegal logging, water pollution, and uncontrolled slash and burn agriculture. Additionally, Mesoamerica's distinct geology and geography result in disproportionate vulnerability to natural disasters such as earthquakes, hurricanes, drought, and volcanic eruptions. NASA Marshall Space Flight Center, together with the University of Alabama in Huntsville (UAH) and the SIAM-SERVIR partners are developing state-of-the-art decision support tools for environmental monitoring as well as disaster prevention and mitigation in Mesoamerica. These partners are contributing expertise in space-based observation with information management technologies and intimate knowledge of local ecosystems to create a system that is being used by scientists, educators, and policy makers to monitor and forecast ecological changes, respond to natural disasters and better understand both natural and human induced effects. In its first year of development and operation, the SIAM-SERVIR project has already yielded valuable information on Central American fires, weather conditions, and the first ever real-time data on red tides. This paper presents the progress thus far in the development of SIAM-SERVIR and the plans for the future.
NASA Astrophysics Data System (ADS)
Hardin, D.; Graves, S.; Sever, T.; Irwin, D.
2005-05-01
In 2002 and 2003 NASA, the World Bank and the United States Agency for International Development (USAID) joined with the Central American Commission for Environment and Development (CCAD) to develop an advanced decision support system for Mesoamerica (named SERVIR). Mesoamerica - composed of the seven Central American countries and the five southernmost states of Mexico - makes up only a small fraction of the world's land surface. However, the region is home to approximately eight percent of the planet's biodiversity (14 biosphere reserves, 31 Ramsar sites, 8 world heritage sites, 589 protected areas) and 45 million people including more than 50 different ethnic groups. Mesoamerica's biological and cultural diversity are severely threatened by human impact and natural disasters including extensive deforestation, illegal logging, water pollution, slash and burn agriculture, earthquakes, hurricanes, drought, and volcanic eruption. NASA Marshall Space Flight Center (NASA/MSFC), together with the University of Alabama in Huntsville (UAH) and the SERVIR partners are developing state-of-the-art decision support tools for environmental monitoring as well as disaster prevention and mitigation in Mesoamerica. These partners are contributing expertise in space-based observation with information management technologies and intimate knowledge of local ecosystems to create a system that is being used by scientists, educators, and policy makers to monitor and forecast ecological changes, respond to natural disasters, and better understand both natural and human induced effects. The decision support and environmental monitoring data products are typically formatted as conventional two-dimensional, static and animated imagery. However, in addition to conventional data products and as a major portion of our research, we are employing commercial applications that generate three-dimensional interactive visualizations that allow data products to be viewed from multiple angles and at different scales. One of these is a 15 meter resolution mosaic of the entire Mesoamerican region. This paper gives an overview of the SERVIR project and its associated visualization methods.
Waterfowl in Cuba: Current status and distribution
Blanco Rodríquez, Pedro; Vilella, Francisco; Sánchez Oria, Bárbara
2014-01-01
Cuba and its satellite islands represent the largest landmass in the Caribbean archipelago and a major repository of the region’s biodiversity. Approximately 13.4% of the Cuban territory is covered by wetlands, encompassing approximately 1.48 million ha which includes mangroves, flooded savannas, peatlands, freshwater swamp forests and various types of managed wetlands. Here, we synthesise information on the distribution and abundance of waterfowl on the main island of Cuba, excluding the numerous surrounding cays and the Isla de la Juventud (Isle of Youth), and report on band recoveries from wintering waterfowl harvested in Cuba by species and location. Twenty-nine species of waterfowl occur in Cuba, 24 of which are North American migrants. Of the five resident Anatid species, three are of conservation concern: the West Indian Whistling-duck Dendrocygna arborea (globally vulnerable), White-cheeked Pintail Anas bahamensis (regional concern) and Masked Duck Nomonyx dominicus(regional concern). The most abundant species of waterfowl wintering in Cuba include Blue-winged Teal A. discors, Northern Pintail A. acuta, and Northern Shoveler A. clypeata. Waterfowl banded in Canada and the United States and recovered in Cuba included predominantly Blue-winged Teal, American Wigeon and Northern Pintail. Banding sites of recovered birds suggest that most of the waterfowl moving through and wintering in Cuba are from the Atlantic and Mississippi flyways. Threats to wetlands and waterfowl in Cuba include: 1) egg poaching of resident species, 2) illegal hunting of migratory and protected resident species, 3) mangrove deforestation, 4) reservoirs for irrigation, 5) periods of pronounced droughts, and 6) hurricanes. Wetland and waterfowl conservation efforts continue across Cuba’s extensive system of protected areas. Expanding collaborations with international conservation organisations, researchers and governments in North America will enhance protection of waterfowl and wetlands in Cuba.
Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon.
Jusys, Tomas
2018-01-01
This study quantifies how much deforestation was avoided due to legal protection in Legal Amazon in strictly protected areas, sustainable use areas, and indigenous lands. Only regions that are protected de jure (i.e., where deforestation is avoided due to effective laws rather than remoteness) were considered, so that the potential of legal protection could be better assessed. This is a cross-sectional approach, which allows comparisons in terms of avoided deforestation among the different types of protection in the same period. This study covers three different periods. Regions protected de jure were sampled by estimating a threshold distance at which deforestation starts to diminish and retaining all pixels up to that distance, and deforestation that has been avoided due to legal protection was estimated by matching. Indigenous lands avoided the highest percentage of deforestation during the 2001-2004 and 2005-2008 periods, followed by those under strict protection and sustainable use areas, in respective order. Shifting patterns in deforestation avoidance are clearly noticeable for the 2009-2014 period when 1) strictly protected areas outperformed indigenous lands in terms of the percentage of saved forests, 2) some protected regions began to attract deforestation instead of avoiding it, and 3) sustainable use areas, on average, did not avoid deforestation.
Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon
2018-01-01
This study quantifies how much deforestation was avoided due to legal protection in Legal Amazon in strictly protected areas, sustainable use areas, and indigenous lands. Only regions that are protected de jure (i.e., where deforestation is avoided due to effective laws rather than remoteness) were considered, so that the potential of legal protection could be better assessed. This is a cross-sectional approach, which allows comparisons in terms of avoided deforestation among the different types of protection in the same period. This study covers three different periods. Regions protected de jure were sampled by estimating a threshold distance at which deforestation starts to diminish and retaining all pixels up to that distance, and deforestation that has been avoided due to legal protection was estimated by matching. Indigenous lands avoided the highest percentage of deforestation during the 2001–2004 and 2005–2008 periods, followed by those under strict protection and sustainable use areas, in respective order. Shifting patterns in deforestation avoidance are clearly noticeable for the 2009–2014 period when 1) strictly protected areas outperformed indigenous lands in terms of the percentage of saved forests, 2) some protected regions began to attract deforestation instead of avoiding it, and 3) sustainable use areas, on average, did not avoid deforestation. PMID:29689071
Paying for Sex; The Many Obstacles in the Way of Men with Learning Disabilities Using Prostitutes
ERIC Educational Resources Information Center
Jones, Chris
2013-01-01
We live in an increasingly sexualised society, and the buying and selling of sex is a feature of this society. The laws about prostitution are complex, but the act of selling or buying sex is in itself not illegal. The author has extensive clinical experience of hearing the stories of men with learning disabilities who do use commercial sex…
Htun, Naing Zaw; Mizoue, Nobuya; Yoshida, Shigejiro
2013-02-01
Implementing effective conservation requires an understanding of factors affecting deforestation and forest degradation. Previous studies have investigated factors affecting deforestation, while few studies have examined the determinants of both of deforestation and forest degradation for more than one period. To address this gap, this study examined factors influencing deforestation and forest degradation during 1989-2000 and 2000-2005 in the Popa Mountain Park, Myanmar. We applied multinomial logistic regression (MNL) using land cover maps derived from Landsat images as the dependent variables as well as spatial and biophysical factors as the independent variables. The MNL models revealed influences of the determinants on deforestation and forest degradation changes over time. For example, during 1989-2000, deforestation from closed forest was positively correlated to the distance from the park boundary and was negatively correlated with distance from villages, roads, the park circular road, slope, western aspect and elevation. On the other hand, during 2000-2005, deforestation of closed forest was positively correlated with distance from villages, roads, the park circular road, slope and western aspect, and negatively correlated with distance from the park boundary and elevation. Similar scenarios were observed for the deforestation of open forest and forest degradation of closed forest. The study also found most of the determinants influenced deforestation and forest degradation differently. The changes in determinants of deforestation and forest degradation over time might be attributable to the general decrease in resource availability and to the effect of conservation measures conducted by the park.
Air quality and human health improvements from reduced deforestation in Brazil
NASA Astrophysics Data System (ADS)
Reddington, C.; Butt, E. W.; Ridley, D. A.; Artaxo, P.; Morgan, W.; Coe, H.; Spracklen, D. V.
2015-12-01
Significant areas of the Brazilian Amazon have been deforested over the past few decades, with fire being the dominant method through which forests and vegetation are cleared. Fires emit large quantities of particulate matter into the atmosphere, degrading air quality and negatively impacting human health. Since 2004, Brazil has achieved substantial reductions in deforestation rates and associated deforestation fires. Here we assess the impact of this reduction on air quality and human health. We show that dry season (August - October) aerosol optical depth (AOD) retrieved by satellite over southwest Brazil and Bolivia is positively related to Brazil's annual deforestation rate (r=0.96, P<0.001). Observed dry season AOD is more than a factor two greater in years with high deforestation rates compared to years with low deforestation rates, suggesting regional air quality is degraded substantially by fire emissions associated with deforestation. This link is further demonstrated by the positive relationship between observed AOD and satellite-derived particulate emissions from deforestation fires (r=0.89, P<0.01). Using a global aerosol model with satellite-derived fire emissions, we show that reductions in fires associated with reduced deforestation have reduced regional dry season mean surface particulate matter concentrations by ~30%. Using concentration response functions we estimate that this reduction in particulate matter may be preventing 1060 (388-1721) premature adult mortalities annually across South America. Future increases in Brazil's deforestation rates and associated fires may threaten the improved air quality reported here.
NASA Astrophysics Data System (ADS)
Htun, Naing Zaw; Mizoue, Nobuya; Yoshida, Shigejiro
2013-02-01
Implementing effective conservation requires an understanding of factors affecting deforestation and forest degradation. Previous studies have investigated factors affecting deforestation, while few studies have examined the determinants of both of deforestation and forest degradation for more than one period. To address this gap, this study examined factors influencing deforestation and forest degradation during 1989-2000 and 2000-2005 in the Popa Mountain Park, Myanmar. We applied multinomial logistic regression (MNL) using land cover maps derived from Landsat images as the dependent variables as well as spatial and biophysical factors as the independent variables. The MNL models revealed influences of the determinants on deforestation and forest degradation changes over time. For example, during 1989-2000, deforestation from closed forest was positively correlated to the distance from the park boundary and was negatively correlated with distance from villages, roads, the park circular road, slope, western aspect and elevation. On the other hand, during 2000-2005, deforestation of closed forest was positively correlated with distance from villages, roads, the park circular road, slope and western aspect, and negatively correlated with distance from the park boundary and elevation. Similar scenarios were observed for the deforestation of open forest and forest degradation of closed forest. The study also found most of the determinants influenced deforestation and forest degradation differently. The changes in determinants of deforestation and forest degradation over time might be attributable to the general decrease in resource availability and to the effect of conservation measures conducted by the park.
Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon
Godar, Javier; Gardner, Toby A.; Tizado, E. Jorge
2014-01-01
Annual deforestation rates in the Brazilian Amazon fell by 77% between 2004 and 2011, yet have stabilized since 2009 at 5,000–7,000 km2. We provide the first submunicipality assessment, to our knowledge, of actor-specific contributions to the deforestation slowdown by linking agricultural census and remote-sensing data on deforestation and forest degradation. Almost half (36,158 km2) of the deforestation between 2004 and 2011 occurred in areas dominated by larger properties (>500 ha), whereas only 12% (9,720 km2) occurred in areas dominated by smallholder properties (<100 ha). In addition, forests in areas dominated by smallholders tend to be less fragmented and less degraded. However, although annual deforestation rates fell during this period by 68–85% for all actors, the contribution of the largest landholders (>2,500 ha) to annual deforestation decreased over time (63% decrease between 2005 and 2011), whereas that of smallholders went up by a similar amount (69%) during the same period. In addition, the deforestation share attributable to remote areas increased by 88% between 2009 and 2011. These observations are consistent across the Brazilian Amazon, regardless of geographical differences in actor dominance or socioenvironmental context. Our findings suggest that deforestation policies to date, which have been particularly focused on command and control measures on larger properties in deforestation hotspots, may be increasingly limited in their effectiveness and fail to address all actors equally. Further reductions in deforestation are likely to be increasingly costly and require actor-tailored approaches, including better monitoring to detect small-scale deforestation and a shift toward more incentive-based conservation policies. PMID:25313087
Land use patterns and related carbon losses following deforestation in South America
NASA Astrophysics Data System (ADS)
De Sy, V.; Herold, M.; Achard, F.; Beuchle, R.; Clevers, J. G. P. W.; Lindquist, E.; Verchot, L.
2015-12-01
Land use change in South America, mainly deforestation, is a large source of anthropogenic CO2 emissions. Identifying and addressing the causes or drivers of anthropogenic forest change is considered crucial for global climate change mitigation. Few countries however, monitor deforestation drivers in a systematic manner. National-level quantitative spatially explicit information on drivers is often lacking. This study quantifies proximate drivers of deforestation and related carbon losses in South America based on remote sensing time series in a systematic, spatially explicit manner. Deforestation areas were derived from the 2010 global remote sensing survey of the Food and Agricultural Organisation Forest Resource Assessment. To assess proximate drivers, land use following deforestation was assigned by visual interpretation of high-resolution satellite imagery. To estimate gross carbon losses from deforestation, default Tier 1 biomass levels per country and eco-zone were used. Pasture was the dominant driver of forest area (71.2%) and related carbon loss (71.6%) in South America, followed by commercial cropland (14% and 12.1% respectively). Hotspots of deforestation due to pasture occurred in Northern Argentina, Western Paraguay, and along the arc of deforestation in Brazil where they gradually moved into higher biomass forests causing additional carbon losses. Deforestation driven by commercial cropland increased in time, with hotspots occurring in Brazil (Mato Grosso State), Northern Argentina, Eastern Paraguay and Central Bolivia. Infrastructure, such as urban expansion and roads, contributed little as proximate drivers of forest area loss (1.7%). Our findings contribute to the understanding of drivers of deforestation and related carbon losses in South America, and are comparable at the national, regional and continental level. In addition, they support the development of national REDD+ interventions and forest monitoring systems, and provide valuable input for statistical analysis and modelling of underlying drivers of deforestation.
Identifying areas of deforestation risk for REDD+ using a species modeling tool
Riveros, Juan Carlos; Forrest, Jessica L
2014-01-01
Background To implement the REDD+ mechanism (Reducing Emissions for Deforestation and Forest Degradation, countries need to prioritize areas to combat future deforestation CO2 emissions, identify the drivers of deforestation around which to develop mitigation actions, and quantify and value carbon for financial mechanisms. Each comes with its own methodological challenges, and existing approaches and tools to do so can be costly to implement or require considerable technical knowledge and skill. Here, we present an approach utilizing a machine learning technique known as Maximum Entropy Modeling (Maxent) to identify areas at high deforestation risk in the study area in Madre de Dios, Peru under a business-as-usual scenario in which historic deforestation rates continue. We link deforestation risk area to carbon density values to estimate future carbon emissions. We quantified area deforested and carbon emissions between 2000 and 2009 as the basis of the scenario. Results We observed over 80,000 ha of forest cover lost from 2000-2009 (0.21% annual loss), representing over 39 million Mg CO2. The rate increased rapidly following the enhancement of the Inter Oceanic Highway in 2005. Accessibility and distance to previous deforestation were strong predictors of deforestation risk, while land use designation was less important. The model performed consistently well (AUC > 0.9), significantly better than random when we compared predicted deforestation risk to observed. If past deforestation rates continue, we estimate that 132,865 ha of forest could be lost by the year 2020, representing over 55 million Mg CO2. Conclusions Maxent provided a reliable method for identifying areas at high risk of deforestation and the major explanatory variables that could draw attention for mitigation action planning under REDD+. The tool is accessible, replicable and easy to use; all necessary for producing good risk estimates and adapt models after potential landscape change. We propose this approach for developing countries planning to meet requirements under REDD+. PMID:25489336
Identifying areas of deforestation risk for REDD+ using a species modeling tool.
Aguilar-Amuchastegui, Naikoa; Riveros, Juan Carlos; Forrest, Jessica L
2014-01-01
To implement the REDD+ mechanism (Reducing Emissions for Deforestation and Forest Degradation, countries need to prioritize areas to combat future deforestation CO2 emissions, identify the drivers of deforestation around which to develop mitigation actions, and quantify and value carbon for financial mechanisms. Each comes with its own methodological challenges, and existing approaches and tools to do so can be costly to implement or require considerable technical knowledge and skill. Here, we present an approach utilizing a machine learning technique known as Maximum Entropy Modeling (Maxent) to identify areas at high deforestation risk in the study area in Madre de Dios, Peru under a business-as-usual scenario in which historic deforestation rates continue. We link deforestation risk area to carbon density values to estimate future carbon emissions. We quantified area deforested and carbon emissions between 2000 and 2009 as the basis of the scenario. We observed over 80,000 ha of forest cover lost from 2000-2009 (0.21% annual loss), representing over 39 million Mg CO2. The rate increased rapidly following the enhancement of the Inter Oceanic Highway in 2005. Accessibility and distance to previous deforestation were strong predictors of deforestation risk, while land use designation was less important. The model performed consistently well (AUC > 0.9), significantly better than random when we compared predicted deforestation risk to observed. If past deforestation rates continue, we estimate that 132,865 ha of forest could be lost by the year 2020, representing over 55 million Mg CO2. Maxent provided a reliable method for identifying areas at high risk of deforestation and the major explanatory variables that could draw attention for mitigation action planning under REDD+. The tool is accessible, replicable and easy to use; all necessary for producing good risk estimates and adapt models after potential landscape change. We propose this approach for developing countries planning to meet requirements under REDD+.
NASA Astrophysics Data System (ADS)
Cai, X.; Riley, W. J.; Zhu, Q.
2017-12-01
Deforestation causes a series of changes to the climate, water, and nutrient cycles. Employing a state-of-the-art earth system model—ACME (Accelerated Climate Modeling for Energy), we comprehensively investigate the impacts of deforestation on these processes. We first assess the performance of the ACME Land Model (ALM) in simulating runoff, evapotranspiration, albedo, and plant productivity at 42 FLUXNET sites. The single column mode of ACME is then used to examine climate effects (temperature cooling/warming) and responses of runoff, evapotranspiration, and nutrient fluxes to deforestation. This approach separates local effects of deforestation from global circulation effects. To better understand the deforestation effects in a global context, we use the coupled (atmosphere, land, and slab ocean) mode of ACME to demonstrate the impacts of deforestation on global climate, water, and nutrient fluxes. Preliminary results showed that the land component of ACME has advantages in simulating these processes and that local deforestation has potentially large impacts on runoff and atmospheric processes.
Regional hydro-climatic impacts of contemporary Amazonian deforestation
NASA Astrophysics Data System (ADS)
Khanna, Jaya
More than 17% of the Amazon rainforest has been cleared in the past three decades triggering important climatological and societal impacts. This thesis is devoted to identifying and explaining the regional hydroclimatic impacts of this change employing multidecadal satellite observations and numerical simulations providing an integrated perspective on this topic. The climatological nature of this study motivated the implementation and application of a cloud detection technique to a new geostationary satellite dataset. The resulting sub daily, high spatial resolution, multidecadal time series facilitated the detection of trends and variability in deforestation triggered cloud cover changes. The analysis was complemented by satellite precipitation, reanalysis and ground based datasets and attribution with the variable resolution Ocean-Land-Atmosphere-Model. Contemporary Amazonian deforestation affects spatial scales of hundreds of kilometers. But, unlike the well-studied impacts of a few kilometers scale deforestation, the climatic response to contemporary, large scale deforestation is neither well observed nor well understood. Employing satellite datasets, this thesis shows a transition in the regional hydroclimate accompanying increasing scales of deforestation, with downwind deforested regions receiving 25% more and upwind deforested regions receiving 25% less precipitation from the deforested area mean. Simulations robustly reproduce these shifts when forced with increasing deforestation alone, suggesting a negligible role of large-scale decadal climate variability in causing the shifts. Furthermore, deforestation-induced surface roughness variations are found necessary to reproduce the observed spatial patterns in recent times illustrating the strong scale-sensitivity of the climatic response to Amazonian deforestation. This phenomenon, inconsequential during the wet season, is found to substantially affect the regional hydroclimate in the local dry and parts of transition seasons, hence occurring in atmospheric conditions otherwise less conducive to thermal convection. Evidence of this phenomenon is found at two large scale deforested areas considered in this thesis. Hence, the 'dynamical' mechanism, which affects the seasons most important for regional ecology, emerges as an impactful convective triggering mechanism. The phenomenon studied in this thesis provides context for thinking about the climate of a future, more patchily forested Amazonia, by articulating relationships between climate and spatial scales of deforestation.
Decoupling of deforestation and soy production in the southern Amazon during the late 2000s
Macedo, Marcia N.; DeFries, Ruth S.; Morton, Douglas C.; Stickler, Claudia M.; Galford, Gillian L.; Shimabukuro, Yosio E.
2012-01-01
From 2006 to 2010, deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996–2005) whereas agricultural production reached an all-time high. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001 to 2005 was entirely due to cropland expansion into previously cleared pasture areas (74%) or forests (26%). From 2006 to 2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10 to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels whereas deforestation continued to decline, suggesting that antideforestation measures may have influenced the agricultural sector. We found little evidence of direct leakage of soy expansion into cerrado in Mato Grosso during the late 2000s, although indirect land-use changes and leakage to more distant regions are possible. This study provides evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers, provided that land is available and policies promote the efficient use of already-cleared lands (intensification) while restricting deforestation. It remains uncertain whether government- and industry-led policies can contain deforestation if future market conditions favor another boom in agricultural expansion. PMID:22232692
Decoupling of deforestation and soy production in the southern Amazon during the late 2000s.
Macedo, Marcia N; DeFries, Ruth S; Morton, Douglas C; Stickler, Claudia M; Galford, Gillian L; Shimabukuro, Yosio E
2012-01-24
From 2006 to 2010, deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996-2005) whereas agricultural production reached an all-time high. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001 to 2005 was entirely due to cropland expansion into previously cleared pasture areas (74%) or forests (26%). From 2006 to 2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10 to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels whereas deforestation continued to decline, suggesting that antideforestation measures may have influenced the agricultural sector. We found little evidence of direct leakage of soy expansion into cerrado in Mato Grosso during the late 2000s, although indirect land-use changes and leakage to more distant regions are possible. This study provides evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers, provided that land is available and policies promote the efficient use of already-cleared lands (intensification) while restricting deforestation. It remains uncertain whether government- and industry-led policies can contain deforestation if future market conditions favor another boom in agricultural expansion.
Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon
Morton, Douglas C.; DeFries, Ruth S.; Shimabukuro, Yosio E.; Anderson, Liana O.; Arai, Egidio; del Bon Espirito-Santo, Fernando; Freitas, Ramon; Morisette, Jeff
2006-01-01
Intensive mechanized agriculture in the Brazilian Amazon grew by >3.6 million hectares (ha) during 2001–2004. Whether this cropland expansion resulted from intensified use of land previously cleared for cattle ranching or new deforestation has not been quantified and has major implications for future deforestation dynamics, carbon fluxes, forest fragmentation, and other ecosystem services. We combine deforestation maps, field surveys, and satellite-based information on vegetation phenology to characterize the fate of large (>25-ha) clearings as cropland, cattle pasture, or regrowing forest in the years after initial clearing in Mato Grosso, the Brazilian state with the highest deforestation rate and soybean production since 2001. Statewide, direct conversion of forest to cropland totaled >540,000 ha during 2001–2004, peaking at 23% of 2003 annual deforestation. Cropland deforestation averaged twice the size of clearings for pasture (mean sizes, 333 and 143 ha, respectively), and conversion occurred rapidly; >90% of clearings for cropland were planted in the first year after deforestation. Area deforested for cropland and mean annual soybean price in the year of forest clearing were directly correlated (R2 = 0.72), suggesting that deforestation rates could return to higher levels seen in 2003–2004 with a rebound of crop prices in international markets. Pasture remains the dominant land use after forest clearing in Mato Grosso, but the growing importance of larger and faster conversion of forest to cropland defines a new paradigm of forest loss in Amazonia and refutes the claim that agricultural intensification does not lead to new deforestation. PMID:16973742
Decoupling of Deforestation and Soy Production in the Southern Amazon During the Late 2000s
NASA Technical Reports Server (NTRS)
Macedo, Marcia N.; DeFries, Ruth S.; Morton, Douglas C.; Stickler, Claudia M.; Galford, Gillian L.; Shimabukuro, Yosio E.
2011-01-01
From 2006-2010 deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996-2005) while agricultural production reached an all time high, achieving the oft-cited objective of increasing production while maintaining forest cover. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001-2005 was entirely due to cropland expansion into previously cleared areas (74%) or forests (26%). From 2006-2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10% to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels while deforestation continued to decline, suggesting that anti-deforestation measures may have influenced the agricultural sector. We found little evidence of leakage of soy expansion into cerrado in Mato Grosso or forests in neighboring Amazon states during the late 2000s, although leakage to more distant regions is possible. This study provides empirical evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers through productive use of already cleared lands. It remains uncertain whether government and industry-led policies can contain deforestation when market conditions again favor a boom in agricultural expansion.
Population growth, human development, and deforestation in biodiversity hotspots.
Jha, S; Bawa, K S
2006-06-01
Human population and development activities affect the rate of deforestation in biodiversity hotspots. We quantified the effect of human population growth and development on rates of deforestation and analyzed the relationship between these causal factors in the 1980s and 1990s. We compared the averages of population growth, human development index (HDI, which measures income, health, and education), and deforestation rate and computed correlations among these variables for countries that contain biodiversity hotspots. When population growth was high and HDI was low there was a high rate of deforestation, but when HDI was high, rate of deforestation was low, despite high population growth. The correlation among variables was significant for the 1990s but not for the 1980s. The relationship between population growth and HDI had a regional pattern that reflected the historical process of development. Based on the changes in HDI and deforestation rate over time, we identified two drivers of deforestation: policy choice and human-development constraints. Policy choices that disregard conservation may cause the loss of forests even in countries that are relatively developed. Lack of development in other countries, on the other hand, may increase the pressure on forests to meet the basic needs of the human population. Deforestation resulting from policy choices may be easier to fix than deforestation arising from human development constraints. To prevent deforestation in the countries that have such constraints, transfer of material and intellectual resources from developed countries may be needed. Popular interest in sustainable development in developed countries can facilitate the transfer of these resources.
Earthshots: Satellite images of environmental change – Ayeyarwady Delta, Myanmar
Adamson, Thomas
2013-01-01
The Ayeyarwady Delta—also called the Irrawaddy Delta—is a vast alluvial floodplain. The delta spans over 35,000 km2 (13,500 mi2) and was once home to an extensive tract of mangrove forests, but deforestation has changed the landscape. One scientific study estimated that the delta lost 1,685 km2 (651 mi2) from 1978 to 2011. This 40-year sequence of Landsat images shows the relatively rapid loss of mangrove forest.
E.S. Gardiner; D.C. Dey; John Stanturf; B.R. Lockhart
2010-01-01
The lowlands associated with the Mississippi River and its tributaries historically supported extensive broadleaf forests that were particularly rich in oak (Quercus spp.) species. Beginning in the 1700s, deforestation for agriculture substantially reduced the extent of the original forest, and fragmented the remainder into small parcels. More recently, declines in...
NASA Astrophysics Data System (ADS)
Jin, Wei; Zhang, Chongfu; Yuan, Weicheng
2016-02-01
We propose a physically enhanced secure scheme for direct detection-orthogonal frequency division multiplexing-passive optical network (DD-OFDM-PON) and long reach coherent detection-orthogonal frequency division multiplexing-passive optical network (LRCO-OFDM-PON), by employing noise-based encryption and channel/phase estimation. The noise data generated by chaos mapping are used to substitute training sequences in preamble to realize channel estimation and frame synchronization, and also to be embedded on variable number of key-selected randomly spaced pilot subcarriers to implement phase estimation. Consequently, the information used for signal recovery is totally hidden as unpredictable noise information in OFDM frames to mask useful information and to prevent illegal users from correctly realizing OFDM demodulation, and thereby enhancing resistance to attackers. The levels of illegal-decryption complexity and implementation complexity are theoretically discussed. Through extensive simulations, the performances of the proposed channel/phase estimation and the security introduced by encrypted pilot carriers have been investigated in both DD-OFDM and LRCO-OFDM systems. In addition, in the proposed secure DD-OFDM/LRCO-OFDM PON models, both legal and illegal receiving scenarios have been considered. These results show that, by utilizing the proposed scheme, the resistance to attackers can be significantly enhanced in DD-OFDM-PON and LRCO-OFDM-PON systems without performance degradations.
An impact of deforestation by extreme weather events on Sphagnum peatland ecosystem
NASA Astrophysics Data System (ADS)
Slowinski, M. M.; Łuców, D.; Kołaczek, P.; Tjallingii, R.; Lane, C. S.; Slowinska, S.; Tyszkowski, S.; Łokas, E.; Theuerkauf, M.; Brauer, A.; Lamentowicz, M.
2017-12-01
An increase in extreme weather phenomena has been observed over the last decades as a result of global climate warming. Terrestrial ecosystems are influenced by different types of disturbances such as e.g. deforestation, land-use, fragmentation, fire, floods or storms. Disturbance triggers may be natural or anthropogenic, but usually we observe negative feedback loops and interconnected causal factors. Here we investigate the effects of a tornado event on the peatland ecosystem of the Tuchola Pinewoods, Northern Poland. Deforestation by tornado events can cause severe perturbations of the hydrology and erosion that, in turn, affects adjacent lakes and peatlands. Martwe peatland provide an exceptional opportunity to study the impact of such extreme events, as it was struck by a tornado in 2012. Our research is focused on lake-peatland ecosystems that were directly affected by this tornado, and we consider the general transformation of the vegetation (mainly forests) over the last 150 years. Extensive clearing of the forest occurred in the nineteenth century due to human activity, and we compare this with the impact of the 2012 tornado. Accurate reconstructions will rely on a broad range of palaeoecological techniques such as pollen, macro-remains and testate amoebae, but also on geochemistry, i.e. μXRF scanning. The chronology of the records is based on 210Pb and radiocarbon dating and will incorporate correlations using (crypto)tephra markers of the Eyjafjöll (2010) and Askja (1875) eruptions. We expect to observe that disturbance (tornado-induced deforestation) affects the short-term changes in peatland productivity and biodiversity, through a cascading "top-down" effect. This research addresses the emerging issue of the impact of extreme phenomena and more general climate changes on peatland ecosystems, which will potentially help to inform adaptations to the environmental consequences of extreme events in the future. This project is funded by the Polish National Science Centre (No. 2015/17/B/ST10/03430).
Forest transitions in Eastern Europe and their effects on carbon budgets.
Kuemmerle, Tobias; Kaplan, Jed O; Prishchepov, Alexander V; Rylsky, Ilya; Chaskovskyy, Oleh; Tikunov, Vladimir S; Müller, Daniel
2015-08-01
Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio-economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest area, we homogenized statistics at the provincial level for ad 1700-2010 to identify forest transition years and forest trends. We contrast our reconstruction with the KK11 and HYDE 3.1 land change scenarios, and use all three datasets to drive the LPJ dynamic global vegetation model to calculate carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable or continuously declining forest area. Our data suggest extensive deforestation in European Russia already prior to ad 1700, and even greater deforestation in the 18th and 19th centuries than in the KK11 and HYDE scenarios. Based on our reconstruction, cumulative carbon emissions from deforestation were greater before 1700 (60 Pg C) than thereafter (29 Pg C). Summed over our entire study area, forest transitions led to a modest uptake in carbon over recent decades, with our dataset showing the smallest effect (<5.5 Pg C) and a more heterogeneous pattern of source and sink regions. This suggests substantial sequestration potential in regrowing forests of the region, a trend that may be amplified through ongoing land abandonment, climate change, and CO2 fertilization. © 2015 John Wiley & Sons Ltd.
Effects of Chinese Deforestation and Reforestation Policies on Sediment Sourcing in Yunnan, China
NASA Astrophysics Data System (ADS)
Henck Schmidt, A. C.; Bierman, P. R.; Sosa-Gonzalez, V.; Neilson, T. B.; Singleton, A.; Qiu, Y.; Bower, J.; Rood, D. H.
2015-12-01
Widespread deforestation from the 1960s through 1980s, blamed for catastrophic flooding in the lower Yangtze in 1998, prompted bans on logging and agriculture on steep slopes in western China. However, despite reports of extensive erosion resulting from the deforestation, sediment yield data show no corresponding increase during this time. Prior work suggested that if the deforestation increased erosion, the sediment is stored in floodplains, terraces, and alluvial fans throughout the region. In order to test this hypothesis, we sampled in-channel and overbank sediments at 38 locations, 19 of which are co-located with Chinese hydrology stations with at least five years of daily sediment yield data. Sediments were analyzed for meteoric and in situ 10-Be, unsupported 210-Pb, and 137-Cs. Unsupported 210-Pb activity is uniformly low throughout the study area and 137-Cs was found only in a few high-altitude, low-relief watersheds. Modern sediment yields, determined from Chinese data, are higher than long term in situ 10-Be-derived erosion rates in all but four watersheds, where we hypothesize sediment is being stored in alluvial features and agricultural terraces or that stochastic events such as landslides were not captured in the sediment yield data. Overall there is no relationship between topographic or climatic metrics, including slope, relief, or mean annual rainfall for any of the four isotopes except for a weak but statistically significant negative relationship between in situ 10-Be derived erosion rate and rainfall. Although paired in-channel and overbank samples are statistically indistinguishable for meteoric and in situ 10-Be, the overbank samples have lower unsupported 210-Pb activity, suggesting deeper sediment sourcing during the monsoon. In summary, in addition to suggesting differences between wet- and dry-season sediment sources, preliminary results support previous hypotheses regarding increased contemporary erosion and low hillslope-channel connectivity.
Implications of land use change on the national terrestrial carbon budget of Georgia
2010-01-01
Background Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990. Results The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions. Conclusions We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests. PMID:20836865
NASA Astrophysics Data System (ADS)
Ghosh, A.; Smith, J. C.; Hijmans, R. J.
2017-12-01
Since mid-1990s, the Cambodian government granted nearly 300 `Economic Land Concessions' (ELCs), occupying approximately 2.3 million ha to foreign and domestic organizations (primarily agribusinesses). The majority of Cambodian ELC deals have been issued in areas of both relatively low population density and low agricultural productivity, dominated by smallholder production. These regions often contain highly biodiverse areas, thereby increasing the ecological cost associated with land clearing for extractive purposes. These large-scale land transactions have also resulted in substantial and rapid changes in land-use patterns and agriculture practices by smallholder farmers. In this study, we investigated the spatio-temporal characteristics of land use change associated with large-scale land transactions across Cambodia using multi-temporal multi-reolution remote sensing data. We identified major regions of deforestation during the last two decades using Landsat archive, global forest change data (2000-2014) and georeferenced database of ELC deals. We then mapped the deforestation and land clearing within ELC boundaries as well as areas bordering or near ELCs to quantify the impact of ELCs on local communities. Using time-series from MODIS Vegetation Indices products for the study period, we also estimated the time period over which any particular ELC deal initiated its proposed activity. We found evidence of similar patterns of land use change outside the boundaries of ELC deals which may be associated with i) illegal land encroachments by ELCs and/or ii) new agricultural practices adopted by local farmers near ELC boundaries. We also detected significant time gaps between ELC deal granting dates and initiation of land clearing for ELC purposes. Interestingly, we also found that not all designated areas for ELCs were put into effect indicating the possible proliferation of speculative land deals. This study demonstrates the potential of remote sensing techniques as a tool for monitoring in areas with weak governance and lack of enforcement of land tenure.
NASA Astrophysics Data System (ADS)
Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.
2018-03-01
The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the ability of the modeling framework to effectively use Mexico’s data, and showed the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation.
Afrane, Yaw A.; Little, Tom J.; Lawson, Bernard W.; Githeko, Andrew K.
2008-01-01
We investigated the effects of deforestation on microclimates and sporogonic development of Plasmodium falciparum parasites in Anopheles gambiae mosquitoes in an area of the western Kenyan highland prone to malaria epidemics. An. gambiae mosquitoes were fed with P. falciparum–infected blood through membrane feeders. Fed mosquitoes were placed in houses in forested and deforested areas in a highland area (1,500 m above sea level) and monitored for parasite development. Deforested sites had higher temperatures and relative humidities, and the overall infection rate of mosquitoes was increased compared with that in forested sites. Sporozoites appeared on average 1.1 days earlier in deforested areas. Vectorial capacity was estimated to be 77.7% higher in the deforested site than in the forested site. We showed that deforestation changes microclimates, leading to more rapid sporogonic development of P. falciparum and to a marked increase of malaria risk in the western Kenyan highland. PMID:18826815
Tropical protected areas reduced deforestation carbon emissions by one third from 2000-2012.
Bebber, Daniel P; Butt, Nathalie
2017-10-25
Tropical deforestation is responsible for around one tenth of total anthropogenic carbon emissions, and tropical protected areas (PAs) that reduce deforestation can therefore play an important role in mitigating climate change and protecting biodiversity and ecosystem services. While the effectiveness of PAs in reducing deforestation has been estimated, the impact on global carbon emissions remains unquantified. Here we show that tropical PAs overall reduced deforestation carbon emissions by 4.88 Pg, or around 29%, between 2000 and 2012, when compared to expected rates of deforestation controlling for spatial variation in deforestation pressure. The largest contribution was from the tropical Americas (368.8 GgC y -1 ), followed by Asia (25.0 GgC y -1 ) and Africa (12.7 GgC y -1 ). Variation in PA effectiveness is largely driven by local factors affecting individual PAs, rather than designations assigned by governments.
Deforestation effects on Amazon forest resilience
NASA Astrophysics Data System (ADS)
Zemp, D. C.; Schleussner, C.-F.; Barbosa, H. M. J.; Rammig, A.
2017-06-01
Through vegetation-atmosphere feedbacks, rainfall reductions as a result of Amazon deforestation could reduce the resilience on the remaining forest to perturbations and potentially lead to large-scale Amazon forest loss. We track observation-based water fluxes from sources (evapotranspiration) to sinks (rainfall) to assess the effect of deforestation on continental rainfall. By studying 21st century deforestation scenarios, we show that deforestation can reduce dry season rainfall by up to 20% far from the deforested area, namely, over the western Amazon basin and the La Plata basin. As a consequence, forest resilience is systematically eroded in the southwestern region covering a quarter of the current Amazon forest. Our findings suggest that the climatological effects of deforestation can lead to permanent forest loss in this region. We identify hot spot regions where forest loss should be avoided to maintain the ecological integrity of the Amazon forest.
Phua, Mui-How; Tsuyuki, Satoshi; Furuya, Naoyuki; Lee, Jung Soo
2008-09-01
Tropical deforestation is occurring at an alarming rate, threatening the ecological integrity of protected areas. This makes it vital to regularly assess protected areas to confirm the efficacy of measures that protect that area from clearing. Satellite remote sensing offers a systematic and objective means for detecting and monitoring deforestation. This paper examines a spectral change approach to detect deforestation using pattern decomposition (PD) coefficients from multitemporal Landsat data. Our results show that the PD coefficients for soil and vegetation can be used to detect deforestation using change vector analysis (CVA). CVA analysis demonstrates that deforestation in the Kinabalu area, Sabah, Malaysia has significantly slowed from 1.2% in period 1 (1973 and 1991) to 0.1% in period 2 (1991 and 1996). A comparison of deforestation both inside and outside Kinabalu Park has highlighted the effectiveness of the park in protecting the tropical forest against clearing. However, the park is still facing pressure from the area immediately surrounding the park (the 1 km buffer zone) where the deforestation rate has remained unchanged.
Nolte, Christoph; Agrawal, Arun; Silvius, Kirsten M; Soares-Filho, Britaldo S
2013-03-26
Protected areas in tropical countries are managed under different governance regimes, the relative effectiveness of which in avoiding deforestation has been the subject of recent debates. Participants in these debates answer appeals for more strict protection with the argument that sustainable use areas and indigenous lands can balance deforestation pressures by leveraging local support to create and enforce protective regulations. Which protection strategy is more effective can also depend on (i) the level of deforestation pressures to which an area is exposed and (ii) the intensity of government enforcement. We examine this relationship empirically, using data from 292 protected areas in the Brazilian Amazon. We show that, for any given level of deforestation pressure, strictly protected areas consistently avoided more deforestation than sustainable use areas. Indigenous lands were particularly effective at avoiding deforestation in locations with high deforestation pressure. Findings were stable across two time periods featuring major shifts in the intensity of government enforcement. We also observed shifting trends in the location of protected areas, documenting that between 2000 and 2005 strictly protected areas were more likely to be established in high-pressure locations than in sustainable use areas and indigenous lands. Our findings confirm that all protection regimes helped reduce deforestation in the Brazilian Amazon.
Wang, Xiaoming; Zhou, Guofa; Zhong, Daibin; Wang, Xiaoling; Wang, Ying; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun
2016-06-06
Many developing countries are experiencing rapid ecological changes such as deforestation and shifting agricultural practices. These environmental changes may have an important consequence on malaria due to their impact on vector survival and reproduction. Despite intensive deforestation and malaria transmission in the China-Myanmar border area, the impact of deforestation on malaria vectors in the border area is unknown. We conducted life table studies on Anopheles minimus larvae to determine the pupation rate and development time in microcosms under deforested, banana plantation, and forested environments. The pupation rate of An. minimus was 3.8 % in the forested environment. It was significantly increased to 12.5 % in banana plantations and to 52.5 % in the deforested area. Deforestation reduced larval-to-pupal development time by 1.9-3.3 days. Food supplementation to aquatic habitats in forested environments and banana plantations significantly increased larval survival rate to a similar level as in the deforested environment. Deforestation enhanced the survival and development of An. minimus larvae, a major malaria vector in the China-Myanmar border area. Experimental determination of the life table parameters on mosquito larvae under a variety of environmental conditions is valuable to model malaria transmission dynamics and impact by climate and environmental changes.
Nolte, Christoph; Agrawal, Arun; Silvius, Kirsten M.; Soares-Filho, Britaldo S.
2013-01-01
Protected areas in tropical countries are managed under different governance regimes, the relative effectiveness of which in avoiding deforestation has been the subject of recent debates. Participants in these debates answer appeals for more strict protection with the argument that sustainable use areas and indigenous lands can balance deforestation pressures by leveraging local support to create and enforce protective regulations. Which protection strategy is more effective can also depend on (i) the level of deforestation pressures to which an area is exposed and (ii) the intensity of government enforcement. We examine this relationship empirically, using data from 292 protected areas in the Brazilian Amazon. We show that, for any given level of deforestation pressure, strictly protected areas consistently avoided more deforestation than sustainable use areas. Indigenous lands were particularly effective at avoiding deforestation in locations with high deforestation pressure. Findings were stable across two time periods featuring major shifts in the intensity of government enforcement. We also observed shifting trends in the location of protected areas, documenting that between 2000 and 2005 strictly protected areas were more likely to be established in high-pressure locations than in sustainable use areas and indigenous lands. Our findings confirm that all protection regimes helped reduce deforestation in the Brazilian Amazon. PMID:23479648
Measuring the effectiveness of protected area networks in reducing deforestation.
Andam, Kwaw S; Ferraro, Paul J; Pfaff, Alexander; Sanchez-Azofeifa, G Arturo; Robalino, Juan A
2008-10-21
Global efforts to reduce tropical deforestation rely heavily on the establishment of protected areas. Measuring the effectiveness of these areas is difficult because the amount of deforestation that would have occurred in the absence of legal protection cannot be directly observed. Conventional methods of evaluating the effectiveness of protected areas can be biased because protection is not randomly assigned and because protection can induce deforestation spillovers (displacement) to neighboring forests. We demonstrate that estimates of effectiveness can be substantially improved by controlling for biases along dimensions that are observable, measuring spatial spillovers, and testing the sensitivity of estimates to potential hidden biases. We apply matching methods to evaluate the impact on deforestation of Costa Rica's renowned protected-area system between 1960 and 1997. We find that protection reduced deforestation: approximately 10% of the protected forests would have been deforested had they not been protected. Conventional approaches to evaluating conservation impact, which fail to control for observable covariates correlated with both protection and deforestation, substantially overestimate avoided deforestation (by over 65%, based on our estimates). We also find that deforestation spillovers from protected to unprotected forests are negligible. Our conclusions are robust to potential hidden bias, as well as to changes in modeling assumptions. Our results show that, with appropriate empirical methods, conservation scientists and policy makers can better understand the relationships between human and natural systems and can use this to guide their attempts to protect critical ecosystem services.
Rincón-Ruiz, Alexander; Correa, Hyarold Leonardo; León, Daniel Oswaldo; Williams, Stewart
2016-07-01
This paper examines the positive and negative (or intended and unintended) impacts of anti-drug policies such as the aerial spraying of coca crops in Colombia. It provides spatial analysis of coca cultivation and crop eradication at a fine scale of resolution using the latest UNODC data. The findings suggest that anti-drug policy in Colombia between 2001 and 2012 has had some success with a significant decrease in overall levels of coca cultivation, but that it has also led to the displacement of coca cultivation, notably to areas within the Colombian Pacific region. Negative impacts include continued deforestation and damage to ecosystems, and the further marginalization of Afro-Colombian communities whose collective territories have been subject to increased coca cultivation between 2001 and 2012. Alternative development programs have not been well aligned with such areas where other illegal activities such as mining as well as coca cultivation now occur. Hence the importance of designing anti-drug policy that comprehensively integrates the local nuances of those peoples and places affected by coca cultivation and crop eradication according to their particular contexts. Copyright © 2016 Elsevier B.V. All rights reserved.
Accelerated losses of protected forests from gold mining in the Peruvian Amazon
NASA Astrophysics Data System (ADS)
Asner, Gregory P.; Tupayachi, Raul
2016-09-01
Gold mining in Amazonia involves forest removal, soil excavation, and the use of liquid mercury, which together pose a major threat to biodiversity, water quality, forest carbon stocks, and human health. Within the global biodiversity hotspot of Madre de Dios, Peru, gold mining has continued despite numerous 2012 government decrees and enforcement actions against it. Mining is now also thought to have entered federally protected areas, but the rates of miner encroachment are unknown. Here, we utilize high-resolution remote sensing to assess annual changes in gold mining extent from 1999 to 2016 throughout the Madre de Dios region, including the high-diversity Tambopata National Reserve and buffer zone. Regionally, gold mining-related losses of forest averaged 4437 ha yr-1. A temporary downward inflection in the annual growth rate of mining-related forest loss following 2012 government action was followed by a near doubling of the deforestation rate from mining in 2013-2014. The total estimated area of gold mining throughout the region increased about 40% between 2012 and 2016, including in the Tambopata National Reserve. Our results reveal an urgent need for more socio-environmental effort and law enforcement action to combat illegal gold mining in the Peruvian Amazon.
Man-induced transformation of mountain meadow soils of Aragats mountain massif (Armenia)
NASA Astrophysics Data System (ADS)
Avetisyan, M. H.
2018-01-01
The article considers issues of degradation of mountain meadow soils of the Aragats mountain massif of the Republic of Armenia and provides the averaged research results obtained for 2013 and 2014. The present research was initiated in the frames of long-term complex investigations of agroecosystems of Armenia’s mountain massifs and covered sod soils of high mountain meadow pasturelands and meadow steppe grasslands lying on southern slope of Mt. Aragats. With a purpose of studying the peculiarities of migration and transformation of flows of major nutrients namely carbon, nitrogen, phosphorus in study mountain meadow and meadow steppe belts of the Aragats massif we investigated water migration of chemical elements and regularities of their leaching depending on different belts. Field measurement data have indicated that organic carbon and humus in a heavily grazed plot are almost twice as low as on a control site. Lysimetric data analysis has demonstrated that heavy grazing and illegal deforestation have brought to an increase in intrasoil water acidity. The results generated from this research support a conclusion that a man’s intervention has brought to disturbance of structure and nutrient and water regimes of soils and loss of significant amounts of soil nutrients throughout the studied region.
NASA Astrophysics Data System (ADS)
Austin, Kemen G.; González-Roglich, Mariano; Schaffer-Smith, Danica; Schwantes, Amanda M.; Swenson, Jennifer J.
2017-05-01
Deforestation continues across the tropics at alarming rates, with repercussions for ecosystem processes, carbon storage and long term sustainability. Taking advantage of recent fine-scale measurement of deforestation, this analysis aims to improve our understanding of the scale of deforestation drivers in the tropics. We examined trends in forest clearings of different sizes from 2000-2012 by country, region and development level. As tropical deforestation increased from approximately 6900 kha yr-1 in the first half of the study period, to >7900 kha yr-1 in the second half of the study period, >50% of this increase was attributable to the proliferation of medium and large clearings (>10 ha). This trend was most pronounced in Southeast Asia and in South America. Outside of Brazil >60% of the observed increase in deforestation in South America was due to an upsurge in medium- and large-scale clearings; Brazil had a divergent trend of decreasing deforestation, >90% of which was attributable to a reduction in medium and large clearings. The emerging prominence of large-scale drivers of forest loss in many regions and countries suggests the growing need for policy interventions which target industrial-scale agricultural commodity producers. The experience in Brazil suggests that there are promising policy solutions to mitigate large-scale deforestation, but that these policy initiatives do not adequately address small-scale drivers. By providing up-to-date and spatially explicit information on the scale of deforestation, and the trends in these patterns over time, this study contributes valuable information for monitoring, and designing effective interventions to address deforestation.
Ibanez, R.; Condit, R.; Angehr, G.; Aguilar, S.; Garcia, T.; Martinez, R.; Sanjur, A.; Stallard, R.; Wright, S.J.; Rand, A.S.; Heckadon, S.
2002-01-01
In 1996, the Smithsonian Tropical Research Institute and the Republic of Panama's Environmental Authority, with support from the United States Agency for International Development, undertook a comprehensive program to monitor the ecosystem of the Panama Canal watershed. The goals were to establish baseline indicators for the integrity of forest communities and rivers. Based on satellite image classification and ground surveys, the 2790 km2 watershed had 1570 km2 of forest in 1997, 1080 km2 of which was in national parks and nature monuments. Most of the 490 km2 of forest not currently in protected areas lies along the west bank of the Canal, and its management status after the year 2000 turnover of the Canal from the U.S. to Panama remains uncertain. In forest plots designed to monitor forest diversity and change, a total of 963 woody plant species were identified and mapped. We estimate there are a total of 850-1000 woody species in forests of the Canal corridor. Forests of the wetter upper reaches of the watershed are distinct in species composition from the Canal corridor, and have considerably higher diversity and many unknown species. These remote areas are extensively forested, poorly explored, and harbor an estimated 1400-2200 woody species. Vertebrate monitoring programs were also initiated, focusing on species threatened by hunting and forest fragmentation. Large mammals are heavily hunted in most forests of Canal corridor, and there was clear evidence that mammal density is greatly reduced in hunted areas and that this affects seed predation and dispersal. The human population of the watershed was 113 000 in 1990, and grew by nearly 4% per year from 1980 to 1990. Much of this growth was in a small region of the watershed on the outskirts of Panama City, but even rural areas, including villages near and within national parks, grew by 2% per year. There is no sewage treatment in the watershed, and many towns have no trash collection, thus streams near large towns are heavily polluted. Analyses of sediment loads in rivers throughout the watershed did not indicate that erosion has been increasing as a result of deforestation, rather, erosion seems to be driven largely by total rainfall and heavy rainfall events that cause landslides. Still, models suggest that large-scale deforestation would increase landslide frequency, and failure to detect increases in erosion could be due to the gradual deforestation rate and the short time period over which data are available. A study of runoff showed deforestation increased the amount of water from rainfall that passed directly into streams. As a result, dry season flow was reduced in a deforested catchment relative to a forested one. Currently, the Panama Canal watershed has extensive forest areas and streams relatively unaffected by humans. But impacts of hunting and pollution near towns are clear, and the burgeoning population will exacerbate these impacts in the next few decades. Changes in policies regarding forest protection and pollution control are necessary.
Ibáñez, Roberto; Condit, Richard; Angehr, George; Aguilar, Salomón; García, Tomas; Martínez, Raul; Sanjur, Amelia; Stallard, Robert; Wright, S Joseph; Rand, A Stanley; Heckadon, Stanley
2002-11-01
In 1996, the Smithsonian Tropical Research Institute and the Republic of Panama's Environmental Authority, with support from the United States Agency for International Development, undertook a comprehensive program to monitor the ecosystem of the Panama Canal watershed. The goals were to establish baseline indicators for the integrity of forest communities and rivers. Based on satellite image classification and ground surveys, the 2790 km2 watershed had 1570 km2 of forest in 1997, 1080 km2 of which was in national parks and nature monuments. Most of the 490 km2 of forest not currently in protected areas lies along the west bank of the Canal, and its management status after the year 2000 turnover of the Canal from the U.S. to Panama remains uncertain. In forest plots designed to monitor forest diversity and change, a total of 963 woody plant species were identified and mapped. We estimate there are a total of 850-1000 woody species in forests of the Canal corridor. Forests of the wetter upper reaches of the watershed are distinct in species composition from the Canal corridor, and have considerably higher diversity and many unknown species. These remote areas are extensively forested, poorly explored, and harbor an estimated 1400-2200 woody species. Vertebrate monitoring programs were also initiated, focusing on species threatened by hunting and forest fragmentation. Large mammals are heavily hunted in most forests of Canal corridor, and there was clear evidence that mammal density is greatly reduced in hunted areas and that this affects seed predation and dispersal. The human population of the watershed was 113 000 in 1990, and grew by nearly 4% per year from 1980 to 1990. Much of this growth was in a small region of the watershed on the outskirts of Panama City, but even rural areas, including villages near and within national parks, grew by 2% per year. There is no sewage treatment in the watershed, and many towns have no trash collection, thus streams near large towns are heavily polluted. Analyses of sediment loads in rivers throughout the watershed did not indicate that erosion has been increasing as a result of deforestation, rather, erosion seems to be driven largely by total rainfall and heavy rainfall events that cause landslides. Still, models suggest that large-scale deforestation would increase landslide frequency, and failure to detect increases in erosion could be due to the gradual deforestation rate and the short time period over which data are available. A study of runoff showed deforestation increased the amount of water from rainfall that passed directly into streams. As a result, dry season flow was reduced in a deforested catchment relative to a forested one. Currently, the Panama Canal watershed has extensive forest areas and streams relatively unaffected by humans. But impacts of hunting and pollution near towns are clear, and the burgeoning population will exacerbate these impacts in the next few decades. Changes in policies regarding forest protection and pollution control are necessary.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A. P.; Lee, D. C. L.; Soaresmaia, F. C.; Mendonca, F. J.; Assuncao, G. V.; Rodrigues, J. E.; Demouraabdon, M.; Novaes, R. A.
1979-01-01
LANDSAT imagery was used to determine the amount of deforestation in a study area comprising 55 million hectares of the Amazon region. Results show that more than 4 million hectares were deforested. Maps and pictures of the deforested area in relation to the total area of the Amazon are included.
Combined climate and carbon-cycle effects of large-scale deforestation
Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.
2007-01-01
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463
Combined climate and carbon-cycle effects of large-scale deforestation.
Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A
2007-04-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.
A generalized land-use scenario generator: a case study for the Congo basin.
NASA Astrophysics Data System (ADS)
Caporaso, Luca; Tompkins, Adrian Mark; Biondi, Riccardo; Bell, Jean Pierre
2014-05-01
The impact of deforestation on climate is often studied using highly idealized "instant deforestation" experiments due to the lack of generalized deforestation scenario generators coupled to climate model land-surface schemes. A new deforestation scenario generator has been therefore developed to fulfill this role known as the deforestation ScenArio GEnerator, or FOREST-SAGE. The model produces distributed maps of deforestation rates that account for local factors such as proximity to transport networks, distance weighted population density, forest fragmentation and presence of protected areas and logging concessions. The integrated deforestation risk is scaled to give the deforestation rate as specified by macro-region scenarios such as "business as usual" or "increased protection legislation" which are a function of future time. FOREST-SAGE was initialized and validated using the MODerate Resolution Imaging Spectroradiometer Vegetation Continuous Field data. Despite the high cloud coverage of Congo Basin over the year, we were able to validate the results with high confidence from 2001 to 2010 in a large forested area. Furthermore a set of scenarios has been used to provide a range of possible pathways for the evolution of land-use change over the Congo Basin for the period 2010-2030.
Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, G; Caldeira, K; Wickett, M
2006-10-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has amore » net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.« less
Deforestation control in Mato Grosso: a new model for slowing the loss of Brazil's Amazon forest.
Fearnside, Philip M
2003-08-01
Controlling deforestation in Brazil's Amazon region has long been illusive despite repeated efforts of government authorities to slow the process. From 1997 to 2000, deforestation rates in Brazil's 9-state "Legal Amazon" region continually crept upward. Now, a licensing and enforcement program for clearing by large farmers and ranchers in the state of Mato Grosso appears to be having an effect. The deforestation rate in Mato Grosso was already beginning to slacken before initiation of the program in 1999, but examination of county-level data suggests that deforestation in already heavily cleared areas was falling due to lack of suitable uncleared land, while little-cleared areas were experiencing rapid deforestation. Following initiation of the program, the clearing rates declined in the recent frontiers. Areas with greater enforcement effort also appear to have experienced greater declines. Demonstration of government ability to enforce regulations and influence trends is important to domestic and international debates regarding use of avoided deforestation to mitigate global warming.
Kim, Oh Seok; Newell, Joshua P
2015-10-01
This paper proposes a new land-change model, the Geographic Emission Benchmark (GEB), as an approach to quantify land-cover changes associated with deforestation and forest degradation. The GEB is designed to determine 'baseline' activity data for reference levels. Unlike other models that forecast business-as-usual future deforestation, the GEB internally (1) characterizes 'forest' and 'deforestation' with minimal processing and ground-truthing and (2) identifies 'deforestation hotspots' using open-source spatial methods to estimate regional rates of deforestation. The GEB also characterizes forest degradation and identifies leakage belts. This paper compares the accuracy of GEB with GEOMOD, a popular land-change model used in the UN-REDD (Reducing Emissions from Deforestation and Forest Degradation) Program. Using a case study of the Chinese tropics for comparison, GEB's projection is more accurate than GEOMOD's, as measured by Figure of Merit. Thus, the GEB produces baseline activity data that are moderately accurate for the setting of reference levels.
An integrated framework for evaluating the effects of deforestation on ecosystem services
NASA Astrophysics Data System (ADS)
Song, X. P.; Huang, C.; Townshend, J. R.
2014-03-01
Deforestation often results in massive carbon emissions and loss of ecosystem services. The objective of this paper is to develop an integrated approach to quantitatively derive changes in forest carbon stock and changes in the economic value of forest carbon due to deforestation. Combining the best available remote sensing and socioeconomic datasets, this approach establishes a comprehensive baseline of deforestation in terms of area, carbon and monetary value change. We applied this end-to-end evaluation method in the Brazilian state of Rondonia to assess the ecological and economic effects of its recent deforestation from 2000 to 2005. Our results suggest that deforestation occurred at an average rate of 2834 km2/yr during the study period, leading to 31 TgC/yr "committed carbon emissions" from deforestation. Coupling with the social cost of carbon at 23/tC and a market discount rate at 7%, this translates to 622 million U.S. dollars/yr loss in the economic value of forest carbon.
Assessing deforestation in the coastal zone of the Campeche State, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mas, J.F.; Vega, A.P.; Aponte, G.P.
1997-06-01
In order to determine rates of deforestation in the State of Campeche, Mexico, forest maps of 1978/80 and 1992 were compared within a geographic information system (GIS). Results indicate that more than 25 per cent of the tropical forest and mangroves were deforested and other 29 per cent were fragmented during this period. The rate of deforestation in the whole state is about 4.4 per cent per year, but the analysis showed that rates of deforestation are much higher in the coastal zone. For this reason an attempt was made to study deforestation patterns in the coastal zone. Data suchmore » as distance from roads and from settlements images were incorporated in the GIS data base and a model which represents influence of population on its environment was developed in order to establish the influence of socioeconomic factors on forest clearing. Results indicate that deforestation presents a higher correlation with levels of poverty and social abandonment than with demographic aspects.« less
The Use of DNA Barcoding in Identification and Conservation of Rosewood (Dalbergia spp.)
Hartvig, Ida; Czako, Mihaly; Kjær, Erik Dahl; Nielsen, Lene Rostgaard; Theilade, Ida
2015-01-01
The genus Dalbergia contains many valuable timber species threatened by illegal logging and deforestation, but knowledge on distributions and threats is often limited and accurate species identification difficult. The aim of this study was to apply DNA barcoding methods to support conservation efforts of Dalbergia species in Indochina. We used the recommended rbcL, matK and ITS barcoding markers on 95 samples covering 31 species of Dalbergia, and tested their discrimination ability with both traditional distance-based as well as different model-based machine learning methods. We specifically tested whether the markers could be used to solve taxonomic confusion concerning the timber species Dalbergia oliveri, and to identify the CITES-listed Dalbergia cochinchinensis. We also applied the barcoding markers to 14 samples of unknown identity. In general, we found that the barcoding markers discriminated among Dalbergia species with high accuracy. We found that ITS yielded the single highest discrimination rate (100%), but due to difficulties in obtaining high-quality sequences from degraded material, the better overall choice for Dalbergia seems to be the standard rbcL+matK barcode, as this yielded discrimination rates close to 90% and amplified well. The distance-based method TaxonDNA showed the highest identification rates overall, although a more complete specimen sampling is needed to conclude on the best analytic method. We found strong support for a monophyletic Dalbergia oliveri and encourage that this name is used consistently in Indochina. The CITES-listed Dalbergia cochinchinensis was successfully identified, and a species-specific assay can be developed from the data generated in this study for the identification of illegally traded timber. We suggest that the use of DNA barcoding is integrated into the work flow during floristic studies and at national herbaria in the region, as this could significantly increase the number of identified specimens and improve knowledge about species distributions. PMID:26375850
Tropical Deforestation in the Bolivian Amazon
NASA Technical Reports Server (NTRS)
Tucker, Compton J.; Steininger, Marc K.; Townshend, John R. G.; Killeen, Timothy R.; Desch, Arthur
2000-01-01
Landsat satellite images from the mid-1980s and early 1990s were used to map tropical forest extent and deforestation in approximately 800,000 sq km of Amazonian Bolivia. Forest cover extent, including tropical deciduous forest, totalled 472,000 sq km while the area of natural non-forest formations totalled 298,000 sq km. The area deforested totalled 15,000 sq km in the middle 1980s and 28,800 sq km by the early 1990s. The rate of tropical deforestation in the >1,000 mm/y precipitation forest zone of Bolivia was 2,200 sq km/y from 1985-1986 to 1992-1994. We document a spatially-concentrated "deforestation zone" in Santa Cruz Department where >60% of the Bolivian deforestation is occurring at an accelerating rate in areas of tropical deciduous dry forest.
Deforestation of Peano continua and minimal deformation retracts☆
Conner, G.; Meilstrup, M.
2012-01-01
Every Peano continuum has a strong deformation retract to a deforested continuum, that is, one with no strongly contractible subsets attached at a single point. In a deforested continuum, each point with a one-dimensional neighborhood is either fixed by every self-homotopy of the space, or has a neighborhood which is a locally finite graph. A minimal deformation retract of a continuum (if it exists) is called its core. Every one-dimensional Peano continuum has a unique core, which can be obtained by deforestation. We give examples of planar Peano continua that contain no core but are deforested. PMID:23471120
Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.
Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R
2015-01-01
Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.
Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010
Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S.; Hansen, Matthew C.; Townshend, John R.
2015-01-01
Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates―critical inputs for setting reference emission levels for REDD+―are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr−1 and 0.18 ± 0.07 Pg C•yr−1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha−1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha−1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha−1•yr−1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts. PMID:25951328
Responses of Mean and Extreme Precipitation to Deforestation in the Maritime Continent
NASA Astrophysics Data System (ADS)
Chen, C. C.; Lo, M. H.; Yu, J. Y.
2017-12-01
Anthropogenic land use and land cover change, including tropical deforestation, could have substantial effects on local surface energy and water budgets, and thus on the atmospheric stability which may result in changes in precipitation. Maritime Continent has undergone severe deforestation in recent decades but has received less attention than Amazon or Congo rainforests. Therefore, this study is to decipher the precipitation response to deforestation in the Maritime Continent. We conduct deforestation experiments using Community Earth System Model (CESM) and through converting the tropical rainforest into grassland. The results show that deforestation in Maritime Continent leads to an increase in both mean temperature and mean precipitation. Moisture budget analysis indicates that the increase in precipitation is associated with the vertically integrated vertical moisture advection, especially the dynamic component (changes in convection). In addition, through moist static energy (MSE) budget analysis, we find the atmosphere among deforested areas become unstable owing to the combined effects of positive specific humidity anomalies at around 850 hPa and anomalous warming extended from the surface to 750 hPa. This instability will induce anomalous ascending motion, which could enhance the low-level moisture convergence, providing water vapor from the surrounding warm ocean. To further evaluate the precipitation response to deforestation, we examine the precipitation changes under La Niña events and global warming scenario using CESM Atmospheric Model Intercomparison Project (AMIP) simulations and Representative Concentration Pathway (RCP) 8.5 simulations. We find that the precipitation increase caused by deforestation in Maritime Continent is comparable in magnitude to that generated by either natural variability or global warming forcing. Besides the changes in mean precipitation, preliminary results show the extreme precipitation also increases. We will further explore how the extreme precipitation changes with the deforestation forcing.
Chicas, S D; Omine, K; Ford, J B; Sugimura, K; Yoshida, K
2017-02-01
Understanding the trans-boundary deforestation history and patterns in protected areas along the Belize-Guatemala border is of regional and global importance. To assess deforestation history and patterns in our study area along a section of the Belize-Guatemala border, we incorporated multi-temporal deforestation rate analysis and spatial metrics with survey results. This multi-faceted approach provides spatial analysis with relevant insights from local stakeholders to better understand historic deforestation dynamics, spatial characteristics and human perspectives regarding the underlying causes thereof. During the study period 1991-2014, forest cover declined in Belize's protected areas: Vaca Forest Reserve 97.88%-87.62%, Chiquibul National Park 99.36%-92.12%, Caracol Archeological Reserve 99.47%-78.10% and Colombia River Forest Reserve 89.22%-78.38% respectively. A comparison of deforestation rates and spatial metrics indices indicated that between time periods 1991-1995 and 2012-2014 deforestation and fragmentation increased in protected areas. The major underlying causes, drivers, impacts, and barriers to bi-national collaboration and solutions of deforestation along the Belize-Guatemala border were identified by community leaders and stakeholders. The Mann-Whitney U test identified significant differences between leaders and stakeholders regarding the ranking of challenges faced by management organizations in the Maya Mountain Massif, except for the lack of assessment and quantification of deforestation (LD, SH: 18.67, 23.25, U = 148, p > 0.05). The survey results indicated that failure to integrate buffer communities, coordinate among managing organizations and establish strong bi-national collaboration has resulted in continued ecological and environmental degradation. The information provided by this research should aid managing organizations in their continued aim to implement effective deforestation mitigation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impacts of tropical deforestation. Part I: Process analysis of local climatic change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H.; Henderson-Sellers, A.; McGuffie, K.
1996-07-01
The potential impacts of deforestation in the humid Tropics are examined using a version of the National Center for Atmospheric Research`s CCM1 coupled with the Biosphere-Atmosphere Transfer Scheme package. Tropical deforestation in South America, Africa, and Southeast Asia is studied using the results from an 11-yr deforestation experiment and a 25-yr control integration. It is found that the local-scale impact (here defined as within the area deforested) varies greatly between the three deforested regions due to the differing controls on the local atmospheric circulation: the Southeast Asian monsoon is much less sensitive to deforestation than the low-level flow over Southmore » America. The analysis of the changes in cloud radiative forcing suggests that reduction in cloud amount can significantly mitigate the imposed increases in surface albedo. The importance of water recycling by the forest canopy is stressed in the simulation of local precipitation changes. Correlation analysis of the changes resulting from the deforestation has been used to determine the nature of the processes that follow from the removal of the forest canopy and to suggest the important processes. The role of large-scale dynamics is explored in a companion paper. 44 refs., 9 figs., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Varela, Consuelo; Tarquis, Ana M.; Blanco-Gutiérrez, Irene; Estebe, Paloma; Toledo, Marisol; Martorano, Lucieta
2015-04-01
Social-ecological systems are linked complex systems that represent interconnected human and biophysical processes evolving and adapting across temporal and spatial scales. In the real world, social-ecological systems pose substantial challenges for modeling. In this regard, Fuzzy Cognitive Maps (FCMs) have proven to be a useful method for capturing the functioning of this type of systems. FCMs are a semi-quantitative type of cognitive map that represent a system composed of relevant factors and weighted links showing the strength and direction of cause-effects relationships among factors. Therefore, FCMs can be interpreted as complex system structures or complex networks. In this sense, recent research has applied complex network concepts for the analysis of FCMs that represent social-ecological systems. Key to FCM the tool is its potential to allow feedback loops and to include stakeholder knowledge in the construction of the tool. Also, previous research has demonstrated their potential to represent system dynamics and simulate the effects of changes in the system, such as policy interventions. For illustrating this analysis, we have developed a series of participatory FCM for the study of the ecological and human systems related to biodiversity conservation in two case studies of the Amazonian region, the Bolivia lowlands of Guarayos and the Brazil Tapajos National forest. The research is carried out in the context of the EU project ROBIN1 and it is based on the development of a series of stakeholder workshops to analyze the current state of the socio-ecological environment in the Amazonian forest, reflecting conflicts and challenges for biodiversity conservation and human development. Stakeholders included all relevant actors in the local case studies, namely farmers, environmental groups, producer organizations, local and provincial authorities and scientists. In both case studies we illustrate the use of complex networks concepts, such as the adjacency matrix and centrality properties (e.g.: centrality, page-rank, betweenness centrality). Different measures of network centrality evidence that deforestation and loss of biodiversity are the most relevant factors in the FCM of the two case studies analyzed. In both cases agricultural expansion emerges as a key driver of deforestation. The lack of policy coordination and a weak implementation and enforcement are also highly influential factors. The analysis of the system's dynamics suggest that in the case of Bolivia forest fires and deforestation are likely to continue in the immediate future as illegal activities are maintained and poverty increases. In the case of Brazil a decrease in available viable economic activities is driving further deforestation and ecosystem services loss. Overall, the research evidences how using FCMs together with complex network analysis can support policy development by identifying key elements and processes upon which policy makers and institutions can take action. Acknowledgements The authors would like to acknowledge the EU project ROBIN (The Role of Biodiversity in Climate Change Mitigation, from the EC FP7, no 283093) and the Spanish project AL14-PID-12 (Biodiversidad y cambio climático en la Amazonía: Perspectivas socio-económicas y ambientales) of the UPM Latin America Cooperation Program for funding this research.
Forest clearing in the Ecuadorian Amazon: A study of patterns over space and time
Pan, William; Carr, David; Barbieri, Alisson; Bilsborrow, Richard; Suchindran, Chirayath
2010-01-01
This study tests four hypotheses related to forest clearing over time in Ecuador’s northern Amazon: (1) a larger increase in population over time on a farm (finca) leads to more deforestation; (2) rates of forest clearing surrounding four primary reference communities differ (spatial heterogeneity); (3) fincas farther from towns/communities experience lower rates of forest clearing over time; and (4) forest clearing differs by finca settlement cohort, viz., by year of establishment of the finca. In this paper, we examine the relationship between forest clearing and key variables over time, and compare three statistical models—OLS, random effects, and spatial regression—to test hypotheses. Descriptive analyses indicate that 7–15% of forest area was cleared on fincas between 1990 and 1999; that more recently established fincas experienced more rapid forest clearing; and that population size and forest clearing are both related to distance from a major community. Controlling for key variables, model results indicate that an increase in population size is significantly related to more forest clearing; rates of forest clearing around the four major communities are not significantly different; distances separating fincas and communities are not significantly related to deforestation; and deforestation rates are higher among more recently established fincas. Key policy implications include the importance of reducing population growth and momentum through measures such as improving information about and provision of family planning services; increasing the low level of girls education to delay and reduce fertility; and expanding credit and agricultural extension services to increase agricultural intensification. PMID:20703367
Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon.
Rosa, Isabel M D; Gabriel, Cristina; Carreiras, Joāo M B
2017-01-01
The Brazilian Amazon in the past decades has been suffering severe landscape alteration, mainly due to anthropogenic activities, such as road building and land clearing for agriculture. Using a high-resolution time series of land cover maps (classified as mature forest, non-forest, secondary forest) spanning from 1984 through 2011, and four uncorrelated fragmentation metrics (edge density, clumpiness index, area-weighted mean patch size and shape index), we examined the temporal and spatial dynamics of forest fragmentation in three study areas across the Brazilian Amazon (Manaus, Santarém and Machadinho d'Oeste), inside and outside conservation units. Moreover, we compared the impacts on the landscape of: (1) different land uses (e.g. cattle ranching, crop production), (2) occupation processes (spontaneous vs. planned settlements) and (3) implementation of conservation units. By 2010/2011, municipalities located along the Arc of Deforestation had more than 55% of the remaining mature forest strictly confined to conservation units. Further, the planned settlement showed a higher rate of forest loss, a more persistent increase in deforested areas and a higher relative incidence of deforestation inside conservation units. Distinct agricultural activities did not lead to significantly different landscape structures; the accessibility of the municipality showed greater influence in the degree of degradation of the landscapes. Even with a high proportion of the landscapes covered by conservation units, which showed a strong inhibitory effect on forest fragmentation, we show that dynamic agriculturally driven economic activities, in municipalities with extensive road development, led to more regularly shaped, heavily fragmented landscapes, with higher densities of forest edge.
NASA Astrophysics Data System (ADS)
Hakimdavar, R.
2013-05-01
Over recent decades, Haiti and the Dominican Republic have reported changes in reservoir water levels - while some areas have experienced increases others have seen decreasing trends, especially reservoirs located in the Dominican Republic - leading to, among other things, regional flooding and shortages in hydroelectricity output. We investigate whether extensive deforestation, particularly in the western part of Hispaniola - shared by the two nations - is driving these changes by affecting the regional water balance. Due to a lack of available spatiotemporal environmental data, remotely sensed vegetation and precipitation information is used along with estimated evapotranspiration rates to study regional hydro-climatologic fluctuations over three decades. Changes in vegetative cover, precipitation, and evapotranspiration across the island are investigated using 25 years of Normalized Difference Vegetation Index (NDVI) data, historical satellite and gauge precipitation records, and estimated surface temperature and solar radiation. NDVI values are derived from imagery obtained by NOAA's 8 km resolution AVHRR instrument. Monthly precipitation is collected from several different sources, including NASA and NOAA precipitation satellites, as well as local rain gauges. Evapotranspiration is estimated using an energy balance approach. Preliminary results indicate a general decrease in rainfall over the eastern part of the island during the past three decades, with little change observed across the western half. NDVI and precipitation anomalies across the island are not well correlated, suggesting that deforestation is likely not the cause of regional changes in precipitation. The results of this work hold potentially important implications for future land-use and water infrastructure planning for both nations.
Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013
Tyukavina, Alexandra; Hansen, Matthew C.; Potapov, Peter V.; Stehman, Stephen V.; Smith-Rodriguez, Kevin; Okpa, Chima; Aguilar, Ricardo
2017-01-01
Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil’s national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000–2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study period, nonprimary forest clearing, together with primary forest degradation within the BLA, became comparable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests. Fire accounted for 9% of the 2000–2013 primary forest disturbance area, with peak disturbances corresponding to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss is required to achieve accurate carbon accounting and other monitoring objectives. PMID:28439536
Canziani, Pablo O; Carbajal Benitez, Gerardo
2012-01-01
Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961-2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960-2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia.
Deforestation trend in North Sumatra over 1990-2015
NASA Astrophysics Data System (ADS)
Basyuni, M.; Sulistiyono, N.; Wati, R.; Hayati, R.
2018-02-01
Deforestation and forest degradation have been previously reported to contributing greenhouse gas emission, the primary driver of global warming. The present paper studies deforestation and reforestation trend in North Sumatra, Indonesia using land-use/land-cover change from 1990-2015. The land-use consists of three classes derived from forest land (primary and secondary dry land forest, primary and secondary swamp forest, primary and secondary mangrove forest). Non-Forest (shrub, oil palm plantation, forest plantation, settlement, barren land, swamp shrub, dry land farming, mixed dry land farming, paddy field, aquaculture, airport, transmigration, and mining), and water body (water and swamp). Results showed that from 33 regencies/city in North Sumatra, among them, 25 districts deforested, which was the highest deforestation rate in Labuhanbatu and South Labuhanbatu (2,238.08 and 1,652.55 ha/year, respectively), only one area reforested, and seven districts showed no deforestation or reforestation. During 25 years observed, the forest has been deforested 22.92%, while nonforest has been increased 11.33% of land-use. The significant increasing loss of North Sumatran forest implies conservation efforts and developing sustainable forest management.
Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino
2015-01-01
Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological 'hotspot' due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976-1989) and 2.86% (1989-2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador's original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador.
Canziani, Pablo O.; Carbajal Benitez, Gerardo
2012-01-01
Deforestation/land-use changes are major drivers of regional climate change in central South America, impacting upon Amazonia and Gran Chaco ecoregions. Most experimental and modeling studies have focused on the resulting perturbations within Amazonia. Using the Regional Climate Model PRECIS, driven by ERA-40 reanalysis and ECHAM4 Baseline model for the period 1961–2000 (40-year runs), potential effects of deforestation/land-use changes in these and other neighboring ecoregions are evaluated. Current 2002 and estimated 2030 land-use scenarios are used to assess PRECIS's response during 1960–2000. ERA-40 and ECHAM4 Baseline driven runs yield similar results. Precipitation changes for 2002 and 2030 land-use scenarios, while significant within deforested areas, do not result in significant regional changes. For temperature significant changes are found within deforested areas and beyond, with major temperature enhancements during winter and spring. Given the current climate, primary effects of deforestation/land-use changes remain mostly confined to the tropical latitudes of Gran Chaco, and Amazonia. PMID:22645487
S3: School Zone Safety System Based on Wireless Sensor Network
Yoo, Seong-eun; Chong, Poh Kit; Kim, Daeyoung
2009-01-01
School zones are areas near schools that have lower speed limits and where illegally parked vehicles pose a threat to school children by obstructing them from the view of drivers. However, these laws are regularly flouted. Thus, we propose a novel wireless sensor network application called School zone Safety System (S3) to help regulate the speed limit and to prevent illegal parking in school zones. S3 detects illegally parked vehicles, and warns the driver and records the license plate number. To reduce the traveling speed of vehicles in a school zone, S3 measures the speed of vehicles and displays the speed to the driver via an LED display, and also captures the image of the speeding vehicle with a speed camera. We developed a state machine based vehicle detection algorithm for S3. From extensive experiments in our testbeds and data from a real school zone, it is shown that the system can detect all kinds of vehicles, and has an accuracy of over 95% for speed measurement. We modeled the battery life time of a sensor node and validated the model with a downscaled measurement; we estimate the battery life time to be over 2 years. We have deployed S3 in 15 school zones in 2007, and we have demonstrated the robustness of S3 by operating them for over 1 year. PMID:22454567
Diurnal raptors in the fragmented rain forest of the Sierra Imataca, Venezuela
Alvarez, E.; Ellis, D.H.; Smith, D.G.; LaRue, C.T.; Bird, David M.; Varland, Daniel E.; Negro, Juan Jose
1996-01-01
The rain forest of the Sierra Imataca in eastern Venezuela has been subjected to extensive deforestation for pastures and agricultural settlements. In the last decade the opening of access roads combined with intensified logging and mining activities have fragmented a significant portion of the remaining forest. We noted local distribution and habitat use for 42 species of diurnal raptors observed in affected areas in this region. We observed some raptors considered as forest interior species and other open country species foraging and roosting in man-made openings inside the forest.
Deforestation, Rondonia, Brazil
NASA Technical Reports Server (NTRS)
1992-01-01
This view of deforestation in Rondonia, far western Brazil, (10.0S, 63.0W) is part of an agricultural resettlement project which ultimately covers an area about 80% the size of France. The patterns of deforestation in this part of the Amazon River Basin are usually aligned adjacent to highways, secondary roads, and streams for ease of access and transportation. Compare this view with the earlier 51G-37-062 for a comparison of deforestation in the region.
Deforestation, Rondonia, Brazil
1992-08-08
This view of deforestation in Rondonia, far western Brazil, (10.0S, 63.0W) is part of an agricultural resettlement project which ultimately covers an area about 80% the size of France. The patterns of deforestation in this part of the Amazon River Basin are usually aligned adjacent to highways, secondary roads, and streams for ease of access and transportation. Compare this view with the earlier 51G-37-062 for a comparison of deforestation in the region.
Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains.
Nepstad, Daniel; McGrath, David; Stickler, Claudia; Alencar, Ane; Azevedo, Andrea; Swette, Briana; Bezerra, Tathiana; DiGiano, Maria; Shimada, João; Seroa da Motta, Ronaldo; Armijo, Eric; Castello, Leandro; Brando, Paulo; Hansen, Matt C; McGrath-Horn, Max; Carvalho, Oswaldo; Hess, Laura
2014-06-06
The recent 70% decline in deforestation in the Brazilian Amazon suggests that it is possible to manage the advance of a vast agricultural frontier. Enforcement of laws, interventions in soy and beef supply chains, restrictions on access to credit, and expansion of protected areas appear to have contributed to this decline, as did a decline in the demand for new deforestation. The supply chain interventions that fed into this deceleration are precariously dependent on corporate risk management, and public policies have relied excessively on punitive measures. Systems for delivering positive incentives for farmers to forgo deforestation have been designed but not fully implemented. Territorial approaches to deforestation have been effective and could consolidate progress in slowing deforestation while providing a framework for addressing other important dimensions of sustainable development. Copyright © 2014, American Association for the Advancement of Science.
The mountain-lowland debate: deforestation and sediment transport in the upper Ganga catchment.
Wasson, R J; Juyal, N; Jaiswal, M; McCulloch, M; Sarin, M M; Jain, V; Srivastava, P; Singhvi, A K
2008-07-01
The Himalaya-Gangetic Plain region is the iconic example of the debate about the impact on lowlands of upland land-use change. Some of the scientific aspects of this debate are revisited by using new techniques to examine the role of deforestation in erosion and river sediment transport. The approach is whole-of-catchment, combining a history of deforestation with a history of sediment sources from well before deforestation. It is shown that deforestation had some effect on one very large erosional event in 1970, in the Alaknanda subcatchment of the Upper Ganga catchment, but that both deforestation and its effects on erosion and sediment transport are far from uniform in the Himalaya. Large magnitude erosional events occur for purely natural reasons. The impact on the Gangetic Plain of erosion caused by natural events and land cover change remains uncertain.
Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia.
Ocampo-Peñuela, Natalia; Pimm, Stuart L
2015-01-01
Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species' ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800 m. Three transects were forested from 2200 to 2800 m, and three were partially deforested with forest cover only above 2400 m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species' elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species' elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.
Deforestation and stream warming affect body size of Amazonian fishes.
Ilha, Paulo; Schiesari, Luis; Yanagawa, Fernando I; Jankowski, KathiJo; Navas, Carlos A
2018-01-01
Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43-55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin.
Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia
2015-01-01
Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species’ ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations. PMID:26641477
Deforestation and stream warming affect body size of Amazonian fishes
Yanagawa, Fernando I.; Jankowski, KathiJo; Navas, Carlos A.
2018-01-01
Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43–55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin. PMID:29718960
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; Sales, Marcio H.; Souza, Carlos M., Jr.; Griscom, Bronson
2011-01-01
Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008. Results: Deforestation estimates showed good agreement for multi-year trends of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by >20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C/ha, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas. Conclusions: Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions.
Predicting the deforestation-trend under different carbon-prices
Kindermann, Georg E; Obersteiner, Michael; Rametsteiner, Ewald; McCallum, Ian
2006-01-01
Background Global carbon stocks in forest biomass are decreasing by 1.1 Gt of carbon annually, owing to continued deforestation and forest degradation. Deforestation emissions are partly offset by forest expansion and increases in growing stock primarily in the extra-tropical north. Innovative financial mechanisms would be required to help reducing deforestation. Using a spatially explicit integrated biophysical and socio-economic land use model we estimated the impact of carbon price incentive schemes and payment modalities on deforestation. One payment modality is adding costs for carbon emission, the other is to pay incentives for keeping the forest carbon stock intact. Results Baseline scenario calculations show that close to 200 mil ha or around 5% of todays forest area will be lost between 2006 and 2025, resulting in a release of additional 17.5 GtC. Today's forest cover will shrink by around 500 million hectares, which is 1/8 of the current forest cover, within the next 100 years. The accumulated carbon release during the next 100 years amounts to 45 GtC, which is 15% of the total carbon stored in forests today. Incentives of 6 US$/tC for vulnerable standing biomass payed every 5 year will bring deforestation down by 50%. This will cause costs of 34 billion US$/year. On the other hand a carbon tax of 12 $/tC harvested forest biomass will also cut deforestation by half. The tax income will, if enforced, decrease from 6 billion US$ in 2005 to 4.3 billion US$ in 2025 and 0.7 billion US$ in 2100 due to decreasing deforestation speed. Conclusion Avoiding deforestation requires financial mechanisms that make retention of forests economically competitive with the currently often preferred option to seek profits from other land uses. Incentive payments need to be at a very high level to be effective against deforestation. Taxes on the other hand will extract budgetary revenues from the regions which are already poor. A combination of incentives and taxes could turn out to be a viable solution for this problem. Increasing the value of forest land and thereby make it less easily prone to deforestation would act as a strong incentive to increase productivity of agricultural and fuelwood production, which could be supported by revenues generated by the deforestation tax. PMID:17150095
Predicting the deforestation-trend under different carbon-prices.
Kindermann, Georg E; Obersteiner, Michael; Rametsteiner, Ewald; McCallum, Ian
2006-12-06
Global carbon stocks in forest biomass are decreasing by 1.1 Gt of carbon annually, owing to continued deforestation and forest degradation. Deforestation emissions are partly offset by forest expansion and increases in growing stock primarily in the extra-tropical north. Innovative financial mechanisms would be required to help reducing deforestation. Using a spatially explicit integrated biophysical and socio-economic land use model we estimated the impact of carbon price incentive schemes and payment modalities on deforestation. One payment modality is adding costs for carbon emission, the other is to pay incentives for keeping the forest carbon stock intact. Baseline scenario calculations show that close to 200 mil ha or around 5% of today's forest area will be lost between 2006 and 2025, resulting in a release of additional 17.5 GtC. Today's forest cover will shrink by around 500 million hectares, which is 1/8 of the current forest cover, within the next 100 years. The accumulated carbon release during the next 100 years amounts to 45 GtC, which is 15% of the total carbon stored in forests today. Incentives of 6 US$/tC for vulnerable standing biomass payed every 5 year will bring deforestation down by 50%. This will cause costs of 34 billion US$/year. On the other hand a carbon tax of 12 $/tC harvested forest biomass will also cut deforestation by half. The tax income will, if enforced, decrease from 6 billion US$ in 2005 to 4.3 billion US$ in 2025 and 0.7 billion US$ in 2100 due to decreasing deforestation speed. Avoiding deforestation requires financial mechanisms that make retention of forests economically competitive with the currently often preferred option to seek profits from other land uses. Incentive payments need to be at a very high level to be effective against deforestation. Taxes on the other hand will extract budgetary revenues from the regions which are already poor. A combination of incentives and taxes could turn out to be a viable solution for this problem. Increasing the value of forest land and thereby make it less easily prone to deforestation would act as a strong incentive to increase productivity of agricultural and fuelwood production, which could be supported by revenues generated by the deforestation tax.
NASA Technical Reports Server (NTRS)
Holko, Ladislav; Hlavata, Helena; Kostka, Zdenek; Novak, Jan
2009-01-01
The paper presents the results of rainfall-runoff data analysis for small catchments of the upper Poprad River affected by wind-induced deforestation in November 2004. Before-event and afterevent measured data were compared in order to assess the impact of deforestation on hydrological regimes. Several characteristics were used including water balance, minimum and maximum runoff, runoff thresholds, number of runoff events, selected characteristics of events, runoff coefficients, and flashiness indices. Despite increased spring runoff minima, which in one catchment (Velick Creek) exceeded previously observed values after deforestation took place, it can be generally concluded that the impact of the deforestation was not clearly manifested in the analyzed hydrological data.
Teleconnections Between Tropical Deforestation and Midlatitude Precipitation
NASA Astrophysics Data System (ADS)
Avissar, R.; Werth, D.
2003-12-01
Past studies have indicated that total deforestation of Amazonia would result in an important reduction of the rainfall in that region, but that this process had no significant impact on the global temperature or precipitation and had only local implications. Here, we show that deforestation of tropical regions activates Rossby waves, which affect significantly precipitation at mid-latitudes by 'teleconnections'. In particular, we find that the deforestation of Amazonia and Central Africa severely reduces rainfall in the US Midwest during spring and summer, when water is crucial for agriculture in that region. Deforestation of South-East Asia reduces winter precipitation in the Western US and, consequently, the water storage that is released from snow melting later in the spring.
Measuring Environmental and Socio-economic Impact of Deforestation at Kalimantan Island
NASA Astrophysics Data System (ADS)
Nahib, Irmadi; Trenggana, Soma; Turmudi; Suryanta, Jaka; Lestari Munajati, Sri; Windiastuti, Rizka
2018-05-01
Indonesia’s forests in the period of 2000-2009 has been deforested by about 15.158 million ha out of 103.309 milion ha. Deforestation caused carbon emissions. One method for measuring emissions from deforestation and forest degradation is GeOSIRIS model. A modeled GeOSIRIS policy used a carbon payment system to incentivize emission reductions. Data used in this study were maps of forest cover in 2005 and 2010, map of deforestation 2005-2010, carbon and agricultural price and driver variables for deforestation such as slope, elevation, logarithmic distance to the nearest road or provincial capital, or the amount of area per pixel included in a national park, or a timber plantation. The result of this study showed rate of deforestation was 1.417 million ha/5 years (observed). The REDD policy could decrease deforestation in Kalimantan Island by 0.170 million ha (16.70%), with assumption that international carbon price of US 10/tCO2e. The change of emissions due to REDD was 22.29%, or reduced emissions by 245.03 million tCO2e/5 years. Finally, Gross National Revenue from carbon payments (NPV 5 years) was US 2,450.34 billion, where incentivize emission reductions to sub-national entities (NPV, 5 years) was US 2,150.07 million and net central government surplus from carbon payments was US 300.26 million (NPV, 5 years).
Export-oriented deforestation in Mato Grosso: harbinger or exception for other tropical forests?
DeFries, Ruth; Herold, Martin; Verchot, Louis; Macedo, Marcia N; Shimabukuro, Yosio
2013-06-05
The Brazilian state of Mato Grosso was a global deforestation hotspot in the early 2000s. Deforested land is used predominantly to produce meat for distal consumption either through cattle ranching or soya bean for livestock feed. Deforestation declined dramatically in the latter part of the decade through a combination of market forces, policies, enforcement and improved monitoring. This study assesses how representative the national-level drivers underlying Mato Grosso's export-oriented deforestation are in other tropical forest countries based on agricultural exports, commercial agriculture and urbanization. We also assess how pervasive the governance and technical monitoring capacity that enabled Mato Grosso's decline in deforestation is in other countries. We find that between 41 and 54 per cent of 2000-2005 deforestation in tropical forest countries (other than Brazil) occurred in countries with drivers similar to Brazil. Very few countries had national-level governance and capacity similar to Brazil. Results suggest that the ecological, hydrological and social consequences of land-use change for export-oriented agriculture as discussed in this Theme Issue were applicable in about one-third of all tropical forest countries in 2000-2005. However, the feasibility of replicating Mato Grosso's success with controlling deforestation is more limited. Production landscapes to support distal consumption similar to Mato Grosso are likely to become more prevalent and are unlikely to follow a land-use transition model with increasing forest cover.
Cost-effectiveness of reducing emissions from tropical deforestation, 2016-2050
NASA Astrophysics Data System (ADS)
Busch, Jonah; Engelmann, Jens
2017-12-01
Reducing tropical deforestation is potentially a large-scale and low-cost strategy for mitigating climate change. Yet previous efforts to project the cost-effectiveness of policies to reduce greenhouse gas emissions from future deforestation across the tropics were hampered by crude available data on historical forest loss. Here we use recently available satellite-based maps of annual forest loss between 2001-2012, along with information on topography, accessibility, protected status, potential agricultural revenue, and an observed inverted-U-shaped relationship between forest cover loss and forest cover, to project tropical deforestation from 2016-2050 under alternative policy scenarios and to construct new marginal abatement cost curves for reducing emissions from tropical deforestation. We project that without new forest conservation policies 289 million hectares of tropical forest will be cleared from 2016-2050, releasing 169 GtCO2. A carbon price of US20/tCO2 (50/tCO2) across tropical countries would avoid 41 GtCO2 (77 GtCO2) from 2016-2050. By comparison, we estimate that Brazil’s restrictive policies in the Amazon between 2004-2012 successfully decoupled potential agricultural revenue from deforestation and reduced deforestation by 47% below what would have otherwise occurred, preventing the emission of 5.2 GtCO2. All tropical countries enacting restrictive anti-deforestation policies as effective as those in the Brazilian Amazon between 2004-2012 would avoid 58 GtCO2 from 2016-2050.
Export-oriented deforestation in Mato Grosso: harbinger or exception for other tropical forests?
DeFries, Ruth; Herold, Martin; Verchot, Louis; Macedo, Marcia N.; Shimabukuro, Yosio
2013-01-01
The Brazilian state of Mato Grosso was a global deforestation hotspot in the early 2000s. Deforested land is used predominantly to produce meat for distal consumption either through cattle ranching or soya bean for livestock feed. Deforestation declined dramatically in the latter part of the decade through a combination of market forces, policies, enforcement and improved monitoring. This study assesses how representative the national-level drivers underlying Mato Grosso's export-oriented deforestation are in other tropical forest countries based on agricultural exports, commercial agriculture and urbanization. We also assess how pervasive the governance and technical monitoring capacity that enabled Mato Grosso's decline in deforestation is in other countries. We find that between 41 and 54 per cent of 2000–2005 deforestation in tropical forest countries (other than Brazil) occurred in countries with drivers similar to Brazil. Very few countries had national-level governance and capacity similar to Brazil. Results suggest that the ecological, hydrological and social consequences of land-use change for export-oriented agriculture as discussed in this Theme Issue were applicable in about one-third of all tropical forest countries in 2000–2005. However, the feasibility of replicating Mato Grosso's success with controlling deforestation is more limited. Production landscapes to support distal consumption similar to Mato Grosso are likely to become more prevalent and are unlikely to follow a land-use transition model with increasing forest cover. PMID:23610176
Understorey fire frequency and the fate of burned forests in southern Amazonia.
Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C
2013-06-05
Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.
Understorey fire frequency and the fate of burned forests in southern Amazonia
Morton, D. C.; Le Page, Y.; DeFries, R.; Collatz, G. J.; Hurtt, G. C.
2013-01-01
Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km2 between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169
Sensitivity of Regional Climate to Deforestation in the Amazon Basin
NASA Technical Reports Server (NTRS)
Eltahir, Elfatih A. B.; Bras, Rafael L.
1994-01-01
The deforestation results in several adverse effect on the natural environment. The focus of this paper is on the effects of deforestation on land-surface processes and regional climate of the Amazon basin. In general, the effect of deforestation on climate are likely to depend on the scale of the defrosted area. In this study, we are interested in the effects due to deforestation of areas with a scale of about 250 km. Hence, a meso-scale climate model is used in performing numerical experiments on the sensitivity of regional climate to deforestation of areas with that size. It is found that deforestation results in less net surface radiation, less evaporation, less rainfall, and warmer surface temperature. The magnitude of the of the change in temperature is of the order 0.5 C, the magnitudes of the changes in the other variables are of the order of IO%. In order to verify some of he results of the numerical experiments, the model simulations of net surface radiation are compared to recent observations of net radiation over cleared and undisturbed forest in the Amazon. The results of the model and the observations agree in the following conclusion: the difference in net surface radiation between cleared and undisturbed forest is, almost, equally partioned between net solar radiation and net long-wave radiation. This finding contributes to our understanding of the basic physics in the deforestation problem.
NASA Astrophysics Data System (ADS)
Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.
2017-12-01
In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.
Illegal Drug Use in Orthodox Jewish Adolescents.
Fogel, Joshua
2004-01-01
Orthodox Jewish adolescents are increasingly seeking stimulation with illegal drugs. Eleven Orthodox Jewish adolescents were surveyed with semi-structured interviews on the Orthodox Jewish cultural aspects of their illegal drug use. Adolescents had mixed beliefs about religious teachings affecting their illegal drug use. No consistent pattern existed for particular ethnic aspects of Orthodox Jewish religious practice as a risk factor for illegal drug use. Language used to describe illegal drug use in this population is described. Unlike illegal drug use in secular and non-Jewish adolescents, these adolescents reported very little family discord or poor relationships with their parents.
EFFECTIVE REMOVAL METHOD OF ILLEGAL PARKING BICYCLES BASED ON THE QUANTITATIVE CHANGE AFTER REMOVAL
NASA Astrophysics Data System (ADS)
Toi, Satoshi; Kajita, Yoshitaka; Nishikawa, Shuichirou
This study aims to find an effective removal method of illegal parking bicycles based on the analysis on the numerical change of illegal bicycles. And then, we built the time and space quantitative distribution model of illegal parking bicycles after removal, considering the logistic increase of illegal parking bicycles, several behaviors concerning of direct return or indirect return to the original parking place and avoidance of the original parking place, based on the investigation of real condition of illegal bicycle parking at TENJIN area in FUKUOKA city. Moreover, we built the simulation model including above-mentioned model, and calculated the number of illegal parking bicycles when we change the removal frequency and the number of removal at one time. The next interesting four results were obtained. (1) Recovery speed from removal the illegal parking bicycles differs by each zone. (2) Thorough removal is effective to keep the number of illegal parking bicycles lower level. (3) Removal at one zone causes the increase of bicycles at other zones where the level of illegal parking is lower. (4) The relationship between effects and costs of removing the illegal parking bicycles was clarified.
Deforestation intensifies hot days
NASA Astrophysics Data System (ADS)
Stoy, Paul C.
2018-05-01
Deforestation often increases land-surface and near-surface temperatures, but climate models struggle to simulate this effect. Research now shows that deforestation has increased the severity of extreme heat in temperate regions of North America and Europe. This points to opportunities to mitigate extreme heat.
Lee, Kelley; Carrillo Botero, Natalia; Novotny, Thomas
2016-09-20
Deforestation due to tobacco farming began to raise concerns in the mid 1970s. Over the next 40 years, tobacco growing increased significantly and shifted markedly to low- and middle-income countries. The percentage of deforestation caused by tobacco farming reached 4 % globally by the early 2000s, although substantially higher in countries such as China (18 %), Zimbabwe (20 %), Malawi (26 %) and Bangladesh (>30 %). Transnational tobacco companies (TTCs) have argued that tobacco-attributable deforestation is not a serious problem, and that the industry has addressed the issue through corporate social responsibility (CSR) initiatives. After reviewing the existing scholarly literature on tobacco and deforestation, we analysed industry sources of public information to understand how the industry framed deforestation, its key causes, and policy responses. To analyse industry strategies between the 1970s and early 2000s to shape understanding of deforestation caused by tobacco farming and curing, the Truth Tobacco Documents Library was systematically searched. The above sources were compiled and triangulated, thematically and chronologically, to derive a narrative of how the industry has framed the problem of, and solutions to, tobacco-attributable deforestation. The industry sought to undermine responses to tobacco-attributable deforestation by emphasising the economic benefits of production in LMICs, blaming alternative causes, and claiming successful forestation efforts. To support these tactics, the industry lobbied at the national and international levels, commissioned research, and colluded through front groups. There was a lack of effective action to address tobacco-attributable deforestation, and indeed an escalation of the problem, during this period. The findings suggest the need for independent data on the varied environmental impacts of the tobacco industry, awareness of how the industry seeks to work with environmental researchers and groups to further its interests, and increased scrutiny of tobacco industry efforts to influence environmental policy.
Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino
2015-01-01
Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological ‘hotspot’ due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976–1989) and 2.86% (1989–2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador’s original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador. PMID:26332681
The national determinants of deforestation in sub-Saharan Africa.
Rudel, Thomas K
2013-01-01
For decades, the dynamics of tropical deforestation in sub-Saharan Africa (SSA) have defied easy explanation. The rates of deforestation have been lower than elsewhere in the tropics, and the driving forces evident in other places, government new land settlement schemes and industrialized agriculture, have largely been absent in SSA. The context and causes for African deforestation become clearer through an analysis of new, national-level data on forest cover change for SSA countries for the 2000-2005 period. The recent dynamic in SSA varies from dry to wet biomes. Deforestation occurred at faster rates in nations with predominantly dry forests. The wetter Congo basin countries had lower rates of deforestation, in part because tax receipts from oil and mineral industries in this region spurred rural to urban migration, declines in agriculture and increased imports of cereals from abroad. In this respect, the Congo basin countries may be experiencing an oil and mineral fuelled forest transition. Small farmers play a more important role in African deforestation than they do in southeast Asia and Latin America, in part because small-scale agriculture remains one of the few livelihoods open to rural peoples.
NASA Astrophysics Data System (ADS)
de Oliveira Silva, R.; Barioni, L. G.; Hall, J. A. J.; Folegatti Matsuura, M.; Zanett Albertini, T.; Fernandes, F. A.; Moran, D.
2016-05-01
Recent debate about agricultural greenhouse gas emissions mitigation highlights trade-offs inherent in the way we produce and consume food, with increasing scrutiny on emissions-intensive livestock products. Although most research has focused on mitigation through improved productivity, systemic interactions resulting from reduced beef production at the regional level are still unexplored. A detailed optimization model of beef production encompassing pasture degradation and recovery processes, animal and deforestation emissions, soil organic carbon (SOC) dynamics and upstream life-cycle inventory was developed and parameterized for the Brazilian Cerrado. Economic return was maximized considering two alternative scenarios: decoupled livestock-deforestation (DLD), assuming baseline deforestation rates controlled by effective policy; and coupled livestock-deforestation (CLD), where shifting beef demand alters deforestation rates. In DLD, reduced consumption actually leads to less productive beef systems, associated with higher emissions intensities and total emissions, whereas increased production leads to more efficient systems with boosted SOC stocks, reducing both per kilogram and total emissions. Under CLD, increased production leads to 60% higher emissions than in DLD. The results indicate the extent to which deforestation control contributes to sustainable intensification in Cerrado beef systems, and how alternative life-cycle analytical approaches result in significantly different emission estimates.
NASA Astrophysics Data System (ADS)
Nagai, S.; Suzuki, R.
2015-12-01
The biomass of tropical forests sequestrates tons of carbon and plays an important role in the global carbon cycle regulating the climate. Also its high biodiversity ecosystems bring us many valuable resources and cultural and educational ecosystem services. However, large areas of the tropical forest are deforested and converted to oil palm or acacia plantation for the economic benefit of the local society mainly in Southeast Asia. Monitoring of the tropical forest from satellites provides us the information about the deforestation for decadal time period over extensive areas and enables us to discuss it from a scientific point of view. The purpose of this study is to reveal the interannual change and recent trend of deforestation in relation to the land elevation for decadal time period over Borneo by using data from Moderate Resolution Imaging Spectroradiometer (MODIS). We acquired the atmospherically corrected and cloud free Terra-MODIS and Aqua-MODIS daily data products (MOD09GA and MYD09GA; collection 5) from 2001 to 2013 for Borneo. We extracted the pixel values in the 500m surface reflectance bands 1 (red) and 4 (green) products and calculated the green-red vegetation index (GRVI), (band 4 - band 1) / (band 4 + band 1), at a daily time step. GRVI shows a positive value for the land prevailed by green vegetation, while it shows a negative value for the land prevailed by no-green components such as bare land. As for the elevation data, ASTER Global Digital Elevation Model (GDEM) which has 33.3m spatial resolution was employed. The original resolution was resampled to the grid system of MODIS data (i.e. 500m resolution). Pixels which had a negative GRVI ratio more than 80 % (termed as "no green pixel") in each year were regarded as the land characterized by no vegetation, and mapped the distribution for each year. Throughout the 13 years, no green pixels mainly found over the coastal low land below 20m of the elevation and the area was almost constant (around 3000km2). It is considered the deforestation for the plantations generally occurred over the easy access low lands. By contrast, it was obvious that no green pixels extended their distribution up to high elevation (20 to 120m) areas mainly after 2006. This trend suggests recent development of the plantation has been extended to relatively inland and high elevation areas.
Sills, Erin O.; Herrera, Diego; Kirkpatrick, A. Justin; Brandão, Amintas; Dickson, Rebecca; Hall, Simon; Pattanayak, Subhrendu; Shoch, David; Vedoveto, Mariana; Young, Luisa; Pfaff, Alexander
2015-01-01
Quasi-experimental methods increasingly are used to evaluate the impacts of conservation interventions by generating credible estimates of counterfactual baselines. These methods generally require large samples for statistical comparisons, presenting a challenge for evaluating innovative policies implemented within a few pioneering jurisdictions. Single jurisdictions often are studied using comparative methods, which rely on analysts’ selection of best case comparisons. The synthetic control method (SCM) offers one systematic and transparent way to select cases for comparison, from a sizeable pool, by focusing upon similarity in outcomes before the intervention. We explain SCM, then apply it to one local initiative to limit deforestation in the Brazilian Amazon. The municipality of Paragominas launched a multi-pronged local initiative in 2008 to maintain low deforestation while restoring economic production. This was a response to having been placed, due to high deforestation, on a federal “blacklist” that increased enforcement of forest regulations and restricted access to credit and output markets. The local initiative included mapping and monitoring of rural land plus promotion of economic alternatives compatible with low deforestation. The key motivation for the program may have been to reduce the costs of blacklisting. However its stated purpose was to limit deforestation, and thus we apply SCM to estimate what deforestation would have been in a (counterfactual) scenario of no local initiative. We obtain a plausible estimate, in that deforestation patterns before the intervention were similar in Paragominas and the synthetic control, which suggests that after several years, the initiative did lower deforestation (significantly below the synthetic control in 2012). This demonstrates that SCM can yield helpful land-use counterfactuals for single units, with opportunities to integrate local and expert knowledge and to test innovations and permutations on policies that are implemented in just a few locations. PMID:26173108
Sills, Erin O; Herrera, Diego; Kirkpatrick, A Justin; Brandão, Amintas; Dickson, Rebecca; Hall, Simon; Pattanayak, Subhrendu; Shoch, David; Vedoveto, Mariana; Young, Luisa; Pfaff, Alexander
2015-01-01
Quasi-experimental methods increasingly are used to evaluate the impacts of conservation interventions by generating credible estimates of counterfactual baselines. These methods generally require large samples for statistical comparisons, presenting a challenge for evaluating innovative policies implemented within a few pioneering jurisdictions. Single jurisdictions often are studied using comparative methods, which rely on analysts' selection of best case comparisons. The synthetic control method (SCM) offers one systematic and transparent way to select cases for comparison, from a sizeable pool, by focusing upon similarity in outcomes before the intervention. We explain SCM, then apply it to one local initiative to limit deforestation in the Brazilian Amazon. The municipality of Paragominas launched a multi-pronged local initiative in 2008 to maintain low deforestation while restoring economic production. This was a response to having been placed, due to high deforestation, on a federal "blacklist" that increased enforcement of forest regulations and restricted access to credit and output markets. The local initiative included mapping and monitoring of rural land plus promotion of economic alternatives compatible with low deforestation. The key motivation for the program may have been to reduce the costs of blacklisting. However its stated purpose was to limit deforestation, and thus we apply SCM to estimate what deforestation would have been in a (counterfactual) scenario of no local initiative. We obtain a plausible estimate, in that deforestation patterns before the intervention were similar in Paragominas and the synthetic control, which suggests that after several years, the initiative did lower deforestation (significantly below the synthetic control in 2012). This demonstrates that SCM can yield helpful land-use counterfactuals for single units, with opportunities to integrate local and expert knowledge and to test innovations and permutations on policies that are implemented in just a few locations.
2011-01-01
Background Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from credited mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008. Results Deforestation estimates showed good agreement for multi-year periods of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by > 20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C ha-1, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas. Conclusions Estimates of source data uncertainties are essential for REDD+. Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions. PMID:22208947
Joint Analysis of Bulk Wildfire Characteristics from Multiple Satellite Retrievals
NASA Astrophysics Data System (ADS)
Tang, W.; Arellano, A. F.
2015-12-01
Biomass burning significantly impacts atmospheric composition, as well as regional and global climate. Here, we investigate the spatiotemporal trends in fire characteristics in several major fire regions using combustion signatures observed from space. Our main goals is to identify key relationships between the trends in co-emitted constituents across these regions, as well as linkages to main drivers of change such as meteorology, fire practice, development patterns, and ecosystem feedbacks. Our approach begins with a multi-species analysis of trends in the observed abundance of CO, NO2, and aerosols over these regions and across the time period 2005 to 2014. We use MOPITT multi-spectral CO, OMI tropospheric NO2 column, MODIS AOD, and MODIS FRP retrievals. The long records from these retrievals provide a unique opportunity to study atmospheric composition across the most recent decade. While several studies in the past have reported trends over these regions, most of these studies have focused on a particular constituent. A unique aspect of this work involves understanding co-variations in co-emitted constituents to provide a more comprehensive look at fire characteristics, which are yet to be fully understood. Here, we introduce a derived quantity (called smoke index) to represent bulk fire characteristics (e.g., flaming versus smoldering). The smoke index is calculated as the ratio of the geometric mean of CO and AOD fire enhancements to that of NO2 fire enhancements. Our initial results, which focused on the Amazon region, show that: 1) deforestation fires are dominantly flaming fires while non-deforestation fires are more likely to be dominantly smoldering fires; and 2) droughts have larger influence on non-deforestation (possibly understorey) fires than deforestation fires. Here, we will present an extension of this analysis to other fire regions around the globe (tropical, temperate and boreal fires) and explore other measurements available during this period for comparisons. We will also compare with current fire emission models, such as GFED and FINN, to test the robustness of our findings. We note that this exploratory work provides a unique perspective of fire characteristics that will be useful to improve predictive capability of fire emission and atmospheric models.
Physical and human dimensions of deforestation in Amazonia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skole, D.L.; Chomentowski, W.H.; Salas W.A.
1994-05-01
In the Brazilian Amazon, regional trends are influenced by large scale external forces but mediated by local conditions. Tropical deforestation has a large influence on global hydrology, climate and biogeochemical cycles, but understanding is inadequate because of a lack of accurate measurements of rate, geographic extent and spatial patterns and lack of insight into its causes including interrelated social, economic and environmental factors. This article proposes an interdisciplinary approach for analyzing tropical deforestation in the Brazilian Amazon. The first part shows how deforestation can be measured from satellite remote sensing and sociodemographic and economic data. The second part proposes anmore » explanatory model, considering the relationship among deforestation and large scale social, economic, and institutional factors. 43 refs., 8 figs.« less
Simulated Changes in Northwest U.S. Climate in Response to Amazon Deforestation
Numerical models have long predicted that the deforestation of the Amazon would lead to large regional changes in precipitation and temperature, but the extratropical effects of deforestation have been a matter of controversy. This paper investigates the simulated impacts of defo...
Ecology: The Tropical Deforestation Debt.
Norris, Ken
2016-08-22
Tropical deforestation is a significant cause of global carbon emissions and biodiversity loss. A new study shows that deforestation today leaves a carbon and biodiversity debt to be paid over subsequent years. This has potentially profound implications for forest conservation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Östlund, Lars; Hörnberg, Greger; DeLuca, Thomas H; Liedgren, Lars; Wikström, Peder; Zackrisson, Olle; Josefsson, Torbjörn
2015-10-01
Anthropogenic deforestation has shaped ecosystems worldwide. In subarctic ecosystems, primarily inhabited by native peoples, deforestation is generally considered to be mainly associated with the industrial period. Here we examined mechanisms underlying deforestation a thousand years ago in a high-mountain valley with settlement artifacts located in subarctic Scandinavia. Using the Heureka Forestry Decision Support System, we modeled pre-settlement conditions and effects of tree cutting on forest cover. To examine lack of regeneration and present nutrient status, we analyzed soil nitrogen. We found that tree cutting could have deforested the valley within some hundred years. Overexploitation left the soil depleted beyond the capacity of re-establishment of trees. We suggest that pre-historical deforestation has occurred also in subarctic ecosystems and that ecosystem boundaries were especially vulnerable to this process. This study improves our understanding of mechanisms behind human-induced ecosystem transformations and tree-line changes, and of the concept of wilderness in the Scandinavian mountain range.
Impacts of tropical deforestation. Part II: The role of large-scale dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H.; Henderson-Sellers, A.; McGuffie, K.
1996-10-01
This is the second in a pair of papers in which the possible impacts of tropical deforestation are examined using a version of the NCAR CCM1. The emphasis in this paper is on the influence of tropical deforestation on the large-scale climate system. This influence is explored through the examination of the regional moisture budget and through an analysis of the Hadley and Walker circulations. Modification of the model surface parameters to simulate tropical deforestation produces significant modifications of both Hadley and Walker circulations, which result in changes distant from the region of deforestation. A mechanism for propagation to middlemore » and high latitudes of disturbances arising form tropical deforestation is proposed based on Rossby wave propagation mechanisms. These mechanisms, which have also been associated with the extratropical influences of ENSO events, provide a pathway for the dispersion of the tropical disturbances to high latitudes. 27 refs., 20 figs., 1 tab.« less
STS-65 Earth observation of Omo River Delta, Lake Turkana in Ethiopia / Kenya
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of Omo River Delta and Lake Turkana in Ethiopia / Kenya. The Omo Delta at the north end of Lake Turkana (Rudolph) is one of the long-term environmental study sites of the Space Shuttle program. The environmental interest in this instance is the documentation of the delta's extension into the lake. This delta extension, or aggradation, is felt to be the result of large-scale soil erosion in the recently deforested areas of Ethiopia in the watershed of the Omo River. Using digitized, rectified, machine-classified, and mensurated NASA photography, it has been determined that the Omo Delta has increased in area by approximately 400% to about 1,800 square kilometers since it was first photographed during the Gemini program in 1965. This photograph documents the long-term and increasing turbidity of Lake Turkana and the continuing delta extension southward by both the northwest and northeast distributaries of the Om
The drivers of tropical deforestation: a comprehensive review
NASA Astrophysics Data System (ADS)
Sanford, T. J.; Boucher, D.; Elias, P.; Lininger, K.; May-Tobin, C.; Roquemore, S.; Saxon, E.; Martin, J.; Mulik, K.
2011-12-01
Tropical forests are disappearing around the world. This clearing causes around 15% of global carbon emissions, leads to the rapid loss of biodiversity, and destroys the livelihoods of many indigenous peoples. We comprehensively reviewed the literature on drivers of tropical deforestation and found a number of trends. While deforestation was predominately driven by small farmers and government action in the 1970s and 1980s, since the 1990s most deforestation has been driven by large scale commercial agriculture. In Latin America, and Brazil in particular, forest clearing has mostly been due to expansion of cattle pastures and for a period in the late 1990s and early 2000s soy bean expansion. In Southeast Asia, deforestation has mainly been due to expansion of oil palm plantations and timber harvesting. In Africa small farmers and wood fuel collection still play a role, although deforestation rates are considerably lower there than in other regions. Additionally, increased urbanization and trends toward a diet based on meat, particularly beef, have help drive deforestation. Biofuels policies around the world are also adding demand, both directly for vegetable oil, and by expanding demand for competing crops such as corn. We examine the extent to which biofuels demand directly and indirectly acts as a driver of deforestation, and the policies that can mitigate this problem by analyzing alternative scenarios of biofuel expansion and their impact on land use change, commodity prices and green house gas emissions.
Deforestation projections for carbon-rich peat swamp forests of Central Kalimantan, Indonesia.
Fuller, Douglas O; Hardiono, Martin; Meijaard, Erik
2011-09-01
We evaluated three spatially explicit land use and cover change (LUCC) models to project deforestation from 2005-2020 in the carbon-rich peat swamp forests (PSF) of Central Kalimantan, Indonesia. Such models are increasingly used to evaluate the impact of deforestation on carbon fluxes between the biosphere and the atmosphere. We considered both business-as-usual (BAU) and a forest protection scenario to evaluate each model's accuracy, sensitivity, and total projected deforestation and landscape-level fragmentation patterns. The three models, Dinamica EGO (DE), GEOMOD and the Land Change Modeler (LCM), projected similar total deforestation amounts by 2020 with a mean of 1.01 million ha (Mha) and standard deviation of 0.17 Mha. The inclusion of a 0.54 Mha strict protected area in the LCM simulations reduced projected loss to 0.77 Mha over 15 years. Calibrated parameterizations of the models using nearly identical input drivers produced very different landscape properties, as measured by the number of forest patches, mean patch area, contagion, and Euclidean nearest neighbor determined using Fragstats software. The average BAU outputs of the models suggests that Central Kalimantan may lose slightly less than half (45.1%) of its 2005 PSF by 2020 if measures are not taken to reduce deforestation there. The relatively small reduction of 0.24 Mha in deforestation found in the 0.54 Mha protection scenario suggests that these models can identify potential leakage effects in which deforestation is forced to occur elsewhere in response to a policy intervention.
Remote detection of riverine traffic using an ad hoc wireless sensor network
NASA Astrophysics Data System (ADS)
Athan, Stephan P.
2005-05-01
Trafficking of illegal drugs on riverine and inland waterways continues to proliferate in South America. While there has been a successful joint effort to cut off overland and air trafficking routes, there exists a vast river network and Amazon region consisting of over 13,000 water miles that remains difficult to adequately monitor, increasing the likelihood of narcotics moving along this extensive river system. Hence, an effort is underway to provide remote unattended riverine detection in lieu of manned or attended detection measures.
Deforestation in the Brazilian Amazon: A Classroom Project.
ERIC Educational Resources Information Center
Nijman, Jan; Hill, A. David
1991-01-01
Presents a classroom project dealing with tropical deforestation in the Brazilian Amazon. Addresses environmental consequences and economic, social, and political causes. Involves both lectures and individual research and reports by student groups on deforestation causes. Includes a note-playing activity in which students make recommendations for…
Judgments about illegal performance-enhancing substances: reasoned, reactive, or both?
Dodge, Tonya; Stock, Michelle; Litt, Dana
2013-07-01
This study applied aspects of the Theory of Reasoned Action and the Prototype/Willingness model to understand cognitions associated with the use of illegal performance-enhancing substances. There were two study objectives. One was to investigate whether the illegal-is-effective heuristic (i.e. belief that illegal performance-enhancing substances are more effective than legal performance-enhancing substances) affects willingness to use illegal performance-enhancing substances. The second was to examine whether attitudes, norms, and prototypes influence the willingness and intentions to use illegal performance-enhancing substances. The illegal-is-effective heuristic was a significant predictor of willingness but was not a significant predictor of intentions. Implications for future research and prevention efforts are discussed.
The role of supply-chain initiatives in reducing deforestation
NASA Astrophysics Data System (ADS)
Lambin, Eric F.; Gibbs, Holly K.; Heilmayr, Robert; Carlson, Kimberly M.; Fleck, Leonardo C.; Garrett, Rachael D.; le Polain de Waroux, Yann; McDermott, Constance L.; McLaughlin, David; Newton, Peter; Nolte, Christoph; Pacheco, Pablo; Rausch, Lisa L.; Streck, Charlotte; Thorlakson, Tannis; Walker, Nathalie F.
2018-01-01
A major reduction in global deforestation is needed to mitigate climate change and biodiversity loss. Recent private sector commitments aim to eliminate deforestation from a company's operations or supply chain, but they fall short on several fronts. Company pledges vary in the degree to which they include time-bound interventions with clear definitions and criteria to achieve verifiable outcomes. Zero-deforestation policies by companies may be insufficient to achieve broader impact on their own due to leakage, lack of transparency and traceability, selective adoption and smallholder marginalization. Public-private policy mixes are needed to increase the effectiveness of supply-chain initiatives that aim to reduce deforestation. We review current supply-chain initiatives, their effectiveness, and the challenges they face, and go on to identify knowledge gaps for complementary public-private policies.
Are Brazil’s Deforesters Avoiding Detection?
Richards, Peter; Arima, Eugenio; VanWey, Leah; Cohn, Avery; Bhattarai, Nishan
2017-01-01
Rates of deforestation reported by Brazil’s official deforestation monitoring system have declined dramatically in the Brazilian Amazon. Much of Brazil’s success in its fight against deforestation has been credited to a series of policy changes put into place between 2004 and 2008. In this research, we posit that one of these policies, the decision to use the country’s official system for monitoring forest loss in the Amazon as a policing tool, has incentivized landowners to deforest in ways and places that evade Brazil’s official monitoring and enforcement system. As a consequence, we a) show or b) provide several pieces of suggestive evidence that recent successes in protecting monitored forests in the Brazilian Amazon may be doing less to protect the region’s forests than previously assumed. PMID:29270225
Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano
le Polain de Waroux, Yann; Garrett, Rachael D.; Heilmayr, Robert; Lambin, Eric F.
2016-01-01
Growing demand for agricultural commodities is causing the expansion of agricultural frontiers onto native vegetation worldwide. Agribusiness companies linking these frontiers to distant spaces of consumption through global commodity chains increasingly make zero-deforestation pledges. However, production and land conversion are often carried out by less-visible local and regional actors that are mobile and responsive to new agricultural expansion opportunities and legal constraints on land use. With more stringent deforestation regulations in some countries, we ask whether their movements are determined partly by differences in land-use policies, resulting in “deforestation havens.” We analyze the determinants of investment decisions by agricultural companies in the Gran Chaco and Chiquitano, a region that has become the new deforestation “hot spot” in South America. We test whether companies seek out less-regulated forest areas for new agricultural investments. Based on interviews with 82 companies totaling 2.5 Mha of properties, we show that, in addition to proximity to current investments and the availability of cheap forestland, lower deforestation regulations attract investments by companies that tend to clear more forest, mostly cattle ranching operations, and that lower enforcement attracts all companies. Avoiding deforestation leakage requires harmonizing deforestation regulations across regions and commodities and promoting sustainable intensification in cattle ranching. PMID:27035995
Land-use policies and corporate investments in agriculture in the Gran Chaco and Chiquitano.
le Polain de Waroux, Yann; Garrett, Rachael D; Heilmayr, Robert; Lambin, Eric F
2016-04-12
Growing demand for agricultural commodities is causing the expansion of agricultural frontiers onto native vegetation worldwide. Agribusiness companies linking these frontiers to distant spaces of consumption through global commodity chains increasingly make zero-deforestation pledges. However, production and land conversion are often carried out by less-visible local and regional actors that are mobile and responsive to new agricultural expansion opportunities and legal constraints on land use. With more stringent deforestation regulations in some countries, we ask whether their movements are determined partly by differences in land-use policies, resulting in "deforestation havens." We analyze the determinants of investment decisions by agricultural companies in the Gran Chaco and Chiquitano, a region that has become the new deforestation "hot spot" in South America. We test whether companies seek out less-regulated forest areas for new agricultural investments. Based on interviews with 82 companies totaling 2.5 Mha of properties, we show that, in addition to proximity to current investments and the availability of cheap forestland, lower deforestation regulations attract investments by companies that tend to clear more forest, mostly cattle ranching operations, and that lower enforcement attracts all companies. Avoiding deforestation leakage requires harmonizing deforestation regulations across regions and commodities and promoting sustainable intensification in cattle ranching.
Deforestation Along the Maya Mountain Massif Belize-Guatemala Border
NASA Astrophysics Data System (ADS)
Chicas, S. D.; Omine, K.; Arevalo, B.; Ford, J. B.; Sugimura, K.
2016-06-01
In recent years trans-boundary incursions from Petén, Guatemala into Belize's Maya Mountain Massif (MMM) have increased. The incursions are rapidly degrading cultural and natural resources in Belize's protected areas. Given the local, regional and global importance of the MMM and the scarcity of deforestation data, our research team conducted a time series analysis 81 km by 12 km along the Belize-Guatemalan border adjacent to the protected areas of the MMM. Analysis drew on Landsat imagery from 1991 to 2014 to determine historic deforestation rates. The results indicate that the highest deforestation rates in the study area were -1.04% and -6.78% loss of forested area per year in 2012-2014 and 1995-1999 respectively. From 1991 to 2014, forested area decreased from 96.9 % to 85.72 % in Belize and 83.15 % to 31.52 % in Guatemala. During the study period, it was clear that deforestation rates fluctuated in Belize's MMM from one time-period to the next. This seems linked to either a decline in deforestation rates in Guatemala, the vertical expansion of deforestation in Guatemalan forested areas and monitoring. The results of this study urge action to reduce incursions and secure protected areas and remaining forest along the Belize-Guatemalan border.
Paterson, R Russell M; Lima, Nelson
2018-01-01
Palm oil is used in various valued commodities and is a large global industry worth over US$ 50 billion annually. Oil palms (OP) are grown commercially in Indonesia and Malaysia and other countries within Latin America and Africa. The large-scale land-use change has high ecological, economic, and social impacts. Tropical countries in particular are affected negatively by climate change (CC) which also has a detrimental impact on OP agronomy, whereas the cultivation of OP increases CC. Amelioration of both is required. The reduced ability to grow OP will reduce CC, which may allow more cultivation tending to increase CC, in a decreasing cycle. OP could be increasingly grown in more suitable regions occurring under CC. Enhancing the soil fauna may compensate for the effect of CC on OP agriculture to some extent. The effect of OP cultivation on CC may be reduced by employing reduced emissions from deforestation and forest degradation plans, for example, by avoiding illegal fire land clearing. Other ameliorating methods are reported herein. More research is required involving good management practices that can offset the increases in CC by OP plantations. Overall, OP-growing countries should support the Paris convention on reducing CC as the most feasible scheme for reducing CC.
Characteristics of illegal and legal cigarette packs sold in Guatemala.
Arevalo, Rodrigo; Corral, Juan E; Monzon, Diego; Yoon, Mira; Barnoya, Joaquin
2016-11-25
Guatemala, as a party to the Framework Convention on Tobacco Control (FCTC), is required to regulate cigarette packaging and labeling and eliminate illicit tobacco trade. Current packaging and labeling characteristics (of legal and illegal cigarettes) and their compliance with the FCTC is unknown. We sought to analyze package and label characteristics of illegal and legal cigarettes sold in Guatemala. We visited the 22 largest traditional markets in the country to purchase illegal cigarettes. All brands registered on tobacco industry websites were purchased as legal cigarettes. Analysis compared labeling characteristics of illegal and legal packs. Most (95%) markets and street vendors sold illegal cigarettes; 104 packs were purchased (79 illegal and 25 legal). Ten percent of illegal and none of the legal packs had misleading terms. Half of the illegal packs had a warning label covering 26 to 50% of the pack surface. All legal packs had a label covering 25% of the surface. Illegal packs were more likely to have information on constituents and emissions (85% vs. 45%, p < 0.001) and were less expensive than legal ones (USD 0.70 ± 0.7 and 1.9 ± 1.8, p < 0.001). In Guatemala, neither illegal nor legal cigarette packs comply with FCTC labeling mandates. Urgent implementation and enforcement of the FCTC is necessary to halt the tobacco epidemic.
Carreiras, João M. B.; Jones, Joshua; Lucas, Richard M.; Gabriel, Cristina
2014-01-01
Throughout the Amazon region, the age of forests regenerating on previously deforested land is determined, in part, by the periods of active land use prior to abandonment and the frequency of reclearance of regrowth, both of which can be quantified by comparing time-series of Landsat sensor data. Using these time-series of near annual data from 1973–2011 for an area north of Manaus (in Amazonas state), from 1984–2010 for south of Santarém (Pará state) and 1984–2011 near Machadinho d’Oeste (Rondônia state), the changes in the area of primary forest, non-forest and secondary forest were documented from which the age of regenerating forests, periods of active land use and the frequency of forest reclearance were derived. At Manaus, and at the end of the time-series, over 50% of regenerating forests were older than 16 years, whilst at Santarém and Machadinho d’Oeste, 57% and 41% of forests respectively were aged 6–15 years, with the remainder being mostly younger forests. These differences were attributed to the time since deforestation commenced but also the greater frequencies of reclearance of forests at the latter two sites with short periods of use in the intervening periods. The majority of clearance for agriculture was also found outside of protected areas. The study suggested that a) the history of clearance and land use should be taken into account when protecting deforested land for the purpose of restoring both tree species diversity and biomass through natural regeneration and b) a greater proportion of the forested landscape should be placed under protection, including areas of regrowth. PMID:25099362
Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes.
Moore, Sam; Evans, Chris D; Page, Susan E; Garnett, Mark H; Jones, Tim G; Freeman, Chris; Hooijer, Aljosja; Wiltshire, Andrew J; Limin, Suwido H; Gauci, Vincent
2013-01-31
Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of atmospheric carbon dioxide. Here we quantify the annual export of fluvial organic carbon from both intact peat swamp forest and peat swamp forest subject to past anthropogenic disturbance. We find that the total fluvial organic carbon flux from disturbed peat swamp forest is about 50 per cent larger than that from intact peat swamp forest. By carbon-14 dating of dissolved organic carbon (which makes up over 91 per cent of total organic carbon), we find that leaching of dissolved organic carbon from intact peat swamp forest is derived mainly from recent primary production (plant growth). In contrast, dissolved organic carbon from disturbed peat swamp forest consists mostly of much older (centuries to millennia) carbon from deep within the peat column. When we include the fluvial carbon loss term, which is often ignored, in the peatland carbon budget, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22 per cent. We further estimate that since 1990 peatland disturbance has resulted in a 32 per cent increase in fluvial organic carbon flux from southeast Asia--an increase that is more than half of the entire annual fluvial organic carbon flux from all European peatlands. Our findings emphasize the need to quantify fluvial carbon losses in order to improve estimates of the impact of deforestation and drainage on tropical peatland carbon balances.
Carlson, Kimberly M; Curran, Lisa M; Ratnasari, Dessy; Pittman, Alice M; Soares-Filho, Britaldo S; Asner, Gregory P; Trigg, Simon N; Gaveau, David A; Lawrence, Deborah; Rodrigues, Hermann O
2012-05-08
Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989-2008 deforestation (93%) and net carbon emissions (69%), by 2007-2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994-2001), shifting to 69% peatlands (2008-2011). Plantation leases reveal vast development potential. In 2008, leases spanned ∼65% of the region, including 62% on peatlands and 59% of community-managed lands, yet <10% of lease area was planted. Projecting business as usual (BAU), by 2020 ∼40% of regional and 35% of community lands are cleared for oil palm, generating 26% of net carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings.
Carlson, Kimberly M.; Curran, Lisa M.; Ratnasari, Dessy; Pittman, Alice M.; Soares-Filho, Britaldo S.; Asner, Gregory P.; Trigg, Simon N.; Gaveau, David A.; Lawrence, Deborah; Rodrigues, Hermann O.
2012-01-01
Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989–2008 deforestation (93%) and net carbon emissions (69%), by 2007–2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994–2001), shifting to 69% peatlands (2008–2011). Plantation leases reveal vast development potential. In 2008, leases spanned ∼65% of the region, including 62% on peatlands and 59% of community-managed lands, yet <10% of lease area was planted. Projecting business as usual (BAU), by 2020 ∼40% of regional and 35% of community lands are cleared for oil palm, generating 26% of net carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings. PMID:22523241
Carreiras, João M B; Jones, Joshua; Lucas, Richard M; Gabriel, Cristina
2014-01-01
Throughout the Amazon region, the age of forests regenerating on previously deforested land is determined, in part, by the periods of active land use prior to abandonment and the frequency of reclearance of regrowth, both of which can be quantified by comparing time-series of Landsat sensor data. Using these time-series of near annual data from 1973-2011 for an area north of Manaus (in Amazonas state), from 1984-2010 for south of Santarém (Pará state) and 1984-2011 near Machadinho d'Oeste (Rondônia state), the changes in the area of primary forest, non-forest and secondary forest were documented from which the age of regenerating forests, periods of active land use and the frequency of forest reclearance were derived. At Manaus, and at the end of the time-series, over 50% of regenerating forests were older than 16 years, whilst at Santarém and Machadinho d'Oeste, 57% and 41% of forests respectively were aged 6-15 years, with the remainder being mostly younger forests. These differences were attributed to the time since deforestation commenced but also the greater frequencies of reclearance of forests at the latter two sites with short periods of use in the intervening periods. The majority of clearance for agriculture was also found outside of protected areas. The study suggested that a) the history of clearance and land use should be taken into account when protecting deforested land for the purpose of restoring both tree species diversity and biomass through natural regeneration and b) a greater proportion of the forested landscape should be placed under protection, including areas of regrowth.
Returning forests analyzed with the forest identity.
Kauppi, Pekka E; Ausubel, Jesse H; Fang, Jingyun; Mather, Alexander S; Sedjo, Roger A; Waggoner, Paul E
2006-11-14
Amid widespread reports of deforestation, some nations have nevertheless experienced transitions from deforestation to reforestation. In a causal relationship, the Forest Identity relates the carbon sequestered in forests to the changing variables of national or regional forest area, growing stock density per area, biomass per growing stock volume, and carbon concentration in the biomass. It quantifies the sources of change of a nation's forests. The Identity also logically relates the quantitative impact on forest expanse of shifting timber harvest to regions and plantations where density grows faster. Among 50 nations with extensive forests reported in the Food and Agriculture Organization's comprehensive Global Forest Resources Assessment 2005, no nation where annual per capita gross domestic product exceeded 4,600 dollars had a negative rate of growing stock change. Using the Forest Identity and national data from the Assessment report, a single synoptic chart arrays the 50 nations with coordinates of the rates of change of basic variables, reveals both clusters of nations and outliers, and suggests trends in returning forests and their attributes. The Forest Identity also could serve as a tool for setting forest goals and illuminating how national policies accelerate or retard the forest transitions that are diffusing among nations.
NASA Astrophysics Data System (ADS)
Gray, J. M.; Sills, E. O.; Amanatides, M. M.
2017-12-01
Tropical forests offer valuable ecosystem services at multiple scales, from the local hydrological cycle to the global carbon cycle. This has motivated significant international attention and funding for efforts to reduce emissions from deforestation and forest degradation (REDD+), especially where they account for most greenhouse gas emissions, as in Indonesia. Indonesia holds 39% of Southeast Asian forest, experiences the second highest rate of deforestation after Brazil, and has the potential to earn high profits both from logging native forests and from clearing forests for oil palm and pulp plantations. In Indonesia, REDD+ initiatives have taken a wide variety of forms, with some interventions focused on encouraging sustainable forest management and others focused on reducing demand for cleared land. Evaluating the efficacy of these interventions is critical but challenging because exogenous factors may affect both placement of the interventions and deforestation trends. Overcoming this limitation requires an in-depth understanding of the drivers of deforestation and how they vary with context. One barrier to improved understanding has been that existing deforestation datasets are largely binary (e.g. forested/deforested). Recent developments in mapping land-use change from time series of remotely sensed images may offer a path towards obtaining longer times series with more detail on land use. Such data would enable use of the synthetic control method (SCM), which allows for heterogenous impacts across units and over time. Here, we use this approach to answer the question: How has the designation and active use of logging concessions affected deforestation rates in East Kalimantan province, Indonesia since 2000? That is, we ask whether, where, and how using forests for timber production affects the probability of deforestation. We used an image time-series approach (YATSM/CCDC) to classify Landsat imagery from 2000 to 2017 for East Kalimantan, and SCM to evaluate the effect of allocating forest to logging concessions, controlling for a large variety of covariates such as proximity to pulp and palm oil mills and topography to construct our synthetic controls. By mapping land use in previously forested areas, we are able to interrogate the primary drivers of deforestation in different contexts.
NASA Astrophysics Data System (ADS)
Guo, Tianze; Bi, Siyu; Liu, Jiaming
2018-04-01
This essay legally restrains the illegal content based on the e-commerce directive and introduces that the European countries detect and notify illegal content through the instructions of competent authorities, notification of credible flaggers, user reports and technical tools. The illegal content should be deleted through the service terms and transparency report basing on prevent excessive deletions system. At the same time, use filters to detect and filter to against the recurrence of illegal content. By analyzing the advantages of China under the environment of cracking down on illegal content, this essay concludes that the success of China in cracking down on illegal content lies in all-round collaborative management model of countries, governments, enterprises and individuals. At the end of the essay, one is to build a training corpus that can automatically update the ability to identify the illegal content. And it proposes an optimization scheme that establish a complete set of address resolution procedures and classify IP address data according to big data analysis and DNS protection module to prevent hackers from spreading illegal content by tampering with DNS segments.
NASA Astrophysics Data System (ADS)
Costa, Marcos Heil; Foley, Jonathan A.
2000-01-01
It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: 1) increasing areas of forest will be converted to pasture and cropland, and 2) concentrations of atmospheric CO2 will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO2 concentrations (including both physiological and radiative effects) on Amazonian climate.In these simulations, deforestation decreases basin-average precipitation by 0.73 mm day1 over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO2 concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day1. The combined effect of deforestation and doubled CO2, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day1. While the effects of deforestation and increasing CO2 concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO2 concentrations both tend to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO2. The combined effect of deforestation and doubled CO2, including the interactions among the processes, increases the basin-average temperature by roughly 3.5°C.
Tabor, Karyn; Jones, Kelly W; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A
2017-01-01
Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities' dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 -years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context.
Jones, Kelly W.; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A.
2017-01-01
Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities’ dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 –years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context. PMID:29267356
Aragão, Luiz Eduardo O C; Malhi, Yadvinder; Barbier, Nicolas; Lima, Andre; Shimabukuro, Yosio; Anderson, Liana; Saatchi, Sassan
2008-05-27
Understanding the interplay between climate and land-use dynamics is a fundamental concern for assessing the vulnerability of Amazonia to climate change. In this study, we analyse satellite-derived monthly and annual time series of rainfall, fires and deforestation to explicitly quantify the seasonal patterns and relationships between these three variables, with a particular focus on the Amazonian drought of 2005. Our results demonstrate a marked seasonality with one peak per year for all variables analysed, except deforestation. For the annual cycle, we found correlations above 90% with a time lag between variables. Deforestation and fires reach the highest values three and six months, respectively, after the peak of the rainy season. The cumulative number of hot pixels was linearly related to the size of the area deforested annually from 1998 to 2004 (r2=0.84, p=0.004). During the 2005 drought, the number of hot pixels increased 43% in relation to the expected value for a similar deforested area (approx. 19000km2). We demonstrated that anthropogenic forcing, such as land-use change, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region even with decreased deforestation rates. We may expect that the ongoing deforestation, currently based on slash and burn procedures, and the use of fires for land management in Amazonia will intensify the impact of droughts associated with natural climate variability or human-induced climate change and, therefore, a large area of forest edge will be under increased risk of fires.
Stan, Kayla; Sanchez-Azofeifa, Arturo; Espírito-Santo, Mário; Portillo-Quintero, Carlos
2015-01-01
Agricultural expansion is causing deforestation in Minas Gerais, Brazil, converting savanna and tropical dry forest to farmland, and in 2012, Brazil's Forest Code was revised with the government reducing deforestation restrictions. Understanding the effects of policy change on rates and locations of natural ecosystem loss is imperative. In this paper, deforestation in Minas Gerais was simulated annually until 2020 using Dinamica Environment for Geoprocessing Objects (Dinamica EGO). This system is a state-of-the-art land use and cover change (LUCC) model which incorporates government policy, landscape maps, and other biophysical and anthropogenic datasets. Three studied scenarios: (i) business as usual, (ii) increased deforestation, and (iii) decreased deforestation showed more transition to agriculture from shrubland compared to forests, and consistent locations for most deforestation. The probability of conversion to agriculture is strongly tied to areas with the smallest patches of original biome remaining. Increases in agricultural revenue are projected to continue with a loss of 25% of the remaining Cerrado land in the next decade if profit is maximized. The addition of biodiversity value as a tax on land sale prices, estimated at over $750,000,000 USD using the cost of extracting and maintaining current species ex-situ, can save more than 1 million hectares of shrubland with minimal effects on the economy of the State of Minas Gerais. With environmental policy determining rates of deforestation and economics driving the location of land clearing, site-specific protection or market accounting of externalities is needed to balance economic development and conservation.
The rate and extent of deforestation in watersheds of the southwestern Amazon basin.
Biggs, Trent W; Dunne, Thomas; Roberts, Dar A; Matricardi, E
2008-01-01
The rate and extent of deforestation determine the timing and magnitude of disturbance to both terrestrial and aquatic ecosystems. Rapid change can lead to transient impacts to hydrology and biogeochemistry, while complete and permanent conversion to other land uses can lead to chronic changes. A large population of watershed boundaries (N=4788) and a time series of Landsat TM imagery (1975-1999) in the southwestern Amazon Basin showed that even small watersheds (2.5-15 km2) were deforested relatively slowly over 7-21 years. Less than 1% of all small watersheds were more than 50% cleared in a single year, and clearing rates averaged 5.6%/yr during active clearing. A large proportion (26%) of the small watersheds had a cumulative deforestation extent of more than 75%. The cumulative deforestation extent was highly spatially autocorrelated up to a 100-150 km lag due to the geometry of the agricultural zone and road network, so watersheds as large as approximately 40000 km2 were more than 50% deforested by 1999. The rate of deforestation had minimal spatial autocorrelation beyond a lag of approximately 30 km, and the mean rate decreased rapidly with increasing area. Approximately 85% of the cleared area remained in pasture, so deforestation in watersheds of Rondônia was a relatively slow, permanent, and complete transition to pasture, rather than a rapid, transient, and partial cutting with regrowth. Given the observed landcover transitions, the regional stream biogeochemical response is likely to resemble the chronic changes observed in streams draining established pastures, rather than a temporary pulse from slash-and-burn.
NASA Astrophysics Data System (ADS)
Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio
2015-05-01
Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 103 km2 (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 103 km2 (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.
Stan, Kayla; Sanchez-Azofeifa, Arturo; Espírito-Santo, Mário; Portillo-Quintero, Carlos
2015-01-01
Agricultural expansion is causing deforestation in Minas Gerais, Brazil, converting savanna and tropical dry forest to farmland, and in 2012, Brazil’s Forest Code was revised with the government reducing deforestation restrictions. Understanding the effects of policy change on rates and locations of natural ecosystem loss is imperative. In this paper, deforestation in Minas Gerais was simulated annually until 2020 using Dinamica Environment for Geoprocessing Objects (Dinamica EGO). This system is a state-of-the-art land use and cover change (LUCC) model which incorporates government policy, landscape maps, and other biophysical and anthropogenic datasets. Three studied scenarios: (i) business as usual, (ii) increased deforestation, and (iii) decreased deforestation showed more transition to agriculture from shrubland compared to forests, and consistent locations for most deforestation. The probability of conversion to agriculture is strongly tied to areas with the smallest patches of original biome remaining. Increases in agricultural revenue are projected to continue with a loss of 25% of the remaining Cerrado land in the next decade if profit is maximized. The addition of biodiversity value as a tax on land sale prices, estimated at over $750,000,000 USD using the cost of extracting and maintaining current species ex-situ, can save more than 1 million hectares of shrubland with minimal effects on the economy of the State of Minas Gerais. With environmental policy determining rates of deforestation and economics driving the location of land clearing, site-specific protection or market accounting of externalities is needed to balance economic development and conservation. PMID:26371876
Céline, Ernst; Philippe, Mayaux; Astrid, Verhegghen; Catherine, Bodart; Musampa, Christophe; Pierre, Defourny
2013-04-01
This research refers to an object-based automatic method combined with a national expert validation to produce regional and national forest cover change statistics over Congo Basin. A total of 547 sampling sites systematically distributed over the whole humid forest domain are required to cover the six Central African countries containing tropical moist forest. High resolution imagery is used to accurately estimate not only deforestation and reforestation but also degradation and regeneration. The overall method consists of four steps: (i) image automatic preprocessing and preinterpretation, (ii) interpretation by national expert, (iii) statistic computation and (iv) accuracy assessment. The annual rate of net deforestation in Congo Basin is estimated to 0.09% between 1990 and 2000 and of net degradation to 0.05%. Between 2000 and 2005, this unique exercise estimates annual net deforestation to 0.17% and annual net degradation to 0.09%. An accuracy assessment reveals that 92.7% of tree cover (TC) classes agree with independent expert interpretation. In the discussion, we underline the direct causes and the drivers of deforestation. Population density, small-scale agriculture, fuelwood collection and forest's accessibility are closely linked to deforestation, whereas timber extraction has no major impact on the reduction in the canopy cover. The analysis also shows the efficiency of protected areas to reduce deforestation. These results are expected to contribute to the discussion on the reduction in CO2 emissions from deforestation and forest degradation (REDD+) and serve as reference for the period. © 2012 Blackwell Publishing Ltd.
Rethinking the causes of deforestation: lessons from economic models.
Angelsen, A; Kaimowitz, D
1999-02-01
Concern is rising over the deleterious effects of tropical deforestation. For example, the loss of forest cover influences the climate and reduces biodiversity, while reduced timber supplies, siltation, flooding, and soil degradation affect economic activity and threaten the livelihoods and cultural integrity of forest-dependent people. Such concerns have led economists to expand their efforts to model why, where, and to what extent forests are being converted to other land uses. This synthesis of the results of more than 140 economic models analyzing the causes of tropical deforestation brings into question many conventional hypotheses upon deforestation. More roads, higher agricultural prices, lower wages, and a shortage of off-farm employment generally lead to more deforestation. However, it is not known how technical change, agricultural input prices, household income levels, and tenure security affect deforestation. The role of macroeconomic factors such as population growth, poverty reduction, national income, economic growth, and foreign debt is also unclear. The authors nonetheless determine through their review that policy reforms included in current economic liberalization and adjustment efforts may increase pressure upon forests.
Landscape hydrology. The hydrological legacy of deforestation on global wetlands.
Woodward, C; Shulmeister, J; Larsen, J; Jacobsen, G E; Zawadzki, A
2014-11-14
Increased catchment erosion and nutrient loading are commonly recognized impacts of deforestation on global wetlands. In contrast, an increase in water availability in deforested catchments is well known in modern studies but is rarely considered when evaluating past human impacts. We used a Budyko water balance approach, a meta-analysis of global wetland response to deforestation, and paleoecological studies from Australasia to explore this issue. After complete deforestation, we demonstrated that water available to wetlands increases by up to 15% of annual precipitation. This can convert ephemeral swamps to permanent lakes or even create new wetlands. This effect is globally significant, with 9 to 12% of wetlands affected, including 20 to 40% of Ramsar wetlands, but is widely unrecognized because human impact studies rarely test for it. Copyright © 2014, American Association for the Advancement of Science.
Agriculture-driven deforestation in the tropics from 1990-2015: emissions, trends and uncertainties
NASA Astrophysics Data System (ADS)
Carter, Sarah; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; De Sy, Veronique; Kooistra, Lammert; Rufino, Mariana C.
2018-01-01
Limited data exists on emissions from agriculture-driven deforestation, and available data are typically uncertain. In this paper, we provide comparable estimates of emissions from both all deforestation and agriculture-driven deforestation, with uncertainties for 91 countries across the tropics between 1990 and 2015. Uncertainties associated with input datasets (activity data and emissions factors) were used to combine the datasets, where most certain datasets contribute the most. This method utilizes all the input data, while minimizing the uncertainty of the emissions estimate. The uncertainty of input datasets was influenced by the quality of the data, the sample size (for sample-based datasets), and the extent to which the timeframe of the data matches the period of interest. Area of deforestation, and the agriculture-driver factor (extent to which agriculture drives deforestation), were the most uncertain components of the emissions estimates, thus improvement in the uncertainties related to these estimates will provide the greatest reductions in uncertainties of emissions estimates. Over the period of the study, Latin America had the highest proportion of deforestation driven by agriculture (78%), and Africa had the lowest (62%). Latin America had the highest emissions from agriculture-driven deforestation, and these peaked at 974 ± 148 Mt CO2 yr-1 in 2000-2005. Africa saw a continuous increase in emissions between 1990 and 2015 (from 154 ± 21-412 ± 75 Mt CO2 yr-1), so mitigation initiatives could be prioritized there. Uncertainties for emissions from agriculture-driven deforestation are ± 62.4% (average over 1990-2015), and uncertainties were highest in Asia and lowest in Latin America. Uncertainty information is crucial for transparency when reporting, and gives credibility to related mitigation initiatives. We demonstrate that uncertainty data can also be useful when combining multiple open datasets, so we recommend new data providers to include this information.
Relationships Between Fire and Land Use Change in the Brazilian Amazon Based on Satellite Data
NASA Astrophysics Data System (ADS)
Fanin, T.; van der Werf, G.
2014-12-01
Fires are used as a tool in the process of deforestation. The relationship between fire and deforestation varies temporally and spatially according to the type of deforestation and climatic conditions. This study evaluates spatiotemporal variability between fire and deforestation over the 2002-2012 period in the Brazilian Legal Amazon (BLA). We based our study on four datasets: deforestation estimates from PRODES (Amazon Deforestation Monitoring Project) and forest cover loss from the Global Forest Change (GFC) project based on Landsat data, and burned area and land cover based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. While GFC and PRODES supported similar findings on spatial and temporal dynamics, the Landsat-scale comparison also highlighted a number of differences. Both datasets show a decrease after 2004 in forest loss or deforestation extent mainly from decreasing clearing rates in evergreen broadleaf forest, mostly in the states of Mato Grosso and Rondonia. However, the drop is larger and more gradual in PRODES than in GFC, with the former having less than half the forest loss of the latter. GFC indicates anomalous high forest loss in the years 2007 and 2010 not seen in PRODES. Rescaling these forest dynamics datasets to 500-meter resolution, allowed for a comparison against the MODIS datasets. The burned area data indicates that the mismatch between PRODES and GFC is largely related to increased fire occurrence during these dry years, mainly in Para. In addition it indicates that the time interval between deforestation and fire differs according to land cover, which is important when estimating the atmospheric impact of forest loss. We found that evergreen broadleaf forests are burned shortly after deforestation due to slash and burn techniques, while croplands have longer intervals depending on the crop variety. As a final step, we used these insights to better quantify carbon emissions from this region.
NASA Astrophysics Data System (ADS)
Medvigy, D.; Khanna, J.
2016-12-01
The Amazon rainforest has been under deforestation for more than four decades. Recent investigation of the regional hydroclimatic impacts of the past three decades of deforestation has revealed a strong scale-dependence of the atmospheric response to land use change. Contemporary deforestation, affecting spatial scales of a few hundreds of kilometers, has resulted in a spatial redistribution of the local dry season rainfall, with downwind and upwind deforested regions receiving respectively 30% more and 30% less rainfall from the area mean. This phenomenon is attributable to a `dynamical' response of the boundary layer air to a reduction in surface roughness due to deforestation, apparent in both satellite and numerically simulated data. This response is starkly different from a spatially uniform increase in non-precipitating cloudiness triggered by small scale clearings, prevalent in the early phases of deforestation. This study investigates the `generalizability' of the dynamical mechanism to understand its impacts on a continually deforested Amazonia. In particular, we investigate the spatiotemporal variability of the dynamical mechanism. The nature of this investigation demands long time series and large spatial converge datasets of the hydroclimate. As such, satellite imagery of clouds (GridSat) and precipitation (PERSIANN and TRMM) has proven particularly useful in facilitating this analysis. The analysis is further complemented by a reanalysis product (ERA-interim) and numerical simulations (using a variable resolution GCM). Results indicate the presence of the dynamical mechanism during local dry and transition seasons effecting the mean precipitation during this period. Its effect on the transition season precipitation can be important for the local dry season length. The dynamical mechanism also occurs in atmospheric conditions which are otherwise less conducive to thermally triggered convection. Hence, this mechanism, which effects the seasons most important for regional ecology, emerges as a possibly impactful convective triggering mechanism. This study provides context for thinking about the climate of a future, more patchily deforested Amazonia that is more favorable to the dynamical mechanism.
Development of national database on long-term deforestation (1930-2014) in Bangladesh
NASA Astrophysics Data System (ADS)
Reddy, C. Sudhakar; Pasha, S. Vazeed; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.
2016-04-01
The aim of the present study is to prepare a nation-wide spatial database on forest cover to assess and monitor the land use changes associated with deforestation in Bangladesh. The multi-source data were interpreted to get the forest cover map of 1930, 1975, 1985, 1995, 2006 and 2014. The spatial information generated on total area under forest cover, rate of deforestation and afforestation, changes across forest types, forest canopy density, replacement land use in deforested area and deforestation hotspots. This spatial analysis has indicated that forest cover is undergoing significant negative change in area and quality. We report that forests in Bangladesh covered an area of 23,140 km2 in 1930 which has decreased to 14,086 km2 in 2014, a net loss of 9054 km2 (39.1%) in eight decades. Analysis of annual rate of gross deforestation for the recent period indicates 0.77% during 2006-2014. During the past eight decades, semi-evergreen forests show loss of 56.4% of forest cover followed by moist deciduous forests (51.5%), dry deciduous forests (43.1%) and mangroves (6.5%). The loss of 23.5% of dense forest cover was found from 1975 to 2014. Dense semi-evergreen forests shows more negative change (36.9%) followed by dense moist deciduous forest (32.7%) from 1975 to 2014. Annual rate of deforestation is higher in dense forests compared to open forests from 2006 to 2014 and indicates increased threat due to anthropogenic pressures. The spatial analysis of forest cover change in mangroves has shown a lower rate of deforestation. Most of the forest conversions have led to the degradation of forests to scrub and transition to agriculture and plantation. The study has identified the 'deforestation hotspots' can help in strategic planning for conservation and management of forest resources.
Hossain, M Mohitul
2012-12-01
The destruction of natural forest is increasing due to urbanization, industrialization, settlement and for the agricultural expansion over last few decades, and studies for their recovery need to be undertaken. With this aim, this comparative study was designed to see the effects of deforested soil on germination and growth performance of five different tree species. In the experiment, five species namely Gmelina arborea, Swietenia mahagoni, Dipterocarpus turbinatus, Acacia auriculiformis and Syzygium grande were germinated for six weeks on seedbeds and raised in pots (25cm diameter, 30cm height), that were filled with two soil and type of land use: deforested and adjacent natural forest of Dulhazara Safari Park. Growth performance of seedling was observed up to 15 months based on height, collar diameter and biomass production at the end. Our results showed that the germination rate was almost similar in both type of land uses. Height growth of D. turbinatus, G. arborea and S. mahagoni seedlings was almost similar and A. auriculi formis and S. grande lower in deforested soil compared to natural forest soil, while collar diameter ofA. auriculi formis, G. arborea, S. grande and S. mahagoni lower and D. turbinatus similar in deforested soil compared to natural forest soil. After uprooting at 19 months, S. mahagoni seedlings were showed significantly (p< or =0.05) higher oven dry biomass, D. turbinatus and A. auriculiformis higher, while G. arborea showed significantly (p< or =0.05) lower and S. grande almost similar oven dry biomass in deforested soil compared to natural forest soil. Oven dry biomass of D. turbinatus seedlings at 19 month age in deforested soil was 21.96g (n=5) and in natural forest soil 18.86g (n=5). However, differences in germination rate and growth performance for different tree species indicated that soil are not too much deteriorated through deforestation at Dulhazara and without any failure such deforested lands would be possible to bring under forest through plantation.
Roads Investments, Spatial Intensification and Deforestation in the Brazilian Amazon
NASA Technical Reports Server (NTRS)
Pfaff, Alexander; Robalino, Juan; Walker, Robert; Aldrich, Steven; Caldas, Marcellus; Reis, Eustaquio; Perz, Stephen; Bohrer, Claudio; Arima, Eugenio; Laurance, William;
2007-01-01
Understanding the impact of road investments on deforestation is part of a complete evaluation of the expansion of infrastructure for development. We find evidence of spatial spillovers from roads in the Brazilian Amazon: deforestation rises in the census tracts that lack roads but are in the same county as and within 100 km of a tract with a new paved or unpaved road. At greater distances from the new roads the evidence is mixed, including negative coefficients of inconsistent significance between 100 and 300 km, and if anything, higher neighbor deforestation at distances over 300 km.
Including carbon emissions from deforestation in the carbon footprint of Brazilian beef.
Cederberg, Christel; Persson, U Martin; Neovius, Kristian; Molander, Sverker; Clift, Roland
2011-03-01
Effects of land use changes are starting to be included in estimates of life-cycle greenhouse gas (GHG) emissions, so-called carbon footprints (CFs), from food production. Their omission can lead to serious underestimates, particularly for meat. Here we estimate emissions from the conversion of forest to pasture in the Legal Amazon Region (LAR) of Brazil and present a model to distribute the emissions from deforestation over products and time subsequent to the land use change. Expansion of cattle ranching for beef production is a major cause of deforestation in the LAR. The carbon footprint of beef produced on newly deforested land is estimated at more than 700 kg CO(2)-equivalents per kg carcass weight if direct land use emissions are annualized over 20 years. This is orders of magnitude larger than the figure for beef production on established pasture on non-deforested land. While Brazilian beef exports have originated mainly from areas outside the LAR, i.e. from regions not subject to recent deforestation, we argue that increased production for export has been the key driver of the pasture expansion and deforestation in the LAR during the past decade and this should be reflected in the carbon footprint attributed to beef exports. We conclude that carbon footprint standards must include the more extended effects of land use changes to avoid giving misleading information to policy makers, retailers, and consumers.
Estimated carbon emission from recent rapid forest loss in Southeast Asia
NASA Astrophysics Data System (ADS)
Chen, A.; Zeng, Z.; Peng, L.; Fei, S.
2017-12-01
Driven by agricultural expansion, industrial logging, oil palm and rubber plantations, and urbanization, Southeast Asia (SEA) is one of the hotspots for tropical deforestation over recent decades. The extent of the tropical SEA deforestation rate, as well as its impacts on carbon cycle and biodiversity, however, is still highly uncertain. In relevant work using high resolution global maps of the 21st-century forest cover, we find tropical SEA lost 22 million hectares, or 9%, of forest area during 2000-2014, a much higher deforestation rate than previously reported. Here we further conduct research investigating carbon emissions from tropical deforestation in SEA with satellite data of forest cover, a global tropical forest biomass map, and Earth system models. Preliminary results suggest that deforestation in SEA causes about 2.8 Tg C emissions to the atmosphere during the same period, also higher than that of previous studies. Meanwhile, carbon emission from deforestation shows high variations across different countries, topography and between the insular and maritime SEA. Indonesia and Malaysia tops in both total carbon loss and loss from per unit land area. Our results indicates that previous studies have underestimated the carbon loss due to deforestation in SEA. And until further effective forest conservation measures can be adopted, tropical SEA will continue playing a role of atmospheric carbon source in the coming decades.
Arima, E. Y.
2016-01-01
Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200–300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads. PMID:27010739
Arima, E Y
2016-01-01
Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200-300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads.
NASA Astrophysics Data System (ADS)
Vang Rasmussen, Laura; Jung, Suhyun; Dantas Brites, Alice; Watkins, Cristy; Agrawal, Arun
2016-09-01
Brazil’s Rural Environmental Registry (CAR) is a potentially promising avenue to slow deforestation on private properties as it facilitates the monitoring of land use. Yet limited empirical evidence exists on how the CAR affects smallholders’ behavior and recent scholarly efforts have in fact indicated that it may be doing less to protect forests than previously assumed. Based on 1177 smallholder surveys conducted in the Cerrado, we assess 1) whether the CAR might incentivize smallholders to pursue deforestation and 2) which factors are associated with smallholders’ intended deforestation behavior. We find that upon CAR registration, factors significantly associated with smallholders’ intention to deforest are: the existing percentage of native vegetation on the property, the use of agricultural loans, property owner’s age, and livestock production experience. To curb deforestation that may follow expressed intentions of smallholders, the CAR, and environmental registration programs alike, should account for existing land use by, for example, improving the system already in place for trading areas of native vegetation as this system is not widely adopted by those smallholders with more native vegetation than the legal cut-off. Also, such programs should assess the role of whether conditions related to land cover maintenance may protect against deforestation if credit access is supported especially to younger smallholders and/or livestock producers with a high percentage of native vegetation in their properties.
Loss in species caused by tropical deforestation and their recovery through management
Ariel E. Lugo; John A. Parrotta; Sandra Brown
1993-01-01
The loss of species as a result of deforestation and degradation of tropical forest lands is widely discussed. Models based on island biogeography theory are used to evaluate the relationship between extinctions of species and deforestation. The analysis shows that natural resiliency causes the models to overestimate the rates of species extinctions for given...
Douglas Muchoney; Sharon Hamann
2013-01-01
Forest degradation can be defined as the loss of forest volume, biomass and/or forest productivity caused by natural or human influences. Achieving Reduced Emissions from Deforestation and Forest Degradation (REDD+) requires that deforestation and degradation can be efficiently, reliably, and cost-effectively detected and quantified, often where ground and aerial...
Mapping deforestation and forest degradation using Landsat time series: a case of Sumatra—Indonesia
Belinda Arunarwati Margono
2013-01-01
Indonesia experiences the second highest rate of deforestation among tropical countries (FAO 2005, 2010). Consequently, timely and accurate forest data are required to combat deforestation and forest degradation in support of climate change mitigation and biodiversity conservation policy initiatives. Remote sensing is considered as a significant data source for forest...
Cheng, Tessa; Small, Will; Nosova, Ekaterina; Hogg, Bob; Hayashi, Kanna; Kerr, Thomas; DeBeck, Kora
2018-01-16
We investigated the prevalence of and risk factors associated with initiating nonmedical prescription opioid use (NMPOU) before and after illegal drugs using data from two linked cohort studies of street youth and adults who use illegal drugs in Vancouver, Canada. All participants who attended a study visit between 2013 and 2016 were eligible for the primary analyses. Among 512 youth and 833 adult participants, the prevalence of NMPOU was extremely high (88% among street youth; 90% among adults), and over one-third of those who reported engaging in NMPOU had initiated NMPOU before illegal drug use (vs. transitioning from illegal drugs to NMPOU). Participants who reported either transitioning to or from NMPOU had higher risk profiles, particularly related to substance use, when compared with those who reported never engaging in NMPOU. Sub-analyses restricted to only those who engaged in NMPOU found few statistically significant differences between those who initiated NMPOU prior to illegal drugs versus those who initiated illegal drugs prior to NMPOU. Findings suggest that among people who use illegal drugs, early NMPOU trajectories do not appear to critically shape future patterns and practices.
Estimating the Worldwide Extent of Illegal Fishing
Agnew, David J.; Pearce, John; Pramod, Ganapathiraju; Peatman, Tom; Watson, Reg; Beddington, John R.; Pitcher, Tony J.
2009-01-01
Illegal and unreported fishing contributes to overexploitation of fish stocks and is a hindrance to the recovery of fish populations and ecosystems. This study is the first to undertake a world-wide analysis of illegal and unreported fishing. Reviewing the situation in 54 countries and on the high seas, we estimate that lower and upper estimates of the total value of current illegal and unreported fishing losses worldwide are between $10 bn and $23.5 bn annually, representing between 11 and 26 million tonnes. Our data are of sufficient resolution to detect regional differences in the level and trend of illegal fishing over the last 20 years, and we can report a significant correlation between governance and the level of illegal fishing. Developing countries are most at risk from illegal fishing, with total estimated catches in West Africa being 40% higher than reported catches. Such levels of exploitation severely hamper the sustainable management of marine ecosystems. Although there have been some successes in reducing the level of illegal fishing in some areas, these developments are relatively recent and follow growing international focus on the problem. This paper provides the baseline against which successful action to curb illegal fishing can be judged. PMID:19240812
Assessing the extent and nature of wildlife trade on the dark web.
Harrison, Joseph R; Roberts, David L; Hernandez-Castro, Julio
2016-08-01
Use of the internet as a trade platform has resulted in a shift in the illegal wildlife trade. Increased scrutiny of illegal wildlife trade has led to concerns that online trade of wildlife will move onto the dark web. To provide a baseline of illegal wildlife trade on the dark web, we downloaded and archived 9852 items (individual posts) from the dark web, then searched these based on a list of 121 keywords associated with illegal online wildlife trade, including 30 keywords associated with illegally traded elephant ivory on the surface web. Results were compared with items known to be illegally traded on the dark web, specifically cannabis, cocaine, and heroin, to compare the extent of the trade. Of these 121 keywords, 4 resulted in hits, of which only one was potentially linked to illegal wildlife trade. This sole case was the sale and discussion of Echinopsis pachanoi (San Pedro cactus), which has hallucinogenic properties. This negligible level of activity related to the illegal trade of wildlife on the dark web relative to the open and increasing trade on the surface web may indicate a lack of successful enforcement against illegal wildlife trade on the surface web. © 2016 Society for Conservation Biology.
Henderson, Kirsten A; Anand, Madhur; Bauch, Chris T
2013-01-01
Mitigating the negative impacts of declining worldwide forest cover remains a significant socio-ecological challenge, due to the dominant role of human decision-making. Here we use a Markov chain model of land-use dynamics to examine the impact of governance on forest cover in a region. Each land parcel can be either forested or barren (deforested), and landowners decide whether to deforest their parcel according to perceived value (utility). We focus on three governance strategies: yearly incentive for conservation, one-time penalty for deforestation and one-time incentive for reforestation. The incentive and penalty are incorporated into the expected utility of forested land, which decreases the net gain of deforestation. By analyzing the equilibrium and stability of the landscape dynamics, we observe four possible outcomes: a stationary-forested landscape, a stationary-deforested landscape, an unstable landscape fluctuating near the equilibrium, and a cyclic-forested landscape induced by synchronized deforestation. We find that the two incentive-based strategies often result in highly fluctuating forest cover over decadal time scales or longer, and in a few cases, reforestation incentives actually decrease the average forest cover. In contrast, a penalty for deforestation results in the stable persistence of forest cover (generally >30%). The idea that larger conservation incentives will always yield higher and more stable forest cover is not supported in our findings. The decision to deforest is influenced by more than a simple, "rational" cost-benefit analysis: social learning and myopic, stochastic decision-making also have important effects. We conclude that design of incentive programs may need to account for potential counter-productive long-term effects due to behavioural feedbacks.
Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio
2015-05-01
Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, M.H.; Foley, J.A.
2000-01-01
It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: (1) increasing areas of forest will be converted to pasture and cropland, and (2) concentrations of atmospheric CO{sub 2} will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO{sub 2} concentrations (including both physiological and radiative effects) on Amazonian climate. In these simulations, deforestation decreases basin-average precipitation by 0.73more » mm day{sup {minus}1} over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO{sub 2} concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day{sup {minus}1}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day{sup {minus}1}. While the effects of deforestation and increasing CO{sub 2} concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO{sub 2} concentrations both tent to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO{sub 2}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, increases the basin-average temperature by roughly 3.5 C.« less
Henderson, Kirsten A.; Anand, Madhur; Bauch, Chris T.
2013-01-01
Mitigating the negative impacts of declining worldwide forest cover remains a significant socio-ecological challenge, due to the dominant role of human decision-making. Here we use a Markov chain model of land-use dynamics to examine the impact of governance on forest cover in a region. Each land parcel can be either forested or barren (deforested), and landowners decide whether to deforest their parcel according to perceived value (utility). We focus on three governance strategies: yearly incentive for conservation, one-time penalty for deforestation and one-time incentive for reforestation. The incentive and penalty are incorporated into the expected utility of forested land, which decreases the net gain of deforestation. By analyzing the equilibrium and stability of the landscape dynamics, we observe four possible outcomes: a stationary-forested landscape, a stationary-deforested landscape, an unstable landscape fluctuating near the equilibrium, and a cyclic-forested landscape induced by synchronized deforestation. We find that the two incentive-based strategies often result in highly fluctuating forest cover over decadal time scales or longer, and in a few cases, reforestation incentives actually decrease the average forest cover. In contrast, a penalty for deforestation results in the stable persistence of forest cover (generally >30%). The idea that larger conservation incentives will always yield higher and more stable forest cover is not supported in our findings. The decision to deforest is influenced by more than a simple, “rational” cost-benefit analysis: social learning and myopic, stochastic decision-making also have important effects. We conclude that design of incentive programs may need to account for potential counter-productive long-term effects due to behavioural feedbacks. PMID:24204942
Soil microbiome responses to the short-term effects of Amazonian deforestation.
Navarrete, Acacio A; Tsai, Siu M; Mendes, Lucas W; Faust, Karoline; de Hollander, Mattias; Cassman, Noriko A; Raes, Jeroen; van Veen, Johannes A; Kuramae, Eiko E
2015-05-01
Slash-and-burn clearing of forest typically results in increase in soil nutrient availability. However, the impact of these nutrients on the soil microbiome is not known. Using next generation sequencing of 16S rRNA gene and shotgun metagenomic DNA, we compared the structure and the potential functions of bacterial community in forest soils to deforested soils in the Amazon region and related the differences to soil chemical factors. Deforestation decreased soil organic matter content and factors linked to soil acidity and raised soil pH, base saturation and exchangeable bases. Concomitant to expected changes in soil chemical factors, we observed an increase in the alpha diversity of the bacterial microbiota and relative abundances of putative copiotrophic bacteria such as Actinomycetales and a decrease in the relative abundances of bacterial taxa such as Chlamydiae, Planctomycetes and Verrucomicrobia in the deforested soils. We did not observe an increase in genes related to microbial nutrient metabolism in deforested soils. However, we did observe changes in community functions such as increases in DNA repair, protein processing, modification, degradation and folding functions, and these functions might reflect adaptation to changes in soil characteristics due to forest clear-cutting and burning. In addition, there were changes in the composition of the bacterial groups associated with metabolism-related functions. Co-occurrence microbial network analysis identified distinct phylogenetic patterns for forest and deforested soils and suggested relationships between Planctomycetes and aluminium content, and Actinobacteria and nitrogen sources in Amazon soils. The results support taxonomic and functional adaptations in the soil bacterial community following deforestation. We hypothesize that these microbial adaptations may serve as a buffer to drastic changes in soil fertility after slash-and-burning deforestation in the Amazon region. © 2015 John Wiley & Sons Ltd.
Tropical deforestation and the global carbon budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melillo, J.M.; Kicklighter, D.W.; Houghton, R.A.
1996-12-31
The CO{sub 2} concentration of the atmosphere has increased by almost 30% since 1800. This increase is due largely to two factors: the combustion of fossil fuel and deforestation to create croplands and pastures. Deforestation results in a net flux of carbon to the atmospheric because forests contain 20--50 times more carbon per unit area than agricultural lands. In recent decades, the tropics have been the primary region of deforestation.The annual rate of CO{sub 2} released due to tropical deforestation during the early 1990s has been estimated at between 1.2 and 2.3 gigatons C. The range represents uncertainties about bothmore » the rates of deforestation and the amounts of carbon stored in different types of tropical forests at the time of cutting. An evaluation of the role of tropical regions in the global carbon budget must include both the carbon flux to the atmosphere due to deforestation and carbon accumulation, if any, in intact forests. In the early 1990s, the release of CO{sub 2} from tropical deforestation appears to have been mostly offset by CO{sub 2} uptake occurring elsewhere in the tropics, according to an analysis of recent trends in the atmospheric concentrations of O{sub 2} and N{sub 2}. Interannual variations in climate and/or CO{sub 2} fertilization may have been responsible for the CO{sub 2} uptake in intact forests. These mechanisms are consistent with site-specific measurements of net carbon fluxes between tropical forests and the atmosphere, and with regional and global simulations using process-based biogeochemistry models. 86 refs., 1 fig., 6 tabs.« less
An exploratory study of illegal gamblers in Hong Kong.
Tessler, Andrew; El Beyrouty, Kareen; Crapnell, Natasha
2017-01-01
This study investigates the nature and behaviour of illegal gamblers in Hong Kong. A face-to-face street survey of 512 gamblers was conducted in Hong Kong between September and December 2015 with supplementary convenience sampling allowing for analysis of a total sample of 103 illegal gamblers. 56% of illegal gamblers recorded results consistent with this study's definition of 'excessive gambling' [i.e. moderate risk and problem gamblers under the Problem Gambling Severity Index (PGSI)]. 81% of surveyed illegal gamblers were male, 77% were aged between 30 and 49 and 67% were in blue collar occupations. Illegal gamblers bet more frequently on both legal and illegal games than their legal counterparts and spent more when they did bet. While this research did not indicate the direction of causality between illegal and excessive gambling, international work (de Bruin et al. in verslingerd aan meer dan een spel: Een onderzoek naar de aard en omvang van kansspelproblematiek in Nederland, WODC/CVO, Utrecht, http://www.lexandgaming.eu/nl/wp-content/uploads/2015/01/Verslingerd-aan-meer-dan-een-spel.pdf, 2005; Binde in What are the most harmful forms of gambling? Analysing problem gambling prevalence surveys, http://www.utbildning.gu.se/digitalAssets/1327/1327132_cefos-wp12.pdf, 2011) suggests that excessive gamblers are drawn to illegal gambling. Reform could allow excessive gambling by illegal gamblers to be better addressed and initial work suggests some financial benefits to Hong Kong.
Do immigrants working illegally reduce the natives' legal employment? Evidence from Italy.
Venturini, A
1999-01-01
This paper examines how immigrants working illegally in the shadow economy affect the legal employment of native and foreign workers in the official economy of Italy. The data set used was provided by the Central Statistical Office and includes information regarding the units of labor employed both in official production and in underground production; employment in the latter is subdivided into native workers and foreign workers. Estimates were then made as to how "legal employment" has reacted to changes in "illegal employment", with special reference to the effect of the foreign component of "illegal labor". The results of the cross sector-time series analysis of the demand for legal labor in the Italian economy from 1980 to 1995 showed that the increase of illegal units of labor produces a reduction in the use of legal labor, albeit a very limited one. An analysis by sectors shows that the competitive effects of illegal foreign workers is not homogeneous and is strongest in the agricultural sector while complementarity between the two categories of labor is evident in the nontradable services sector. When comparing the number of effects of illegal foreign and illegal native workers, illegal native workers are lower than the illegal foreign workers. Despite regularization in Italy and the lack of flexibility in the labor market, neither regular nor nonregular foreign workers have begun to openly displace native workers.
Deforestation and climate feedbacks threaten the ecological integrity of south–southeastern Amazonia
Coe, Michael T.; Marthews, Toby R.; Costa, Marcos Heil; Galbraith, David R.; Greenglass, Nora L.; Imbuzeiro, Hewlley M. A.; Levine, Naomi M.; Malhi, Yadvinder; Moorcroft, Paul R.; Muza, Michel Nobre; Powell, Thomas L.; Saleska, Scott R.; Solorzano, Luis A.; Wang, Jingfeng
2013-01-01
A mosaic of protected areas, including indigenous lands, sustainable-use production forests and reserves and strictly protected forests is the cornerstone of conservation in the Amazon, with almost 50 per cent of the region now protected. However, recent research indicates that isolation from direct deforestation or degradation may not be sufficient to maintain the ecological integrity of Amazon forests over the next several decades. Large-scale changes in fire and drought regimes occurring as a result of deforestation and greenhouse gas increases may result in forest degradation, regardless of protected status. How severe or widespread these feedbacks will be is uncertain, but the arc of deforestation in south–southeastern Amazonia appears to be particularly vulnerable owing to high current deforestation rates and ecological sensitivity to climate change. Maintaining forest ecosystem integrity may require significant strengthening of forest conservation on private property, which can in part be accomplished by leveraging existing policy mechanisms. PMID:23610166
The Climate Effects of Deforestation the Amazon Rainforest under Global Warming Conditions
NASA Astrophysics Data System (ADS)
Werth, D.; Avissar, R.
2006-12-01
Replacement of tropical rainforests has been observed to have a strong drying effect in Amazon simulations, with effects reaching high into the atmospheric column and into the midlatitudes. The drying effects of deforestation, however, can be moderated by the effects of global warming, which should accelerate the hydrologic cycle of the Amazon. The effects of a prescribed, time-varying Amazon deforestation done in conjunction with a steady, moderate increase in CO2 concentrations are determined using a climate model. The model agrees with previous studies when each forcing is applied individually - compared to a control run, Amazon deforestation decreases the local precipitation and global warming increases it. When both are applied, however, the precipitation and other hydrologic variables decrease, but to a lesser extent than when deforestation alone was applied. In effect, the two effects act opposite to one another and bring the simulated climate closer to that of the control.
The Impact of Amazonian Deforestation on Dry-Season Rainfall
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming; Surratt, Jason; Starr, David OC. (Technical Monitor)
2002-01-01
Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, deep convective cloudiness, as well as rainfall occurrence, all increase over the deforested and non-forested (savanna) regions. This is in response to a local circulation initiated by the differential heating of the region's varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift toward afternoon hours in the deforested and savanna regions, compared to the forested regions. Analysis of 14 years of data from the Special Sensor Microwave/Imager data revealed that only in August did rainfall amounts increase over the deforested region.
Coe, Michael T; Marthews, Toby R; Costa, Marcos Heil; Galbraith, David R; Greenglass, Nora L; Imbuzeiro, Hewlley M A; Levine, Naomi M; Malhi, Yadvinder; Moorcroft, Paul R; Muza, Michel Nobre; Powell, Thomas L; Saleska, Scott R; Solorzano, Luis A; Wang, Jingfeng
2013-06-05
A mosaic of protected areas, including indigenous lands, sustainable-use production forests and reserves and strictly protected forests is the cornerstone of conservation in the Amazon, with almost 50 per cent of the region now protected. However, recent research indicates that isolation from direct deforestation or degradation may not be sufficient to maintain the ecological integrity of Amazon forests over the next several decades. Large-scale changes in fire and drought regimes occurring as a result of deforestation and greenhouse gas increases may result in forest degradation, regardless of protected status. How severe or widespread these feedbacks will be is uncertain, but the arc of deforestation in south-southeastern Amazonia appears to be particularly vulnerable owing to high current deforestation rates and ecological sensitivity to climate change. Maintaining forest ecosystem integrity may require significant strengthening of forest conservation on private property, which can in part be accomplished by leveraging existing policy mechanisms.
Labeling wood: How timber certification may reduce deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugal, C.
1996-09-01
A series of landmark developments, including satellite photography revealing massive burning of the Amazon and scientific findings confirming a link between deforestation and climate change, has greatly heightened public awareness about the loss of tropical forests in the past decade. As a result, the international tropical timber trade has become a target of public campaigns to curb deforestation, the argument being that consumers can {open_quotes}save{close_quotes} the rainforest if they refuse to buy tropical timber products. However, there are other sides to this, and certification is not the complete answer. For example, logging constitutes only a small portion of deforestation inmore » the tropics, most of which is done for agricultural purposes. Fuel wood resources are not included, and other areas of the world are being deforested, so emphasis only on tropical areas creates concerns. This article considers the concerns of certification in depth.« less
28 CFR 36.209 - Illegal use of drugs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Illegal use of drugs. 36.209 Section 36... PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES General Requirements § 36.209 Illegal use of drugs. (a... discrimination against an individual based on that individual's current illegal use of drugs. (2) A public...
28 CFR 36.209 - Illegal use of drugs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Illegal use of drugs. 36.209 Section 36... PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES General Requirements § 36.209 Illegal use of drugs. (a... discrimination against an individual based on that individual's current illegal use of drugs. (2) A public...
28 CFR 36.209 - Illegal use of drugs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Illegal use of drugs. 36.209 Section 36... PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES General Requirements § 36.209 Illegal use of drugs. (a... discrimination against an individual based on that individual's current illegal use of drugs. (2) A public...
28 CFR 35.131 - Illegal use of drugs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... an individual based on that individual's current illegal use of drugs. (2) A public entity shall not discriminate on the basis of illegal use of drugs against an individual who is not engaging in current illegal...) A public entity shall not deny health services, or services provided in connection with drug...
28 CFR 36.209 - Illegal use of drugs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... connection with drug rehabilitation, to an individual on the basis of that individual's current illegal use... discrimination against an individual based on that individual's current illegal use of drugs. (2) A public... engaging in current illegal use of drugs and who— (i) Has successfully completed a supervised drug...
Can a sample of Landsat sensor scenes reliably estimate the global extent of tropical deforestation?
R. L. Czaplewski
2003-01-01
Tucker and Townshend (2000) conclude that wall-to-wall coverage is needed to avoid gross errors in estimations of deforestation rates' because tropical deforestation is concentrated along roads and rivers. They specifically question the reliability of the 10% sample of Landsat sensor scenes used in the global remote sensing survey conducted by the Food and...
Proximate Population Factors and Deforestation in Tropical Agricultural Frontiers
Carr, David L.
2009-01-01
Forest conversion for agriculture expansion is the most salient signature of human occupation of the earth’s land surface. Although population growth and deforestation are significantly associated at the global and regional scales, evidence for population links to deforestation at micro-scales—where people are actually clearing0020forests—is scant. Much of the planet’s forest elimination is proceeding along tropical agricultural frontiers. This article examines the evolution of thought on population–environment theories relevant to deforestation in tropical agricultural frontiers. Four primary ways by which population dynamics interact with frontier forest conversion are examined: population density, fertility, and household demographic composition, and in-migration. PMID:19672475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, E.B.
1991-03-01
The people in the Peruvian Amazon directly engaged in agriculture are the leading cause of deforestation; and can be divided into two groups, colonists and indigenous groups. The factors affecting the rate at which each group causes deforestation differ. The paper explores these differences in Peru's Upper Huallaga Valley (the principal coca producing region in the world), focusing on the interrelationships between land availability, land tenure laws, and market forces on one hand, and agricultural intensification and deforestation on the other. The study concludes that the technological decisions of the two groups are guided by diverse sets of socioeconomic factors.
The process of deforestation in weak democracies and the role of Intelligence.
Obydenkova, Anastassia; Nazarov, Zafar; Salahodjaev, Raufhon
2016-07-01
This article examines the interconnection between national intelligence, political institutions, and the mismanagement of public resources (deforestations). The paper examines the reasons for deforestation and investigates the factors accountable for it. The analysis builds on authors-compiled cross-national dataset on 185 countries over the time period of twenty years, from 1990 to 2010. We find that, first, nation's intelligence reduces significantly the level of deforestation in a state. Moreover, the nations' IQ seems to play an offsetting role in the natural resource conservation (forest management) in the countries with weak democratic institutions. The analysis also discovered the presence of the U-shaped relationship between democracy and deforestation. Intelligence sheds more light on this interconnection and explains the results. Our results are robust to various sample selection strategies and model specifications. The main implication from our study is that intelligence not only shapes formal rules and informal regulations such as social trust, norms and traditions but also it has the ability to reverse the paradoxical process known as "resource curse." The study contributes to better understanding of reasons of deforestation and shed light on the debated impact of political regime on forest management. Copyright © 2016 Elsevier Inc. All rights reserved.
Environmental predictors of pre-European deforestation on Pacific islands.
Rolett, Barry; Diamond, Jared
2004-09-23
Some Pacific island societies, such as those of Easter Island and Mangareva, inadvertently contributed to their own collapse by causing massive deforestation. Others retained forest cover and survived. How can those fateful differences be explained? Although the answers undoubtedly involve both different cultural responses of peoples and different susceptibilities of environments, how can one determine which environmental factors predispose towards deforestation and which towards replacement of native trees with useful introduced tree species? Here we code European-contact conditions and nine environmental variables for 81 sites on 69 Pacific islands from Yap in the west to Easter in the east, and from Hawaii in the north to New Zealand in the south. We thereby detect statistical decreases in deforestation and/or forest replacement with island rainfall, elevation, area, volcanic ash fallout, Asian dust transport and makatea terrain (uplifted reef), and increases with latitude, age and isolation. Comparative analyses of deforestation therefore lend themselves to much more detailed interpretations than previously possible. These results might be relevant to similar deforestation-associated collapses (for example, Fertile Crescent, Maya and Anasazi) or the lack thereof (Japan and highland New Guinea) elsewhere in the world.
Evaluating Regional Scale Deforestation in the University of Victoria Earth System Climate Model
NASA Astrophysics Data System (ADS)
Longobardi, P.; Montenegro, A.; Beltrami, H.; Eby, M.
2011-12-01
Forests play a key role in influencing the Earths climate and at the same time are affected by changing climates. At this point it is estimated that 15-30% of Earths natural forests have already been converted to pasture or cropland. With such large amounts of forest being converted to cropland and grassland, it is important to determine the climatic effects of these actions. To date, most modelling efforts towards understanding the climatic effects of deforestation have simulated global deforestation or have been based on experiments where trees were removed from large areas, i.e. the entire Amazon or all forests above 50 N. Here we use the University of Victoria Earth System Climate model which contains a fully coupled carbon cycle, to evaluate the response to deforestation of 10%, 25%, 50% and 100% of the forested areas in three latitude bands: high (above 50°N), mid (above ± 30°) and low (between ± 30°). All simulations were transient simulations, allowing for changes to atmospheric forcings following the A2 emissions scenario. High latitude deforestation lead to cooling (-.05 °C to -0.45 °C) and increase in soil carbon (0.5 to 3 x 1014 kg) for all fractions of deforestation. Due in part to the increase in soil carbon, there was a decrease in atmospheric CO2 in the 50% (-20 ppm) and 100% (-60 ppm) high-latitude deforestation simulations. Low-latitude deforestation initially produced warming in all scenarios (0.1 to 0.25 °C), although all were colder (-0.05 to -0.1 °C) than the control by the end of the simulation. Atmospheric CO2 increased in all simulations (40 to 80 ppm), as well as soil carbon (2 to 16 x 1013 kg). Mid-latitude deforestation also lead to initial warming (0.01 to 0.1 °C) followed by cooling (-0.01 to -0.1 °C). Mid latitude deforestation also produced an increase in soil carbon (2 to 10 x 1013 kg), and atmospheric CO2 (0 to 25ppm). In all three latitude bands forest dieback was observed. Results range from 7% to 37% for high latitudes, 21% to 40% for mid latitudes and 36% to 70% in low latitudes.
28 CFR 35.131 - Illegal use of drugs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Illegal use of drugs. 35.131 Section 35... STATE AND LOCAL GOVERNMENT SERVICES General Requirements § 35.131 Illegal use of drugs. (a) General. (1... an individual based on that individual's current illegal use of drugs. (2) A public entity shall not...
28 CFR 35.131 - Illegal use of drugs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Illegal use of drugs. 35.131 Section 35... STATE AND LOCAL GOVERNMENT SERVICES General Requirements § 35.131 Illegal use of drugs. (a) General. (1... an individual based on that individual's current illegal use of drugs. (2) A public entity shall not...
28 CFR 35.131 - Illegal use of drugs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Illegal use of drugs. 35.131 Section 35... STATE AND LOCAL GOVERNMENT SERVICES General Requirements § 35.131 Illegal use of drugs. (a) General. (1... an individual based on that individual's current illegal use of drugs. (2) A public entity shall not...
50 CFR 12.32 - Effect of prior illegality.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Effect of prior illegality. 12.32 Section... PLANTS SEIZURE AND FORFEITURE PROCEDURES Disposal of Forfeited or Abandoned Property § 12.32 Effect of prior illegality. The effect of any prior illegality on a subsequent holder of any wildlife or plant...
Toward a new understanding of the links between poverty and illegal wildlife hunting.
Duffy, Rosaleen; St John, Freya A V; Büscher, Bram; Brockington, Dan
2016-02-01
Conservation organizations have increasingly raised concerns about escalating rates of illegal hunting and trade in wildlife. Previous studies have concluded that people hunt illegally because they are financially poor or lack alternative livelihood strategies. However, there has been little attempt to develop a richer understanding of the motivations behind contemporary illegal wildlife hunting. As a first step, we reviewed the academic and policy literatures on poaching and illegal wildlife use and considered the meanings of poverty and the relative importance of structure and individual agency. We placed motivations for illegal wildlife hunting within the context of the complex history of how wildlife laws were initially designed and enforced to indicate how hunting practices by specific communities were criminalized. We also considered the nature of poverty and the reasons for economic deprivation in particular communities to indicate how particular understandings of poverty as material deprivation ultimately shape approaches to illegal wildlife hunting. We found there is a need for a much better understanding of what poverty is and what motivates people to hunt illegally. © 2015 Society for Conservation Biology.
Toward a new understanding of the links between poverty and illegal wildlife hunting
Duffy, Rosaleen; St John, Freya A. V.; Büscher, Bram; Brockington, Dan
2015-01-01
Abstract Conservation organizations have increasingly raised concerns about escalating rates of illegal hunting and trade in wildlife. Previous studies have concluded that people hunt illegally because they are financially poor or lack alternative livelihood strategies. However, there has been little attempt to develop a richer understanding of the motivations behind contemporary illegal wildlife hunting. As a first step, we reviewed the academic and policy literatures on poaching and illegal wildlife use and considered the meanings of poverty and the relative importance of structure and individual agency. We placed motivations for illegal wildlife hunting within the context of the complex history of how wildlife laws were initially designed and enforced to indicate how hunting practices by specific communities were criminalized. We also considered the nature of poverty and the reasons for economic deprivation in particular communities to indicate how particular understandings of poverty as material deprivation ultimately shape approaches to illegal wildlife hunting. We found there is a need for a much better understanding of what poverty is and what motivates people to hunt illegally. PMID:26332105
NASA Astrophysics Data System (ADS)
Barni, Paulo Eduardo; Fearnside, Philip Martin; Graça, Paulo Maurício Lima de Alencastro
2015-02-01
Reconstruction of Highway BR-319 (Manaus-Porto Velho) would allow for access from the "arc of deforestation" in the southern part of Brazil's Amazon region to vast blocks of forests in central and northern Amazonia. Building roads is known to be a major driver of deforestation, allowing entry of squatters, and other actors. Rather than deforestation along the highway route, here we consider the road's potential for stimulating deforestation in a separate location, approximately 550 km north of BR-319's endpoint in Manaus. Reconstructing BR-319 has great potential impact to start a new wave of migration to this remote region. The southern portion of the state of Roraima, the focus of our study, is already connected to Manaus by Highway BR-174. We modeled deforestation in southern Roraima and simulated carbon emissions between 2007 and 2030 under four scenarios. Simulations used the AGROECO model in DINAMICA-EGO software. Two scenarios were considered with reconstruction of BR-319 and two without this road connection. For each of the two possibilities regarding BR-319, simulations were developed for (1) a "conservation" (CONSERV) scenario that assumes the creation of a series of protected areas, and (2) a "business-as-usual" (BAU) scenario that assumes no additional protected areas. Results show that by 2030, with BR-319 rebuilt, deforestation carbon emissions would increase between 19 % (CONSERV) and 42 % (BAU) over and above those corresponding to no-road scenarios.
Barni, Paulo Eduardo; Fearnside, Philip Martin; Graça, Paulo Maurício Lima de Alencastro
2015-02-01
Reconstruction of Highway BR-319 (Manaus-Porto Velho) would allow for access from the "arc of deforestation" in the southern part of Brazil's Amazon region to vast blocks of forests in central and northern Amazonia. Building roads is known to be a major driver of deforestation, allowing entry of squatters, and other actors. Rather than deforestation along the highway route, here we consider the road's potential for stimulating deforestation in a separate location, approximately 550 km north of BR-319's endpoint in Manaus. Reconstructing BR-319 has great potential impact to start a new wave of migration to this remote region. The southern portion of the state of Roraima, the focus of our study, is already connected to Manaus by Highway BR-174. We modeled deforestation in southern Roraima and simulated carbon emissions between 2007 and 2030 under four scenarios. Simulations used the AGROECO model in DINAMICA-EGO © software. Two scenarios were considered with reconstruction of BR-319 and two without this road connection. For each of the two possibilities regarding BR-319, simulations were developed for (1) a "conservation" (CONSERV) scenario that assumes the creation of a series of protected areas, and (2) a "business-as-usual" (BAU) scenario that assumes no additional protected areas. Results show that by 2030, with BR-319 rebuilt, deforestation carbon emissions would increase between 19% (CONSERV) and 42% (BAU) over and above those corresponding to no-road scenarios.
Local and remote climatic impacts due to land use degradation in the Amazon "Arc of Deforestation"
NASA Astrophysics Data System (ADS)
Silva, Maria Elisa Siqueira; Pereira, Gabriel; da Rocha, Rosmeri Porfírio
2016-08-01
Many numerical studies, among them, global and regional models, have been used to simulate climatic impact due to Amazon deforestation. Most of them did not consider deforestation as usually observed and the induced dynamic changes. The present study explores the physical impacts due to Amazon deforestation by considering local and remote changes in the circulation and thermodynamics. For this, numerical experiments were conducted with RegCM3 using a relatively fine horizontal grid spacing (50 km), more realistic deforested areas (similar to the highway-network-shaped), and an updated land use map. The studied period was 2001-2006 October-March. As in most previous studies focusing on Amazon deforestation, the RegCM3-simulated air temperature increases over degraded areas, ranging from 1.0 to 2.5 °C, and precipitation decreases of around 10 %. This result is mainly related to depletion in evapotranspiration rates provided by lesser soil water extraction by the degraded vegetation. The weakening of upward motion in the mid-upper troposphere is an associated mechanism that explains the precipitation decrease after Amazon deforestation. A new result is the simulated precipitation increase, about 10 %, over the eastern South America and the adjacent South Atlantic Ocean. In these areas, the precipitation increase during October-March is associated with intensification of upper-level high pressure (the Bolivian high) coupled with negative geopotential height anomalies southeastward of the center of the high.
NASA Astrophysics Data System (ADS)
Tang, Xiaojing
Fast and accurate monitoring of tropical forest disturbance is essential for understanding current patterns of deforestation as well as helping eliminate illegal logging. This dissertation explores the use of data from different satellites for near real-time monitoring of forest disturbance in tropical forests, including: development of new monitoring methods; development of new assessment methods; and assessment of the performance and operational readiness of existing methods. Current methods for accuracy assessment of remote sensing products do not address the priority of near real-time monitoring of detecting disturbance events as early as possible. I introduce a new assessment framework for near real-time products that focuses on the timing and the minimum detectable size of disturbance events. The new framework reveals the relationship between change detection accuracy and the time needed to identify events. In regions that are frequently cloudy, near real-time monitoring using data from a single sensor is difficult. This study extends the work by Xin et al. (2013) and develops a new time series method (Fusion2) based on fusion of Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data. Results of three test sites in the Amazon Basin show that Fusion2 can detect 44.4% of the forest disturbance within 13 clear observations (82 days) after the initial disturbance. The smallest event detected by Fusion2 is 6.5 ha. Also, Fusion2 detects disturbance faster and has less commission error than more conventional methods. In a comparison of coarse resolution sensors, MODIS Terra and Aqua combined provides faster and more accurate detection of disturbance events than VIIRS (Visible Infrared Imaging Radiometer Suite) and MODIS single sensor data. The performance of near real-time monitoring using VIIRS is slightly worse than MODIS Terra but significantly better than MODIS Aqua. New monitoring methods developed in this dissertation provide forest protection organizations the capacity to monitor illegal logging events promptly. In the future, combining two Landsat and two Sentinel-2 satellites will provide global coverage at 30 m resolution every 4 days, and routine monitoring may be possible at high resolution. The methods and assessment framework developed in this dissertation are adaptable to newly available datasets.
Frauger, Elisabeth; Nordmann, Sandra; Orleans, Veronica; Pradel, Vincent; Pauly, Vanessa; Thirion, Xavier; Micallef, Joëlle
2012-08-01
The objective of the study was to determine which psychoactive prescription drugs are illegally obtained and through which ways of acquisition. OPPIDUM is an annual national study. It is based on specialized care centers that included subjects presenting a drug dependency or under opiate maintenance treatment. All their psychoactive substances consumed are reported. This work focuses on the different ways of acquisition specially the illegal ways of acquisition (bought on the street, forged prescription, stolen, given, internet). For each medication illegally obtained, a ratio has been calculated (number of illegal acquisitions divided by the number of described acquisitions). In 2008, 5542 subjects have been included and have described the consumption of 11 027 substances including 63.8% of prescription drugs. Among them, 11% were illegally obtained. The different illegal acquisition ways were 'street market' (77.6%), 'gift' (16.6%), 'theft' (2.3%), 'forged prescription' (2.3%), and 'internet' (0.7%). The third first drugs illegally obtained were high dosage buprenorphine, methadone, and clonazepam. Some prescription drugs, less consumed, have an important ratio of illegal acquisition like ketamine, flunitrazepam, morphine, trihexyphenidyl, or methylphenidate. This study confirms that theft, forged prescription and internet are few used and permits to highlight diversion of prescription drugs. It is important to inform healthcare professionals on the different prescription drugs that are illegally obtained. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.
Non-sanctioning of illegal tackles in South African youth community rugby.
Brown, J C; Boucher, S J; Lambert, M; Viljoen, W; Readhead, C; Hendricks, S; Kraak, W J
2018-06-01
The tackle event in rugby union ('rugby') contributes to the majority of players' injuries. Referees can reduce this risk by sanctioning dangerous tackles. A study in elite adult rugby suggests that referees only sanction a minority of illegal tackles. The aim of this study was to assess if this finding was similar in youth community rugby. Observational study. Using EncodePro, 99 South African Rugby Union U18 Youth Week tournament matches were coded between 2011 and 2015. All tackles were coded by a researcher and an international referee to ensure that laws were interpreted correctly. The inter- and intra-rater reliabilities were 0.97-1.00. A regression analysis compared the non-sanctioned rates over time. In total, 12 216 tackles were coded, of which less than 1% (n=113) were 'illegal'. The majority of the 113 illegal tackles were front-on (75%), high tackles (72%) and occurred in the 2nd/4th quarters (29% each). Of the illegal tackles, only 59% were sanctioned. The proportions of illegal tackles and sanctioning of these illegal tackles to all tackles improved by 0.2% per year from 2011-2015 (p<0.05). In these youth community rugby players, 59% of illegal tackles were not sanctioned appropriately. This was better than a previous study in elite adult rugby, where only 7% of illegal tackles were penalised. Moreover, the rates of illegal tackles and non-sanctioned illegal tackles both improved over time. However, it is critical that referees consistently enforce all laws to enhance injury prevention efforts. Further studies should investigate the reasons for non-sanctioning. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Illegal use of natural resources in federal protected areas of the Brazilian Amazon
Silva, Jose M.C.; Michalski, Fernanda
2017-01-01
Background The Brazilian Amazon is the world’s largest rainforest regions and plays a key role in biodiversity conservation as well as climate adaptation and mitigation. The government has created a network of protected areas (PAs) to ensure long-term conservation of the region. However, despite the importance of and positive advances in the establishment of PAs, natural resource depletion in the Brazilian Amazon is pervasive. Methods We evaluated a total of 4,243 official law enforcement records generated between 2010 and 2015 to understand the geographical distribution of the illegal use of resources in federal PAs in the Brazilian Amazon. We classified illegal activities into ten categories and used generalized additive models (GAMs) to evaluate the relationship between illegal use of natural resources inside PAs with management type, age of PAs, population density, and accessibility. Results We found 27 types of illegal use of natural resources that were grouped into 10 categories of illegal activities. Most infractions were related to suppression and degradation of vegetation (37.40%), followed by illegal fishing (27.30%) and hunting activities (18.20%). The explanatory power of the GAMs was low for all categories of illegal activity, with a maximum explained variation of 41.2% for illegal activities as a whole, and a minimum of 14.6% for hunting activities. Discussion These findings demonstrate that even though PAs are fundamental for nature conservation in the Brazilian Amazon, the pressures and threats posed by human activities include a broad range of illegal uses of natural resources. Population density up to 50 km from a PA is a key variable, influencing illegal activities. These threats endanger long-term conservation and many efforts are still needed to maintain PAs that are large enough and sufficiently intact to maintain ecosystem functions and protect biodiversity. PMID:29038758
Illegal use of natural resources in federal protected areas of the Brazilian Amazon.
Kauano, Érico E; Silva, Jose M C; Michalski, Fernanda
2017-01-01
The Brazilian Amazon is the world's largest rainforest regions and plays a key role in biodiversity conservation as well as climate adaptation and mitigation. The government has created a network of protected areas (PAs) to ensure long-term conservation of the region. However, despite the importance of and positive advances in the establishment of PAs, natural resource depletion in the Brazilian Amazon is pervasive. We evaluated a total of 4,243 official law enforcement records generated between 2010 and 2015 to understand the geographical distribution of the illegal use of resources in federal PAs in the Brazilian Amazon. We classified illegal activities into ten categories and used generalized additive models (GAMs) to evaluate the relationship between illegal use of natural resources inside PAs with management type, age of PAs, population density, and accessibility. We found 27 types of illegal use of natural resources that were grouped into 10 categories of illegal activities. Most infractions were related to suppression and degradation of vegetation (37.40%), followed by illegal fishing (27.30%) and hunting activities (18.20%). The explanatory power of the GAMs was low for all categories of illegal activity, with a maximum explained variation of 41.2% for illegal activities as a whole, and a minimum of 14.6% for hunting activities. These findings demonstrate that even though PAs are fundamental for nature conservation in the Brazilian Amazon, the pressures and threats posed by human activities include a broad range of illegal uses of natural resources. Population density up to 50 km from a PA is a key variable, influencing illegal activities. These threats endanger long-term conservation and many efforts are still needed to maintain PAs that are large enough and sufficiently intact to maintain ecosystem functions and protect biodiversity.
Quantifying rate of deforestation and CO2 emission in Peninsular Malaysia using Palsar imageries
NASA Astrophysics Data System (ADS)
Hamdan, O.; Abd Rahman, K.; Samsudin, M.
2016-06-01
Increasing human population and the rapid growth of Malaysia's economy are often associated with various environmental disturbances which have been contributing to depletion of natural resources and climate change. The need for more spaces for numerous land development activities has made the existing forests suffer deforestation. The study was carried out in Peninsular Malaysia, which currently has about 5.9 million ha of forests. Phased array type L-band SAR (Palsar) and Palsar-2 images over the years 2010 and 2015, respectively were used to identify forest cover and deforestation occurrences resulted from various conversion of forests to other land uses. Forests have been identified from horizontal-vertical (HV) polarization and then classified into three major categories, which are inland, peat swamp and mangrove. Pixel subtraction technique was used to determine areas that have been changing from forests to other land uses. Forest areas have been found declined from about 6.1 million ha in year 2010 to some 5.9 million ha in 2015 due to conversion of forests to other land uses. Causes of deforestation have been identified and the amount of carbon dioxide (CO2) that has been emitted due to the deforestation activity has been determined in this study. Oil palm and rubber plantations expansion has been found the most prominent factor that caused deforestation in Peninsular Malaysia, especially in the states of Pahang, Terengganu, Johor and Kelantan. The rate of deforestation in the period was at 0.66% yr-1, which amounted a total of about 200,225 ha over the five years. Carbon loss was estimated at about 30.2 million Mg C, which has resulted in CO2 emission accounted at about 110.6 million Mg CO2. The rate of CO2 emission that has been resulted from deforestation was estimated at 22.1 million Mg CO2 yr-1. The study found that the use of a series of Palsar and Palsar-2 images, with a consistent, cloud-free images, are the most appropriate sensors to be used for monitoring of deforestation over the Peninsular Malaysia region.
NASA Astrophysics Data System (ADS)
Bala, G.; N, D.; Modak, A.
2015-12-01
In this study, we investigate the bio-geophysical effects of large-scale deforestation on monsoon regions using idealized deforestation simulations. The simulations are performed using the NCAR CAM5 atmospheric model coupled to a mixed layer ocean model. The four deforestation experiments are named Global, Boreal, Temperate and Tropical, respectively. In these deforestation experiments, trees are replaced by grasses around the globe, between 20oS and 20oN, between 20oN and 50oN and poleward of 50oN, respectively. We find that the remote forcing from large-scale deforestation in the Temperate and Boreal cases shift the Inter-tropical Convergence Zone (ITCZ) southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America and Australia). The magnitude of the monsoonal precipitation changes depend on the location of deforestation with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most with 18% decline in precipitation over India in the Global deforestation case. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation besides the large local impacts on temperatures and carbon sequestration benefits. Our results also demonstrate the linkages between any large scale forcing that causes large warming/cooling in the high latitudes and rainfall changes in tropical monsoonal regions via ITCZ shifts. Figure Caption: Changes in annual mean precipitation (mm/day) between the deforestation experiments and the control simulation. Hatched areas are regions where changes are statistically significant at the 95% confidence level. Shading in line plots represents the ±1 standard deviation estimated from the control simulation. Comparison of (b) with (d) clearly indicates that the remote effect has a larger influence on tropical precipitation than local effect.The location of the precipitation centroid in the ITCZ region in the CTL case and the shifts in the experiments are shown above the panels.
Economic incentives exist to support measures to reduce illegal logging
J.A. Turner; J. Buongiorno; A. Katz; S. Zhu; R. Li
2008-01-01
Three studies of the global economic implications of eliminating illegal logging are summarized. Processors of illegally sourced wood would lose from the elimination of illegal logging through high prices for logs and decreased production of wood products. Associated with these changes could be losses in employment and income. Beyond these losses to the processing...
34 CFR 668.40 - Conviction for possession or sale of illegal drugs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 3 2012-07-01 2012-07-01 false Conviction for possession or sale of illegal drugs. 668... Eligibility § 668.40 Conviction for possession or sale of illegal drugs. (a)(1) A student is ineligible to... of illegal drugs for conduct that occurred during a period of enrollment for which the student was...
36 CFR 1280.20 - What is your policy on illegal drugs and alcohol?
Code of Federal Regulations, 2012 CFR
2012-07-01
... illegal drugs and alcohol? 1280.20 Section 1280.20 Parks, Forests, and Public Property NATIONAL ARCHIVES... Conduct on NARA Property? Prohibited Activities § 1280.20 What is your policy on illegal drugs and alcohol? You may not use or be in possession of illegal drugs on NARA property. You also may not enter NARA...
36 CFR 1280.20 - What is your policy on illegal drugs and alcohol?
Code of Federal Regulations, 2014 CFR
2014-07-01
... illegal drugs and alcohol? 1280.20 Section 1280.20 Parks, Forests, and Public Property NATIONAL ARCHIVES... Conduct on NARA Property? Prohibited Activities § 1280.20 What is your policy on illegal drugs and alcohol? You may not use or be in possession of illegal drugs on NARA property. You also may not enter NARA...
36 CFR 1280.20 - What is your policy on illegal drugs and alcohol?
Code of Federal Regulations, 2011 CFR
2011-07-01
... illegal drugs and alcohol? 1280.20 Section 1280.20 Parks, Forests, and Public Property NATIONAL ARCHIVES... Conduct on NARA Property? Prohibited Activities § 1280.20 What is your policy on illegal drugs and alcohol? You may not use or be in possession of illegal drugs on NARA property. You also may not enter NARA...
34 CFR 668.40 - Conviction for possession or sale of illegal drugs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 34 Education 3 2013-07-01 2013-07-01 false Conviction for possession or sale of illegal drugs. 668... Eligibility § 668.40 Conviction for possession or sale of illegal drugs. (a)(1) A student is ineligible to... of illegal drugs for conduct that occurred during a period of enrollment for which the student was...
34 CFR 668.40 - Conviction for possession or sale of illegal drugs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 3 2014-07-01 2014-07-01 false Conviction for possession or sale of illegal drugs. 668... Eligibility § 668.40 Conviction for possession or sale of illegal drugs. (a)(1) A student is ineligible to... of illegal drugs for conduct that occurred during a period of enrollment for which the student was...
34 CFR 668.40 - Conviction for possession or sale of illegal drugs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 34 Education 3 2011-07-01 2011-07-01 false Conviction for possession or sale of illegal drugs. 668... Eligibility § 668.40 Conviction for possession or sale of illegal drugs. (a)(1) A student is ineligible to... of illegal drugs for conduct that occurred during a period of enrollment for which the student was...
36 CFR 1280.20 - What is your policy on illegal drugs and alcohol?
Code of Federal Regulations, 2010 CFR
2010-07-01
... illegal drugs and alcohol? 1280.20 Section 1280.20 Parks, Forests, and Public Property NATIONAL ARCHIVES... Conduct on NARA Property? Prohibited Activities § 1280.20 What is your policy on illegal drugs and alcohol? You may not use or be in possession of illegal drugs on NARA property. You also may not enter NARA...
NASA Astrophysics Data System (ADS)
Guimberteau, Matthieu; Ciais, Philippe; Ducharne, Agnès; Boisier, Juan Pablo; Dutra Aguiar, Ana Paula; Biemans, Hester; De Deurwaerder, Hannes; Galbraith, David; Kruijt, Bart; Langerwisch, Fanny; Poveda, German; Rammig, Anja; Andres Rodriguez, Daniel; Tejada, Graciela; Thonicke, Kirsten; Von Randow, Celso; Von Randow, Rita C. S.; Zhang, Ke; Verbeeck, Hans
2017-03-01
Deforestation in Amazon is expected to decrease evapotranspiration (ET) and to increase soil moisture and river discharge under prevailing energy-limited conditions. The magnitude and sign of the response of ET to deforestation depend both on the magnitude and regional patterns of land-cover change (LCC), as well as on climate change and CO2 levels. On the one hand, elevated CO2 decreases leaf-scale transpiration, but this effect could be offset by increased foliar area density. Using three regional LCC scenarios specifically established for the Brazilian and Bolivian Amazon, we investigate the impacts of climate change and deforestation on the surface hydrology of the Amazon Basin for this century, taking 2009 as a reference. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three general circulation models (GCMs) of the IPCC 4th Assessment Report (AR4). On average, over the Amazon Basin with no deforestation, the GCM results indicate a temperature increase of 3.3 °C by 2100 which drives up the evaporative demand, whereby precipitation increases by 8.5 %, with a large uncertainty across GCMs. In the case of no deforestation, we found that ET and runoff increase by 5.0 and 14 %, respectively. However, in south-east Amazonia, precipitation decreases by 10 % at the end of the dry season and the three LSMs produce a 6 % decrease of ET, which is less than precipitation, so that runoff decreases by 22 %. For instance, the minimum river discharge of the Rio Tapajós is reduced by 31 % in 2100. To study the additional effect of deforestation, we prescribed to the LSMs three contrasted LCC scenarios, with a forest decline going from 7 to 34 % over this century. All three scenarios partly offset the climate-induced increase of ET, and runoff increases over the entire Amazon. In the south-east, however, deforestation amplifies the decrease of ET at the end of dry season, leading to a large increase of runoff (up to +27 % in the extreme deforestation case), offsetting the negative effect of climate change, thus balancing the decrease of low flows in the Rio Tapajós. These projections are associated with large uncertainties, which we attribute separately to the differences in LSMs, GCMs and to the uncertain range of deforestation. At the subcatchment scale, the uncertainty range on ET changes is shown to first depend on GCMs, while the uncertainty of runoff projections is predominantly induced by LSM structural differences. By contrast, we found that the uncertainty in both ET and runoff changes attributable to uncertain future deforestation is low.
Deforestation contributed to droughts that influenced Maya decline
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2011-12-01
New studies show that deforestation throughout much of southern Mexico in pre-Columbian times contributed to droughts that led to the decline of the Maya and Aztec civilizations. Significant droughts are known to have affected these civilizations between about 800 and 950 C.E.; it has been debated whether solar forcing, random natural variability, or clearing of rain forests to create pasture or farmlands primarily caused these droughts. Reconstructions of past land cover can be made based on population estimates. Central America was significantly deforested by Maya and Aztec societies before Europeans arrived about 1500 C.E. Forest then recovered as native populations declined, although more deforestation has been taking place in recent years.
Bioenergy as a Mitigation Measure
NASA Astrophysics Data System (ADS)
Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.
2011-12-01
Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these properties are managed. Simulated bioenergy potentials from 1901 to 2098 correspond to a significant percentage of the global energy demand and thus could potentially bring about considerable savings in carbon emissions. These potentials will be reported and compared to the energy demand. Analysis of their sensitivities to different land management scenarios will be presented as well.
Extreme anthropogenic loads and the northern ecosystem condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryuckkov, V.V.
1993-11-01
In the extreme North, the polar region of siberian Russia, the largest mining and processing enterprises for metallic and nonmetallic ores, coal, oil, and gas are situated. The extremely vulnerable boreal and polar ecosystems of the north are responding adversely to the impact of these activities, and are in danger of collapse because of them. The mechanisms of such impacts, their formation, continuous extension, and merger have been studied. The deforested and destroyed areas of former forest-tundra and taiga ecosystems resemble the Arctic zones of a much harsher environment more than the typical Arctic zones where they occur. 5 refs.,more » 3 figs., 2 tabs.« less
21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.
Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan
2018-02-13
Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.
Impact on short-lived climate forcers increases projected warming due to deforestation.
Scott, C E; Monks, S A; Spracklen, D V; Arnold, S R; Forster, P M; Rap, A; Äijälä, M; Artaxo, P; Carslaw, K S; Chipperfield, M P; Ehn, M; Gilardoni, S; Heikkinen, L; Kulmala, M; Petäjä, T; Reddington, C L S; Rizzo, L V; Swietlicki, E; Vignati, E; Wilson, C
2018-01-11
The climate impact of deforestation depends on the relative strength of several biogeochemical and biogeophysical effects. In addition to affecting the exchange of carbon dioxide (CO 2 ) and moisture with the atmosphere and surface albedo, vegetation emits biogenic volatile organic compounds (BVOCs) that alter the formation of short-lived climate forcers (SLCFs), which include aerosol, ozone and methane. Here we show that a scenario of complete global deforestation results in a net positive radiative forcing (RF; 0.12 W m -2 ) from SLCFs, with the negative RF from decreases in ozone and methane concentrations partially offsetting the positive aerosol RF. Combining RFs due to CO 2 , surface albedo and SLCFs suggests that global deforestation could cause 0.8 K warming after 100 years, with SLCFs contributing 8% of the effect. However, deforestation as projected by the RCP8.5 scenario leads to zero net RF from SLCF, primarily due to nonlinearities in the aerosol indirect effect.
Deforestation and Malaria in Mâncio Lima County, Brazil
Gangnon, Ronald; Silveira, Guilherme Abbad; Patz, Jonathan A.
2010-01-01
Malaria is the most prevalent vector-borne disease in the Amazon. We used malaria reports for health districts collected in 2006 by the Programa Nacional de Controle da Malária to determine whether deforestation is associated with malaria incidence in the county (município) of Mâncio Lima, Acre State, Brazil. Cumulative percent deforestation was calculated for the spatial catchment area of each health district by using 60 × 60–meter, resolution-classified imagery. Statistical associations were identified with univariate and multivariate general additive negative binomial models adjusted for spatial effects. Our cross-sectional study shows malaria incidence across health districts in 2006 is positively associated with greater changes in percentage of cumulative deforestation within respective health districts. After adjusting for access to care, health district size, and spatial trends, we show that a 4.3%, or 1 SD, change in deforestation from August 1997 through August 2000 is associated with a 48% increase of malaria incidence. PMID:20587182
Pérez, A; Machado, W; Gutiérrez, D; Borges, A C; Patchineelam, S R; Sanders, C J
2018-01-01
A dated sediment core from an eutrophic mangrove area presented non-significant differences in carbon accumulation rates before (55.7±10.2gm -2 yr -1 ) and after three decades of deforestation (59.7±7.2gm -2 yr -1 ). Although eutrophication effects appear to compensate the loss of mangrove organic matter input, the results in this work show a threefold lower carbon accumulation than the global averages estimated for mangrove sediments. The effects of increasing eutrophication and enhanced sediment dry bulk density observed after deforestation (~30% higher) did not result in higher carbon stocks. Moreover, the lower TOC:OP (<400) and C:N (~20) molar ratios, as well as increased nutrient accumulation, reflect the dominance of phytoplankton-derived organic matter after deforestation, resulting in less-efficient sedimentary carbon sinks. These results indicate that the organic material deposited from eutrophication may not compensate mangrove deforestation losses on carbon accumulation in mangrove ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Siikamäki, Juha; Newbold, Stephen C
2012-01-01
Deforestation is the second largest anthropogenic source of carbon dioxide emissions and options for its reduction are integral to climate policy. In addition to providing potentially low cost and near-term options for reducing global carbon emissions, reducing deforestation also could support biodiversity conservation. However, current understanding of the potential benefits to biodiversity from forest carbon offset programs is limited. We compile spatial data on global forest carbon, biodiversity, deforestation rates, and the opportunity cost of land to examine biodiversity conservation benefits from an international program to reduce carbon emissions from deforestation. Our results indicate limited geographic overlap between the least-cost areas for retaining forest carbon and protecting biodiversity. Therefore, carbon-focused policies will likely generate substantially lower benefits to biodiversity than a more biodiversity-focused policy could achieve. These results highlight the need to systematically consider co-benefits, such as biodiversity in the design and implementation of forest conservation programs to support international climate policy.
Illegal drug use among female university students in Slovakia.
Matejovičová, Barbora; Trandžík, Jozef; Schlarmannová, Janka; Boledovičová, Mária; Velemínský, Miloš
2015-01-20
This study is focused on the issue of illegal drug use among female university students preparing to become teachers. The main aim was to determine the frequency of drug abuse in a group of young women (n=215, mean age 20.44 years). Using survey methods, we determined that 33.48% of female university students in Slovakia use illegal drugs and 66.51% of students have never used illegal drugs. Differences between these groups were determined using statistical analysis, mostly in 4 areas of survey questions. We determined that education of parents has a statistically significant influence on use of illegal drugs by their children (χ2=10.14; P<0.05). Communication between parents and children and parental attention to children have a significant role in determining risky behavior (illegal drug use, χ2=8.698, P<0.05). Parents of students not using illegal drugs were interested in how their children spend their free time (68.53%). We confirmed the relationship between consumption of alcohol and illegal drug use (χ2=16.645; P<0.001) and smoking (χ2=6.226; P<0.05). The first contact with drugs occurs most frequently at high school age. The most consumed "soft" drug in our group of female university students is marijuana. Our findings are relevant for comparison and generalization regarding causes of the steady increase in number of young people using illegal drugs.
10 CFR 707.10 - Drug testing for reasonable suspicion of illegal drug use.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Drug testing for reasonable suspicion of illegal drug use... Procedures § 707.10 Drug testing for reasonable suspicion of illegal drug use. (a)(1) It may be necessary to... relating to the testing for the use of illegal drugs are not intended to prohibit the contractor from...
10 CFR 707.10 - Drug testing for reasonable suspicion of illegal drug use.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Drug testing for reasonable suspicion of illegal drug use... Procedures § 707.10 Drug testing for reasonable suspicion of illegal drug use. (a)(1) It may be necessary to... relating to the testing for the use of illegal drugs are not intended to prohibit the contractor from...
10 CFR 707.10 - Drug testing for reasonable suspicion of illegal drug use.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Drug testing for reasonable suspicion of illegal drug use... Procedures § 707.10 Drug testing for reasonable suspicion of illegal drug use. (a)(1) It may be necessary to... relating to the testing for the use of illegal drugs are not intended to prohibit the contractor from...
10 CFR 707.10 - Drug testing for reasonable suspicion of illegal drug use.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Drug testing for reasonable suspicion of illegal drug use... Procedures § 707.10 Drug testing for reasonable suspicion of illegal drug use. (a)(1) It may be necessary to... relating to the testing for the use of illegal drugs are not intended to prohibit the contractor from...
10 CFR 707.10 - Drug testing for reasonable suspicion of illegal drug use.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Drug testing for reasonable suspicion of illegal drug use... Procedures § 707.10 Drug testing for reasonable suspicion of illegal drug use. (a)(1) It may be necessary to... relating to the testing for the use of illegal drugs are not intended to prohibit the contractor from...
36 CFR § 1280.20 - What is your policy on illegal drugs and alcohol?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Conduct on NARA Property? Prohibited Activities § 1280.20 What is your policy on illegal drugs and alcohol? You may not use or be in possession of illegal drugs on NARA property. You also may not enter NARA property while under the influence of illegal drugs or alcohol. Using alcoholic beverages on NARA property...
The Carbon Cycle: Implications for Climate Change and Congress
2008-03-13
burning of fossil fuels, deforestation , and other land use activities, have significantly altered the carbon cycle. As a result, atmospheric...80% of human-related CO2 emissions results from fossil fuel combustion, and 20% from land use change (primarily deforestation ). Fossil fuel burning...warming the planet. At present, the oceans and land surface are acting as sinks for CO2 emitted from fossil fuel combustion and deforestation , but
Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia.
Schneider, Maurício; Peres, Carlos A
2015-01-01
Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970's, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration.
Unsustainable development pathways caused by tropical deforestation.
Carrasco, Luis Roman; Nghiem, Thi Phuong Le; Chen, Zhirong; Barbier, Edward B
2017-07-01
Global sustainability strategies require assessing whether countries' development trajectories are sustainable over time. However, sustainability assessments are limited because losses of natural capital and its ecosystem services through deforestation have not been comprehensively incorporated into national accounts. We update the national accounts of 80 nations that underwent tropical deforestation from 2000 to 2012 and evaluate their development trajectories using weak and strong sustainability criteria. Weak sustainability requires that countries do not decrease their aggregate capital over time. We adopt a strong sustainability criterion that countries do not decrease the value of their forest ecosystem services with respect to the year 2000. We identify several groups of countries: countries, such as Sri Lanka, Bangladesh, and India, that present sustainable development trajectories under both weak and strong sustainability criteria; countries, such as Brazil, Peru, and Indonesia, that present weak sustainable development but fail the strong sustainability criterion as a result of rapid losses of ecosystem services; countries, such as Madagascar, Laos, and Papua New Guinea, that present unsustainable development pathways as a result of deforestation; and countries, such as Democratic Republic of Congo and Sierra Leone, in which deforestation aggravates already unsustainable pathways. Our results reveal a large number of countries where tropical deforestation is both damaging to nature and not compensated by development in other sectors, thus compromising the well-being of their future generations.
Forests and drugs: coca-driven deforestation in tropical biodiversity hotspots.
Dávalos, Liliana M; Bejarano, Adriana C; Hall, Mark A; Correa, H Leonardo; Corthals, Angelique; Espejo, Oscar J
2011-02-15
Identifying drivers of deforestation in tropical biodiversity hotspots is critical to assess threats to particular ecosystems and species and proactively plan for conservation. We analyzed land cover change between 2002 and 2007 in the northern Andes, Chocó, and Amazon forests of Colombia, the largest producer of coca leaf for the global cocaine market, to quantify the impact of this illicit crop on forest dynamics, evaluate the effectiveness of protected areas in this context, and determine the effects of eradication on deforestation. Landscape-level analyses of forest conversion revealed that proximity to new coca plots and a greater proportion of an area planted with coca increased the probability of forest loss in southern Colombia, even after accounting for other covariates and spatial autocorrelation. We also showed that protected areas successfully reduced forest conversion in coca-growing regions. Neither eradication nor coca cultivation predicted deforestation rates across municipalities. Instead, the presence of new coca cultivation was an indicator of municipalities, where increasing population led to higher deforestation rates. We hypothesize that poor rural development underlies the relationship between population density and deforestation in coca-growing areas. Conservation in Colombia's vast forest frontier, which overlaps with its coca frontier, requires a mix of protected areas and strategic rural development to succeed.
Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia
2015-01-01
Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970’s, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration. PMID:26247467
Freedman, Adam H; Buermann, Wolfgang; Mitchard, Edward T A; Defries, Ruth S; Smith, Thomas B
2010-09-30
Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions.
Human Impacts Flatten Rainforest-Savanna Gradient and Reduce Adaptive Diversity in a Rainforest Bird
Freedman, Adam H.; Buermann, Wolfgang; Mitchard, Edward T. A.; DeFries, Ruth S.; Smith, Thomas B.
2010-01-01
Ecological gradients have long been recognized as important regions for diversification and speciation. However, little attention has been paid to the evolutionary consequences or conservation implications of human activities that fundamentally change the environmental features of such gradients. Here we show that recent deforestation in West Africa has homogenized the rainforest-savanna gradient, causing a loss of adaptive phenotypic diversity in a common rainforest bird, the little greenbul (Andropadus virens). Previously, this species was shown to exhibit morphological and song divergence along this gradient in Central Africa. Using satellite-based estimates of forest cover, recent morphological data, and historical data from museum specimens collected prior to widespread deforestation, we show that the gradient has become shallower in West Africa and that A. virens populations there have lost morphological variation in traits important to fitness. In contrast, we find no loss of morphological variation in Central Africa where there has been less deforestation and gradients have remained more intact. While rainforest deforestation is a leading cause of species extinction, the potential of deforestation to flatten gradients and inhibit rainforest diversification has not been previously recognized. More deforestation will likely lead to further flattening of the gradient and loss of diversity, and may limit the ability of species to persist under future environmental conditions. PMID:20941360
The Effectiveness of Contrasting Protected Areas in Preventing Deforestation in Madre de Dios, Peru
NASA Astrophysics Data System (ADS)
Vuohelainen, Anni Johanna; Coad, Lauren; Marthews, Toby R.; Malhi, Yadvinder; Killeen, Timothy J.
2012-10-01
Accurate monitoring of the effectiveness of protected areas (PAs) in decreasing deforestation is increasingly important given the vital role of forest protection in climate change mitigation. Recent studies on PA effectiveness have used remote-sensing imagery to compare deforestation rates within PAs to surrounding areas. However, remote-sensing data used in isolation provides limited information on the factors contributing to effectiveness. We used landscape-modelling techniques to estimate the effectiveness of ten PAs in Madre de Dios, Peru. Factors influencing PA effectiveness were investigated using in situ key-informant interviews. Although all of the PAs studied had positive effectiveness scores, those with the highest scores were ecotourism and conservation concessions, where monitoring and surveillance activities and good relations with surrounding communities were reported as possible factors in decreasing deforestation rates. Native community areas had the lowest scores, with deforestation mainly driven by internal resource use and population growth. Weak local governance and immigration were identified as underlying factors decreasing the effectiveness of protection, whereas good relations with surrounding communities and monitoring activity increased effectiveness. The results highlight the need to combine remote sensing with in situ information on PA management because identification of drivers and deterrents of deforestation is vital for improving the effectiveness of protection.
Pfaff, Alexander; Robalino, Juan; Sandoval, Catalina; Herrera, Diego
2015-01-01
The leading policy to conserve forest is protected areas (PAs). Yet, PAs are not a single tool: land users and uses vary by PA type; and public PA strategies vary in the extent of each type and in the determinants of impact for each type, i.e. siting and internal deforestation. Further, across regions and time, strategies respond to pressures (deforestation and political). We estimate deforestation impacts of PA types for a critical frontier, the Brazilian Amazon. We separate regions and time periods that differ in their deforestation and political pressures and document considerable variation in PA strategies across regions, time periods and types. The siting of PAs varies across regions. For example, all else being equal, PAs in the arc of deforestation are relatively far from non-forest, while in other states they are relatively near. Internal deforestation varies across time periods, e.g. it is more similar across the PA types for PAs after 2000. By contrast, after 2000, PA extent is less similar across PA types with little non-indigenous area created inside the arc. PA strategies generate a range of impacts for PA types—always far higher within the arc—but not a consistent ranking of PA types by impact. PMID:26460126
The effectiveness of contrasting protected areas in preventing deforestation in Madre de Dios, Peru.
Vuohelainen, Anni Johanna; Coad, Lauren; Marthews, Toby R; Malhi, Yadvinder; Killeen, Timothy J
2012-10-01
Accurate monitoring of the effectiveness of protected areas (PAs) in decreasing deforestation is increasingly important given the vital role of forest protection in climate change mitigation. Recent studies on PA effectiveness have used remote-sensing imagery to compare deforestation rates within PAs to surrounding areas. However, remote-sensing data used in isolation provides limited information on the factors contributing to effectiveness. We used landscape-modelling techniques to estimate the effectiveness of ten PAs in Madre de Dios, Peru. Factors influencing PA effectiveness were investigated using in situ key-informant interviews. Although all of the PAs studied had positive effectiveness scores, those with the highest scores were ecotourism and conservation concessions, where monitoring and surveillance activities and good relations with surrounding communities were reported as possible factors in decreasing deforestation rates. Native community areas had the lowest scores, with deforestation mainly driven by internal resource use and population growth. Weak local governance and immigration were identified as underlying factors decreasing the effectiveness of protection, whereas good relations with surrounding communities and monitoring activity increased effectiveness. The results highlight the need to combine remote sensing with in situ information on PA management because identification of drivers and deterrents of deforestation is vital for improving the effectiveness of protection.
The Environmental Legacy of Modern Tropical Deforestation.
Rosa, Isabel M D; Smith, Matthew J; Wearn, Oliver R; Purves, Drew; Ewers, Robert M
2016-08-22
Tropical deforestation has caused a significant share of carbon emissions and species losses, but historical patterns have rarely been explicitly considered when estimating these impacts [1]. A deforestation event today leads to a time-delayed future release of carbon, from the eventual decay either of forest products or of slash left at the site [2]. Similarly, deforestation often does not result in the immediate loss of species, and communities may exhibit a process of "relaxation" to their new equilibrium over time [3]. We used a spatially explicit land cover change model [4] to reconstruct the annual rates and spatial patterns of tropical deforestation that occurred between 1950 and 2009 in the Amazon, in the Congo Basin, and across Southeast Asia. Using these patterns, we estimated the resulting gross vegetation carbon emissions [2, 5] and species losses over time [6]. Importantly, we accounted for the time lags inherent in both the release of carbon and the extinction of species. We show that even if deforestation had completely halted in 2010, time lags ensured there would still be a carbon emissions debt of at least 8.6 petagrams, equivalent to 5-10 years of global deforestation, and an extinction debt of more than 140 bird, mammal, and amphibian forest-specific species, which if paid, would increase the number of 20(th)-century extinctions in these groups by 120%. Given the magnitude of these debts, commitments to reduce emissions and biodiversity loss are unlikely to be realized without specific actions that directly address this damaging environmental legacy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Land Use Change Increases Streamflow Across the Arc of Deforestation in Brazil
NASA Astrophysics Data System (ADS)
Levy, M. C.; Lopes, A. V.; Cohn, A.; Larsen, L. G.; Thompson, S. E.
2018-04-01
Nearly half of recent decades' global forest loss occurred in the Amazon and Cerrado (tropical savanna) biomes of Brazil, known as the arc of deforestation. Despite prior analysis in individual river basins, a generalizable empirical understanding of the effect of deforestation on streamflow across this region is lacking. We frame land use change in Brazil as a natural experiment and draw on in situ and remote sensing evidence in 324 river basins covering more than 3 × 106 km2 to estimate streamflow changes caused by deforestation and agricultural development between 1950 and 2013. Deforestation increased dry season low flow by between 4 and 10 percentage points (relative to the forested condition), corresponding to a regional- and time-averaged rate of increase in specific streamflow of 1.29 mm/year2, equivalent to a 4.08 km3/year2 increase, assuming a stationary climate. In conjunction with rainfall and temperature variations, the net (observed) average increase in streamflow over the same period was 0.76 mm/year2, or 2.41 km3/year2. Thus, net increases in regional streamflow in the past half century are 58% of those that would have been experienced with deforestation given a stationary climate. This study uses a causal empirical analysis approach novel to the water sciences to verify the regional applicability of prior basin-scale studies, provides a proof of concept for the use of observational causal identification methods in the water sciences, and demonstrates that deforestation masks the streamflow-reducing effects of climate change in this region.
Fitzpatrick, F.A.; Knox, J.C.
2000-01-01
Clear-cut logging followed by agricultural activity caused hydrologic and geomorphic changes in North Fish Creek, a Wisconsin tributary to Lake Superior. Hydro-geomorphic responses to changes in land use were sensitive to the location of reaches along the main stem and to the relative timing of large floods. Hydrologic and sediment-load modeling indicates that flood peaks were three times larger and sediment loads were five times larger during maximum agricultural activity in the 1920s and 1930s than prior to about 1890, when forest cover was dominant. Following logging, overbank sedimentation rates in the lower main stem increased four to six times above pre-settlement rates. Accelerated streambank and channel erosion in the upper main stem have been and continue to be primary sources of sediment to downstream reaches. Extreme floods in 1941 and 1946, followed by frequent moderate floods through 1954, caused extensive geomorphic changes along the entire main stem. Sedimentation rates in the lower main stem may have decreased in the last several decades as agricultural activity declined. However, geomorphic recovery is slow, as incised channels in the upper main stem function as efficient conveyors of watershed surface runoff and thereby continue to promote flooding and sedimentation problems downstream. [Key words: fluvial geomorphology, floods, erosion, sedimentation, deforestation, agriculture.].
Latawiec, A E; Strassburg, B B N; Valentim, J F; Ramos, F; Alves-Pinto, H N
2014-08-01
Intensification of Brazilian cattle ranching systems has attracted both national and international attention due to its direct relation with Amazon deforestation on the one hand and increasing demand of the global population for meat on the other. Since Brazilian cattle ranching is predominantly pasture-based, we particularly focus on pasture management. We summarize the most recurrent opportunities and risks associated with pasture intensification that are brought up within scientific and political dialogues, and discuss them within the Brazilian context. We argue that sustainable intensification of pasturelands in Brazil is a viable way to increase agricultural output while simultaneously sparing land for nature. Since environmental degradation is often associated with low-yield extensive systems in Brazil, it is possible to obtain higher yields, while reversing degradation, by adopting practices like rotational grazing, incorporation of legumes and integrated crop-livestock-forestry systems. Technical assistance is however essential, particularly for small- and medium-scale farmers. Sound complementary policies and good governance must accompany these measures so that a 'rebound effect' does not lead to increased deforestation and other adverse social and environmental impacts. It is also important that animal welfare is not compromised. Although the discussion is presented with respect to Brazil, some aspects are relevant to other developing countries.
Automated Plantation Mapping in Indonesia Using Remote Sensing Data
NASA Astrophysics Data System (ADS)
Karpatne, A.; Jia, X.; Khandelwal, A.; Kumar, V.
2017-12-01
Plantation mapping is critical for understanding and addressing deforestation, a key driver of climate change and ecosystem degradation. Unfortunately, most plantation maps are limited to small areas for specific years because they rely on visual inspection of imagery. In this work, we propose a data-driven approach which automatically generates yearly plantation maps for large regions using MODIS multi-spectral data. While traditional machine learning algorithms face manifold challenges in this task, e.g. imperfect training labels, spatio-temporal data heterogeneity, noisy and high-dimensional data, lack of evaluation data, etc., we introduce a novel deep learning-based framework that combines existing imperfect plantation products as training labels and models the spatio-temporal relationships of land covers. We also explores the post-processing steps based on Hidden Markov Model that further improve the detection accuracy. Then we conduct extensive evaluation of the generated plantation maps. Specifically, by randomly sampling and comparing with high-resolution Digital Globe imagery, we demonstrate that the generated plantation maps achieve both high precision and high recall. When compared with existing plantation mapping products, our detection can avoid both false positives and false negatives. Finally, we utilize the generated plantation maps in analyzing the relationship between forest fires and growth of plantations, which assists in better understanding the cause of deforestation in Indonesia.
Emerging deforestation trends in tropical dry forests ecoregions of Mexico and Central America
NASA Astrophysics Data System (ADS)
Portillo, C. A.; Cao, G.; Smith, V.
2015-12-01
Neotropical dry forests (TDF) have experienced an unprecedented deforestation that is leading to the loss of tropical biodiversity at a rapid pace, but information on deforestation dynamics in TDF is scarce. In this study, we present a sub-continental and national level assessment of TDF loss patterns in Mexico and Central America at high spatial and temporal resolution using remote sensing and GIS technologies. We used the Global Forest Change (GFC) dataset published by Hansen et al. (2013) which shows results from time-series analysis of Landsat images in characterizing global forest extent and change from 2000 through 2013. We analyzed forest loss within and around mapped TDF cover mapped by Portillo-Quintero et al. 2010. In order to minimize errors in source data, we overlaid a 25 x 25 km grid on top of the regional dataset and conducted a cell by cell and country by country inspection at multiple scales using high resolution ancillary data. We identified trends in the clustering of space-time TDF deforestation data using ArcGIS, categorizing trends in: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating and historical hotspots (high frequency of deforestation events) and cold spots (low frequency of deforestation). In general, the region is experiencing less frequent deforestation events with a higher number of intensifying and new cold spots across TDF landscapes. However, an important number of intensifying and persistent hotspots exist so no general trend in forest loss was detected for the period 2001-2013, except for El Salvador which shows a significant decreasing trend in forest loss. Mexico, Nicaragua, Honduras and Guatemala are the major sources of intensifying, persistent and new deforestation hot spots. These were identified in the southern pacific coast and the Yucatan Peninsula in Mexico, northwestern Guatemala, both western and eastern Honduras and around Lake Nicaragua in Nicaragua.
Emerging deforestation trends in tropical dry forests ecoregions of Mexico and Central America
NASA Astrophysics Data System (ADS)
Perez-Rodriguez, I. M.; Sievert, S. M.; Fogel, M. L.; Foustoukos, D.
2014-12-01
Neotropical dry forests (TDF) have experienced an unprecedented deforestation that is leading to the loss of tropical biodiversity at a rapid pace, but information on deforestation dynamics in TDF is scarce. In this study, we present a sub-continental and national level assessment of TDF loss patterns in Mexico and Central America at high spatial and temporal resolution using remote sensing and GIS technologies. We used the Global Forest Change (GFC) dataset published by Hansen et al. (2013) which shows results from time-series analysis of Landsat images in characterizing global forest extent and change from 2000 through 2013. We analyzed forest loss within and around mapped TDF cover mapped by Portillo-Quintero et al. 2010. In order to minimize errors in source data, we overlaid a 25 x 25 km grid on top of the regional dataset and conducted a cell by cell and country by country inspection at multiple scales using high resolution ancillary data. We identified trends in the clustering of space-time TDF deforestation data using ArcGIS, categorizing trends in: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating and historical hotspots (high frequency of deforestation events) and cold spots (low frequency of deforestation). In general, the region is experiencing less frequent deforestation events with a higher number of intensifying and new cold spots across TDF landscapes. However, an important number of intensifying and persistent hotspots exist so no general trend in forest loss was detected for the period 2001-2013, except for El Salvador which shows a significant decreasing trend in forest loss. Mexico, Nicaragua, Honduras and Guatemala are the major sources of intensifying, persistent and new deforestation hot spots. These were identified in the southern pacific coast and the Yucatan Peninsula in Mexico, northwestern Guatemala, both western and eastern Honduras and around Lake Nicaragua in Nicaragua.
Effectiveness of Protected Areas in the Pan-Tropics and International Aid for Conservation
NASA Astrophysics Data System (ADS)
Kim, D. H.
2015-12-01
Protected areas are crucial for tropical forest conservation efforts. Estimation of the effectiveness of protected areas is thus important for evaluating the efficacy of forest conservation policies and priorities. However, comprehensive evaluation of the long-term effects of Protected Areas and international aid is lacking. However, with the recent availability of long-term, large-scale forest cover change data at 30-m resolution, it has become possible to address some of the issues surrounding the effectiveness of protected areas. To evaluate the effectiveness of Protected Areas in the pan-tropics and international aid for conservation, we use the 30m resolution data along with econometrics 1) to estimate avoided deforestation by PAs in the tropics during the 2000s, 2) estimate effects of international aid on avoided deforestation by PAs and 3) analyze the relationships between the socio-economic variables and increases in deforestation, avoided deforestation by PAs and effects of international aid. Our results show that protected areas avoided 83,500 ± 21,200 km2 of deforestation during the 2000s. Brazil showed the highest estimates of effects of international aid on the avoided deforestation of 22 m2/USD, which is about 50 times higher compared to Indonesia (0.5 m2/USD). The regression analysis between avoided deforestation, effects of international aid and socio-economic factors demonstrates that PAs have been relatively more effective in the countries where the deforestation pressures were increasing and that governance and forest change monitoring capacity may be important factors enhancing the efficacy of international aid. Our study presents the first pan-tropical analysis of the long-term evaluation of the effectiveness of protected areas, international aid and their regulating factors using spatially explicit fine resolution data. Our findings allow us to pinpoint where conservation initiatives and resource management are effectively practiced and to discover the link with socio-economic factors and their significance and underlying implications for the effectiveness of PAs.
Effects of national forest-management regimes on unprotected forests of the Himalaya.
Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy
2017-12-01
Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that ensure stable land tenure and integrate local-livelihood benefits with forest conservation result in the best forest outcomes. © 2017 Society for Conservation Biology.
Ruhong Li; J. Buongiorno; J.A. Turner; S. Zhu; J. Prestemon
2008-01-01
We assessed the impact on the world forest sector of a progressive elimination of illegal logging. The analysis compared predictions from 2007 to 2020, with and without a gradual reduction of illegally logged industrial roundwood from 2007 to 2011. A large part of the curtailment of timber supply due to the stoppage of illegal logging would be compensated by increased...
Assessment of big floods in the Eastern Black Sea Basin of Turkey.
Yüksek, Ömer; Kankal, Murat; Üçüncü, Osman
2013-01-01
In this study, general knowledge and some details of the floods in Eastern Black Sea Basin of Turkey are presented. Brief hydro-meteorological analysis of selected nine floods and detailed analysis of the greatest flood are given. In the studied area, 51 big floods have taken place between 1955-2005 years, causing 258 deaths and nearly US $500,000,000 of damage. Most of the floods have occurred in June, July and August. It is concluded that especially for the rainstorms that have caused significantly damages, the return periods of the rainfall heights and resultant flood discharges have gone up to 250 and 500 years, respectively. A general agreement is observed between the return periods of rains and resultant floods. It is concluded that there has been no significant climate change to cause increases in flood harms. The most important human factors to increase the damage are determined as wrong and illegal land use, deforestation and wrong urbanization and settlement, psychological and technical factors. Some structural and non-structural measures to mitigate flood damages are also included in the paper. Structural measures include dykes and flood levees. Main non-structural measures include flood warning system, modification of land use, watershed management and improvement, flood insurance, organization of flood management studies, coordination between related institutions and education of the people and informing of the stakeholders.
Fearnside, Philip M
2007-05-01
Brazil's Cuiabá-Santarém (BR-163) Highway provides a valuable example of ways in which decision-making procedures for infrastructure projects in tropical forest areas need to be reformulated in order to guarantee that environmental concerns are properly weighed. BR-163, which is slated to be paved as an export corridor for soybeans via the Amazon River, traverses an area that is largely outside of Brazilian government control. A climate of generalized lawlessness and impunity prevails, and matters related to environment and to land tenure are especially unregulated. Deforestation and illegal logging have accelerated in anticipation of highway paving. Paving would further speed forest loss in the area, as well as stimulate migration of land thieves (grileiros) to other frontiers. An argument is made that the highway should not be reconstructed and paved until after a state of law has been established and it has been independently certified that sufficient governance prevails to secure protected areas and enforce environmental legislation. A waiting period is needed after this is achieved before proceeding with the highway paving. Above all, the logical sequence of steps must be followed, whereby environmental costs are assessed, reported, and weighed prior to making de facto decisions on implementation of infrastructure projects. Deviation from this logical sequence is a common occurrence in many parts of the world, especially in tropical areas.
... baby. If you smoke, use alcohol or take illegal drugs, so does your unborn baby. First, don't ... children, including fetal alcohol syndrome. Don't use illegal drugs. Using illegal drugs may cause underweight babies, birth ...
Illegal killing for ivory drives global decline in African elephants
Wittemyer, George; Northrup, Joseph M.; Blanc, Julian; Douglas-Hamilton, Iain; Omondi, Patrick; Burnham, Kenneth P.
2014-01-01
Illegal wildlife trade has reached alarming levels globally, extirpating populations of commercially valuable species. As a driver of biodiversity loss, quantifying illegal harvest is essential for conservation and sociopolitical affairs but notoriously difficult. Here we combine field-based carcass monitoring with fine-scale demographic data from an intensively studied wild African elephant population in Samburu, Kenya, to partition mortality into natural and illegal causes. We then expand our analytical framework to model illegal killing rates and population trends of elephants at regional and continental scales using carcass data collected by a Convention on International Trade in Endangered Species program. At the intensively monitored site, illegal killing increased markedly after 2008 and was correlated strongly with the local black market ivory price and increased seizures of ivory destined for China. More broadly, results from application to continental data indicated illegal killing levels were unsustainable for the species between 2010 and 2012, peaking to ∼8% in 2011 which extrapolates to ∼40,000 elephants illegally killed and a probable species reduction of ∼3% that year. Preliminary data from 2013 indicate overharvesting continued. In contrast to the rest of Africa, our analysis corroborates that Central African forest elephants experienced decline throughout the last decade. These results provide the most comprehensive assessment of illegal ivory harvest to date and confirm that current ivory consumption is not sustainable. Further, our approach provides a powerful basis to determine cryptic mortality and gain understanding of the demography of at-risk species. PMID:25136107
Illegal killing for ivory drives global decline in African elephants.
Wittemyer, George; Northrup, Joseph M; Blanc, Julian; Douglas-Hamilton, Iain; Omondi, Patrick; Burnham, Kenneth P
2014-09-09
Illegal wildlife trade has reached alarming levels globally, extirpating populations of commercially valuable species. As a driver of biodiversity loss, quantifying illegal harvest is essential for conservation and sociopolitical affairs but notoriously difficult. Here we combine field-based carcass monitoring with fine-scale demographic data from an intensively studied wild African elephant population in Samburu, Kenya, to partition mortality into natural and illegal causes. We then expand our analytical framework to model illegal killing rates and population trends of elephants at regional and continental scales using carcass data collected by a Convention on International Trade in Endangered Species program. At the intensively monitored site, illegal killing increased markedly after 2008 and was correlated strongly with the local black market ivory price and increased seizures of ivory destined for China. More broadly, results from application to continental data indicated illegal killing levels were unsustainable for the species between 2010 and 2012, peaking to ∼ 8% in 2011 which extrapolates to ∼ 40,000 elephants illegally killed and a probable species reduction of ∼ 3% that year. Preliminary data from 2013 indicate overharvesting continued. In contrast to the rest of Africa, our analysis corroborates that Central African forest elephants experienced decline throughout the last decade. These results provide the most comprehensive assessment of illegal ivory harvest to date and confirm that current ivory consumption is not sustainable. Further, our approach provides a powerful basis to determine cryptic mortality and gain understanding of the demography of at-risk species.
Fogel, Joshua; Shlivko, Alexander
2016-01-02
Reality television watching and social media use are popular activities. Reality television can include mention of illegal drug use and prescription drug misuse. To determine if reality television and social media use of Twitter are associated with either illegal drug use or prescription drug misuse. Survey of 576 college students in 2011. Independent variables included watching reality television (social cognitive theory), parasocial interaction (parasocial interaction theory), television hours watched (cultivation theory), following a reality television character on Twitter, and demographics. Outcome variables were illegal drug use and prescription drug misuse. Watching reality television and also identifying with reality TV program characters were each associated with greater odds for illegal drug use. Also, following a reality TV character on Twitter had greater odds for illegal drug use and also in one analytical model for prescription drug misuse. No support was seen for cultivation theory. Those born in the United States had greater odds for illegal drug use and prescription drug misuse. Women and Asians had lower odds for illegal drug use. African Americans and Asians had lower odds for prescription drug misuse. Physicians, psychologists, and other healthcare practitioners may find it useful to include questions in their clinical interview about reality television watching and Twitter use. Physician and psychology groups, public health practitioners, and government health agencies should consider discussing with television broadcasting companies the potential negative impact of including content with illegal drugs and prescription drug misuse on reality television programs.
NASA Astrophysics Data System (ADS)
Chang, Chia-Hao; Chu, Tzu-How
2017-04-01
To control the rice production and farm usage in Taiwan, Agriculture and Food Agency (AFA) has published a series of policies to subsidize farmers to plant different crops or to practice fallow science 1983. Because of no efficient and examinable mechanism to verify the fallow fields surveyed by township office, illegal fallow fields were still repeated each year. In this research, we used remote sensing images, GIS data of Fields, and application records of fallow fields to establish an illegal fallow fields detecting method in Yulin County in central Taiwan. This method included: 1. collected multi-temporal images from FS-2 or SPOT series with 4 time periods; 2. combined the application records and GIS data of fields to verify the location of fallow fields; 3. conducted ground truth survey and classified images with ISODATA and Maximum Likelihood Classification (MLC); 4. defined the land cover type of fallow fields by zonal statistic; 5. verified accuracy with ground truth; 6. developed potential illegal fallow fields survey method and benefit estimation. We use 190 fallow fields with 127 legal and 63 illegal as ground truth and accuracies of illegal fallow field interpretation in producer and user are 71.43% and 38.46%. If township office surveyed 117 classified illegal fallow fields, 45 of 63 illegal fallow fields will be detected. By using our method, township office can save 38.42% of the manpower to detect illegal fallow fields and receive an examinable 71.43% producer accuracy.
NASA Astrophysics Data System (ADS)
de Oliveira, G. S.; Cardoso, M. F.; Sanches, M. B.; Alexandre, F. F.
2014-12-01
Since the late 1980s a large number of numerical experiments with atmospheric general circulation models has been used to assess the impacts of deforestation on global and regional climate, and one of the main motivations is the Amazon rainforest. In the same way, in the last decade several studies have shown that a higher concentration of CO2 in the atmosphere could lead changes in climate in the Amazon region. In this study we performed new analyses to quantify how deforestation, fire and the increase in atmospheric CO2 concentration may combine to affect the climate in Amazonia during this century. For the projection of land use was considered a spatially explicit land use scenario from Aguiar et al. (2013). The scenario was built using LuccME generic modelling framework and the potential of change considering the proximity to previously deforested areas and also spatial drivers (roads and protected areas). In order to quantify the response of Brazilian Earth System Model, with INLAND-IBIS surface model, to climate change, deforestation and forest fire we performed a suite of simulations in two main categories: 1) the model was running under historical and RCP8.5 greenhouse gas concentration, and 2) the model was forced by the same configuration in 1 but also considering the effects of deforestation and forest fire in Amazon. In summary, the most important changes occur in the East/Northeast and South of the Amazonia and are more evident when are considered all effects (climate change, deforestation and fire). The results show warmer near-surface air temperature in all cases compared to the control case. This relative warming of the deforested land surface is consistent with the reduction in evapotranspiration, the lower leaf area and the lower surface roughness length. There is a reduction in annual precipitation in both cases mainly over eastern/northeastern Amazonia. The reduction in precipitation occurs mainly during the dry season (June-November) in both cases, and there is an increase in dry season length that is more evident when are considered all effects. In summary, we conclude that the synergistic combination of deforestation and climate change resulting from global warming may lead to important impacts that add considerably to the vulnerability of tropical forest ecosystems in the region.
NASA Astrophysics Data System (ADS)
Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.
2015-04-01
This study uses the global climate-economy-biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume - as in Part 1 - that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.
NASA Astrophysics Data System (ADS)
Mollicone, D.; Freibauer, A.; Schulze, E. D.; Braatz, S.; Grassi, G.; Federici, S.
2007-10-01
Carbon emissions from deforestation and degradation account for about 20% of global anthropogenic emissions. Strategies and incentives for reduced emissions from deforestation and degradation (REDD) have emerged as one of the most active areas in the international climate change negotiations under the United Nations Framework Convention on Climate Change (UNFCCC). While the current negotiations focus on a REDD mechanism in developing countries, it should be recognized that risks of carbon losses from forests occur in all climate zones and also in industrialized countries. A future climate change agreement would be more effective if it included all carbon losses and gains from land use in all countries and climate zones. The REDD mechanism will be an important step towards reducing emissions from land use change in developing countries, but needs to be followed by steps in other land use systems and regions. A national approach to REDD and significant coverage globally are needed to deal with the risk that deforestation and degradation activities are displaced rather than avoided. Favourable institutional and governance conditions need to be established that guarantee in the long-term a stable incentive and control system for maintaining forest carbon stocks. Ambitious emission reductions from deforestation and forest degradation need sustained financial incentives, which go beyond positive incentives for reduced emissions but also give incentives for sustainable forest management. Current data limitations need—and can be—overcome in the coming years to allow accurate accounting of reduced emissions from deforestation and degradation. A proper application of the conservativeness approach in the REDD context could allow a simplified reporting of emissions from deforestation in a first phase, consistent with the already agreed UNFCCC reporting principles.
Integrating remotely sensed fires for predicting deforestation for REDD.
Armenteras, Dolors; Gibbes, Cerian; Anaya, Jesús A; Dávalos, Liliana M
2017-06-01
Fire is an important tool in tropical forest management, as it alters forest composition, structure, and the carbon budget. The United Nations program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to sustainably manage forests, as well as to conserve and enhance their carbon stocks. Despite the crucial role of fire management, decision-making on REDD+ interventions fails to systematically include fires. Here, we address this critical knowledge gap in two ways. First, we review REDD+ projects and programs to assess the inclusion of fires in monitoring, reporting, and verification (MRV) systems. Second, we model the relationship between fire and forest for a pilot site in Colombia using near-real-time (NRT) fire monitoring data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The literature review revealed fire remains to be incorporated as a key component of MRV systems. Spatially explicit modeling of land use change showed the probability of deforestation declined sharply with increasing distance to the nearest fire the preceding year (multi-year model area under the curve [AUC] 0.82). Deforestation predictions based on the model performed better than the official REDD early-warning system. The model AUC for 2013 and 2014 was 0.81, compared to 0.52 for the early-warning system in 2013 and 0.68 in 2014. This demonstrates NRT fire monitoring is a powerful tool to predict sites of forest deforestation. Applying new, publicly available, and open-access NRT fire data should be an essential element of early-warning systems to detect and prevent deforestation. Our results provide tools for improving both the current MRV systems, and the deforestation early-warning system in Colombia. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Rull, Valentí; Cañellas-Boltà, Núria; Margalef, Olga; Sáez, Alberto; Pla-Rabes, Sergi; Giralt, Santiago
2015-10-01
Easter Island (Rapa Nui) has been considered an example of how societies can cause their own destruction through the overexploitation of natural resources. The flagship of this ecocidal paradigm is the supposed abrupt, island-wide deforestation that occurred about one millennium ago, a few centuries after the arrival of Polynesian settlers to the island. Other hypotheses attribute the forest demise to different causes such as fruit consumption by rats or aridity but the occurrence of an abrupt, island-wide deforestation during the last millennium has become paradigmatic in Rapa Nui. We argue that such a view can be questioned, as it is based on the palynological study of incomplete records, owing to the existence of major sedimentary gaps. Here, we present a multiproxy (pollen, charcoal and geochemistry) study of the Aroi core, the first gap-free sedimentary sequence of the last millennia obtained to date in the island. Our results show changing vegetation patterns under the action of either climatic or anthropogenic drivers, or both, depending on the time interval considered. Palm forests were present in Aroi until the 16th century, when deforestation started, coinciding with fire exacerbation -likely of human origin- and a dry climate. This is the latest deforestation event recorded so far in the island and took place roughly a century before European contact. In comparison to other Easter Island records, this record shows that deforestation was neither simultaneous nor proceeded at the same pace over the whole island. These findings suggest that Easter Island's deforestation was a heterogeneous process in space and time, and highlights the relevance of local catchment traits in the island's environmental and land management history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledec, G.
1992-01-01
Panama's rapid deforestation for cattle pasture is causing serious environmental problems, as well as negative economic and social consequences. Bank credit encourages deforestation by making cattle pasture expansion more affordable, more profitable, or less risky. Two governmental banks in Panama supply most of the institutional credit provided to small- and medium-scale ranchers, through loans from the Inter-American Development Bank and World Bank. Panama's large-scale ranchers obtain credit mostly from private commercial banks at subsidized interest rates. This study estimates that at least 7-10 percent of Panama's annual deforestation is due to governmental bank cattle credit. Cattle credit is more importantmore » in the loss of remaining forest fragments in long-settled areas than in forest-to-pasture conversion in frontier areas. However, because of the high environmental value of these forest remnants, their credit-induced loss is a serious public policy problem. Other incentives for cattle pasture expansion include beef markets, securing land claims, land price speculation, tax advantages, and the prestige value of cattle ranching. With care, the findings from this study can be generalized to many other tropical Latin American countries. Options available for minimizing deforestation include prohibiting or reducing institutional credit to cattle ranchers, restricting cattle credit to areas where little or no potential exists for additional deforestation, and eliminating interest rate subsidies on cattle credit. Such credit policy reforms would also improve economic efficiency and income distribution. other policy variables also influence Panama's deforestation rate: road construction and improvement, establishment and enforcement of protected areas, land titling laws and procedures, taxes, commercial forestry policies, beef pricing and export policies, the siting of hydroelectric projects, and policies that promote alternative employment for forest settlers.« less
NASA Astrophysics Data System (ADS)
Bholanath, P.; Cort, K.
2015-04-01
Monitoring deforestation and forest degradation at national scale has been identified as a national priority under Guyana's REDD+ Programme. Based on Guyana's MRV (Monitoring Reporting and Verification) System Roadmap developed in 2009, Guyana sought to establish a comprehensive, national system to monitor, report and verify forest carbon emissions resulting from deforestation and forest degradation in Guyana. To date, four national annual assessments have been conducted: 2010, 2011, 2012 and 2013. Monitoring of forest change in 2010 was completed with medium resolution imagery, mainly Landsat 5. In 2011, assessment was conducted using a combination of Landsat (5 and 7) and for the first time, 5m high resolution imagery, with RapidEye coverage for approximately half of Guyana where majority of land use changes were taking place. Forest change in 2013 was determined using high resolution imagery for the whole of Guyana. The current method is an automated-assisted process of careful systematic manual interpretation of satellite imagery to identify deforestation based on different drivers of change. The minimum mapping unit (MMU) for deforestation is 1 ha (Guyana's forest definition) and a country-specific definition of 0.25 ha for degradation. The total forested area of Guyana is estimated as 18.39 million hectares (ha). In 2012 as planned, Guyana's forest area was reevaluated using RapidEye 5 m imagery. Deforestation in 2013 is estimated at 12 733 ha which equates to a total deforestation rate of 0.068%. Significant progress was made in 2012 and 2013, in mapping forest degradation. The area of forest degradation as measured by interpretation of 5 m RapidEye satellite imagery in 2013 was 4 352 ha. All results are subject to accuracy assessment and independent third party verification.
NASA Astrophysics Data System (ADS)
Silva, M. E. S.; Da Rocha, R.; Pereira, G.
2015-12-01
In this study we investigated the climatic impact over South America region due to the increasing of deforestation at the eastern and southern regions of Amazon through the use of the climate model RegCM3 with 50 km of spatial resolution. Many studies, among global and regional models have been used to simulate climatic impact due to deforestation. Most of them used relatively coarse resolution, small domains over South America, besides do not consider deforestation as usually observed. In order to verify the RegCM3 ability to simulate climate impacts due to Amazon deforestation including relatively higher horizontal resolutions, 50 km, a larger domain, the whole South America, deforested areas more similar to the route-shaped commonly seen, and a landuse updating, the model was run for the 2001-2006 period. As the major part of the previous studies focusing Amazon deforestation, RegCM3-50km simulated over degraded areas air temperature increase, ranging from 1.0 to 2.5oC, and precipitation decreasing, ~10%. These aspects are mainly resulting from soil water depletion and roughness vegetation decreasing, both inhibiting evapotranspiration processes. Apart from these results, the model with 50 km simulated precipitation increasing, ~10%, over the eastern South America and adjacent South Atlantic ocean, after Amazon deforestation. Seeking for physical related reasons able to provide the precipitation increasing during rainy seasons, over eastern South America, we found out that upper levels high pressure system (the Bolivian High) intensification, coupled to the southeastward trough, what follows the low troposphere warming, seems to contribute to the precipitation increasing. The climatic impact simulated for winter seasons presents strongest values for areas with altered landuse, over the north region of South America.
Deforestation and cultivation mobilize mercury from topsoil.
Gamby, Rebecca L; Hammerschmidt, Chad R; Costello, David M; Lamborg, Carl H; Runkle, James R
2015-11-01
Terrestrial biomass and soils are a primary global reservoir of mercury (Hg) derived from natural and anthropogenic sources; however, relatively little is known about the fate and stability of Hg in the surface soil reservoir and its susceptibility to change as a result of deforestation and cultivation. In southwest Ohio, we measured Hg concentrations in soils of deciduous old- and new-growth forests, as well as fallow grassland and agricultural soils that had once been forested to examine how, over decadal to century time scales, man-made deforestation and cultivation influence Hg mobility from temperate surface soils. Mercury concentrations in surficial soils were significantly greater in the old-growth than new-growth forest, and both forest soils had greater Hg concentrations than cultivated and fallow fields. Differences in Hg:lead ratios between old-growth forest and agricultural topsoils suggest that about half of the Hg lost from deforested and cultivated Ohio soils may have been volatilized and the other half eroded. The estimated mobilization potential of Hg as a result of deforestation was 4.1 mg m(-2), which was proportional to mobilization potentials measured at multiple locations in the Amazon relative to concentrations in forested surface soils. Based on this relationship and an estimate of the global average of Hg concentrations in forested soils, we approximate that about 550 M mol of Hg has been mobilized globally from soil as a result of deforestation during the past two centuries. This estimate is comparable to, if not greater than, the amount of anthropogenic Hg hypothesized by others to have been sequestered by the soil reservoir since Industrialization. Our results suggest that deforestation and soil cultivation are significant anthropogenic processes that exacerbate Hg mobilization from soil and its cycling in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Biogeophysical consequences of a tropical deforestation scenario: A GCM simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sud, Y.C.; Lau, W.K.M.; Walker, G.K.
1996-12-01
Two 3-year (1979-1982) integrations were carried out with a version of the GLA GCM that contains the Simple Biosphere Model (SiB) for simulating land-atmosphere interactions. The control case used the usual SiB vegetation cover (comprising 12 vegetation types), while its twin, the deforestation case, imposed a scenario in which all tropical rainforests were entirely replaced by grassland. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both integrations. An intercomparison of the integrations shows that tropical: deforestation decreases evapotranspiration and increases land surface outgoing longwave radiation and sensible heat flux, thereby warming and dryingmore » the planetary boundary layer. This happens despite the reduced absorption of solar radiation due to higher surface albedo of the deforested land. Produces significant and robust local as well as global climate changes. The local effect includes significant changes (mostly reductions) in precipitation and diabatic heating, while the large-scale effect is to weaken the Hadley circulation but invigorate the southern Ferrel cell, drawing larger air mass from the indirect polar cells. Decreases the surface stress (drag force) owing to reduced surface roughness of deforested land, which in turn intensifies winds in the planetary boundary layer, thereby affecting the dynamic structure of moisture convergence. The simulated surface winds are about 70% stronger and are accompanied by significant changes in the power spectrum of the annual cycle of surface and PBL winds and precipitation. Our results broadly confirm several findings of recent tropical deforestation simulation experiments. In addition, some global-scale climatic influences of deforestation not identified in earlier studies are delineated. 57 refs., 10 figs., 3 tabs.« less
Impact of the ongoing Amazonian deforestation on local precipitation: A GCM simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, G.K.; Sud, Y.C.; Atlas, R.
1995-03-01
Numerical simulation experiments were conducted to delineate the influence of in situ deforestation data on episodic rainfall by comparing two ensembles of five 5-day integrations performed with a recent version of the Goddard Laboratory for Atmospheres GCM that has a simple biosphere model (SiB). The first set, called control cases, used the standard SiB vegetation cover (comprising 12 biomes) and assumed a fully forested Amazonia, while the second set, called deforestation cases, distinguished the partially deforested regions of Amazonia as savanna. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both sets of integrations.more » The differential analyses of these five cases show the following local effects of deforestation. (1) A discernible decrease in evapotranspiration of about 0.80 mm d{sup {minus}1} (roughly 18%) that is quite robust in the averages for 1-, 2-, and 5-day forecasts. (2) A decrease in precipitation of about 1.18 mm d{sup {minus}1} (roughly 8%) that begins to emerge even in 1-2-day averages and exhibits complex evolution that extends downstream with the winds. A larger decrease in precipitation as compared to evapotranspiration produces some drying and warming. The precipitation differences are consistent with the decrease in atmospheric moisture flux convergence and are consistent with earlier simulation studies of local climate change due to large-scale deforestation. (3) A significant decrease in the surface drag force (as a consequence of reduced surface roughness of deforested regions) that, in turn, affects the dynamical structure of moisture convergence and circulation. The surface winds increase significantly during the first day, and thereafter the increase is well maintained even in the 2- and 5-day averages. 34 refs., 9 figs., 2 tabs.« less
Secondary Forests from Agricultural Abandonment in Amazonia 2000-2009
NASA Technical Reports Server (NTRS)
Morton, Douglas
2010-01-01
Ongoing negotiations to include reducing emissions from tropical deforestation and forest degradation (REDD+) in a post-Kyoto climate agreement highlight the critical role of satellite data for accurate and transparent accounting of forest cover changes. In addition to deforestation and degradation, knowledge of secondary forest dynamics is essential for full carbon accounting under REDD+. Land abandonment to secondary forests also frames one of the key tradeoffs for agricultural production in tropical forest countries-whether to incentivize secondary forest growth (for carbon sequestration and biodiversity conservation) or low-carbon expansion of agriculture or biofuels production in areas of secondary forests. We examined patterns of land abandonment to secondary forest across the arc of deforestation in Brazil and Bolivia using time series of annual Landsat and MODIS data from 2000-2009. Rates of land abandonment to secondary forest during 2002-2006 were less than 5% of deforestation rates in these years. Small areas of new secondary forest were scattered across the entire arc of deforestation, rather than concentrated in any specific region of the basin. Taken together, our analysis of the satellite data record emphasizes the difficulties of addressing the pool of new secondary forests in the context of REDD+ in Amazonia. Due to the small total area of secondary forests, land sparing through agricultural intensification will be an important element of efforts to reduce deforestation rates under REDD+ while improving agricultural productivity in Amazonia.
Post-crackdown effectiveness of field-based forest law enforcement in the Brazilian Amazon.
Börner, Jan; Kis-Katos, Krisztina; Hargrave, Jorge; König, Konstantin
2015-01-01
Regulatory enforcement of forest conservation laws is often dismissed as an ineffective approach to reducing tropical forest loss. Yet, effective enforcement is often a precondition for alternative conservation measures, such as payments for environmental services, to achieve desired outcomes. Fair and efficient policies to reducing emissions from deforestation and forest degradation (REDD) will thus crucially depend on understanding the determinants and requirements of enforcement effectiveness. Among potential REDD candidate countries, Brazil is considered to possess the most advanced deforestation monitoring and enforcement infrastructure. This study explores a unique dataset of over 15 thousand point coordinates of enforcement missions in the Brazilian Amazon during 2009 and 2010, after major reductions of deforestation in the region. We study whether local deforestation patterns have been affected by field-based enforcement and to what extent these effects vary across administrative boundaries. Spatial matching and regression techniques are applied at different spatial resolutions. We find that field-based enforcement operations have not been universally effective in deterring deforestation during our observation period. Inspections have been most effective in reducing large-scale deforestation in the states of Mato Grosso and Pará, where average conservation effects were 4.0 and 9.9 hectares per inspection, respectively. Despite regional and actor-specific heterogeneity in inspection effectiveness, field-based law enforcement is highly cost-effective on average and might be enhanced by closer collaboration between national and state-level authorities.
Carbon emissions risk map from deforestation in the tropical Amazon
NASA Astrophysics Data System (ADS)
Ometto, J.; Soler, L. S.; Assis, T. D.; Oliveira, P. V.; Aguiar, A. P.
2011-12-01
Assis, Pedro Valle This work aims to estimate the carbon emissions from tropical deforestation in the Brazilian Amazon associated to the risk assessment of future land use change. The emissions are estimated by incorporating temporal deforestation dynamics, accounting for the biophysical and socioeconomic heterogeneity in the region, as well secondary forest growth dynamic in abandoned areas. The land cover change model that supported the risk assessment of deforestation, was run based on linear regressions. This method takes into account spatial heterogeneity of deforestation as the spatial variables adopted to fit the final regression model comprise: environmental aspects, economic attractiveness, accessibility and land tenure structure. After fitting a suitable regression models for each land cover category, the potential of each cell to be deforested (25x25km and 5x5 km of resolution) in the near future was used to calculate the risk assessment of land cover change. The carbon emissions model combines high-resolution new forest clear-cut mapping and four alternative sources of spatial information on biomass distribution for different vegetation types. The risk assessment map of CO2 emissions, was obtained by crossing the simulation results of the historical land cover changes to a map of aboveground biomass contained in the remaining forest. This final map represents the risk of CO2 emissions at 25x25km and 5x5 km until 2020, under a scenario of carbon emission reduction target.
Post-Crackdown Effectiveness of Field-Based Forest Law Enforcement in the Brazilian Amazon
Börner, Jan; Kis-Katos, Krisztina; Hargrave, Jorge; König, Konstantin
2015-01-01
Regulatory enforcement of forest conservation laws is often dismissed as an ineffective approach to reducing tropical forest loss. Yet, effective enforcement is often a precondition for alternative conservation measures, such as payments for environmental services, to achieve desired outcomes. Fair and efficient policies to reducing emissions from deforestation and forest degradation (REDD) will thus crucially depend on understanding the determinants and requirements of enforcement effectiveness. Among potential REDD candidate countries, Brazil is considered to possess the most advanced deforestation monitoring and enforcement infrastructure. This study explores a unique dataset of over 15 thousand point coordinates of enforcement missions in the Brazilian Amazon during 2009 and 2010, after major reductions of deforestation in the region. We study whether local deforestation patterns have been affected by field-based enforcement and to what extent these effects vary across administrative boundaries. Spatial matching and regression techniques are applied at different spatial resolutions. We find that field-based enforcement operations have not been universally effective in deterring deforestation during our observation period. Inspections have been most effective in reducing large-scale deforestation in the states of Mato Grosso and Pará, where average conservation effects were 4.0 and 9.9 hectares per inspection, respectively. Despite regional and actor-specific heterogeneity in inspection effectiveness, field-based law enforcement is highly cost-effective on average and might be enhanced by closer collaboration between national and state-level authorities. PMID:25875656
Sources of water vapor to economically relevant regions in Amazonia and the effect of deforestation
NASA Astrophysics Data System (ADS)
Pires, G. F.; Fontes, V. C.
2017-12-01
The Amazon rain forest helps regulate the regional humid climate. Understanding the effects of Amazon deforestation is important to preserve not only the climate, but also economic activities that depend on it, in particular, agricultural productivity and hydropower generation. This study calculates the source of water vapor contributing to the precipitation on economically relevant regions in Amazonia according to different scenarios of deforestation. These regions include the state of Mato Grosso, which produces about 9% of the global soybean production, and the basins of the Xingu and Madeira, with infrastructure under construction that will be capable to generate 20% of the electrical energy produced in Brazil. The results show that changes in rainfall after deforestation are stronger in regions nearest to the ocean and indicate the importance of the continental water vapor source to the precipitation over southern Amazonia. In the two more continental regions (Madeira and Mato Grosso), decreases in the source of water vapor in one region were offset by increases in contributions from other continental regions, whereas in the Xingu basin, which is closer to the ocean, this mechanism did not occur. As a conclusion, the geographic location of the region is an important determinant of the resiliency of the regional climate to deforestation-induced regional climate change. The more continental the geographic location, the less climate changes after deforestation.
Unsustainable development pathways caused by tropical deforestation
Carrasco, Luis Roman; Nghiem, Thi Phuong Le; Chen, Zhirong; Barbier, Edward B.
2017-01-01
Global sustainability strategies require assessing whether countries’ development trajectories are sustainable over time. However, sustainability assessments are limited because losses of natural capital and its ecosystem services through deforestation have not been comprehensively incorporated into national accounts. We update the national accounts of 80 nations that underwent tropical deforestation from 2000 to 2012 and evaluate their development trajectories using weak and strong sustainability criteria. Weak sustainability requires that countries do not decrease their aggregate capital over time. We adopt a strong sustainability criterion that countries do not decrease the value of their forest ecosystem services with respect to the year 2000. We identify several groups of countries: countries, such as Sri Lanka, Bangladesh, and India, that present sustainable development trajectories under both weak and strong sustainability criteria; countries, such as Brazil, Peru, and Indonesia, that present weak sustainable development but fail the strong sustainability criterion as a result of rapid losses of ecosystem services; countries, such as Madagascar, Laos, and Papua New Guinea, that present unsustainable development pathways as a result of deforestation; and countries, such as Democratic Republic of Congo and Sierra Leone, in which deforestation aggravates already unsustainable pathways. Our results reveal a large number of countries where tropical deforestation is both damaging to nature and not compensated by development in other sectors, thus compromising the well-being of their future generations. PMID:28706988
Global cost estimates of reducing carbon emissions through avoided deforestation
Kindermann, Georg; Obersteiner, Michael; Sohngen, Brent; Sathaye, Jayant; Andrasko, Kenneth; Rametsteiner, Ewald; Schlamadinger, Bernhard; Wunder, Sven; Beach, Robert
2008-01-01
Tropical deforestation is estimated to cause about one-quarter of anthropogenic carbon emissions, loss of biodiversity, and other environmental services. United Nations Framework Convention for Climate Change talks are now considering mechanisms for avoiding deforestation (AD), but the economic potential of AD has yet to be addressed. We use three economic models of global land use and management to analyze the potential contribution of AD activities to reduced greenhouse gas emissions. AD activities are found to be a competitive, low-cost abatement option. A program providing a 10% reduction in deforestation from 2005 to 2030 could provide 0.3–0.6 Gt (1 Gt = 1 × 105 g) CO2·yr−1 in emission reductions and would require $0.4 billion to $1.7 billion·yr−1 for 30 years. A 50% reduction in deforestation from 2005 to 2030 could provide 1.5–2.7 Gt CO2·yr−1 in emission reductions and would require $17.2 billion to $28.0 billion·yr−1. Finally, some caveats to the analysis that could increase costs of AD programs are described. PMID:18650377
Naming and Shaming for Conservation: Evidence from the Brazilian Amazon
Cisneros, Elías; Zhou, Sophie Lian; Börner, Jan
2015-01-01
Deforestation in the Brazilian Amazon has dropped substantially after a peak of over 27 thousand square kilometers in 2004. Starting in 2008, the Brazilian Ministry of the Environment has regularly published blacklists of critical districts with high annual forest loss. Farms in blacklisted districts face additional administrative hurdles to obtain authorization for clearing forests. In this paper we add to the existing literature on evaluating the Brazilian anti-deforestation policies by specifically quantifying the impact of blacklisting on deforestation. We first use spatial matching techniques using a set of covariates that includes official blacklisting criteria to identify control districts. We then explore the effect of blacklisting on change in deforestation in double difference regressions with panel data covering the period from 2002 to 2012. Multiple robustness checks are conducted including an analysis of potential causal mechanisms behind the success of the blacklist. We find that the blacklist has considerably reduced deforestation in the affected districts even after controlling for the potential mechanism effects of field-based enforcement, environmental registration campaigns, and rural credit. PMID:26398096
Deforestation and child diet diversity: A geospatial analysis of 15 Sub-Saharan African countries.
Galway, Lindsay P; Acharya, Yubraj; Jones, Andrew D
2018-05-01
Deforestation worldwide could have important consequences for diet quality and human nutrition given the numerous ecosystem services that are provided by forests and biodiverse landscapes. Yet, empirical research assessing the links between deforestation and diets is lacking. In this study, we examined the association between deforestation and diet diversity among children using geolocated Demographic and Health Survey data for 33,777 children across 15 countries of sub-Saharan Africa coupled with remotely-sensed data on forest cover loss. Deforestation was negatively associated with diet diversity (regression coefficient (95% CI): - 0.47 (- 0.76, - 0.18)), as well as recent consumption of legumes and nuts, flesh foods, and fruits and vegetables among children aged 6 months to 24 months. Regionally, these trends were statistically significant only in the West Africa region. This hypothesis-generating research adds to the growing body of evidence that forests and forest-based ecosystems are associated with diet quality and nutrition and provides support for future studies that examine mechanisms linking forest loss and human nutrition. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Coca Castro, Alejandro; Reymondin, Louis; Rebetez, Julien; Fabio Satizabal Mejia, Hector; Perez-Uribe, Andres; Mulligan, Mark; Smith, Thomas; Hyman, Glenn
2017-04-01
Global land use monitoring is important to the the Sustainable Development Goals (SDGs). The latest advances in storage and manipulation of big earth-observation data have been key to developing multiple operational forest monitoring initiatives such as FORMA, Terra-i and Global Forest Change. Although the data provided by these systems are useful for identifying and estimating newly deforested areas (from 2000), they do not provide details about the land use to which these deforested areas are transitioned. This information is critical to understand the biodiversity and ecosystem services impact of deforestation and the resulting impacts on human wellbeing, locally and downstream. With the aim of contributing to current forest monitoring initiatives, this research presents a set of experimental case studies in Latin America which integrate existing land-change information derived from remote sensing image and aerial photography/ground datasets, high-temporal resolution MODIS data, advanced machine learning (i.e deep learning) and big data technologies (i.e. Hadoop and Spark) to assess land-use change trajectories in newly deforested areas in near real time.
Calculating the social cost of illegal drugs: a theoretical approach.
Diomidous, Marianna; Zimeras, Stelios; Mechili, Aggelos
2013-01-01
The use of illegal drugs generates a wide range of social harms depending on various ways, according to the policy definition of the problem. The challenge is the way to model the impact of illegal drugs use during a long time period considering the factors that affects the process. Based on these models, estimation could be measured and prediction could be achieved. The illegal drugs use might affect the economic and social structure of the public system leading to direct and effective decisions to overcome the problematic. For that reason, calculation of social cost related to the use of illegal could be introduced over time (t) as a proposed social measure to define the variability of social indicator on society. In this work, a theoretical approach for the calculation of social cost of illegal drugs is proposed and models over time are defined.
Schneibel, Anne; Stellmes, Marion; Röder, Achim; Finckh, Manfred; Revermann, Rasmus; Frantz, David; Hill, Joachim
2016-04-01
The repopulation of abandoned areas in Angola after 27years of civil war led to a fast and extensive expansion of agricultural fields to meet the rising food demand. Yet, the increase in crop production at the expense of natural resources carries an inherent potential for conflicts since the demand for timber and wood extraction are also supposed to rise. We use the concept of ecosystem services to evaluate the trade-off between food and woody biomass. Our study area is located in central Angola, in the highlands of the upper Okavango catchment. We used Landsat data (spatial resolution: 30×30m) with a bi-temporal and multi-seasonal change detection approach for five time steps between 1989 and 2013 to estimate the conversion area from woodland to agriculture. Overall accuracy is 95%, user's accuracy varies from 89-95% and producer's accuracy ranges between 92-99%. To quantify the trade-off between woody biomass and the amount of food, this information was combined with indicator values and we furthermore assessed biomass regrowth on fallows. Our results reveal a constant rise in agricultural expansion from 1989-2013 with the mean annual deforestation rate increasing from roughly 5300ha up to about 12,000ha. Overall, 5.6% of the forested areas were converted to agriculture, whereas the FAO states a national deforestation rate for Angola of 5% from 1990-2010 (FAO, 2010). In the last time step 961,000t per year of woodland were cleared to potentially produce 1240t per year of maize. Current global agro-economical projections forecast increasing pressure on tropical dry forests from large-scale agriculture schemes (Gasparri et al., 2015; Searchinger and Heimlich, 2015). Our study underlines the importance of considering subsistence-related change processes, which may contribute significantly to negative effects associated with deforestation and degradation of these forest ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Coe, H.; Morgan, W.; Darbyshire, E.; Allan, J. D.; Flynn, M.; Liu, D.; Langridge, J.; Johnson, B. T.; Haywood, J. M.; Longo, K.; Artaxo, P.; Highwood, E.; Mollard, J.
2015-12-01
Open biomass burning makes a substantial contribution to the global budget of black carbon, yet models significantly underestimate absorption aerosol optical depth compared to observations by approximately a factor of two over South America. These large differences need to be addressed. Recent work has shown that the number of deforestation fires has decreased across Amazonia over the last decade, giving rise to a decrease in the abundance of biomass burning aerosol across the region. At the same time there has been an increase in the frequency of agricultural burning across regions that have previously been deforested, as well as increased burning in the east of Brazil in the Cerrado regions. We sampled both of these types of open burning extensively during a recent aircraft experiment. Significant concentrations of organic carbon as well as black carbon were observed, with this ratio providing the main control on the single scattering albedo (SSA).Deforestation fires and wild forest fires are prevalent across the south west of the Amazon Basin, where smouldering burning dominates. In the east of Brazil, agricultural burning proceeds via a much more efficient form of combustion and as a result, black carbon is a much larger fraction of the aerosol mass and SSAs are much lower than in the west. We have analysed MISR data across the region to show that whilst aerosol optical depths have decreased during the dry season over the last decade, with greater rates of reduction occurring over the south western margins of Amazonia, absorption aerosol optical depths have significantly increased over the Cerrado and remained constant over south western Amazonia. This has led to a decline in SSA across the whole of the region with greater reductions occurring over the eastern states. This finding is consistent with our aircraft measurements. We will discuss the implications of these changes for air quality and climate across the region.
Perception of illegal practice of medicine by Brazilian medical students.
Lins, Liliane; Herbas, Suzana; Lisboa, Larissa; Damasceno, Hannah; Menezes, Marta
2014-06-01
Illegal practice of medicine by medical students is a worldwide problem. In Brazil, information about this issue is scarce. To describe the perception of illegal practice of medicine by medical students. A cross-sectional study in a stratified random sample of 130 medical students in the 6th to 12th semesters from a private faculty of medicine in Salvador, State of Bahia, Brazil, from September to October 2011. Students responded to a standardised questionnaire about the illegal practice of medicine by medical students. Knowing medical students who practised medical activities without supervision was reported by 86% of the respondents, and 93.8% had heard about someone who performed such practices. Medical specialties most often associated with illegal practice were general medicine (78.8%) and occupational health (55.9%). Illegal practice of medicine was more common in peripheral cities/towns (83.9%) than in the State capital, Salvador City (52.4%). Only 10.5% of illegal activities were reported to the authorities. Unsupervised medical practice was more often reported in the 8th-9th semester (56.8%) and 10th-11th semester (54.4%) of medical school. Illegal practice of medicine was commonly reported by the medical students questioned. The high frequency of reported illegal practice for financial reasons highlights the need for greater availability of paid internships for medical students. Educational institutions represent the social control responsible for supervising the activities of academics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Drug vaping applied to cannabis: Is “Cannavaping” a therapeutic alternative to marijuana?
Varlet, Vincent; Concha-Lozano, Nicolas; Berthet, Aurélie; Plateel, Grégory; Favrat, Bernard; De Cesare, Mariangela; Lauer, Estelle; Augsburger, Marc; Thomas, Aurélien; Giroud, Christian
2016-01-01
Therapeutic cannabis administration is increasingly used in Western countries due to its positive role in several pathologies. Dronabinol or tetrahydrocannabinol (THC) pills, ethanolic cannabis tinctures, oromucosal sprays or table vaporizing devices are available but other cannabinoids forms can be used. Inspired by the illegal practice of dabbing of butane hashish oil (BHO), cannabinoids from cannabis were extracted with butane gas, and the resulting concentrate (BHO) was atomized with specific vaporizing devices. The efficiency of “cannavaping,” defined as the “vaping” of liquid refills for e-cigarettes enriched with cannabinoids, including BHO, was studied as an alternative route of administration for therapeutic cannabinoids. The results showed that illegal cannavaping would be subjected to marginal development due to the poor solubility of BHO in commercial liquid refills (especially those with high glycerin content). This prevents the manufacture of liquid refills with high BHO concentrations adopted by most recreational users of cannabis to feel the psychoactive effects more rapidly and extensively. Conversely, “therapeutic cannavaping” could be an efficient route for cannabinoids administration because less concentrated cannabinoids-enriched liquid refills are required. However, the electronic device marketed for therapeutic cannavaping should be carefully designed to minimize potential overheating and contaminant generation. PMID:27228348
Drug vaping applied to cannabis: Is "Cannavaping" a therapeutic alternative to marijuana?
Varlet, Vincent; Concha-Lozano, Nicolas; Berthet, Aurélie; Plateel, Grégory; Favrat, Bernard; De Cesare, Mariangela; Lauer, Estelle; Augsburger, Marc; Thomas, Aurélien; Giroud, Christian
2016-05-26
Therapeutic cannabis administration is increasingly used in Western countries due to its positive role in several pathologies. Dronabinol or tetrahydrocannabinol (THC) pills, ethanolic cannabis tinctures, oromucosal sprays or table vaporizing devices are available but other cannabinoids forms can be used. Inspired by the illegal practice of dabbing of butane hashish oil (BHO), cannabinoids from cannabis were extracted with butane gas, and the resulting concentrate (BHO) was atomized with specific vaporizing devices. The efficiency of "cannavaping," defined as the "vaping" of liquid refills for e-cigarettes enriched with cannabinoids, including BHO, was studied as an alternative route of administration for therapeutic cannabinoids. The results showed that illegal cannavaping would be subjected to marginal development due to the poor solubility of BHO in commercial liquid refills (especially those with high glycerin content). This prevents the manufacture of liquid refills with high BHO concentrations adopted by most recreational users of cannabis to feel the psychoactive effects more rapidly and extensively. Conversely, "therapeutic cannavaping" could be an efficient route for cannabinoids administration because less concentrated cannabinoids-enriched liquid refills are required. However, the electronic device marketed for therapeutic cannavaping should be carefully designed to minimize potential overheating and contaminant generation.
[Current and future legislation of illegal drugs in Tokyo].
Abe, Tetsuya
2013-01-01
Abuse of illegal drugs is widespread among young people, especially in the so-called "dance club scene" or "rave scene". Severe and even fatal poisonings have been attributed to the consumption of such drugs of abuse. The actions against these drugs by the Tokyo Metropolitan Government and subsequently by the Government of Japan have gone some way to reducing the potential harm caused by these substances. However, alternative products have been advertised on a number of websites. During our careful surveillance of illegal drugs in 2011, we found seven unregulated drugs advertised. This means that we have an obligation to continue strict surveillance of illegal drugs and to structure a system of temporary bans on illegal drugs.
Space -based monitoring of archaeological looting using multitemporal satellite data
NASA Astrophysics Data System (ADS)
Lasaponara, R.; Masini, N.
2012-04-01
Illegal excavations represent one of the main risk factors which affect the archaeological heritage all over the world, in particular in those countries, from Southern America to Middle East, where the surveillance on site is little effective and time consuming and the aerial surveillance is non practicable due to military or political restrictions. In such contexts satellite remote sensing offers a suitable chance to monitor this phenomenon.. Looting phenomenon is much more dramatic during wars or armed conflicts, as occurred in Iraq during the two Gulf Wars, where "total area looted was many times greater than all the archaeological investigations ever conducted in southern Iraq" (Stone E. 2008). Media reports described the massive looting in broad daylight and destruction of the Iraqi museums and other cultural institutions. Between 2003 and 2004, several buried ancient cities have been completely eaten away by crater-like holes (http://www.savingantiquities.org/feature_page.php?featureID=7), and many other archaeological sites would be pillaged without the valuable activity of the Italian Carabinieri, responsible for guarding archaeological sites in the region of Nassyriah. To contrast and limit this phenomenon a systematic monitoring is required. Up to now, the protection of archaeological heritage from illegal diggings is generally based on a direct or aerial surveillance, which are time consuming, expensive and not suitable for extensive areas. VHR satellite images offer a suitable chance thanks to their global coverage and frequent re-visitation times. In this paper, automatic data processing approaches, based on filtering, geospatial analysis and wavelet, have been applied to enhance spatial and spectral anomaly linked to illegal excavations to make their semiautomatic identification easier. Study areas from Middle east and Southern America have been processed and discussed.
Effectiveness of China's National Forest Protection Program and nature reserves.
Ren, Guopeng; Young, Stephen S; Wang, Lin; Wang, Wei; Long, Yongcheng; Wu, Ruidong; Li, Junsheng; Zhu, Jianguo; Yu, Douglas W
2015-10-01
There is profound interest in knowing the degree to which China's institutions are capable of protecting its natural forests and biodiversity in the face of economic and political change. China's 2 most important forest-protection policies are its National Forest Protection Program (NFPP) and its national-level nature reserves (NNRs). The NFPP was implemented in 2000 in response to deforestation-caused flooding. We undertook the first national, quantitative assessment of the NFPP and NNRs to examine whether the NFPP achieved its deforestation-reduction target and whether the NNRs deter deforestation altogether. We used MODIS data to estimate forest cover and loss across mainland China (2000-2010). We also assembled the first-ever polygon dataset for China's forested NNRs (n = 237, 74,030 km(2) in 2000) and used both conventional and covariate-matching approaches to compare deforestation rates inside and outside NNRs (2000-2010). In 2000, 1.765 million km(2) or 18.7% of mainland China was forested (12.3% with canopy cover of ≥70%)) or woodland (6.4% with canopy cover <70% and tree plus shrub cover ≥40%). By 2010, 480,203 km(2) of forest and woodland had been lost, an annual deforestation rate of 2.7%. Forest-only loss was 127,473 km(2) (1.05% annually). In the NFPP provinces, the forest-only loss rate was 0.62%, which was 3.3 times lower than in the non-NFPP provinces. Moreover, the Landsat data suggest that these loss rates are overestimates due to large MODIS pixel size. Thus, China appears to have achieved, and even exceeded, its target of reducing deforestation to 1.1% annually in the NFPP provinces. About two-thirds of China's NNRs were effective in protecting forest cover (prevented loss 4073 km(2) unmatched approach; 3148 km(2) matched approach), and within-NNR deforestation rates were higher in provinces with higher overall deforestation. Our results indicate that China's existing institutions can protect domestic forest cover. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Winckler, J.; Reick, C. H.; Lejeune, Q.; Pongratz, J.
2017-12-01
Deforestation influences temperature locally by changing the water, energy and momentum balance. While most observation-based studies and some modeling studies focused on the effects on surface temperature, other studies focused on the effects on near-surface air temperature. However, these two variables may respond differently to deforestation because changes in albedo and surface roughness may alter the land-atmosphere coupling and thus the vertical temperature distribution. Thus it is unclear whether it is possible to compare studies that assess the impacts of deforestation on these two different variables. Here, we analyze the biogeophysical effects of global-scale deforestation in the climate model MPI-ESM separately for surface temperature, 2m-air temperature and temperature the lowest atmospheric model layer. We investigate why the response of these variables differs by isolating the effects of only changing surface albedo and only changing surface roughness and by separating effects that are induced at the location of deforestation (local effects) from effects that are induced by advection and changes in circulation (nonlocal effects). Concerning surface temperature, we find that the local effects of deforestation lead to a global mean warming which is overcompensated by the nonlocal effects (up to 0.1K local warming versus -0.3K nonlocal cooling). The surface warming in the local effects is largely driven by the change in surface roughness while the cooling in the nonlocal effects is largely driven by the change in surface albedo. The nonlocal effects are largely consistent across surface temperature, 2m-air temperature, and the temperature of the lowest atmospheric layer. However, the local effects strongly differ across the three considered variables. The local effects are strong for surface temperature, but substantially weaker in the 2m-air temperature and largely absent in the lowest atmospheric layer. We conclude that studies focusing on the deforestation effects on surface temperature should not be compared to studies focusing on the effects on air temperature. While the local effects on surface temperature are useful for model evaluation, they might be less relevant for local adaptation and mitigation than previously thought because they might largely be absent in the atmosphere.
EDITORIAL: Tropical deforestation and greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Gibbs, Holly K.; Herold, Martin
2007-10-01
Carbon emissions from tropical deforestation have long been recognized as a key component of the global carbon budget, and more recently of our global climate system. Tropical forest clearing accounts for roughly 20% of anthropogenic carbon emissions and destroys globally significant carbon sinks (IPCC 2007). Global climate policy initiatives are now being proposed to address these emissions and to more actively include developing countries in greenhouse gas mitigation (e.g. Santilli et al 2005, Gullison et al 2007). In 2005, at the Conference of the Parties (COP) in Montreal, the United Nations Framework Convention on Climate Change (UNFCCC) launched a new initiative to assess the scientific and technical methods and issues for developing policy approaches and incentives to reduce emissions from deforestation and degradation (REDD) in developing countries (Gullison et al 2007). Over the last two years the methods and tools needed to estimate reductions in greenhouse gas emissions from deforestation have quickly evolved, as the scientific community responded to the UNFCCC policy needs. This focus issue highlights those advancements, covering some of the most important technical issues for measuring and monitoring emissions from deforestation and forest degradation and emphasizing immediately available methods and data, as well as future challenges. Elements for effective long-term implementation of a REDD mechanism related to both environmental and political concerns are discussed in Mollicone et al. Herold and Johns synthesize viewpoints of national parties to the UNFCCC on REDD and expand upon key issues for linking policy requirements and forest monitoring capabilities. In response to these expressed policy needs, they discuss a remote-sensing-based observation framework to start REDD implementation activities and build historical deforestation databases on the national level. Achard et al offer an assessment of remote sensing measurements across the world's tropical forests that can provide key consistency and prioritization for national-level efforts. Gibbs et al calculate a range of national-level forest carbon stock estimates that can be used immediately, and also review ground-based and remote sensing approaches to estimate national-level tropical carbon stocks with increased accuracy. These papers help illustrate that methodologies and tools are indeed available to estimate emissions from deforestation. Clearly, important technical challenges remain (e.g. quantifying degradation, assessing uncertainty, verification procedures, capacity building, and Landsat data continuity) but we now have a sufficient technical base to support REDD early actions and readiness mechanisms for building national monitoring systems. Thus, we enter the COP 13 in Bali, Indonesia with great hope for a more inclusive climate policy encompassing all countries and emissions sources from both land-use and energy sectors. Our understanding of tropical deforestation and carbon emissions is improving and with that, opportunities to conserve tropical forests and the host of ecosystem services they provide while also increasing revenue streams in developing countries through economic incentives to avoid deforestation and degradation. References Gullison R E et al 2007 Tropical forests and climate policy Science 316 985 6 Intergovernmental Panel on Climate Change (IPCC) 2007 Climate Change 2007: The Physical Science Basis: Summary for Policymakers http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf Santilli M et al 2005 Tropical deforestation and the Kyoto Protocol: an editorial essay Clim. Change 71 267 76 Focus on Tropical Deforestation and Greenhouse Gas Emissions Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Pan-tropical monitoring of deforestation F Achard, R DeFries, H Eva, M Hansen, P Mayaux and H-J Stibig Monitoring and estimating tropical forest carbon stocks: making REDD a reality Holly K Gibbs, Sandra Brown, John O Niles and Jonathan A Foley Elements for the expected mechanisms on 'reduced emissions from deforestation and degradation, REDD' under UNFCCC D Mollicone, A Freibauer, E D Schulze, S Braatz, G Grassi and S Federici
Remote sensing in forestry: Application to the Amazon region
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A.; Filho, P. H.; Shimabukuro, Y. E.
1981-01-01
The utilization of satellite remote sensing in forestry is reviewed with emphasis on studies performed for the Brazilian Amazon Region. Timber identification, deforestation, and pasture degradation after deforestation are discussed.
Medicinal and illegal drugs among Danish car drivers.
Behrensdorff, Inge; Steentoft, Anni
2003-11-01
The objective of this study was to get an insight into the prevalence of medicinal and illegal drugs among car drivers in a Danish rural area. The police randomly stopped about 1000 car drivers and asked them to deliver a saliva sample and gave them a questionnaire to fill in at home. Laboratory analyses by specific methods of samples, which a screening found positive, confirmed that 2% were positive for benzodiazepines or illegal drugs (amphetamine, cannabis, cocaine or opiates): 1.3% were positive for illegal drugs and 0.7% for benzodiazepines. Questionnaire statements from some of the drivers confirm that occasionally some of these drive despite a suspicion to be under the influence of an illegal drug (2.8%), an illegal drug including alcohol (4%), a hazardous medicinal drug including alcohol (8.5%), or alcohol alone above the legal limit (24.5%). These results are considered reliable for the survey area and may not reflect national conditions. The overall results indicate that in this study driving under the influence of illegal drugs or alcohol seems to be associated to especially men, aged 22-44 years. Driving under the influence of hazardous medicinal drugs seems to be associated to middle-aged/elderly drivers, both men and women.
[Illegal abortion with misoprostol in Guadeloupe].
Manouana, M; Kadhel, P; Koffi, A; Janky, E
2013-04-01
The aim of this study was to describe the typical profile, and to assess the motivations of women who underwent illegal abortion with misoprostol in Guadeloupe (French West Indies). We conducted a 1-year prospective study on women who consulted after failure or complication of an illegal abortion with misoprostol. Fifty-two cases of illegal abortion with misoprostol were recorded. The most common profile was an unemployed woman, who was unmarried, foreign-born, had no medical insurance, and a low level of education; the median age was 28 (range 17 to 40). The justifications given were that the legal procedure was considered to be too slow, the young age of the woman, the ease of the self-medication procedure, a history of illegal abortion by misoprostol in the woman's country of origin, ignorance of the legal process, and financial and/or administrative problems. The problem of illegal abortion is probably underestimated in Guadeloupe and possibly France. This description of the profile of the population concerned and the justifications for choosing illegal abortion by misoprostol provides elements allowing better focus of education concerning abortion, contraception and family planning. Access to legal abortion centers should also be improved. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Quantifying the Effect of Macroeconomic and Social Factors on Illegal E-Waste Trade.
Efthymiou, Loukia; Mavragani, Amaryllis; Tsagarakis, Konstantinos P
2016-08-05
As illegal e-waste trade has been significantly growing over the course of the last few years, the consequences on human health and the environment demand immediate action on the part of the global community. Though it is argued that e-waste flows from developed to developing countries, this subject seems to be more complex than that, with a variety of studies suggesting that income per capita is not the only factor affecting the choice of regions that e-waste is illegally shipped to. How is a country's economic and social development associated with illegal e-waste trade? Is legislation an important factor? This paper aims at quantifying macroeconomic (per capita income and openness of economy) and social (human development and social progress) aspects, based on qualitative data on illegal e-waste trade routes, by examining the percentage differences in scorings in selected indicators for all known and suspected routes. The results show that illegal e-waste trade occurs from economically and socially developed regions to countries with significantly lower levels of overall development, with few exceptions, which could be attributed to the fact that several countries have loose regulations on e-waste trade, thus deeming them attractive for potential illegal activities.
Users' and GPs' causal attributions of illegal substance use: an exploratory interview study.
Wynn, Rolf; Karlsen, Kjetil; Lorntzsen, Bianca; Bjerke, Trond Nergaard; Bergvik, Svein
2009-08-01
There is a need to explore the beliefs regarding the causes of illegal substance use of the people who themselves use the substances (SU) and their GPs. Increased knowledge about such beliefs--often referred to as causal attributions--may improve mutual understanding and communication between SU and GPs. Eight SU and five GPs were interviewed about the causes of illegal substance use. They also talked about how substance use was discussed in consultations. Data were analysed qualitatively. Both the SU and the GPs believed that several factors usually were important in each case of illegal substance use. The SU more often than the GPs emphasised the positive aspects of illegal substance use. We discerned five main causes: biological, social, lack of self-control, positive experiences, and chance. Several of the SU and GPs emphasised that it was difficult to communicate about substance use. The GPs and the SU believed illegal substance use is caused by many factors, including biological, social, and lack of self-control. Communicating about illegal substance use is challenging. GPs should be aware of the clinical importance of causal attributions and should explore beliefs held by SU about the causes of their substance use.
Laszlo, Sarah; Stites, Mallory; Federmeier, Kara D
2012-01-01
A growing body of evidence suggests that semantic access is obligatory. Several studies have demonstrated that brain activity associated with semantic processing, measured in the N400 component of the event-related brain potential (ERP), is elicited even by meaningless, orthographically illegal strings, suggesting that semantic access is not gated by lexicality. However, the downstream consequences of that activity vary by item type, exemplified by the typical finding that N400 activity is reduced by repetition for words and pronounceable nonwords but not for illegal strings. We propose that this lack of repetition effect for illegal strings is caused not by lack of contact with semantics, but by the unrefined nature of that contact under conditions in which illegal strings can be readily categorised as task-irrelevant. To test this, we collected ERPs from participants performing a modified Lexical Decision Task, in which the presence of orthographically illegal acronyms rendered meaningless illegal strings more difficult lures than normal. Confirming our hypothesis, under these conditions illegal strings elicited robust N400 repetition effects, quantitatively and qualitatively similar to those elicited by words, pseudowords, and acronyms.
Modelling deforestation trends in Costa Rica and predicting future forest sustainability
NASA Astrophysics Data System (ADS)
Stan, Kayla; Sanchez, Arturo
2017-04-01
Deforestation in Costa Rica has historically varied between the original degradation of primary forest due to land-based industries, followed by secondary regrowth. The regeneration of forests largely came into effect with incentive based programs such as payments for ecosystem services, creation of large protected areas, and a new industry of ecotourism in the country. Given the changes that have occurred within the last 50 years from heavy deforestation pressures to regeneration patterns, and a correlation between deforestation and policy/economic influences, it is important to understand the historical changes that have occurred and how the forests will change in the future, which provides the objective of this study. Future projections are increasingly important given changes in the global socio-political structure, climatic change, and the ever increasing globalization of capitalistic endeavours. The trajectory of the forest in the country can also serve as a way to track both these global pressures on the natural landscape in Costa Rica, and as a proxy for how to manage deforestation in other similar political and geographic areas of the tropics. To determine the historical deforestation trends and link them to the different biogeophysical and socioeconomic variables, forest maps from 1960-2013 were used in the Dinamica Environment for Geoprocessing Objects (Dinamica EGO) to create deforestation models for Costa Rica. Dinamica EGO is a cellular automata model which utilizes Bayesian statistics and expert opinion to replicate both patterns and quantities of land cover change over time with both static and dynamic variables. Additional legislative variables can be used to track how political pressures shift deforestation both spatially and temporally. The historical model was built and analyzed for changes in landscape metrics such as patch size and distance between 1960 and 2013. After validation of the model's ability to replicate patterns, first between 2005 and 2013, and then back to 1997, a future model was created to determine future country wide changes. There was a significant decrease in patch size between 1960 and 2013 in forests and a non-significant decrease is patch size for non-forests. The historical model validated at 85% accuracy within 600m for both the 2005-2013 and 1997-2005 iterations. Future scenario building determines the point in time and area at which the forest area equilibrates, indicating the approximate maximal forest extent under extreme scenarios. None of the scenarios were sufficiently damaging to decrease the forest area below present day levels. The Puntarenas province is the only region which had deforestation in the most extreme scenario. Using the inclusion and exclusion of protected areas within the model, it was determined which of the parks suffers from high pressure of deforestation should there be policy removing protected area status. These parks are predominantly limited to small areas on coastal regions, while the large central parks suffer relatively little pressure from deforestation. This indicates that even under the most extreme scenarios, the secondary forests are likely to remain permanently and continue to regenerate as time progresses.
Human Migration and Agricultural Expansion: An Impending Threat to the Maya Biosphere Reserve
NASA Technical Reports Server (NTRS)
Sader, Steven; Reining, Conard; Sever, Thomas L.; Soza, Carlos
1997-01-01
Evidence is presented of the current threats to the Maya Biosphere Reserve in northern Guatemala as derived through time-series Landsat Thematic Mapper observations and analysis. Estimates of deforestation rates and trends are examined for different management units within the reserve and buffer zones. The satellite imagery was used to quantify and monitor rates, patterns, and trends of forest clearing during a time period corresponding to new road construction and significant human migration into the newly accessible forest region. Satellite imagery is appropriate technology in a vast and remote tropical region where aerial photography and extensive field-based methods are not cost-effective and current, timely data is essential for establishing conservation priorities.
A large-scale deforestation experiment: Effects of patch area and isolation on Amazon birds
Ferraz, G.; Nichols, J.D.; Hines, J.E.; Stouffer, P.C.; Bierregaard, R.O.; Lovejoy, T.E.
2007-01-01
As compared with extensive contiguous areas, small isolated habitat patches lack many species. Some species disappear after isolation; others are rarely found in any small patch, regardless of isolation. We used a 13-year data set of bird captures from a large landscape-manipulation experiment in a Brazilian Amazon forest to model the extinction-colonization dynamics of 55 species and tested basic predictions of island biogeography and metapopulation theory. From our models, we derived two metrics of species vulnerability to changes in isolation and patch area. We found a strong effect of area and a variable effect of isolation on the predicted patch occupancy by birds.
28 CFR 35.131 - Illegal use of drugs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... participation to individuals who engage in illegal use of drugs while they are in the program. (c) Drug testing... procedures, including but not limited to drug testing, designed to ensure that an individual who formerly... of testing for the illegal use of drugs. ...
Impact of the ongoing Amazonian deforestation on local precipitation: A GCM simulation study
NASA Technical Reports Server (NTRS)
Walker, G. K.; Sud, Y. C.; Atlas, R.
1995-01-01
Numerical simulation experiments were conducted to delineate the influence of in situ deforestation data on episodic rainfall by comparing two ensembles of five 5-day integrations performed with a recent version of the Goddard Laboratory for Atmospheres General Circulation Model (GCM) that has a simple biosphere model (SiB). The first set, called control cases, used the standard SiB vegetation cover (comprising 12 biomes) and assumed a fully forested Amazonia, while the second set, called deforestation cases, distinguished the partially deforested regions of Amazonia as savanna. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both sets of integrations. The differential analyses of these five cases show the following local effects of deforestation. (1) A discernible decrease in evapotranspiration of about 0.80 mm/d (roughly 18%) that is quite robust in the averages for 1-, 2-, and 5-day forecasts. (2) A decrease in precipitation of about 1.18 mm/d (roughly 8%) that begins to emerge even in 1-2 day averages and exhibits complex evolution that extends downstream with the winds. (3) A significant decrease in the surface drag force (as a consequence of reduced surface roughness of deforested regions) that, in turn, affects the dynamical structure of moisture convergence and circulation. The surface winds increase significantly during the first day, and thereafter the increase is well maintained even in the 2- and 5-day averages.
Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S
2013-06-04
Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.
Influence of Environmental Governance on Deforestation in Municipalities of the Brazilian Amazon.
Dias, Lilian Fernandes Oliveira; Dias, David Valentim; Magnusson, William Ernest
2015-01-01
It has been argued that measuring governance at scales smaller than global could be an important management tool. However, current studies are conducted on a global scale and use expensive methods. In the present study, we assess whether the reported governance of Amazonian municipalities is related to reductions in deforestation. Economic activity (EA) affected general governance (G) positively (G = 0.81 +1.19 * EA, F1, 98 = 77.36, p < 0.001). Environmental governance (EG) was not affected significantly (p = 0.43) by deforestation before 2000 (PD), but increased significantly (p < 0.001) with general governance (G) (EG = -0.29 + 0.04 PD+0.98*OG, F2,97 = 42.6, p <0.001). Deforestation was not significantly related to environmental governance (p = 0.82). The only indirect effect of significant magnitude was the effect of the density of forest reserves on recent deforestation through deforestation before 2000, which was strongly negative (-0.49). It is possible to assess reported actions to promote municipal governance through official data. However, it is not enough to assume that general governance or environmental governance at the municipal level, as reflected in the official statistics, benefits environmental conservation. In fact, even at the level of nation states, at which most quantification of governance has been undertaken, it seems that the relationship between governance and environmental preservation is only an assumption, because we are aware of no study that supports that hypothesis quantitatively.
Influence of Environmental Governance on Deforestation in Municipalities of the Brazilian Amazon
Dias, Lilian Fernandes Oliveira; Dias, David Valentim; Magnusson, William Ernest
2015-01-01
It has been argued that measuring governance at scales smaller than global could be an important management tool. However, current studies are conducted on a global scale and use expensive methods. In the present study, we assess whether the reported governance of Amazonian municipalities is related to reductions in deforestation. Economic activity (EA) affected general governance (G) positively (G = 0.81 +1.19 * EA, F1, 98 = 77.36, p < 0.001). Environmental governance (EG) was not affected significantly (p = 0.43) by deforestation before 2000 (PD), but increased significantly (p < 0.001) with general governance (G) (EG = -0.29 + 0.04 PD+0.98*OG, F2,97 = 42.6, p <0.001). Deforestation was not significantly related to environmental governance (p = 0.82). The only indirect effect of significant magnitude was the effect of the density of forest reserves on recent deforestation through deforestation before 2000, which was strongly negative (-0.49). It is possible to assess reported actions to promote municipal governance through official data. However, it is not enough to assume that general governance or environmental governance at the municipal level, as reflected in the official statistics, benefits environmental conservation. In fact, even at the level of nation states, at which most quantification of governance has been undertaken, it seems that the relationship between governance and environmental preservation is only an assumption, because we are aware of no study that supports that hypothesis quantitatively. PMID:26208282
Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD
NASA Astrophysics Data System (ADS)
Gumpenberger, Marlies; Vohland, Katrin; Heyder, Ursula; Poulter, Benjamin; Macey, Kirsten; Rammig, Anja; Popp, Alexander; Cramer, Wolfgang
2010-01-01
Deforestation is a major threat to tropical forests worldwide, contributing up to one-fifth of global carbon emissions into the atmosphere. Despite protection efforts, deforestation of tropical forests has continued in recent years. Providing incentives to reducing deforestation has been proposed in the United Nations Framework Convention on Climate Change (UNFCCC) Bali negotiations in 2007 to decelerate emissions from deforestation (REDD—reduced emissions from deforestation and forest degradation). A number of methodological issues such as ensuring permanence, establishing reference emissions levels that do not reward business-as-usual and having a measuring, reporting and verification system in place are essential elements in implementing successful REDD schemes. To assess the combined impacts of climate and land-use change on tropical forest carbon stocks in the 21st century, we use a dynamic global vegetation model (LPJ DGVM) driven by five different climate change projections under a given greenhouse gas emission scenario (SRES A2) and two contrasting land-use change scenarios. We find that even under a complete stop of deforestation after the period of the Kyoto Protocol (post-2012) some countries may continue to lose carbon stocks due to climate change. Especially at risk is tropical Latin America, although the presence and magnitude of the risk depends on the climate change scenario. By contrast, strong protection of forests could increase carbon uptake in many tropical countries, due to CO2 fertilization effects, even under altered climate regimes.
Albedo as a modulator of climate response to tropical deforestation
NASA Technical Reports Server (NTRS)
Dirmeyer, Paul A.; Shukla, J.
1994-01-01
An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.
Albedo as a modulator of climate response to tropical deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirmeyer, P.A.; Shukla, J.
1994-10-01
An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years` duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, ismore » strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.« less
Drinking Drivers and Drug Use on Weekend Nights in the United States*
Voas, Robert B.; Lacey, John H.; Jones, Kristina; Scherer, Michael; Compton, Richard
2012-01-01
BACKGROUND Studies of drinking drivers in alcohol-related crashes have shown that high breath-alcohol concentrations (BrACs) are associated with illegal drug use. Until the 2007 National Roadside Survey (NRS), the prevalence of drugs among drinking drivers on U.S. roads was unknown. Using NRS data, we explore how many drivers with positive BrACs may also be using drugs and their significance to current drinking-driving enforcement procedures. METHODS Based on a stratified, random sample covering the 48 U.S. contiguous states, we conducted surveys on weekend nights from July-November 2007. Of the 8,384 eligible motorists contacted, 85.4% provided a breath sample; 70.0%, an oral fluid sample; and 39.1%, a blood sample. We conducted regression analyses on 5,912 participants with a breath test and an oral fluid or blood test. The dependent variables of interest were illegal drugs (cocaine, cannabinoids, street drugs, street amphetamines, and opiates) and medicinal drugs (prescription and over-the-counter). RESULTS 10.5% of nondrinking drivers were using illegal drugs, and 26 to 33% of drivers with illegal BrACs (≥.08 g/dL) were using illegal drugs. Medicinal drug use was more common among nondrinking drivers (4.0%) than among drivers with illegal BrACs (2.4%). CONCLUSIONS The significant relationship between an illegal BrAC and the prevalence of an illegal drug suggests as many as 350,000 illegal drug-using drivers are arrested each year for DWI by U.S. alcohol-impaired driving enforcement. These drug-using drivers need to be identified and appropriate sanctions/treatment programs implemented for them in efforts to extend per se laws to unapprehended drug users. PMID:23265090
Including the biogeochemical impacts of deforestation increases projected warming of climate
NASA Astrophysics Data System (ADS)
Scott, Catherine; Monks, Sarah; Spracklen, Dominick; Arnold, Stephen; Forster, Piers; Rap, Alexandru; Carslaw, Kenneth; Chipperfield, Martyn; Reddington, Carly; Wilson, Christopher
2016-04-01
Forests cover almost one third of the Earth's land area and their distribution is changing as a result of human activities. The presence, and removal, of forests affects the climate in many ways, with the net climate impact of deforestation dependent upon the relative strength of these effects (Betts, 2000; Bala et al., 2007; Davin and de Noblet-Ducoudré, 2010). In addition to controlling the surface albedo and exchanging carbon dioxide (CO2) and moisture with the atmosphere, vegetation emits biogenic volatile organic compounds (BVOCs), which lead to the formation of biogenic secondary organic aerosol (SOA) and alter the oxidative capacity of the atmosphere, affecting ozone (O3) and methane (CH4) concentrations. In this work, we combine a land-surface model with a chemical transport model, a global aerosol model, and a radiative transfer model to compare several radiative impacts of idealised deforestation scenarios in the present day. We find that the simulated reduction in biogenic SOA production, due to complete global deforestation, exerts a positive combined aerosol radiative forcing (RF) of between +308.0 and +362.7 mW m-2; comprised of a direct radiative effect of between +116.5 and +165.0 mW m-2, and a first aerosol indirect effect of between +191.5 and +197.7 mW m-2. We find that the reduction in O3 exerts a negative RF of -150.7 mW m-2 and the reduction in CH4 results in a negative RF of -76.2 mWm-2. When the impacts on biogenic SOA, O3 and CH4 are combined, global deforestation exerts an overall positive RF of between +81.1 and +135.9 mW m-2 through changes to short-lived climate forcers (SLCF). Taking these additional biogeochemical impacts into account increases the net positive RF of complete global deforestation, due to changes in CO2 and surface albedo, by 7-11%. Overall, our work suggests that deforestation has a stronger warming impact on climate than previously thought. References: Bala, G. et al., 2007. Combined climate and carbon-cycle effects of large-scale deforestation. PNAS, 104, 6550-6555. Betts, R. A. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187-190. Davin, E. L. & De Noblet-Ducoudré, N. 2010. Climatic Impact of Global-Scale Deforestation: Radiative versus Non-radiative Processes. Journal of Climate, 23, 97-112. .
Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching.
Cramer, Katie L; Jackson, Jeremy B C; Angioletti, Christopher V; Leonard-Pingel, Jill; Guilderson, Thomas P
2012-06-01
Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change. © 2012 Blackwell Publishing Ltd/CNRS.
Understanding illegality and corruption in forest governance.
Sundström, Aksel
2016-10-01
This review synthesizes the literature studying illegality and government corruption in forest management. After discussing the theoretical connections between different types of corruption and illegal forest-related activities it describes the major trends in previous studies, examining cross-national patterns as well as local in-depth studies. Both theory and available empirical findings provide a straightforward suggestion: Bribery is indeed a "door opener" for illegal activities to take place in forest management. It then discusses the implications for conservation, focusing first on international protection schemes such as the REDD+ and second on efforts to reduce illegality and bribery in forest management. Key aspects to consider in the discussion on how to design monitoring institutions of forest regulations is how to involve actors without the incentive to engage in bribery and how to make use of new technologies that may publicize illegal behavior in distant localities. The review concludes by discussing avenues for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Economic interventions to discourage the illegal sale of cigarettes to minors in New York State.
Cummings, K M; Pechacek, T; Sciandra, E
1992-12-01
In New York State it is illegal to sell tobacco products to persons under the age of 18 years. In most communities, compliance with this law is poor. This study provides estimates of teenage cigarette smoking and the illegal sale of cigarettes to minors in 1990 in each of New York's 57 counties and in New York City. Results show that in New York State, approximately 135,700 teens between the ages of 12 and 17 years are regular cigarette smokers. Data available on the cigarette consumption and purchasing habits of teenage smokers reveal that nearly 21.9 million packs of cigarettes were sold illegally to minors in 1991 in New York State. This finding underscores the fact that cigarette sales to underage youth in New York is big business, representing $39.5 million in sales annually. Government officials should consider levying an illegal drug profit tax on the cigarette industry to recover the millions in profits derived annually from the illegal sale of cigarettes to children.
Harrelson, Megan E; Alexander, Apryl A; Morais, Hugo B; Burkhart, Barry R
2017-07-01
The current study examined the relationship among self-disclosure of illegal sexual behaviors and two conceptually relevant constructs in psychotherapy: childhood polyvictimization (i.e., cumulative types of victimization experienced during childhood) and caregiver attachment. Participants consisted of 63 adolescent males participating in mandated treatment for illegal sexual behavior. Childhood polyvictimization and caregiver attachment were expected to predict self-disclosure of illegal sexual behaviors. Quality of caregiver attachment was also expected to mediate the relationship between polyvictimization and disclosure. Consistent with our main hypothesis, results indicate that quality of caregiver attachment mediated the relationship between childhood polyvictimization and self-disclosure of illegal sexual behaviors in psychotherapy. The current findings highlight the impact of polyvictimization on important therapeutic processes as well as the importance of assessing for multiple types of victimization in adolescents who engage in illegal sexual behavior. Further clinical implications regarding the use of trauma-informed approaches during sex offender treatment are discussed.
A deforestation-induced tipping point for the South American monsoon system.
Boers, Niklas; Marwan, Norbert; Barbosa, Henrique M J; Kurths, Jürgen
2017-01-25
The Amazon rainforest has been proposed as a tipping element of the earth system, with the possibility of a dieback of the entire ecosystem due to deforestation only of parts of the rainforest. Possible physical mechanisms behind such a transition are still subject to ongoing debates. Here, we use a specifically designed model to analyse the nonlinear couplings between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the South American continent. These couplings are associated with a westward cascade of precipitation and evapotranspiration across the Amazon. We investigate impacts of deforestation on the South American monsoonal circulation with particular focus on a previously neglected positive feedback related to condensational latent heating over the rainforest, which strongly enhances atmospheric moisture inflow from the Atlantic. Our results indicate the existence of a tipping point. In our model setup, crossing the tipping point causes precipitation reductions of up to 40% in non-deforested parts of the western Amazon and regions further downstream. The responsible mechanism is the breakdown of the aforementioned feedback, which occurs when deforestation reduces transpiration to a point where the available atmospheric moisture does not suffice anymore to release the latent heat needed to maintain the feedback.
A deforestation-induced tipping point for the South American monsoon system
Boers, Niklas; Marwan, Norbert; Barbosa, Henrique M. J.; Kurths, Jürgen
2017-01-01
The Amazon rainforest has been proposed as a tipping element of the earth system, with the possibility of a dieback of the entire ecosystem due to deforestation only of parts of the rainforest. Possible physical mechanisms behind such a transition are still subject to ongoing debates. Here, we use a specifically designed model to analyse the nonlinear couplings between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the South American continent. These couplings are associated with a westward cascade of precipitation and evapotranspiration across the Amazon. We investigate impacts of deforestation on the South American monsoonal circulation with particular focus on a previously neglected positive feedback related to condensational latent heating over the rainforest, which strongly enhances atmospheric moisture inflow from the Atlantic. Our results indicate the existence of a tipping point. In our model setup, crossing the tipping point causes precipitation reductions of up to 40% in non-deforested parts of the western Amazon and regions further downstream. The responsible mechanism is the breakdown of the aforementioned feedback, which occurs when deforestation reduces transpiration to a point where the available atmospheric moisture does not suffice anymore to release the latent heat needed to maintain the feedback. PMID:28120928
State and evolution of the African rainforests between 1990 and 2010
Mayaux, Philippe; Pekel, Jean-François; Desclée, Baudouin; Donnay, François; Lupi, Andrea; Achard, Frédéric; Clerici, Marco; Bodart, Catherine; Brink, Andreas; Nasi, Robert; Belward, Alan
2013-01-01
This paper presents a map of Africa's rainforests for 2005. Derived from moderate resolution imaging spectroradiometer data at a spatial resolution of 250 m and with an overall accuracy of 84%, this map provides new levels of spatial and thematic detail. The map is accompanied by measurements of deforestation between 1990, 2000 and 2010 for West Africa, Central Africa and Madagascar derived from a systematic sample of Landsat images—imagery from equivalent platforms is used to fill gaps in the Landsat record. Net deforestation is estimated at 0.28% yr−1 for the period 1990–2000 and 0.14% yr−1 for the period 2000–2010. West Africa and Madagascar exhibit a much higher deforestation rate than the Congo Basin, for example, three times higher for West Africa and nine times higher for Madagascar. Analysis of variance over the Congo Basin is then used to show that expanding agriculture and increasing fuelwood demands are key drivers of deforestation in the region, whereas well-controlled timber exploitation programmes have little or no direct influence on forest-cover reduction at present. Rural and urban population concentrations and fluxes are also identified as strong underlying causes of deforestation in this study. PMID:23878331
Accelerated deforestation driven by large-scale land acquisitions in Cambodia
NASA Astrophysics Data System (ADS)
Davis, Kyle Frankel; Yu, Kailiang; Rulli, Maria Cristina; Pichdara, Lonn; D'Odorico, Paolo
2015-10-01
Investment in agricultural land in the developing world has rapidly increased in the past two decades. In Cambodia, there has been a surge in economic land concessions, in which long-term leases are provided to foreign and domestic investors for economic development. More than two million hectares have been leased so far, sparking debate over the consequences for local communities and the environment. Here we combined official records of concession locations with a high-resolution data set of changes in forest cover to quantify the contribution of land concessions to deforestation between 2000 and 2012. We used covariate matching to control for variables other than classification as a concession that may influence forest loss. Nearly half of the area where concessions were granted between 2000 and 2012 was forested in 2000; this area then represented 12.4% of forest land cover in Cambodia. Within concessions, the annual rate of forest loss was between 29% and 105% higher than in comparable land areas outside concessions. Most of the deforestation within concessions occurred after the contract date, and whether an investor was domestic or foreign had no effect on deforestation rates. We conclude that land acquisitions can act as powerful drivers of deforestation.
A deforestation-induced tipping point for the South American monsoon system
NASA Astrophysics Data System (ADS)
Boers, Niklas; Marwan, Norbert; Barbosa, Henrique M. J.; Kurths, Jürgen
2017-01-01
The Amazon rainforest has been proposed as a tipping element of the earth system, with the possibility of a dieback of the entire ecosystem due to deforestation only of parts of the rainforest. Possible physical mechanisms behind such a transition are still subject to ongoing debates. Here, we use a specifically designed model to analyse the nonlinear couplings between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the South American continent. These couplings are associated with a westward cascade of precipitation and evapotranspiration across the Amazon. We investigate impacts of deforestation on the South American monsoonal circulation with particular focus on a previously neglected positive feedback related to condensational latent heating over the rainforest, which strongly enhances atmospheric moisture inflow from the Atlantic. Our results indicate the existence of a tipping point. In our model setup, crossing the tipping point causes precipitation reductions of up to 40% in non-deforested parts of the western Amazon and regions further downstream. The responsible mechanism is the breakdown of the aforementioned feedback, which occurs when deforestation reduces transpiration to a point where the available atmospheric moisture does not suffice anymore to release the latent heat needed to maintain the feedback.
Visualizing the Impacts of Deforestation.
ERIC Educational Resources Information Center
Fortner, Rosanne W.
1992-01-01
Presents two activities with investigation procedures to aid students in examining the extent and impact of biomass burning and deforestation in Brazil as an example of the global problem. Provides background information, tables, and diagrams. (five references) (MCO)
Fernández-Calderón, Fermín; Cleland, Charles M; Palamar, Joseph J
2018-03-01
Electronic Dance Music (EDM) party attendees are often polysubstance users and are at high risk for use of new psychoactive substances (NPS). We sought to identify patterns of use of common illegal drugs among EDM party attendees, sociodemographic correlates, and use of NPS as a function of patterns of use of more common drugs to inform prevention and harm reduction. Using time-space-sampling, 1045 individuals aged 18-40 were surveyed entering EDM parties in New York City. We queried past-year use of common illegal drugs and 98 NPS. We conducted latent class analysis to identify polysubstance use profiles of use of eight common drugs (i.e., ecstasy, ketamine, LSD, mushrooms, powder cocaine, marijuana, amphetamine, benzodiazepines). Relationships between drug classification membership and sociodemographics and use of drugs within six NPS categories were examined. We identified four profiles of use of common drugs: non-polysubstance use (61.1%), extensive polysubstance use (19.2%), moderate polysubstance use/stimulants (12.8%), and moderate polysubstance use/psychedelics (6.7%). Those in the moderate/psychedelic group were at higher odds of using NPS with psychedelic-type effects (2C, tryptamines, and other "new" psychedelics; Ps<0.05). Extensive polysubstance users were at increased odds of reporting use of 2C drugs, synthetic cathinones ("bath salts"), tryptamines, other new (non-phenethylamine) psychedelics, new dissociatives, and synthetic cannabinoids (Ps<0.05). NPS preference is linked to the profile of use of common drugs among individuals in the EDM scene. Most participants were identified as non-polysubstance users, but findings may help inform preventive and harm reduction interventions among those at risk in this scene. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mihai, Bogdan; Săvulescu, Ionuț; Rujoiu-Mare, Marina; Nistor, Constantin
2017-12-01
The paper explores the dynamics of the forest cover change in the Iezer Mountains, part of Southern Carpathians, in the context of the forest ownership recovery and deforestation processes, combined with the effects of biotic and abiotic disturbances. The aim of the study is to map and evaluate the typology and the spatial extension of changes in the montane forest cover between 700 and 2462m a.s.l., sampling all the representative Carpathian ecosystems, from the European beech zone up to the spruce-fir zone and the subalpine-alpine pastures. The methodology uses a change detection analysis of satellite imagery with Landsat ETM+/OLI and Sentinel-2 MSI data. The workflow started with a complete calibration of multispectral data from 2002, before the massive forest restitution to private owners, after the Law 247/2005 empowerment, and 2015, the intensification of deforestation process. For the data classification, a Maximum Likelihood supervised classification algorithm was utilized. The forest change map was developed after combining the classifications in a unitary formula using image difference. The principal outcome of the research identifies the type of forest cover change using a quantitative formula. This information can be integrated in the future decision-making strategies for forest stand management and sustainable development. Copyright © 2017 Elsevier B.V. All rights reserved.
Agricultural intensification escalates future conservation costs.
Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L; Koh, Lian Pin; Pascual, Unai
2013-05-07
The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive "slash-and-burn" farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives.
The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes.
Bond, William; Zaloumis, Nicholas P
2016-06-05
Africa has the most extensive C4 grassy biomes of any continent. They are highly flammable accounting for greater than 70% of the world's burnt area. Much of Africa's savannas and grasslands occur in climates warm enough and wet enough to support closed forests. The combination of open grassy systems and the frequent fires they support have long been interpreted as anthropogenic artefacts caused by humans igniting frequent fires. True grasslands, it was believed, would be restricted to climates too dry or too cold to support closed woody vegetation. The idea that higher-rainfall savannas are anthropogenic and that fires are of human origin has led to initiatives to 'reforest' Africa's open grassy systems paid for by carbon credits under the assumption that the net effect of converting these system to forests would sequester carbon, reduce greenhouse gases and mitigate global warming. This paper reviews evidence for the antiquity of African grassy ecosystems and for the fires that they sustain. Africa's grassy biomes and the fires that maintain them are ancient and there is no support for the idea that humans caused large-scale deforestation. Indicators of old-growth grasslands are described. These can help distinguish secondary grasslands suitable for reforestation from ancient grasslands that should not be afforested.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).
Agricultural intensification escalates future conservation costs
Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L.; Koh, Lian Pin; Pascual, Unai
2013-01-01
The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive “slash-and-burn” farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives. PMID:23589860
The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes
Zaloumis, Nicholas P.
2016-01-01
Africa has the most extensive C4 grassy biomes of any continent. They are highly flammable accounting for greater than 70% of the world's burnt area. Much of Africa's savannas and grasslands occur in climates warm enough and wet enough to support closed forests. The combination of open grassy systems and the frequent fires they support have long been interpreted as anthropogenic artefacts caused by humans igniting frequent fires. True grasslands, it was believed, would be restricted to climates too dry or too cold to support closed woody vegetation. The idea that higher-rainfall savannas are anthropogenic and that fires are of human origin has led to initiatives to ‘reforest’ Africa's open grassy systems paid for by carbon credits under the assumption that the net effect of converting these system to forests would sequester carbon, reduce greenhouse gases and mitigate global warming. This paper reviews evidence for the antiquity of African grassy ecosystems and for the fires that they sustain. Africa's grassy biomes and the fires that maintain them are ancient and there is no support for the idea that humans caused large-scale deforestation. Indicators of old-growth grasslands are described. These can help distinguish secondary grasslands suitable for reforestation from ancient grasslands that should not be afforested. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216527
Global demand for gold is another threat for tropical forests
NASA Astrophysics Data System (ADS)
Alvarez-Berríos, Nora L.; Aide, T. Mitchell
2015-01-01
The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ˜1600 potential gold mining sites between 2001-2006 and 2007-2013. Approximately 1680 km2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007-2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós-Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena-Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ˜32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems, spread well beyond the actual mining sites.
Busch, Jonah; Ferretti-Gallon, Kalifi; Engelmann, Jens; Wright, Max; Austin, Kemen G.; Stolle, Fred; Turubanova, Svetlana; Potapov, Peter V.; Margono, Belinda; Hansen, Matthew C.; Baccini, Alessandro
2015-01-01
To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas (“concessions”) for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17–127%, 44–129%, or 3.1–11.1%, respectively, above what would have occurred otherwise. We further estimate that if Indonesia’s moratorium had been in place from 2000 to 2010, then nationwide emissions from deforestation over that decade would have been 241–615 MtCO2e (2.8–7.2%) lower without leakage, or 213–545 MtCO2e (2.5–6.4%) lower with leakage. As a benchmark, an equivalent reduction in emissions could have been achieved using a carbon price-based instrument at a carbon price of $3.30–7.50/tCO2e (mandatory) or $12.95–19.45/tCO2e (voluntary). For Indonesia to have achieved its target of reducing emissions by 26%, the geographic scope of the moratorium would have had to expand beyond new concessions (15.0% of emissions from deforestation and peat degradation) to also include existing concessions (21.1% of emissions) and address deforestation outside of concessions and protected areas (58.7% of emissions). Place-based policies, such as moratoria, may be best thought of as bridge strategies that can be implemented rapidly while the institutions necessary to enable carbon price-based instruments are developed. PMID:25605880
Reserves Protect against Deforestation Fires in the Amazon
Adeney, J. Marion; Christensen, Norman L.; Pimm, Stuart L.
2009-01-01
Background Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Methodology/Principal Findings Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Conclusions/Significance Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon. PMID:19352423
ERIC Educational Resources Information Center
Raven, Peter H.
1988-01-01
Outlines the deforestation problem and some efforts for solving the problem. Considers the impact of population growth, poverty, and ignorance. Includes a discussion of the current rapid decline in tropical forests, the consequences of destruction, and an outlook for the future. (YP)
Performance of vegetation indices from Landsat time series in deforestation monitoring
NASA Astrophysics Data System (ADS)
Schultz, Michael; Clevers, Jan G. P. W.; Carter, Sarah; Verbesselt, Jan; Avitabile, Valerio; Quang, Hien Vu; Herold, Martin
2016-10-01
The performance of Landsat time series (LTS) of eight vegetation indices (VIs) was assessed for monitoring deforestation across the tropics. Three sites were selected based on differing remote sensing observation frequencies, deforestation drivers and environmental factors. The LTS of each VI was analysed using the Breaks For Additive Season and Trend (BFAST) Monitor method to identify deforestation. A robust reference database was used to evaluate the performance regarding spatial accuracy, sensitivity to observation frequency and combined use of multiple VIs. The canopy cover sensitive Normalized Difference Fraction Index (NDFI) was the most accurate. Among those tested, wetness related VIs (Normalized Difference Moisture Index (NDMI) and the Tasselled Cap wetness (TCw)) were spatially more accurate than greenness related VIs (Normalized Difference Vegetation Index (NDVI) and Tasselled Cap greenness (TCg)). When VIs were fused on feature level, spatial accuracy was improved and overestimation of change reduced. NDVI and NDFI produced the most robust results when observation frequency varies.
Children and Wild Foods in the Context of Deforestation in Rural Malawi.
Maseko, H; Shackleton, Charlie M; Nagoli, J; Pullanikkatil, D
2017-01-01
There is growing recognition of the contribution of wild foods to local diets, nutrition, and culture. Yet disaggregation of understanding of wild food use by gender and age is limited. We used a mixed methods approach to determine the types, frequencies, and perceptions of wild foods used and sold by children in four villages in southern Malawi that have different levels of deforestation. Household and individual dietary diversity scores are low at all sites. All households consume one or more wild foods. Across the four sites, children listed 119 wild foods, with a wider variety at the least deforested sites than the most deforested ones. Older children can name more wild foods than younger ones. More children from poor households sell wild foods than from well-off households. Several reasons were provided for the consumption or avoidance of wild foods (most commonly taste, contribution to health, limited alternatives, hunger, availability, local taboos).
NASA Astrophysics Data System (ADS)
Sanford, L.
2017-12-01
When do politicians' re-election strategies cause serious environmental damage? This paper focuses on a case of deforestation, and argues that the protection of forested areas is a long-term public good while their destruction provides short-term, private goods for local voters and elected officials. Politicians give voters access to forested areas for commercial use of timber and small-scale farming in exchange for electoral support. I test the theory that competitive elections are associated with higher rates of deforestation using remote sensed satellite data of forest cover and data on national elections cross-nationally. The findings suggest that rates of forest cover loss are 50% higher in anocracies during election years, and more than double the average rate in years when there are competitive elections in anocracies and democracies. This suggests that democratic elections can be an important source of environmental damage, such as deforestation, contrary to the conventional wisdom that democratization improves environmental protection.
Devaraju, N; Bala, Govindasamy; Modak, Angshuman
2015-03-17
In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.
College Students' Moral Evaluations of Illegal Music Downloading
ERIC Educational Resources Information Center
Jambon, Marc M.; Smetana, Judith G.
2012-01-01
Although unauthorized music downloading is illegal, a majority of college students have downloaded music for free online. Evaluations of illegal music downloading and their association with downloading behavior were examined using social domain theory in a sample of 188 ethnically diverse college students (M[subscript age] = 19.80 years, SD =…
26 CFR 301.7624-1 - Reimbursement to State and local law enforcement agencies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... contributes to the recovery of Federal taxes imposed with respect to illegal drug or related money laundering... law enforcement agency substantially contributed to the recovery of taxes with respect to illegal drug... but otherwise uncollectable Federal tax liability with respect to illegal drug or related money...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... Identification of Nations Whose Fishing Vessels Are Engaged in Illegal, Unreported, or Unregulated Fishing and/or... illegal, unregulated, or unreported (IUU) fishing or bycatch of protected living marine resources (PLMRs... High Seas Driftnet Fishing Moratorium Protection Act (Moratorium Protection Act). On March 5, 2010...
26 CFR 301.7624-1 - Reimbursement to State and local law enforcement agencies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... contributes to the recovery of Federal taxes imposed with respect to illegal drug or related money laundering... law enforcement agency substantially contributed to the recovery of taxes with respect to illegal drug... but otherwise uncollectible Federal tax liability with respect to illegal drug or related money...
26 CFR 301.7624-1 - Reimbursement to State and local law enforcement agencies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... contributes to the recovery of Federal taxes imposed with respect to illegal drug or related money laundering... law enforcement agency substantially contributed to the recovery of taxes with respect to illegal drug... but otherwise uncollectible Federal tax liability with respect to illegal drug or related money...
26 CFR 301.7624-1 - Reimbursement to State and local law enforcement agencies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... contributes to the recovery of Federal taxes imposed with respect to illegal drug or related money laundering... law enforcement agency substantially contributed to the recovery of taxes with respect to illegal drug... but otherwise uncollectible Federal tax liability with respect to illegal drug or related money...
Legal and Illegal Patterns of Drug Distribution in the United States
ERIC Educational Resources Information Center
Caliguri, Joseph P.
1976-01-01
Along with large supply sources of legal and illegal drug substances, diversion and distribution systems have developed to feed and maintain the demand. This presentation provides information on the diverting of drugs from legal and illegal sources as well as the characteristics of the distribution patterns. (Author)
50 CFR 22.12 - What activities are illegal?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false What activities are illegal? 22.12 Section 22.12 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... WILDLIFE AND PLANTS (CONTINUED) EAGLE PERMITS General Requirements § 22.12 What activities are illegal? (a...
Ellis, Jennifer D; Lister, Jamey J; Struble, Cara A; Cairncross, Molly; Carr, Meagan M; Ledgerwood, David M
2018-03-12
Individuals with gambling disorder are at an elevated risk for engaging in gambling-related illegal behaviors. The present study examined client (N = 88) and clinician ratings (N = 30) of client characteristics associated with a history of gambling-related illegal behaviors. We also examined client characteristics associated with history of arrest for a gambling-related crime. Gambling-related illegal behaviors and arrest were common (57.3% and 23.9%, respectively) in the present sample. Clients of younger age, and those with greater gambling-related financial consequences, lifetime alcohol problems, impulsivity, mood symptoms, and daily living role difficulties were more likely to report gambling-related illegal behaviors. Clients who had been arrested for a gambling-related crime were more likely to report daily living and role functioning difficulties and lifetime alcohol problems. Clinicians rated clients with a history of gambling-related illegal behaviors and/or gambling-related arrests as more impulsive, and clinicians also endorsed higher rates of treatment failure among these clients. Both client and clinician report suggested that clients with a history of illegal behaviors may have a variety of comorbid problems that may be a focus of clinical intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantifying the Effect of Macroeconomic and Social Factors on Illegal E-Waste Trade
Efthymiou, Loukia; Mavragani, Amaryllis; Tsagarakis, Konstantinos P.
2016-01-01
As illegal e-waste trade has been significantly growing over the course of the last few years, the consequences on human health and the environment demand immediate action on the part of the global community. Though it is argued that e-waste flows from developed to developing countries, this subject seems to be more complex than that, with a variety of studies suggesting that income per capita is not the only factor affecting the choice of regions that e-waste is illegally shipped to. How is a country’s economic and social development associated with illegal e-waste trade? Is legislation an important factor? This paper aims at quantifying macroeconomic (per capita income and openness of economy) and social (human development and social progress) aspects, based on qualitative data on illegal e-waste trade routes, by examining the percentage differences in scorings in selected indicators for all known and suspected routes. The results show that illegal e-waste trade occurs from economically and socially developed regions to countries with significantly lower levels of overall development, with few exceptions, which could be attributed to the fact that several countries have loose regulations on e-waste trade, thus deeming them attractive for potential illegal activities. PMID:27527200
Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011
NASA Astrophysics Data System (ADS)
Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.
2017-12-01
The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying yearly burned areas allowed to identify areas with high fire recurrence.
Effect of oil palm sustainability certification on deforestation and fire in Indonesia.
Carlson, Kimberly M; Heilmayr, Robert; Gibbs, Holly K; Noojipady, Praveen; Burns, David N; Morton, Douglas C; Walker, Nathalie F; Paoli, Gary D; Kremen, Claire
2018-01-02
Many major corporations and countries have made commitments to purchase or produce only "sustainable" palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km 2 ) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y -1 Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. Copyright © 2017 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Malek, Žiga; Boerboom, Luc; Glade, Thomas
2015-11-01
This study focuses on future forest cover change in Buzau Subcarpathians, a landslide prone region in Romania. Past and current trends suggest that the area might expect a future increase in deforestation. We developed spatially explicit scenarios until 2040 to analyze the spatial pattern of future forest cover change and potential changes to landslide risk. First, we generated transition probability maps using the weights of evidence method, followed by a cellular automata allocation model. We performed expert interviews, to develop two future forest management scenarios. The Alternative scenario (ALT) was defined by 67 % more deforestation than the Business as Usual scenario (BAU). We integrated the simulated scenarios with a landslide susceptibility map. In both scenarios, most of deforestation was projected in areas where landslides are less likely to occur. Still, 483 (ALT) and 276 (BAU) ha of deforestation were projected on areas with a high-landslide occurrence likelihood. Thus, deforestation could lead to a local-scale increase in landslide risk, in particular near or adjacent to forestry roads. The parallel process of near 10 % forest expansion until 2040 was projected to occur mostly on areas with high-landslide susceptibility. On a regional scale, forest expansion could so result in improved slope stability. We modeled two additional scenarios with an implemented landslide risk policy, excluding high-risk zones. The reduction of deforestation on high-risk areas was achieved without a drastic decrease in the accessibility of the areas. Together with forest expansion, it could therefore be used as a risk reduction strategy.
Deforestation and Carbon Stock Loss in Brazil's Amazonian Settlements
NASA Astrophysics Data System (ADS)
Yanai, Aurora Miho; Nogueira, Euler Melo; de Alencastro Graça, Paulo Maurício Lima; Fearnside, Philip Martin
2017-03-01
We estimate deforestation and the carbon stock in 2740 (82 %) of the 3325 settlements in Brazil's Legal Amazonia region. Estimates are made both using available satellite data and a carbon map for the "pre-modern" period (prior to 1970). We used data from Brazil's Project for Monitoring Deforestation in Amazonia updated through 2013 and from the Brazilian Biomes Deforestation Monitoring Project (PMDBBS) updated through 2010. To obtain the pre-modern and recent carbon stocks we performed an intersection between a carbon map and a map derived from settlement boundaries and deforestation data. Although the settlements analyzed occupied only 8 % of Legal Amazonia, our results indicate that these settlements contributed 17 % (160,410 km2) of total clearing (forest + non-forest) in Legal Amazonia (967,003 km2). This represents a clear-cutting of 41 % of the original vegetation in the settlements. Out of this total, 72 % (115,634 km2) was in the "Federal Settlement Project" (PA) category. Deforestation in settlements represents 20 % (2.6 Pg C) of the total carbon loss in Legal Amazonia (13.1 Pg C). The carbon stock in remaining vegetation represents 3.8 Pg C, or 6 % of the total remaining carbon stock in Legal Amazonia (58.6 Pg C) in the periods analyzed. The carbon reductions in settlements are caused both by the settlers and by external actors. Our findings suggest that agrarian reform policies contributed directly to carbon loss. Thus, the implementation of new settlements should consider potential carbon stock losses, especially if settlements are created in areas with high carbon stocks.
Malek, Žiga; Boerboom, Luc; Glade, Thomas
2015-11-01
This study focuses on future forest cover change in Buzau Subcarpathians, a landslide prone region in Romania. Past and current trends suggest that the area might expect a future increase in deforestation. We developed spatially explicit scenarios until 2040 to analyze the spatial pattern of future forest cover change and potential changes to landslide risk. First, we generated transition probability maps using the weights of evidence method, followed by a cellular automata allocation model. We performed expert interviews, to develop two future forest management scenarios. The Alternative scenario (ALT) was defined by 67% more deforestation than the Business as Usual scenario (BAU). We integrated the simulated scenarios with a landslide susceptibility map. In both scenarios, most of deforestation was projected in areas where landslides are less likely to occur. Still, 483 (ALT) and 276 (BAU) ha of deforestation were projected on areas with a high-landslide occurrence likelihood. Thus, deforestation could lead to a local-scale increase in landslide risk, in particular near or adjacent to forestry roads. The parallel process of near 10% forest expansion until 2040 was projected to occur mostly on areas with high-landslide susceptibility. On a regional scale, forest expansion could so result in improved slope stability. We modeled two additional scenarios with an implemented landslide risk policy, excluding high-risk zones. The reduction of deforestation on high-risk areas was achieved without a drastic decrease in the accessibility of the areas. Together with forest expansion, it could therefore be used as a risk reduction strategy.
Stickler, Claudia M.; Coe, Michael T.; Costa, Marcos H.; Nepstad, Daniel C.; McGrath, David G.; Dias, Livia C. P.; Rodrigues, Hermann O.; Soares-Filho, Britaldo S.
2013-01-01
Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations’ energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local “direct” effects (through changes in ET within the watershed) and the potential regional “indirect” effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world’s largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4–8% and 10–12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6–36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry’s own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. PMID:23671098
A global assessment of closed forests, deforestation and malaria risk
GUERRA, C. A.; SNOW, R. W.; HAY, S. I.
2011-01-01
Global environmental change is expected to affect profoundly the transmission of the parasites that cause human malaria. Amongst the anthropogenic drivers of change, deforestation is arguably the most conspicuous, and its rate is projected to increase in the coming decades. The canonical epidemiological understanding is that deforestation increases malaria risk in Africa and the Americas and diminishes it in South–east Asia. Partial support for this position is provided here, through a systematic review of the published literature on deforestation, malaria and the relevant vector bionomics. By using recently updated boundaries for the spatial limits of malaria and remotely-sensed estimates of tree cover, it has been possible to determine the population at risk of malaria in closed forest, at least for those malaria-endemic countries that lie within the main blocks of tropical forest. Closed forests within areas of malaria risk cover approximately 1.5 million km2 in the Amazon region, 1.4 million km2 in Central Africa, 1.2 million km2 in the Western Pacific, and 0.7 million km2 in South–east Asia. The corresponding human populations at risk of malaria within these forests total 11.7 million, 18.7 million, 35.1 million and 70.1 million, respectively. By coupling these numbers with the country-specific rates of deforestation, it has been possible to rank malaria-endemic countries according to their potential for change in the population at risk of malaria, as the result of deforestation. The on-going research aimed at evaluating these relationships more quantitatively, through the Malaria Atlas Project (MAP), is highlighted. PMID:16630376
Effect of oil palm sustainability certification on deforestation and fire in Indonesia
Gibbs, Holly K.; Noojipady, Praveen; Burns, David N.; Morton, Douglas C.; Walker, Nathalie F.; Paoli, Gary D.; Kremen, Claire
2018-01-01
Many major corporations and countries have made commitments to purchase or produce only “sustainable” palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km2) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y−1. Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. PMID:29229857
Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles.
Frishkoff, Luke O; Hadly, Elizabeth A; Daily, Gretchen C
2015-11-01
Habitat conversion is a major driver of the biodiversity crisis, yet why some species undergo local extinction while others thrive under novel conditions remains unclear. We suggest that focusing on species' niches, rather than traits, may provide the predictive power needed to forecast biodiversity change. We first examine two Neotropical frog congeners with drastically different affinities to deforestation and document how thermal niche explains deforestation tolerance. The more deforestation-tolerant species is associated with warmer macroclimates across Costa Rica, and warmer microclimates within landscapes. Further, in laboratory experiments, the more deforestation-tolerant species has critical thermal limits, and a jumping performance optimum, shifted ~2 °C warmer than those of the more forest-affiliated species, corresponding to the ~3 °C difference in daytime maximum temperature that these species experience between habitats. Crucially, neither species strictly specializes on either habitat - instead habitat use is governed by regional environmental temperature. Both species track temperature along an elevational gradient, and shift their habitat use from cooler forest at lower elevations to warmer deforested pastures upslope. To generalize these conclusions, we expand our analysis to the entire mid-elevational herpetological community of southern Costa Rica. We assess the climatological affinities of 33 amphibian and reptile species, showing that across both taxonomic classes, thermal niche predicts presence in deforested habitat as well as or better than many commonly used traits. These data suggest that warm-adapted species carry a significant survival advantage amidst the synergistic impacts of land-use conversion and climate change. © 2015 John Wiley & Sons Ltd.
Recent Deforestation Causes Rapid Increase in River Sediment Load in the Northern Andes
NASA Astrophysics Data System (ADS)
Restrepo, J. D.; Kettner, A.; Syvitski, J. P.
2016-12-01
Human induced soil erosion reduces soil productivity; compromises freshwater ecosystem services, and drives geomorphic and ecological change in rivers and their floodplains. The Andes of Colombia have witnessed severe changes in land-cover and forest loss during the last three decades with the period 2000 and 2010 being the highest on record. We address the following: (1) what are the cumulative impacts of tropical forest loss on soil erosion? and (2) what effects has deforestation had on sediment production, availability, and the transport capacity of Andean rivers? Models and observations are combined to estimate the amount of sediment liberated from the landscape by deforestation within a major Andean basin, the Magdalena. We use a scaling model BQART that combines natural and human forces, like basin area, relief, temperature, runoff, lithology, and sediment trapping and soil erosion induced by humans. Model adjustments in terms of land cover change were used to establish the anthropogenic-deforestation factor for each of the sub-basins. Deforestation patterns across 1980-2010 were obtained from satellite imagery. Models were employed to simulate scenarios with and without human impacts. We estimate that, 9% of the sediment load in the Magdalena River basin is due to deforestation; 482 Mt of sediments was produced due to forest clearance over the last three decades. Erosion rates within the Magdalena drainage basin have increased 33% between 1972 and 2010; increasing the river's sediment load by 44 Mt/y. Much of the river catchment (79%) is under severe erosional conditions due in part to the clearance of more than 70% natural forest between 1980 and 2010.
Lindström, Martin
2008-05-01
To investigate the association between political trust in the Riksdag (the national parliament in Sweden) and having purchased illegal liquor during the past 12 months. The 2004 public health survey in Skåne is a cross-sectional postal questionnaire study answered by 27,757 respondents aged 18-80 with a 59% response rate. A logistic regression model was used to investigate the associations between political trust and having purchased illegal liquor during the past 12 months. Multivariate analyses of political trust and having purchased illegal liquor were performed in order to investigate the importance of possible confounders (including generalized/horizontal trust in other people). A 21.2% fraction of the men and 9.6% of the women had purchased illegal alcohol during the past 12 months. A total of 17.3% and 11.6% of the male and female respondents, respectively, reported that they had no trust at all in the national parliament, and another 38.2% and 36.2%, respectively, reported that their political trust was not particularly high. Respondents in younger age groups, with medium/low education, economic stress, low horizontal trust and not particularly high and no political trust at all and no opinion had significantly higher levels of having purchased illegal liquor. The significant odds ratios of having purchased illegal liquor in the not particularly high political trust and no political trust at all categories were somewhat reduced although still significant after multiple adjustments. The results suggest that political trust may have an independent effect on the propensity to purchase illegal liquor in Sweden.
49 CFR 28.131 - Illegal use of drugs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 1 2014-10-01 2014-10-01 false Illegal use of drugs. 28.131 Section 28.131... drugs. (a) General. (1) Except as provided in paragraph (b) of this section, this part does not prohibit discrimination against an individual based on that individual's current illegal use of drugs. (2) The agency...
49 CFR 28.131 - Illegal use of drugs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 1 2012-10-01 2012-10-01 false Illegal use of drugs. 28.131 Section 28.131... drugs. (a) General. (1) Except as provided in paragraph (b) of this section, this part does not prohibit discrimination against an individual based on that individual's current illegal use of drugs. (2) The agency...
49 CFR 28.131 - Illegal use of drugs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 1 2011-10-01 2011-10-01 false Illegal use of drugs. 28.131 Section 28.131... drugs. (a) General. (1) Except as provided in paragraph (b) of this section, this part does not prohibit discrimination against an individual based on that individual's current illegal use of drugs. (2) The agency...
Parables and Politics: Clergy Attitudes toward Illegal Immigration in Alabama
ERIC Educational Resources Information Center
Wickersham, Mary Eleanor
2013-01-01
The passage of a stringent immigration law in Alabama in 2011 makes relevant the juxtaposition of clergy and congregant attitudes and behaviors toward illegal immigrants as related to Biblical teachings that require charity to aliens. In order to examine the relationship between religious attitudes and illegal immigration, approximately 426…
24 CFR 982.304 - Illegal discrimination: PHA assistance to family.
Code of Federal Regulations, 2010 CFR
2010-04-01
... assistance to family. 982.304 Section 982.304 Housing and Urban Development Regulations Relating to Housing... Leasing a Unit § 982.304 Illegal discrimination: PHA assistance to family. A family may claim that illegal... prevents the family from finding or leasing a suitable unit with assistance under the program. The PHA must...
49 CFR 28.131 - Illegal use of drugs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... individual is otherwise entitled to such services. (c) Drug testing. (1) This part does not prohibit the... drug testing, designed to ensure that an individual who formerly engaged in the illegal use of drugs is... construed to encourage, prohibit, restrict, or authorize the conduct of testing for the illegal use of drugs. ...
49 CFR 28.131 - Illegal use of drugs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... individual is otherwise entitled to such services. (c) Drug testing. (1) This part does not prohibit the... drug testing, designed to ensure that an individual who formerly engaged in the illegal use of drugs is... construed to encourage, prohibit, restrict, or authorize the conduct of testing for the illegal use of drugs. ...
22 CFR 127.6 - Seizure and forfeiture in attempts at illegal exports.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Seizure and forfeiture in attempts at illegal... REGULATIONS VIOLATIONS AND PENALTIES § 127.6 Seizure and forfeiture in attempts at illegal exports. (a) An... vessel, vehicle or aircraft involved in such attempt is subject to seizure, forfeiture and disposition as...
Defining and Quantifying Potentially Discriminatory Questions in Employment Interviewing.
ERIC Educational Resources Information Center
Springston, Jeffery K.; Keyton, Joann
A study determined what constitutes an illegal pre-employment question, reviewed current laws and literature on the subject, and determined the prevalence of illegal questions asked by organizations. Except in the case of specific statutory law, there is no precise way to define what constitutes an illegal question; however, state and federal…
Canada moving backwards on illegal drugs.
Hyshka, Elaine; Butler-McPhee, Janet; Elliott, Richard; Wood, Evan; Kerr, Thomas
2012-01-01
Internationally, illegal drug use remains a major public health problem. In response, many countries have begun to shift their illegal drug policies away from enforcement and towards public health objectives. Recently, both the Global Commission on Drug Policy and the Supreme Court of Canada have endorsed this change in direction, supporting empirically sound illegal drug policies that reduce criminalization and stigmatization of drug users and bolster treatment and harm reduction efforts. Until recently, Canada was a participant in this growing movement towards rational drug policy. Unfortunately, in recent years, policy changes have made Canada one of the few remaining advocates of a "war-on-drugs" approach. Indeed, the current government has implemented a number of new illegal drug policies that contradict well-established scientific evidence from public health, criminology and other fields. As such, their approach is expected to do little to reduce the harms associated with substance use in Canada. The authors call on the current government to heed the recommendations of the Global Commission's report and learn from the many countries that are innovating in illegal drug policy by prioritizing evidence, human rights and public health.
Illegal fishing and territorial user rights in Chile.
Oyanedel, Rodrigo; Keim, Andres; Castilla, Juan Carlos; Gelcich, Stefan
2017-11-07
Illegal fishing poses a major threat to conservation of marine resources worldwide. However, there is still limited empirical research that quantifies illegal catch levels. We used the randomized response technique to estimate the proportion of divers and the quantities of loco (Concholepas concholepas) they extracted illegally. Loco have been managed for the past 17 years through a territorial user rights for fisheries system (TURFs) in Chile. Illegal fishing of loco was widespread within the TURFs system. Official reported landings (i.e., legal landings) accounted for 14-30% of the total loco extraction. Our estimates suggest that ignoring the magnitude of illegal fishing and considering only official landing statistics may lead to false conclusions about the status and trends of a TURFs managed fishery. We found evidence of fisher associations authorizing their members to poach inside TURFs, highlighting the need to design TURFs systems so that government agencies and fishers' incentives and objectives align through continuous adaptation. Government support for enforcement is a key element for the TURFs system to secure the rights that are in place. © 2017 Society for Conservation Biology.
Net Carbon Balance for the Brazilian Amazon
NASA Technical Reports Server (NTRS)
Houghton, R. A.
1998-01-01
The general purpose of this research was to use recent satellite-based estimates of deforestation in Brazilian Amazonia to calculate the net flux of carbon associated with deforestation and subsequent regrowth of secondary forests. We have made such a calculation, in the process comparing two estimates of deforestation and two estimates of biomass for the region. Both estimates were based on the RADAMBRASIL survey. They differed in the equations used to convert wood-volumes to total biomass. The net flux of carbon from changes in land use seems to vary from year to year, perhaps by as much as a factor of 4.
Population Dynamics and Tropical Deforestation: State of the Debate and Conceptual Challenges
Carr, David L.; Suter, Laurel; Barbieri, Alisson
2009-01-01
What is the role of population in driving deforestation? This question was put forth as a discussion topic in the cyberseminar hosted by Population Environment Research Network (PERN) in Spring, 2003. Contributors from diverse backgrounds weighed in on the discussion, citing key factors in the population-deforestation nexus and suggesting further courses of action and research. Participants explored themes of their own choosing, with many coming to the forefront. Scale, time, and place-based effects were cited as areas in need of particular attention. Consumption patterns as the mechanism for spurring deforestation were discussed, drawing attention to the differential patterns associated with urban vs. rural demands on forest resources and land. The applicability of the IPAT formula and the influence of its component parts, affluence and technology, when operating in tandem with population, was debated. The relation of demographic factors to these pathways was critically examined. Institutional and governmental influence, such as infrastructure and policies affecting access and incentives, the valuation of resources, and institutional failures such as mismanagement and corruption emerged as a crucial set of factors. This article synthesizes the critical debates in the population-deforestation literature, makes suggestions for future paths of research, and discussed possible policy and direct action initiatives. PMID:19672477
Implications of heterogeneous impacts of protected areas on deforestation and poverty
Hanauer, Merlin M.; Canavire-Bacarreza, Gustavo
2015-01-01
Protected areas are a popular policy instrument in the global fight against loss of biodiversity and ecosystem services. However, the effectiveness of protected areas in preventing deforestation, and their impacts on poverty, are not well understood. Recent studies have found that Bolivia's protected-area system, on average, reduced deforestation and poverty. We implement several non-parametric and semi-parametric econometric estimators to characterize the heterogeneity in Bolivia's protected-area impacts on joint deforestation and poverty outcomes across a number of socioeconomic and biophysical moderators. Like previous studies from Costa Rica and Thailand, we find that Bolivia's protected areas are not associated with poverty traps. Our results also indicate that protection did not have a differential impact on indigenous populations. However, results from new multidimensional non-parametric estimators provide evidence that the biophysical characteristics associated with the greatest avoided deforestation are the characteristics associated with the potential for poverty exacerbation from protection. We demonstrate that these results would not be identified using the methods implemented in previous studies. Thus, this study provides valuable practical information on the impacts of Bolivia's protected areas for conservation practitioners and demonstrates methods that are likely to be valuable to researchers interested in better understanding the heterogeneity in conservation impacts. PMID:26460125
Implications of heterogeneous impacts of protected areas on deforestation and poverty.
Hanauer, Merlin M; Canavire-Bacarreza, Gustavo
2015-11-05
Protected areas are a popular policy instrument in the global fight against loss of biodiversity and ecosystem services. However, the effectiveness of protected areas in preventing deforestation, and their impacts on poverty, are not well understood. Recent studies have found that Bolivia's protected-area system, on average, reduced deforestation and poverty. We implement several non-parametric and semi-parametric econometric estimators to characterize the heterogeneity in Bolivia's protected-area impacts on joint deforestation and poverty outcomes across a number of socioeconomic and biophysical moderators. Like previous studies from Costa Rica and Thailand, we find that Bolivia's protected areas are not associated with poverty traps. Our results also indicate that protection did not have a differential impact on indigenous populations. However, results from new multidimensional non-parametric estimators provide evidence that the biophysical characteristics associated with the greatest avoided deforestation are the characteristics associated with the potential for poverty exacerbation from protection. We demonstrate that these results would not be identified using the methods implemented in previous studies. Thus, this study provides valuable practical information on the impacts of Bolivia's protected areas for conservation practitioners and demonstrates methods that are likely to be valuable to researchers interested in better understanding the heterogeneity in conservation impacts. © 2015 The Author(s).
Conservation performance of different conservation governance regimes in the Peruvian Amazon.
Schleicher, Judith; Peres, Carlos A; Amano, Tatsuya; Llactayo, William; Leader-Williams, Nigel
2017-09-12
State-controlled protected areas (PAs) have dominated conservation strategies globally, yet their performance relative to other governance regimes is rarely assessed comprehensively. Furthermore, performance indicators of forest PAs are typically restricted to deforestation, although the extent of forest degradation is greater. We address these shortfalls through an empirical impact evaluation of state PAs, Indigenous Territories (ITs), and civil society and private Conservation Concessions (CCs) on deforestation and degradation throughout the Peruvian Amazon. We integrated remote-sensing data with environmental and socio-economic datasets, and used propensity-score matching to assess: (i) how deforestation and degradation varied across governance regimes between 2006-2011; (ii) their proximate drivers; and (iii) whether state PAs, CCs and ITs avoided deforestation and degradation compared with logging and mining concessions, and the unprotected landscape. CCs, state PAs, and ITs all avoided deforestation and degradation compared to analogous areas in the unprotected landscape. CCs and ITs were on average more effective in this respect than state PAs, showing that local governance can be equally or more effective than centralized state regimes. However, there were no consistent differences between conservation governance regimes when matched to logging and mining concessions. Future impact assessments would therefore benefit from further disentangling governance regimes across unprotected land.
Zhong, Daibin; Wang, Xiaoming; Xu, Tielong; Zhou, Guofa; Wang, Ying; Lee, Ming-Chieh; Hartsel, Joshua A; Cui, Liwang; Zheng, Bin; Yan, Guiyun
2016-01-01
In the past decade, developing countries have been experiencing rapid land use and land cover changes, including deforestation and cultivation of previously forested land. However, little is known about the impact of deforestation and land-use changes on the life history of malaria vectors and their effects on malaria transmission. This study examined the effects of deforestation and crop cultivation on the adult survivorship of major malaria mosquitoes, Anopheles sinensis and An. minimus in the China-Myanmar border region. We examined three conditions: indoor, forested, and banana plantation. Mean survival time of An. sinensis in banana plantation environment was significantly longer than those in forested environment, and mosquitoes exhibited the longest longevity in the indoor environment. This pattern held for both males and females, and also for An. minimus. To further test the effect of temperature on mosquito survival, we used two study sites with different elevation and ambient temperatures. Significantly higher survivorship of both species was found in sites with lower elevation and higher ambient temperature. Increased vector survival in the deforested area could have an important impact on malaria transmission in Southeast Asia. Understanding how deforestation impacts vector survivorship can help combat malaria transmission.
The Illegal Immigration Reform and Immigrant Responsibility Act of 1996: an overview.
Fragomen, A T
1997-01-01
"On September 30, 1996, President Clinton signed the Illegal Immigration Reform and Immigrant Responsibility Act of 1996 (1996 Act), Pub. L. No. 104-208, 110 Stat. 3009. After an intense lobbying effort by the business community, most provisions relating to legal immigration were omitted from the final bill. Instead, the 1996 Act focuses on illegal immigration reform and includes some of the toughest measures ever taken against illegal immigration." Aspects considered include border enforcement, penalities against alien smuggling and document fraud, deportation and exclusion proceedings, employer sanctions, welfare provisions, and changes to existing refugee and asylum procedures. excerpt
System dynamic modeling on construction waste management in Shenzhen, China.
Tam, Vivian W Y; Li, Jingru; Cai, Hong
2014-05-01
This article examines the complexity of construction waste management in Shenzhen, Mainland China. In-depth analysis of waste generation, transportation, recycling, landfill and illegal dumping of various inherent management phases is explored. A system dynamics modeling using Stella model is developed. Effects of landfill charges and also penalties from illegal dumping are also simulated. The results show that the implementation of comprehensive policy on both landfill charges and illegal dumping can effectively control the illegal dumping behavior, and achieve comprehensive construction waste minimization. This article provides important recommendations for effective policy implementation and explores new perspectives for Shenzhen policy makers.
Forensic timber identification: It's time to integrate disciplines to combat illegal logging
Eleanor E. Dormontt; Markus Boner; Birgit Braun; Gerhard Breulmann; Bernd Degen; Edgard Espinoza; Shelley Gardner; Phil Guillery; John C. Hermanson; Gerald Koch; Soon Leong Lee; Milton Kanashiro; Anto Rimbawanto; Darren Thomas; Alex C. Wiedenhoeft; Yafang Yin; Johannes Zahnen; Andrew J. Lowe
2015-01-01
The prosecution of illegal logging crimes is hampered by a lack of available forensic timber identification tools, both for screening of suspectmaterial and definitive identification of illegally sourcedwood. Reputable timber traders are also struggling to police their own supply chains and comply with the growing requirement for due diligence with respect to timber...
ERIC Educational Resources Information Center
Mallia, Luca; Lucidi, Fabio; Zelli, Arnaldo; Violani, Cristiano
2013-01-01
Using retrospective self-reporting, rates of illegal and legal performance-enhancing substance (PES) use in the past three months among more than 3,400 Italian high school adolescents were obtained and estimated. The study focused on the extent to which these sociodemographic characteristics and illegal PES use were associated with adolescents'…
Global governance approaches to addressing illegal logging: uptake and lessons learnt
B. Cashore; K. McGinley; S. Leipold; P.O. Cerutti; G. Bueno; S. et al. Carodenuto
2016-01-01
This report presents the results of the fifth global scientific assessment undertaken by the GFEP initiative. The report set out to gain deeper understanding of the meaning of illegal logging and related timber trade, its scale, drivers and consequences. It provides a structured synthesis of available scientific and expert knowledge on illegal logging and associated...
48 CFR 52.203-10 - Price or Fee Adjustment for Illegal or Improper Activity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Price or Fee Adjustment... Text of Provisions and Clauses 52.203-10 Price or Fee Adjustment for Illegal or Improper Activity. As prescribed in 3.104-9(b) insert the following clause: Price or Fee Adjustment for Illegal or Improper...
10 CFR 707.14 - Action pursuant to a determination of illegal drug use.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Action pursuant to a determination of illegal drug use. 707.14 Section 707.14 Energy DEPARTMENT OF ENERGY WORKPLACE SUBSTANCE ABUSE PROGRAMS AT DOE SITES Procedures § 707.14 Action pursuant to a determination of illegal drug use. (a) When an applicant for...